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Abstract

In this paper we generalize the Connes-Moscovici characteristic map for cyclic
cohomology of extended version of Hopf algebras called x-Hopf algebras. To do this,
we define a pairing for cyclic cohomology of module algebras and module coalgebras
under the symmetry of a x-Hopf algebra. We introduce more examples of similar
generalized characteristic maps for quantum algebraic torus and enveloping algebras.

1 Introduction

The Connes-Moscovici characteristic map introduced in [CM98] has many applications in
index theory, number theory and Hopf cyclic cohomology which is introduced in [CM01]
and [CMO00]. The characteristic map has been discovered in the study of computing the
index of a transversally elliptic operator on a foliation. Connes and Moscovici introduced
the Hopf algebras H,, which act on the algebra Appr := C°(FM x I') where M is a flat
affine manifold, FM is the GL™(n,R)-principal bundle of oriented frame on M and T is
the pseudogroup of orientation preserving local diffeomorphisms of M. This action turns
Appr in to a Hy,-module algebra. Let (0,0) be a modular pair in involution for H,, and
Tr be a d-invariant o-trace on Agys, then the following map

v : HE™ — Hom(AZ"HY ), (1.1)
Yrr(h1 ® - ®@ hy) (a0 @ -+ @ apn) = Tr(aghi(ar) - - - hn(ay)).

defines a map of cocyclic modules. Therefore they obtained the following characteristic
map on the level of periodic cyclic cohomology.

yrr : HP*(Hy,) — HP*(Apn),

where the left hand side stands for the Hopf cyclic cohomology of Connes-Moscovici Hopf
algebra and on the right we have the cyclic cohomology of the algebra Agps. The great
idea here is that although computing the cyclic cohomology of the algebras such as Agys
is a difficult task, one can compute the Hopf cyclic cohomology of the related symmetry as



‘H,, in this case and then use the characteristic map to transfer the cocycles and therefore
information from the Hopf algebra of the symmetry to the algebra in question. In fact the
terms of the form (1.1) appear in the computation of the local index formula of an elliptic
operator D using the Chern-Connes character which is a finite sum of the expressions of
the following form;

/ao[D, al](kl) .- [D, am](km)|D|(—m+2kl...+2km)'

Here a; € Apy and [D,a]®) denotes the k-th iterated commutator of D? and [ is the
Diximier trace.

Later different extendings of the Connes-Moscovici characteristic map for Hopf algebras
have been introduced in [KR3], [CR], [NS] and [Kay2]. Finally the author in [Kay3]
has proved that all of these different setups produce isomorphic characteristic maps. Let
us recall that the invariant trace T'r in fact is a 0-dimensional Hopf-cyclic cocycle and
therefore the characteristic map can be viewed as the following pairing.

HP} (Apum,' Cs) @ HPY, (My,' Cs) — HPP(Apy). (1.2)

The authors in [KR2] have shown that if H is an arbitrary Hopf algebra, A a H-module
algebra and M a stable anti Yetter-Drinfeld module over H then there is a pairing of the
following form;

HPY (A, M) ® HP} (1, M) — HPPTI(A). (1.3)

Also there is a similar pairing on the level of cyclic and Hochschild cohomology. We refer
the reader for more about Connes-Moscovici Characteristic map to [Kayl1].

Connes and Moscovici’s index theory of transversally elliptic operators lead beyond cyclic
cohomology of Hopf algebras. Later in [CM01], Connes and Moscovici introduced a Hopf
algebroid Hpys of transverse differential operators on F'Mx T'ps, the etale groupoid of
germs of diffeomorphisms of M lifted to its frame bundle F'M. It is now known that this is
a x-Hopf algebra. They have shown that H pps acts on the algebra Appr = CO(FM > T'yy)
and turns it in to a Hpp-module algebra. They introduced an invariant faithful trace on
Apa and obtained a characteristic map as follows;

~v:HC"(Hpy) — HC"(Apn). (1.4)

In this paper, we will extend Connes-Moscovici characteristic map and define a version
for x-Hopf algebras.

This paper is organized as follows. In Section 2 we recall the basics of x-Hopf algebras
and study the x-Hopf algebra structures of Connes-Moscovici Hopf algebroid, Kadisson
bialgebroid, quantum algebraic torus and enveloping algebras. Also we review the module
and comodule structures on x-Hopf algebras. Specially we study the stable anti-Yetter-
Drinfeld (SAYD) modules on the major examples of x-Hopf algebras. In Section 3 we recall
Hopf cyclic cohomology of x-Hopf algebras and compute some examples. In Section 4 we



introduce a pairing between cyclic cohomology of module algebras and module coalgebras
under the symmetry of a x-Hopf algebra. In this way we obtain a generalization of
Connes-Moscovici characteristic map (1.4) for an extended version of Hopf algebras.

Acknowledgments: The author would like to thank the Institut des Hautes Etudes
Scientifiques, THES, for its hospitality and financial supports during his stay when the
whole work was accomplished.

Contents

1 Introduction 1
2 Preliminaries 3
3 Cyclic cohomology of x-Hopf algebras 11
4 Module algebras paired with module coalgebras 14

2 Preliminaries

In this section, we recall the definition and basic properties of x-Hopf algebras. The
notion of x-Hopf algebras is introduced by Schauenburg in [Sch98]. It is a bialgebroid
(x-bialgebra) which is defined by Takeuchi [Tak| satisfying certain conditions. The notion
of x-Hopf algebras extends the Bohm-Szlachanyi’s Hopf algebroids [BSz| and many nice
examples of J. H. Lu’ Hopf algebroids [Lu]. One notes that a Béhm-Szlachényi’s Hopf alge-
broid is not necessarily a Lu’Hopf algebroid and vice versa. Some nice quantum groupoids
such as weak Hopf algebras with invertible antipodes and also Khalkhali-Rangipour’s
Para-Hopf algebroid [KR3] are examples of Bohm-Szlachanyi’s Hopf algebroids. Another
interesting example is Connes-Moscovici Hopf algebroid which is originally understood as
Lu’Hopf algebroid and also satisfies Bohm- Szlachanyi’s axioms. It is known that any
Bo6hm-Szlachdnyi’s Hopf algebroid (with invertible antipode) is also a x-Hopf algebra.

Let R be an algebra over the field of complex numbers C. A left bialgebroid K over R
consists of the data (K,s,t). Here K is a C-algebra, s : R — K and t : R? — K are
C-algebra maps such that their range commute with one another. In terms of s and ¢, K
can be equipped with a R-bimodule structure as follows;

T’l.k.T’g = 5(7‘1)f(7“2)k,

for all r1,79 € R and k € K. Similarly, X ®g K is endowed with a natural R-bimodule
structure. Also we assume that there is a R-bimodule maps A : K — K ®pr K called
coproduct and e : K — R called counit via which K is a R-coring [BW]. For the coproduct
we introduce the Sweedler summation notation A(k) = KV @K where implicit summation



understood. The data (K,s,t, A ¢) is called a left R-bialgebroid if the algebra and the
coring structures have the following compatibility axioms for all k, k" € K and r € R;

D) K @r K = kY @r k7 s(r),
i) A(lc) = 1x ® 1, and A(kE) = KV &Y @ k%K,
iii) (1) = 1g and e(kk') = e(ks(e(K'))).

A left R-bialgebroid (IC,s,t, A, ¢), is said to be a left x p-Hopf algebra if the following map
VK @pr K — K@pK, k@pok — k' @k K (2.1)

is bijective. In the domain of the map (2.1), R°’-module structures are given by right
and left multiplication by t(r) for » € R. In the codomain of the map (2.1), R-module
structures are given by right multiplication by s and t. The maps v and v~! are both
right K-linear. The image of v~ ! is denoted by

v (h @pgor 19y) = h_ ®pg h.

The notation of a x-Hopf algebra extends that of a Hopf algebra. In fact if K is a bialgebra,
then injectivity of the map v is equivalent to the fact that K is a Hopf algebra. In this
case the inverse of the map v is defined by

v U h®1) = h_ @por hy = B @go» S(KP).

We note that in the bialgebroid structure we have the equal source and target maps
s=1:C — K given by c — clg.

Example 2.1. Enveloping algebra R® R°P: Let R be an algebra over the field of complex
numbers. The simplest example of a left x g-Hopf algebra which is not a Hopf algebra is
K = R = R® R with the source and target maps defined by

s:R— K, r—r®l; t:R?—K, r—1m,
comultiplication defined by
A:K—KorK, mero— (rnol)eg(ler),

counit given by
e:K— R, e(ri®ry) =rire,

and
v((r1®@r2) @ (rs®@ry)) =r @1 Q@1rg @ rqra,

v ®@r) ®@(rs®@r)) =11 @ 1@ rors @ 14,

where r,r1,72,73,74 € R.



Example 2.2. Quantum algebraic torus Ag: The Laurent polynomials in two variables
C[U,V,U~*, V~1] is a Hopf algebra which is a completion of the Hopf algebra of the group
ring Z x Z. We consider a well-known deformation of this Hopf algebra which is not a
Hopf algebra anymore and it is called algebraic quantum torus denoted by Ag. Let us
recall that Ay is an unital algebra over C generated by two invertible elements U and V'
satisfying UV = ¢qVU, where ¢ = ¢*™ and @ is a real number. Let R = C[U, U] be the
algebra of Laurent polynomials. We define « = 3 : R — Ay be the natural embedding.
One defines a coproduct A : Ay — Ay g Ay given by

AU"V™) =0V @r V™. (2.2)
The counit map € : A9 — R is given by
e(U"vV™) =U0". (2.3)

Since the counit map is not an algebra map the quantum torus Ay is not an bialgebra.
Instead it is a left x g-bialgebroid by the coring structure defined above. Furthermore the
following map

v:Ag ®pop Ag — Ag Qr Ay
U'Vvm'U Virm UV @ VUV =g ™U" V" U " V™,
is bijective where the inverse map is defined by
v LUV QUTVE s UV QVTUTVE = UMV @ UTVET™ (2.4)
This turns Ay into a left x gp-Hopf algebra.

Example 2.3. Connes-Moscovici Hopf algebroid Hpys : In this example we show that
Connes-Moscovici Hopf algebroid defined in [CMO01] is a x-Hopf algebra. Let M be a
smooth manifold of dimension n with a finite atlas and F'M be the frame bundle on M.
Let I'ps denotes the pseudogroup of all local diffeomorphims M where its elements are
partial diffeomorphisms v : Domvy — Rani, where the domain and the range of ¢ are
both open subsets of M. One can lift ¢ € I'y; to the frame FM. This prolongation is
denoted by 1. We set

FM x Ty = {(u,9), ¢ €Ty, u€ Rangp},

and
FM % Ty = A{[u,¢], ¢€l'n, u€ Rangp},
where [u, p] stands for the class of (u,p) € FM x I'j; with respect to the following

equivalence relation;

(u, @) ~ (v,0), if u=v and @|lw=1 |w .



Here W is an open neighborhood of u. Let
Apa = CP(FM % T'yy), (2.5)

be the smooth convolution algebra. Every element of this algebra is linearly spanned by
monomials of the form fUj where f € C2°(Domi). One has

fUy, = LUy, Hf fi=fo and ¢ily =12|v,

where V' is a neighborhood of Supp(f1) = Supp(f2). A multiplication is defined on Agys
by
NUg, - f2Uy, = fi(f2 0 91)Uj,y, - (2.6)

We define the following algebra

Rey = C®(FM), (2.7)
which acts from left on Apys by
ro> fU =r.fU*, 1€ Rprum, (2.8)
and from right by B
fU<ar =(roa).fU*, r € Rpy. (2.9)

In fact we obtain the source map a : Rpyr — Apas by the left action and the target map
B : RE — Apum by the right action where both are algebra maps which their ranges
commutate. Also we consider the action of an arbitrary vector field Z on F'M which is
given by

Z(fU*) =Z(f)U*, [fU* € App. (2.10)

One notes that although a vector field acts by derivations on functions on the frame bundle,
the action of the vector field on Apjys is not a derivation anymore. Now let

Hey C E(AFM), (2.11)

denotes those elements of the subalgebra of linear operators on Agy; which are gener-
ated by the three types of transformations; left multiplication, right multiplication and
composition given in (2.8),(2.9) and (2.10). The elements of Hpys are called transverse
differential operators on the groupoid FFM x I'jp;. One notes that o : Rppyr —> Hpar and
B R%’M — Hpy endow Hppr with a R pps-bimodule structure. To define a R gps-coring
structure on Hpyy, it is proved in [CMO1] that Hpys has a Poincare-Birkhoff-Witt-type
basis over Rpyr ® Reyr by fixing a torsion free connection on F'M. To recall this basis,
let X1,---, X, denote the standard vector fields corresponding to the standard basis of
R™ and {Y;} be the fundamental vertical vector fields corresponding to the standard basis
of gl(n,R). These n? + n vectors form a basis for the tangent space of FM at all points.
Let (5% € L(Arnr) be the operators of multiplication defined in [CMO1]. It is proven in



[CMO1][Proposition 3] that transverse differential operators Z7.9, form a basis for Hpps
over Rpyr ® Rey, where

Zr=Xpp o X, VY0, and 6, = 5;’,1“%%%1 Oty (2.12)
and ' ‘
Ofksty oy, = [ X o+ [ Xy, 03], -] (2.13)

We refer the reader to [CMO1][Proposition 3] for definition of multi-indices I and . In
order to define the coproduct, they have shown that the generators of Hgys acts on Apps
as a module algebra. This leads us to define a coproduct Apyr on Hpps which is not
well-defined on Hry @ Hrar, instead the ambiguity disappears in the tensor product over
R In the next step, the counit is defined in [CMO01][Proposition 7] by

erym - Hrv — Rrear, €(h) =hp1. (2.14)

Finally the authors in [CMO1][proposition 8] defined a twisted antipode Spy; by defining
a faithful trace 7 : Appr — C. As a result, Hpps is a X ,.,,-Lu’s Hopf algebroid by

(Apar,erars Sew)- (2.15)
The following canonical map
Hrym @gor ey — Hrev @Rpy Hr, (2.16)
which is given by
hoh —s B @ h” K (2.17)

defines a xg,,,-Hopf algebra structure on Hry;. Here we mention a special case of
Connes-Moscovici Hopf algebroid when M = R"™ is the flat Euclidean space. It is proved
in [CM2004] that

Hprn = Rprn X Hy X Rpgn, (2.18)

is a Hopf algebroid where H,, is the Connes-Moscovici Hopf algebra [CM98]. In fact it can
be shown that it is a left x-Hopf algebra as follows. Generally speaking if H is a Hopf
algebra and A is a H-module algebra then

Hon = Ax Hx AP, (2.19)

is a left x 4-Hopf algebra, called Connes-Moscovici x-Hopf algebra, by the following struc-
ture. The algebra structure is given by

(@xhxb) (@ xhxbt)=ahbd)xr”n x (h”

b)b (2.20)
The source and target maps o : A — H and 3 : A’ — H are given by

afa)=ax1x1l, fa)=1x1Ka. (2.21)



The coring structure is given by the following coproduct;
A(ax hxb)=(ax hY x 1) ®a (1% h? x b). (2.22)
The counit € : Hopr — A is defined by
e(a x h x b) = ae(h)b. (2.23)

Furthermore we define v : Honr @400 Honr — Hon @4 Hoar is defined by

2)

v((@x hxb) @40 (@ I % V)= (axh" x1)@4 (h a x h”

o (B b’)b) . (2.24)
with the inverse map given by

v ((axhxb)@a(d xh b)) = (axh” x 1)@ per (S(h(4>) > (ba) x S(K YR % S(B”) > b’) .
(2.25)

Example 2.4. Kadison bialgebroid: In this example we show that the Kadison bialgebroid
(A® A°P) < H introduced in [Kad] is a x 4-Hopf algebra. Here H is a Hopf algebra and
A a left H-module algebra. First we recall the bialgebroid structure. The source map
a:A— (A® A?) 1 H is given by

a— (a®1)® 1. (2.26)
The target map f: A — (A ® A°P) 1 H is given by

a— (1®a)®1. (2.27)
The algebra structure is given by the following multiplication rule;

1)

(@@bah) - @ ot ah)=ahb’sd)ot(SH”)sb)2n” Y. (2.28)

The comultiplication is given by

@@b)@h— (a2 1) @h") o4 (1ob)®h™) (2.29)
Furthermore the counit ¢ : (A ® A%) > H — A is given by
(a®b)®@h+—> a(hb). (2.30)

Let A°=A® A°?. We definev: A°® H R0 A°QH — A°@ H®4 A°® H by

(2) (3)

(a2b@h) @ao (@ @V @) — (@@ 10k @a (07 >a) @b (S o) @ n W) |

(2.31)
with the following inverse map;

(@@bDh) @4 (a' @V RK) — (a@1A") @ gor ((b@ 10 S(h?)- (a’®b’®h’)) (2.32)



It is proved by Panaite and Van Oystaeyen in [PVO] that the Connes-Moscovici bialgebroid
is isomorphic to the Kadison bialgebroid;

AxHXAP = (A A?)x H. (2.33)
This isomorphism is given by
X (AR AP H — AR H® AP, a@b@hr— aoh” @h”b, (2.34)

and
X tiaohob—axSHY )b h". (2.35)

It is mentioned in [PVO] that if S? = Id then the map x induces an isomorphism on the
level of Bohm-Szlachanyi Hopf algebroid. We recall that two x-Hopf algebras K and ‘H
are isomorphic if there exists a map ¢ : K — H which commutes with all bialgebroid
structures and furthermore (v = v({. Similarly one has the following statement.

Lemma 2.5. Connes-Moscovici and Kadison x-Hopf algebras AxH x AP and (AR A°P) >
H are isomorphic.

Here we briefly recall the definitions of modules, comodules and stable anti-Yetter-Drienfeld
(SAYD) modules for a left x-Hopf algebra. A right module of a left x p-Hopf algebra K is
a right -module M. A right K-module M can be equipped with a R-bimodule structure
as follows:

r-m=s(r)-m, and m-r=t(r)-m

A left comodule of a left xp-Hopf algebra K is defined to be a left comodule of the
underlying R-coring (KC, A, ¢), that is, a left R-module M, together with a left R-module
map M — K ®r M, m — m_1) ®r myq), satisfying coassociativity and counitality
axioms. One notes that a left IC-comodule M can be equipped with a R-bimodule structure
by introducing a right R-action as follows,

m -1 = e(m_ys(r)) - m,

for r € R and m € M. With respect to the resulting bimodule structure, K-comodule maps
are R-bimodule maps. In the special case, the left K-coaction on M is an R-bimodule map
in the sense that for all r,7" € R and m € M, we have;

(r-m- r’)(_l) Qg (r-m- r’)(o) = s(r)m(_l)s(r’) Qg M. (2.36)
Furthermore, for all m € M and r € R we have;
m(—1) XRRr me) - T = m(_l)t(r) XR m)- (237)

Let M be a right K-module and a left K-comodule. We say M is an anti Yetter-Drinfeld,
AYD, module provided that the following two conditions hold.



i) The R-bimodule structures on M, underlying its module and comodule structures,
coincide. That is, for m € M and r € R,

m-r=m<ds(r), and r-m=m<t(r),

where r - m denotes the left R-action on the left K-comodule M and r - m is the canonical
right action.

1) For k € K and m € M we have;
(m < k)(—l) X (m < k:)(o) = k‘(f)m(_l)k(l) QR mo) &> k:(f). (2.38)
The anti Yetter-Drinfeld module M is said to be stable if in addition for any m € M we

have mgym(_1) = m.

Example 2.6. A map ¢ is called a right character [BSz, Lemma 2.5], for the x p-Hopf
algebra K if it satisfies the following conditions:

d(ks(r)) =d(k)r, for keK and r€ R, (2.39)
5(k1k2) = (5((5(1{21))]432), for kq,ke € K, (240)
d(1k) = 1g. (2.41)

As an example, for any right x g-Hopf algebra, the counit ¢ is a right character. We recall
from [BS, Example 2.18] and [HR1, Example 2.5, let 0 € K be a group-like element and
the map § : L — R be a right character. The following action and coaction,

r<ak=46(s(r)k), and r+—s(rjo®1 (2.42)

define a right K-module and left K-comodule structure on R, respectively. These action
and coaction amount to a right-left anti Yetter-Drinfeld module on R if and only if, for
all € R and k € K we have;

s(0(k))o = t(6(EDNED ok, and  e(os(r)) = 0(s(r)). (2.43)

The anti Yetter-Drinfeld module R is stable if in addition §(s(r)o) = r, for all r € R. We
denote this SAYD module over K by ? Rs.

Example 2.7. SAYD modules on the enveloping algebras:
As a special case of the previous example when £ = R ® R, it is shown in [HR1] that
a homogenous element x @ y € K is a group-like element if and only if zy = yzr = 1.
Furthermore if § be a character then 8(r @ 1’) = 77 for all 7 @7/ € K. As a result *®* ' Ry
is a right-left SAYD module over the x gp-Hopf algebra K = R® R°P by the following action
and coaction;

rorry = 1< (11 ® r2), r— (re@az @1, (2.44)

where r,r1,72, € R and x is an element of the center of R.
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Example 2.8. SAYD modules on the quantum algebraic torus:

Let Ag be the algebraic torus by the left x-Hopf algebra structure given in the Example
2.2. Tt is obvious that every element of the form V" is a group-like element. Furthermore,
the map : 6 : Ay — C[U,U '] which is given by

S(UMV™) = ¢"mU™, UMV™ € Ay, (2.45)

is a right character. The only group-like element which satisfies the stability condition
with respect to this right character is the unit element. As a result of (2.42), the following
action and coaction endow ! Rs = C[U, U~!] with a SAYD structure on Ay as follows;

Example 2.9. SAYD modules on the Connes-Moscovici X-Hopf algebra:
Suppose the homogenous element a @ h @b € A® H ® AP is a group-like element. Using
the A-coring structure defined in the Example 2.3 we obtain;

@oh’ @) e(loh” @b)=(a@heb)®(@®hab). (2.47)

This implies that a = b = 1 and therefore h is a group-like element of H. Therefore
the group-like elements of Connes-Moscovici x-Hopf algebra Hopy = A ® H @ A are
of the form 1 ® 0 ® 1 where o is a group-like element of the Hopf algebra H. We define
0: Hoy — A given by

da®@h®b)=c¢(h)f(ba), (2.48)

where f : A — A is an unital algebra map satisfying f2 = f and f(h>a) = (h)f(a).
One can check that J is a right character.

3 Cyclic cohomology of x-Hopf algebras

Cyclic cohomology of Hopf algebras is discovered by Connes-Moscovici in their ground
breaking work on local index theory [CM98|. Their work is followed by important calcu-
lations of Hopf cyclic cohomology of quantum groups by Khalkhali-Rangipour in [KR1],
Kustermans-Rognes-Tuset in [KRT] and aslo Hadfield-Krdhmer in [HK1] and [HK2]. The
cyclic cohomology of Lu’s Hopf algebroid (which is defined in [CMO01] and [Ko]) and of
Khalkhali-Rangipour Para- Hopf algebroids [KR3] are defined with trivial coefficients, the
underlying algebra of the coring structure. The generalized SAYD coefficients for extended
versions of Hopf algebras first is defined in [BS] for x-Hopf algebras and later has been
generalized in [HR1], [HR2] and [KK]. In this section, we review the cyclic cohomology of
algebras and coalgebras under the symmetry of a left x g-Hopf algebra with coefficients
in a SAYD module.

Let R be an algebra over C and K be a left x g-Hopf algebra. A left K-module coring C
is a R-coring and left -module with one and the same underlying R-bimodule structure,
such that counit ¢ and comultiplication A both are left K-linear. We consider the left
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K-module structure of R by k > r := ¢(ks(r)) and left K-module structure of C ®g C' is
by diagonal action. This means;

e(k>c) =k e(c) =e(ks(e(e))), (3.1)

Akse)=k">c" opk” > . (3.2)

For any left JC-module coring C' and a right-left SAYD module M over I, one defines a
cocyclic module as follows. Let

KC™(C, M) = M @ CErHD),

We abbreviate ¢ = ¢y ®pg - -+ ®g ¢, and define the following cofaces, codegeneracies and
cocyclic maps.

di(m @) ¢) =m R o Qr - Qr A¢;) ®r -+ R Cp,

dpt1(m ) ¢) = mg) ®x Céz) ®rC1 ®OR - R CHL OR m(,l)c(()l)a

sim®xc) =m®x co@r - Qre(c) r -+ AR Cn,

tn(m Ric a = My0) R c1 Qr -+ DR m(—1)Co-
One verifies that (xC™(C, M), d, s,t) is a cocyclic module. We denote the cyclic cohomol-
ogy of this cocyclic module by x HC"™(C, M).
Now we describe the cyclic cohomology of a module algebra under the symmetry of a

x-Hopf algebra. A left -module algebra A is a C-algebra and a left J-module satisfying
the following conditions for all k € K , a,a’ € A and r € R;

i) k>l =s(e(k))>1a,
i) ho(ad’) = (kW >a) (k@ > d),
iii) (t(r)>a)a’ = a(s(r)>a’), (multiplication is R-balanced).
For any left K-module algebra A and a right-left SAYD module M over K, we set
xC™(A, M) = Homy (M @5 A®EH) R,

to be the set of K-linear maps from M @ A®E(+D to R. The following cofaces, codegen-
eracies and cocyclic maps will define a cocyclic module;

(6if)(m @R ®prao Or -+ @r an) = f(M @g ®ag O - DR ;41 DR -+ QR n),
(6nf)(Mm @R ®Rao @R -+ ®r an) = f(M_os @R an(M(_p)a0) @R - OR M(_1)An-1),
(0:f)(m @R ®Rrag @R AR an) = f(MRR a9 O --* AR 1 QR -+ AR an),

(7o f)(m ®R ®Rao OR -+ ®R an) = f(Mo ®R @n @R M(_p)A0 ® ... OR MY_1)An-1)-

The cyclic cohomology of this cocyclic module is denoted by Kﬁén(A, M) which gener-
alizes the dual cyclic cohomology defined in [KR1].
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Example 3.1. Cyclic cohomology of a X g-Hopf algebra with coefficients in R:
If R is a SAYD module for the x-Hopf K as explained in Example 2.6, then the related
cocyclic module is;

kC"(K,R) =Rk K®p- - QrK=ZKRpr---®@rK. (3.3)

n+1 times n times

The isomorphism is given by
p(r @ ko @R -+ QR kn) = s(r 9ko)k1 ®r - @R kn, (3.4)

which is in fact;

p(r @ ko @R -+ QR kn) = $(0(s(r)ko)) k1 @R - @R kn, (3.5)

and the inverse map is given by
p (k1 ®R - @ kn) = 1r Ok 1k ®r k1 QR -+ QR kn. (3.6)
Then the cocyclic module (3.3) is simplified to the following one.

do(k1 ®R -+ - @R kn) = 1k @R k1 ®r @Rkn,
di(k1 ®p - @R kn) = k1 Qg - Qr A(ks) ®R - - - @R kn,
dnt1(k1 ®p -+ @rkp) = k1 ®p -+ @R kn @R 0,

so(k1 ®R - @R kn) = 5(3(k1))k2 ®p k3 @R - - - QR kn,

5i(k1 @R - @R kn) = k1 @R --- @r (ki) OR - - - OR kn,
tn(k1 ®r -~ @R kn) = 5(6(k1))k2 ®Rr k3 ®R - - ®R kn ®R 0.

Example 3.2. Cyclic cohomology of the universal algebra R°:
For any unital algebra R on the field of complex numbers C, we have

Cre(R°R)=ROpe QR ®p - Qp R = R® - @ RAOR™. (3.7)
n+12mes n times

Similar to [CMO1] we use the unit map to define a map of cocyclic modules
C"(C®C?) — C"(R® RP).

Now we fix an unital linear functional ¢ € R* to define a homotopy map s : C"(R®) —
C"1(R®) which is given by

S(Tl & - ®Tn) — QO(T]_)TQ@"' @ T,y (38)

where rq,--- ,7r, € R. One easily checks that s commutes with face maps and therefore
we obtain an isomorphism on the level of Hochschild and consequently cyclic cohomology
for the cocyclic modules C"(C ® C%) and C"(R ® R°P). Therefore we obtain;

HC*(R ® RP) = HC*(C © C) =~ HC*(C). (3.9)
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Example 3.3. Cyclic cohomology of Connes-Moscovici and Kadison x-Hopf algebras:
For the Connes-Moscovici and Kadison x-Hopf algebras we have;

HC*(A® H @ A) = HC*(A° @ H) = HC*(H). (3.10)

Here the first isomorphism is a result of the Lemma 2.5. In fact as it is shown in [CMO01],
there is a R-bimodule isomorphism for Connes-Moscovici Hopf algebra as follows;

Hoey=R®HQ®RP>a(R)®@(R)@ H=R® R?® H. (3.11)

Therefore one can transfer the x-Hopf algebra structure to R ® R’ ® H. It is easily
observed that
AHOA{ = ARE ® AH? and 5Hc]v[ = ERe ® €H. (312)

This shows that Hgpys is actually isomorphic to the external tensor product between the
bicoalgebroid R® and the coalgebra H over the complex numbers. In fact we have;

6HCJM =0pe ® 0y, and OHey = ORe ®0H. (3.13)
By applying Eilenberg-Zilber theorem we obtain
HH*(Heoy) 2 HH*(R) @ HH*(H) 2 HH*(H), (3.14)

where the second isomorphism is obtained by the Example 3.2. In fact the composition of
the two isomorphism is given by the canonical inclusion homomorphism f : H — How
which is also a morphism of x-Hopf algebras. This enables us to obtain a map of cocyclic
modules yC*(H,C) —p,, C*(Hcowm, R). Therefore the Connes-Long exact sequence of
cocyclic modules relating Hochschild and cyclic cohomology implies the isomorphism on
the level of cyclic cohomology.

Example 3.4. Cyclic cohomology of the quantum algebraic torus:
A normal Harr system o : Ay — C[U,U~}] is introduced for the bialgebroid structure of
the quantum algebraic torus in [KR3] as follows;

o(U™V™) = oU™. (3.15)
This leads to having a contracting homotopy as defined in [KR3] and therefore we obtain;

HC* 1 (49) =0, HC¥(49) =ClU, U], forall i>0 (3.16)

4 Module algebras paired with module coalgebras

Let IC be a left x g-Hopf algebra, M be a right-left SAYD module over K, A be a left
K-module algebra and C be a left -module coring. Let C acts on A from left satisfying
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the following conditions;

(hc)a = h(ca), (4.1)
c(ab) = (Wa)(cPb), (4.2)
c> 1y =¢(c) > 14. (4.3)

Let B = Homy(C, A) be the set of maps from the R-coring C' to A which are both K-linear
and R-linear. The space B is an algebra over C by the multiplication * which is given by;

(1) (2)
(fxg)(c)=flc )f(c). (4.4)
We denote that B is a R-bimodule by (r> f)(¢) = f(r > ¢) and similarly for the right
R-action. There exists an unital algebra map given by n4 : R — A, na(r) =rp>ly =
s(r) > 14. Therefore B has the unit element np = n4 o ec. We remind that the cyclic
cohomology of the algebra B is computed by the cohomology of the following cocyclic
module.
07 (¢)(bo @ - - 'bn+1) = (bo ® - @bibiy1 ® -+ - bny1),
o (p)(bo @~ by) = p(bo ® - (b‘) ® - bn),
(@) (bo @ -+ bn) = p(bp ®bg @ -+ @ by—1).
Let
COTLL,’cn =k C"(A, M) ® xC"(C, M),
be the diagonal complex which is a cocyclic module by (6, ® dy,0p @ 8y, @ T, @ t,). We
define the following map;
U, : O — Hom(B®=("TY) C),
Ve(p@m®x co®r - @r cn)(fo ®R @R fn) = ¢(m @R fo(co) ®r -+ @R fnlcn))-
Here f; € B, for all 0 < i < n and ¢ € C™"(A, M). The map V¥, is well-defined because

fi’s are K and R linear and ¢ is equivariant.

Proposition 4.1. The map V. defines a cyclic map between the diagonal cocyclic modules
n,n

Cae and the cocyclic module of the algebra B, i.e. C™(B).
Proof. First we show that V. commutes with cofaces.
V(6 @ di(p @m @i co @R -+ QR ¢n))(fo @R -+ QR fat1)
U (6:(6) @ di(m @ co @R - @R n))(fo @R -+ @R fat1)
Ve (di(p) ®m @) co @R -+ DR Cim ®c ®p Cn)(fo ®R - @R fnt1)
3:(®)(m & folco) ©r -+ @k fi(ei) @r fin1(e”) @R Or fasi(cn))
o(m @ folco) Or -+ O filer )V firrlei ) O R fat1(cn))
p(m @k folco) ®r -+ ®@r (fi * fir1)(ci) Or - R frt1(cn))
(0i V(¢ ®@m @k co @R @R n))(fo ®R - @R fnt1)-
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Here we show that ¥, commutes with codegeneracies.

Ve(0; @ si(¢ @m @k co @R -+ @R ¢n))(fo @R -+~ OR fn1)
Ue(0i(p) @ si(m @ co ®r - @R ¢n))(fo Or -+ OR fr-1)

Ue(oi(¢p) ®m @k co @R -+ @re(c;) ®r -+ Or ¢n)(fo @R - OR fn)
oi(¢) (m @k fo(co) ®r -+~ @r e(ci) @R - @R fu-1(cn))

¢ (m @k folco) ®r -+ @re(Ci)1 ®R -+ AR fn-1(cn))

¢ (m @k folco) ®r -+ @rnB(ci) @R -+ OR fu-1(cn))

(0§ Ve(p@m @K co @R @R cn))(fo @R -+ OR fn1)-

The following computation shows that ¥, commutes with cyclic maps.

Ue(Tn @tn(¢p@m Rk co Qr -+ Qr cn))(fo @r - @R fn)

V. (tan(¢) @ t,(m Qx co @p - Qr cn))(fo@r -+ QR fn)

(Mo ® fole1) ®r - @rm__,. fn(co))

cos<0s @RM_ 12 fnlc) @R Moo o fo(c1) Or - @R Moo s fa-1(cn))

(
& @) (nt1)
(m<0> QRM fn(co) ®r Mo fole1) ®r - ®r Mo Jn—1(cn))
(
(

\]

-

3

<

P(m_os @rm__. > (fnlco) @r folc1) - ®r fa-1(cn))
¢(m @R fnlco) ®r foler) -+ @r fa-1(cn))

Ve(p@m @k co®r - QR cn)(fn @R fo ®R -+ @R [n-1)
(17 ¥e(p @ m @k co @R - R n)(fo ®R -+ @R fn)-

O]

We define an unital algebra map A\ : A — B = Homg (A4, C) given by A(a)(c) = ca. The
condition (4.1) implies the KC-linearity of the map A(a) € B and therefore X is well-defined.
The condition (4.2) shows that the map A is multiplicative and finally (4.3) proves that A

is unital. Therefore we obtain a map of cocyclic modules A : C*(B,C) — C*(A,C). We
set

Ui= AoV, : Ot — C*(4,C). (4.5)
where

VU(p@mRi co®r - Qrcp)(ag® -+ @ ap) = p(m g cpag @R -+ - AR Cpap).

Theorem 4.2. Let R be a an unital C-algebra, K be a left x gp-Hopf algebra, M be a
right-left SAYD module over IC, A be a left K-module algebra and C be a left K-module

coalgebra. Let C acts A satisfying (4.1), (4.2) and (4.3). We have the following pairing
on the level of cyclic cohomology,

U HCx(A, M) @ HCL(C, M) — HCP*(A),
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given by
U=VYAW,

where AW is the Alexander-Whitney map. There are similar pairings for Hochschild and
periodic cyclic cohomology.

Remark 4.3. Similar to [R1] one shows that the coproduct LI introduced in Theorem 4.2
is given by the following explicit formula on the level of Hochschild cohomology.

U : CP(A, M) ® CL(C, M) — CPHI(A), (4.6)

(p@m @k co®R -+ OR Cq)(a0 @ -+ @ apiq) =

(p+1) 1) (p)
S(mge @ (0" ag)(crar) -+ (cqaq) ®rm._,.(co a™) @ - @rm__,_(co  aP*)).
Example 4.4. In the theorem 4.2, let M = R. As a result we have
CY(A,R) = R®p A= A,

where the isomorphism is given by r ® a — §(r)>a and 1g ® a <— a. Therefore a 0-Hopf
cocycle is an IC-linear map Tr : A — R where

Tr(s(r)> (a1a2)) = Tr(az(s(r)o>ar)), 7€ R,a1,a2 € A. (4.7)
If R is unital we obtain
Tr(ajaz) = Tr(az(oc>ay)), ai,az € A. (4.8)

Such a trace is called a o-trace. Also Tr is a right KC-linear map. Therefore since R is
unital we have Tr(k>a) = Tr(a) <k. Using the definition of the action defined in (2.42)
we have

Tr(k>a)=96(s(Tr(a))k). (4.9)

Such a trace is called a d-trace. One notes when K is a Hopf algebra, this condition is
equivalent to Tr(ha) = 6(h)Tr(a). In fact a o-trace which is d-invariant is a 0-cocycle.
Therefore for p = 0 in the Theorem 4.2 we obtain;

HC{(K,R) — HC™(A) (4.10)
Tr(ko @R -+ @R kn)(a0 ®r @ - - - ®R) = Tr(aoko(a1) - - - kn(an))-

Example 4.5. In the Theorem 4.2, let K = R°, M = R and p = 0. we obtain a
characteristic map as follows;

HCRgpor(R® RP,R) — HC"(A). (4.11)
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Using Example 3.2, we have;

HC™(C) — HC™(A). (4.12)

Example 4.6. We apply the Theorem 4.2 to Connes-Moscovici x-Hopf algebra. In fact
let C=K=A® H® A, M = A and p = 0. Using Example 3.3 we obtain the following
map;

HC*(H) — HC*(A). (4.13)

Example 4.7. In the theorem 4.2, let K = Ay, M = R = C[U,U"!] and p = 0. Using
Example 3.4 for any K-module algebra A we obtain the following map;

ClU,UY — HC?(A). (4.14)

Example 4.8. In the theorem 4.2, let B C A be an algebra extensions, R =B, K =C =
B¢, and M = B. Then we obtain the following pairing;

HC'y(A,B) ® HC%,.(B%, B) — HCPTI(A). (4.15)

Example 4.9. Let B be a right x-Hopf algebra, A be a right comodule algebra [HR1],
B = T" be the space of invariant coactions, and K a left x g-Hopf algebra. If x A(B)? is
an equivaraint Hopf Galois extension as defined in [HR1] then it is shown that

HCc(A, M) = HC}(B, M),
where M = B ®jy M. Therefore using the theorem 4.2 we obtain the following pairing;

HCy»(B, M) ® HCL(K, M) — HCP*4(A). (4.16)
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