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Effective one body approach to the dynamics of two spinning black holes

with next-to-leading order spin-orbit coupling
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Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries,
we extend the Effective One Body (EOB) description of the dynamics of two spinning black holes to
next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is
constructed from four main ingredients: (i) a transformation between the “effective” Hamiltonian
and the “real” one, (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of
the momenta, (iii) a Kerr-type effective metric (with Padé-resummed coefficients) which depends
on the choice of some basic “effective spin vector” Seff , and which is deformed by comparable-mass
effects, and (iv) an additional effective spin-orbit interaction term involving another spin vector σ.
As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding
energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin
parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital
frequency, and the corresponding dimensionless spin parameter âLSO ≡ cJLSO/(G(HLSO/c2)2). We
find that the inclusion of NLO spin-orbit terms has a significant “moderating” effect on the dynam-
ical characteristics of the circular orbits for large and parallel spins.

PACS numbers: 04.25.-g, 04.25.Nx

I. INTRODUCTION

Coalescing black hole binaries are among the most promising sources for the currently operating ground-based
network of interferometric detectors of gravitational waves. It is plausible that the first detections concern binary
systems made of spinning black holes, because (as emphasized in [1]) the spin-orbit interaction can increase the
binding energy of the last stable orbit, and thereby lead to larger gravitational wave emission. This makes it urgent to
have template waveforms accurately describing the gravitational wave emission of spinning binary black holes. These
waveforms will be functions of at least eight intrinsic real parameters: the two masses m1, m2 and the two spin vectors
S1, S2. Due to the multi-dimensionality of the parameter space, it seems impossible for state-of-the-art numerical
simulations to densely sample this parameter space. This gives a clear motivation for developing analytical methods
for computing the needed, densely spaced, bank of accurate template waveforms.

Among existing analytical methods for computing the motion and radiation of binary black hole systems, the most
complete, and the most promising one, is the Effective One Body (EOB) approach [1, 2, 3, 4]. This method was the
first to provide estimates of the complete waveform (covering inspiral, plunge, merger, and ring-down) of a coalescing
black hole binary, both for non-spinning systems [3], and for spinning ones [5]. Several recent works [6, 7, 8, 9, 10]
have shown that there was an excellent agreement1 between the EOB waveforms (for non-spinning systems) and the
results of recent numerical simulations (see [11] for references and a review of the recent breakthroughs in numerical
relativity). In addition, the EOB method predicted, before the availability of reliable numerical relativity (NR) results,
a value for the final spin parameter âfin of a coalescing black hole binary [3, 5] which agrees within ∼ 10% with the

∗Electronic address: damour@ihes.fr
†Electronic address: pio@alpha.uwb.edu.pl
‡Electronic address: gos@tpi.uni-jena.de
1 For instance, Ref. [9] finds a maximal dephasing of ±0.005 gravitational wave cycles between EOB and numerical relativity waveforms

describing 12 gravitational wave cycles corresponding to the end of the inspiral, the plunge, the merger and the beginning of the ringdown
of an equal-mass coalescing binary black hole.
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results of recent numerical simulations (see [11] for a review and references). Recently, it has been shown that the
introduction of some refinements in the EOB approach, led to an EOB/NR agreement for âfin at the 2% level [12].

In a previous paper [1] the EOB method (originally developed for non-spinning systems) has been generalized to
the case of spinning black holes. It was shown there that one could map the third post-Newtonian (3PN) orbital
dynamics, together with the leading order (LO) spin-orbit and spin-spin dynamical effects of a binary system onto an
“effective test particle” moving in a Kerr-type metric. In the present paper, we extend and refine the EOB description
of spinning binaries by using a recently derived [13] Hamiltonian description of the spin-orbit interaction valid at the
next to leading order (NLO) in the PN expansion. (The NLO spin-orbit effects in the harmonic-gauge equations of
motion were first obtained in [14, 15].) Let us recall that LO spin-orbit effects are proportional to G/c2, while NLO
ones contain two sorts of contributions: ∝ G/c4 and ∝ G2/c4. Regarding the spin-spin coupling terms, we shall use
here only the LO results which are made of two different contributions: the LO S1S2 terms [16] (which have been
recently extended to NLO in [17]), and the LO S2

1 and S2
2 terms. The latter are specific to Kerr black holes, being

related to the quadrupole gravitational moment of a rotating black hole.2 It was shown in [1] that the complete LO
spin-spin terms (the sum of S1S2, S2

1 , and S2
2 terms) admitted a remarkable rewriting involving a particular linear

combination S0, defined below, of the two spin vectors. This fact, together with the more complicated structure of
spin-orbit terms at the NLO, will lead us below to define a particular, improved EOB description of spinning binaries.

The present paper consists of two parts: In the first part (Sections 2 and 3) we shall develop the formalism needed
to finally define (in Section 4) our improved EOB description of spinning binaries. In the second part (Section 5), we
shall consider one of the simplest “applications” of our EOB Hamiltonian: a discussion of the energetics of circular,
equatorial orbits for systems with parallel spins. In this section, we shall make contact with previous related analytical
investigations, notably [15], and prepare the ground for making contact with numerical data.

A few words about our notation: We use the letters a, b = 1, 2 as particle labels. Then, ma, xa = (xi
a), pa = (pai),

and Sa = (Sai) denote, respectively, the mass, the position vector, the linear momentum vector, and the spin vector
of the ath body; for a 6= b we also define rab ≡ xa − xb, rab ≡ |rab|, nab ≡ rab/rab, | · | stands here for the Euclidean
length of a 3-vector.

II. PN-EXPANDED HAMILTONIAN

Our starting point is the PN-expanded (or “Taylor-expanded”) two-body Hamiltonian H which can be decomposed
as the sum of: (i) an orbital part Ho, (ii) a spin-orbit part Hso (linear in the spins), and (iii) a spin-spin term Hss

(quadratic in the spins),

H(xa,pa,Sa) = Ho(xa,pa) + Hso(xa,pa,Sa)

+ Hss(xa,pa,Sa). (2.1)

The orbital Hamiltonian Ho includes the rest-mass contribution and is explicitly known (in ADM-like coordinates)
up to the 3PN order [18, 19]. Its structure is

Ho(xa,pa) =
∑

a

mac2 + HoN(xa,pa)

+
1

c2
Ho1PN(xa,pa) +

1

c4
Ho2PN(xa,pa)

+
1

c6
Ho3PN(xa,pa) + O

(

1

c8

)

. (2.2)

The spin-orbit Hamiltonian Hso can be written as

Hso(xa,pa,Sa) =
∑

a

Ωa(xb,pb) · Sa, (2.3)

Here, the quantity Ωa is the sum of a LO contribution (∝ 1/c2) and a NLO one (∝ 1/c4),

Ωa(xb,pb) = ΩLO
a (xb,pb) + ΩNLO

a (xb,pb). (2.4)

2 Note in passing that, if one wishes to describe the dynamics of, say, neutron-star binaries with the EOB formalism, one should add
“correcting” S2

1
and S2

2
terms.
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The 3-vectors ΩLO
a and ΩNLO

a were explicitly computed in Ref. [13]. They are given, for the particle label a = 1, by

ΩLO
1 =

G

c2r2
12

(

3m2

2m1

n12 × p1 − 2n12 × p2

)

, (2.5a)

ΩNLO
1 =

G2

c4r3
12

(

(

−
11

2
m2 − 5

m2
2

m1

)

n12 × p1 +

(

6m1 +
15

2
m2

)

n12 × p2

)

+
G

c4r2
12

(

(

−
5m2p

2
1

8m3
1

−
3(p1 · p2)

4m2
1

+
3p2

2

4m1m2

−
3(n12 · p1)(n12 · p2)

4m2
1

−
3(n12 · p2)

2

2m1m2

)

n12 × p1

+

(

(p1 · p2)

m1m2

+
3(n12 · p1)(n12 · p2)

m1m2

)

n12 × p2 +

(

3(n12 · p1)

4m2
1

−
2(n12 · p2)

m1m2

)

p1 × p2

)

. (2.5b)

The expressions for ΩLO
2 and ΩNLO

2 can be obtained from the above formulas by exchanging the particle labels 1 and 2.
Let us now focus our attention on the dynamics of the relative motion of the two-body system in the center-of-mass

frame, which is defined by the requirement p1 + p2 = 0. It will be convenient in the following to work with suitably
rescaled variables. We rescale the phase-space variables R ≡ x1 − x2 and P ≡ p1 = −p2 of the relative motion as
follows

r ≡
R

GM
≡

x1 − x2

GM
, p ≡

P

µ
≡

p1

µ
= −

p2

µ
, (2.6)

where M ≡ m1 + m2 and µ ≡ m1m2/M . Note that this change of variables corresponds to rescaling the action by
a factor 1/(GMµ). It is also convenient to rescale the original time variable T and any part of the Hamiltonian
according to

t ≡
T

GM
, ĤNR ≡

HNR

µ
, (2.7)

where HNR ≡ H − Mc2 denotes the “non relativistic” version of the Hamiltonian, i.e. the Hamiltonian without the
rest-mass contribution. It has the structure ĤNR = 1

2
p2 − 1

r + O
(

1
c2

)

.
It will be convenient in the following to work with the following two basic combinations of the spin vectors:

S ≡ S1 + S2 = m1c a1 + m2c a2, (2.8a)

S∗ ≡
m2

m1

S1 +
m1

m2

S2 = m2c a1 + m1c a2, (2.8b)

where we have introduced (as is usually done in the general relativistic literature) the Kerr parameters3 of the
individual black holes, a1 ≡ S1/(m1c) and a2 ≡ S2/(m2c). Note that, in the “spinning test mass limit” where, say,
m2 → 0 and S2 → 0, while keeping a2 = S2/(m2c) fixed, we have a “background mass” M ≃ m1, a “background
spin” Sbckgd ≡ Mc abckgd ≃ S1 = m1c a1, a “test mass” µ ≃ m2, and a “test spin” Stest = S2 = m2c a2 ≃ µc atest

[with atest ≡ Stest/(µc)]. Then, in this limit the combination S ≃ S1 = m1c a1 ≃ Mc abckgd = Sbckgd measures
the background spin, while the other combination, S∗ ≃ m1c a2 ≃ Mc atest = MStest/µ measures the (specific) test
spin atest = Stest/(µc). The quantities S and S∗ are the two simplest symmetric (under the permutation 1 ↔ 2)
combinations of the two spin vectors which have these properties.

In view of the rescaling of the action by a factor 1/(GMµ), corresponding to the rescaled phase-space variables
above, it will be natural to work with correspondingly rescaled spin variables4

S̄X ≡
SX

GMµ
, (2.9)

3 Note that we use here the usual definition where the Kerr parameter a ≡ S/(Mc) has the dimension of length. We denote the associated
dimensionless rotational parameter with an overhat: â ≡ a c2/(GM) = c S/(GM2).

4 We recall that (orbital and spin) angular momenta have the same dimension as the action.
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for any label X (X = 1, 2, ∗, · · · ).
Making use of the definitions (2.6)–(2.9) one easily gets from Eqs. (2.3)–(2.5) the center-of-mass spin-orbit Hamil-

tonian (divided by µ) expressed in terms of the rescaled variables:

Ĥso(r,p, S̄, S̄∗) =
Hso(r,p, S̄, S̄∗)

µ

=
1

c2
Ĥso

LO(r,p, S̄, S̄∗)

+
1

c4
Ĥso

NLO(r,p, S̄, S̄∗) + O

(

1

c6

)

, (2.10)

where (here n ≡ r/|r|)5

Ĥso
LO(r,p, S̄, S̄∗) =

ν

r2

{

2
(

S̄, n, p
)

+
3

2

(

S̄∗, n, p
)

}

, (2.11a)

Ĥso
NLO(r,p, S̄, S̄∗) =

ν

r3

{

− (6 + 2ν)
(

S̄, n, p
)

− (5 + 2ν)
(

S̄∗, n, p
)

}

+
ν

r2

{

(((

19

8
ν p2 +

3

2
ν (n · p)2

)))

(

S̄, n, p
)

+

((((

−
5

8
+ 2ν

)

p2 +
3

4
ν (n · p)2

)))

(

S̄∗, n, p
)

}

, (2.11b)

with ν ≡ µ/M ranging from 0 (test-body limit) to 1/4 (equal-mass case).
Note that the structure of the rescaled spin-orbit Hamiltonian is

Ĥso(r,p, S̄, S̄∗) =
ν

c2r2

(

gADM
S

(

S̄, n, p
)

+ gADM
S∗

(

S̄∗, n, p
)

)

. (2.12)

This corresponds to an unrescaled spin-orbit Hamiltonian of the form

Hso =
G

c2

L

R3
·
(

gADM
S S + gADM

S∗ S∗
)

, (2.13)

where R = GMr is the unrescaled relative distance (in ADM coordinates), L ≡ R × P = GMµr × p the relative
orbital angular momentum, and where we have introduced two dimensionless coefficients which might be called the
“gyro-gravitomagnetic ratios”, because they parametrize the coupling between the spin vectors and the “apparent”
gravitomagnetic field

v ×∇
GM

c2R
∝

R × P

R3

seen in the rest-frame of a moving particle (see, e.g., Refs. [20, 21] for a discussion of the expression of the “grav-
itomagnetic field” in the rest-frame of a moving body). The explicit expressions of these two gyro-gravitomagnetic
ratios are

gADM
S = 2 +

1

c2

(((

19

8
ν p2 +

3

2
ν (n · p)2 −

(

6 + 2ν
)1

r

)))

, (2.14a)

gADM
S∗ =

3

2
+

1

c2

((
(

(

−
5

8
+ 2ν

)

p2 +
3

4
ν (n · p)2 −

(

5 + 2ν
)1

r

))
)

. (2.14b)

5 We introduce the following notation for the Euclidean mixed product of 3-vectors: (V1, V2, V3) ≡ V1 · (V2 × V3) = εijkV i
1
V j
2

V k
3

.
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In the following we shall introduce two related “effective” “gyro-gravitomagnetic ratios”, that enter the effective
EOB Hamiltonian (in effective coordinates). The label “ADM” on the gyro-gravitomagnetic ratios (2.14) is a reminder
of the fact that the NLO value of these ratios depend on the precise definition of the radial distance R (which is
coordinate dependent). Let us, however, briefly discuss the origin of the (coordinate-independent) LO values of these
ratios, namely

gLO
S = 2, gLO

S∗ =
3

2
= 2 −

1

2
. (2.15)

Here the basic ratio 2 which enters both gLO
S and gLO

S∗ comes from the leading interaction, predicted by the Kerr
metric, between the orbital angular momentum of a test particle and the background spin. See Eq. (4.17) below. As
for the − 1

2
“correction” in the coupling of the “test mass” spin combination S∗ it can be seen (e.g. from Eq. (3.6b)

of [22]) to come from the famous 1
2

factor in the Thomas precession (which is a universal, special relativistic effect,
separate from the effects which are specific to the gravitational interaction, see Eqs. (3.2) and (3.3) in [22]).

To complete this Section, let us recall the remarkable form [found in Ref. [1], see Eq. (2.54) there] of the leading-
order spin-spin Hamiltonian Hss (including S2

1 , S2
2 as well as S1S2 terms). The unrescaled form of the spin-spin

Hamiltonian reads

Hss(R,S0) =
ν

2

G

c2
Si

0S
j
0∂ij

1

R
, (2.16)

while its rescaled version reads

Ĥss(r, S̄0) ≡
Hss(R,S0)

µ

=
1

2

ν2

c2
S̄i

0S̄
j
0∂ij

1

r
=

1

2

ν2

c2

3(n · S̄0)
2 − S̄2

0

r3
. (2.17)

The remarkable fact about this result is that it is entirely expressible in terms of the specific combination of spins
S0 ≡ GMµS̄0 defined as:

S0 ≡ S + S∗ =
(

1 +
m2

m1

)

S1 +
(

1 +
m1

m2

)

S2. (2.18)

We shall come back below to the remarkable properties of the combination S0, which will play a central role in our
EOB construction.

III. EFFECTIVE HAMILTONIAN AND “EFFECTIVE GYRO-GRAVITOMAGNETIC” RATIOS

We have obtained in the previous Section the expression of the full center-of-mass-frame Hamiltonian (2.1), in PN-
expanded form. In order to transform this Hamiltonian into a format which can be resummed in a manner compatible
with previous work on the EOB formalism, we need to perform two operations on the Hamiltonian (2.1). First, we
need to transform the phase-space coordinates (xa,pa,Sa) by a canonical transformation compatible with the one
used in previous EOB work. Second, we need to compute the effective Hamiltonian corresponding to the (canonically
transformed) real Hamiltonian (2.1).

We start by performing the purely orbital canonical transformation which was found to be needed in Refs. [2, 4] to
go from the ADM coordinates (used in the PN-expanded dynamics) to the coordinates used in the EOB dynamics.
This orbital canonical transformation is (implicitly) given by

x′i = xi +
∂Go(x, p′)

∂p′i
, p′i = pi −

∂Go(x, p′)

∂xi
. (3.1)

Here the orbital generating function Go(q, p
′) has been derived to 2PN accuracy in [2], and to 3PN accuracy in [4]. In

the present paper, as we are only concerned with the additional spin-orbit terms, treated to 1PN fractional accuracy,
it is enough to work with the 1PN-accurate generating function Go(x, p′). In terms of the rescaled variables, the
rescaled 1PN-accurate orbital generating function reads

Ḡo(r,p) ≡
Go(r,p)

GMµ
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=
1

c2
(r · p)

(

−
1

2
ν p2 +

(

1 +
1

2
ν
)1

r

)

. (3.2)

This transformation changes the phase-space variables from (r,p, S̄, S̄∗) to (r′,p′, S̄, S̄∗). At the linear order in the
transformation (which will be enough for our purpose), the effect of the transformation on any of the phase-space
variable, say y, is y′ = y+{y, Go}, where {·, ·} denotes the Poisson bracket. As Go is independent of time, it leaves the
Hamiltonian numerically invariant: H ′(y′) = H(y). This means that it changes the functional form of the Hamiltonian
according to H ′(y′) = H(y′ − {y, Go}) = H(y′) − {H, Go}. Note the appearance of the opposite sign in front of the
Poisson bracket, with respect to the effect of the generating function on the phase-space variables.

As Go is of order 1/c2, its explicit effect on the two separate terms, Hso
LO and Hso

NLO, in the PN expansion of the
spin-orbit Hamiltonian is given by:

H ′ so
LO(r′,p′, S̄, S̄∗) = Hso

LO(r′,p′, S̄, S̄∗), (3.3a)

H ′ so
NLO(r′,p′, S̄, S̄∗) = Hso

NLO(r′,p′, S̄, S̄∗)

− {Hso
LO, Ḡo}(r

′,p′, S̄, S̄∗). (3.3b)

It will be convenient in the following to further transform the phase-space variables by performing a secondary, purely
spin-dependent canonical transformation, affecting only the NLO spin-orbit terms. The associated new generating
function, Gs(r,p, S̄, S̄∗) (assumed to be proportional to the spins and of order 1/c4) will change the variables (y′) ≡
(r′,p′, S̄, S̄∗) into (y′′) ≡ (r′′,p′′, S̄′′, S̄′′∗) according to the general rule6 y′′ = y′ + {y′, Gs}. For the same reason as
above, the (first-order) effect of Gs on the functional form of the Hamiltonian will involve a Poisson bracket with the
opposite sign: H ′′(y′′) = H(y′′) − {H, Gs}.

We shall consider a generating function whose unrescaled form reads

Gs(R,P,S,S∗) =
G

µ c4

1

R3
(R · P)(R × P) ·

(

a(ν)S + b(ν)S∗
)

, (3.4)

while its rescaled form reads

Ḡs(r,p, S̄, S̄∗) ≡
Gs(R,P,S,S∗)

GMµ

=
1

c4
ν

(n · p)

r

(

a(ν)
(

S̄, n, p
)

+ b(ν)
(

S̄∗, n, p
)

)

. (3.5)

Here a(ν) and b(ν) are two arbitrary, ν-dependent dimensionless coefficients.7 Similarly to the result above, the
explicit effect of this new canonical transformation on the two separate terms, H ′ so

LO and H ′ so
NLO, in the PN expansion

of the spin-orbit Hamiltonian reads:

H ′′ so
LO (r′′,p′′, S̄′′, S̄′′∗) = H ′ so

LO(r′′,p′′, S̄′′, S̄′′∗), (3.6a)

H ′′ so
NLO(r′′,p′′, S̄′′, S̄′′∗) = H ′ so

NLO(r′′,p′′, S̄′′, S̄′′∗)

− {HoN, Ḡs}(r
′′,p′′, S̄′′, S̄′′∗), (3.6b)

where HoN is the Newtonian orbital Hamiltonian. In the following, we shall, for simplicity of notation, omit the
double primes on the new phase-space variables (and on the corresponding Hamiltonian).

The second operation we need to do is to connect the “real” Hamiltonian H to the “effective” one Heff , which is more
closely linked to the description of the EOB quasi-geodesic dynamics. The relation between the two Hamiltonians is
quite simple [2, 4]:

Heff

µc2
≡

H2 − m2
1c

4 − m2
2c

4

2m1m2c4
, (3.7)

6 Note that while Go did not affect the spin variables, the spin-dependent generating function Gs will now affect them.
7 The coefficients a(ν) and b(ν) can be thought of as being two “gauge” parameters, related to the arbitrariness in choosing a spin-

supplementary condition, and in defining a local frame to measure the spin vectors.
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where we recall that the real Hamiltonian H contains the rest-mass contribution Mc2 = (m1 + m2)c
2. Let us also

note that Eq. (3.7) is equivalent to

Heff

µc2
= 1 +

HNR

µc2
+

1

2
ν

(HNR)2

µ2c4
, (3.8)

where HNR denotes the “non relativistic” part of the total Hamiltonian H , i.e., HNR ≡ H − Mc2, or more explicitly

HNR =
(

HoN +
Ho1PN

c2
+

Ho2PN

c4
+

Ho3PN

c6

)

+
(Hso

LO

c2
+

Hso
NLO

c4

)

. (3.9)

By expanding (in powers of 1/c2 and in powers of the spins) the exact effective Hamiltonian (3.7), one easily finds
that the “spin-orbit part” of the effective Hamiltonian Heff (i.e. the part which is linear-in-spin) differs from the

corresponding part Hso in the “real” Hamiltonian by a factor ≃ 1 + νĤNR/c2 ≃ 1 + νĤoN/c2, so that we get, for the
explicit PN expansion of Hso

eff ,

Hso
eff

µ
=

1

c2
Ĥso

LO +
1

c4

(

Ĥso
NLO + νĤoNĤso

LO

)

. (3.10)

Combining this result with the effect of the two generating functions discussed above (and omitting, as we already
said, the double primes on the new phase-space variables (r′′,p′′, S̄′′, S̄′′∗)), we get the transformed spin-orbit part of
the effective Hamiltonian in the form

Hso
eff

µ
=

ν

c2r2
(n × p) ·

(

geff
S S̄ + geff

S∗S̄∗
)

, (3.11)

which corresponds to the following unrescaled form (with L ≡ R × P):

Hso
eff =

G

c2

L

R3
·
(

geff
S S + geff

S∗S∗
)

. (3.12)

Here the two “effective gyro-gravitomagnetic” ratios geff
S and geff

S∗ differ from the “ADM” ones introduced above by

three effects: (i) a factor ≃ 1 + νĤNR/c2 ≃ 1 + νĤoN/c2 due to the transformation from H to Heff , (ii) the effect of
the orbital generating function Go going from ADM to EOB coordinates, and (iii) the effect of the spin-dependent
generating function Gs, which involves the gauge parameters a(ν) and b(ν). Their explicit expressions are then found
to read

geff
S ≡ 2 +

1

c2

(((

(3

8
ν + a(ν)

)

p2 −
(9

2
ν + 3a(ν)

)

(n · p)2 −
1

r

(

ν + a(ν)
)

)))

, (3.13a)

geff
S∗ ≡

3

2
+

1

c2

((
(

(

−
5

8
+

1

2
ν + b(ν)

)

p2 −
(15

4
ν + 3b(ν)

)

(n · p)2 −
1

r

(1

2
+

5

4
ν + b(ν)

)

))
)

. (3.13b)

The choice of the two “gauge” parameters a(ν) and b(ν) is arbitrary, and physical results should not depend on
them.8 This would be the case if we were dealing with the exact Hamiltonian. However, as we work only with an
approximation to the exact Hamiltonian, there will remain some (weak) dependence of our results on the choice of
a(ν) and b(ν). We can use this dependence to try to simplify, and/or to render more accurate, the spin-orbit effects
implied by the above expressions. In particular, we shall focus in this paper on a special simplifying choice of these
gauge parameters: namely, the values

a(ν) = −
3

8
ν, b(ν) =

5

8
−

1

2
ν, (3.14)

which suppress the dependence of the effective gyro-gravitomagnetic ratios on p2. With this particular choice, the
explicit expressions of these ratios become

8 Note in particular that the gyro-gravitomagnetic ratios do not depend on a(ν) and b(ν) when considering circular orbits, i.e. when
p2 = 1/r and (n · p) = 0.
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geff
S ≡ 2 +

1

c2

(((

−
27

8
ν (n · p)2 −

5

8
ν

1

r

)))

, (3.15a)

geff
S∗ ≡

3

2
+

1

c2

(((

−
(15

8
+

9

4
ν
)

(n · p)2 −
(9

8
+

3

4
ν
)1

r

)))

. (3.15b)

IV. SPIN-DEPENDENT EFFECTIVE-ONE-BODY HAMILTONIAN

Up to now we only considered PN-expanded results. In this Section, we shall generalize the approach of [1] in
incorporating, in a resummed way, the spin-dependent effects within the EOB approach. Let us first recall that the
approach of [1] consists in combining three different ingredients:

• a generalized Hamilton-Jacobi equation involving higher powers of the momenta (as is necessary at the 3PN
accuracy [4]);

• a ν-deformed Kerr-type metric gαβ
eff , which depends on the choice of some basic “effective spin vector” Si

eff ;

• the possible consideration of an additional spin-orbit interaction term ∆Hso(r,p,S0, σ) in the effective Hamil-
tonian, whose aim is to complete the spin-dependent interaction incorporated in the definition of the Hamilton-
Jacobi equation based on a certain choice of “effective spin vector” Si

eff .

At the LO in spin-orbit and spin-spin interactions, Ref. [1] showed that one had the choice between two possibilities:
(i) use as effective spin vector the combination S+ 3

4
S∗ which correctly describes the LO spin-orbit effects, but only

approximately describes the LO spin-spin effects;9 or
(ii) use as effective spin vector the combination

S0 ≡ S + S∗ =
(

1 +
m2

m1

)

S1 +
(

1 +
m1

m2

)

S2, (4.1)

which correctly describes the full LO spin-spin interaction (see (2.17) above), and complete the description of the LO
spin-orbit effects by adding a term ∆Hso(r,p,S0, σ) involving a suitably defined spin combination σ. (At LO, Ref.
[1] defined σ

LO = − 1
4
S∗.)

Intuitively speaking, the second possibility consists in considering that the “effective particle” is endowed not only
with a mass µ, but also with a “spin” proportional to σ, so that it interacts with the “effective background spacetime”
both via a geodesic-type interaction (described by the generalized Hamilton-Jacobi equation), and via an additional
spin-dependent interaction proportional to its spin ∝ σ.

At the present, NLO approximation, where it is crucial to accurately describe the spin-orbit interaction, as well as,
by consistency, the LO spin-spin ones, we have chosen to follow the second possibility, which offers more flexibility,
and which looks natural in view of the remarkably simple LO result (2.17) for the spin-spin interaction (see, however,
the suggestion at the end of the concluding Section 6).

Therefore we shall successively introduce the ingredients needed to define

• the Hamilton-Jacobi equation (describing the basic “geodesic-type” part of the effective Hamiltonian);

• the effective, ν-deformed Kerr-type metric gαβ
eff ;

• the “effective spin vector” Si
eff entering the previous Kerr-type metric;

• the additional spin-orbit interaction ∆Hso(r,p,S0, σ) involving a new, specific NLO spin combination σ.

The modified Hamilton-Jacobi equation [4] is of the form

gαβ
eff PαPβ + Q4(Pi) = −µ2c2, (4.2)

9 One can then correct for the missing terms by adding an explicit supplementary term in the Hamiltonian, quadratic in the spins.
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where Q4(Pi) is a quartic-in-momenta term (which only depends on the space momentum components Pi). For
circular orbits Q4(Pi) will be zero (see [1, 4]), so that we will not need its explicit expression in the present paper.

The role of the Hamilton-Jacobi equation above is to allow one to compute the main part (modulo the additional
spin-orbit interaction added later) of the effective Hamiltonian Hmain

eff = Eeff ≡ −P0c by solving (4.2) with respect to
P0. The result can be written as

Hmain
eff = Eeff = βiPic + αc

√

µ2c2 + γijPiPj + Q4(Pi), (4.3)

where we have introduced the auxiliary notation

α ≡ (−g00
eff)−1/2, βi ≡

g0i
eff

g00
eff

, γij ≡ gij
eff −

g0i
eff g0j

eff

g00
eff

. (4.4)

The next crucial ingredient consists in defining the (spin-dependent) effective metric entering the Hamilton-Jacobi
equation, and thereby the effective Hamiltonian (4.3). We shall follow here Ref. [1] in employing an effective co-metric
of the form (here Pt ≡ cP0)

gαβ
eff PαPβ =

1

R2 + a2 cos2 θ

(((

∆R(R)P 2
R + P 2

θ

+
1

sin2 θ

(

Pφ + a sin2 θ
Pt

c

)2

−
1

∆t(R)

(

(R2 + a2)
Pt

c
+ a Pφ

)2
))
)

, (4.5)

where the functions ∆t and ∆R are defined as

∆t(R) ≡ R2Pn
m

[

A(R) +
a2

R2

]

, (4.6a)

∆R(R) ≡ ∆t(R)D−1(R), (4.6b)

and where the Kerr-like parameter a is defined as a ≡ Seff/(Mc), where Seff denotes the modulus of the “effective
spin vector” Si

eff entering the definition of the Kerr-like metric above. We shall come back below to the choice of this
vector Si

eff (which is one of the ingredients in the definition of a spin-dependent EOB formalism). In Eq. (4.6a) Pn
m

denotes the operation of taking the (n, m)-Padé approximant,10 and the PN expansions of the metric coefficients A
and D−1 equal (here û ≡ GM/(Rc2))

A(û) = 1 − 2û + 2νû3 +
(94

3
−

41

32
π2
)

νû4, (4.7a)

D−1(û) = 1 + 6νû2 + 2(26 − 3ν)νû3. (4.7b)

For pedagogical clarity, we have given above the expression of the effective EOB metric in a Boyer-Lindquist-type
coordinate system aligned with the instantaneous direction of the (time-dependent) effective spin vector Si

eff . This
expression will suffice in the present paper where we will only consider situations where the spin vectors are aligned
with the orbital angular momentum, so that they are fixed in space. As emphasized in [1], when applying the EOB
formalism to more general situations (non aligned spins) one must rewrite the effective co-metric components in a
“fixed” Cartesian-like coordinate system. This is done by introducing

ni ≡ xi/R, si ≡
Si

eff

Seff

, cos θ ≡ nisi,

ρ ≡
√

R2 + a2 cos2 θ, (4.8)

10 Let us recall that the (n, m)-Padé approximant of a function c0 +c1u+c2u2 + · · ·+cn+mun+m is equal to Nn(u)/Dm(u), where Nn(u)
and Dm(u) are polynomials in u of degrees n and m, respectively.
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and rewriting the co-metric components as

g00
eff = −

(R2 + a2)2 − a2∆t(R) sin2 θ

ρ2 ∆t(R)
, (4.9a)

g0i
eff = −

a(R2 + a2 − ∆t(R))

ρ2 ∆t(R)
(s × R)i, (4.9b)

gij
eff =

1

ρ2

(

∆R(R)ninj + R2(δij − ninj)
)

−
a2

ρ2 ∆t(R)
(s × R)i(s× R)j . (4.9c)

Making use of Eqs. (4.9) one computes

α = ρ

√

∆t(R)

(R2 + a2)2 − a2∆t(R) sin2 θ
, (4.10a)

βi =
a(R2 + a2 − ∆t(R))

(R2 + a2)2 − a2∆t(R) sin2 θ
(s× R)i, (4.10b)

γij = gij
eff +

βiβj

α2
. (4.10c)

Replacing the latter expressions in the general form of the effective energy (4.3) yields the most general form of the
main part of the effective Hamiltonian Hmain

eff (x,P,Sa).
The definition of Hmain

eff (x,P,Sa) crucially depends on the choice of effective Kerr-type spin vector. In order to
automatically incorporate, in a correct manner, the LO spin-spin terms, we shall use here

Mc a ≡ Seff ≡ S0 = S + S∗ =
(

1 +
m2

m1

)

S1 +
(

1 +
m1

m2

)

S2. (4.11)

Note that, besides its usefulness in treating spin-spin effects, this definition has several nice features. For example, if
we introduce the Kerr parameters of the individual black holes, a1 ≡ S1/(Mc), a2 ≡ S2/(Mc), the Kerr parameter
a0 ≡ S0/(Mc) (where we naturally take m0 = M = m1 + m2) associated to the spin combination (4.1) is simply

a0 = a1 + a2. (4.12)

Let us also note that the corresponding dimensionless spin parameters (with, again, m0 = M = m1 + m2)

âi ≡
cSi

Gm2
i

, i = 0, 1, 2, (4.13)

satisfy

â0 = X1â1 + X2â2, (4.14)

where X1 ≡ m1/M and X2 ≡ m2/M are the two dimensionless mass ratios (with X1 + X2 = 1 and X1X2 = ν).
This last result shows that, in â-space, the “point” â0 is on the straight-line segment joining the two “points” â1 and
â2. The individual Kerr bounds tell us that each point â1 and â2 is contained within the unit Euclidean sphere. By
convexity of the unit ball, we conclude that the “effective” dimensionles spin parameter â0 will also automatically
satisfy the Kerr bound |â0| ≤ 1. This is a nice consistency feature of the definition of the associated Kerr-type metric.

It remains to define the additional “test-spin” vector σ, and the associated additional effective spin-orbit interaction
term. Following the logic of [1] (and generalizing the LO results given in Eqs. (2.56)–(2.58) there), these quantities
are defined by

σ ≡
1

2
geff

S S +
1

2
geff

S∗S∗ − Seff

=
1

2

(

geff
S − 2

)

S +
1

2

(

geff
S∗ − 2

)

S∗, (4.15)

and
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∆Hso(x,P,S0, σ) ≡
R2 + a2

0 − ∆t(R)

(R2 + a2
0)

2 − a2
0∆t(R) sin2 θ0

(P, σ, R)

M
, (4.16)

where a0 ≡ S0/(Mc) and cos θ0 ≡ niSi
0/|S0|. The justification for these definitions is that the “main” Hamilton-Jacobi

part of the effective Hamiltonian contains, as spin-orbit (i.e. linear-in-spin) part, the following term

Hmain eff
so = cPi

(

βi
)

linear-in-spin

= cPi

(

R2 + a2
0 − ∆t(R)

(R2 + a2
0)

2 − a2
0∆t(R) sin2 θ0

(a0 × R)i

)

linear-in-spin

=
2GM

cR3
Pi(a0 × R)i + (NNLO corrections)

= 2
G

c2

L

R3
· S0 + (NNLO corrections), (4.17)

where the factor 2GM comes from the second term in the PN expansion of ∆t(R) = R2 − 2GMR/c2 +
2ν(GM)3/(R c6) + (quadratic-in-spin terms). Note that the absence of c−4 correction in the effective metric function
A(R) means that the leading term ∝ 2GM in the spin-orbit part of Hmain is valid both to LO and to NLO, i.e., up
to “next to next to leading order” (NNLO).

When comparing this result to the NLO result (3.12), we see that the “main” part of the effective Hamiltonian
contains a spin-orbit piece which is equivalent to having effective gyro-gravitomagnetic ratios equal to gmain eff

S = 2
and gmain eff

S∗ = 2, instead of the correct values derived above. One then easily checks that the definition above of σ

and of the associated supplementary spin-orbit interaction ∆Hso(x,P,S0, σ) has the effect of including the full result
for the NLO spin-orbit interaction. It is also to be noted that the additional spin-orbit interaction ∆Hso goes to zero
proportionally to ν in the test mass limit m2 → 0 because, on the one hand, geff

S − 2 is proportional to ν (if a(ν) is),
and, on the other hand, though geff

S∗ − 2 does not tend to zero with ν, the second spin combination S∗ does tend to
zero proportionally to ν [see Eqs. (5.2) below].

Summarizing: we propose to define a total effective spin-dependent Hamiltonian of the form

Heff(x,P,S1,S2) ≡ Hmain
eff (x,P,S0) + ∆Hso(x,P,S0, σ), (4.18)

where Hmain
eff (x,P,S0) is given by the right-hand side of Eq. (4.3) computed for the effective spin variable equal to S0

[defined in Eq. (4.1)] and where ∆Hso(x,P,S0, σ) is the additional spin-orbit interaction term defined above [with
a0 ≡ S0/(Mc)].

Finally, the real EOB-improved Hamiltonian (by contrast to the “effective” one) is defined by solving Eq. (3.7) with
respect to Hreal = HNR + Mc2:

Hreal = Mc2

√

1 + 2ν
(Heff

µc2
− 1
)

, (4.19)

where Heff is given in Eq. (4.18).

V. DYNAMICS OF CIRCULAR ORBITS

In this Section we shall apply the construction of the NLO spin-dependent EOB Hamiltonian to the study of the
dynamics of circular orbits of binary black hole systems.

Besides the dimensionless spin parameters â1 and â2 already introduced above, it is convenient to introduce the
dimensionless spin variables corresponding to the basic spin combinations S and S∗, namely

â ≡
cS

GM2
, â∗ ≡

cS∗

GM2
. (5.1)

Let us note in passing the various links between the dimensionless spin parameters that one can define [including
â0 ≡ cS0/(GM2) already introduced above],

â = X2
1 â1 + X2

2 â2, â∗ = νâ1 + νâ2, (5.2a)
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â0 = â + â∗ = X1â1 + X2â2. (5.2b)

Here as above we use the mass ratios X1 ≡ m1/M , X2 ≡ m2/M such that X1 + X2 = 1 and X1X2 = ν. Let
us note that for equal-mass binaries (m1 = m2, X1 = X2 = 1

2
), with arbitrary (possibly unequal) spins, one has

â = â∗ = 1
4
(â1 + â2) = 1

2
â0. Note also that, in the test-mass limit, say m1 ≫ m2 so that X1 → 1 and X2 → 0, one

has

â = â0 = â1, â∗ = 0. (5.3)

In the general case where the spin vectors are not aligned with the (rescaled) orbital angular momentum vector11

ℓ,

ℓ = r n× p, (5.4)

there exist no circular orbits. However, there exist (at least to a good approximation) some “spherical orbits”, i.e.
orbits that keep a constant value of the modulus of the radius vector r, though they do not stay within one fixed
plane. As discussed in [1] one can analytically study these spherical orbits within the EOB approach, and discuss, in
particular, the characteristics of the last stable spherical orbit.

For simplicity, we shall restrict ourselves here to the situation where both individual spins are parallel (or antiparal-
lel) to the orbital angular momentum vector ℓ. In that case, we can consistently set everywhere the radial momentum
to zero, pr = n · p = 0, and express the (real) EOB Hamiltonian as a function of r, ℓ = pϕ (using p2 = ℓ2/r2, where
ℓ ≡ |ℓ|), and of the two scalars â, â∗ measuring the projections of our basic spin combinations on the direction of the
orbital angular momentum ℓ. They are such that

â · ℓ = â ℓ, â∗ · ℓ = â∗ ℓ. (5.5)

The scalars â and â∗ can be either positive or negative, depending on whether, say, â is parallel or antiparallel to ℓ.
The sequence of circular (equatorial) orbits is then determined by the constraint

∂Hreal(r, ℓ, â, â∗)

∂r
= 0. (5.6)

Then, the angular velocity along each circular orbit is given by

Ω ≡
1

GMµ

∂Hreal(r, ℓ, â, â∗)

∂ℓ
. (5.7)

As mentioned above, we have chosen the special values a(ν) = − 3
8
ν, b(ν) = 5

8
− 1

2
ν of the two gauge parameters, to

simplify the expression of the Hamiltonian.
In Figs. 1–4 we explore several aspects of the dynamics of circular orbits, using as basic diagnostic the relation

between the energy and the angular velocity along the sequence of circular orbits (“binding energy curve”). More
precisely, we plot the dimensionless “non relativistic” energy

e ≡
Hreal

Mc2
− 1, (5.8)

as a function of the dimensionless angular velocity:

Ω̂ ≡
GM

c3
Ω. (5.9)

For simplicity, we shall restrict most of our studies to symmetric binary systems, i.e. systems with m1 = m2 and
a1 = a2. For such systems the dimensionless effective spin parameter is â0 = â1 = â2. The information contained in
these figures deals with the following aspects of the description of the dynamics:

• As a warm up, and a reminder, Fig. 1 considers the case of non-spinning binaries (i.e. â0 = 0). This figure
contrasts the behaviour of the successive PN versions of the EOB dynamics, with that of the successive PN
versions of the non-resummed, “Taylor-expanded” Hamiltonian. The numbers 1,2,3 refer to 1PN, 2PN, and

11 In the following, we switch again to the use of scaled variables: r ≡ R/(GM), ℓ ≡ L/(GMµ), and p ≡ P/µ.
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FIG. 1: Binding energy curves for circular orbits of symmetric non-spinning binaries (m1 = m2 and â1 = â2 = 0): dimensionless

“non relativistic” energy e versus dimensionless angular frequency Ω̂. The notation E(n, ∗) means computation of the energy
using the EOB-improved real Hamiltonian (4.19) with the nPN-accurate metric function ∆t(R); the function ∆t(R) was
computed by means of Eq. (4.6a) using the (1, n) Padé approximant at the nPN order. Here n = 1, 2, 3, 4, where n = 4 refers
to the “4PN” case where a term +a5νû5 is added to the function A(û). For the curves labelled by T(n, ∗) the computation was
done with the direct PN-expanded (ADM-coordinates) orbital Hamiltonian (2.2) with the terms up to the nPN order included.

3PN, while the letter “E” refers to “EOB” and the letter “T” refers to “Taylor”. For instance, E(3, ∗) refers

to the e(Ω̂) binding energy curve computed with the 3PN-accurate EOB Hamiltonian. [The star in E(3, ∗)
replaces the label we shall use below to distinguish LO versus NLO treatment of spin-orbit effects. In the
present non-spinning case we are insensitive to this distinction.] To be precise, the notation E(n, ∗) refers to
a computation of the circular orbits using the â0 → 0 limit12 of the EOB-improved real Hamiltonian (4.19)
with the nPN-accurate metric function ∆t(R); where ∆t(R) was computed by means of Eq. (4.6b) using the
following Padé approximants: (1,1) at the 1PN order, (1,2) at the 2PN order, and (1,3) at the 3PN order. As
for the Taylor-based approximants to the binding energy curve, T(n, ∗), they were computed by using as basic
Hamiltonian (to define the dynamics) the nPN-accurate Taylor-expanded Hamiltonian, in ADM coordinates,
(2.2), without doing any later PN re-expansion.13

It is interesting to note that the successive PN-approximated EOB binding energy curves are stacked in a
monotonically decreasing fashion, when increasing the PN accuracy, and all admit a minimum at some value of
the orbital frequency. This minimum corresponds to the last stable circular orbit (see below). The monotonic
stacking of the EOB energy curves therefore implies that a higher PN accuracy predicts circular orbits which
are more bound, and can reach higher orbital frequencies. Let us note in this respect that recent comparisons
between EOB and numerical relativity data have found the need to add a positive 4PN additional term +a5νû5

in the basic EOB radial potential A(û) of Eq. (4.7a) above, with a5 somewhere between +10 and +80 [7, 8, 9, 10].
Though we do not know yet what is the “real” value of the 4PN coefficient a5 we have included in Fig. 1 two
illustrative14 values of this “4PN” orbital parameter, namely a5 = +25 and a5 = +60. Note that the effect of
such positive values of a5 is to push the last few circular orbits towards more bound, higher orbital frequency
orbits. This effect will compound itself with the effects of spin explored below, and should be kept in mind when
looking at our other plots.

By contrast with the “tame” and monotonic behaviour of successive EOB approximants, we see on Fig. 1 that

12 Note that the â0 → 0 limit of the Padé resummation of some â0-dependent metric coefficient is not necessarily the same as the Padé
approximant one might normally consider in the non-spinning case.

13 As is well-known there are always many non-equivalent ways of defining any “nPN” result, depending of where, and how, in the
calculation one is replacing a function by a PN-expanded polynomial. For instance, one could PN re-expand the function giving the
energy e in terms of the orbital frequency Ω̂, or the function giving e in terms of the orbital angular momentum L (see Ref. [4] for
the computation of several such functions in the non-spinning case). However, we are ultimately interested (for gravitational-wave
purposes) in defining a complete dynamics for coalescing spinning binaries. Therefore, we focus here on the results predicted by
Hamiltonian functions H(x, p, · · · ).

14 These two values of the 4PN parameter a5 were found in Refs. [7, 9] to be representative of the values of a5 that improve the agreement
between EOB waveforms and numerical relativity ones.
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FIG. 2: Binding energy curves for circular orbits of symmetric parallely spinning binaries (m1 = m2 and â1 = â2 ∝ r × p):

dimensionless energy e versus dimensionless angular frequency Ω̂ along circular orbits for various values of the dimensionless
effective spin parameter â0 ≡ cS0/(GM2) = â1 = â2 within the effective-one-body approach. The label E(3, 1) means that
we use the EOB Hamiltonian with 3PN-accurate orbital effects and NLO spin-orbit coupling, i.e. Eq. (4.15) was used with the
NLO gyro-gravitomagnetic ratios geff

S and geff
S∗ , Eqs. (3.13).

the successive Taylor-Hamiltonian approximants T(n, ∗) have a more erratic behaviour. Note in particular, that
the 3PN-accurate energy curve does not admit any minimum as the orbital frequency increases (in other words,
there is no “last” stable circular orbit). In view of this bad behaviour of the 3PN-accurate orbital Taylor-
Hamiltonian, we shall not consider anymore in the following figures the predictions coming from such Taylor
Hamiltonians.15

• In Fig. 2 we study the effect of changing the amount of spin on the black holes of our binary system. We use
here our new, NLO spin-orbit EOB Hamiltonian, as indicated by the notation E(3, 1), where the first label, 3,
refers to the 3PN accuracy, and the second label, 1, to the 1PN fractional accuracy of the spin-orbit terms (i.e.,
the NLO accuracy). Note that the EOB binding energy curves are stacked in a monotonically decreasing way
as the dimensionless effective spin â0 increases from â0 = −1 (maximal spins antiparallel to the orbital angular
momentum) to â0 = +1 (maximal spins parallel to the orbital angular momentum). Note also that this curve
confirms the finding of [1] that parallel spins lead to the possibility of closer and more bound circular orbits.

• Fig. 3 contrasts the effect of using the NLO spin-orbit interaction instead of the LO one in the EOB Hamiltonian.
We use the full 3PN accuracy, and include the LO spin-spin interaction. E(3, 0) denotes a result obtained with the
3PN-accurate EOB Hamiltonian using the LO (or 0PN-accurate) spin-orbit terms, while E(3, 1) uses the 3PN-
accurate EOB Hamiltonian with NLO (1PN-accurate) spin-orbit terms. Each panel in the Figure corresponds
to a specific value of the dimensionless effective spin â0. To guide the eye we use in all our figures a solid line
to denote our “best” description, i.e. the 3PN-NLO EOB E(3, 1). Note that the addition of the NLO effects
in the spin-orbit interaction has the clear effect of moderating the influence of the spins (especially for positive
spins). While the binding energy curves using the LO spin-orbit effects tend to abruptly dive down towards
very negative energies when the spins are large and positive,16 the corresponding NLO curves have a much more
moderate behaviour.

Among the binding energy curves shown above, all the EOB ones (at least when the effective spin is not too

large and positive), and some of the Taylor ones, admit a minimum for a certain value of the orbital frequency Ω̂.
This minimum corresponds to an inflection point in the corresponding (EOB or Taylor) Hamiltonian considered as a

15 Indeed, in the physically most important case of parallel (rather than anti-parallel) spins, the spin-orbit coupling will be repulsive (like
the effect of a positive a5), and will tend to reinforce the “bad” behaviour of the 3PN orbital Taylor Hamiltonian (i.e. the absence of
any last stable orbit).

16 As discussed in Section 3C of Ref. [1], this is due to the then repulsive character of the spin-orbit (and spin-spin) interaction.
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FIG. 3: Energy e versus angular frequency Ω̂ along circular orbits for various values of the parameter â0, as predicted by the
EOB Hamiltonian. We have assumed m1 = m2, a1 = a2, and θ0 = π/2. As before E(n, s) refers to an EOB Hamiltonian, with
nPN accuracy in the orbital terms, and an accuracy in the spin-orbit coupling equal to the LO one if s = 0, and the NLO one
if s = 1. In all cases, we include the full LO spin-spin coupling.

function of r. In other words, the minimum is the solution of the two equations17

∂Hreal

∂r
= 0,

∂2Hreal

∂r2
= 0. (5.10)

17 Note in passing that, in the EOB case, the two Eqs. (5.10) are equivalent to the two similar equations involving the effective Hamiltonian:
∂Heff/∂r = 0, ∂2Heff/∂r2 = 0.



16

TABLE I: LSO parameters for symmetric binary systems (with m1 = m2 and â1 = â2 = â0) for the 3PN-NLO EOB
Hamiltonian E(3, 1).

â0 e Ω̂
−1.00 −0.01039 0.04473
−0.75 −0.01143 0.05139
−0.50 −0.01270 0.05989
−0.25 −0.01437 0.07143

0.00 −0.01670 0.08822
0.25 −0.02026 0.11521
0.50 −0.02660 0.16444
0.75 −0.03701 0.23249
1.00 −0.03826 0.22210

The solutions of these two simultaneous equations correspond to what we shall call here the Last Stable (circular) Orbit
(LSO).18 Several methods have been considered in the literature [4, 23] for using PN-expanded results to estimate
the characteristics of the LSO. One of these methods consists in considering the minima in the Taylor expansion of

the function e(Ω̂). These minima (called “Innermost Circular Orbit” (ICO) in Refs. [15, 23], where they were used to
estimate the LSO of spinning binaries) differ from the minima in the Taylor energy curves considered in Fig. 1 above,
which were based on using a Taylor-expanded Hamiltonian. The advantage of consistently working (as we do here)
within a Hamiltonian formalism is that we are guaranteed that the minima in the corresponding energy curves, when
they exist, do correspond to a Last Stable orbit (and an associated inflection point) for some well-defined underlying

dynamics. By contrast the dynamical meaning (if any) of a minimum of the Taylor-expanded function eTaylor(Ω̂) is
unclear. Anyway, as we saw above that the 3PN-accurate Taylor-expanded orbital Hamiltonian does not admit any
Last Stable Orbit, we have not plotted in Fig. 4 the Taylor-based predictions for spinning binaries because they do
not seem to lead to reasonable results.

Concerning the dynamical meaning of the LSO, let us recall that it had been analytically predicted in [3] (and con-
firmed in recent numerical simulations [11]) that the transition between inspiral and plunge is smooth and progressive,
so that the passage through the LSO is blurred. In spite of the inherent “fuzziness” in the definition of the LSO, it
is still interesting to delineate its dynamical characteristics because they strongly influence some of the gross features
of the GW signal emitted by coalescing binaries (such as the total emitted energy, and the frequency of maximal
emission).

Let us comment on the results of our study of the characteristics of LSO’s:

• In Fig. 4 we plot the LSO binding energy, predicted by the EOB approach, as a function of the dimensionless
effective spin parameter â0. We contrast LO spin-orbit versus NLO spin-orbit (1 versus 0). We use 3PN
accuracy (for the orbital effects) in all cases, and always include the LO spin-spin interaction. The upper panel
shows that the use of LO spin-orbit interactions leads to dramatically negative LSO binding energies when
the spins become moderately large. [The middle panel is a close-up of the upper one, and focuses on spins
â0 ≤ +0.2.] We find that the 3PN-LO EOB Hamiltonian E(3, 0) admits an LSO only up to spins as large as:
â0 ≤ +0.9. However, as first found in [1], spin effects become dramatically (and suspiciously) large already
when â0 ≥ +0.5. By contrast, as we found above, the inclusion of NLO spin-orbit interactions has the effect
of moderating the dynamical influence of high (positive) spins. The bottom panel focusses on our “best bet”
3PN-NLO Hamiltonian E(3, 1).

As mentioned above, Ref. [15] has considered, instead of the Taylor-Hamiltonian LSO, the minimum of the

Taylor-expanded function eTaylor(Ω̂) (or “ICO”). For the two cases â0 = −1, 0 (corresponding to their κi = −1, 0),
they found, in the 3PN-NLO case, energy minima equal to e ≡ EICO/m = −0.0116,−0.0193 for corresponding

orbital frequencies Ω̂ ≡ mωICO = 0.059, 0.129. These numerical values should be compared with the numerical
values we quote in Table I below. On the other hand, for the large and parallel spin case â0 = +1 Ref. [15] found

that the Taylor-expanded function eTaylor(Ω̂) has no minimum. Finally, note that the qualitative shape of the
curve giving the (EOB) LSO energy as a function of the spin parameters â0 is similar both to the corresponding

18 As we recalled above, spinning binaries admit, in general, only spherical orbits, rather than circular ones. Reference [1] studied the
binding energies of the Last Stable Spherical Orbits (LSSO). Here, however, we restrict ourselves to the parallel spin, where it makes
sense to study circular, equatorial orbits.
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FIG. 4: Binding energy of the Last Stable (circular) Orbit (LSO) predicted by the EOB approach. We study the effect of
including NLO spin-orbit terms by contrasting the LO and NLO predictions. We plot the dimensionless energy eLSO of the
LSO versus â0. We have assumed m1 = m2, a1 = a2, and θ0 = π/2. For E(3, 0) a LSO exists up to â0 ≤ +0.9.

curve for a spinless test-particle in a Kerr background (see, e.g., Fig. 7 below), and to the curve giving the LSO
energy of a spinning test particle in a Kerr background, as a function of the test spin (see Fig. 4 in Ref. [24]).

To complement the information displayed in Figs. 1–4, we give in Table I the numerical values of the main LSO
characteristics (binding energy and orbital frequency) for our “best bet” Hamiltonian, namely the 3PN-NLO EOB
one E(3, 1).

In Figs. 5 and 6 we study the effective-spin-dependence of another LSO-related physical quantity of relevance for
the dynamics of coalescing binaries: the total (orbital plus spin) angular momentum of the binary when it reaches
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m1 = m2, a1 = a2, and θ0 = π/2. The parameter âLSO
J is computed from Eq. (5.13) with ĵLSO = ℓ̂LSO + â1 + â2 = ℓ̂LSO + 2â0.

We compare the various EOB predictions obtained either by improving the accuracy of spin-orbit terms [E(3, 1) versus E(3, 0)],
or by improving the accuracy of orbital terms [E(4, 1) versus E(3, 1)]. We use two representative values of the 4PN parameter
a5 = +25 and a5 = +60. For comparison, we also include a fit to recent numerical estimates of the final Kerr parameter of the
black hole resulting from the coalescence of the two constituent black holes.

the LSO [i.e., at the end of the (approximately) adiabatic inspiral, just before the plunge],

J ≡ L + S1 + S2. (5.11)

In terms of rescaled dimensionless variables, this becomes

ĵ ≡
c

GMµ
J = ℓ̂ +

m1

m2

â1 +
m2

m1

â2, (5.12)

where ℓ̂ ≡ c ℓ. Actually, the most relevant quantity is the dimensionless Kerr parameter associated to the total LSO
mass-energy and the total LSO angular momentum, i.e., the value at the LSO of the ratio

âJ ≡
cJ

G
(

Hreal/c2
)2

= ν
ĵ

(

Hreal/(Mc2)
)2

, (5.13)

where ĵ is the modulus of ĵ.

• In Fig. 5 we contrast the dependence of âLSO
J on the dimensionless effective spin parameter â0 for several EOB

models: the two 3PN-accurate ones [E(3, 0) using LO-accurate spin-orbit, and E(3, 1) using NLO-accurate spin-
orbit], and two illustrative [7, 9] “4PN-accurate” NLO-spin-orbit models E(4, 1) (using either a5 = +25 or
a5 = +60, as in Fig. 1). [Here, we are still considering fully symmetric systems with m1 = m2 and a1 = a2,
so that â0 = â1 = â2.] Again we see the moderating influence of NLO corrections. The EOB-LO curve E(3, 0)
exhibits a sudden drop down (pointed out in [1]) before rising up again (and disappearing at â0 = +0.9 when
the LSO ceases to exist). By contrast, the NLO curve E(3, 1) exhibits a much more regular dependence on â0,
which is roughly linear over the entire range of values −1 ≤ â0 ≤ 1. The two illustrative E(4, 1) curves exhibit
a “mixed” behaviour where a “drop” similar to the one featuring in the LO curve is still present, though it is
moderated by NLO spin-orbit effects. This sensitivity to the inclusion of a 4PN contribution in A(û) is due to a
delicate interplay between the modified shape of the basic spin-independent “radial potential” A(û, a5) and the
use of a (1,4) Padé resummation of the “effective spin-dependent radial potential” ∆t(R), Eq. (4.6a). Indeed,
the additional contributions proportional to a5 and a2 are both repulsive , and tend to compound their effect,
which is to push the LSO toward closer, more bound orbits [1].

We have also indicated in Fig. 5 the final (i.e., after coalescence) dimensionless Kerr parameter of (symmetric)
spinning binaries, as obtained in recent numerical simulations [26, 27, 28, 29]. For simplicity, we have shown the
simple analytic fit proposed in [28]. The fact that the 3PN-NLO-accurate EOB LSO Kerr parameter [E(3, 1)]
is systematically above the final Kerr parameter is in good agreement with the fact that, after reaching the
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-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.3

-0.2

-0.1

0.0

a
`

0

e
`

LSO

EH3,1L

exact Kerr
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the result of taking the test-mass limit of the EOB Hamiltonian, while the short-dashed curve is the result for a test particle
moving in the Kerr spacetime.

LSO, the system will still loose a significant amount of angular momentum19 during the plunge and the merger-
plus-ringdown. In the case of non-spinning binaries, it has been shown that, by using the EOB formalism up
to the end of the process [i.e., by taking into account the losses of J and E during plunge, as well as during
merger-plus-ringdown], there was a good agreement (better than ∼ 2%) between EOB and numerical relativity
for the final spin parameter [12]. We hope that the same type of agreement will hold also in the case of spinning

binaries considered here.

• In Fig. 6 we plot the LSO dimensionless Kerr parameter of Eq. (5.13) for spin-dissymmetric systems, namely
a1 6= a2 (but with m1 = m2), computed with the 3PN-NLO EOB Hamiltonian model E(3, 1). This plot
illustrates that the LSO spin parameter is a smooth (and essentially linear) function of the two individual spins.

• Finally, we compare in Fig. 7 the spinless test particle limit [i.e., m2 → 0, together with a2 = S2/(m2c) → 0, as
appropriate to black holes for which â ≤ 1] for two Hamiltonians: the 3PN-NLO EOB one E(3, 1), and the exact

19 We use here the fact (found in numerical calculations, and implied by the analytical EOB approach), that, fractionally speaking, the
angular momentum loss after the LSO is significantly higher than the corresponding energy loss.
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one, as known from the geodesic action of a spinless test particle in the Kerr metric. For non-spinning systems
the EOB Hamiltonian is constructed so as to reduce to the exact Schwarzschild-derived one in the test-particle
limit. However, for spinning systems, we have chosen in Eq. (4.6a) to define the crucial metric coefficient ∆t(R)
by Padé-resumming the sum of A(R; ν)+a2/R2. This Padé-resummation is indeed useful for generally ensuring,
for comparable mass systems, that ∆t(R) have a simple zero at some “effective horizon” rH. However, in the
test-mass limit ν → 0, while the Taylor-approximant to A(R; ν) + a2/R2 would coincide with the exact Kerr
answer, the Padé-resummed version of A(R; ν) + a2/R2 differs from it. We see, however, on Fig. 7 that the
resulting difference has a very small effect on the LSO energy per unit (µ) mass, except when the dimensionless
effective spin â0 is very close to +1. On the other hand, as we saw above when discussing Fig. 5, the issue of
the Padé resummation of ∆t(R) becomes more subtle when one considers the comparable-mass case, together
with the inclusion of a repulsive 4PN parameter a5.

VI. CONCLUSIONS

The main conclusions of this work are:

• We have prepared the ground for an accurate Effective One Body (EOB) description of the dynamics of binary
systems made of spinning black holes by incorporating the recent computation of the next-to-leading order
(NLO) spin-orbit interaction Hamiltonian [13] (see also Refs. [14, 15]) into a previously developed extension of
the EOB approach to spinning bodies [1].

• We found that the inclusion of NLO spin-coupling terms has the quite significant result of moderating the effect
of the LO spin-coupling, which would, by itself (as found in Ref. [1]), predict that the Last Stable (circular)
Orbit (LSO) of parallely-fast-spinning black holes can reach very large binding energies of the order of 30%
of the total rest-mass energy Mc2. By contrast, the inclusion of NLO spin-orbit terms predicts that the LSO
of parallely-fast-spinning systems, though significantly more bound than that of non-spinning holes, can only
reach binding energies of the order of 4% of the total rest-mass energy Mc2 (see Fig. 4 above). This reduction
in the influence of the spin-orbit coupling is due to the fact that the (effective) “gyro-gravitomagnetic ratios”
are reduced by NLO effects from their LO values gLO

S = 2, gLO
S∗ = 3

2
to the values (here considered along circular

orbits)

gcirc eff
S = 2 −

5

8
νx,

gcirc eff
S∗ =

3

2
−
(9

8
+

3

4
ν
)

x, (6.1)

where x ≃ GM/(Rc2) ≃ (GMΩ/c3)2/3. This reduction then reduces the repulsive effect of the spin-orbit
coupling which is responsible for allowing the binary system to orbit on very close, and very bound, orbits (see
discussion in Section 3C of Ref. [1]).

• We studied the dependence of the dimensionless Kerr parameter of the binary system, âJ ≡ cJ/(G(Hreal/c2)2),
computed at the LSO, on the spins of the constituent black holes. Again the moderating effect of including
NLO spin-orbit terms is very significant (compare the solid and the dashed20 lines in Fig. 5). Thanks to this
moderating effect the LSO Kerr parameter âLSO

J is found to have a monotonic, and roughly linear, dependence
on the spin parameters of the individual black holes (see solid line in Fig. 5 and the various curves in Fig. 6).
We also studied the effect of including the type of 4PN parameter a5 found useful in recent work [7, 8, 9, 10]
for improving the agreement between EOB waveforms and numerical ones.

• We leave to future work the analog of what was initiated for spinning systems in Ref. [5], and recently completed
for the case of non-spinning black holes in Ref. [12], i.e., a full dynamical study, within the EOB approach, of the
Kerr parameter of the final black hole resulting from the merger of spinning black holes which takes into account
the angular momentum losses that occur after the LSO, during the plunge, the merger, and the ringdown. Let
us also note that Ref. [30] has recently proposed an approximate analytical approach (which is similar in spirit

20 Compare also with Fig. 2 of Ref. [1] where the relevant LO result is the curve labelled “DJS” which reaches a maximum around
â ≡

7

8
â0 ≃ 0.31, in agreement with the (local) maximum in the dashed line of our Fig. 5 reached around â0 ≃ 0.36.
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to the approximation used in Refs. [1, 3, 5] and above, namely that of considering the Kerr parameter of an
effective test particle at, or after, the LSO) towards estimating the final spin of a binary black hole coalescence.
The resulting prediction is, however, only in coarse agreement ∼ 10% with numerical results. Note in this
respect that, as displayed in Fig. 5, the “zeroth order” EOB result [corresponding to using the Kerr parameter
for E(3, 1) at the LSO, without taking into account the later losses of angular momentum] is already in ∼ 20%
agreement with the fit to the numerical data [28]. The fact (displayed on Fig. 5) that the E(3,1) EOB LSO Kerr
parameter is systematically above the final (after coalescence) Kerr parameter determined by recent numerical
simulations [26, 27, 28, 29] is in qualitative agreement with the fact that the system will loose a significant
amount of angular momentum during the plunge and the merger-plus-ringdown. Note, however, the sensitivity
of âLSO

J to a “4PN deformation” of the EOB Hamiltonian by the parameter a5. As said above, this sensitivity
is due to the fact that the radial function ∆t(R)/R2 combines the additional repulsive effects of both a positive

4PN contribution +a5ν(GM/(c2R))
5

and a positive spin-dependent contribution +a2/R2. We leave to future
work an exploration of this issue, which might need the use of a different Padé resummation than the (1,4) one
used in (4.6a).

It remains to be seen whether the EOB/Numerical Relativity comparison for the final Kerr parameter of spinning
systems will be as good as it was found to be for the non-spinning case [12], i.e., at the 2% level. If this is the
case, it will establish the physical relevance of the improved EOB Hamiltonian constructed in the present paper.

• Let us finally note that there is some flexibility in the improved spin-dependent EOB Hamiltonian proposed
above (besides the flexibility in the choice of the Padé resummation mentioned above). On the one hand, the
choice (3.14) for the gauge parameters a(ν) and b(ν) might be replaced by other choices. On the other hand,
the choice (4.11) for the effective spin vector might also be replaced by other ones. In particular, it might be
interesting to consider the alternative definition

Mc anew ≡ Seff new ≡
1

2
geff new

S S0

=
1

2
geff new

S

(

S + S∗
)

. (6.2)

This definition coincides with the one used above at LO in spin-orbit effects (because geff new
S = 2 + O(ν/c2)),

and allows one to use a simplified supplementary spin-orbit contribution, built with

σ
new ≡

1

2

(

geff
S∗ − geff

S

)

S∗, (6.3)

instead of (4.15). It might be interesting to explore which of these possible definitions exhibits the best agreement
with current numerical results.
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