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We continue the program of constructing, within the EffeetDne-Body (EOB) approach, high-accuracy
analytic waveforms describing the signal emitted by irepirg and coalescing black hole binaries. Here, we
compare a recently derivetgsummed@ PN-accurate EOB quadrupolar waveform to the results ofaenigal
simulation of the inspiral and merger of agual-mas$lack hole binary. We find a remarkable agreement, both
in phase and in amplitude, with a maximal dephasing whichbsareduced below-0.005 gravitational-wave
(GW) cycles over 12 GW cycles corresponding to the end ofripiral, the plunge, the merger and the begin-
ning of the ringdown. This level of agreement is shown for tifeerent values of the effective 4 PN parameter
as, and for corresponding, appropriately “flexed” values &f thdiation-reaction resummation parametgfc.

In addition, our resummed EOB amplitude agrees to betterttiel % level with the numerical-relativity one up
to the late inspiral. These results, together with otheemework on the EOB-numerical-relativity comparison,
confirm the ability of the EOB formalism to faithfully capeithe general relativistic waveforms.

PACS numbers: 04.25.Nx, 04.30.-w, 04.30.Db

I. INTRODUCTION first to provide estimates of the complete waveform (cover-

ing inspiral, plunge, merger and ring-down) of a coalescing

The gravitational-wave (GW) signals emitted by coalesc-gi)ailﬁﬁizglgnb;ga%" both for non-spinning systems [3], and fo

ing black hole binaries are among the most promising targets N ical Relativity (NR { ded in givi

for the currently operating network of ground-based detsct umerical Re:ativity ( ) recently succeeded in giving us
access to reliable information about the dynamics and radia

GEO/LIGO/Virgo. The most useful part of the waveform for tion of binary black hole coalescences [7-18]. This opeas th

detection comes from the most relativistic part of the dynam - . L
ics, around the coalescence, i.e. the Iasr;;J few cyclesyof th@OSSIbIIIty of comparing the EOB predictions to NR results.

adiabatic inspiral, the plunge and the merger. In order ¢e su 1 e comparison between the EOB approach and NR results
cessfully detect GWs from coalescing black hole binaries annas been recently initiated in several works [19-24]. These
to be able to reliably measure the source physical parameteff€c€nt comparisons have been done using two different ver-
one needs to have in advance a large bankeshiplatesthat ~ Sions of EOB waveforms. The works of Buonanno et al.
accurately represent the GW waveforms emitted by these bl19: 20, 23] used aestricted waveformas proposed in the
naries. In the terminology of [1] one needs templates thaPioneering EOB paper [3] (but with an improved matching to
are botheffectualand faithfull. The construction of faith- the ringdown making use of three quasi-normal modes). By
ful GW templates for coalescing binaries comprising spigni  contrast, the recent works of Damour and Nagar [22, 24] use
black holes (with arbitrary masses,, m» and spinsS;, S,) & n_ev_v,resummecB PN-accurate EOB quadrupolar Wav_eform.
poses a difficult challenge. Due to the multi-dimensiogaift ~ 1his improved EOB waveform has been shown to exhibita re-
the corresponding parameter space, state-of-the-artizahe Markable agreement, both in phase and in amplitude, with NR
simulations cannot densely sample this parameter spagg. THvaveformsin two separate physical situations: (i) indgiral
motivates the need to devel@malytical methods for com- coalescence of small-mass-ratio (non-spinning) syst@2js [
puting (as a function of the physical parameters m-, S, (gompqung it to wavefqrms computed by means qf numencal
S,) the corresponding waveforms. The Effective-One-BodySimulations of test particles, with an added radiatiorctiea
(EOB) method [2-5] was developed to analytically represenfOrce, moving in black-hole backgrounds [25]) and (i) irsp
the motion of, and radiation from, coalescing binary black/@ (Up to a limiting GW frequency- 0.14/M) of an equal-

holes with arbitrary masses and spins. This method was tH@2ss (non-spinning) system [24] (comparing it to recently
published results of a high-accuracy inspiral simulatib8y].

In other words, the improved EOB waveform has been able,
in these two cases, to provitEthful GW templates.

*Supported by a fellowship from the Istituto Nazionale diiésNucleare The present paper is a continuation of the general program

(lltaly)-_ . ' of constructing, within the Effective-One-Body (EOB) ap-
b fectal enpiaes v enpltes b overaps Vi proach, high aceuracy,faihful analytc waveforms ddsiog
rameters, while “faithful” ones are so “close” to an exaat timat they have the gravna_uonal wave signal emitted by |nsp|raII_|ng and ¢
large overlaps for values of the dynamical parameters wdmietvery close ~ @l€scing binary black holes. Here we shall considerctbee-

to the real ones (“small biases”). lescence signamitted by a non-spinningqual-mas®inary
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black-hole system. We shall compare the phase and the aravolved using thet'+log” slicing condition for the lapse [32],
plitude of the newesumme@® PN-accurate EOB quadrupolar while the shift is evolved using the hyperboliedriver con-
waveform of [22, 24] to a numerical relativity simulation®f dition discussed in Ref. [33], but with the difference that
coalescing black hole binary performed at the Albert Einste advection terms have been added following the experience

Institute (AEI). of [8, 34], and are required for correct advection of the punc
This comparison will confirm the ability of the EOB ap- tures in “moving-puncture” evolutions.
proach in providing accurate analytical representatiéiéR Spatial differentiation of the evolution variables is per-

waveforms. We note that the recent work [23] had alread¥ormed via straightforward finite-differencing using folu
shown the ability of the less accuratestrictedEOB wave-  order accurate centered stencils for all but the adveationg
forms_to prowdeeffectl_JaIcoalescence waveforms for sev- for each variable, which are instead upwinded in the dioecti
eral different mass ratiosi(y/m, = 1,3/2,2 and 4), and  of the shift. Vertex-centered adaptive mesh-refinementis e
to provide, for instance, near-faithful waveforms in thei@q  ployed using nested grids via t@ar pet infrastructure [35],
mass case, in the sense of having a dephasing, with respegin a 2 . 1 refinement for successive grid levels, and the
to NASA-Goddard NR waveforms, of +0.03 GW cycles  pighest resolution concentrated in the neighborhood oifthe
over 15 GW cycles. The present paper will show that thegjyigual horizons. Individual apparent horizons are ledat
new, resummed waveform exhibits an even smaller dephagyery few time steps during the time evolution [36], which is

ing ~ 40.005 GW cycles over 12 GW cycles, and, most gptained via a “method-of-lines” and with a fourth-order ac
remarkably, exhibits an excellent agreement in amplitudegrate Runge-Kutta time integrator.

both during the inspiral and the ring-down. This good result The simulati f d d in with out
is obtained by making use (as proposed in several previous € simuations Were periormed on a domain with outer

works [5, 23, 24, 26, 27]) of the naturéxibility of the EOB oundaries located a681/.2, and a grid structure consists
approach o of nine mesh-refinement levels, the finest of which has a spa-

Let us also mention, as alternative approach to the cont-Ial resolution ofh = 0.02M.. Simulations with lower res-

. . - olution (i.e., withh = 0.024M, andh = 0.03M.) have
struction of analytical template waveforms to model th@ins also been carried out to validate the consistency of the re-
ral, merger and ringdown stages of the coalescence of oI e ™ An important feature of thécat i e code is the pos-
spinning binary black holes with arbitrary mass ratios, thesibilify of employing two distinct methods for the calcutat
Work_of Refs. [.28’ 29]. . . .. of the gravitational radiation produced. The first methoelus

Th'TQ' Paper 1S orgamzeq as fQHOWS' In Sec. Il we br'eﬂy.the Newman-Penrose curvature scalar with respect to a
?heescfgltl)(?wti?wz nulresré(i:al Iﬁlrcvlgastg)e:]li gvthotSFwee rfesal:tllj?evsveofutsﬁe'guitable frame at thg extraction radius. An alternativehoet _
EOB Wavefo.rm that \'Ne shall use. The main section isneasures Fhe metric of the numerically g_enerate_d spacetime
Sec. IV where we compare the neW resummed EOB wav against a fixed backgroqnd at the extraction radllu_s, Qnd de-
form to NR data. We also include a comparison where we. > the gauge-invariant Regge-Wheeler-Zerill- bfet
use the kind of Ie.ss accurate “restricted” EOB waveform, an unctions (see Ref. [37] for a review ar_ld r_eferences). Both
simpler ONM-matching used in some of the previous éOB ethods have been systematically studle_d in Ref. [3_0], a(her
works [3, 19, 20, 23]. The paper ends by some conclusions they were also compared and shqwn to yleld.essenltlally iden-

P e el “tical results, both in terms of their asymptotic scalingpsro
erties (e.g., the peeling-theorem), and in terms of therpola
ization amplitudeg.; andh .. The analysis carried out here

Il. BRIEF DESCRIPTION OF THE NUMERICAL used as basic NR data the gauge-invariant (Zerilli-Mofficrie

SIMULATION metric perturbations. These were extracted on (NR) coordi-
nate 2-spheres with (NR) coordinate raftiig = 600, up

The numerical simulations have been carried out with theo Ryg = 120M.., with a separation af0 M/, between two ad-
Ccati e code [30], a three-dimensional finite-differencing jacent observers. The analysis carried out below uses,-as ap
code developed at the Albert Einstein Institute and at the Ce proximate asymptotic amplitude, the metric perturbatien e
ter for Computation and Technology (CCT) of the Louisianatracted atRyg = 120M..

State University. The code is based on @aet us Compu- The initial data for the black-hole binary are obtained

_tation_al_ Too_Ikit [31] fqr the solution_ of the Einst_ein eqioats by a Brill-Lindquist [38] construction, where the additaln
m_g f'_rll_':]e's'ze. domdam co¥ered WlthfahCartedsmrr]l reCtt‘?mgula‘&symptotically flat end of each wormhole is compactified into
gn t'I d'e malnda_n é]e]yv 3e0aturez 0 the co be' fflve eﬁr;hred- single point, the so callgulincture[39]. This approach ex-
cently discussed in Ref. [30], and we here briefly reca eplicitely uses the Bowen-York extrinsic curvature and sslv

most important ones only. the Hamiltonian constraint equation numerically as dethiih

The Einstein equations are formulated as an initial-valugzef 140}, and after the free parameters for the punctutiaini
problem via a conformal and traceless+ 1” decomposition

in which the spacetime is decomposed into three-dimenkiona

spacelike slices, described by a 3-metric, its embedding in

the full spacetlme, specmed by the extrln_su: curvaturej an We denote byl/. the internal length and mass units used in the code (with
the gauge functions: the I_apse and the shift (see [SQ] for the ¢ — ¢ — 1)."Beware thatvz.. slightly differs from M = my + mo (see
explicit form of the equations). These gauge functions are below).



TABLE I: Initial ADM mass (scaled by = m; + m») and angular momentum of the spacetime (scaled/3y; final mass (scaled by/)
and dimensionless spin parameter= J; /M7 of the merged black hole; dominant (quasi-normal-mode)ptertrequency of the ringdown;
for two different grid spacing4.

h/M Mapn/M Japwm/M? MEer /M jher M;™8 /M jeme Moy,
0.024 0.990484 0.991803 0.951531 0.687142 - - -
0.020 0.990484 0.991803 0.951611 0.686916 0.959165 (88846 0.085475 +i0.551040

data are chosen. Quasi-circularity of the initial orbit td@n  ing the post-fit residual). [For discussion of methods folDN
be obtained by specifying the puncture parameters in termfitting see Refs. [48-50]]. Then, from the best-fit valuerof
of an effective-potential method [41] as discussed in [30](i.e., the QNM dominant complex frequeneys.,), we com-
However, the assumption of “quasi-circularity” (in the sen puted the values of the mass and dimensionless spin parame-
of [41]) at the (rather small) initial separations frequgnsed  ters of the final black hole by using the interpolating fitsegiv
in numerical-relativity simulations has the drawback dfan  in Appendix E of Ref. [51]. The results of these two methods
ducing a small but nonzero amount of eccentricity. To com-are denoted ag\/"°*, jh°r) and(M™&, j7ing), respectively.
pensate for, or reduce, this effect, other approaches e b  The most relevant properties of the binary system are sum-
suggested recently. One of these is based on an iterative mirmarized in Table 1. The difference (which § 1%) be-
mization procedure where, throughout a series of simulatio tween the quoted values of the final black hole parameters
with slightly different initial black hole configurationse ec-  might come, in part, from inaccuracies in the interpolating
centricity is measured and minimized [42]. A simpler andfits of Ref. [51]. In the following we will use, in our EOB-
rather effective approach has been proposed in Ref. [48], armatching procedure, the ringdown—fitted black hole parame-
consists of specifying the initial puncture-parametershas ters (M*ins, j'ing) (so that the dominant complex frequency
end-state of a binary system whose evolution is determinedyill be guaranteed to have the best possible value).
starting from a large separation, via the solution of thddiay
expanded 3 PN-accurate equations of motion [6, 44, 45].

We have here essentially followed this latter prescription I1l. EFFECTIVE-ONE-BODY (EOB) METHOD AND
and considered, in particular, the initial data denotedhy WAVEFORM
in Table | of [43], that have been shown there to reduce the
eccentricity toe < 0.002. More specifically, our initial black We shall not review here in detail the EOB method [2-5],
holes have a coordinate distanbe= 11 M., momentain the which has been described in several recent publications, no
radial and tangential directions 6f. = —7.09412 x 10~*M,.  tably Refs. [23, 24]. We shall only indicate the EOB elements
and P, = 0.0900993M., and a puncture mass-parameter ofthat are crucial for the present study. For detailed dedingi
0.487035M., leading to initial individual black-hole masses of the EOB ingredients we refer to the recent paper [24] that
my = mgy = 0.499821M ., and thus a total mass of the binary we follow, except when otherwise indicated below.

systemM = mj + me = 0.999642M.. Overall, the sim- Before entering the details of our EOB implementation, let
ulation covers about 1600 M of the final evolution of the us recall that Ref. [24] proposed a methodology forimprgvin
binary, thus comprising orbits and about6 GW cycles. the waveform implementation of the EOB philosophy based

The mass and spin of the final black hole have been conmen understanding, element by element, the physics behind
puted through two different methods yielding, howeveryver each feature of the waveform, and on systematically compar-
similar results: (a) by using the isolated/dynamical horizon ing various EOB-based waveforms with “exact” waveforms
formalism [46, 47], where a proper rotational Killing vecto obtained by numerical relativity approaches. The first step
is searched on the final apparent horizon to measure the spitfie methodology consisted in studying the small-mass-rati
and the horizon area is used for computing the black hole madinit, v = m;my/M? < 1, in which one can use the well
(see Section IV D of Ref. [30] for detailsjp) by performing  controllable “laboratory” of numerical simulations of tegr-

a fit of the dominant quasi-normal motaf thecomplexing- ticles (with an added radiation-reaction force) movinglachk
down waveform. hole backgrounds. Historically, this “laboratory” has béa-

This fit was performed by a non-linear least-squares Gausgortant in understanding/discovering several key featofe
Newton method, usingxp(—ot+ p) as parameter-dependent GW emission near black holes. A notable example of this
template (with twacomplexparametersd, p)), and an appro-  being the work of Davis, Ruffini and Tiomno [52] which dis-

priate time interval during the ringdown (chosen by minimiz covered the transition between the plunge signal and aingi
tail when a particle falls into a black hole. The recent study

of inspiralling and merging small-mass-ratio systems [22]
led to introducing (and testing) the following improvement
31n the notation introduced in Sec. Il below, the dominantdeaorre- 1N EOB dyn‘_'llmms and waveforms: (i) an |mpr_0ved Qn.alyt'
sponds to the labelst, £, ¢/, m,n) = (+,2,2,2,0). ical expression for the({,m) = (2,2) even-parity Zerilli-



Moncrief) waveform\I/é‘;) which includes a resummation of
the tail effects, and a 3 PN-accurate “non-linear” ampktud
correction, (ii) the inclusion of non-quasi-circular cections
to the waveform, (iii) the inclusion of non-quasi-circutzor-
rections to radiation reaction, and (iv) an improved tresim
of the matching between the plunge and ring-down waveform
which takes into account a new understanding of the impor-
tance of the number of quasi-normal-modes (QNMs), the sign
of their frequencies, and the length of the interval on which
the matching is done. The resulting improved implementa-
tion (whenr <« 1) of the EOB approach yielded very faith-
ful waveforms whose amplitude and phase agreed remarkably
well with the “exact” ones: in particular, the EOB phasinfy di
fered from the “exact” one by less thatl .1% of a cycle over
the whole process.

The program initiated in [22] was pursued in [24] where the
comparable-mass version of the improved, resumsied
PN accuratéwaveform was compared with the recently pub-
lished inspiral simulation of the Caltech-Cornell grou@]1
It was found that, by exploiting the combined flexibility drp
andvp.1e, ONe could reach a remarkable phase agreement, bet-
ter than0.001 GW cycles over 30 GW cycles. Here, we shall
similarly exploit the flexibility inas and vy, to best fit the
AEI merger waveform.

Let us recall that the EOB approach ia@n-perturbatively
resummednalytic technique which consists of several differ-
ent elements:

e an Hamiltonian H,., describing the conservative part
of the relative two-body dynamics. The key ingredi-
ent of this Hamiltonian (defined in Eqgs. (13) and (14)
of [24]) is the “radial potential”’A(r).5. This radial po-
tential is defined, at n-Post-Newtonian (PN) order, as
the (1,n) Padé resummation [4] of its Taylor (i.e. usual
PN) expansion (written in Eq. (15) of [24]).

a radiation reaction forceF, (denoted?, after its
rescaling byl /1), which is defined as a Padé resumma-
tion [1] of its Taylor expansion (see Eq. (17) of [24]).

an improved “post-post-adiabatic’dynamical initial
data (positions and momenta) as advocated in Sec. Il B
of [24]. This procedure leads to negligible eccentricity
when starting the integration of the EOB equations of
motion at radiug: = 15.

e an improved, resummethspiral-plus-plunge” (here-

4 The notation3t2-PN refers here to the fact th&bs resums not only the 6

known v-dependent 3 PN waveform corrections, but alsotthe 0 limit
of the 4 PN and 5 PN waveform amplitude corrections. See [@4jétails
and references.

5 Except when said otherwise, we henceforth systematicabiyesdimen-
sionful quantities by means of the total rest mags= m; + mo of the
binary system. For instance, we use the dimensionless E@BI i@oor-
dinater = Rgop/M, with G = 1. Note also thatr = p/M with
w=mima/M.

{am)
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after abbreviated a%nsplunge”) waveforni of the
form

i lunge
yinsp
22

(t) = —41 / %V(TwQ)QngCF22€72i¢ B

1)
where®(t) is the EOB orbital phas€) = & is the EOB
orbital frequencyr,, = '/3 is a modified EOB radius,
with ¢ being defined in Eq. (22) of Ref. [53]. The factor
F,, is a resummed3™2-PN-accurate complex ampli-
tude correction valid during the (adiabatic) inspiral, and

21\;QC is an extra complex correcting factor, aimed at
taking care (in an effective way) of varion®n quasi-
circular (NQC) effects during the plungefs, is de-
fined in Egs. (5)-(11) of [24], withfss being the (3,2)
Padé resummation ¢ff """,

aringdown waveform

W) = D Ce N 4 Y Cne L (2)
N N

where the labelN actually refers to a set of in-
dices (¢,¢',m,n), with (¢,m) = (2,2) being the
Schwarzschild-background multipolarity degrees of the
considered (Zerilli-Moncrief-type) waveforn¥,,,, ~
hem, With n = 0,1,2, ... being the “overtone num-
ber” of the considered Kerr-background Quasi-Normal
Mode (QNM;n = 0 denoting the fundamental mode),
and/’ the degree of its associated spheroidal harmonics
Serm(ac,0). In additionoy = o7 + iwy; refers to the
positive/negative complex QNM frequencieg"\tx >0
andw?\[, > 0 indicate the inverse damping time and the
oscillation frequency of each mode respectively). The
sum over’ comes from the fact that an ordinary spheri-
cal harmonic%7,, (0, ¢) (used as expansion basis to de-
fine ¥,,,,) can be expanded in the spheroidal harmonics
Serm (ac, 0)ei™? characterizing the angular dependence
of the Kerr-background QNMs [54].

an improved way ofnatchingthe inspiral-plus-plunge
waveform to the ring-down one, on a multi-toothed
“comb” (t,,, — pd,tym, — (p—1)0, ... ti — O, b, bt +

0, ..., tm~+pd), centered around some “matching” time

L.

Here, as before, we work with anetric-level (“h"), rather than
curvature-level (“14"), waveform. However, we normalize here this
metric waveform in the same “Zerilli-Moncrief” way as in thest-
mass work [22]. This differs simply by a numerical factor rfro
both the usual tensor-spherical harmoniésm) metric amplitudeh,,,
and the related metric variable@*’X extracted from the NR evolu-

{m
tfon [30]: Rhem = +/(E+ 2@+ DEE—1) (W) +iw()) =

L (@, — i @,
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e Finally, we define our complete EOB matched wave-
form (from¢ = —ocotot = +00) as

to the fact thaf2(¢) tends exponentially towards zero as

t — +o0o we have added a (“cut-off”) constanto the
first denominatotr(2)2. As discussed in [22], one can

a priori analytically determine a “good” value of the
NQC-modulus parameter by requiring that the mod-
ulus of the full EOB insplunge waveform (1) be max-
imum at the “EOB-light-ring”, i.e. when the EOB or-
bital frequency2 reaches a maximum. Ref. [22] men-
tioned that, in ther << 1 limit, this requirementimplied

a = 1/2. We found, by numerically exploring the mod-
ulus of WIPI™ee (1) that the same value,= 1/2 (to-
gether withe = 0.12), can be used in the case= 1/4
considered here. Concerning the NQC-phase parameter
b we simply choosé = 0. [Note that the comparable-
mass resummed EOB waveform of [24] uses a refined
estimate for the additional phagg, of W5 e° (1)
compared to the one used in [22].]

UEPB () = 0(tm — )T5EP"E(2)
+ Ot — 1) Uhs = (1) 3)

whered(t) denotes Heaviside’s step function. Note that,
if one wanted to have &< transition between the two
waveforms one could repladét — ¢,,,) by one of Lau-
rent Schwartz’s well-known smoothed step functions
(or “partitions of unity”)0.((t — ¢,,)/(2p9)).

Let us now state the specific choices made here for the var-
ious EOB ingredients just recalled. Some of these choices
correspond to various ways of “flexing” the EOB formalism
(in the sense of Ref. [26]).

o We “flex’ the currently known 3 PN-accurate EOB e Concerning the choice of QNMs we recall that the dis-

Hamiltonian [4, 44] by introducing an (effective) 4 PN
Hamiltonian parameter;, parametrizing an additional
contribution +asv/r® in the main EOB radial func-
tion A(r). This parameter has already been intro-
duced (under varying notations) in several previous
works [5, 23, 24, 26, 27].

Similarly, the EOB radiation reaction force (defined by
Eq. (17) of [24]) is “flexed” by allowing the Padé-
resummation parametey,, . to differ from the “stan-

dard” valuev)' (v) advocated in [1].

In addition, we shall also briefly explore another phys-
ically natural flexibility in the radiation reaction, which
was introduced (and shown to be physically needed for
faithfulness) in [22]: the multiplication of the radiation
reaction by a non quasi-circular (NQC) correction fac-
tor fNQC.

JRR
To define precisely the “insplunge waveform” (1) we
need to specify:

(i) the argument:(¢) used in thefos “brick” within Fao
(see Eq.(10) of [24]). We shall use here= Q2/3
wheref? is theEOB orbital frequency

(i) the Padé resummation of the Taylor expansion
Tl of fy9. As in [24] we shall use #5 Pade.

(iii) the definition of the non quasi-circular (NQC) cor-
rection factoanﬂQc. To do this we follow the rationale
explained in [22]. For convenience, we choose (as sug-
gested in footnote 9 of [22]) factorizedcomplex NQC
factor

2

NQC Pr,
= 1 B ————
22 [ + “(TQ)Q Te

] exp (—Hbfg) , 4)

in whicha (denoted:’ in the cited footnote) affects only
the modulus, and (alias?’) only the phase. To ease
some technical problems during the ring-down linked

cussion of the physical excitation of QNMs in [22] (see
the summary in Fig. 4 there) suggested that it is suffi-
cient to use onlyositive-frequenc@®NMs in the ring-
down waveform (2). This is what we shall do here as
well.

A new feature of the comparable-mass case (w.r.t. the
smallv limit) is the “mixing” between varioug’ QNMs
(with ¢/ # /) that can enter a givefY, m) multipolar
wave. This mixing is due to thealv coupling” terms

in the separated Teukolsky equations and has been dis-
cussed in [19, 54]. However, as emphasized in [19], this
coupling has only a small effect on tlig m) = (2,2)
waveform. We shall neglect it and consider only the
(positive-frequency) QNM modes having the same val-
ues of (¢,m) as the considered multipolar waveform
hem (i.€. (2,2) in the present paper).

On the other hand, contrary to other recent implemen-
tations of the EOB approach [19, 20, 23], we shall
use a matching comb witfive teeth { = 2) andfive
(positive-frequency) QNMsr) = of  +iw)
with £ = 2, m = +2, andn = 0, 1, 2, 3, 4. To estimate
the values (as functions of the mass and spin of the final
black hole) of the damping time and the oscillation fre-
quency of each mode we did the following: (i) for the
first three modes we used the approximate fitting formu-
las given in Appendix E of Ref. [51]; while, (ii) for the
fourth and fifth modes (i.ex = 3, 4) we noticed that the
graphic results of [55] (notably his most relevant Fig. 4)
exhibit anapproximate linearityof the complex QNM
frequencyo;: = as a function of the overtone number
n. [Indeed, the corresponding points in the comptex
plane are approximately aligned.] We then exploited
this approximate linearity to express the needed 3
andn = 4 complex frequencies as linear combinations
of the above-discussed= 1 andn = 2 ones.

Concerning thenatching on a multi-toothed “comb”,
of the inspiral-plus-plunge waveform to the ring-down
one we need to specify the two parameters defining such



a comb, namely the central“matching” timg, and the The integration of the basic EOB dynamical equations
spacing between the teeth of the conibs At/47. In (written in [24]) gives, for each chosen value of the EOB
conformity with the basic idea proposed in the original “flexibility parameters” (notably.s andw,.1.), several impor-
EOB paper [3] we choose as central matching titpe  tant time series, and notably: (i) the EOB orbital frequency
the so-called “EOB light-ring crossing” time; i.e., the Q(tgoB), Wheretgop is the EOB dynamical time scale (mea-
EOB dynamical time when the EOB orbital frequency sured in units ofd/); (ii) the new, resummechatched3 *2-
() reaches its maximum. See [22] for a detailed discusPN-accurate quadrupolar EOB wavefourfi{’® (tgogp); then,
sion of why such a choice is physically preferred. Con-from the latter, one can define (as for the NR case) the
cerning the choice of the comb spacifigwe expect corresponding EOB amplituded59B (tgop), EOB phase,
from [22] that a value of ordef = (7.2M)/4 = 1.8M POB(tron), and EOB frequencwi B (tgop). To com-
will be good. Below, we shall explore values near thispare the NR and EOB phase time-serig§)* (txg) and
one. POB(tpop) one needs to shift, by additive constants, both
one of the time variables, and one of the phases. In other
words, we need to determineand« such that the “shifted”

IV. COMPARING THE NR WAVEFORM TO EOB ONES EOB quantities

As explained in Sec. Il, the basic NR data that we shall
consider is a time-series giving the quadrupolds f.) =
(2,2), Zerilli-Moncrief-normalized] metric waveforni ;' as  «pest fit” the NR ones. One convenient way to do so is first
afunction of the NR time variabfeng (measured in units of o “pinch” the EOB/NR phase difference at two different in-
M = my +ma). Uy (tnr) is a complex number. The NR  stants (corresponding to two different frequencies). Moee
results consist of the real and imaginary partsigf®. It is, cisely, one can choose two NR tim&s%, tY® which deter-
however, more convenient to decompose the complex wavénine two corresponding GW frequendes; = wYR(1NR),
form in modulus (or amplitude) and phase, say wy = wXR(YR), and then find the time shift(w;,ws)

such that the shifted EOB phase difference, between
| and.ws, AGOY(r) = GEOP(FOP) — GEOP(EOP)
Wiy (tnm) = Ady'(tnm) exp (—ighs" (tnw)) . () yEOB({EOB |1y JEOB(EOB | 1) is equal to the correspond-
o L , _ ing (unshifted) NR phase differencep™t = oY (1HR) —
The 27 ambiguity in the phase is fixed by starting with the YR (#NRY. This yields one equation for one unknowr),(

principal value of the argument af}'} at the beginning of and (uniquely) determines a valuéor, w,) of 7. [Note that
the NR simulation,. and then keeping track of theturns as o ws — w1 = wy, limit of this procedure yields the one-
the waveform continuously unfolds. frequency matching procedure used in [18].] After having so
One can then compute the gravitational wave (GW) freyetermined, one can uniquely define a corresponding best-fit
guency as a function of time by (numerically) differentiati phase shiftv(w1, w») by requiring that, SaW;%OB(t;EOB) =
fhe Gl phase GEOP(LEOR) + o = R (T,
Having so related the EOB time and phase variables to the
dpYR NR ones we can straigthforwardly compare all the EOB time
tNR) = dier (6)  series to their NR correspondants. In particular, we can-com
NR pute the (shifted) EOB-NR phase difference

[It can equivalently be obtained by computing the imaginary ,

part of the logarithmic time derivative @33 (txr).] A@r2 DB (INR ) = g5 0 (1FOF) — oy (1°F). (8)
As emphasized in [24], another useful diagnos-

tics of GW radiation is the GW phase acceleration

a=dw/dt = d*¢/dt*> considered as a function of the

GW frequencyw. However, because of the presence of . — o :
some additional high-frequency wiggles ¢gnand w in the ﬁﬁ?g)dmg tas, = 0.06815, wp = 0.2457 (all expressed i/

NR data, we shall not consider here the phase-acceleration To numerically implement the EOB/NR comparison we

curvea(w). Instead, we shall directly compare the numerical d h | for th . “Hlexibil
GW amplitude, phase and frequency to their analytical EOB'¢® to choose some values for the various “lexibility param
' ' eters” of the EOB framework. We have summarized above
counterparts. -
what are these parameters, and we have already indicated the
values we chose for some of them. Among the remaining ones

that need to be chosen, the two most crucial ones.asnd

/ 'EOB __ ,EOB
lgop =tEOB + 7, @ = @30 + (7)

NR
way

In the following we will chose two matching instants (and
corresponding frequencies) that take place during lafgrials
and plunge, namelytf® = 999.72, tJ® = 1494.94 corre-

7 Note that in [22] we used the lettérto denote the full widthAt of the
comb.

8 As mentioned in Sec. Il, we use the waveform extracted at ardaoate)
radius Ryg = 120M. ~ 120M, anding is the time of the “observer” 9 Alternatively, one can start by giving oneself , w2 and determine the NR
located at the latter radius. instantst)'® | +Y'F at which they are reached.



vpole. Recently, Damour and Nagar have shown, by usingital frequency (also called “EOB-light-ring”). The intex
some of the data published in [18], that thepiral waveform  between the two vertical lines (LSO and “EOB-light-ring”)
(for GW frequencies smaller than about4 /M) could be re-  defines the “plunge”. The dashed vertical line on the left (at
markably well matched by the EOB one if one chose valuesyr = 1482) indicates the crossing time of the adiabatic Last-
of a5 andwvyee following the rather precise correlation plot- Stable-Orbit ¢-LSO in the sense of [3]). Note that the three
ted in the upper panel of Fig. 3 in [24]. Here, as we are ex{frequencies are initially close to each other, but thagr]at
ploring a different physical regime (late inspiral, plurgyed 2 separates fromd* andwl°B, which continue to be in
coalescence, with GW frequencies mostly larger than aboutery close agreement, except for a slight discrepancy aoun
0.1/M), and comparing to a different set of numerical data,merger, which, within the EOB approach, is conventionally
we shall not a prioriimpose the precise correlation betwgen supposed to take place at the maximunilofNote also the
anduy.1. found in [24]. However, we shall make use of some good agreement between the EOB GW frequency during the
previous results suggesting a preferred range for the saifie ringdown plateau, and the average of the NR one. As dis-
as. On the one hand, Ref. [23] showed that #ffectualness cussed in Sec. Il the values for the mass and dimensionless
of (restricted) EOB waveforms against NR coalescence wavespin of the final black hole that we used (together with [51])
forms was largest whemn; belonged to some rather wide inter- to compute the QNMs frequencies afe; ™ = 0.959165M,

val (which also depended on the considered mass ratio). Sg?ing — 0.684639.

Fig. 2 (right panel) in [23] from which one might conclude The top-right panel of Fig. 1 shows the EOB-NR phase dif-
thatas lies probably betweer 10 and~ 100. Buonanno et  farence. Eq. (8), (“pinched” at the two instantd®, Y&,

al. then chose; = 60 as “best fit” value. On the other hand, 4ien above). It is remarkable that the (two-sided) EOB-
Ref. [24] found that the phase agreement between (resummea,p phase difference over the time intery&89.7, 1524 )

EOB waveforms and a rather long inspiral NR waveform WaSwhich covers about 12 GW cycles of inspiral, plunge, and
at its best whem; lied in a similarly wide interval (between early ring-down) is smaller than about10.068 radians,

~ 10 and~ 80) centered arounds ~ 40. In view of these | hich corresponds te-0.005 GW cycles. 2

results we shall focus, in the following, on two represenéat The bottom-left panel of Fig. 1 compares the NR GW
values ofas, namelyas = 25 (representative of the leftward- amplitude to the resummett-2-PN accurate EOB one. It
side of preferred:; values), andis = 60 (representative of 5156 shows the orbital frequenéy as an help to locate the
the rightward-side of preferred; values, and chosen as best erger. One notices a very good agreement between the two
value by [23]). We have also checked that the values;of  gmplitudes. During the intervall 10017, 14000/) the frac-
between 25 and 60 lead (with appropriate choicegfe) 10 tional EOB-NR amplitude difference varies between%
results that are at least as good as the ones we shall exhibifq 197 After txg = 14000, this fractional difference

below. increases from+1% to a maximum of+18% (reached at
tnr ~ 1509M) and then decreases to take values of order
—5% during the observationally relevant part of the ringdown.
A. Comparing NR to resummed EOB for a5 — 25 Note also that the NR equal-mass amplitude (divided bye.
by 1) time series is qualitatively, and even quantitativelyyve
, ) i . ... similar to the corresponding NR test-mass amplitude time se
At this stage we have essentially fixed all the flexibility jes shown in Fig. 3 of [22]. For instance, the value of the max
of the EOB formalism apart from the choices @f,ie, and  jmym amplitude isv 0.3 in both cases. A similar qualitative,
of the comb spacing. Among these two parameters, only ,,inotquantitative, parallelism exists for the two correspond-
the former oney,qc, is important for getting a very accurate ing frequency time series (the= 1/4 frequency levelling off
phase agreement between EOB and NR. Wiier= 25, we 515 higher “plateaur).

found (by trial and error) thét v,1. = 0.6241 (together with Finally, the bottom-right panel of Fig. 1 compares the real
6 = 1.7M; whichis, however, less crucial) yields an excellent , o i< of the NR and EOB waveforms. The two vertical

EOB/NR agreement. We exhibit our results in the four panel ines delimit the interval between LSO and “EOB-light-ring

of Fig. 1. ) Again the agreement between the two waveforms is impres-

The top-left panel of Fig. 1 compares the NR GW fre-gjye. Note that this last panel shows only the late inspiral,
quency both to the (matched) EOB GW frequency, and tgjunge and ringdown. From the panel showing the phase dif-
twice the orbital frequency. The time axis igr, and/or  ference, one can gather that the agreement stays as invgressi

(see above)yop = teos + 7 (With 7 = —2032M forthe  gyer a much longer time span of orde#001/ (essentially
present case). The vertical lines on the right indicate &me C  from ¢\ ~ 5000 to the end of ringdown).

ter and the outlying “teeth” of our matching comb, which is,
as explained above, centered on the maximum of the EOB or-

B. Comparing NR toresummed EOB for a5 = 60

01 , N . Let us now consider our second representative value of the
ough we did not investigate thoroughly what “error barh &z put on frective 4 PN radial potential parameter. — 60. As be-
such a “best” value ofy,,1, the numerical studies we did indicate that a €liec p p b = :
change of£2 on the last (i.e. fourth) digit that we quote is sufficient to fore we chosé = 1.7M;. We also selected the same phase
entail a visible worsening of the phase differensg5OBNE, “pinching” interval as above. Then, by trial and error, we



0.25

0.2-
)
g
5 0.15-
@
=
z
g 0.1
I
oy
3
0.05-
ok
19100 1450 %500 1550 1600 600 800 10%0 1200 1400 1600
NR NR
0.35 !
0.3 !
0.25 !
0.2 !
0.15; !
0.1 !
NR v
0.05 Oy R
-0.3- Eotﬁ v
7”D[ll—‘22 /v ! 11"‘
1%00 1250 1300 1350 %400 1450 1500 1550 1600 1200 1250 1300 1350 %400 1450 1500 1550 1600
NR NR

FIG. 1: Comparison between EOB and NR waveformsafor= 25 andwvpoie = 0.6241: frequencies (top-left), phase difference (top—right),
amplitudes (bottom-left) and real parts (bottom-right)tiué two gravitational waveforms. The vertical linetatr = 1509 locates the
maximum of (twice) the orbital frequendy (alias the “EOB-light-ring”) and indicates the center of auatching comb (whose total width is
indicated by the two neighboring vertical lines in the tagitpanel). The vertical dashed linetaf* = 1482 indicates the crossing time of the
adiabatic LSO orbital frequency2{.so = 0.1003).

found thatv, .1 = 0.5356 yields an excellent EOB/NR agree- ~ Some of the numbers quantifying the EOB/NR agreement
ment?L, are:

We exhibit our results in the four panels of Fig. 2, which
are entirely parallel to those of Fig. 1. The remarkablellef’e ) i . i
EOB/NR agreement that we get now, when= 60, is rather (i) the (two-sided) EOB—N_R phase difference over the time
close to the one that we got above when= 25. At this mtgrva_l (500M, 1550M) (which covers about 1_3 GW cycles
stage, there is no rationale for saying that either valuesof ©f 'nSP'V?l- plunge, and most of the ring-down) is smallerth
is preferred over the other (though = 25 yields somewhat ~about+30.13 radians, which corresponds #€0.01 GW cy-
better results). Some partial numerical tests that we pedd ~ Cles;
suggest that this conclusion extends to (at least) all gatfie

as betweer25 and60. N . . .
(i) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies betweei).8% and
4+0.55%. After txg = 1400M, this fractional difference in-
11 Note that this “best” value of, 1. (for as = 60 andv = 1/4) happens creases from0.55% to a maximum of+23% (reached at
to be numerically close to the best fitting, . ~ 0.53 value that Ref. [24] ~ INR = 1_511M) and then decreases to take Value§ of order
found in the test-mass limit — 0. +6% during the observationally relevant part of the ringdown.
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adiabatic LSO orbital frequency2{.so = 0.1081).

C. Contrasting resummed EOB with restricted EOB, for (Newtonian-order and Kepler-law-assuming) restricted
as = 60, by comparing NR to a standard restricted EOB quadrupole waveform
waveform
NK(p\ _ T 02/3 o
Finally, we wish to illustrate the importance (for reaching Voo (1) = —4v \/ 3()Q exp(—2i®) , ©)

a high level of faithfulness) of the various ingredientsdise
our present, resummed version of EOB (using a time-extended without any explicit PN £52) corrections, nor any NQC
“comb matching” to 5 QNMs) by comparing NR to the type of (a, b) corrections.
simpler implementation of the EOB framework used in [23].
Using agairus = 60 (which was chosen as bestvaluein [23]),  ® we use only3 (positive-frequency) QNMs.
we compare NR to the following implementation of EOB:
e and, we match the plunge and ring-down waveforms

o we use forv,ele the “standard” values) i (v) advo- in a very small interval {/M; = 0.2 instead of our

cated in [1]. preferredl.7) around the maximum of the orbital fre-
quency. [Indeed, the matching of the two waveforms
e we use (as originally proposed in Ref. [3]) the following and their derivatives at a sharply defined moment is
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(Qrso = 0.1081).

equivalent to considering the— 0 limit of our comb- (because of the too localized matching, and —to a lesser
matching technique]. degree —the use of only 3 QNMS).

The results of such a coarser EOB implementation are e the EOB-NR (maximal) phase difference over the same
shown in Fig. 3 (which is parallel to the previous two figures) time interval(500M, 1524 M) is about 2.2 times larger
By contrasting Fig. 3 with Fig. 2 (which used teame value than before. One now ends up with a phase difference
of a5), we see that: of 1%0.29 radians, i.e.0.023 GW cycles over about

13 GW cycles. The top-right panel of Fig. 3 illustrates
o the EOB frequency agrees less well with the NR one the fact that matching with 5 QNMs (dashed line) re-

than before, especially around the matching point. duces the dephasing accumulated during the transition
Note in particular that the post-matching analytical fre- from merger to ringdown.

quency jumps up from the maximum (doubled) or-

bital frequency significantly more vertically than be- e the modulus of the analytical waveform is now dis-
fore, thereby decoupling too soon from the exact fre- tinctly larger than the NR one during the inspiral (be-

guency, and accruing a larger dephasing than before cause of the lack of PN corrections).
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e the modulus also exhibits a more significant discrep-a long, very accurate equal-mass inspiral simulation of the
ancy (¢-35%) with the NR one at the end of the plunge Caltech-Cornell group [18]. It was found that an excellent
(because of the use of the Kepler-law-assuming EOB/NR agreement was obtained when and vy, were
2/3, which, as pointed out in [53], tends to overesti- following the rather precise correlation plotted in the up-
mate the amplitude). per panel of Fig. 3 of Ref. [24]. Let us denote this cor-

relation asas — o ='PIal) 0 the present paper,

e Note also that one visually notices these differences %e similarly found ?0 N

l .
the level of the GW waveforms. hat the EOB/NR agreement was at its

best when, for a giveas,* Upole Was taking a rather pre-

e The same resummed-EOB/restricted-EOB comparisogise corresponding “best fit value”, saazest insplunge ().

ole

was done in [22], in the < 1 case, with similar con- |, particular, we foundvbc]stinsplungC(%) — 0.6241 and
clusions. ¢ insplung o
ust permSPIUNE(60) = 0.5356. On the other hand, the
In spite of these relative blemishes, note, however that thiresults of [24] yield v‘;gf;i“sf’iral(%) = 0.5340, and

“coarser” EOB-type implementation still succeeds in falo  best inspiral 60) = 0.4856. The differences between these set
ing the phase of the exact signal+@.023 GW cycles over ~ Pol° (60) ' '

about 13 GW cycles. of values areypo "P1Ee(25) — Pt NP (95) = 0.0901

Note that the corresponding EOB/NR agreement exhibitedind v o P "#°(60) — v25t ™P**(60) = 0.0500. Note
in Fig. 4 of Ref. [23] seems to be somewhat béftéhan the  also that the “best insplunge’,... values are in between
one exhibited by our Fig. 3. This difference might have sev-the “best inspiral” ones and the originally advocated [1¢on
eral origins, notably: (i) a difference in the accuracy & MR ugjﬁ(u = 1/4) = 0.6907. This finding will deserve fur-
data?®, and (ii) a difference in the procedure used to best shifther investigation in the future. At this stage we can only
time and phase between EOB and NR data. speculate on the various possible origins of this diffeeenc

(i) it might be due to the fact that, not having access to the

original NR data of [18], Damour and Nagar had to rely
V. CONCLUSIONS on rather coarse measurements extracted from published fig-

ures; (ii) it might be due to systematic errors in the NR data

We have compared a recently proposed, resungriéd®N  of [18]; (iii) it might alternatively come from systematic-e
accurate Effective-One-Body (EOB) waveform to the resultrors in the NR data used in the present paper; (iv) it might
of a numerical simulation of a coalescing equal-mass binargome from the fact that the “best-fit%,, (vpole) is not a uni-
black hole performed at the Albert Einstein Institute. Welfin form approximation (as a function of frequency) to the ex-
a remarkable agreement, both in phase and in amplitude, béct radiation reaction (see, in the — 0 limit, the bottom
tween the new EOB waveform and the numerical data. Morg@anels of Fig. 1 in [24]) and, finally, (v) it might come from
precisely, we find that the maximal dephasing between EOBome “missing physics” in the resummed EOB waveform ex-
and numerical relativity (NR) can be reduced bele®w.005  plored here. There are several candidates for this missing
GW cycles over the last- 9000 (corresponding to about physics. One suggestion (which follows the original sugges
12 GW cycles plus ringdown ones) of the simulation. Thistion of [5]) is that one might need to consider still higher
level of agreement was exhibited for two representative val(uncalculated) PN contributions to the radial EOB potéfitia
ues of the effective 4 PN parametey, namelya; = 25  A(w) = 1 — 2u + 2vu® + agvu + asvu® + agru’ + - -
andas = 60, and for a corresponding, appropriately “flexed” whereu = 1/r. Another suggestion is that non-quasi-circular
value of the radiation-reaction resummation parametgr.  (NQC) corrections to radiation reaction might modify the
In addition, our resummed EOB amplitude agrees to bettephasing during late inspiral and plunge. As an example, we
than thel % level with the NR one up to the late inspiral. have looked at this possibility. More precisely, followif2],

We have also compared the NR data to a coarser implemem+e can introduce a new flexibility parametai® 16 such that
tation of the EOB approach (restricted waveform, standardhe radiation reaction force is multiplied by a correctiantbr
vPI® | instantaneous matching to 3 QNMs). The EOB/NR f12° given by
agreement is slightly less good in this case, though thegphas
agreement remains quite goott((.023 GW cycles over the
last~ 1000M of the simulation).

Let us point out a notable feature of our results. In4Though we did not explore all possible valuesagf we sampled interme-
the recent work of Damour and Nagar [24], the same re- diate values between the representatiye/alues we picked and convinced

summed3+2-PN accurate EOB waveform was compared to ourselves that the same conclusion held for them.
P 15 For simplicity, we consider only linear-in-higher PN contributions. If

the need arises (and the fact that the unequal-mass EOB/MBacsons
of [23] seem to exhibit a strong dependence on the mass rajitt suggest
it) one can easily add in a non-lineardependence.

12 The reader should however keep in mind that in Fig. 4 of Red] fae  “°Actually [22] introduced a parameter™™ which is, roughly, the neg-
EOB-NR phase difference is divided By compared to the one showed in ~ ative of a®, with a NQC radiation reaction factor of the forin +
our Fig. 3. aRRp2 /(rQ2)?

13 The data used in [23] were not benefitting from the reducticeccentricity
used in the data considered here.
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tion with other recent works on the EOB/NR comparison, con-
firms the ability of the EOB formalism to accurately capture
the general-relativistic waveforms. The present work hss a
shown that the recently proposed resumnied-PN accu-
rate waveform is important for defining analytical EOB wave-

Such a factor will be very close to one during the inspiralforms wich faithfully represent (both in phase and in ampli-
(and therefore be negligible in the EOB comparison to theude) the waveforms emitted by equal-mass coalescing (non-

Caltech-Cornell data), but will start being significantgss
than one (ifa®® > 0) during the late inspiral and plunge,

which are of interest for the comparison to the presently con
sidered data. And indeed, we have found that by choosing

a valuea®™® ~ +40 (ande = 0.12 as in the waveform
NQC factor considered above) we could, when = 25,
obtain an excellent EOB/NR fit by using the “best inspi-

ral” value vpert P (25) = 0.5340 (instead of the above

Efjg msplunge (95) = (.6241). However, this resultis not quite

satisfactory because the numerical vaiii&® ~ +40 is un-
comfortably higher than the a priori expected® ~ O(1).

spinning) black hole binaries.
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