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A Hamiltonian formulation is given for the gravitational dynamics of two spinning compact bodies
to next-to-leading order (G/c* and G?/c*) in the spin-orbit interaction. We use a novel approach
(valid to linear order in the spins), which starts from the second-post-Newtonian metric (in ADM
coordinates) generated by two spinless bodies, and computes the next-to-leading order precession, in
this metric, of suitably redefined “constant-magnitude” 3-dimensional spin vectors S1, S3. We prove
the Poincaré invariance of our Hamiltonian by explicitly constructing ten phase-space generators
realizing the Poincaré algebra. A remarkable feature of our approach is that it allows one to derive
the orbital equations of motion of spinning binaries to next-to-leading order in spin-orbit coupling
without having to solve Einstein’s field equations with a spin-dependent stress tensor. We show
that our Hamiltonian (orbital and spin) dynamics is equivalent to the dynamics recently obtained
by Faye, Blanchet, and Buonanno, by solving Einstein’s equations in harmonic coordinates.

PACS numbers: 04.25.-g, 04.25.Nx

I. INTRODUCTION

In view of the needs of upcoming gravitational-wave observations, it is crucial to be able to describe in detail the
dynamics of spinning compact binaries. We think that this aim will be fullfilled by combining the knowledge acquired
by analytical techniques with that obtained by numerical ones. The present paper is devoted to a new, Hamiltonian
analytical treatment of the general relativistic dynamics of spinning binaries.

The dynamics of spinning bodies in general relativity is a rather complicated problem which has been the subject of
many works over many years (starting from the pioneering contributions of Mathisson [1], Papapetrou |2], Pirani |3],
Tulczyjew [4], and others). This paper focusses on (gravitational) spin-orbit effects, i.e. dynamical effects which are
linear in the spins of a binary system. The spin-orbit interaction can be analytically obtained as a post-Newtonian
(PN) expansion. The leading-order contribution of this expansion is proportional to G'/c?, while the next-to-leading
order one contains two sorts of terms: G/c* and G?/c* (here G' denotes Newton’s gravitational constant and c the
speed of light). The first complete derivation of leading-order (LO) spin-orbit effects in comparable-mass binary
systems is due to Barker and O’Connell [, []. These authors derived the spin-orbit interaction by considering the
quantum scattering amplitude of two spin-% particles. This curious fact prompted several authors to give purely
classical derivations of LO spin-orbit effects (see, e.g., Refs. |1, 8, [9]).

The next-to-leading order (NLO) spin-orbit interaction was analytically tackled only over the last few years. After a
first incomplete attack due to Tagoshi, Ohashi, and Owen |10], complete results were obtained very recently by Faye,
Blanchet, and Buonanno [11] and Blanchet, Buonanno, and Faye [12]. Reference |11] calculated the translational
equations of motion, as well as the rotational equations of motion for compact spinning binaries to NLO (as here,
only terms linear in spin were considered). For their derivation, Blanchet et al., working in harmonic coordinates,
introduced the pole-dipole energy-momentum tensor due to Tulczyjew [4] in the Einstein field equations. They also
used the general-relativistic-covariant spin supplementary condition (SSC) of Tulczyjew [4] or, equivalently in the
linear-in-spin approximation, of Pirani [3].
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The new derivation of NLO spin-orbit interactions in the present paper is based on a novel approach, and is totally
independent from the results of Refs. |11, [12]. At the end, we shall be able to connect our results to those of |11, 12],
thereby giving us confidence in the correctness of both investigations. We do not use Tulczyjew’s pole-dipole energy-
momentum tensor. We do not either make use of the Papapetrou (or, more completely, Mathisson-Papapetrou-Pirani)
translational equations of motion. Our starting point consists of the second post-Newtonian (2PN) metric generated
by spinless point masses in ADM coordinates, say g2pnyo. The crux of our approach then consists in noting that (to
linear order in the spins) it is enough to compute the NLO spin precession equations in gspn), to derive the spin-
orbit NLO contribution in the Hamiltonian, say HSWJLO (x1,X2,P1, P2,S1,S2). Then, from HSI\CI)LO(xl, X2, P1, P2, S1, S2)
we can derive the NLO spin-dependent terms in the translational equations of motion (simply by using Hamilton’s
canonical evolution equations). Technically, we shall derive the spin precession equations by starting from the 4-
dimensional parallel transport equation for the spin 4-vector (with covariant spin supplementary condition), and then
by rewriting them in terms of a suitably defined 3-dimensional spin vector, having a constant Euclidean magnitude.
(This method is essentially that used in Ref. [7] at the LO.) We shall then check the Poincaré invariance of our
Hamiltonian by explicitly constructing ten phase-space generators realizing the Poincaré algebra (similarly to the
proof of the Poincaré invariance of the 3PN orbital Hamiltonian given in [13]). After our construction, we shall give
the relation with the results obtained in Refs. [11, 12] in the form of explicit transformation formulae.

We leave to a sequent paper a discussion of the physical consequences of our Hamiltonian formulation, and notably
its use for improving the description of spin effects within the effective one-body approach [14].

II. 3-DIMENSIONAL EUCLIDEAN SPIN VECTOR IN CURVED SPACETIME, AND ITS ANGULAR
VELOCITY

When working to linear order in the spin, the translational and rotational equations of motion of a spinning particle
in curved space [1, 12,3, 4] (see also [15] and [11]) read®

Du, 1% .

" T2 g Saugun 1,5, (2.1)
DS,
=0 2.2
O, (22)
where u* is the normalized 4-velocity of the spinning particle, u#u, = —1, m its conserved mass, and Sk its 4-

dimensional spin vector; in addition, 7 denotes the proper time parameter, dz*/dr = cu*, D the 4-dimensional

covariant derivative, R" | o the Riemann curvature tensor, and g the determinant of the 4-dimensional metric g, .
An important feature of our approach is that we shall not need to consider the translational equations of motion

@I). It will be enough to consider the rotational ones [22). One immediate consequence of ([Z2)) is that the

4-dimensional length of S* is preserved along the world line
g"'5,5, = 5%, s> = const, (2.3)

where g"” g, » = 05. The constant scalar s measures the proper magnitude of the spin. The equations (1)) and (Z2)),
to linear order in spin, are compatible with the covariant spin supplementary condition (SSC)

S,ut = 0. (2.4)

At the same approximation, this (Pirani [3]) SSC is equivalent to the Tulczyjew [4] one S*pk™ = 0, where pii™ =
meu,, + O(s?) is the kinematical momentum (which differs from the canonical momentum we shall use below), and
where S# is the antisymmetric spin tensor (see, e.g., [11]).

More explicitly, Eq. (2.2 reads, when expressed in terms of the coordinate time ¢,

BTV, 80°, (2.5)
1 In this paper, Greek indices run over the numbers 0,1,2,3, Latin indices over 1,2,3, e**®? is the completely antisymmetric (flat

spacetime) Levi-Civita symbol with €123 = 1. Note that Ref. [15] uses an opposite sign convention for B which leads to an
opposite sign on the right-hand-side of (21J).



where v* = dz* /dt = u*/u® = (1,v%) and 'V, are the Christoffel symbols.
In addition, we can use Eq. (Z4) to compute the covariant time component of the spin vector in terms of its
(covariant) spatial components:

SO = —gi’l)i. (26)

Substituting this result into Eq. (23)) one finds that the constancy of the 4-dimensional spin magnitude takes the
3-dimensional form

GiiG,8; = 2, (2.7)
where G¥ is the symmetric matrix:
GY = gV — gVl — g%yt 4 g"% 7. (2.8)
Now a technically very useful fact is that a positive-definite symmetric matrix such as the one just defined, G| admits
a unique positive-definite symmetric square root, say H*7 = H7* such that
G = H*H" (2.9)
This uniqueness result (in some given coordinate system) then naturally leads us to defining a constant-in-magnitude
3-dimensional Euclidean spin vector S; = S* as®
S; = HYS;, 8;S; =5 (2.10)

Upon further use of the spin supplementary condition (2.6]), the spatial covariant component of the rotational
equation of motion (Z3]) yields

ds; .. -
=VYS; 2.11
dt J ( )
where
Vi = c(l"jio + 90 = 10007 — I‘Oikvjvk>. (2.12)

Making use of Egs. (ZI0) and (ZTI)) one can now easily derive an evolution equation for the constant-magnitude
3-dimensional spin vector S; (dot means differentiation with respect to the coordinate time ¢):

Si=VYS;, VI=H*H YW 4+ HMYVHHETY. (2.13)

The constancy of the Euclidean magnitude of S; implies that the matrix V% determining the “rotational velocity” of
Si = S" is antisymmetric: V* = —V7* (a result which is easily checked to hold for the explicit expression of V*/ given
above). It is then convenient to “dualize” V™ and to replace it by the 3-dimensional Euclidean (pseudo-) vector

1 _
= —gaijkwk. (2.14)

With this notation the rotational equation of motion ([ZI3]) reads
Si =+ EiijjSk. (215)

In other words, we get a Newtonian looking spin precession equation S=QxS.

In summary, the angular velocity of rotation € of the constant-magnitude spin 3-vector (Z10) is directly computable
from the spacetime metric (and its Christoffel symbols) by using the explicit formulas (212), 213]), and 214). (For
the self-gravitating spinning particles we are considering, one will need, as usual, to regularize the self-interaction
terms hidden in the formal results written above. See below.) Note that £ depends, in general, both on the positions
and the velocities of all the particles in the system. Indeed, from the explicit formulas above, one sees that €2 depends
on the velocity of the considered spinning particle. Moreover, the metric and Christoffel symbols at the location of
some particle will depend on the positions and velocities of the other particles.

2 A slightly more geometrical way of phrasing this definition would consist in saying that, starting from a given coordinate system, we
are constructing a well-defined orthonormal “repére mobile” (or “vierbien”) along the worldline of a spinning particle, with respect to
which the covariant spin 4-vector has components (0, S?). By definition, the spatial components of the metric in this local orthonormal
frame take the standard Euclidean values d;;, so that we can trivially raise or lower indices on our spin 3-vector.



IIT. DERIVING THE SPIN-ORBIT INTERACTION HAMILTONIAN FROM THE ANGULAR
VELOCITY OF THE EUCLIDEAN SPIN 3-VECTOR

Let us now show how the knowledge of the just discussed spin angular velocity vector €2 allows one to derive the
spin-orbit interaction Hamiltonian Hy,, i.e. the part of the Hamiltonian which is linear in the spin variables.

Let us first recall that a basic result in Hamiltonian dynamics is Darboux’s theorem which says that any (non
singular) symplectic form w on an even-dimensional manifold can always be (locally) rewritten (after a suitable change
of phase-space coordinates) in the canonical form w = ) , dg? A dpa. When considering N (interacting) spinning
particles, the dimension of phase space is N(3 + 3 + 2) = 8N, because the description of each particle requires: 3
spatial coordinates, 3 momenta and 2 spin degrees of freedom, such as two angles 6, ¢ needed to parametrize the
direction of the (constant-magnitude) spin 3-vector S;. Darboux’s theorem then means, in this case, that it is always
possible to redefine phase-space coordinates such that the symplectic form takes the form

w= Z (qufl A dpg; + sqd(— cosby) A d(ba).

a

Here a = 1,..., N labels the various particles (with N = 2 in our case), while i = 1,2, 3 labels the spatial dimensions.
We have written w in the form it is known to take in special relativity |16, [17]. In the latter case (and, say for
simplicity, in the case of free particles), the spin-dependent term in w was shown to take (globally) the form indicated,
with s, denoting the magnitude of the conserved spin of the ath particle, in the sense of ([Z3]), and with 6, and ¢,
denoting the polar angles of the flat-space limit of the above-introduced constant-magnitude Euclidean spin vector
S¢, (@2I0). When considering the interacting case (i.e. turning on a non-zero value of G//c?), and when keeping, for
simplicity, only the terms linear in spin (so that one can expand the dynamics in powers of both G and s,), it is
easily checked (by a perturbation analysis®) that it is always possible to construct Darboux-type canonical coordinates
where the spin degrees of freedom are simply the polar angles (in a local orthonormal frame) of the above-introduced
constant-magnitude Euclidean spin vector S¢.*

Finally, we can transcribe this result in the language of Poisson brackets (instead of that of a symplectic form), by
stating that there exist phase-space variables x = (z%), p = (p%), and S = (S%) (with a = 1,..., N, and i = 1,2, 3),
where S¢ are, say, the constant-magnitude vectors (2.I0) such that the usual (Newtonian-like) Poisson brackets

{xi,pg’»} = 525;, {5, S]l?} = §%¢;;xS¢,  zero otherwise, (3.1)
apply to the case of a general-relativistically interacting sytem of N spinning particles.

Note, however, that this result is essentially kinematical, and has nearly no dynamical content. To describe the
dynamics of interacting spinning particles, we need to know the expression of the Hamiltonian in terms of the canonical
variables: H = H (X, Pa,Sa). As we work linearly in the spins, we look for an Hamiltonian of the general form:

H(Xavpavsa) = Ho(xavpa)""Hso(XaapaaSa)- (32)

Here, H, denotes the orbital part of H, while Hy, contains all the linear-in-spin terms, and can be called the “spin-
orbit part”. The orbital Hamiltonian H,, is explicitly known up to the 3PN order [13,[18]. Our aim here is to compute
the spin-orbit Hamiltonian Hg, to NLO. Because Hy, is, by definition, linear in the spins we can always write it in
the general form

Hso(xaapausa) = Zﬂa(xbupb) -Sa, (33)

where Q, = (%) depends on (all) the orbital degrees of freedom (xy, pp), but does not depend on the spins S;. The
scalar product in the Eq. (83)) is the usual Euclidean one.

In Eq. B3) Q, is a priori just a notation for the coefficient of S, in Hy,. But let us now show that it is equal to
the quantity computed in the previous section, i.e. the angular velocity with which the ath spin vector S, precesses.
Indeed, the general principles of Hamiltonian dynamics, together with the canonical Poisson brackets [B.I]) and the

form (B3]), yield
Sa = {Sas Hso(Xp, P, St)} = Qa (X, Pp) X S, (3.4)

3 Le. by considering general coordinate changes of the form ¢’ = ¢ 4+ O(s), p’ = p + O(s) and working linearly in the spins s.
4 As we shall discuss below, we can still modify S} by a rather general local rotation, but the important point is that our definition of
S, 2I0)), is a smooth deformation of the correct flat-spacetime limit.



The only difference between (B4 and the previous result (ZI5)) is that, in (34]), 2, is expressed in terms of canonical
positions and momenta, while in (ZI5]) Q it was computed in terms of (say ADM) coordinates and coordinate velocities.
Because we are working only to linear order in the spin, and because (as was explained above) the canonical phase-
space coordinates appearing in (3] and (34) differ from the usual ADM-type coordinates used to express the metric
[and thereby to compute the angular velocity Q,(x;PM, vAPM) by means of (Z12), (213), and @IH)] only by terms
proportional to the spins, it suffices to use the known |13, 18] spinless link between ADM momenta and ADM velocities
to compute (X, pp) from Qg (xfPM vAPM),

In the previous section we introduced a specific, well-defined “conserved” spin 3-vector S; to parametrize the two
degrees of freedom of a spinning particle. Our choice had the nice features of being universally associated to the
choice of a coordinate system, and of reducing to the choice made in the flat spacetime limit [17]. However, it was by
no means physically unique.

Let us now show that the freedom in the choice of conserved spin vector is simply a “gauge freedom” (local rotation
group) which does not change the physical results one can deduce from the Hamiltonian. Indeed, the condition
9;S; = s? leaves as ambiguity in the definition of the conserved spin variable S; a local 3-dimensional Euclidean
rotation S; — S}, with

S; = Ri;S;j, (3.5)
where R is an arbitrary rotation matrix. It is sufficient to consider the case of an infinitesimal rotation, say
Rij = di5 — 045, (3.6)
where 6;; is a small antisymmetric matrix. This leads to an infinitesimal change
0S =0 xS, (3.7)

where we introduced the dual vector € such that 6;; = ;0.

Let us show that such a change can be considered as being induced by an infinitesimal canonical transformation g
in the full phase space (x,p,S). (Canonical transformations are symmetries of Hamiltonian dynamics. In particular
they preserve the basic Poisson brackets written above.) We recall that such a canonical transformation acts on any
phase-space function f according to

5f ={fg} (3.8)
It is then easily checked that a transformation of the form
g(X, P, S) = 0(X7 p) -S (39)
transforms the spin vector according to
0S={S,9} =0 xS, (3.10)

which exactly reproduces the effect of an infinitesimal local rotation written above. However, we have learned that
such a local rotation must be accompanied by a corresponding transformation of the orbital degrees of freedom (x, p)
of the form: 0x = {x,¢}, 0p = {p,g}. Then, under the simultaneous changes of x,p,S induced by the canonical
transformation ¢g (and the corresponding change of the spin angular velocity €' ~ Q + df/dt) one finds that the
numerical value (evaluated at corresponding phase-space points) of the Hamiltonian is invariant.

We have therefore shown that the arbitrariness in the “rotational state” of the conserved spin is simply (as expected)
a “gauge symmetry” (under a local SO(3) group).

IV. DERIVATION OF THE SPIN-ORBIT HAMILTONIAN IN ADM COORDINATES

Let us now sketch the computation of the NLO angular velocity €2; in ADM coordinates [which will then give us
the NLO spin-orbit Hamiltonian according to Eq. B.3))].
As usual we split the four-dimensional metric g, into three-dimensional objects («, 5;,7:;), where

00)—1/2

a=(-yg Bi = gois  Vij = Yij- (4.1)

One can show, using the definitions 3° = v* 3;, v~ = d;, that the following exact formulas hold:

;= = (Oé,z' + Kijﬁj)u (4.2a)

(0%



1
roij = EK”" (4.2b)
i L ik Lok
IMjo = 37 kg0 ﬁ o+ 7 "(Brj — Bik) — Eﬁ B Krj, (4.2¢c)
I = T, — Eﬁinka (4.2d)

where Kj;; is the extrinsic curvature of the constant time slice. Note that, for convenience, we use the Kjj ~ + 7;;
sign convention (instead of the — 7;; convention used e.g. in Ref. [15]). In terms of the field momenta 7% it reads,

167G i
s A

where v = det(v;;). The Christoffel symbols related with the 3-metric 7;; are denoted by 3F§k. Let us also note

1
Kij = —%ﬂkl>ﬂkl7 (4.3)

(%‘Hjl 3

that the dimensionless coordinate velocity v? can be expressed in terms of the bare kinematical linear momenta

PP = meu;, in full generality, as follows

) a,yupbarc y
b= _ AR,
v= (m202 + ,yklpbarcpbarc)l/g Y ﬁ]' (4.4)

Note, however, that the latter result applies to the canonical momentum only modulo corrections proportional to the
spin.
We employ the ADMTT coordinate conditions |19]

1\* y
Yij = (1 + g(b) dij + h};T, =0, (4.5)
and recall that
7 =79 (4.6)

with 7 being of the order 1/¢° [20)].

Let us now expand all quantities in a post-Newtonian (PN) expansion. Here and below the subscript (n) indicates
the part of a quantity which is of the nth post-Newtonian order, i.e. which is proportional to (1/¢?)". For instance
we decompose:

Q; = Q(g)i + Q(4)i + 0(076). (4.7)

Here Q(2); G/c? is the well-known LO contribution |5, |7, 8, 9], while Q) x G/c* +G?/c* is the NLO contribution
that we wish to compute. These contributions are more explicitly given in terms of the “precession velocity” Vi of
the “coordinate spin vector” .S;, which entered Eq. (ZI1]). Inserting in the latter expressions the PN expansions of
the Christoffel symbols ([@2]) and employing Eqs. [@3)—(&8), we obtain the following more explicit formulas for the
3-vectors (zy; and 4y, from Eq. (7):

1 1
Qyifc= ik (5(3)j,k + (04(2),3* - §¢(2),j)vk), (4.8a)

1 1 1 1
Qayi/e = Fein (5<5>m + Bere,; — 32085k + 150292, — 5@, — kg’

; 1 | 17
+ (@) — @@ )"+ Tl v — Sa gl + Z?vkvlvl)- (4.8b)

At this point, it only remains to implement three technical steps: (i) to insert the explicit form of the 2PN-accurate
metric describing two spin-less particles in ADMTT coordinates (from [21] and [20]), (ii) to replace the velocities v* by
their 1PN-accurate expression in terms of the canonical momenta p;, and, finally, (iii) to regularize the self-interaction
terms that arise when evaluating Eqs. ([A3)]).

The explicit expressions for the metric functions entering Eqs. (£8) can be found e.g. in Appendix A of Ref. |20]

(where the functions ¢(ay, ¢4y, ﬁ'g), and h(4)” can be found) and in Ref. [21] (where the functions a(s), a(4) and
B3yi> B(s)yi are given).



“As for reexpressing the velocities in terms of momenta, it yields a further PN-expansion of the form vije =
vfl(l)/c + vfl(g)/c?’ + O(1/c%), where® Uq(1y I8 the coordinate velocity of the ath particle expressed in terms of the

canonical variables x, and p, at the Newtonian accuracy, i.e., U;(l) = pai/(mec), and 02(3) is the 1PN correction to
Dai/ (mec). The latter 1PN correction explicitly reads

: G(n12 'pz) : p% 3Gm2 G
(2 3
JCoup) (B Oy ) 19
Y1(3) 2¢37r19 2 2micd  miciris pra 2¢37r19 P2 (4.9)
the expression for ’Ué(g) can be obtained from the above by exchanging the particles’ labels.
The final step then consists in evaluating (note that the meaning of Qfl@) and Qfl( " is now slightly different because
of the re-expansion of velocities in a PN expansion)

; 1 1
a(2)/C = §€iijega <6(3)j,k + (a(z),j - §¢(2),j)05(1)), (4.10a)

; 1 1 1 1
Qo(ay/c = 5eijeReg, <f’<5>ayk tBerae.s — 59@P@5r + Eéf?(z)@mvfu) - §¢<4>,jv5<1> — By, V)

-
; 1 ) 10
k ~l k1 l l al) k1 l
+ ()5 — @) 2(2),j)Va(1) T T(3)Va(1)Va(1) — 5%2)&”2(1)%(1)%(1) T 17 Ya)Va)Va()

1
+ (0«2),3' - §¢<2>,j)v§<3>>, (4.10D)

where Reg, ( f (x)) indicates that one must regularize the limit x — x,. At the level at which we are working,
this regularization is not ambiguous and can, for instance, be simply performed by using Hadamard’s “partie finie”
regularization (as explained, e.g., in Appendix B of Ref. [20]). The final results we got read

G 3m2 )
Q = 5| =——nj3 X p1 — 2n313 X , 4.11a
1(2) CQT%2 (2m1 12 X P1 12 X P2 ( )
G? 11 m2 15
Q) =73 (( - 5 m2 — 5—2)1112 X p1+ (6m1 + _m2>n12 x P2>
iy 2 mq 2
n G _ 5map? _ 3(p1 - p2) n 3p3 _ 3(n12 - p1)(ni2 - p2) _ 3(nis - p2)? N X p
cr?, 8ms 4m? 4mymes 4m? 2mi1ma 12 !
(p1-P2) | 3(n2-p1)(ni2 - p2) 3(ni2-p1)  2(ni2-p2)
— . 4.11b
+ ( p— + p— njz X p2 + am? pp— P1 X P2 ( )

The expressions for 25(2) and €254 can be obtained from the above formulas by exchanging the particles’ labels.
From these results we can then explicitly write the spin-orbit Hamiltonian to leading and next-to-leading PN orders.
Indeed,

Hso(xaapaa Sa) = Z Qa(xbapb) S = Z (Qa(Q)(xbu Pb) + Qa(4) (Xbapb)) - Sa. (412)

a

More explicitly, the separate LO and NLO contributions in the PN expansion of the spin-orbit interaction term,

1 1 1
HSO(XGJ pa) S(l) = C_2 HSLE)O(Xa7pa7 S(l) + g HSI\CI)LO(XGJPGJ S(l) + O (C_6> Y (413)

5 Here and below a,b = 1,2 are the particles’ labels, so mq, Xq = (z%), and ps = (pa:) denotes respectively the mass parameter, the
position vector, and the linear momentum vector of the ath body; for a # b we also define rgp = Xa — Xp, Tap = |Tabl, Nab = Tab/Tab,
| - | stands here for the Euclidean length of a 3-vector.



read,
HYP(Xa,Par Sa) = ¢ Y Qa(2) (Xp, Pb) - S, (4.14a)

H3" (X4, Pa; Sa) = ¢* Z Qq4) (X6, Pp) * Sa- (4.14b)

Finally, note a remarkable feature of our Hamiltonian approach to spin-orbit effects: the sole computation of the
rotational velocity of the (“conserved”) spin vector (given by parallel transport in the 2PN-accurate metric of N
spinless bodies) determines the NLO spin-dependent terms in the translational equations of motion of N spinning
particles. Indeed, the sole knowledge of Q,(xp, py) yields that of the total spin-dependent Hamiltonian (3:2) with
B3), so that the general principles of Hamiltonian dynamics (with canonical Poisson brackets) yield

+8H(Xbapb7 Sb), P = _ OH(xb, Py, Sb) (4.15)
8pa 0xq

Xgq =
In view of the availability of algebraic manipulation programmes, there is no need to write down explicitly the trans-
lational equations of motion ([@TIH]), with NLO accuracy in spin-orbit terms (and 3PN accuracy in spin-independent
terms [13, [18]). We shall verify below that the Hamiltonian, ADM-coordinate translational equations of motion (415
are equivalent to the harmonic-coordinate ones recently derived in [11, [12] by a more complex calculation which
involved the explicit consideration of spin-dependent contributions in the metric.

V. POINCARE INVARIANCE

The general relativistic dynamics of an isolated N-body system should admit the full Poincaré group as a global
symmetry (because it is a symmetry which preserves asymptotic flatness). On the other hand, this symmetry is
not manifest in the Hamiltonian ADM approach to the N-body dynamics because it splits space and time, and uses
non-Lorentz covariant coordinate conditions. In a previous paper [13], treating non-spinning particles, the authors
showed how to bypass this technical mismatch: the basic idea is that, in the Hamiltonian formalism, the global
Poincaré symmetry is realized in phase-space in a non-linear manner. However, one can efficiently detect the presence
of this symmetry by proving the existence of ten phase-space generators H (X4, Pa, Sa), Pi(Xa, Pa,Sa), Ji(Xa, Pa, Sa),
Gi(Xa,Pa;Sa) (depending on all phase-space variables) whose Poisson brackets reproduce the standard Poincaré
algebra. In the case of non-spinning particles, Ref. [13] constructed the ten generators of the Poincaré group at the
3PN level of approximation. We shall show here how to extend this construction to the more involved case of a system
of spinning particles.

Let us first recall the explicit Poisson-bracket form of the Poincaré algebra that should be realized:

{PHP]}:Ou {HaH} :07 {JzaH}:Ou (518“)
{Ji, P} = eiji Pe,  {Ji, Jj} = €iji i, (5.1b)
{Ji, G} = €iji G, (5.1c)
{Gi,H} = P, (5.1d)
1
{Gi, Pj} = C_2H5ija (5.1e)
1
1Gi, Gy} = — 2 €ijk Jk- (5.1f)

The translation, P;, and rotation, J;, generators are simply realized as

B(Xaypavsa) = Zpah (523)

J’i(xavpav Sa) = Z (Eikf .IE Par + Sai)- (52b)

a



Note the very simple, additive, form of these generators, and, in particular, how our Hamiltonian “conserved spin”
variables appear as Newtonian-like (but relativistically correct) contributions.

As for the Hamiltonian H, we already know that (in our linear-in-spin approximation), it is a sum of an orbital
part, H,, and of the above-determined spin-orbit part, Hy,, Eqs. (£12), @I3), and @I4):

H(Xavpavsa) = Ho(xavpa)""Hso(XaapaaSa)- (53)

The orbital Hamiltonian H, (including the rest-mass contribution) is explicitly known up to the 3PN order [13, [18]:

1 1 1 1
HO(Xavpa) = Zmacz + HoN(Xaa pa) + 0_2 HolPN(Xaa pa) + 6_4 HOQPN(Xavpa) + 0_6 HoBPN(Xavpa) + O <C_8> . (54)

a

The most delicate generator to consider is the boost (or center-of-mass) vector G. It can be represented as a sum
of “orbital” and “spin-orbit” parts

G(Xaapavsa) = Go(xavpa) +Gso(xaapaasa)a (55)

where, as everywhere in this paper, we call “spin-orbit” the part which is linear in the spin variables. The orbital
part, G,, was explicitly determined up to the the 3PN order in Ref. [13]:

1 1 1 1
Go(Xg,Pa) = Zmaxa + 2 Go1PN(Xa; Pa) + o Go2pN(Xa, Pa) + p Go3pN(Xa, Pa) + O (C_g) . (5.6)
The spin-orbit part can be decomposed in leading-order (LO), next-to-leading-order (NLO), and further contributions:
Guof S,) = L @Log S.) + ~ @NLog S)+0 (= (5.7)
so\Xa;Pa;Da) = 2 so Xa;PasPa A Tso Xa;ParPa &6 ) .

The leading-order term in (5.7 is known from the special-relativistic limit (by replacing the special-relativistic energy
in the results of, e.g., Refs. [17, 124], by the rest-mass contribution)

S
GLO(xy, pa; Sa) = — 2 PL (1 9), (5.8)

2m1

where the operation “+(1 < 2)” denotes the addition to each displayed term of another one obtained by exchanging
the particles’ labels.

The real difficulty lies in constructing the NLO contribution to the boost generator (and in proving that it satisfies
the correct Poincaré algebra displayed above). We solved this problem by using (as in our previous work [13])
the method of undetermined coefficients. The most general form of GNXFC can a priori depend on eight unknown
dimensionless numerical coefficients g1, ..., gs:

+ g (H12 : Pz)

mi m2

NLO pi
G = 8—721?81 X p1+

Gm S x S x nio -
2(91 1 p1+g2 1 P2+<93( 12 Pl)

T12 mi ma

)n12 x 81

S’ ) S’ ) G S7 ) S7 )
+(g5( 1,M12 p1) +96( 1,M12 p2))n12> I mo (97( 1,112 p1) +98( 1,712 p2)>xl_|_(1<—>2)7 (5,9)

mq mo T%Q mia mao
where we have introduced the following notation for the Euclidean mixed product of 3-vectors: (V1,Va, V3) = V1-(Va X
V3) = e ViV3 V. Note that the coefficient of the first term on the right-hand-side is determined by considering
the special-relativistic limit |16, [17, 24]. We have also used some structural information coming from a conceivable
field-theory computation of G (say as the space integral of the 0i component of some effective stress-energy tensor).
Indeed, such a computation could be thought of in terms of some Feynman-like diagrammes, where the interaction
terms (i.e. those containing a power of G) would all be proportional to some basic “source” term involving either Sp
and mgy (connected by a propagator, and possibly some power of the velocities, v1 ~ p1/mq or vy ~ pa/ms), or similar
terms involving Ss and m;. The main point being that pure “self-interaction” terms (say proportional to S, and mq)
cannot appear.

Let us now consider the explicit Poincaré algebra requirements of Eqgs. (51a)-(5.1f). It is easily verified that the
generators P;, J;, H, and G;, in the forms given above, exactly satisfy the relations (5.1a)), (5.1b)), and (EId). We now
consider whether the center-of-mass vector G with the 2PN spin-orbit part given by Eq. (59) can satisfy the three
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relations (5.1d)—(5.1f). This requirement yields many equations that have to be satisfied by the unknown coefficients

g1,-.-,9s. We have first found that there exist unique values of the coefficients ¢i, ..., gg ensuring the fulfillment of
the sole relation (5.1d). These values are
5 3 1 1 3
= — = —— :0 = —— = —— :1 = — :—2, 5,10
g1 47 g2 27 g3 y 94 27 95 47 96 , g7 27 gs ( )

Then we have checked that the solution (B.I0) also guarantees the fulfillment of the remaining relations (1) and
EID.

In summary, we succeeded in proving the Poincaré invariance of the above-defined NLO spin-orbit interaction
[determined by Eqs. ({12), (@I3), and (AI4)] by explicitly constructing ten phase-space generators satisfying the
Poincaré algebra brackets of Eqs. (5.Ta)—(5.11).

VI. COMPARISON WITH HARMONIC-COORDINATE-BASED RESULTS

References [11, [12] recently computed, by means of two separate calculations and in harmonic coordinates, both
the NLO spin-dependent contributions in the translational equations of motion of two spinning particles, and the
corresponding NLO terms in the spin precessional equations of motion. In the present Section we shall prove that
our results are physically equivalent to the results of Refs. [11,12] by finding the explicit form of the transformation
that match the ADM variables used by us with the harmonic variables used in Refs. |11, [12]. Let us start by warning
the reader that in the whole paper |11] and in most of the paper |[12] Blanchet et al. chose to express their results
in terms of some “non-conserved” spin variables SPBF i.e. variables whose Euclidean magnitudes are not conserved
in time. It is only in Sec. VII of [12] that redefined spin variables with conserved Euclidean lengths, say S¢BBF are
introduced and used.

Our task here will be to exhibit the explicit transformation between the “ADM variables” (X4, Pa, Sa) used in our
work, and the “harmonic variables” (ya, Ve = ¥a, SSPBF) used in [11,112], and to prove that this transformation maps
the two sets of results into each other. (It is more convenient for us to exhibit the link with the “conserved” version
of the harmonic spin variable used by Blanchet et al. The relation between their two spin variables, SEB¥ and S¢BBF
is given in Eq. (7.4) of [12].)

We write the transformation of variables in the general form®

Ya(t) = Ya(xs(t), Po(t), Su(t)), (6.1a)
S5 () = Sa (x5 (t), Py (1), Se(1)).- (6.1b)

Let us first find the transformation 3, between spin variables. Section VII of Ref. |[12] gives (see Eq. (7.6) there)
the explicit result for the angular velocity vector QEBF of their conserved harmonic spin variable, yielding a spin
precessional equation of motion of the form

dse BBF

o — = QBBF » geBBF

. a=1,2. (6.2)

They give the NLO expression of 22BF in terms of the harmonic orbital coordinates (y,,vy). We have re-expressed
QBBF(y, v;) in terms of ADM coordinates and momenta, to 1PN accuracy (using the well-known link between the
two sets of variables”). We then compared the result with our results (@I1). We have found

QaB(Bz)F (Yo, Vo) = Qa(2)(Xb7Pb), (6.3a)
Q) =Q e 6.3b
a(1) (Ybs Vo) = Qq(4) (X, Pp) + et (6.3b)
where
G . . 9
0, = T _ (n12 p2)n12 X P1 + Mnlz X P2 — —P1 X P2 ). (64)
c*riz 4mq Mo 4my

6 Here, both sides refer to the same numerical value of their respective coordinate times.
7 We recall that harmonic and ADM coordinates coincide at 1PN, but that one must transform velocities into momenta by means of the
1PN transformation Eq. (£9). See [22] for the 3PN-accurate version of this transformation.
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From the results ([G3)—(64) it is easy to deduce that the two sets of spin precession equations of motion are physically
equivalent®, and that the two sets of spin variables are related as in the general transformation links written above
with a spin transformation 3, of the explicit form:

3o (Xb, Py, Sp) = S + 0a(xs, Pp) X Sq. (6.5)

In other words, our conserved spin variable differs from the conserved spin variable defined in Eq. (7.4) of [12] by a
small (time-dependent) rotation of angle 8,(xp, py). Such a difference was a priori to be expected because constant-
magnitude spin vectors are not uniquely defined. We have shown above that to each choice of coordinate system is
canonically associated a particular choice of local orthonormal frame (along the worldline of a spinning particle), and
thereby a particular choice of “conserved” spin 3-vector. We have investigated whether the conserved spin 3-vector
defined by Blanchet et al. does correspond to applying our general definition to the case of harmonic coordinates. The
answer is “no”. We found that if Blanchet et al. had used our general definition (2Z.I0]) in their harmonic coordinate
system, the angular velocity €2, that they would have obtained would differ from our ADM spin vector by a rotation
vector 0, differing from the result above by having the factor 9 replaced by 1 in the last term of Eq. (G4). There
is nothing surprising in such a difference as the spin re-definition used by Blanchet et al. was somewhat arbitrary.
Anyway, as already mentionned above physical results will not depend on such “gauge choices”.

Let us now turn to the determination of the transformation Y, between ADM and harmonic orbital degrees of
freedom. As usual we can decompose Y, into spin-independent, Y, and spin-dependent (and linear-in-spin), Y2°,
terms:

Yo (X, Pb, So) = Xa + Yq (X5, Pp) + Y5 (X0, Pos Sp), (6.6)
where the spin-dependent term is of the form
Y5 (x5, Pb, S6) = Yooy (X5, Pb, So) + Yoy (x5, D5, S0) + O(c ™). (6.7)

The spin-independent part of the transformation was explicitly given, up to the 3PN order, in Ref. [22]. The leading
order spin-dependent part has been known for many years (see, e.g., Ref. [23]), and equals

a2) (X6, Py, Sp) = ———- (6.8)

o)

We have determined the next-to-leading order spin-dependent part, YZ( ne by using again the method of undetermined

o)

coefficients. We have considered the most general template for YZ( n which depends (after using the special relativistic

limit to determine the 1/c¢* term which remains in the G — 0 limit, and structural information of the same type as
that explained above in the case of GSO)9 on 12 unknown coefficients. It reads

2
~ p7 Gmy 1 S1 X p1 S1 X p2
YSO as Mas Sa - _—S —_—
1(4)(X p ) 8cim? 1 X p1+ pr— <a1 - + az .
: ° S ) ) S ) )
N (ag (n12 - p1) vas (n12 pg))n12 < Sy 4 (a5( 1,112 p1) +CL6( 1,M12 p2)>n12>
mi ma mi ma
N 4G <b1 Ss X p1 by Ss X p2 n <b3 (n12 - p1) by (ni12 'p2)>nl2 « S,
C'T12 mi ma mi ma
So,n12, So,n12,
N (b5( 2,12, P1) +b6( 2,12 P2))n12>. (6.9)
mi mo

8 As a further check, we have also explicitly verified that the Hamiltonian time derivative (computed with our dynamics, namely
{SBBF H}) of the originally defined (non-conserved) spin vector SBBF of [11] coincides with the NLO spin precession law given
by Egs. (6.1)—(6.3) there. To do this calculation we defined the phase-space quantity SEBF (x;, py, Sp) by inserting Egs. 6.3), 64) into
Eq. (7.6) of |12].

9 More specifically we required that, say, m1Y3° be proportional (modulo some velocity-dependent factors involving vg ~ pa/mg) either
to m1S2 or to maSi.
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One can now think of two different ways of determining whether there exists a set of coefficients a1, ..., ag;b1,. .., bg
such that our translational Hamiltonian equations of motion (with NLO spin-dependent terms), Eq. (£I5), is phys-
ically equivalent to the corresponding translational harmonic equations of motion derived in [11]. (1) A first way
would consist of inserting the putative general transformation Y, (aq,...,as;b1,...,bs) directly into the translational
equations of motion derived in [11] (using the fact that we have already determined how their spin variables are linked
to ours), and to compare the result to the explicit form of our translational Hamiltonian equations of motion, Eq.
(@I3). This approach is, however, computationally heavy. (2) Therefore, we have instead used a simpler approach
consisting in comparing the ten conserved quantities derived in harmonic coordinates in Ref. [11], namely the energy
E(Ya,Va, SEBY), the total linear momentum P(y,, v,, SBBF), the total angular momentum J(y,, va, SEBF) ) and the
center-of-mass vector G(ya, Va, SCEF), with the ten phase-space Poincaré generators constructed above within our
Hamiltonian formalism. To do this comparison explicitly, we first need to perform two replacements: (i) to replace
the non-conserved spin variable SEBY used in [11] in terms of the conserved one SSBBF introduced in [12], thereby
obtaining new expressions E(ya, Va, SSEBY), P(ya, va, SCBBY), J(ya, Va, SSBBY), G(ya, va, SCEBY) for the ten con-
served quantities, and then (ii) to replace the harmonic-coordinate velocities v, = dy,/dt¢ in terms of Hamiltonian
time-derivatives, namely V, = {Y,, H}. Finally, the values of the coefficients a1,...,as and b1, ..., bs must fulfill
the equations

E(Ya(xb,P5,50), Va(%b, Pb; St), Za (X6, Dby Sb)) = H(Xa, Pa» Sa), (6.10a)
P (Yo (x5, Pb,S), Va(xb, Db, Sb), Ba (%6, Ps, Sp)) = me (6.10b)
J(Ya(Xb, Db, Sb), VX5, Pby St), Za (%5, 96, S6)) = Y _ (Xa X Pa + Sa), (6.10c)
G (Ya(xt, Pbs Sb); Va(xp, Db, Sp), Za (%, Po; Sb)) = G(Xa, Pas Sa)- (6.10d)

By considering the first three of these equations (i.e. by comparing the two expressions for the energy, the total linear
momentum, and the total angular momentum), we obtained a unique set of values for all the unknown coefficients
ay,...,ag;b1,...,bg. We then verified that these values satisfy also the fourth of Egs. (6I0) (thereby giving us
confidence in the correctness of our Hamiltonian, and providing many non-trivial checks of the previous results
11, 12]).

Our unique solution for the spin-dependent transformation of orbital coordinates YZ‘EQ) + YZ‘(’ 1) reads:

Sixpi Sixpif pi  Gm
Y305) (%o Dar Sa) + Y524 (Xa, Par Sa) = -
it o )+ Wi b ) 2c*mi cAm? \ 8mi - 12
G
DY E— (352 X p2 + 2(n12 - p2)ni2 X S + (Sz,nu,pQ)nu). (6.11)

Note that the first three terms on the right side of Eq. (@II) (i.e. the terms proportional to S;) have the same
structure as the exact special relativistic value |16, [17, 24] for the shift Y5° between the canonical’® orbital coordinate
x; and the usual Lorentz-covariant (harmonic) orbital coordinate y;, namely

S1 X p1

S AR 6.12
ml(m162+E1) ( )

yi=x1+

where Ey = /(m1c?)? + (p1c)? is the relativistic energy (including the rest-mass contribution). The p;-dependent
terms in the first three terms of Eq. (G.I1) correspond to the NLO expansion of the special-relativistic result, while the
additional G-dependent contribution can be roughly understood as a gravitational addition to the special-relativistic
energy F1 (though it does not have the correct coefficient to be really interpreted so simply).

By contrast, the terms proportional to So in Eq. (G.I1) do not have correspondants in the special-relativistic (i.e.
G — 0) limit. As was to be expected they vanish in the limit where the second body (of mass ms) is heavy and
fixed (p2/ma — 0). (Indeed, if we consider a non-spinning test particle, my, S; = 0, moving in the background of
a fixed, heavy spinning mass, ma, S2, the harmonic-coordinate geodesic action of m; will already yield a canonical

10 The classical canonical variables, here denoted X4, Pa,Sa, correspond, at the quantum level, to the so-called Pryce-Newton-Wigner
variables.
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Hamiltonian action.) We leave to future work a direct derivation of these terms from the perturbative construction
of canonical coordinates (of the type ¢ =y + O(s), p = p*° + O(s)) alluded to above.

Finally, as a further check on the algebra, we have also used the “direct” method (1) mentioned above (the first
method we could have used to determine the values of the coefficients a1, . .., as; b1, . . ., bg). More explicitly, we started
from the harmonic-coordinate translational equations of motion with NLO spin-orbit effects given in Egs. (5.3) of Ref.
[11]. We then replaced in these equations the non-conserved spin vector SEBF by its expression (as given in Eq. (7.4)
of [12]) in terms of their conserved spin vector S¢BBF. This yields 2PN-accurate translational equations of motion of
the form

dv,
dt

1
= A, (ys,vs) + 2 (A})P;N(yb, vy) + AL (v, v, SzBBF))
1
+ (A2 v) + AL (v, v, S5PPT)) + O(c). (6.13)

We then compared the right-hand-side of Eq. 6I3), let us denote it by A, = A.(ys, vi, SiEBF), to its direct
Hamiltonian recomputation by means of our Hamiltonian flow, i.e.

A, ={Va, H} = {{Y,, H},H}, (6.14)

together with the needed transformations (6.1)) (determined above) between harmonic and canonical variables. Again,
this verification worked perfectly and (together with the similar direct verification of the NLO spin precession equation
mentionned above) gives us confidence that both sets of results (harmonic and Hamiltonian) are correct.
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