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Abstract

The Effective One Body (EOB) formalism is an analytical approach
which aims at providing an accurate description of the motion and radi-
ation of coalescing binary black holes. We present a brief review of the
basic elements of this approach.

1 Introduction

A network of ground-based interferometric gravitational wave (GW) detectors
(LIGO/VIRGO/GEO/. . .) is currently taking data near its planned sensitivity.
Coalescing black hole binaries are among the most promising, and most exciting,
GW sources for these detectors. In order to successfully detect GWs from
coalescing black hole binaries, and to be able to reliably measure the physical
parameters of the source (masses, spins, . . .), it is necessary to know in advance
the shape of the GW signals emitted by inspiralling and merging black holes.
Indeed, the detection and subsequent data analysis of GW signals is made by
using a large bank of templates that accurately represent the GW waveforms
emitted by the source.

Here, we shall introduce the reader to one promising strategy toward having
an accurate analytical1 description of the motion and radiation of binary black
holes, which covers all its stages (inspiral, plunge, merger and ring-down): the
Effective One Body approach [1, 2, 3, 4]. As early as 2000 [2] this method
made several quantitative and qualitative predictions concerning the dynamics
of the coalescence, and the corresponding GW radiation, notably: (i) a blurred

1Here we use the adjective ‘analytical’ for methods that solve explicit (analytically given)
ordinary differential equations (ODE), even if one uses standard (Runge-Kutta-type) numeri-
cal tools to solve them. The important point is that, contrary to 3d numerical relativity simula-
tions, numerically solving ODE’s is extremely fast, and can therefore be done (possibly even in
real time) for a dense sampling of theoretical parameters, such as orbital (ν = m1 m2/M, . . .)
or spin (â1 = S1/Gm2

1
, θ1, ϕ1, . . .) parameters.
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transition from inspiral to a ‘plunge’ that is just a smooth continuation of the
inspiral, (ii) a sharp transition, around the merger of the black holes, between
a continued inspiral and a ring-down signal, and (iii) estimates of the radiated
energy and of the spin of the final black hole. In addition, the effects of the
individual spins of the black holes were investigated within the EOB [4, 5] and
were shown to lead to a larger energy release for spins parallel to the orbital
angular momentum, and to a dimensionless rotation parameter J/E2 always
smaller than unity at the end of the inspiral (so that a Kerr black hole can
form right after the inspiral phase). All those predictions have been broadly
confirmed by the results of the recent numerical simulations performed by several
independent groups [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] (for a review of
numerical relativity results see [18]). Note that, in spite of the high computer
power used in these simulations, the calculation of one sufficiently long waveform
(corresponding to specific values of the many continuous parameters describing
the two arbitrary masses, the initial spin vectors, and other initial data) takes on
the order of two weeks. This is a very strong argument for developing analytical
models of waveforms.

Those recent breakthroughs in numerical relativity (NR) open the possibility
of comparing in detail the EOB description to NR results. This EOB/NR com-
parison has been recently initiated in several works [19, 20, 21, 22, 23, 24, 25].
The level of analytical/numerical agreement is unprecedented, compared to
what has been previously achieved when comparing other types of analytical
waveforms to numerical ones. For instance, [24] found that the maximal de-
phasing between a recent, very accurate NR simulation of 30 GW cycles during
late inspiral [17] and EOB could be reduced below 10−3 GW cycles. The same
comparison exhibited also an excellent agreement between the amplitudes of
the NR and EOB waveforms. If the reader wishes to put the EOB results in
contrast with other (Post-Newtonian or hybrid) approaches he can consult, e.g.,
[26, 27, 17, 28, 29, 30].

Before reviewing some of the technical aspects of the EOB method, let us
indicate some of the historical roots of this method. First, we note that the
EOB approach comprises three, rather separate, ingredients:

(1) a description of the conservative (Hamiltonian) part of the dynamics of
two black holes;

(2) an expression for the radiation-reaction part of the dynamics;

(3) a description of the GW waveform emitted by a coalescing binary system.

For each one of these ingredients, the essential inputs that are used in EOB
developments are high-order post-Newtonian (PN) expanded results which have
been obtained by many years of work, by many researchers (see references be-
low). However, one of the key ideas in the EOB philosophy is to avoid using
PN results in their original ‘Taylor-expanded’ form (i.e. c0 + c1 v + c2 v

2 +
c3 v

3 + · · ·+ cn v
n), but to use them instead in some resummed form (i.e. some
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non-polynomial function of v, defined so as to incorporate some of the expected
non-perturbative features of the exact result). The basic ideas and techniques
for resumming each ingredient of the EOB are different and have different his-
torical roots. Concerning the ingredient (1), i.e. the EOB Hamiltonian, it was
inspired by an approach to electromagnetically interacting quantum two-body
systems introduced by Brézin, Itzykson and Zinn-Justin [31]. The resummation
of the ingredient (2), i.e. the EOB radiation-reaction force F , was inspired by
the Padé resummation of the flux function introduced by Damour, Iyer and
Sathyaprakash [32]. As for the ingredient (3), i.e. the EOB description of the
waveform emitted by a coalescing black hole binary, it was mainly inspired by
the work of Davis, Ruffini and Tiomno [33] which discovered the transition be-
tween the plunge signal and a ringing tail when a particle falls into a black hole.
Additional motivation for the EOB treatment of the transition from plunge to
ring-down came from work on the, so-called, ‘close limit approximation’ [34].

Let us finally note that the EOB approach has been recently improved by
following a methodology consisting of studying, element by element, the physics
behind each feature of the waveform, and on systematically comparing vari-
ous EOB-based waveforms with ‘exact’ waveforms obtained by NR approaches.
Among these ‘exact’ NR waveforms, it has been useful to consider the small-
mass-ratio limit ν ≡ m1m2/(m1 +m2)

2 ≪ 1, in which one can use the well con-
trollable ‘laboratory’ of numerical simulations of test particles (with an added
radiation-reaction force) moving in black hole backgrounds [23].

2 Motion and radiation of binary black holes:

post-Newtonian expanded results

Before discussing the various resummation techniques used in the EOB ap-
proach, let us briefly recall the ‘Taylor-expanded’ results that have been ob-
tained by pushing to high accuracies the post-Newtonian (PN) methods.

Concerning the orbital dynamics of compact binaries, we recall that the
2.5PN-accurate2 equations of motion have been derived in the 1980’s [35, 36,
37, 38]. Pushing the accuracy of the equations of motion to the 3PN (∼ (v/c)6)
level proved to be a non-trivial task. At first, the representation of black holes
by delta-function sources and the use of the (non diffeomorphism invariant)
Hadamard regularization method led to ambiguities in the computation of the
badly divergent integrals that enter the 3PN equations of motion [39, 40]. This
problem was solved by using the (diffeomorphism invariant) dimensional regu-

larization method (i.e. analytic continuation in the dimension of space d) which
allowed one to complete the determination of the 3PN-level equations of mo-
tion [41, 42]. They have also been derived by an Einstein-Infeld-Hoffmann-type
surface-integral approach [43]. The 3.5PN terms in the equations of motion are
also known [44, 45, 46].

2As usual ‘n-PN accuracy’ means that a result has been derived up to (and including)
terms which are ∼ (v/c)2n ∼ (GM/c2r)n fractionally smaller than the leading contribution.
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Concerning the emission of gravitational radiation, two different gravitational-

wave generation formalisms have been developed up to a high PN accuracy:
(i) the Blanchet-Damour-Iyer formalism [47, 48, 49, 50, 51, 52, 53] combines
a multipolar post-Minkowskian (MPM) expansion in the exterior zone with a
post-Newtonian expansion in the near zone; while (ii) the Will-Wiseman-Pati
formalism [54, 55, 56, 44] uses a direct integration of the relaxed Einstein equa-
tions. These formalisms were used to compute increasingly accurate estimates of
the gravitational waveforms emitted by inspiralling binaries. These estimates in-
clude both normal, near-zone generated post-Newtonian effects (at the 1PN [48],
2PN [57, 58, 54], and 3PN [59, 60] levels), and more subtle, wave-zone generated
(linear and non-linear) ‘tail effects’ [51, 61, 62, 53]. However, technical prob-
lems arose at the 3PN level. The representation of black holes by ‘delta-function’
sources causes the appearance of dangerously divergent integrals in the 3PN mul-
tipole moments. The use of Hadamard (partie finie) regularization did not allow
one to unambiguously compute the needed 3PN-accurate quadrupole moment.
Only the use of the (formally) diffeomorphism-invariant dimensional regular-

ization method allowed one to complete the 3PN-level gravitational-radiation
formalism [63].

The works mentioned in this Section (see [64] for a detailed account and more
references) finally lead to PN-expanded results for the motion and radiation of
binary black holes. For instance, the equations of motion are given in the form
(a = 1, 2; i = 1, 2, 3)

d2zi
a

dt2
= Ai cons

a +AiRR
a , (1)

where
Acons = A0 + c−2A2 + c−4A4 + c−6A6 , (2)

denotes the ‘conservative’ 3PN-accurate terms, while

ARR = c−5A5 + c−7A7 , (3)

denotes the time-asymmetric contibutions, linked to ‘radiation reaction’.

On the other hand, if we consider for simplicity the inspiralling motion of
a quasi-circular binary system, the essential quantity describing the emitted
gravitational waveform is the phase φ of the quadrupolar gravitational wave
amplitude h(t) ≃ a(t) cos(φ(t) + δ). PN theory allows one to derive several
different functional expressions for the gravitational wave phase φ, as a function
either of time or of the instantaneous frequency. For instance, as a function
of time, φ admits the following explicit expansion in powers of θ ≡ νc3(tc −
t)/5GM (where tc denotes a formal ‘time of coalescence’, M ≡ m1 + m2 and
ν ≡ m1m2/M

2)

φ(t) = φc − ν−1 θ5/8

(

1 +
7
∑

n=2

(an + a′n ln θ) θ−n/8

)

, (4)

with some numerical coefficients an, a
′
n which depend only on the dimensionless

(symmetric) mass ratio ν ≡ m1m2/M
2. The derivation of the 3.5PN-accurate
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expansion (4) uses both the 3PN-accurate conservative acceleration (2) and a
3.5PN extension of the (fractionally) 1PN-accurate radiation reaction acceler-
ation (3) obtained by assuming a balance between the energy of the binary
system and the gravitational-wave energy flux at infinity (see, e.g., [64]).

3 Conservative dynamics of binary black holes:

the Effective One Body approach

The PN-expanded results briefly reviewed in the previous Section are expected
to yield accurate descriptions of the motion and radiation of binary black holes
only during their early inspiralling stage, i.e. as long as the PN expansion pa-
rameter γe = GM/c2R (where R is the distance between the two black holes)
stays significantly smaller than the value ∼ 1

6 where the orbital motion is ex-
pected to become dynamically unstable (‘last stable circular orbit’ and begin-
ning of a ‘plunge’ leading to the merger of the two black holes). One needs a
better description of the motion and radiation to describe the late inspiral (say
γe & 1

12 ), as well as the subsequent plunge and merger. One possible strat-
egy for having a complete description of the motion and radiation of binary
black holes, covering all the stages (inspiral, plunge, merger, ring-down), would
then be to try to ‘stitch together’ PN-expanded analytical results describing the
early inspiral phase with 3d numerical results describing the end of the inspi-
ral, the plunge, the merger and the ring-down of the final black hole, see, e.g.,
Refs. [65, 20].

However, we wish to argue that the EOB approach makes a better use of all
the analytical information contained in the PN-expanded results (1)-(3). The
basic claim (first made in [1, 2]) is that the use of suitable resummation methods

should allow one to describe, by analytical tools, a sufficiently accurate approx-
imation of the entire waveform, from inspiral to ring-down, including the non-
perturbative plunge and merger phases. To reach such a goal, one needs to make
use of several tools: (i) resummation methods, (ii) exploitation of the flexibility
of analytical approaches, (iii) extraction of the non-perturbative information
contained in various numerical simulations, (iv) qualitative understanding of
the basic physical features which determine the waveform.

Let us start by discussing the first tool used in the EOB approach: the
systematic use of resummation methods. Two such methods have been employed
(and combined), and some evidence has been given that they do significantly
improve the convergence properties of PN expansions. The first method is the
use of Padé approximants. It has been shown in Ref. [32] that near-diagonal
Padé approximants of the radiation reaction force3 F seemed to provide a good

3We henceforth denote by F the Hamiltonian version of the radiation reaction term ARR,
Eq. (3), in the (PN-expanded) equations of motion. It can be heuristically computed up to
(absolute) 5.5PN [59, 66, 63] and even 6PN [67] order by assuming that the energy radiated
in gravitational waves at infinity is balanced by a loss of the dynamical energy of the binary
system.
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representation of F down to the last stable orbit (which is expected to occur
when R ∼ 6GM/c2, i.e. when γe ≃ 1

6 ). The second method is a novel approach
to the dynamics of compact binaries, which constitutes the core of the Effective
One Body (EOB) method.

For simplicity of exposition, let us first explain the EOB method at the
2PN level. The starting point of the method is the 2PN-accurate Hamilto-
nian describing (in Arnowitt-Deser-Misner-type coordinates) the conservative,
or time symmetric, part of the equations of motion (1) (i.e. the truncation
Acons = A0 + c−2A2 + c−4A4 of Eq. (2)) say H2PN(q1 − q2,p1,p2). By going
to the center of mass of the system (p1 + p2 = 0), one obtains a PN-expanded
Hamiltonian describing the relative motion, q = q1 − q2, p = p1 = −p2:

Hrelative
2PN (q,p) = H0(q,p) +

1

c2
H2(q,p) +

1

c4
H4(q,p) , (5)

where H0(q,p) = 1
2µ p2 + GMµ

|q| (with M ≡ m1 + m2 and µ = m1m2/M)

corresponds to the Newtonian approximation to the relative motion, while H2

describes 1PN corrections and H4 2PN ones. It is well known that, at the New-
tonian approximation, H0(q,p) can be thought of as describing a ‘test particle’
of mass µ orbiting around an ‘external mass’ GM . The EOB approach is a gen-

eral relativistic generalization of this fact. It consists in looking for an ‘external
spacetime geometry’ gext

µν (xλ;GM) such that the geodesic dynamics of a ‘test

particle’ of mass µ within gext
µν (xλ, GM) is equivalent (when expanded in powers

of 1/c2) to the original, relative PN-expanded dynamics (5).

Let us explain the idea, proposed in [1], for establishing a ‘dictionary’ be-
tween the real relative-motion dynamics, (5), and the dynamics of an ‘effective’
particle of mass µ moving in gext

µν (xλ, GM). The idea consists in ‘thinking quan-
tum mechanically’4. Instead of thinking in terms of a classical Hamiltonian,
H(q,p) (such as Hrelative

2PN , Eq. (5)), and of its classical bound orbits, we can
think in terms of the quantized energy levels E(n, ℓ) of the quantum bound
states of the Hamiltonian operator H(q̂, p̂). These energy levels will depend on
two (integer valued) quantum numbers n and ℓ. Here (for a spherically sym-
metric interaction, as appropriate to Hrelative), ℓ parametrizes the total orbital
angular momentum (L2 = ℓ(ℓ + 1) ~

2), while n represents the ‘principal quan-
tum number’ n = ℓ + nr + 1, where nr (the ‘radial quantum number’) denotes
the number of nodes in the radial wave function. The third ‘magnetic quantum
number’ m (with −ℓ ≤ m ≤ ℓ) does not enter the energy levels because of the
spherical symmetry of the two-body interaction (in the center of of mass frame).
For instance, a non-relativistic Coulomb (or Newton!) interaction

H0 =
1

2µ
p2 +

GMµ

|q| (6)

4This is related to an idea emphasized many times by John Archibald Wheeler: quantum
mechanics can often help us in going to the essence of classical mechanics.
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gives rise to the well-known result

E0(n, ℓ) = −1

2
µ

(

GMµ

n ~

)2

, (7)

which depends only on n (this is the famous Coulomb degeneracy). When
considering the PN corrections to H0, as in Eq. (5), one gets a more complicated
expression of the form

Erelative
2PN (n, ℓ) = −1

2
µ
α2

n2

[

1 +
α2

c2

(c11
nℓ

+
c20
n2

)

+
α4

c4

( c13
nℓ3

+
c22
n2ℓ2

+
c31
n3ℓ

+
c40
n4

)

]

, (8)

where we have set α ≡ GMµ/~ = Gm1m2/~, and where we consider, for
simplicity, the (quasi-classical) limit where n and ℓ are large numbers. The
2PN-accurate result (8) had been derived by Damour and Schäfer [68] as early
as 1988. The dimensionless coefficients cpq are functions of the symmetric mass
ratio ν ≡ µ/M , for instance c40 = 1

8 (145−15ν+ν2). In classical mechanics (i.e.
for large n and ℓ), it is called the ‘Delaunay Hamiltonian’, i.e. the Hamiltonian
expressed in terms of the action variables5 J = ℓ~ = 1

2π

∮

pϕ dϕ, and N = n~ =
Ir + J , with Ir = 1

2π

∮

pr dr.

The energy levels (8) encode, in a gauge-invariant way, the 2PN-accurate
relative dynamics of a ‘real’ binary. Let us now consider an auxiliary problem:
the ‘effective’ dynamics of one body, of mass µ, following a geodesic in some
‘external’ (spherically symmetric) metric6

gext
µν dx

µ dxν = −A(R) c2 dT 2 +B(R) dR2 +R2(dθ2 + sin2 θ dϕ2) . (9)

Here, the a priori unknown metric functions A(R) and B(R) will be constructed
in the form of an expansion in GM/c2R:

A(R) = 1 + a1
GM

c2R
+ a2

(

GM

c2R

)2

+ a3

(

GM

c2R

)3

+ · · · ;

B(R) = 1 + b1
GM

c2R
+ b2

(

GM

c2R

)2

+ · · · , (10)

where the dimensionless coefficients an, bn depend on ν. From the Newtonian
limit, it is clear that we should set a1 = −2. By solving (by separation of
variables) the ‘effective’ Hamilton-Jacobi equation

gµν
eff

∂Seff

∂xµ

∂Seff

∂xν
+ µ2c2 = 0 ,

5We consider, for simplicity, ‘equatorial’ motions with m = ℓ, i.e., classically, θ = π

2
.

6It is convenient to write the ‘external metric’ in Schwarzschild-like coordinates. Note that
the external radial coordinate R differs from the two-body ADM-coordinate relative distance
RADM = |q|. The transformation between the two coordinate systems has been determined
in Refs. [1, 3].
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Seff = −Eeff t+ Jeff ϕ+ Seff(R) , (11)

one can straightforwardly compute (in the quasi-classical, large quantum num-
bers limit) the Delaunay Hamiltonian Eeff(Neff , Jeff), with Neff = neff ~, Jeff =
ℓeff ~ (where Neff = Jeff + Ieff

R , with Ieff
R = 1

2π

∮

peff
R dR, P eff

R = ∂Seff(R)/dR).
This yields a result of the form

Eeff(neff , ℓeff) = µc2 − 1

2
µ
α2

n2
eff

[

1 +
α2

c2

(

ceff11
neffℓeff

+
ceff20
n2

eff

)

(12)

+
α4

c4

(

ceff13
neffℓ3eff

+
ceff22

n2
effℓ

2
eff

+
ceff31

n3
effℓeff

+
ceff40
n4

eff

)]

,

where the dimensionless coefficients ceffpq are now functions of the unknown co-
efficients an, bn entering the looked for ‘external’ metric coefficients (10).

At this stage, one needs (as in the famous AdS/CFT correspondence) to
define a ‘dictionary’ between the real (relative) two-body dynamics, summarized
in Eq. (8), and the effective one-body one, summarized in Eq. (12). As, on both
sides, quantum mechanics tells us that the action variables are quantized in
integers (Nreal = n~, Neff = neff~, etc.) it is most natural to identify n = neff

and ℓ = ℓeff . One then still needs a rule for relating the two different energies
Erelative

real and Eeff . Ref. [1] proposed to look for a general map between the
real energy levels and the effective ones (which, as seen when comparing (8)
and (12), cannot be directly identified because they do not include the same
rest-mass contribution7), namely

Eeff

µc2
−1 = f

(

Erelative
real

µc2

)

=
Erelative

real

µc2

(

1 + α1
Erelative

real

µc2
+ α2

(

Erelative
real

µc2

)2

+ · · ·
)

.

(13)
The ‘correspondence’ between the real and effective energy levels is illustrated
in Fig. 1.

Finally, identifying Eeff(n, ℓ)/µc2 to f(Erelative
real /µc2) yields six equations, re-

lating the six coefficients ceffpq (a2, a3; b1, b2) to the six cpq(ν) and to the two
energy coefficients α1 and α2. It is natural to set b1 = +2 (so that the lin-
earized effective metric coincides with the linearized Schwarzschild metric with
mass M = m1 +m2). One then finds that there exists a unique solution for the
remaining five unknown coefficients a2, a3, b2, α1 and α2. This solution is very
simple:

a2 = 0 , a3 = 2ν , b2 = 4 − 6ν , α1 =
ν

2
, α2 = 0 . (14)

Note, in particular, that the map between the two energies is simply

Eeff

µc2
= 1 +

Erelative
real

µc2

(

1 +
ν

2

Erelative
real

µc2

)

=
s−m2

1 c
4 −m2

2 c
4

2m1m2 c4
(15)

7Indeed Etotal

real
= Mc2 + Erelative

real
= Mc2 + Newtonian terms + 1PN/c2 + · · · , while

Eeffective = µc2 + N + 1PN/c2 + · · · .
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Figure 1: Sketch of the correspondence between the quantized energy levels of
the real and effective conservative dynamics. n denotes the ‘principal quantum
number’ (n = nr + ℓ+1, with nr = 0, 1, . . . denoting the number of nodes in the
radial function), while ℓ denotes the (relative) orbital angular momentum (L2 =
ℓ(ℓ+1) ~

2). Though the EOB method is purely classical, it is conceptually useful
to think in terms of the underlying (Bohr-Sommerfeld) quantization conditions
of the action variables IR and J to motivate the identification between n and ℓ
in the two dynamics.

where s = (Etot
real)

2 ≡ (Mc2 + Erelative
real )2 is Mandelstam’s invariant. Note also

that, at 2PN accuracy, the crucial ‘gext
00 ’ metric coefficient A(R) (which fully

encodes the energetics of circular orbits) is given by the remarkably simple PN
expansion

A2PN(R) = 1 − 2u+ 2 ν u3 , (16)

where u ≡ GM/c2R and ν ≡ µ/M ≡ m1m2/(m1 +m2)
2.

The dimensionless parameter ν ≡ µ/M varies between 0 (in the test mass
limit m1 ≪ m2) and 1

4 (in the equal-mass case m1 = m2). When ν → 0,
Eq. (16) yields back, as expected, the well-known Schwarzschild time-time met-
ric coefficient −gSchw

00 = 1− 2u = 1− 2GM/c2R. One therefore sees in Eq. (16)
the rôle of ν as a deformation parameter connecting a well-known test-mass
result to a non trivial and new 2PN result. It is also to be noted that the
1PN EOB result A1PN(R) = 1−2u happens to be ν-independent, and therefore
identical to ASchw = 1− 2u. This is remarkable in view of the many non-trivial
ν-dependent terms in the 1PN relative dynamics. The physically real 1PN ν-
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dependence happens to be fully encoded in the function f(E) mapping the two
energy spectra given in Eq. (15) above.

Let us emphasize the remarkable simplicity of the 2PN result (16). The
2PN Hamiltonian (5) contains eleven rather complicated ν-dependent terms.
After transformation to the EOB format, the dynamical information contained
in these eleven coefficients gets compactified into the very simple additional
contribution + 2 ν u3 in A(R), together with an equally simple contribution in
the radial metric coefficient: (A(R)B(R))2PN = 1 − 6 ν u2. This compactifi-
cation process is even more drastic when one goes to the next (conservative)
post-Newtonian order: the 3PN level, i.e. additional terms of order O(1/c6) in
the Hamiltonian (5). As mentioned above, the complete obtention of the 3PN
dynamics has represented quite a theoretical challenge and the final, resulting
Hamiltonian is quite complicated. Even after going to the center of mass frame,
the 3PN additional contribution 1

c6 H6(q,p) to Eq. (5) introduces eleven new
complicated ν-dependent coefficients. After transformation to the EOB format
[3], these eleven new coefficients get ‘compactified’ into only three additional
terms: (i) an additional contribution to A(R), (ii) an additional contribution
to B(R), and (iii) a O(p4) modification of the ‘external’ geodesic Hamiltonian.
For instance, the crucial 3PN gext

00 metric coefficient becomes

A3PN(R) = 1 − 2u+ 2 ν u3 + a4 ν u
4 , (17)

where

a4 =
94

3
− 41

32
π2 ≃ 18.6879027 . (18)

Remarkably, it is found that the very simple 2PN energy map Eq. (15) does not
need to be modified at the 3PN level.

The fact that the 3PN coefficient a4 in the crucial ‘effective radial potential’
A3PN(R), Eq. (17), is rather large and positive indicates that the ν-dependent
nonlinear gravitational effects lead, for comparable masses (ν ∼ 1

4 ), to a last
stable (circular) orbit (LSO) which has a higher frequency and a larger binding
energy than what a naive scaling from the test-particle limit (ν → 0) would
suggest. Actually, the PN-expanded form (17) of A3PN(R) does not seem to
be a good representation of the (unknown) exact function AEOB(R) when the
(Schwarzschild-like) relative coordinate R becomes smaller than about 6GM/c2

(which is the radius of the LSO in the test-mass limit). It was therefore sug-
gested [3] to further resum8 A3PN(R) by replacing it by a suitable Padé (P )
approximant. For instance, the replacement of A3PN(R) by

A1
3(R) ≡ P 1

3 [A3PN(R)] =
1 + n1u

1 + d1u+ d2u2 + d3u3
(19)

ensures that the ν = 1
4 case is smoothly connected with the ν = 0 limit.

8The PN-expanded EOB building blocks A(R), B(R), . . . already represent a resummation

of the PN dynamics in the sense that they have compactified the many terms of the original
PN-expanded Hamiltonian within a very concise format. But one should not refrain to further
resum the EOB building blocks themselves, if this is physically motivated.
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The use of (19) was suggested before one had any (reliable) non-perturbative
information on the binding of close black hole binaries. Later, a comparison
with some ‘waveless’ numerical simulations of circular black hole binaries [69]
has given some evidence that (19) is physically adequate. In Refs. [4, 69] it was
also emphasized that, in principle, the comparison between numerical data and
EOB-based predictions should allow one to determine the effect of the unknown
higher PN contributions to Eq. (17). For instance, one can add a 4PN-like
term + a5 ν u

5 in Eq. (17), and then Padé the resulting radial function, say
A1

4 = P 1
4 [A3PN + a5 ν u

5]. Comparing the predictions of A1
4[a5] to numerical

data might then determine what is the physically preferred ‘effective’ value of
the unknown coefficient a5. This is an example of the useful flexibility [70]
of analytical approaches: the fact that one can tap numerically-based, non-
perturbative information to improve the EOB approach.

4 Description of radiation-reaction effects in the

Effective One Body approach

In the previous Section we have described how the EOB method encodes the
conservative part of the relative orbital dynamics into the dynamics of an ’ef-
fective’ particle. Let us now briefly discuss how to complete the EOB dynamics
by defining a resummed expression describing radiation reaction effects. One
is interested in circularized binaries, which have lost their initial eccentricity
under the influence of radiation reaction. For such systems, it is enough to
include a radiation reaction force in the pϕ equation of motion. More precisely,
we are using phase space variables r, pr, ϕ, pϕ associated to polar coordinates
(in the equatorial plane θ = π

2 ). Actually it is convenient to replace the radial
momentum pr by the momentum conjugate to the ‘tortoise’ radial coordinate
R∗ =

∫

dR(B/A)1/2, i.e. PR∗
= (A/B)1/2 PR. The real EOB Hamiltonian is

obtained by first solving Eq. (15) to get Etotal
real =

√
s in terms of Eeff , and then

by solving the effective Hamiltonian-Jacobi equation9 to get Eeff in terms of the
effective phase space coordinates qeff and peff . The result is given by two nested
square roots (we henceforth set c = 1):

ĤEOB(r, pr∗
, ϕ) =

Hreal
EOB

M
=

√

1 + 2ν (Ĥeff − 1) , (20)

where

Ĥeff =

√

p2
r∗

+A(r)

(

1 +
p2

ϕ

r2
+ z3

p4
r∗

r2

)

, (21)

with z3 = 2ν (4− 3ν). Here, we are using suitably rescaled dimensionless (effec-
tive) variables: r = R/GM , pr∗

= PR∗
/µ, pϕ = Pϕ/µGM , as well as a rescaled

9Completed by the O(p4) terms that must be introduced at 3PN.
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time t = T/GM . This leads to equations of motion of the form

dr

dt
=

(

A

B

)1/2
∂ ĤEOB

∂ pr∗

,

dpr∗

dt
= −

(

A

B

)1/2
∂ ĤEOB

∂ r
,

Ω ≡ dϕ

dt
=
∂ ĤEOB

∂ pϕ
,

dpϕ

dt
= F̂ϕ . (22)

As explained above the EOB metric function A(r) is defined by Padé resumming
the Taylor-expanded result (10) obtained from the matching between the real
and effective energy levels (one uses a similar Padé resumming for B(r), or
rather for D(r) ≡ A(r)B(r)). One similarly needs to resum the ϕ component
of the radiation reaction which has been introduced on the r.h.s. of the last
equation (22). During the quasi-circular inspiral F̂ϕ is known (from the PN
work mentioned in Section 2 above) in the form of a Taylor expansion of the
form

F̂Taylor
ϕ = −32

5
ν Ω5 r4ω F̂

Taylor(vϕ) , (23)

where vϕ ≡ Ω rω, rω ≡ r ψ1/3 (with ψ defined as in Eq. (22) of [71]), and

F̂Taylor(v) = 1 +A2(ν) v
2 +A3(ν) v

3 +A4(ν) v
4 +A5(ν) v

5

+A6(ν, log v) v6 +A7(ν) v
7 +A8(ν = 0, log v) v8 , (24)

where we have added to the known 3.5PN-accurate comparable-mass result the
small-mass-ratio 4PN contribution [72].

Following [32], one resums F̂Taylor by using the following Padé resummation
approach. First, one chooses a certain number vpole which is intended to repre-
sent the value of vϕ at which the exact angular momentum flux would become

infinite if one were to formally analytically continue F̂ϕ along unstable circular
orbits below the Last Stable Orbit (LSO): then, given vpole, one defines the

resummed F̂ (vϕ) as

F̂ resummed(vϕ) =

(

1 − vϕ

vpole

)−1

P 4
4

[(

1 − vϕ

vpole

)

F̂Taylor(vϕ)

]

, (25)

where P 4
4 denotes a (4, 4) Padé approximant. It has recently been shown [24]

that the flexibility in the choice of vpole could be advantageously used to get
a close agreement with NR data. The quality of the agreement with NR data
obtained by such a ‘flexed’ Padé resummation is illustrated (in the small mass-
ratio limit) in Fig. 2.
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Figure 2: This figure illustrates how the Padé resummation of the (Newton-
normalized) 3PN-expanded angular momentum flux F̂Taylor(v) = F (v)/FN (v)
nicely agrees with the exact, numerical flux when using a suitably ‘flexed’ value
of vpole. The solid curve is the exact, numerical flux [76]. The empty circles
denote the (3, 3) Padé resummation using vpole = 0.53. The dashed curve, below
the other two, denote the (3,3) Padé resummation using the value vpole = 1/

√
3,

as originally suggested [32].

Let us note that the EOB method is not restricted to planar motions. In
particular, the entire method has been extended to the case of circularized
motions of spinning black holes [4, 5, 75]. In this case, one must work with
more phase space variables, q, p, S1 and S2, and include spin effects in the
radiation reaction.

5 Effective One Body waveforms

To end this brief review, let us sketch the definition of accurate waveforms
within the EOB approach. The construction of EOB waveforms is based on
several separate inputs:

• high-accuracy, PN-expanded inspiralling waveforms as basic inputs (see
references above);

• a specific resummation of the inspiral-plus-plunge waveform hinsplunge(t)
(which includes the resummation of an infinite number of ‘leading log-
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arithms’ entering the Multipolar-post-Minkowskian expansion of tail ef-
fects, the resummation of the 5PN-accurate10 ‘non-tail’ ℓ = 2, m = 2
waveform11, and the parametrization of some non-quasi-circular effects)
[23, 24]:

(

Rc2

GM

)

hinsplunge
22 (t) = −8

√

π

5
ν(rω Ω)2 F22 f

NQC
22 e−2iΦ ; (26)

• a simplified representation of the transition between plunge and ring-down
by smoothly matching, on a (2p + 1)-toothed “comb” (tm − pδ, . . . , tm −
δ, tm, tm+δ, . . . , tm+pδ) centered around a matching time tm, the inspiral-
plus-plunge waveform to a ring-down waveform, made of the superposition
of several12 quasi-normal-mode complex frequencies,

(

Rc2

GM

)

hringdown
22 (t) =

∑

N

C+
N e−σ+

N
(t−tm) , (27)

with σ+
N = αN + i ωN , and where the label N refers to indices (ℓ, ℓ′,m, n),

with (ℓ,m) = (2, 2) being the Schwarzschild-background multipolarity of
the considered (metric) waveform hℓm, with n = 0, 1, 2 . . . being the ‘over-
tone number’ of the considered Kerr-background Quasi-Normal-Mode, and
ℓ′ the degree of its associated spheroidal harmonics Sℓ′m(aσ, θ). As dis-
cussed in [2] and [23] the physics of the transition between plunge and ring-
down (which was first understood in the classic work of Davis, Ruffini and
Tiomno [33]) suggests to choose as matching time tm, in the comparable-
mass case, the EOB time when the EOB orbital frequency Ω(t) reaches
its maximum value.

Here, we have been describing the 3+2-PN-accurate resummed EOB wave-
form introduced in [23, 24]. A less accurate, restricted (0-PN) EOB waveform
(together with a simplified matching procedure; δ → 0) has been used by Buo-
nanno and collaborators [21].

Finally, one defines a complete, quasi-analytical EOB waveform (covering
the full process from inspiral to ring-down) as:

hEOB
22 (t) = θ(tm − t)hinsplunge

22 (t) + θ(t− tm)hringdown
22 (t) , (28)

where θ(t) denotes Heaviside’s step function.

An example of this complete EOB waveform is represented in Fig. 3.

10The 3PN-accurate part of the ‘non-tail’ waveform is known in the comparable-mass case
ν 6= 0. The 4PN and 5PN pieces are only known in the test-mass limit ν → 0 [72, 73].

11See [74] for an independent derivation of the non-resummed 3PN-accurate ℓ = 2, m = 2
waveform.

12Refs. [23, 25] use p = 2, i.e. a 5-teethed comb, and, correspondingly, 5 positive-frequency
Kerr Quasi-Normal Modes.
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Figure 3: This figure illustrates a complete resummed EOB quadrupolar (ℓ = 2,
m = 2) waveform (28) (using a5 = 20, āRR = 30 and a suitably flexed vpole),
with, about, 29 GW cycles of inspiral, ∼ 1 GW cycle during plunge, and ∼ 4
GW cycles of ring-down. Ref. [24] has shown that the inspiral part of the EOB
waveform agreed with the Caltech-Cornell NR data [17] within ±0.001 GW
cycles, while Ref. [25] has shown that the late-inspiral-plunge-ringdown part
of the EOB waveform agrees with an Albert Einstein Institute NR waveform
within ±0.005 GW cycles.

Recent comparisons between EOB waveforms and full, 3-dimensional NR
waveforms have exhibited an excellent level of agreement. After a prelimi-
nary comparison done in [19], Buonanno et al. [21] compared restricted EOB
waveforms to NR waveforms computed by the NASA-Goddard group. In the
equal-mass case (ν = 1/4), they found that the dephasing between (restricted)
EOB and NR waveforms (covering late inspiral, merger and ring-down) stayed
within ±0.030 GW cycles over 14 GW cycles. In the case of a mass ratio 4 : 1
(ν = 0.16), the dephasing stayed within ±0.035 GW cycles over 9 GW cycles.
The resummed EOB waveform has been compared to two different (equal-mass)
NR waveforms: (i) in the comparison with the very accurate inspiralling simula-
tion of the Caltech-Cornell group [17] the dephasing stayed smaller than ±0.001
GW cycles over 30 GW cycles (and the amplitudes agreed at the ∼ 10−3 level)
[24]; (ii) in the comparison with a late-inspiral-merger-ringdown NR waveform
computed by the Albert Einstein Institute group, the dephasing stayed smaller
than ±0.005 GW cycles over 12 GW cycles. See Ref. [77] for another EOB/NR
comparison. All these comparisons have used the natural flexibility of the EOB
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formalism [4, 70], i.e. the possibility to tune EOB parameters representing yet
uncalculated effects (such as a5 in A(r) or vpole).

We hope to have shown here the usefulness of the EOB formalism in ac-
curately describing the general relativistic motion and radiation of coalescing
black hole binaries.
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