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Abstract

Based on recent work on nuclear binding, we update and extend the
anthropic constraints on the light quark masses, with results that are
more tightly constrained than previously obtained. We find that heavy
nuclei would fall apart (because the attractive nuclear central poten-
tial becomes too weak) if the sum of the light quark masses mu +md

would exceed their physical values by 64% (at 95% confidence level).
We summarize the anthropic constraints that follow from requiring the
existence both of heavy atoms and of hydrogen. With the additional
assumption that the quark Yukawa couplings do not vary, these con-
straints provide a remarkably tight anthropic window for the Higgs
vacuum expectation value: 0.39 < v/vphysical < 1.64.
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1 Introduction

To a first approximation, the fundamental parameters that describe our
world appear to be uniform in space and constant in time. However, it is
possible that their apparent constancy is illusory because of our limited abil-
ity to make observations across space and time. There are mechanisms, such
as chaotic inflation and the string landscape, that can lead to a multiverse
in which regions far outside of our visible horizon have different parameters
from those that we see. Similarly it is possible (if there exists some nearly
massless “moduli field”) that the parameters could have been different in
the early universe, and there are even experimental hints for this option.
While these possibilities may or may not bear fruit in future studies, it is
important to explore these options as carefully as possible.

The possibility of variable parameters changes the way that we approach
the open questions of fundamental physics [1, 2, 3, 4]. For example, the ex-
istence of a multiverse with different parameters in different domains would
modify the way that we approach the issue of using those parameters as a
test of the underlying theory. Rather than looking for a unique set of pa-
rameters to emerge from a fundamental theory, we would expect them to be
distributed in some typical range. However, for some parameters there is a
further restriction in that there are combinations of parameters that would
lead to a domain that could not support life. While there is some fuzziness in
the constraints for the existence of life, certain clear physical properties can
be used to delineate the extreme limits of the possible ranges. For example,
atoms must exist and this restricts the ranges of the quark and lepton masses
and possibly the Higgs vacuum expectation value (vev) [3]. This “atomic
constraint” is particularly significant for the Higgs vev because the small
value of this parameter (on the GUT, or Planck, scale) is one of the great
fine-tuning problems of the Standard Model and consequently it is one of
the greatest motivations for new physics. Alternatively, taking for granted
this fine-tuning changes the way one can approach the need for new physics
(and notably supersymmetry [4]).

The work of Agrawal et al (ABDS) [3] has used this atomic principle

(as it was called in [4]), i.e. the need for the existence of atoms, to provide
secure anthropic constraints on quark masses and the Higgs vev. In order
to translate from the direct bound on the quark masses, this work assumes
that the other parameters of the Standard Model remain fixed while the
Higgs vev is allowed to vary. In a realistic theory, if the Higgs vev is able to
take on different values, then the other parameters may also vary. However,
the expected range of the Higgs vev is far larger in the absence of other new
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physics - this is why this vev is viewed as a great fine-tuning problem. As a
consequence this key anthropic constraint may still have a robust meaning,
even if other parameters are allowed to vary. Within the Standard Model the
quark masses follow from the weak interaction, and are proportional to that
scale. The Higgs vev sets the scale of the weak interactions. In contrast,
the major contributions to nuclear masses are determined by the strong
interactions. The general constraint then is that the effects of the scale of
the weak interaction must overlap the scale of the strong interactions. It is
the interplay of these two very different interactions that allows the existence
of atoms. There is then a narrow volume of parameter space that produces
nuclei and atoms.

A temporal variation of parameters could have yet different implica-
tions. A continuous variation of some quantity implies that this quantity is
a field, i.e it carries a space-time dependence. For this variation to occur
over cosmological time scales the field must be nearly massless. This then
suggests that such a field coupled to matter would lead to violations of the
equivalence principle, for example, or to other observable consequences.

In this paper we use recent work on nuclear binding to address some of
these issues. In particular, we refine the understanding of the viable range of
quark masses which follows from the existence of heavy nuclei. Other atomic
constraints (namely that hydrogen exists) bound the possible masses of the
electron. We briefly discuss the constraint on the Higgs vev if the Yukawa
couplings are held fixed. We reserve to a companion paper the issue of
implications for tests of the equivalence principle [5].

Our paper is organized as follows: In Section 2 we use recent work on
effective field theory to estimate which variation in quark masses would
“unbind” heavy nuclei. In Section 3 we provide more physical insight into
the sensitivity of nuclear binding to scalar interactions between nucleons
by considering a simple model for homogeneous nuclear matter. Finally,
Section 4 displays the anthropically allowed range of the masses of the first
generation of quarks and leptons: mu,md,me.

2 Anthropic constraints from the existence of nu-

clei using effective field theory

To the extent that we understand how the Standard Model leads to the
physical world that we observe, we should be able to understand how that
world would change if we modify the parameters of the theory to take on
values in the neighborhood of their physical values. While we feel that we

2



do understand the overall phenomenology of the Standard Model, the preci-
sion that we claim in these calculations continues to advance at a relatively
modest pace, especially for what concerns the link between the fundamental
Lagrangian and nuclear physics. However, the recent advances in nuclear
physics have been impressive, largely through the application of the effective

field theory approach [6]. Since the energies in nuclear processes are low, the
effective field theory framework parameterizes the key ingredients in terms
of a relatively small number of low energy constants. This method has
been applied extensively to nuclear binding and has put traditional nuclear
phenomenology on a more solid basis.

We consider a relatively simple but reasonably model-independent de-
scription of the parameters that influence nuclear binding, limiting ourselves
to those that appear most important. For all but the lightest of nuclei, the
key aspect of binding comes from a central potential that is isospin sym-
metric and which does not involve the spin of the nucleons. These will be
parameterized by a small number of contact interactions [7, 8, 9]. While
the other components of the nuclear force are important for the detailed
descriptions of nuclear states, the main contributions to the binding energy
comes from this spin-singlet and isospin-singlet central potential.

In addition to this model-independent framework, we employ the re-
sults of recent work on the variation of the dominant coupling constants
with a changing quark mass [10]. While there are clearly some uncertain-
ties in this calculation, it is easy to argue that the dominant effects are
kinematic. The coupling constants are calculated using a dispersive repre-
sentation [11, 12], with the threshold of the dispersion integral appearing at
the physical threshold of 2mπ. Raising the threshold is seen to lead to a
kinematic suppression of the coupling strength. While our estimate is much
more sophisticated than this, nevertheless the dominant effect is that of the
kinematic threshold.

In effective field theory, the propagation of the very light degrees of
freedom must be treated dynamically because these particle can propagate
long distances. By contrast, at low energies, the more massive degrees of
freedom cannot propagate far and can be represented by contact interactions
- i.e. delta function potentials and derivatives of delta functions. This
has the effect of simplifying the contributions of various possible particle
exchanges, with various spatial potentials, into a few low energy constants
describing the strength of the interactions. In nuclear processes, it is useful
to treat the direct effects of one-pion exchange dynamically, but to treat the
other components of the nuclear force by contact interactions. For the spin
singlet and isospin singlet central potential responsible for nuclear binding
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there are then two possible contact interactions, called scalar and vector

Hcontact = GS(N̄N)(N̄N) +GV (N̄γµN)(N̄γµN) + ... (1)

whereN denotes the nucleon field, and whereGS is negative (i.e. attractive),
while GV is positive (i.e. repulsive). In traditional meson exchange models,
the scalar component corresponds to the exchange of the σ(600) meson and
the vector component corresponds to the exchange of the ω(783) meson.

Our first task is to understand the primary ingredients of nuclear binding
in this framework. Fortunately the dominant ingredients in the binding of
heavy nuclei have been elucidated in a set of papers by Furnstahl, Serot
and co-workers [7, 8, 9]. For heavy nuclei, one-pion-exchange is not very
important because pion exchange is proportional to the spin and isospin
operators and the spins and isospins of most nucleons average to a total that
is close to zero. Instead the isoscalar and spin independent contributions sum
over all nucleons and are dominant once one is away from the few-nucleon
cases. This is in accord with the standard wisdom that the nuclear central
interaction (J = 0 and I = 0) is responsible for nuclear binding. The results
for heavy nuclei can be extracted from Fig. 1 and Fig. 2 of [7]. As expected,
the dominant effects are the scalar and vector contributions described above.
Other interactions play reduced roles, although for a complete understanding
of the binding about a half-dozen contact interactions are required. Here we
will focus our attention on the dominant isoscalar-scalar and isoscalar-vector
interactions.

Using Ref. [7], one can quantify these contributions to nuclear binding.
We parameterize the results in terms of the strengths of the contact inter-
actions, normalized to their physical values, defining

ηS ≡ GS

GS |physical

ηV ≡ GV

GV |physical
(2)

The contributions to the binding energy (B.E) for 16O (in MeV)1 are

B.E.

A
≃ −82ηS + 44ηV + 30 (3)

where A denotes the total baryon number. The first two terms are the effects
of the scalar and vector isoscalar interactions. The third term is the sum

1Though we shall use here for convenience the usual physical units MeV (or GeV), one
should think of these (when considering variations of the quark masses) as being defined

as some pure number times the chiral limit of the QCD confinement scale, say Λ
(0)
QCD.
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of all other smaller contributions to the binding energy and kinetic energy
contributions. There is in addition the Coulomb energy and a small center
of mass correction. For 208Pb, the result is

B.E.

A
≃ −104ηS + 57ηV + 36 (4)

The results of these calculations can be generalized to other nuclei by a
parameterization that resembles the semi-empirical mass formula. For local
interactions, because the nuclear density is nearly constant in the central
region one expects that the binding energy will have a dependence on the
volume, which in turn is proportional to the number of particles, r3 ∼ A, and
that interactions that occur near the nuclear surface would have a modified
result proportional to the number of nucleons near the surface, r2 ∼ A2/3.
This suggests that binding effects can be parameterized in terms of behavior
in A and in A2/3. Using the results for nuclear matter and for specific nuclei,
we find a good fit of the form

B.E.

A
= −(120 − 97

A1/3
)ηS + (67 − 57

A1/3
)ηV + residual terms (5)

The primary difficulty in applying these ingredients to anthropic con-
straints is the need to connect the contact interactions to the fundamental
parameters of QCD. However, there is two decades worth of work explor-
ing the ingredients in this connection. The framework used below follows
[10, 12] in employing dispersion relations, which can be used to express the
desired couplings as integrals over reactions involving physical intermediate
states. The low energy portions of these reactions can be well predicted
by chiral perturbation theory, in which one has reasonable control over the
quark mass dependence.

In general, an effective field theory prediction would be expected to have
the following structure. The high energy end of a dispersion integral would
be expected to depend on the quark masses only weakly. This is known from
the dependence of hadron masses and couplings on the quark mass parame-

ters. For example, if the u, d masses were doubled (keeping Λ
(0)
QCD fixed) the

nucleon mass would increase by about a half a percent. However, the low
energy portions of a dispersion integral can have a much greater change. For
example, the doubling of the u, d masses would raise the energy threshold
in the dispersion relation by 40% and would forbid any contributions below
this new threshold. In this case, a reasonable first approximation to an effec-
tive field theory calculation would be to treat the high energy portion of the
dispersive integral as being independent of the masses and to calculate the
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low energy effects using chiral perturbation theory. Any large dependence
on the light quark masses should come from the low energy end. This is the
result of our work.

The reasoning above suggests that the most important effect is in the
scalar channel. This is the only portion of the central force that receives
large effects from low energy, as two pion exchange is the most important
contribution2. This channel has been explored in great depth within the
context of chiral perturbation theory, including studies very similar to the
approach used in this paper [13]. One of the authors has recently extended
this work to include the constraints of unitarity [10, 12]. The result is a de-
scription of two-pion exchange that carries the main properties needed for
the scalar central potential. We will employ this work in our analysis below.
In this work, we use chiral perturbation theory at low energies and also at-
tempt to extend the description to high energy. The low energy part is then
model-independent while the high energy portion is less rigorous. However
the high energy portion plays little role in our answer, since it conforms with
the expectation that it should be largely independent of the quark masses.
Moreover, we should note here that the primary ingredient is independent
of the details of this calculation. The general trend is inescapable - as the
pion mass gets larger, the effect of two pion exchange must get smaller. In
the chiral framework, the connection of the quark masses to the two pion
threshold is well defined, and as noted above, most of the effect found in
Ref. [10] is kinematic.

Let us summarize the results of [10] and extend them to larger values
of the pion mass. First, it was found that the pion mass dependence of
omega exchange (corresponding to the vector channel) is of “normal” size,
i.e. O(m2

π/(1GeV)2). Such a “normal” sensitivity to m2
π (and therefore

to quark masses) leads to sub-leading corrections compared to the effects
linked to the m2

π sensitivity of the scalar channel. Indeed, because of the
dependence on the two pion threshold, the scalar contact interaction is much
more sensitive to the pion mass. In full generality, one has the sum rule

GS =
2

π

∫

∞

2 mπ

dµ

µ
ρS(µ) (6)

where ρS(µ) is the spectral function that describes the physical two pion
intermediate state at energy µ. The dependence of this spectral function

2The vector channel has also been explored in [10] but has little low energy effect
and only a very small mass dependence. We will include it in our numerics below, while
focussing, in the text, on the dominant scalar-channel effects.
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on the quark masses is explored in detail in Ref. [10]. The rise of the
amplitudes from the threshold value of µ = 2mπ = 270 MeV is tempered
at higher energy by unitarity effects such that the main contributions come
from energies near µ = 500−600 MeV. When changing the quark masses, all
ingredients change to some extent. However the key effect is the threshold
behavior. In lowest order, the pion mass-squared is proportional to the light
up and down quark masses

m2
π = B0(mu +md) (7)

where B0 is a constant3 (proportional to Λ
(0)
QCD). The evidence is that this

relation holds throughout the region of interest to us here [14]. The higher
threshold then cuts off the effect of two pion exchange as the pion mass
increases.

ρ(E)

E (GeV )

0.2 0.4 0.6 0.8

-1400

-1200

-1000

-800

-600

-400

-200

Figure 1: The scalar spectral function for three values of the pion mass, mπ =
0,mphys, and

√
2mphys, with thresholds starting at µ = 2mπ .

In detail, the framework of Ref. [10] includes all variations in the param-
eters governing two-pion exchange, including gA, Fπ and the ππ rescattering
amplitude. While that work was focussed on the situations where the pion
mass was lighter than its physical value, the framework also extends to
larger values of the pion mass. For example, the comparison of the result
at the physical mass to the case where the pion mass is 40% larger than the
physical value is shown in Fig. 1. The spectral integral will clearly show a
decrease when the pion mass is increased.

3The precise value of B0 depends on the renormalization scale used to specify the quark
masses.
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ηS

m2
π

m2
phys
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0.4

0.6
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1.2

Figure 2: The value of the scalar strength ηS as a function of the pion mass.

In [10] it was found that the scalar strength GS reached, in the chiral
limit, the larger4 value

GS |chiral

GS |physical
= 1.37 ± 0.10 (8)

The error bar comes from the limitation of our understanding of the depen-
dence of various couplings on the pion mass. This result could be used by
itself to reasonably extrapolate to larger values of the pion mass since the
extrapolation is almost linear in m2

π. However, there are some non-linear
features. In practice, a more detailed calculation, including required non-
analytic contributions yields the result shown in Fig. 2 for ηS , i.e. the value
of GS normalized to the physical value, as a function of the pion mass. The
estimates of these uncertainties are also shown in Fig. 2. The error bars
come from from our lack of understanding of the dependence of some of
the pion and nucleon parameters on the value of mπ. The largest source of
uncertainty is the mass dependence of the axial coupling gA. These uncer-
tainties are discussed in more detail in [10].

In this calculation we have calculated the spectral integral up to an
energy of 850 MeV. This includes some energies above the scale where the
chiral perturbation theory description is valid - the upper end of this integral
is modeled by using the continuation of the unitarized chiral amplitudes
above the region where they are known to be correct. However, because
very little mass variation is seen in the upper energy region, there is an

4In absolute value; let us indeed recall that GS is negative.
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alternate procedure which does not make this model-dependent assumption
yet which yields essentially the same result. In this procedure, one calculates
the spectral integral only in the region where the chiral expansion is valid, for
example up to an energy of 600 MeV, and includes a short distance contact
interaction to account for the effects of higher energy. (This rationale is
described in more detail in [10].) If one assumes that the mass dependence
of the short distance effect is of normal size (i.e. of order m2

π/(1GeV)2), then
essentially all the mass variation comes from the low energy end, reproducing
the result quoted above within error bars.

Because the effect of the scalar interaction is attractive (GS < 0) while
the effect of the vector interaction is repulsive (GV > 0), there is a substan-
tial cancelation between these two effects (see next Section for an analytical
discussion exhibiting this cancelation). The mass dependence of the vector
interaction has also been estimated in [10]. It has no significant threshold
dependence because the dominant feature - the ω meson - is a narrow pole
with only a small dependence on the quark masses. We have taken this into
account in our numerics, but do not discuss it further here.

B
A (MeV )

m2
π

m2
phys

0 0.5 1 1.5 2

-40

-30

-20

-10

0

10

20

Figure 3: The binding energy per nucleon in 16O as a function of the pion mass.
The corresponding result in 210Pb is very similar.

Because the scalar strength has significant variation while the vector one
is less affected, the cancelation between the two has an even larger percent-
age variation. In particular, as the attractive scalar interaction becomes
weaker, it no longer dominates over the repulsive vector interaction, and the
binding energy can change sign (from “binding” to “unbinding”) as m2

π in-
creases above its physical value. Using the results (3), (4) quoted above, we
see that the binding energy vanishes for a scalar strength only 10% smaller
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than the physical values

ηS |critical = 0.90 for 16O

ηS |critical = 0.89 for 208Pb (9)

Study of the general formula shows that these values are typical of the whole
range in A. As we have seen above, increasing the pion mass will lead to
a decrease in the scalar strength. In Fig. 3 we show the resulting nuclear
binding for 16O as a function of the pion mass, including the estimated
error bar. In producing this figure we have assumed that the other small
contributions to the binding formula do not have significant variations. We
see that this element becomes unbound when the pion mass-squared is 36±
14% larger than the physical value. This critical value is almost independent
of the value of A.

The anthropic constraint on quark masses can be inferred from these
results. Using the basic relation (7) between the pion mass and the quark
masses, one obtains the constraint

mu +md

(mu +md)phys
< 1.36 ± 0.14 , (10)

from the requirement that nuclear binding exist at all. To the best of our
present understanding of pion physics from chiral studies and from lattice
simulations, the corrections to the basic relation between pion and quark
masses are negligible compared to the other uncertainties in the calculation.
If we had used the binding of 208Pb we would have obtained essentially
the same constraint on the pion mass. The use of the semi-empirical mass
formula described above says that this constraint is roughly independent of
the value of A. If we include the error bar and convert to a 95% confidence
level upper bound we conclude that

mu +md

(mu +md)phys
< 1.64 . (11)

We will use this as our final “atomic bound”.

3 Constraints using a model for nuclear matter

In this section we use a simple model for nuclear matter to provide more
physical insight into the sensitivity of nuclear binding to the scalar strength
and to reinforce the results of the previous section. The model is a variant
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of the description of nuclear matter discussed in Ref. [9] using nucleonic and
mesonic fields. It reproduces the dominant contact interactions used above
and also includes higher order dependencies on the scalar couplings and the
kinetic energy. We will see that these higher order dependencies increase
the sensitivity to GS and hence to the quark masses.

The starting Lagrangian is

L = ψ̄ [iγµ∂µ − gV Vµγ
µ − (M − gSφ)]ψ +

1

2
m2

V V
2
0 − 1

2
m2

Sφ
2 (12)

where ψ is the nucleon field, φ is a scalar, isoscalar field (“the sigma”) and
Vµ is an isoscalar vector field (“the omega”).

We now consider the effect of this Lagrangian in an infinite nuclear
medium. The nucleon field fills the available states up to the Fermi en-
ergy. The density of nucleons is given by

ρB =
γ

(2π)3

∫ kF

0
d3k =

γk3
F

6π2
(13)

where γ is the number of degrees of freedom (γ = 4 for isoscalar nuclear
matter, which we will use in our numerical work) and kF is the Fermi mo-
mentum. The nucleon field acts as the source of the scalar and vector fields.
Solving for the energy density of this uniform distribution, one finds

ǫ =
1

2

g2
V

m2
V

ρ2
B +

1

2

g2
S

m2
S

ρ2
S +

γ

(2π)3

∫ kF

0
d3k E∗(k) (14)

where the scalar density is

ρS =
γ

(2π)3

∫ kF

0
d3k

M∗

E∗
(15)

and

E∗ =
√

k2 +M2
∗

M∗ = M − gsρS (16)

We approximate this by non-relativistic kinematics, which is a reasonable
approximation for nuclear matter. If we then solve for the energy per baryon
(E/A, which is ǫ/ρB) we find

E

A
−M =

γ

12π2
k3

F (
g2
V

M2
V

− g2
S

M2
S

) +
3

10

k2
F

M(1 − γg2
S
k3

F

6π2m2
S

M
)

(17)
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Here in the first term we see the effects of the scalar and vector contact
interactions (with GS = −g2

S/m
2
S and GV = +g2

V /m
2
V ), while the second

term is the kinetic energy of the nucleons propagating in the nuclear medium.
In the language of Ref. [7], these latter terms would be described as higher
order contributions in the kinetic energy term.

If the couplings are chosen appropriately, one reproduces the existence
of nuclear matter. As the density (∝ k3

F ) increases, the kinetic energy
initially gives a positive contribution which is eventually overcome by the
potential energy (if g2

V /M
2
V − g2

S/M
2
S = GV + GS is sufficiently negative),

with nuclear saturation seen in the existence of a minimum in the potential
energy function. Using appropriate values (GS = −362 GeV−2 and GV =
270 GeV−2) an energy function very similar to that of [9] is shown as the
bottom curve in Fig 4, reproducing the correct binding energy and Fermi
momentum.

B
A (GeV )

kF (GeV )

0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.01

0.01

0.02

Figure 4: The binding energy, B, per nucleon in nuclear matter as a function of
the Fermi momentum for various values of the scalar strength GS . From bottom
to top in the figure, the values of −GS are (362, 340, 328, 315) GeV−2

Now let us consider variations in the scalar coupling. Various other
values of GS are also shown in Fig. 4. We observe that the binding is highly
sensitive to the scalar coupling. In particular, nuclear matter disappears for
a critical value of GS only 10% smaller than the physical value

ηS |crit =
GS |crit
GS |phys

= 0.904 (18)

This confirms the sensitivity to this parameter found in finite nuclei by Ref.
[7]. In fact, we can see from both the formula and the numerics that higher
order effects GS have the effect of making the sensitivity greater.
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B
A (MeV )

m2
π

m2
phys

0.9 1 1.1 1.2 1.3 1.4

-15

-10

-5

0

5

Figure 5: The binding energy, B, per nucleon in nuclear matter as a function of
the pion mass.

Finally let us translate this into a constraint on the quark masses. Using
the calculation of GS as our guide, the binding energy of nuclear matter as
a function of the pion mass is shown in Fig. 5. We see that the central value
of the constraint satisfies

mu +md

(mu +md)phys
< 1.28 ± 0.14 (19)

This is completely consistent with, and slightly stronger than, the bound
quoted in the previous section. Because the two constraints overlap, to be
conservative we will use the upper bound of the previous section as our final
constraint.

4 Summary of quark and lepton mass constraints

In this section, we display the anthropically allowed range of the masses of
the first generation of quarks and leptons, mu, md, me, updating Ref. [15].
There are two primary constraints. One is a bound on the sum of quark
masses mu +md derived above. If this combination becomes too large, all
nuclei fall apart because the attractive central potential becomes too weak.
The other bound follows from the constraint that if the neutron mass is
lighter than the sum of the masses of the proton and electron, hydrogen
will be unstable through the capture of electrons e− + p→ n+ ν, such that
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a hydrogen atom will decay5. In practice, these two constraints suffice to
provide tight bounds on these three masses.

For the first constraint due to our bound following from the binding
of nuclei, we need to express this in terms of absolute masses. While our
constraint, Eq. (11), involves the ratio of masses, which is scale independent,
the absolute masses depend on the scale that they are specified at. The most
canonical values of the quark masses md ∼ 7 MeV and mu ∼ 4 MeV are
typically taken to apply at a scale of 1 GeV, and we will use this prescription.
In this case, the bound on the ratio, Eq. (11), implies that

mu +md ≤ 18 MeV . (20)

The second constraint - that hydrogen exists6 - involves a bound on the
physical masses

mP +me ≤ mN . (21)

If this relation is violated, the electron in the hydrogen atom will be captured
by the proton7. To convert this relation to the quark level we need to
estimate both the quark contribution to the neutron-proton mass difference
and the electromagnetic contributions. Let us parameterize these by

mN −mP = Z0(md −mu) − ǫEM (22)

Here the first term on the right hand side is the contribution due to the
differences in quark masses, while the second part is the electromagnetic
contribution to the mass difference. Since the quark masses are scale de-
pendent, so also is Z0, such that the product is scale independent. Both
potential models [17] and bag models [18] yield remarkably similar values
for the electromagnetic contribution, ǫEM ∼ 0.5 MeV. The use of the canon-
ical values of the masses at a scale of 1 GeV then implies that Z0 = 0.6 in
order to obtain the correct neutron-proton mass difference. This is a very

5We assume throughout that the neutrino mass, if it is indeed allowed to also vary,
remains negligibly small. There is, moreover, an anthropic constraint that ensures this
result[16].

6The existence of hydrogen is probably necessary for having long-lived stars, quietly
shining for eons and thereby providing a favorable environment for the appearance of life.
Hydrogen might also be necessary to make biological molecules.

7The violation of this relation will also cause important modifications in heavy nuclei.
However, bound protons can still exist in heavy atoms if they are sufficiently more deeply
bound than neutrons, such that the Pauli principle blocks the proton to neutron conver-
sion. We do not attempt to analyze this situation in detail, using instead the simpler
constraint on hydrogen as the main anthropic bound.
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reasonable value and we will adopt it in our numerics. Using these values,
we find that the difference in quark masses is also bounded

md −mu ≥ me + ǫEM

Z0
(23)

or
md −mu − 1.67me ≥ 0.83 MeV . (24)

The right hand side of this latter constraint is evaluated at the physical
value of the fine structure constant and the QCD scale. It is linear in both
of these quantities.

mu

me

05
10

15
20

0
5

10
15

20

0

5

10

15

20

0

5

10

15

md

Figure 6: The anthropic constraints on md, mu, me in MeV units.

The constraints (20) and (24) are plotted in Fig. 6, which shows a 3D
plot listing the allowed values of each combination of mass. The important
point is that the two constraints manage to provide bounds on all three of

the masses. Note that mu and me have no lower anthropic bounds, while
md is constrained to be non-zero.

We can also take projections into various two-dimensional subsections.
The constraints on various combinations of the masses are shown in Fig 7.
In each case, the outer range is shown allowing the third mass parameter to
take on any allowed value. Also marked by a dashed line on these plots is
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Figure 7: The projection of the anthropic constraints of Fig. 6 into the planes
of each pair of masses. The solid lines denote the total allowed region, while the
dashed line shows the remaining area if the third mass takes on its physical value.
The dot shows the physical values of the masses.

the overall range of the masses when the third mass parameter takes on its
physical value.

We see that quite small changes in the quark masses would lead to un-
livable conditions.

These ranges for the masses can be converted to an allowed range for the
Higgs vacuum expectation value, under the additional assumption that the
other parameters of the Standard Model (Yukawa and gauge couplings) are
held fixed. This extra assumption could possibly occur in grand unified theo-
ries, where there are many attempts to predict gauge and Yukawa couplings.
In this situation, the Yukawa couplings could be fixed by the symmetries of
the grand unified theory, and our quark mass constraints translate directly
into constraints on the Higgs vev. From our work above on the binding of
nuclei we would then find

v

vphys
< 1.64 (25)

at 95% confidence. This constraint is both stronger than and independent
from the final result of ABDS [3]. The latter was based on the fact that as
the quark masses increases, at fixed Yukawa couplings, the neutron-proton
mass difference increases until eventually all bound neutrons decay and only
protons exist. Thus, that bound constrains md −mu, while ours constrains
md+mu. Moreover, our present bound is tight enough that it supersedes the
bound on the mass difference, because md −mu can never be greater than
md+mu. The lower constraint comes from the other process discussed in this
section - the stability of hydrogen atoms against the reaction p+ e→ n+ ν.
If the Higgs vev becomes too small, the proton becomes heavier than the
neutron due to electromagnetic interactions and this reaction occurs. Since
the up, down and electron masses are all proportional to v, one finds that
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this constraint is
v

vphys
≥ 0.39 (26)

When combined one finds a very restricted range for the vev, under the
stated assumptions:

0.39 ≤ v

vphys
≤ 1.64 (27)

which is especially tight if one considers it in the the context of Grand
Unification, where the natural range for the vev could extend up to the
GUT scale.

Of course, it is also possible that the extra assumption about the con-
stancy of the Yukawa couplings is not correct. In the discussions of the
string landscape, there are so many possible vacua that others with differ-
ent values of the Yukawa couplings should be possible. However, our quark
mass constraints should still be relevant for describing the likely values of
the Higgs vev [19]. Even though extreme cases with disparate scales may
be possible [20], it is plausible that the need for light quarks makes it likely
that the Higgs vev is close to the scale of the strong interactions [19]. More-
over, in theories such as supersymmetry which use dynamics to stabilize the
fine tuning problem, the anthropic constraint could be an explanation of the
overall scale of supersymmetry breaking.

It may be possible to provide tighter bounds on the masses by consider-
ing more specific constraints. One that has been discussed in the literature
is the bound following from the stability of deuterium [3, 21]. The deuteron
is very weakly bound and small changes in the masses will suffice to un-
bind it8. This happens for more modest changes than is required for the
unbinding of the rest of the elements. Since deuterium is involved in the
standard mechanisms of nucleosynthesis in the early universe and in stars,
the lack of a stable deuteron could be the obstacle to providing the elements
needed for life. However, this bound is less robust that considered above.
On the one hand, there may be alternate pathways to the production of
enough elements needed for life. In addition, Weinberg estimates that even
an unstable deuteron could live long enough to generate the elements [1].
Moreover, there are extra subtleties in estimating the quark-mass sensitiv-
ity of the various two-nucleon systems [23, 24, 25]. For all these reasons,
we consider only the most robust of constraints, as discussed above. These

8For example Eugene Golowich (private communication)[22] has estimated that if the
scalar coupling is decreased by 5.2%, the deuteron will be unbound. This is half the
variation that we showed was needed to unbind the heavy elements, and would lead to a
tighter bound of 1.33 for the ratio of Eq. (11).
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strong constraints already provide very strong bounds on the masses, as
summarized above.
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