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ABSTRACT. This note discusses the cyclic cohomology of a left Hopf algebroid (×A-
Hopf algebra) with coefficients in a right module-left comodule, defined using a straight-
forward generalisation of the original operators given by Connes and Moscovici for Hopf
algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic
duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory.
The twisted cyclic homology of an associative algebra provides an example of this dual
theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules.

1. INTRODUCTION

1.1. Topic. A left Hopf algebroid (×A-Hopf algebra) U is roughly speaking a Hopf al-
gebra whose ground ring is not a field k but a possibly noncommutative k-algebra A
[B2, Sch2]. The concept provides in particular a natural framework for unifying and ex-
tending classical constructions in homological algebra. Group, Lie algebra, Hochschild,
and Poisson homology are all special cases of Hopf algebroid homology

H•(U,M) := TorU• (M,A), M ∈ Uop-Mod,

since the rings U over which these theories can be expressed as derived functors are all left
Hopf algebroids. This allows one for example to study cup and cap products as well as the
phenomenon of Poincaré duality in a uniform way [KoKr].

Similarly, we describe here how the additional structure of a left U -comodule on M
induces a para-cyclic structure (cf. Section 2.7) on the canonical chain complex C•(U,M)
that computes H•(U,M) assuming U is flat over A. This defines in particular an analogue
of the Connes-Rinehart-Tsygan differential

B : H•(U,M)→ H•+1(U,M).

Assuming a suitable compatibility between the U -action and the U -coaction (namely that
M is a stable anti Yetter-Drinfel’d module), the para-cyclic k-module C•(U,M) is in fact
cyclic and hence turned by B into a mixed complex. However, we will also discuss con-
crete examples which demonstrate the necessity to go beyond this setting.

1.2. Background. The operator B has been defined by Rinehart on the Hochschild ho-
mology of a commutative k-algebra A (with M = A and U = Ae = A ⊗k Aop) in order
to define the De Rham cohomology of an arbitrary affine scheme over k [Ri]. Connes and
Tsygan independently rediscovered it around 1980 as a central ingredient in their definition
of cyclic homology which extends Rinehart’s theory to noncommutative algebras [C, FTs].

Connes and Moscovici, and Crainic initiated the study of the case of a Hopf algebra
U over A = k with one-dimensional coefficients M [CM2, Cr]. The class of admissible
coefficient modules M was subsequently enlarged to stable anti Yetter-Drinfel’d modules
[HKhRS], and Kaygun finally obtained the construction for Hopf algebras with arbitrary
modules-comodules as coefficients [Ka1, Ka2].
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Noncommutative base rings appeared for the first time in the particular example of the
“extended” Hopf algebra governing the transversal geometry of foliations [CM1]. The
general theory has then been further developed in [BŞ1, BŞ2, HasR, KhR, Ko, KoP, Ma].

1.3. Results. Our first aim here is to give explicit formulas for the most straightforward
generalisation of the original operators defined by Connes and Moscovici in [CM1] to-
wards Hopf algebroids and completely general coefficients. We copy the result here, see
the main text for the details and in particular for the notation used:

Theorem 1.1. Let U be a left Hopf algebroid over a k-algebra A, and M be a right
U -module and left U -comodule with compatible induced left A-module structures. Then
C•(U,M) := U⊗A• ⊗A M carries a canonical para-cocyclic k-module structure with
codegeneracies and cofaces

δi(z ⊗A m) =

1⊗A u
1 ⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A u

n ⊗A m(−1) ⊗A m(0)

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

δj(m) =

{
1⊗A m
m(−1) ⊗A m(0)

if j = 0,
if j = 1,

σi(z ⊗A m) = u1 ⊗A · · · ⊗A ε(u
i+1)⊗A · · · ⊗A u

n ⊗A m 0 ≤ i ≤ n− 1,

where z = u1 ⊗A · · · ⊗A u
n, and with cocyclic operator

τn(z ⊗A m) = u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n−1)u

n ⊗A u
1
−(n)m(−1) ⊗A m(0)u

1
+.

The proof closely follows the literature cited above, which contains similar construc-
tions of para-cyclic and para-cocyclic modules assigned to Hopf algebroids (compare es-
pecially [BŞ2, Prop. 2.19]). However, there seems no reference for the exact setting we
consider here. In particular, Kaygun’s pivotal observation that Theorem 1.1 is true for ar-
bitrary modules-comodules over k-bialgebras has to our knowledge not been extended to
noncommutative base rings so far. Last but not least, the above answers also the question of
how the Hopf-cyclic (co)homologies in [Ko, KoP] can be extended to general coefficients.

Secondly, it has been pointed out by several authors that the standard operation of
cyclic duality which canonically identifies cyclic and cocyclic objects does not lift to para-
(co)cyclic objects, see e.g. [BŞ1]. However, we show in Section 4 that a different choice
of anti-autoequivalence of the cyclic category leads to a form of cyclic duality that does
lift. This allows us to construct in full generality a cyclic dual (C•(U,M), d•, s•, t•) from
the para-cocyclic module from Theorem 1.1. We provide an isomorphism of this with the
para-cyclic module M ⊗Aop ( IU� )⊗Aop• whose structure maps are given by

di(m⊗Aop x) =

m⊗Aop u1 ⊗Aop · · · ⊗Aop ε(un) Iun−1

m⊗Aop · · · ⊗Aop un−iun−i+1 ⊗Aop · · ·
mu1 ⊗Aop u2 ⊗Aop · · · ⊗Aop un

if i=0,
if 1≤ i≤n− 1,
if i=n,

si(m⊗Aop x) =

m⊗Aop u1 ⊗Aop · · · ⊗Aop un ⊗Aop 1
m⊗Aop · · · ⊗Aop un−i ⊗Aop 1⊗Aop un−i+1 ⊗Aop · · ·
m⊗Aop 1⊗Aop u1 ⊗Aop · · · ⊗Aop un

if i=0,
if 1≤ i≤n− 1,
if i=n,

tn(m⊗Aop x) =m(0)u
1
+ ⊗Aop u2

+ ⊗Aop · · · ⊗Aop un+ ⊗Aop un− · · ·u1
−m(−1),

where we abbreviate x := u1 ⊗Aop · · · ⊗Aop un.
It is precisely this variation of Hopf-cyclic theory that has the ordinary Hopf algebroid

homology as underlying simplicial homology, and in particular the one which reduces to
the original cyclic homology of an associative algebra when one applies it to the Hopf alge-
broid U = Ae. Now the freedom to consider arbitrary coefficients becomes crucial, since it
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allows one for example to incorporate the twisted cyclic homology of Kustermans, Murphy
and Tuset [KuMuTu]. This paper has been the first one to generalise the Connes-Rinehart-
Tsygan operator B on the Hochschild homology of an associative algebra to coefficients
in (A,A)-bimodules other than A itself, namely those where one of the two actions of A
on itself is twisted by an algebra automorphism σ. We will explain in the last section how
this example fits into the above Hopf-cyclic homology theory, and in particular observe that
these coefficients are not SaYD modules. As an important classical case of the Hopf-cyclic
cohomology theory from Theorem 1.1, we will also consider the example of Lie-Rinehart
homology.

N.K. is supported by an I.H.É.S. visiting grant. U.K. is supported by the EPSRC fellow-
ship EP/E/043267/1 and partially by the Marie Curie PIRSES-GA-2008-230836 network.

It is a pleasure to thank Tomasz Brzeziński, Atabey Kaygun and Jean-Louis Loday for
helpful comments.

2. PRELIMINARIES

2.1. Some conventions. Throughout this note, “ring” means “unital and associative ring”,
and we fix a commutative ring k. All other algebras, modules etc. will have an under-
lying structure of a k-module. Secondly, we fix a k-algebra A, i.e. a ring with a ring
homomorphism ηA : k → Z(A) to its centre. We denote by A-Mod the category of
left A-modules, by Aop the opposite and by Ae := A ⊗k Aop the enveloping algebra of
A. An A-ring is a monoid in the monoidal category (Ae-Mod,⊗A, A) of Ae-modules
(i.e. (A,A)-bimodules with symmetric action of k), fulfilling associativity and unitality.
Likewise, an A-coring is a comonoid in (Ae-Mod,⊗A, A), fulfilling coassociativity and
counitality.

Our main object is an Ae-ring U (a monoid in (Ae ⊗k Ae)-Mod). Explicitly, such an
Ae-ring is given by a k-algebra homomorphism η = ηU : Ae → U whose restrictions

s := η(−⊗k 1) : A→ U and t := η(1⊗k −) : Aop → U

will be called the source and target map. Left and right multiplication in U give rise to an
(Ae, Ae)-bimodule structure on U , that is, four commuting actions of A that we denote by

a �u � b := s(a)t(b)u, a Iu J b := us(b)t(a), a, b ∈ A, u ∈ U. (2.1)

If not stated otherwise, we view U as an (A,A)-bimodule using the actions � , � . In
particular, we define the tensor product U ⊗A U with respect to this bimodule structure.
On the other hand, using the actions I , J permits to define the Takeuchi product

U×AU := {
∑
i ui⊗Avi ∈ U⊗AU |

∑
i a Iui⊗Avi =

∑
i u⊗Avi J a, ∀a ∈ A}. (2.2)

This is an Ae-ring via factorwise multiplication. Similarly, Endk(A) is an Ae-ring with
ring structure given by composition and (A,A)-bimodule structure (aϕb)(c) := ϕ(bca),
ϕ ∈ Endk(A), a, b, c ∈ A.

2.2. Bialgebroids. [T] Bialgebroids are a generalisation of bialgebras. An important sub-
tlety is that the algebra and coalgebra structure are defined in different monoidal categories.

Definition 2.1. Let A be a k-algebra. A left bialgebroid over A (or A-bialgebroid or
×A-bialgebra) is an Ae-ring U together with two homomorphisms of Ae-rings

∆ : U → U ×A U, ε̂ : U → Endk(A)

which turn U into an A-coring with coproduct ∆ (viewed as a map U → U ⊗A U ) and
counit ε : U → A, u 7→ (ε̂(u))(1).
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Note that this means for example that ε satisfies for all u, v ∈ U

ε(uv) = ε(u J ε(v)) = ε(ε(v) Iu).

Analogously one defines right bialgebroids where the roles of � , � and I , J are ex-
changed. We shall not write out the details, but rather refer to [KSz, B2].

2.3. Left Hopf algebroids. [Sch2] Left Hopf algebroids have been introduced by
Schauenburg under the name ×A-Hopf algebras and generalise Hopf algebras towards
left bialgebroids. For a left bialgebroid U over A, one defines the (Hopf-)Galois map

β : IU ⊗Aop U� → U� ⊗A �U, u⊗Aop v 7→ u(1) ⊗A u(2)v, (2.3)

where

IU ⊗Aop U� = U ⊗k U/span{a Iu⊗k v − u⊗k v � a |u, v ∈ U, a ∈ A}. (2.4)

Definition 2.2. [Sch2] A left A-bialgebroid U is called a left Hopf algebroid (or ×A-Hopf
algebra) if β is a bijection.

In a similar manner, one defines right Hopf algebroids (cf. [BSz, Prop. 4.2]).
Following [Sch2], we adopt a Sweedler-type notation

u+ ⊗Aop u− := β−1(u⊗A 1) (2.5)

for the so-called translation map β−1(− ⊗A 1) : U → IU ⊗Aop U� . Useful for our
subsequent calculations, one has for all u, v ∈ U , a ∈ A [Sch2, Prop. 3.7]:

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ U� ⊗A �U, (2.6)
u(1)+ ⊗Aop u(1)−u(2) = u⊗Aop 1 ∈ IU ⊗Aop U� , (2.7)

u+ ⊗Aop u− ∈ U ×Aop U, (2.8)
u+(1) ⊗A u+(2) ⊗Aop u− = u(1) ⊗A u(2)+ ⊗Aop u(2)−, (2.9)
u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−, (2.10)

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−, (2.11)
u+u− = s(ε(u)), (2.12)

u+t(ε(u−)) = u, (2.13)
(s(a)t(b))+ ⊗Aop (s(a)t(b))− = s(a)⊗Aop s(b), (2.14)

where in (2.8) we mean the Takeuchi product

U×AopU := {
∑
i ui ⊗Aop vi ∈ IU ⊗Aop U� |

∑
i ui � a⊗Aop vi =

∑
i ui ⊗Aop a I vi} ,

which is an algebra by factorwise multiplication, but with opposite multiplication on the
second factor. Note that in (2.10) the tensor product overAop links the first and third tensor
component. By (2.6) and (2.8) one can write

β−1(u⊗A v) = u+ ⊗Aop u−v, (2.15)

which is easily checked to be well-defined over A with (2.11) and (2.14).

Remark 1. Observe that there is no notion of antipode for a left Hopf algebroid. Böhm and
Szlachányi have introduced the concept of a (full or two-sided) Hopf algebroid [B2], which
is, roughly speaking, an algebra equipped with a left and a right bialgebroid structure over
anti-isomorphic base algebras A and B, together with an antipode mapping from the left
bialgebroid to the right. However, it is proved in [BSz, Prop. 4.2] that a full Hopf algebroid
with invertible antipode can be equivalently described as an algebra with both a left and
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a right Hopf algebroid structure subject to compatibility conditions, which motivates to
speak of left Hopf algebroids rather than ×A-Hopf algebras.

2.4. U -modules. Let U be a left bialgebroid with structure maps as before. Left and
right U -modules are defined as modules over the ring U , with respective actions denoted
by juxtaposition or, at times, by a dot for the sake of clarity. We denote the respective
categories by U -Mod and Uop-Mod; while U -Mod is a monoidal category, Uop-Mod
is in general not [Sch1]. One has a forgetful functor U -Mod → Ae-Mod using which
we consider every left U -module N also as an (A,A)-bimodule with actions

anb := a �n � b := s(a)t(b)n, a, b ∈ A,n ∈ N. (2.16)

Similarly, every right U -module M is also an (A,A)-bimodule via

amb := a Im J b := ms(b)t(a), a, b ∈ A,m ∈M, (2.17)

and in both cases we usually prefer to express these actions just by juxtaposition if no
ambiguity is to be expected.

2.5. U -comodules. Similarly as for coalgebras, one may define comodules over bialge-
broids, but the underlying A-module structures need some extra attention. For the follow-
ing definition confer e.g. [Sch1, B1, BrzWi].

Definition 2.3. A left U -comodule for a left bialgebroid U overA is a left comodule of the
underlying A-coring (U,∆, ε), i.e. a left A-module M with action LA : (a,m) 7→ am and
a left A-module map

∆M : M → U� ⊗AM, m 7→ m(−1) ⊗A m(0)

satisfying the usual coassociativity and counitality axioms

(∆⊗ id) ◦∆M = (id⊗∆M) ◦∆M and LA ◦ (ε⊗ id) ◦∆M = id.

We denote the category of left U -comodules by U -Comod.

Analogously one defines right U -comodules and comodules for right bialgebroids.
On any left U -comodule one can additionally define a right A-action

ma := ε
(
m(−1)s(a)

)
m(0). (2.18)

This is the unique action that turns M into an Ae-module in such a way that the coaction
is an Ae-module morphism

∆M : M → U ×AM,

where U ×AM is the Takeuchi product

U ×AM := {
∑
i ui ⊗Ami ∈ U ⊗AM |

∑
i uit(a)⊗Ami =

∑
i ui ⊗Amia, ∀a ∈ A}.

As a result, ∆M satisfies the identities

∆M(amb) = s(a)m(−1)s(b)⊗A m(0), (2.19)
m(−1) ⊗A m(0)a = m(−1)t(a)⊗A m(0). (2.20)

This is compatible with (2.18) since one has ε(us(a)) = ε(ut(a)) for all u ∈ U, a ∈ A.
One can then prove (see [B2, Thm. 3.18] and [Sch1, Prop. 5.6]) that U -Comod has a

monoidal structure such that the forgetful functor U -Comod → Ae-Mod is monoidal:
for any two comodules M,M ′ ∈ U -Comod, their tensor product M ⊗A M ′ is a left
U -comodule by means of the coaction

∆M⊗AM′ : M ⊗AM ′ → U ⊗A (M ⊗AM ′),
m⊗A m′ 7→ m(−1)m

′
(−1) ⊗A m(0) ⊗A m′(0).
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The map ∆M⊗AM′ is easily checked to be well-defined.

Remark 2. If σ ∈ U is a grouplike element in a (left) bialgebroid, then

A∆(a) := t(a)σ and ∆A(a) := s(a)σ, a ∈ A,

define right and left U -comodule structures on A, which we shall refer to as induced by
σ. In particular, the base algebra A carries for any bialgebroid both a canonical right and
a canonical left coaction induced by σ = 1, contrasting the fact that A carries in general
only a canonical left U -module structure induced by ε, but no right one.

Remark 3. A special feature for bialgebroids U over commutative base algebras A with
s = t is that every left A-module M can be made into a, say, left U -comodule by means
of the trivial coaction m 7→ 1 ⊗A m (it follows from (2.19) that this is not possible in
general).

2.6. Stable anti Yetter-Drinfel’d modules. The following definition is the left bialge-
broid right module and left comodule version of the corresponding notion in [BŞ2]. For
Hopf algebras, the concept goes back to [HKhRS].

Definition 2.4. Let U be a left Hopf algebroid with structure maps as before, and let
M simultaneously be a left U -comodule with coaction denoted as above and a right U -
module with action denoted by (m,u) 7→ mu for u ∈ U , m ∈ M . We call M an anti
Yetter-Drinfel’d (aYD) module provided the following holds:

(i ) The Ae-module structure on M originating from its nature as U -comodule coin-
cides with the Ae-module structure induced by the right U -action on M , i.e., for
all a, b ∈ A and m ∈M we have

amb = a Im J b, (2.21)

where the right A-module structure on the left hand side is given by (2.18).
(ii ) For u ∈ U and m ∈M one has

∆M(mu) = u−m(−1)u+(1) ⊗A m(0)u+(2). (2.22)

The anti Yetter-Drinfel’d module M is said to be stable (SaYD) if for all m ∈M one has

m(0)m(−1) = m.

Remark 4. Observe that it is not obvious that the expression on the right hand side of (2.22)
makes sense, but this follows from (2.2), (2.8), and (2.20).

2.7. Cyclic (co)homology. We recall that para-(co)cyclic k-modules generalise (co)cyclic
k-modules by dropping the condition that the cyclic operator implements an action of
Z/(n + 1)Z on the degree n part. Thus a para-cyclic k-module is a simplicial k-module
(C•, d•, s•) and a para-cocyclic k-module is a cosimplicial k-module (C•, δ•, σ•) together
with k-linear maps tn : Cn → Cn and τn : Cn → Cn satisfying, respectively

di ◦ tn=

{
tn−1 ◦ di−1 if 1 ≤ i ≤ n,
dn if i = 0,

si ◦ tn=

{
tn+1 ◦ si−1 if 1 ≤ i ≤ n,
t2n+1 ◦ sn if i = 0,

τn ◦ δi =

{
δi−1 ◦ τn−1

δn

if 1 ≤ i ≤ n,
if i = 0,

τn ◦ σi =

{
σi−1 ◦ τn+1

σn ◦ τ2
n+1

if 1 ≤ i ≤ n,
if i = 0.

(2.23)

It follows from these relations that tn+1
n respectively τn+1

n commutes with all the (co)faces
and (co)degeneracies. Hence any para-(co)cyclic k-module defines a (co)cyclic one formed
by the cokernels of idCn

− tn+1
n respectively the kernels of idCn − τn+1

n . The cyclic
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(co)homology of a para-(co)cyclic k-module is defined as the cyclic (co)homology of this
associated (co)cyclic k-module.

Just like (co)cyclic k-modules, para-(co)cyclic ones can be viewed more conceptually as
functors Λop → k-Mod respectively Λ → k-Mod, where Λ is the appropriate covering
of Connes’ cyclic category Λ1. Hence as Connes’ category, Λ has objects {[n]}n∈N and
the set of morphisms has generators obeying the same relations except for τn+1

n = id[n].
The localisation of this category at the set of all τn has been studied already by Feı̆gin
and Tsygan in [FTs] where it is denoted by Λ∞. A general framework for such extensions
of the simplicial category is provided by the concept of crossed simplicial groups due
to Fiedorowicz and Loday [FiL]. However, we stress that in the present article τn is not
assumed to be an isomorphism, so Λ does not exactly arise from a crossed simplicial group
but rather from a crossed simplicial semigroup. We will call Λ the para-cyclic category.

3. HOPF-CYCLIC COHOMOLOGY WITH COEFFICIENTS

3.1. Para-cocylic structures on corings. Following [Cr, BŞ2] we first define in this sec-
tion an auxiliary para-cocyclic k-module that is relatively easy to construct. For this, U
just needs to be a left bialgebroid and M needs to be a left U -comodule. Define then

B•(U,M) := U⊗A•+1 ⊗Ae M,

where U is considered with the usual (A,A)-bimodule structure given by � , � . So
B•(U,M) is �U�

⊗A•+1 ⊗kM modulo the span of elements

{u0 ⊗A · · · ⊗A u
n ⊗Ae amb− b �u0 ⊗A · · · ⊗A u

n
� a⊗Ae m | a, b ∈ A}.

Now define the following operators, where we abbreviate w := u0 ⊗A · · · ⊗A u
n:

δ′i(w ⊗Ae m) =

{
u0 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗Ae m
u0

(2) ⊗A u
1 ⊗A · · · ⊗A m(−1)u

0
(1) ⊗Ae m(0)

if 0 ≤ i ≤ n,
if i = n+ 1,

σ′i(w ⊗Ae m) =u0 ⊗A · · · ⊗A t(ε(u
i+1))ui ⊗A · · · ⊗A u

n ⊗Ae m 0 ≤ i ≤ n− 1,
τ ′n(w ⊗Ae m) =u1 ⊗A · · · ⊗A u

n ⊗A m(−1)u
0 ⊗Ae m(0),

(3.1)

which are shown to be well-defined using the Takeuchi condition for ∆M . The following
is checked in a straightforward manner:

Lemma 3.1. The operators (δ′•, σ
′
•, τ
′
•) turn B•(U,M) into a para-cocyclic k-module.

3.2. The quotient B•(U,M) → C•(U,M). The para-cocyclic k-module that defines
Hopf-cyclic cohomology is the canonical quotient

U⊗A•+1 ⊗Uop M

of B•(U,M) = U⊗A•+1 ⊗Ae M defined above. This quotient makes sense whenever
M also carries a right U -module structure that induces the same Ae-module structure as
the left U -coaction, see (2.21). In the next section we will discuss that the para-cocyclic
structure ofB•(U,M) descends to this quotient. However, for the applications in noncom-
mutative geometry one rewrites the resulting para-cocyclic k-module so that the object (but
not the cocyclic operator) takes an easier form, and in the present section we construct the
involved isomorphism.

Recall (e.g. from [KoKr, Lem. 3]) that if U is a left Hopf algebroid, then the tensor
productN⊗AM ofM ∈ Uop-Mod,N ∈ U -Mod (considered with the (A,A)-bimodule
structures (2.16) and (2.17)) carries a right U -module structure with action

(n⊗A m)u := u−n⊗A mu+,
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and hence using (2.16) and (2.17) becomes an (A,A)-bimodule by

a I (n⊗A m) J b :=
(
n⊗m

)
t(a)s(b) = s(a)n⊗A ms(b) = a �n⊗A m J b,

where in the second equation (2.14) was used.
Now observe that on a right U -module of this form, the coinvariant functor

−⊗U A : Uop-Mod→ k-Mod

takes a particularly simple form:

Lemma 3.2. If U is a left Hopf algebroid, then for all M ∈ Uop-Mod, N ∈ U -Mod
there is a natural isomorphism (N ⊗AM)⊗U A ' N ⊗Uop M .

Proof. Write first A ⊗Uop (N ⊗A M) rather than (N ⊗A M) ⊗U A, and then apply the
natural k-module isomorphism

P ⊗Uop (N ⊗AM) ' (P ⊗A N)⊗Uop M

from [KoKr, Lem. 3] with P = A. �

Note that [KoKr, Lem. 3] applied with P = A, M = Aop yields the coinvariants in the
form used in [KoP] where they were considered as a functor U -Mod→ k-Mod.

Applying Lemma 3.2 with N = U⊗A•+1 will lead to the simpler form of the para-
cocyclic k-module we are going to consider. To get there, we first remark:

Lemma 3.3. Let M ∈ Uop-Mod and N,P ∈ U -Mod. Then one has

(un⊗A p)⊗Uop m = (n⊗A u−p)⊗Uop mu+

for all m ∈M , n ∈ N , and p ∈ P .

Proof. One has

(un⊗A p)⊗Uop m
= (u+(1)n⊗A u+(2)u−p)⊗Uop m by (2.6),
= u+(n⊗A u−p)⊗Uop m by the monoidal structure in U -Mod,
= (n⊗A u−p)⊗Uop mu+.

The well-definedness of the first operation follows from (2.14) using (2.16) and (2.17). �

Using this we now obtain:

Proposition 3.4. For M ∈ Uop-Mod and N ∈ U -Mod, there is a canonical isomor-
phism of k-modules

φ : (U ⊗A N)⊗Uop M
'−→ N ⊗AM, (3.2)

given by
(u⊗A n)⊗Uop m 7→ u−n⊗A mu+. (3.3)

Proof. The map n⊗Am 7→ (1⊗A n)⊗Uop m is obviously a right inverse to (3.3), and by
the preceding lemma it is also a left inverse. �

In particular, this yields an isomorphism

φ : U⊗A•+1 ⊗Uop M → U⊗A• ⊗AM =: C•(U,M), (3.4)

and the latter will be the ultimate object of study.
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3.3. Cyclic cohomology with coefficients for left Hopf algebroids. Now we ask whether
the para-cocyclic structure of B•(U,M) descends to C•(U,M). This is answered by a
left Hopf algebroid left comodule and right module version of [BŞ2, Prop. 2.19], which
generalises Proposition 5.2.1 in [Ko]:

Proposition 3.5. IfM is an anti Yetter-Drinfel’d module as in Definition 2.4, the operators
(δ′•, σ

′
•, τ
′
•) onB•(U,M) from (3.1) descend to well-defined operators onU⊗A•+1⊗UopM .

Proof. One needs to prove that the operators (δ′•, σ
′
•, τ
′
•) are Uop-balanced, i.e., that one

has for example

τ ′n(u0 ⊗A · · · ⊗A u
n ⊗Uop mv) = τ ′n(v(1)u

0 ⊗A · · · ⊗A v(n+1)u
n ⊗Uop m)

for any v ∈ U . This is shown by expressing the right hand side as

v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A m(−1)v(1)u
0 ⊗Uop m(0)

= v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A sε(v(n+2))m(−1)v(1)u
0 ⊗Uop m(0)

= v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A v(n+2)+v(n+2)−m(−1)v(1)u
0 ⊗Uop m(0)

= v+(2)u
1 ⊗A · · · ⊗A v+(n+1)u

n ⊗A v+(n+2)v−m(−1)v+(1)u
0 ⊗Uop m(0)

= u1 ⊗A · · · ⊗A u
n ⊗A v−m(−1)v+(1)u

0 ⊗Uop m(0)v+(2)

= u1 ⊗A · · · ⊗A u
n ⊗A (mv)(−1)u

0 ⊗Uop (mv)(0),

which is the left hand side. Here we used the counital identities of the left coproduct in
the second line, (2.12) in the third line, (2.9) combined with (higher) coassociativity in the
fourth line, and finally the anti Yetter-Drinfel’d condition (2.22). Similar calculations can
be made for the cofaces and codegeneracies. �

We denote the resulting para-cocyclic structure on C•(U,M) by

δi := φ ◦ δ̄′i ◦ φ−1,
σi := φ ◦ σ̄′i ◦ φ−1,
τi := φ ◦ τ̄ ′i ◦ φ−1,

(3.5)

where φ is the map from (3.4) and δ̄′i, σ̄
′
j , τ̄
′
n are the para-cocyclic operators on

U⊗A•+1 ⊗Uop M that descend from B•(U,M).
A short computation yields the explicit expressions given in Theorem 1.1 in the intro-

duction:

δi(z ⊗A m) =

1⊗A u
1 ⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A u

n ⊗A m(−1) ⊗A m(0)

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

δj(m) =

{
1⊗A m
m(−1) ⊗A m(0)

if j = 0,
if j = 1,

σi(z ⊗A m) = u1 ⊗A · · · ⊗A ε(u
i+1)⊗A · · · ⊗A u

n ⊗A m 0 ≤ i ≤ n− 1,
τn(z ⊗A m) = u1

−(1)u
2 ⊗A · · · ⊗A u

1
−(n−1)u

n ⊗A u
1
−(n)m(−1) ⊗A m(0)u

1
+,

(3.6)

where we abbreviate z := u1 ⊗A · · · ⊗A u
n.

In this form, the well-definedness and the well-definedness over the Sweedler presen-
tations of these operators can be seen directly (using (2.14) as well as the Takeuchi prop-
erties of ∆ and ∆M ). Observe, however, that the condition ma = ms(a) from (2.21) is
not needed to make the operators (3.6) well-defined and well-defined over the Sweedler
presentation but only to give a sense to the above quotienting process.
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It is less obvious that the stability condition on M implies cyclicity. This is, however,
immediate from the presentation of C•(U,M) as a quotient of B•(U,M):

Theorem 3.6. If U is a left Hopf algebroid andM is a stable anti Yetter-Drinfel’d module,
then (C•(U,M), δ•, σ•, τ•) is a cocyclic k-module.

Proof. By its construction, (C•(U,M), δ•, σ•, τ•) is a para-cocyclic object and as such
isomorphic to (U⊗A•+1 ⊗Uop M, δ̄′•, σ̄

′
•, τ̄
′
•) obtained in Proposition 3.5. It remains to

show that this quotient of B•(U,M) is cocyclic if M is stable:

(τ̄ ′n)n+1(u0 ⊗A · · · ⊗A u
n ⊗Uop m) = m(−n−1)u

0 ⊗A · · · ⊗A m(−1)u
n ⊗Uop m(0)

= m(−1) ·
(
u0 ⊗A · · · ⊗A u

n
)
⊗Uop m(0)

= u0 ⊗A · · · ⊗A u
n ⊗Uop m(0)m(−1),

where · denotes the diagonal left U -action via the left coproduct. �

By the last line in the proof of the preceding theorem one may be tempted to think
that an aYD module defines a para-cocyclic module which is cocyclic if M is stable. The
observation we add here is that for defining a para-cocyclic module the aYD property
(2.22), i.e. compatibility between U -action and U -coaction, is not required:

Theorem 3.7. Let U be a left Hopf algebroid and M a right U -module and left U -
comodule, and let the respective left A-actions be compatible in the following sense:

am = a Im, m ∈M, a ∈ A. (3.7)

Then (C•(U,M), δ•, σ•, τ•) is a para-cocyclic k-module.

Proof. We need to check the relations in the right column in (2.23). Since we do not as-
sume thatM is aYD here, i.e. compatibility between action and coaction, the only relations
that need to be checked are those that have the U -action on M followed by an operation
involving the U -coaction on M . Here, this is only τn ◦ σ0 = σn ◦ τ2

n+1, which is proven
as follows: first compute

σn
(
τn+1(u1 ⊗A · · · ⊗A u

n+1 ⊗A m)
)

= σn
(
u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A u
1
−(n+1)m(−1) ⊗A m(0)u

1
+

)
= u1

−(1)u
2 ⊗A · · · ⊗A t

(
ε(u1
−(n+1)m(−1))

)
u1
−(n)u

n+1 ⊗A m(0)u
1
+

= u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A m(0)t(ε(m(−1)))u
1
+

= u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A mu
1
+,

where we used the Takeuchi property (2.8) in the fourth line and (3.7) together with the
comodule properties in the fifth, so that terms involving the coaction disappear. Hence

σnτ
2
n+1(u1 ⊗A · · · ⊗A u

n+1 ⊗A m)

= σnτn+1

(
u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A u
1
−(n+1)m(−1) ⊗A m(0)u

1
+

)
= (u1

−(1)u
2)−(1)u

1
−(2)u

3 ⊗A · · · ⊗A (u1
−(1)u

2)−(n)u
1
−(n+1)m(−1) ⊗A m(0)u

1
+(u1

−(1)u
2)+

= u2
−(1)

(
(u1
−)(1)−(u1

−)(2)

)
(1)
u3 ⊗A · · ·

⊗A u
2
−(n)

(
(u1
−)(1)−(u1

−)(2)

)
(n)
m(−1) ⊗A m(0)u

1
+(u1

−)(1)+u
2
+

= u2
−(1)u

3 ⊗A · · · ⊗A u
2
(n−1)u

n+1 ⊗A u
2
−(n)m(−1) ⊗A m(0)s(ε(u

1))u2
+,

where in the fifth line (2.7) was used and (2.12) in the sixth. By (2.14) this is now easily
seen to be equal to τnσ0(u1 ⊗A · · · ⊗A u

n+1 ⊗A m). �
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Definition 3.8. For a right U -module left U -comodule M with compatible induced left
A-actions over a left Hopf algebroid U , we denote by H•(U,M) and HC•(U,M) the
simplicial and cyclic cohomology groups of C•(U,M). We refer to HC•(U,M) as to the
Hopf-cyclic cohomology of U with coefficients in M .

Note that the simplicial cohomology is the ordinary Cotor over U :

Proposition 3.9. [Ko, KoP] IfU� is flat as right A-module, then one has

H•(U,M) ' Cotor•U (A,M).

Remark 5. If U is a (full) Hopf algebroid over base algebras A and B ' Aop, it is easy to
check that B fulfills the properties of an anti Yetter-Drinfel’d module with respect to the
right U -action given by the right counit of the underlying right bialgebroid. This module is
stable if the antipode of the Hopf algebroid is an involution. The operators (3.6) reduce here
to the well-known Hopf-cyclic operators for Hopf algebroids, cf. [CM1, KhR, Ko, KoP].
For example, the cyclic operator reduces in such a case to

τn(h1 ⊗A · · · ⊗A h
n) = (S(h1))(1)h

2 ⊗A · · · ⊗A (S(h1))(n−1)h
n ⊗A (S(h1))(n).

4. HOPF-CYCLIC HOMOLOGY WITH COEFFICIENTS

4.1. Cyclic homology with coefficients for left Hopf algebroids. Let U be a left Hopf
algebroid over A with structure maps as before, and let M be a left U -comodule with left
coaction denoted ∆M : m 7→ m(−1)⊗Am(0) with underlying left A-action (a,m) 7→ am,
and simultaneously a right U -module with right action denoted (m,u) 7→ mu, subject to
the compatibility condition (2.21) with respect the two induced Ae-module structures.

Now define
C•(U,M) := M ⊗Aop ( IU� )⊗Aop•,

where the tensor product is formed as in (2.4). On C•(U,M), define the following opera-
tors, abbreviating x := u1 ⊗Aop · · · ⊗Aop un:

di(m⊗Aop x) =

m⊗Aop u1 ⊗Aop · · · ⊗Aop ε(un) Iun−1

m⊗Aop · · · ⊗Aop un−iun−i+1 ⊗Aop · · ·
mu1 ⊗Aop u2 ⊗Aop · · · ⊗Aop un

if i=0,
if 1≤ i≤n− 1,
if i=n,

si(m⊗Aop x) =

m⊗Aop u1 ⊗Aop · · · ⊗Aop un ⊗Aop 1
m⊗Aop · · · ⊗Aop un−i ⊗Aop 1⊗Aop un−i+1 ⊗Aop · · ·
m⊗Aop 1⊗Aop u1 ⊗Aop · · · ⊗Aop un

if i=0,
if 1≤ i≤n− 1,
if i=n,

tn(m⊗Aop x) =m(0)u
1
+ ⊗Aop u2

+ ⊗Aop · · · ⊗Aop un+ ⊗Aop un− · · ·u1
−m(−1).

(4.1)
Elements of degree zero (i.e. ofM ) are mapped to zero by the face maps, d0(m) = 0 for all
m ∈ M . Well-definedness and well-definedness over the various Sweedler presentations
follows from (2.8), (2.14), (2.20), and (2.19). Similarly as in the cohomology case, these
operators still make sense if one drops the condition ma = ms(a) from the axiom (2.21)
as well as the aYD condition (2.22).

As one might expect, we will obtain dually to Theorems 3.7 & 3.6:

Theorem 4.1. Let U be a left Hopf algebroid.
(i ) If M is a right U -module and left U -comodule with respective left A-actions

compatible as in (3.7), then (C•(U,M), d•, s•, t•) is a para-cyclic k-module.
(ii ) If M is even a stable anti Yetter-Drinfel’d module, then (C•(U,M), d•, s•, t•) is

a cyclic k-module.

We will prove this below by presenting C•(U,M) as a cyclic dual of C•(U,M).
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Definition 4.2. For a right U -module left U -comodule M with compatible induced left
A-actions over a left Hopf algebroid U , we denote by H•(U,M) and HC•(U,M) the
simplicial and cyclic homology groups of C•(U,M). We refer to HC•(U,M) as to the
Hopf-cyclic homology of U with coefficients in M .

Dually to Proposition 3.9, one has:

Proposition 4.3. [Ko, KoP] If IU is projective as left A-module, then one has

H•(U,M) ' TorU• (M,A).

Remark 6. As in Remark 5, in a full Hopf algebroidH the base algebraB of the underlying
right bialgebroid is an anti Yetter-Drinfel’d module which is stable if the antipode is an
involution. The cyclic operator assumes the form

tn(u1 ⊗Aop · · · ⊗Aop un) = u
(1)
2 ⊗Aop · · · ⊗Aop u(1)

n ⊗Aop S(u1u
(2)
2 · · ·u(2)

n ),

where the Sweedler superscripts refer to the right coproduct. This is the same expression
as the inverse of the cyclic operator given in [Ko, KoP], see our explanations below.

4.2. Cyclic duality. [C, E, FTs, L] Recall that the cyclic category is self-dual, that is, we
have Λ1 ' Λop

1 , and therefore cocyclic k-modules and cyclic k-modules can be canonically
identified. However, there are even infinitely many such canonical identifications since the
cyclic category has many autoequivalences (see e.g. [L, 6.1.14 & E.6.1.5], but note that the
very last line of [L, 6.1.14] should read τn 7→ τ−1

n ).
Feı̆gin and Tsygan have generalised the duality to their category Λ∞, that is, to para-

(co)cyclic k-modules whose cyclic operators are isomorphisms (see [FTs], Section A7).
Unfortunately, they use the most common choice of equivalence Λ∞ ' Λop

∞ which does
not extend to general para-(co)cyclic objects.

However, a different equivalence Λ∞ ' Λop
∞ does lift to a functor Λop → Λ, so that

one can assign a para-cyclic module to any para-cocyclic module even with not necessarily
invertible τn, one only has to bear in mind that this process is in general not invertible.
Still, it can be applied in full generality to the para-cocyclic object C•(U,M), even when
M is not SaYD, and hence Theorem 4.1 follows from the results of the previous section.

Explicitly, we use the following convention for this functor. We decided to stick to the
term “cyclic dual” although it is no longer a true duality in general:

Definition 4.4. The cyclic dual of a para-cocyclic k-module C• = (C•, δ•, σ•, τ•) is the
cyclic k-module C• := (C•, d•, s•, t•), where Cn := Cn, and

di := σn−(i+1) : Cn → Cn−1, 0 ≤ i < n,
dn := σn−1 ◦ τn : Cn → Cn−1,
si := δn−(i+1) : Cn−1 → Cn, 0 ≤ i < n,
tn := τn : Cn → Cn.

(4.2)

For the convenience of the reader we verify at least some of the relations:

Lemma 4.5. The cyclic dual of any para-cocyclic k-module is a para-cyclic k-module.

Proof. We need to check the para-cyclic relations by using the para-cocyclic ones, which
is straightforward. For example, let i < j and j < n; then n− (i+ 2) ≥ n− (j + 1), and

di ◦ dj = σ(n−1)−(i+1) ◦ σn−(j+1) = σ(n−1)−j ◦ σn−(i+1) = dj−1 ◦ di.
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For j = n (in which case i ≤ n− 2),

di ◦ dn = σ(n−1)−(i+1) ◦ σn−1 ◦ τn
= σn−2 ◦ σ(n−1)−(i+1) ◦ τn
= σn−2 ◦ τn−1 ◦ σn−(i+1) = dn−1 ◦ di.

Likewise,

di ◦ si = σn−(i+1) ◦ δn−(i+1) = id = σn−j−2 ◦ δn−j−1 = dj+1 ◦ sj .

Also

di ◦ tn = σn−(i+1) ◦ τn = σn−i−1 ◦ τn = τn−1 ◦ σn−i = tn−1 ◦ di−1

for 1 ≤ i ≤ n− 1, and for i = n the identity d0 ◦ tn = dn is trivially fulfilled. Finally,

s0 ◦ tn = δn−1 ◦ τn = τn+1 ◦ δn = τn+1 ◦ τn+1δ0 = t2n+1 ◦ sn.

The rest of the simplicial and cyclic identities are left to the reader. �

Remark 7. Note that the last coface map δn : Cn−1 → Cn is not used in the construction
of the cyclic dual: there is one less degeneracy si : Cn−1 → Cn than there are cofaces
δi : Cn−1 → Cn. Conversely, there are not enough codegeneracies to derive all the face
maps: the last face map dn uses the extra codegeneracy σn−1 ◦ τn that arises from the
(para-)cocyclic operator.

Remark 8. Observe that the cyclic homology of the cyclic dual of a given cocyclic k-
module is independent of the choice of the self-duality of the cyclic category Λ1. This
follows from the description of cyclic homology as TorΛop

1
• (k,C) (cf. [L], Theorem 6.2.8)

in combination with the fact that all autoequivalences of Λ1 leave the trivial cyclic k-
module k invariant.

Remark 9. Two relatively straightforward cases in which the cyclic operator is not invert-
ible are that of a Hopf algebra U (over A = k) whose antipode is not bijective, taking the
coefficients to beM = k with trivial action 1·u = ε(u) and trivial coaction ∆M(1) = 1⊗1;
or that of U = Ae, M = Aσ , discussed in Section 5.2 below, when σ is not bijective.

However, it seems worthwhile to remark that τ is invertible if U is a full Hopf algebroid
with invertible antipode S and M has yet some additional structure: recall first [B1] that
the two constituting bialgebroids (i.e. left and right) in a full Hopf algebroid have different
underlying corings (over anti-isomorphic base algebras) that have a priori different cate-
gories of comodules. A Hopf algebroid (say, left) comodule is then, roughly speaking, both
a left and right bialgebroid (left) comodule, the two structures being compatible with each
other. If M is a left comodule over the full Hopf algebroid U and aYD in the sense of
Definition 2.4 with respect to the underlying left bialgebroid, one checks by a tedious but
straightforward induction on n that

w⊗Am 7→
(
S−2(un−)m(−1)

(1)

)
·
(
1⊗Au

1⊗A· · ·⊗Au
n−1
)
⊗Am

(0)S−1(m(−1)
(2))S

−2(un+)

yields an inverse for the cocyclic operator τn from (3.6), where we abbreviated w :=
u1 ⊗A · · · ⊗A u

n. Here · denotes the diagonal action via the left coproduct and Sweedler
superscripts the left coaction with respect to the underlying right bialgebroid in U . In case
M = B ' Aop, this reduces to the well-known expression

u1 ⊗A · · · ⊗A u
n 7→ (S−1(un)) ·

(
1⊗A u

1 ⊗A · · · ⊗A u
n−1
)
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from [Ko, KoP]. If M is an SaYD so that C•(U,M) is cocyclic, then the inverse of τn is
simply given for any left Hopf algebroid U by

τ−1
n (u1 ⊗A · · · ⊗A u

n ⊗A m) = un−m(−1) ·
(
1⊗A u

1 ⊗A · · · ⊗A u
n−1
)
⊗A m(0)u

n
+.

4.3. The Hopf-Galois map and cyclic duality. The explicit map implementing the iso-
morphism C•(U,M) ' C•(U,M) is given by generalising the Hopf-Galois map (2.3):

Lemma 4.6. For each n ≥ 0, the k-modules Cn(U,M) and Cn(U,M) are isomorphic
by means of the Hopf-Galois map ϕn : Cn(U,M) → Cn(U,M) in degree n, defined by
ϕ0 := idM , ϕ1 : m⊗Aop u 7→ u⊗A m, and for n ≥ 2

ϕn : m⊗Aopu1⊗Aop · · ·⊗Aopun 7→ u1
(1)⊗Au

1
(2)u

2
(1)⊗A· · ·⊗Au

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n⊗Am,

(4.3)
with inverse

ψn : u1⊗A · · ·⊗Au
n⊗Am 7→ m⊗Aop u1

+⊗Aop u1
−u

2
+⊗Aop u2

−u
3
+⊗Aop · · ·⊗Aop un−1

− un.

Proof. Well-definedness and well-definedness over the respective Sweedler presentations
follows from the Takeuchi conditions (2.2) and (2.8). The fact that ϕ and ψ are mutually
inverse is directly checked by induction on n using the properties (2.6) and (2.7). �

Lemma 4.7. Let U be a left Hopf algebroid with structure maps as before. The Hopf-
Galois map identifies C•(U,M) as the cyclic dual of the cocyclic module C•(U,M) of
Theorem 3.6.

Proof. We need to show e.g. for the cyclic operators (3.6) and (4.1)

τn ◦ ϕn = ϕn ◦ tn
with respect to the map (4.3). This is a straightforward verification: one has

τnϕn(m⊗Aop u1 ⊗Aop · · · ⊗Aop un)

= τn(u1
(1) ⊗A u

1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A m)

= u1
(1)−(1)u

1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(1)−(n−1)u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n

⊗A u
1
(1)−(n)m(−1) ⊗A m(0)u

1
(1)+

= u1
(1)−(1)u

1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(1)−(n−1)u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n

⊗A u
1
(1)+−m(−1) ⊗A m(0)u

1
(1)++

= u2
(1) ⊗A u

2
(2)u

3
(1) ⊗A · · · ⊗A u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A u
1
−m(−1) ⊗A m(0)u

1
+

using (2.10) and (2.7); whereas

ϕntn(m⊗Aop u1 ⊗Aop · · · ⊗Aop un)

= ϕn(m(0)u
1
+ ⊗Aop u2

+ ⊗Aop · · · ⊗Aop un+ ⊗Aop un− · · ·u1
−m(−1))

= u2
+(1) ⊗A u

2
+(2)u

3
+(1) ⊗A · · · ⊗A u

2
+(n)u

3
+(n−1) · · ·u

n
+(2)u

n
− · · ·u1

−m(−1) ⊗A m(0)u
1
+

= u2
(1) ⊗A u

2
(2)u

3
(1) ⊗A · · · ⊗A u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A u
1
−m(−1) ⊗A m(0)u

1
+

by (2.9) and (2.6), and the claim follows. The corresponding identities relating (co)faces
to (co)degeneracies are left to the reader. �

Proof (of Theorem 4.1). This now follows from Theorem 3.6 and Theorem 3.7.
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5. EXAMPLES

5.1. Lie-Rinehart homology with coefficients. Let (A,L) be a Lie-Rinehart algebra over
a commutative k-algebra A and V L be its universal enveloping algebra (see [Ri]).

The left Hopf algebroid structure of V L has been described in [KoKr]; as therein, we
denote by the same symbols elements a ∈ A and X ∈ L and the corresponding generators
in V L. The maps s = t are equal to the canonical injection A→ V L. The coproduct and
the counit are given by

∆(X) := X ⊗A 1 + 1⊗A X, ε(X) := 0,
∆(a) := a⊗A 1, ε(a) := a,

whereas the inverse of the Hopf-Galois map is

X+ ⊗Aop X− := X ⊗Aop 1− 1⊗Aop X, a+ ⊗Aop a− := a⊗A 1.

By universality, these maps can be extended to V L.
Recall from [Hue] that a right (A,L)-module M is simultaneously a left A-module

with action (a,m) 7→ am and a right L-module with action (m,X) 7→ mX , subject to the
compatibility conditions

(am)X = a(mX)−X(a)m,
m(aX) = a(mX)−X(a)m,

m ∈M, a ∈ A, X ∈ L.

Right (A,L)-module structures correspond to right V L-module structures and vice versa.
For a right (A,L)-module M we define Lie-Rinehart homology with coefficients in M as

H•(L,M) := TorV L• (M,A). (5.1)

Interestingly enough, every right (A,L)-module is an SaYD module with respect to the
trivial coaction (cf. Remark 3):

Lemma 5.1. Let M be any right (A,L)-module and define on M a left V L-coaction by
∆M : M → V L⊗AM, m 7→ 1⊗A m. Then M is a stable anti Yetter-Drinfel’d module.

Proof. Equipped with this coaction, M is obviously stable, and also (2.21) is immediate
(observe that left and right A-action on M coincide). Hence it remains to show (2.22).
With the left Hopf algebroid structure maps mentioned above, it is easy to see that on
generators

∆M(mX) = 1⊗A mX = X−X+(1) ⊗A mX+(2) = X−m(−1)X+(1) ⊗A m(0)X+(2)

holds for X ∈ L, and trivially on generators a ∈ A. For an element u = aX1 · · ·Xp,
where a ∈ A, Xi ∈ L, one immediately obtains

∆(mu) = 1⊗A mu′Xp

= (Xp)−(Xp)+(1) ⊗A mu′(Xp)+(2)

= (Xp)−(mu′)(−1)(Xp)+(1) ⊗A (mu′)(0)(Xp)+(2)

for u′ = aX1 · · ·Xp−1. By induction on p and (2.11) one concludes ∆(mu) =
u−m(−1)u+(1) ⊗A m(0)u+(2), as desired. �

Recall that there is a canonical complex that computes H•(L,M) whenever L is A-
projective. This is given by the exterior algebra

∧•
A L tensored over A with M , with
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differential ∂ = ∂n : M ⊗A

∧n
A
L→M ⊗A

∧n−1
A

L defined by

∂(m⊗A X1 ∧ · · · ∧Xn)

:=

n∑
i=1

(−1)i+1mXi ⊗A X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn.

The following theorem generalises [KoP, Thm. 3.13] to more general coefficients.

Theorem 5.2. Let (A,L) be a Lie-Rinehart algebra, where L is A-projective, and M a
right (A,L)-module which is A-flat, seen also as a left V L-comodule as in Lemma 5.1.
The map

Ξ : m⊗A X1 ∧ · · · ∧Xn 7→
1

n!

∑
σ∈Sn

(−1)σXσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m

defines a morphism of mixed complexes

(M ⊗A

∧•
A
L, 0, ∂)→ (C•(V L,M), b, B)

which induces natural isomorphisms

H•(V L,M) 'M ⊗A

∧•
A
L,

HC•(V L,M) ' ker ∂• ⊕H•−2(L,M)⊕H•−4(L,M)⊕ · · · .

Proof. The first part of the theorem and the first isomorphism follow immediately by the
form of the cosimplicial operators in (3.6) for a trivial coaction, combined with the analo-
gous result for M = A from [KoP] and the flatness assumption on M .

To prove the second isomorphism, we need to show that Ξ intertwines the horizontal
differential B with ∂. This will be done by explicitly applying the coinvariants functor
and the results in Section 3. Let B̃ : B•(V L,M)→ B•−1(V L,M) denote the horizontal
differentials of the mixed complex associated to the cocyclic module from Lemma 3.1.
Hence B̃ = Nσ−1(1 − λ), where λ := (−1)nτn, N :=

∑n
i=0 λ

i, and σ−1 := σn−1τn.
Explicitly, we obtain

B̃(u0 ⊗A · · · ⊗A un ⊗A m)

=

n∑
i=0

(
(−1)niε(u0)ui+1 ⊗A · · · ⊗A un ⊗A u1 ⊗A · · · ⊗A ui−1 ⊗A m

− (−1)n(i−1)ε(un)ui+1 ⊗A · · · ⊗A un−1 ⊗A u0 ⊗A · · · ⊗A ui−1 ⊗A m
)
.

Note that Bn(V L,M) ∼= Cn+1(V L,M) as (A,A)-bimodules in this example. From our
general considerations in Section 3, we haveB◦φ◦π = φ◦π◦B̃, where π is the canonical
projection B•(U,M) → U⊗A•+1 ⊗Uop M and φ : U⊗A•+1 ⊗Uop M → Cn(V L,M) is
the isomorphism (3.2). Using its right inverse mentioned in the proof of Proposition 3.4, it
is seen that

Ξ(m⊗A X1 ∧ · · · ∧Xn) = φ
(
π
(

1
n!

∑
σ∈Sn

(−1)σ1⊗A Xσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m
))
.



CYCLIC STRUCTURES IN ALGEBRAIC (CO)HOMOLOGY THEORIES 17

Hence, because L ⊂ ker ε we can compute

B
(
Ξ(m⊗A X1 ∧ · · · ∧Xn)

)
=

= φ
(
π
(
B̃( 1

n!

∑
σ∈Sn

(−1)σ1⊗A Xσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m)
))

= φ
(
π( 1

(n−1)!

∑
σ∈Sn

(−1)σXσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m)
)

= 1
(n−1)!

∑
σ∈Sn

(−1)σXσ(1)− ·
(
Xσ(2) ⊗A · · · ⊗A Xσ(n)

)
⊗A mXσ(1)+

,

= 1
(n−1)!

∑
σ∈Sn

(−1)σXσ(2) ⊗A · · · ⊗A Xσ(n) ⊗A mXσ(1)

− 1
(n−1)!

∑n
i=1

∑
σ∈Sn

(−1)σXσ(2) ⊗A · · · ⊗A Xσ(1)Xσ(i) ⊗A · · · ⊗A Xσ(n) ⊗A m

= Ξ
(∑n

i=1(−1)i+1mXi ⊗A X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

)
= Ξ

(
∂(m⊗A X1 ∧ · · · ∧Xn)

)
,

where · denotes the diagonal action via the coproduct. This completes the proof. �

Remark 10. Note that combining the preceding theorem with Proposition 4.3 as well as
(5.1) relates the Hopf-cyclic cohomology of V L with the Hopf algebroid homology, that
is, the simplicial theory of the dual Hopf-cyclic homology:

HC•(V L,M) ' ker ∂• ⊕H•−2(L,M)⊕H•−4(L,M)⊕ · · ·

' ker ∂• ⊕ TorV L•−2(M,A)⊕ TorV L•−4(L,M)⊕ · · ·
' ker ∂• ⊕H•−2(V L,M)⊕H•−4(V L,M)⊕ · · · .

5.2. Twisted cyclic homology. Recall from [Sch2] that U = Ae is for any k-algebra A a
left Hopf algebroid over A with structure maps

s(a) := a⊗k 1, t(b) := 1⊗k b, ∆(a⊗k b) := (a⊗k 1)⊗A (1⊗k b), ε(a⊗k b) := ab.

The inverse of the Hopf-Galois map is given by

(a⊗k b)+ ⊗Aop (a⊗k b)− := (a⊗k 1)⊗Aop (b⊗k 1).

Any algebra endomorphism σ : A → A defines a right Ae-module Aσ which is A as
k-module with the right action

x(a⊗k b) := bxσ(a), a, x ∈ A, b ∈ Aop.

Define furthermore a left Ae-comodule structure on Aσ by

Aσ → Ae ⊗A Aσ, x 7→ (x⊗k 1)⊗A 1,

which reduces to the map Aσ → Ae, x 7→ x ⊗k 1. With this Ae-action and Ae-coaction
on Aσ we have bx = b Ix, but xa is different from x J a unless σ = idA. So if σ is
not the identity, the condition (2.21) is not fulfilled and Aσ is therefore not an anti Yetter-
Drinfel’d module.

Under the isomorphism C•(A
e, Aσ) = Aσ ⊗Aop Ae⊗Aopn ' Aσ ⊗k A⊗kn given by

x⊗Aop (a1 ⊗k b1)⊗Aop · · · ⊗Aop (an ⊗k bn) 7→ bn · · · b1x⊗k a1 ⊗k · · · ⊗k an,
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the para-cyclic operators (4.1) become

di(x⊗k y) =

anx⊗k a1 ⊗k · · · ⊗k an−1

x⊗k · · · ⊗k an−ian−i+1 ⊗k · · ·
xσ(a1)⊗k a2 ⊗k · · · ⊗k an

if i=0,
if 1≤ i≤n− 1,
if i=n,

si(x⊗k y) =

x⊗k a1 ⊗k · · · ⊗k an ⊗k 1
x⊗k · · · ⊗k an−i ⊗k 1⊗k an−i+1 ⊗k · · ·
x⊗k 1⊗k a1 ⊗k · · · ⊗k an

if i=0,
if 1≤ i≤n− 1,
if i=n,

tn(x⊗k y) =σ(a1)⊗k a2 ⊗k · · · ⊗k an ⊗k x,

where we abbreviate y := a1 ⊗k · · · ⊗k an. In particular, one has

tn+1
n = σ ⊗k · · · ⊗k σ,

so C•(Ae, Aσ) is cyclic if and only if σ = id (in which case Aσ is an SaYD module).
However, there are many situations in which the canonical projection from C•(A

e, Aσ)
onto its associated cyclic k-module C•(Ae, Aσ)/im(id− t•+1

• ) is a quasi-isomorphism of
the underlying simplicial k-modules, see e.g. [HaKr, Prop. 2.1], which implies:

Theorem 5.3. If k is a field and σ is a diagonalisable automorphism of A, then we have

H•(A
e, Aσ) ' H•(A,Aσ).

Here the right hand side denotes the Hochschild homology of A with coefficients in the
(A,A)-bimoduleAσ . The resulting cyclic homologyHCσ• (A) := HC•(A

e, Aσ) has been
first considered in [KuMuTu] under the name σ-twisted cyclic homology and has served
as yet another guiding example of generalised cyclic homology theories. It can be also ex-
pressed as the Hopf-cyclic homology of the kZ-module algebra A (where kZ acts via σ),
but the above presentation seems more natural and stresses the way it originates as a defor-
mation of HC•(A). We therefore consider it an important example that motivates both the
generalisation of Hopf-cyclic (co)homology from Hopf algebras to Hopf algebroids, and
also the necessity to consider coefficients beyond SaYD modules, and the above shows
how to extend the construction of [KuMuTu] to arbitrary (A,A)-bimodules assuming the
existence of an Ae-coaction on the coefficients.
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[BŞ1] G. Böhm and D. Ştefan, A categorical approach to cyclic duality, preprint arXiv:0910.4622, (2009),

to appear in J. Noncommutative Geometry
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