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We continue the program of constructing, within the Effective-One-Body (EOB) approach, high
accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling
and coalescing binary black holes. We present the comparable-mass version of a new, resummed
3 PN-accurate EOB quadrupolar waveform that we recently introduced in the small-mass-ratio
limit. We compare the phase and the amplitude of this waveform to the recently published results
of a high-accuracy numerical simulation of 15 orbits of an inspiralling equal-mass binary black hole
system performed by the Caltech-Cornell group. We find a remarkable agreement, both in phase and
in amplitude, between the new EOB waveform and the published numerical data. More precisely:
(1) in the gravitational wave (GW) frequency domain Mw < 0.08 where the phase of one of the non-
resummed “Taylor approximant” (T4) waveform matches well with the numerical relativity one, we
find that the EOB phase fares as well, while (ii) for higher GW frequencies, 0.08 < Mw S 0.14,
where the Taylor T4 approximant starts to significantly diverge from the numerical relativity phase,
we show that the EOB phase continues to match well the numerical relativity one. We further
propose various methods of tuning the two inspiral flexibility parameters, as and vpole, of the EOB
waveform so as to “best fit” EOB predictions to numerical data. We find that the maximal dephasing
between EOB and numerical relativity can then be reduced below 107 GW cycles over the entire
span (30 GW cycles) of the simulation (while, without tuning them, the dephasing is < 8 x 1073
cycles). In addition, our resummed EOB amplitude agrees much better with the numerical relativity
one than any of the previously considered non-resummed, post-Newtonian one (including a recently
derived, non-resummed 3 PN-accurate one). We think that the present work, taken in conjunction
with other recent works on the EOB-numerical-relativity comparison confirms the ability of the
EOB formalism (especially in its recently improved avatars) to faithfully capture the “real” general

relativistic waveforms.

PACS numbers: 04.25.Nx, 04.30.-w, 04.30.Db

I. INTRODUCTION

A ground-based network of interferometric gravita-
tional wave (GW) detectors is currently taking data. Co-
alescing black hole binaries are among the most promis-
ing GW sources for these detectors. In order to suc-
cessfully detect GWs from coalescing black hole binaries
and to be able to reliably measure the source physical
parameters, one needs to have in advance a large bank
of “templates” that accurately represent the GW wave-
forms emitted by these binaries. In the terminology of
[1] one needs templates that are both effectual and faith-
ful. The construction of faithful GW templates for co-
alescing binaries comprising spinning black holes (with
arbitrary masses mi, mo and spins Sp, S3) poses a dif-
ficult challenge. Due to the multi-dimensionality of the
corresponding parameter space, it seems impossible for
state-of-the-art numerical simulations to densely sample
this parameter space. This motivates the need to develop
analytical methods for computing (as a function of the
physical parameters my, ma, S1, S2) the corresponding
waveforms. The Effective-One-Body (EOB) method [2-
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5] was developed to analytically represent the motion of,
and radiation from, coalescing binary black holes with
arbitrary masses and spins. As early as 2000 [3] this
method made several quantitative and qualitative predic-
tions concerning the dynamics of the coalescence, and the
corresponding waveform, notably: (i) a blurred transition
from inspiral to a “plunge” that is just a smooth contin-
uation of the inspiral, (ii) a sharp transition, around the
merger of the black holes, between a continued inspiral
and a ringdown signal, and (iii) estimates of the radiated
energy and of the spin of the final black hole.

The recent impressive breakthroughs in numerical rel-
ativity (NR) [6-20] have given us access to extremely
valuable, and reliable, information about the dynamics
and radiation of binary black hole coalescence. It is com-
forting (for theorists) to note that the picture which is
emerging from the recent numerical simulations (for a
review see [21]) broadly confirms the predictions made
by the EOB approach. This gives us confidence in the
soundness of the various theoretical tools and assump-
tions used in this approach, such as the systematic use
of resummation methods, notably Padé approximants (as
first suggested in [1]).

An important aspect of the EOB approach (which was
emphasized early on [5]) is its flexibility. As was men-
tioned in the latter reference “one can modify the ba-
sic functions [such as A(u)] determining the EOB dy-
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namics by introducing new parameters corresponding to
(yet) uncalculated higher PN effects.[...]. Therefore,
when either higher-accuracy analytical calculations are
performed or numerical relativity becomes able to give
physically relevant data about the interaction of (fast-
spinning) black holes, we expect that it will be possible to
complete the current EOB Hamiltonian so as to incorpo-
rate this information”. Several aspects of the EOB flexi-
bility have been investigated early on, such as a possible
“fitting” of a parameter (here denoted as as), represent-
ing unknown higher PN effects, to numerical relativity
data [22] concerning quasi-equilibrium initial configura-
tions [23, 24], and the extension of the EOB formalism
by several new “flexibility parameters” [25], and notably
a parameter, here denoted as vpoe, entering the Padé re-
summation of the (energy flux and ) radiation reaction
force.

In view of the recent progress in numerical relativity,
the time is ripe for tapping the information present in
numerical data, and for using it to calibrate the vari-
ous flexibility parameters of the EOB approach. This
general program has been initiated in a series of recent
papers which used 3-dimensional numerical relativity re-
sults [26-29]. In addition, numerical simulations of test
particles (with an added radiation reaction force) moving
in black hole backgrounds have given an excellent (and
well controllable) “laboratory” for learning various ways
of improving the EOB formalism by comparing it to nu-
merical data [30]. The latter work has introduced a new
resummed 3 PN-accurate quadrupolar waveform which
was shown to exhibit a remarkable agreement with “ex-
act” waveforms (in the small mass ratio limit). In the
present paper, we shall present the comparable-mass ver-
sion of our new, resummed 3 PN-accurate quadrupolar
waveform and compare it to the published results [20]
concerning recent high-accuracy numerical simulation of
15 orbits of an inspiralling equal-mass binary black hole
system. We then show how the agreement between the
two (which is quite good even without any tuning) can
be further improved by tuning the two main EOB flexi-
bility parameters: as and vpole. Our work will give new
evidence for the remarkable ability of the EOB formalism
at describing, in fine quantitative details, the waveform
emitted by a coalescing binary.

II. CALIBRATING wvpoie, IN THE
SMALL-MASS-RATIO CASE, FROM
NUMERICAL DATA

As a warm up towards our comparable-mass flexibil-
ity study, let us first consider the much simpler small-
mass-ratio case, v < 1. Here, v denotes the symmet-
ric mass ratio v = myma/(m1 + mz)? of a binary sys-
tem of non-spinning black holes, with masses m; and
mao. We also denote M = my + mo (“total rest mass”),
and p = myma/M (“effective mass for the relative mo-
tion”), so that v = u/M. In the small-mass-ratio limit

v < 1, the conservative dynamics of the small mass (say
mg ~ ) around the large one (m; ~ M) is known,
being given by the Hamiltonian describing a test parti-
cle p in the background of a Schwarzschild black hole
of mass M. On the other hand, the energy flux toward
infinity, say F' = (dE/dt)™, or the associated radiation
reaction force Frgr, cannot be analytically computed in
closed form. One must resort to black hole perturbation
theory, whose foundations were laid down long ago by
Regge and Wheeler [31], and by Zerilli [32] (for the non-
spinning case considered here). The waveform emitted
by a test particle is then computed by solving decou-
pled partial differential equations (for each multipolarity
(¢,m) of even or odd parity 7) of the form

Ohig = 02 b + V(e i) = 570 (1)

Im >

where VZ(W) is an effective radial potential and where the

source term Sé;? [32-34] is linked to the dynamics® of
meo ~ u around mq ~ M.

At this stage we have two options for solving Eq. (1):
(i) use numerical methods, or (ii) use an analytical ap-
proximation scheme for solving (1) by successive approx-
imations. The numerical approach led, long ago, to the
discovery of several important features of gravitational
radiation in black hole backgrounds, such as the sharp
transition between the plunge signal and a ringing tail
when a particle falls into a black hole [36]. The analyt-
ical approach to solving Eq. (1) by successive approxi-
mations, of the post-Newtonian (PN) type, has been re-
cently driven to unprecedented heights of sophistication
(and iteration order). See [37] for a review.

Our purpose in this introductory section is to illus-
trate, on a simple case, how accurate numerical data can
be used to optimize the resummation of PN-expanded
analytical results. We consider the case of a particle on
a circular orbit. The numerical solution of this prob-
lem [38, 39] leads to an accurate knowledge of the radi-
ated energy flux F as a function of the orbital radius, or
equivalently (and more invariantly) of the “velocity pa-
rameter” v = (GMRQ)Y/3. See Fig. 1 where the solid
(“Exact”) line represent the “Newton-normalized flux
function”
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FN((UU) ;o with  Fn(v) = %Vzvlo .

(2)
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On the other hand, post-Newtonian perturbation the-
ory allows one to compute F'(v) as, essentially, a Taylor

L As discussed in [30, 35] the small-mass-ratio limit of the EOB
formalism leads to a generalization of the Regge-Wheeler-Zerilli
formalism in that the dynamics of the sourcing particle p is not
taken to be geodesic, but is assumed to be modified by a radiation
reaction force Frr. The main issue of interest here is to optimize
the resummation of the analytical approximation to Frgr, which
is given by a badly convergent post-Newtonian expansion (known
only to some finite order).



series in powers of v (modulo the appearance of loga-
rithms of v in the coefficients A,, when n > 6, except for
n="17) [37], say

FTlor(y)y =1 4 Agv? + Azv® + -+ A" - . (3)

It was emphasized by Poisson [39] that the successive
Taylor approximants obtained from Eq. (3) converge
both slowly and erratically to the numerically determined
“exact” F'(v). Subsequently, Ref. [1] pointed out that
the resummation of the series (3) by means of succes-
sive (near diagonal) Padé approzimants led to a much
better sequence of approximants. See Fig. 3 in Ref. [1]
for a comparison between Taylor approximants and Padé
approximants. The convergence of the sequence of Padé
approximants was found to be much improved (the v® ap-
proximant being already very close to all its successors),
and to be monotonic. This led to the suggestion of us-
ing such Padé approximants also in the comparable-mass
case, though we do not know (yet) the finite-v analog of
the exact flux function F(v; v).

The Padé resummation advocated in Ref. [1] involves
one flexibility parameter, vpole, which parametrizes the
location of the (real and positive) pole of the Padé-
resummed F Pade (q, Upole) Which is closest to the ori-
gin in the complex v plane. Technically speaking,
FPade(yi0501e) is defined as (1 —v/vpole) ~! times the rel-
evant near-diagonal Padé approximant 2 of the Upole —
modi fied Taylor series F'T1or (y v 1.) = FTavler(y) —
(0/Vpote) FT¥1" (1) = 1 — v/vpote + A2v? + ---. Ref. [1]
advocated to use, as a fiducial value for vpole; Upole =
1/4/3 = 0.57735 in the test-mass limit v — 0, and a
slightly larger, v-dependent value, say vgglsé(u) (moti-
vated by Padé resumming an auxiliary “energy function”
e(v; v) ) given in Eq. (4.8) there. Here, we point out that,
when v — 0, a slightly different choice for the numerical
value of vpele can very significantly improve the closeness
between the Padé flux and the exact (numerical) one.

Our results are displayed in Fig 1 (a) and (b). In
both panels, the solid line represents the “exact” result
for the flux function F'(v) as numerically computed by
Poisson. In the upper part of Fig 1 (a) one compares
FExact(p) to two different Padé (P$) approximants re-
summing the same v!'-accurate (or 5.5 PN) Taylor ap-
proximant [40]: the “standard” FF2d°(v; v, = 1/v/3)
and a “vpole-flexed” [25] version of F Pade (1 vpole) using
the optimized value vggfg (5.5PN) = 0.5398. This choice
of vpole yields a Padé approximant which is amazingly
close to the exact value. The lower panel of Fig. 1

2 Given a certain order for the Taylor approximant, say FrrTaylor —
1+---+o", the general prescription is to resum it with a near-
diagonal Padé, P]*, such that m +n = N and n = m + € with
e =0or 1. In the (exceptional) cases where such a near-diagonal
Padé contains a “spurious pole” (i.e., a real pole between 0 and
Upole), one should use another choice for m and n (staying as
close as possible to the diagonal m = n).

3

(a) exhibits the differences A = FFade _ pExact o,
the two choices of vpole. While the standard choice of

Upole (namely 1/v/3 = 0.57735) leads to a rather good
agreement (with |A| being smaller than 5 x 1073 up to
v ~ 0.355, which corresponds to a radius r = 7.93GM,
and |A| reaching 2.4 x 1072 at the Last Stable Or-
bit (LSO) at r = 6GM), the “flexed choice” vPet =
0.5398 4+ 0.0001 yields an amazing agreement all over the
interval 0 < v < vpgo = 1/\/6 = 0.40825 . The largest
value of |A| over this interval is max|A| ~ 9 x 10~%, and
is reached around v = 0.38. Note that the 4-digit accu-
racy quoted for Uggfé = 0.5398 £+ 0.0001 corresponds to
(somewhat arbitrarily) imposing that the value of |A| at
the LSO is smaller than about 1 x 10™%. The rounded off
value vpole = 0.54 would still yield an amazing fit with
max|A| ~ 1073,

In Fig. 1 (b) we explore what happens when using a
much lower accuracy for the Taylor approximant of the
flux. We consider here, as an example of relevance for
the finite v case, the case where one starts from a v%-
accurate (3PN) Taylor approximant for the flux3. For
that case the standard-choice vpole = 1/ v/3 still leads to a
rather good agreement ( with |A| < 1072 up to v ~ 0.325
and |AlrLso =~ 5 x 1072), while the flexed choice Uggfé =
0.53 yields an excellent agreement all over the interval
0 < v < vpso (with max|A| ~ 3 x 1073 being reached
around v ~ 0.355). Though the closeness is less good
than in the 5.5 PN case (3 x 1072 versus 0.9 x 1073), it is
even more amazing to think that, starting from a 3PN-
expanded flux function which (as shown, e.g., in Fig. 3
of Ref. [1]) differs from the exact result when 0.3 Sv S
vrso by about 10%, a suitably flexed Padé resummation
can decrease the difference below the 3 x 1072 level!

Summarizing: In the small v limit, the value of the
flexibility parameter vpole can be calibrated to yield an
excellent agreement (from 3 x 1072 to 0.9 x 1073 de-
pending on the PN accuracy) between the Padéed flux

function FPade (v; Upole) and the numerically determined

“exact” flux F' Exact(y)) all over the interval 0 < v < vrso.
This gives an example of the use of accurate numerical
data to calibrate a theoretical flexibility parameter enter-
ing the EOB approach. In the following, we shall consider
the equal-mass case, v = 1/4, and investigate to what ex-
tent accurate numerical data [20] can be similarly used
to calibrate the two main EOB flexibility parameters as
and Up01e4-

3 The result for the v7-accurate expansion would be very simi-
lar and the final difference would be invisible to the naked eye.
However, as we shall mention below, some problems with spuri-
ous poles creep up in the near diagonal 3.5 PN Padé approximant
when v = 1/4 and wvpele < 0.55. Therefore we prefer to exhibit
here the spurious-pole-free 3 PN Padé case.

Note that, as already suggested in Ref. [1], one expects the “true”
value of vyl to depend on v. Therefore, we cannot a priori

assume that the above best values, say vggf; ~ 0.53, will yield a

close agreement for the flux function (or the radiation reaction)



III. NEW, RESUMMED 3 PN-ACCURATE EOB
INSPIRAL WAVEFORM

After having considered the importance, for fitting
high-accuracy numerical data, of the flexibility parame-
ter vpole in the simpler small-mass-ratio limit, we wish
to move on to the observationally urgent comparable
mass case 4v ~ 1. As we are going to see, this case
involves two, rather than one, relevant flexibility param-
eters: vpole (entering radiation reaction) and a5 (entering
the conservative orbital dynamics). To understand the
meaning of these parameters when 4r ~ 1, let us present
the comparable-mass version of the new, improved “ver-
sion” of EOB which has been introduced in Ref. [30]
and shown there to exhibit a remarkable agreement, in
phase and in amplitude, with “exact” small mass ratio
NR waveforms. Ref. [30] considered the small v limit,
but with the clear methodological aim of using this limit
to test improved EOB waveforms defined for any value
of v. We here continue this program by comparing this
improved EOB waveform to the recent numerical relativ-
ity data of [20]. The improvements in the EOB approach
introduced in Ref. [30] concern several of the separate
“bricks” entering this approach. Indeed, it included: (i)
a resummed, 3 PN-accurate description of the inspiral
waveform, (ii) a better description of radiation reaction
during the plunge, (iii) a refined analytical expression of
the plunge waveform, and (iv) an improved treatment of
the matching between the plunge and ring-down wave-
forms. As the present paper will compare this improved
EOB approach to the inspiralling NR results of [20], we
shall only make use here of the improvement (i).

A. Improved, resummed 3PN-accurate waveform

The new, resummed 3PN-accurate inspiral waveform?®
derived in Ref. [30] takes the form (when neglecting the
“non quasi-circular” flexibility parameters, a and b, in-
troduced to better represent the “plunge” which follows
the inspiral)

RC2 inspira/ ™ —92i
(—GM> 22p l(t) = —8\/;1/(7”“,9)2}7226 2P , (4)

where ®(t) is the EOB orbital phase, Q = & is the EOB
orbital frequency, r,, = 7'/ is a modified EOB radius ©,

in the comparable mass case v # 0.

Contrary to Ref. [30] where we used a Zerilli-Moncrief nor-
malized waveform Woo, we use here the same hos normaliza-
tion as Ref. [41]. They differ simply by a numerical factor:

Rhgp, = /(€ +2)(€ + D)€ — 1) (q,(c) i i\I/(O)>,

£m £m
The quantity r, is such that, during adiabatic inspiral, it is re-
lated to Q by a standard Kepler-looking law Q2r3 = 1, without
correcting factors. However, during the plunge r,, starts signifi-
cantly deviating from Q~2/3 [43].
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FIG. 1: Panel (a) compares the “exact” Newton-normalized
flux function F'(v) [39] to two different Padé resummed,
v accurate analytical flux functions: one using the stan-
dard value vpole = 1/\/§ = 0.57735 and the other one using
an “optimized” flexed value vpole = 0.5398. The bottom part
of (a) plots the corresponding differences A = fFade _ frExact,
Panel (b) plots the same quantities, except for the fact that
it uses only v%-accurate analytical flux functions.

with ¢ being defined in Eq. (22) of Ref. [43], and where
the crucial novel PN-improving factor Fyo is given as the
product of four terms

Fo(t) = HegToo foo (x(t))el22® (5)

Here Hg is the effective EOB Hamiltonian divided by p
(it describes the quasi-geodesic dynamics of the “effective
test mass” p), and The is the particularization to ¢ =



m = 2 of a resummed “tail correction factor” introduced
in Ref. [30]. Its explicit expression (in the general, finite
v case) reads

_ F(K +1- 21k) rk 2k log(2kro)

Tom = T+ 1) e™e , (6)
where k = GHpeam$ differs from k& = mQ by a
rescaling involving the real (rather than effective) EOB
Hamiltonian. This “tail factor” is the exact resumma-
tion of an infinite number of “leading logarithms” ap-
pearing in the perturbative multipolar-post-Minkowskian
(MPM) expansion [44-48] of “tail effects” in the (£, m)
radiative moment. For instance, at the leading or-
der in the monopolexmultipole interaction the radiative
quadrupole U;;(Tr) contains a tail integral [49]

2G1 / h drM{ (T - 7) {log <l> + %} NG

0 2T0

while at the next to leading order it contains a tail inte-
gral [50]

a2 [ (5) 2 ( T

T
+ C1 log (?) + 00:| .
0

(8)

[Here, I denotes the monopole of the source, i.e.
I = MapMm = Hyeal]. The factor Ty, resums the infinite
series of the contributions to Uy, proportional to

GrIm / dr M (1 — ) log” <L> ()
0 2T0

The real factor foo(x) was computed in Ref. [30] (as
indicated in footnote 8 there) to 3 PN accuracy for all
values of v by starting from the 3 PN-accurate multipolar
post-Minkowskian results of Refs. [51-55]. The explicit
form of its (PN) “Taylor” expansion reads

] 1
2’1;aylor(x) =1+ E (_86 + 55V) x

1
+ —— (—4288 — 67450 + 2047v°) 2°

1512
21428357 @euleﬂo (z) 34625V
727650 105 & 3696
41 227875 , 114635 3\ 4
+ =7 - v Vo |
96 33264 99792
5391582359 36808 4
— eulerlog(z) |z
198648450 2205
93684531406 458816eu1er10 (2) )2°
893918025 19845 &
+ O(vzt) + O(2%) . (10)

1
where eulerlog(x) = vg + 2log2 + B logz. For greater

accuracy, we have added in Eq. (10) the small v limit
of the 4PN and 5PN contributions (as deduced from the
results of [40, 56]).

Finally, the additional phase da2(t) is given by

7 428
I—LreaxlQ +

! 420 2 _ 5/2
3 05" (HyeaQ)” — 242/ . (11)

0o =

At the time of the writing of [30] we had derived the
full v-dependent waveform (4)-(11), except for the ac-
curate value of the coefficient of vx5/2 in Eq. (11), be-
cause this value was not meaningful for us as it could
be absorbed in the “non quasi-circular phase flexibility
parameter” b included in Eq. (14) of [30]. Taking b = 0,
we have recently derived from scratch the value —24 for
this coefficient”. In the meantime, Kidder [41] has inde-
pendently realized that it might be useful to compute the
{ = m = 2 part of the waveform to 3 PN accuracy and
has derived a 3 PN-accurate non-resummed (2, 2) wave-
form [See also [42] for an earlier 2.5 PN-accurate deriva-
tion of the (non-resummed) (2,2) waveform]. We have
compared our result (5)-(11) with his and found perfect
agreement (when PN-reexpanding our result).

Speaking of choices, there are more to be made to con-
vert the PN-expanded amplitude factor fo2'", Eq. (10),
into a better, “resummed” EOB waveform factor. As
said in Ref. [30], we propose to improve the conver-
gence properties of the Taylor expansion (10) by replac-
ing it by a suitable Padé approximant. We use the
upper diagonal (3,2) Padé, i.e. we use in our calcula-
tions fao(z; v) = P§ [ Savler (g )8, The final choice
we need to make concern the argument x(t) of fao(z(t))
in Eq. (10). As discussed in Ref. [30] this argument is
“degenerate” during the inspiral in that it can be equiva-
lently expressed in various ways in terms of the dynamical
variables of the system, namely (in the general finite v
case) © = Q%3 = (r,Q)? = 1/r,. We emphasized that
some choices might be better than others to automati-
cally capture some non quasi-circular effects during the
plunge. However, as we are here concerned with the in-
spiral phase, we do not expect that the precise choice of
x(t) will matter. Some preliminary checks indicate that

7 As was emphasized in Refs. [20, 41, 57] the small additional
phase term o vz%/2 has anyway very little effect on observable
quantities during the inspiral.

8 A technical remark concerning the Padé approximants we use
(both for the flux function F(v) and the waveform f22(x)): con-
trary to the prescription suggested in Ref. [1], we find simpler
(and numerically more or less equivalent) not to factor out the
log-dependent terms (appearing at 3 PN and beyond), but in-
stead to define the Padé approximants by considering the loga-
rithms appearing in the PN expansion on par with the normal nu-
merical Taylor coefficients: e.g., 1+ciz+---+ (cg + c% log )z is
Padéed by first Padeing the usual Taylor series 14+cja+- - -4c3z3,
and then replacing c3 — cg + cé log z in the result.



this is indeed the case. For simplicity, we shall use here
the argument x(t) = Q2/3 for foo(x(t)) in Eq. (5).

B. Effective One Body relative dynamics

Let us briefly recall here the EOB construction of the
relative dynamics of a two-body system (for more de-
tails on the recent improvements in the EOB approach
see [28, 30]). The EOB approach to the general relativis-
tic two-body dynamics is a non-perturbatively resummed
analytic technique which has been developed in Refs. [2—
5, 28, 30, 43]. The EOB approach uses as basic input the
results of PN and MPM perturbation theory, and then
“packages” this PN-expanded information in special re-
summed forms, which are expected to extend the validity
of the PN results beyond their normal weak-field-slow-
velocity regime into (part of) the strong-field-fast-motion
regime. At the practical level, and for what concerns the
part of the EOB approach which deals with the relative
orbital dynamics, the method consists of two fundamen-
tal ingredients: (i) the “real Hamiltonian” Hyea, and (ii)
the radiation reaction force F,.

It is convenient to replace the adimensionalized radial
momentum p, (conjugate to the EOB adimensionalized
radial coordinate r = R/M) by the conjugate p,., to the
“EOB tortoise radial coordinate”

dr. _(B\"* D
dr  \ A ’ AT

In terms of p,, (and after the rescaling Hog = Heg /1,
Py = P,/(nM)) the real, 3 PN-accurate Hamiltonian [4]
reads

(12)

Hreal(rapr*apcp) = Nﬁreal = M\/l +2v (ﬁeﬂ - 1) )

(13)
with
. P’ oy
Aot (r.pr..pp) = | P2, + A(r) (1 + %4z ) =
(14)

where 23 = 2v (4 — 3v), and where the PN expansion of
the crucial radial potential A(r) (= —ggfectve) has the
form [2, 4]

ATaylor (u) =1—-2u+ 2yu3
94 41
+ (? B 3_27T2> vut + aspu® + O(vu®) |
(15)

with w = 1/r. As suggested in Ref. [5] we have
parametrized the presence of presently uncalculated 4 PN
(and higher) contributions to A(u) by adding a term
+as(v)u®, with the simple form as(v) = asv. [Indeed,
it was remarkably found, both at the 1 PN, 2 PN [2],

and the 3 PN [4] levels, that, after surprising cancella-
tions between higher powers of v in the various contribu-
tions to the coefficient a,(v) = alv+a2v?+--- of u™ in
A(u), only the term linear in v remained for n=2,° 3 and
4. Ref. [5] introduced this term with the idea that “one
might introduce a 4 PN contribution +as(v)u® to A(u),
as a free parameter in constructing a bank of templates,
and wait until LIGO-VIRGO-GEO get high signal-to-
noise ratio observations of massive coalescing binaries to
determine its numerical value”. We do not dispose yet
of such real observations, but, as substitutes we can (as
started in Refs. [22, 29]) try to use numerical simulations
to determine (or at least constrain) the value of the un-
known parameter as. This is what we shall do below,
where we shall compare our results to previous ones.

As discussed in [4], the most robust choice!® for re-
summing the Taylor-expanded function A(u) is to re-
place it by the following Padé approximant A(u) =
Pj[ATaler(y)].  Similarly, the secondary metric func-
tion D(u) = PY[DT!°r ()] where DTa!°r(y) is given in
Eq. (2.19) of Ref. [5].

The EOB equations of motion for (r, r., pr., ¢, Dy)
are then explicitly given by Egs. (6-11) of Ref. [28].
They are simply Hamilton’s equations following from the
Hamiltonian (13), except for the p, equation of motion
which reads

dp, A

T Fo (16)
where, following Refs. [1, 3] the r.h.s. contains a re-
summed radiation reaction force, which we shall take in
a form recently suggested in Ref. [43], namely

. F 32 ; ole
Fo="2 =005 Jois (vgi ¥, Vpote) , (17)
1 5 1 — vy /Vpole
where v, = Qr,, r, = /3 (with ¢ defined

as in Eq. (22) of Ref. [43]). Here fpis denotes a
suitable Padé resummation of the quantity denoted
Frravler(y g01e) above, i.e., the Taylor expansion of
(1 — v/Vpote) FTY1T (1; 1) where FT®1r is the Newton-
normalized (energy or) angular momentum flux along
circular orbits (expressed in terms of veye = QY3 for
comparable-mass circular orbits). Here again, to com-
pletely define .7:'4/, we must clearly state what is the start-
ing Taylor-expanded result that we use, and how we re-
sum it. For greater accuracy, we are starting from

ETaor (1) = 1+ Ax(v)v? + As(v)v® + Ay(v)v?
+ As(v)v® + Ag(v, logv)v® 4+ A7 (v)v”
+ Ag(v = 0,logv)v® | (18)

9 Actually, for n = 2, i.e. the 1 PN contribution to A(u), the
cancellations even led to a complete cancellation az(v) = 0!
10 And the simplest one ensuring continuity with the v — 0 limit.



where we have added to the known 3.5 PN-accurate [51—
55] comparable-mass flux the small-mass-ratio 4 PN
contribution [40]. Then, we use as Padé approximant
of this (quasi-)v®-accurate expansion fpis(v; v, Vpole) =

P} [(1 — v/ Upole) FTAYIOT (p; V)} We indeed found that

this specific (diagonal) Padé approximant (as well as the
less accurate P§ one) was robust under rather large varia-
tions of the numerical value of vpore (by contrast to other
ones, such as P} or Pj, which exhibit spurious poles
when vpole becomes too small). Finally, note that, for
integrating the EOB dynamics from some finite start-
ing radius (or frequency) we need some appropriate ini-
tial conditions. Refs. [3, 25, 58] indicated how to define
some “post-adiabatic” initial conditions. In view of the
high accuracy of the NR data of [20] (and notably of
their extremely reduced eccentricity), we found useful to
go beyond Refs. [3, 25, 58] and to define some, iterated
“post-post-adiabatic” initial data allowing us to start in-
tegration at a radius r = 15.

Summarizing: In the comparable-mass case, the phas-
ing, and the amplitude, of the new, resummed 3 PN-
accurate inspiral waveform introduced in Ref [30] is given
by inserting the solution of the EOB dynamics (given by
Egs. (13)-(17)) into the waveform (4)-(11). This wave-
form depends on two flexibility parameters, as and vpole,
that parametrize (in an effective manner) current un-
certainties in the EOB approach: a5 parametrizes un-
calculated 4 PN and higher orbital effects, while vpole
parametrizes uncertainties in the resummation of radia-
tion effects (also linked to v dependent 4 PN and higher
radiative effects).

IV. COMPARING THE NEW, RESUMMED
EOB WAVEFORM TO ACCURATE NUMERICAL
DATA

Thanks to the recent breakthroughs in numerical rel-
ativity one can now start to make detailed comparisons
between EOB waveforms and numerical relativity ones.
Working with high-accuracy data can further allow us
to calibrate the “flexibility parameters” [25] entering ex-
tended versions of the EOB formalism. A first step in this
direction was recently taken by Buonanno et al. [29] by
utilizing numerical gravitational waveforms generated in
the merger of comparable-mass binary black holes. How-
ever, the merger data that were used were relatively short
(about 7 inspiralling orbits before merger when v = 1/4).
Here, we shall instead consider the information contained
in a recent, high accuracy, low-eccentricity simulation
covering 15 orbits of an inspiralling equal-mass binary
black hole [20]. [See also the previous results of the Jena
group which covered ~ 9 inspiralling orbits [59]].

Boyle et al. [20] have published their results in the
form of differences between the numerical relativity data
and various, Taylor-type PN predictions We recall that
there are many ways of defining some Taylor-type PN
waveforms. Ref. [60] introduced a nomenclature which

included three sorts of PN-based “Taylor approximants”;
from Taylor T1 to Taylor T3, as well as several other
resummed approximants (Padé, and EOB). In addition,
the definition of each such Taylor approximant makes
two further choices: the choice of PN accuracy on the
phasing, and the choice of PN accuracy in the amplitude.
A fourth Taylor approximant, T4, was also considered in
previous NR-PN comparison [26, 27, 61] and Ref. [26] had
pointed out that it seemed to yield a phasing close to the
NR one. Boyle et al. [20] confirmed this “experimental”
fact and found that Taylor T4 at 3.5 PN phasing accuracy
agreed much better with their long, accurate simulations
than the other Taylor approximants.

Here we shall use as EOB quadrupolar metric wave-
form the new, resummed 3 PN-accurate inspiral wave-
form explicitly presented above, say h5EOB(t; as, vpole),
defined in Eq. (4) and the following equations of the pre-
vious section. Note, however, that [20] uses as basic grav-
itational radiation variable the ¢ = m = 2 projection of
the corresponding Weyl curvature quantity, which is re-
lated to the metric waveform hoo by

Rc? 0% [ Rc? ;

(19)
Here, A and ¢ denote the amplitude and phase of the
curvature wave considered by Boyle et al. [20]. We have
introduced a label X which will take, for us, three values:
X=NR denotes the numerical relativity result of Ref. [20],
X=EOB denotes the improved EOB waveform presented
in the previous section and X=T4 will denote the “Taylor
T4” waveform highlighted in Ref. [20] (as well as in previ-
ous PN-NR comparisons [27, 61]) as giving a particularly
good fit.

The precise definition of this T4 waveform (as used in
Ref. [20]) is as follows. As indicated in Eq. (19), W22T4 is
obtained by taking two time derivatives of a correspond-
ing metric T4 waveform hly. The latter waveform is
defined (if we understand correctly the combined state-
ments of Refs. [20] and [41]) by the following procedure.
First, one defines a certain “T4 orbital phase” ®r4(t) by
integrating the ODEs

d(I)T4 $3/2
dt  GM’ (20)
dx 64v avlor
E = 5GM£L'5GJ§&5‘Y (fL') ) (21)

where

a;f%ylor(x) =1+ as(v)x + as(v)z®? + ag(v)a?

+ as(v)z*/? + ag(v, log z)x® + a7 (v)2™/? |
(22)

is the 3.5 PN Taylor approximant (for finite v) to the
Newton-normalized ratio (flux-function)/(derivative of
energy function)=F(v)/E’(v), which enters the adiabatic
evolution of the orbital phase (see, e.g. [1, 60]). In

the relevant case v = 1/4, a3 ' (x) is explicitly given



as the quantity within curly braces on the r.h.s. of
Eq. (45) of [20]. Having in hand the result, ®rp4(t),
Qry(t) = dPry/dt = x?r/f/GM, of integrating Eqs. (20)-
(21) one then defines a nPN-accurate, T4 (¢ = 2, m = 2)
waveform by truncating to order x;{f included the Taylor
series

2R .

X [1 + hoxrs + iL3$Cr3p/42 + ]~7/4$'21‘4 + ;Lf)x?[‘/f + ;Lﬁfcgﬂ )
(23)

where the coefficients h,, are obtained from the coeffi-
cients h, in the Taylor-expanded 3 PN-accurate (2,2)
waveform derived by Kidder [41] by setting to zero all
the terms proportional to log(x/zg) or log®(z/zo) (but
keeping the separate log z term entering hg), and replac-
ing v =1/4.

Note that our resummed waveform (4)-(11) differs from
the 3 PN-accurate version of (23) in several ways: (i) the
“orbital phase” evolution is given, for us, by the EOB
resummed dynamics, (ii) we do not neglect the phase
terms linked to log(x/x), but include them either in the
resummed tail factor Tha or in dag, and (iii) we resum the
amplitude of hoo by factoring both _Heff and the modulus
of Tys, and by Padeing fos.

Ref. [20] presents in their Fig. 19 the differences, in
phase and amplitude (of the radiative Weyl-curvature
components Uy, ), between Taylor T4 3.5/2.5 (i.e., 3.5 PN
in phase and 2.5 PN in amplitude) and the (unpublished)
corresponding Caltech-Cornell NR data, say

(A¢)ranr = ¢1a(t) — ONR(D) (24)
A4 () — Axn(®)
( A )T4NR B ANR(t) ’ (25)

as plotted in the two panels of Fig. 19 of Ref. [20]. Our
main aim here is to compare the “numerical data” (24)-
(25) to the corresponding theoretical predictions made
by the EOB formalism, say

(A¢)raE0B = ¢14(t) — PROB(Y) | (26)
AA _ Arq(t) — Aros(?)
( A >T4EOB B Agos(1) (27)

As just said, as the most complete, and best plotted data,
concern Taylor T4 3.5/2.5, we shall use the 3.5 PN ac-
curate Eq. (22) but only consider the 2.5 PN truncation
of the Taylor-expanded waveform (23) (i.e. a waveform
essentially contained in the 2.5 PN A and hy results of
Arun et al. [62]). [As we use the T4 waveform only as
an intermediary between the NR and EOB results, we
are allowed to use any convenient “go between”, even
if its PN accuracy differs from the (formal) one of our
resummed EOB waveform].

To effect the comparison between NR and EOB, i.e.,
to compute the crucial difference ¢pop — Pnr, We needed

to extract actual numerical data from Fig. 19 of [20]. We
did that in several ways. First, we measured (with milli-
metric accuracy; on an A3-size version of the left panel of
Fig. 19) sufficiently many points on the solid upper curve
(Taylor T4 3.5/2.5 matched at Mwy = 0.1 ) 1! to be
able to replot (after “splining” our measured points) this
upper curve with good (visual) accuracy. We could then
use this splined version of eleven (adequately distributed)
selected points on the upper curve on the left panel of
Fig. 19 as our basic (approximate) “numerical data”. It
gives us a (continuous) approximation to the ws-matched
phase difference A“*prang (14) = 74 () — ONR(E94).
[Here, t“4 denotes the time shifted so that {“4 = 0 cor-
responds to the wy matching point between T4 and NR].
As we have separately computed ¢r4(t14) by integrating
Egs. (20)-(21) (and that it is easy to shift it to obtain

74 (thhy)) we have thereby obtained an approximation to
ONR (t¥*). We then shift again the time argument to our
basic EOB dynamical time so as to obtain ¢ngr(troB)
(with the condition that wroB(tfhop) = wa corresponds
to t“+ =0).

There are then several ways of comparing ¢ngr(troB)
to the EOB phasing ¢rop(tros), obtained from the pro-
cedure explicated above. We wish to emphasize here that
there is a useful way of dealing with the information con-
tained in (any) phasing function ¢x(tx) where X=NR,
EOB, T4, etc. Indeed, a technical problem concerning
any such phasing function is the presence of two shift am-
biguities: a possible arbitrary shift in ¢x (¢x — ¢x+cx)
and a possible arbitrary shift in the time variable tx
(tx — tx + 7x). Similarly to what one does in Eu-
clidean plane geometry where one can replace the Carte-
sian equation of a curve y = y(z) by its intrinsic equation
K = K(s) (where K is the curvature and s the proper
length), we can here (in presence of a different symme-
try group) replace the shift-dependent phasing function
¢x (tx) by the shift-independent intrinsic phase evolution
equation: dwx /dtx = ax(wx), where wx = de¢x /dtx (for
simplicity we shall use here M = mq +mqo = 1). It is also
convenient to factor out of the phase acceleration ax(w)

its “Newton” approximation'?,

12
an (W) = cwt/3; Cy = 321/% (28)

and to consider the reduced phase acceleration function

11 Ref. [20] computes various differences A¥m¢(t) = ¢ (th,) —
¢NR(t) where, given a “matching” frequency wm, d)%f (tp,) de-
notes a version of ¢r4(tT4) which is shifted in ¢ and in ¢ so
that 0 = A“m(t) = dA“m(t)/dt at the moment t{F; where
déNr/dt = wm. We shall denote the four matching frequen-
cies used in [20] as Mwi = 0.04, Mw> = 0.05, Mws = 0.063,
Mwq = 0.1

Note that we are dealing here with the gravitational (curva-
ture) wave frequency w. If we were dealing with the orbital
frequency Q = d®/dt, we would instead consider the following
reduced phase acceleration (d/dt)/(C,Q1/3) = Aq(Q) with
Cy = (96/5)v.

12
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FIG. 2: Reduced phase-acceleration curves as defined in
Eq. (29) (with M = mi1 + m2 = 1). The inset highlights
how the “tuned” EOB curve nearly coincides (for w < 0.08)
with the NR (and T4) curves, while the “non-tuned” EOB
one lies slightly below.

aX defined by

wx
113 af(wx) . (29)

Cuy

Independently of the label X the function aX — 1 as
w — 0. The phasing comparisons then boil down to com-
paring the various (reduced) phase acceleration functions
allB(w), aT*(w) and aFOP(w; a5, vpele). The last two
functions can be straightforwardly (numerically) com-
puted from the formulas written above. As for al®(w) it
is, in principle, also straightfiorwardly computable from
onr(tnr). However, as we do not have access to an ac-
curate estimate of ¢ng(tnr) but only to a rather rough
cubic spline approximation to it, we can only compute
an even rougher estimate of a’Yf(w). [As is well known,
taking (two!) derivatives of approximate results consid-
erably degrades the accuracy.] Still, as we think that this
is the conceptually clearest way of presenting the com-
parison, we used the data we had in hand to compute the
various “acceleration curves” presented in Fig. 2.

Actually, it is instructive to include further phase-
accelerations in the comparison. In Fig. 2 we show
the following phase-acceleration functions (versus w, i.e.,
Mw): (i) Taylor T4 3.5/2.5, (ii) NR, (iii) a standard
“non-tuned” EOB with a5 = 0 (i.e. essentially the
3 PN approximation) and vpole = vgglsé(u) [1] for v =
1/4, which corresponds to our current knowledge, (iv)
a “tuned” EOB with a5 = 40 and vpole = 0.5074 (see
below), and finally (v) the adiabatic EOB for a5 = 40
and vpole = 0.5074. Here, the adiabatic approximation
to a, is that defined by the usual adiabatic approach

to inspiral phasing (see e.g. [1]), leading to a,(w) =
F(v)/E'(v) where v = (w/2)'/3 and where F is the
Newton-normalized circular flux and E’ the Newton-
normalized derivative of the circular energy function.
[When applying these general concepts to the EOB we
need, as discussed in Ref. [3], to use the analytical, adi-
abatic approximation to EOB inspiral, with, notably,
p, = jidiabatic(y) ohtained by solving OHgop/dr = 0
with p, = 0].

Several preliminary conclusions can be read off Fig. 2.

(1) In the frequency domain (say Mw < 0.08) where the
T4 3.5 phasing matches well with the NR phasing, both
the standard “non-tuned” EOB (a5 = 0, vpole = UEOIISE)
and “tuned” EOB phasing (defined above) match well
with the NR phasing. However, a closer look at the ac-
celeration curves (see inset) shows that the “tuned” EOB
phasing agrees better with NR (and T4). [The “non-
tuned” aEOB is slightly below al® (and al*) by roughly
1.5 x 1073 when Mw ~ 0.06 .

(ii) For higher frequencies (0.08 < Mw < 0.14), Tay-
lor T4 3.5/2.5 starts to significantly diverge from the
NR phasing. '3 By contrast, both the standard “non-
tuned” EOB phasing and the “tuned” EOB one continue
to match quite well the NR phasing. This will be shown
below by using other diagnostics than the acceleration
curves. Indeed, when Mw 2 0.08 our “NR accelera-
tion curve” exhibits fake oscillations which come from
our use of a coarse approximation to NR data. The visi-
ble “kinks” in our NR acceleration curve are due to our
taking (numerical) second derivative of a cubic spline in-
terpolant of approzimate NR data points. We expect that
the exact “NR acceleration curve” (computed with accu-
rate numerical data instead of our approximate ones) will
be a smooth curve lying close to the two EOB curves in
Fig. 2.

(iii) The fact that the adiabatic EOB curve diverges
quite early, and upwards, from the full EOB curve is a
confirmation of the conclusion derived in Ref. [3] (see
Figs. 4 and 5 there), namely that , “ in the equal mass
case v = 1/4 the adiabatic approximation starts to sig-
nificantly deviate from the exact evolution quite before
one reaches the LSO”. This further confirms the sugges-
tion of [20] that the good early (Mw < 0.08) agreement
between T4 and NR is coincidental.

Because of our lack of an accurate knowledge of al®,
we cannot use the acceleration curves of Fig. 2 to make
any accurate comparison between EOB and NR data.
In the following we shall use other tools for doing this
comparison and, in particular, for constraining the values
of as and vpole.

13 Though Ref. [20] tends to mainly emphasize how well Tay-
lor T4 3.5/2.5 agrees with the NR phasing one should note that
the high curvature of the upper w4 curves when Mw 2 0.08 in
the left panel of Fig. 19, and the subsequent fast rise of all the
A¥m g are clear signals that Taylor T4 3.5/2.5 starts to signifi-
cantly (and increasingly) diverge from the NR phasing.
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FIG. 3: Correlation between vpole and as (top panel) ob-
tained by imposing the constraint (35). The numerical ac-
curacy with which Eq. (35) is satisfied is displayed in the
left-bottom panel. The right-bottom panel displays the ex-
tent to which, as as varies, the other ratios p.,,, Eq. (34),
approximate unity.

The first tool we shall use consists in selecting among
our eleven approximate points on the A“4¢ryng curve
two special ones, namely

A“ pranr (5 — 1809M) = 64 ~ 0.055,  (30)

A ranr (0 + 44.12M) = 544 ~ 0.01 (31)

to which we shall refer as the (main) “backward” and

“forward” w, data. In addition, we also measured a cou-

ple of selected points on the ws- and ws-matched lower
A¢ curves. Namely,

A“2p(txR + 1000M) = 62 ~ —0.01 , (32)

A (% — 1000M = 63 ~ —4.3 x 1073 . (33)

R

We can then use, in a numerically convenient way, these
data to quantitatively compare (with an hopefully rea-
sonable numerical accuracy) NR to EOB by considering
four ratios, puwy, Pws, pg‘z’d, pﬁ)‘zd (where we recall that
ws = 0.05, wg = 0.063 and w4 = 0.1), with

A@m INR T Otm
i (05, vpre) = S TR URR H 0] gy

and w,, = ws, w3 and w}f""d or wfl‘”d.

If our approximate measures (given in Egs. (30)-
(33)) of the wvarious d,,’s were accurate, a per-
fect match between NR and EOB would corre-
spond to having all those ratios equal to unity:
Puws (a57Upole) =1, Puws (afnvpole) =1, pg‘zd(af)avpole) =1,
and pﬁfzd(amvpole) = 1. This would give four equations
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FIG. 4: The L norm of the phase difference between EOB
(when wvpole is correlated to as as in Fig. 3) and numerical
relativity, as defined by Eq. (36).

for two unknowns (as and vpele). Even if we had ex-
act values for the various 4,,’s, we do not, however, ex-
pect that there would exist special values of as and vpole
for which all these ratios would be equal to one. In-
deed, as and vpole are only “effective” parameters that
are intended to approximately mimic an infinite number
of higher v-dependent, resummed PN-effects. The best
we can hope for is to find values of as and vy allow-
ing one to give a good overall match between ¢ng(t) and
droB(t) (or al® and aP9B). To investigate this issue,
it is then convenient to focus first on only one compari-
son observable. We choose pg‘fd because it is, among the
data which we could measure with reasonable accuracy,
the one which has the largest “lever arm”. [Indeed, it
corresponds to some weighted integral of the difference
aPOB — gR over a significantly extended frequency in-

terval]. Imposing the constraint
PBYd(%a UPOIG) =1, (35)

then gives a precise way of exploring which extended
EOB models best match the NR phasing . Note first that
this equation could have no solutions. [For instance, if
we were using the adiabatic approximation to EOB there
would be no solutions]. To admit solutions is already a
sign that EOB can provide a much better match to NR
than T4. Then, the solutions could exist only if both as
and vpele are close to some “preferred” values. Actually,
we found that Eq. (35) defines a continuous curve in the

(a5, vpole) plane's.

14 Consistently with what was found for lower approximations, and



For all values of a; > 0, we (numerically) found
a unique value of vpole satisfying the constraint (35).
This continuous curve is plotted in the upper panel of
Fig. 3. When remembering that Eq. (30) is only ap-
proximate,'® we have to mentally replace the continuous
curve in the upper panel of Fig. 3 by a narrow valley of
“best fitting” values of (as,vpole). Let us first remark
that this valley extends only on a rather small range
of values of vy, around 0.55. It is comforting that
this range includes the values that were previously sug-
gested for vpele: namely V25 (v = 0) = 1/v/3 = 0.57735,

vPIS (U = 1/4) ~ 0.6907, v2% (v = 0) ~ 0.54 (discussed

pole pole
above).
To go beyond this result and see whether the other
measurements constrain the value of a5, we plot on the
lower, right panel of Fig. 3 the values of the ratios pu,, pu,

and pfxd along the pP¥d =1 curve. As, along this curve,

w.

Upole 15 a function of 4a5, the above three ratios depend
only on as. Ideally, we would like to find values of a5 for
which the remaining ratios are all close to unity. [Given
the coarse nature of our measurements, we cannot expect
to get exactly unity]. We see on Fig. 3 that the ratio
pﬁ)‘zd is reasonably close to unity for most values of as.
By contrast, the two other ratios p., and p,, happen to
have the wrong sign. This negative sign means, in terms
of the phase-acceleration curves of Fig. 2, that around
frequencies wo and ws, alR(w) is slightly above al*(w),
while it seems that aZ©B(w) tends to be generally slightly
below al*(w). On the other hand, for larger frequencies,
it seems clear that al® crosses al* to become below al*,
and to become in rather good agreement with aZ9B. At
this stage, the best we can do is to say that an overall
best match between EOB and NR will be obtained when
as belongs to a rather large interval (say 10 S a5 S 80)
centered around as ~ 40, where p,,, and p,,, are negative,

but rather small (say —0.5 S po, S0)

To get another, potentially better measure of the
“closeness” between NR and EOB we looked at the “L,.”
distance between the two functions ¢ng(t) and ¢ros(t)
on the time interval (in EOB time) 900M < tgop <
3460M (which roughly corresponds to the time interval
plotted in Fig. 19 of Ref. [20]). More precisely, we com-
puted the quantity

)

|oE0B (tEOB) — SRR (tNR)
(36)
where ¢\k (t{fff{) is matched to the EOB phase at wy,

and where the EOB was constrained to lie along the
curve vpole(as) plotted in Fig. 3 (i.e., satisfying Eq. (35)).

Lo(as)=  sup
900M <tpop <3460M

for the presently computable contributions to as [25], we expect
that as > 0, and we shall therefore only work in the correspond-
ing half plane.

15 We estimate the accuracy of our measurement result Eq. (30) to
be such that the “backward time-shift”, corresponding to a r.h.s.
exactly equal to 0.055, is (—1809 £+ 15)M.
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FIG. 5: The upper panel compares various phase differences
A*™ ¢ryax versus time (with M = 1), wy, denoting a matching
frequency and the label X being either EOB or NR. The lower
panel exhibits the ws—matched phase difference between EOB
and NR. The flexibility parameters of EOB have been tuned
here to as = 40 and vpe1e = 0.5074.

We show this Lo, norm in Fig. 4. This Figure displays
the remarkable agreement between EOB and NR phas-
ing over an interval where T4 exhibits a clear dephasing
with respect to NR. Indeed, Fig. 19 of [20] shows that
on this interval all Taylor T4 3.5 templates dephase by
~ 0.08 radians (because of the divergence at the end, cor-
responding to the divergence of the acceleration curves
in Fig. 2 when w 2 0.08). By contrast, the dephasing
between EOB and NR can be as small as 0.006 radians if
30 S as S 52, or 0.008 radians if 10 < as < 80. Again, we
find that a largish interval of a5 values centered around
as ~ 40 seems to be preferred (when vpere is correlated
to as via the curve of Fig. 3) to give the best possible
overall match between EOB and NR.

To give a better feeling of how well EOB matches NR
phasing all over the time interval explored by the sim-
ulation of Ref. [20], we plot in Fig. 5 the superposition
of the upper curve in Fig. 19 of [20] (i.e., the difference
A% ¢yNR, as measured and splined by us) with the cor-
responding EOB difference A“3¢r4pop, for the values
as = 40, vpole = 0.5074 approximately corresponding
to the smallest L., norm in Fig. 4. We also plot the
wo- and wsz-matched phase differences A“2¢r4p0op and
A“3¢prypo- Apart from the slightly wrong curvatures
of the wo- and ws- curves (for w < 0.08), this Figure ex-
hibits a truly remarkable visual agreement with the left
panel of Fig. 19 of [20]. It exhibits again two facts: (i)
the EOB phasing agrees extremely well with the NR one
on the full time interval (900M < tgop < 3460M), (ii)
by contrast Taylor T4 3.5/2.5 starts diverging from EOB
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FIG. 6: Comparison between the standard, “non-tuned” EOB
(a5 = 0, Vpole = Vpme(v = 1/4) = 0.6907) and NR. The top
panel shows that the gravitational wave phases ¢roB and ¢nr
(versus time) are nearly indistinguishable to the naked eye.
The bottom panel quantifies the small difference between the
two.

when w 2 0.08 in precisely the same way that it diverges
from NR. In the bottom panel of Fig. 5 we give a pre-
cise quantitative measure of the difference between EOB
and NR phasings by plotting the ws-matched difference
droB(t) — ¢k (t.,,). This phase difference vanishes both
when wgoB (thop) = wa (by construction), and at the
time tR%5 = tabhp — 1809M (by our optimized choice of
the link vpole = Upole(@s), such that Eq. (35) holds). We
see how, indeed (in agreement with Fig. 4) the dephas-
ing remains smaller, in absolute value, than about 0.006
radians, i.e. 0.001 GW cycles.

This remarkably small dephasing concerns a “tuned”
EOB phasing (with optimized flexibility parameters as
and vpole). However, as it is clear on Fig. 2, even the
standard , “non-tuned” EOB phasing corresponding to
our current analytical knowledge as = 0, vpole = vglse(y),
agrees quite well with the NR phasing over the entire sim-
ulation time. To exhibit this important fact in quantita-
tive detail we compare in Fig. 6 the (splined) NR phase
oNr (') (after suitable shifts in ¢ and ¢) to the stan-
dard, “non-tuned” EOB phase ¢rog(t) (a5 = 0, vpole =
Uglsc(l/)). As the visual agreement (top panel) is too good
to allow one to distinguish the two curves, we show (bot-
tom panel) the phase difference ¢rop(t) — onr(t'). As
expected, the dephasing is less good than in the above
“tuned” case, but it remains impressively good: £0.05
radians, i.e., £0.008 GW cycles, over the full time inter-
val 900M < tgop < 3460M.

Finally, we claim that, not only the phase, but also
the amplitude of the new, resummed EOB waveform
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FIG. 7: Comparison between relative amplitude differences
(A®™ A/A)rax versus time, wy, denoting the matching fre-
quency and the label X being either EOB (for as = 40,
Upole = 0.5074) or NR.

Eq. (4) exhibits a remarkable agreement with the NR
data of [20]. Again, as Ref. [20] gave their results in
the form of differences T4-NR, we plot in Fig. 7 the
analog of the right panel of Fig. 19 there. We choose
again the “optimum” values as = 40, vpole = 0.5074
used in Fig. 5 and plot the NR — EOB analogs of the
curves plotted by them in Fig. 19. Namely, we plot,
at once, the ws-, w3- and ws-matched amplitude differ-
ences [A“"A/Alrpop = (ATF — Aros) /Aros, where,
as above, the T4 time is shifted so that wr4(t') and
wros(t) agree when wgop(tm) = wm. In addition,
we plot, as empty circles, some points taken (by ap-
proximate measurements of ours) from the correspond-
ing curve [A“*A/A]ranr plotted on the right panel of
Fig. 19 of [20]. The remarkable visual agreement be-
tween these empty circles and our (A“* A/A) 1 pop curve
shows that: (i) the new, resummed 3 PN amplitude in-
troduced in Ref. [30] and defined in Egs. (4) (11) above
agrees remarkably well with the NR one on the full
time interval, 900M < tgpop < 3460M, (ii) by con-
trast the Taylor T4 3.5/2.5 PN amplitude shows a signif-
icant disagreement (~ —8%) in the same interval. Note
that, though Ref. [20] emphasizes that the non-resummed
3 PN-accurate waveform of [41] “improves agreement sig-
nificantly” compared to the 2.5 PN one (used above), this
improvement only concerns the early part of the inspiral.
Indeed, Fig. 21 of [20] shows that the amplitude of Tay-
lor T4 3.5/3.0 tends again to diverge together with Tay-
lor T4 3.5/2.5 at the end of the inspiral: i.e., we think,
precisely around the “dip” (near wy) exhibited in Fig. 7
above.



V. CONCLUSIONS

We have investigated the agreement (in phase and
in amplitude) between the predictions of the Effective-
One-Body (EOB) formalism and some accurate numer-
ical data. We used as numerical data both (as a warm
up) some old results on the energy flux from circular or-
bits of a test mass around a non spinning black hole [39],
and some very recent results of the Caltech-Cornell group
about the ¢ = m = 2 gravitational wave emitted by 15
orbits of an inspiralling system of two equal-mass non-
spinning black holes [20].

In our warm up, test-mass example we showed how a
slight tuning of the flexibility parameter [25] vpole (away

from the naively expected value v342* (v = 0)

1/V/3 = 0.57735) to the value vP%i(v = 0) ~ 0.540
allowed one to fit remarkably well the flux function
F(v;v = 0) during the full inspiral, 0 < v < vg0 =
1/V/6.

In the comparable mass case (v = mima/(mi+msz)? ~
1/4) we followed [30] in introducing a new, resummed
3 PN-accurate'® EOB-type ¢ = m = 2 waveform. We
then showed how to compute, for any values of the EOB
flexibility parameters a5 (parametrizing 4 PN and higher
conservative orbital interactions) and vpele (parametriz-
ing v-dependent 4 PN and higher effects in the re-
summed radiation reaction) the EOB predictions for the
¢ = m = 2 gravitational curvature wave W32 oc 92h59B o
AEOB(t)e*WEOB(t)_

We then compared the EOB predictions for the grav-
itational wave (GW) phase, ¢rop(t), and amplitude,
Agos(t), to the numerical relativity results of [20], say
onr (1), ANr(t), using often as intermediary (as Ref. [20])
the so-called Taylor T4 3.5/2.5 post-Newtonian predic-
tions ¢r4(t), Ara(t). Our main conclusions are:

(i) In the GW frequency domain Mw < 0.08 where
the Taylor T4 3.5/2.5 phase matches well with the NR
phase, the EOB phase matches at least as well with the
NR phase. A good EOB/NR match is obtained both
for the standard “non-tuned” EOB flexibility parameters
as = 0, Vpole = UpDOIlSQ(l/) corresponding to our current an-
alytical knowledge [1, 4] and for “tuned” EOB flexibility
parameters.

(ii) For higher GW frequencies, 0.08 < Mw S 0.14,
while Taylor T4 3.5/2.5 starts to significantly diverge
from the NR phase, we showed that the standard “non-
tuned” EOB phasing continues to stay in phase with NR
within +8 x 1072 GW cycles (see Fig. 6). Moreover,
one can calibrate as and vpole so that the EOB phase
matches with the NR phasing to the truly remarkable
level of 1073 GW cycles over 30 GW cycles!

16 Actually, our waveform has a greater accuracy than 3 PN in
that it incorporates the test-mass limit of the 4 PN and 5 PN
amplitude corrections. We shall occasionally refer to this PN
accuracy as being 312-PN.
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(iii) We proposed several ways of “best fitting” the
(a5, Upole)-dependent EOB predictions to accurate NR
data: (a) by using the intrinsic representation of the
phase evolution given by the reduced phase-acceleration
function a,(w), Eq. (29); (b) by using selected ratios
AWm¢T4EOB/AWm¢T4NR and constraining them to be
close to unity; and (c¢) by using an Ly, norm of the dif-
ference between (wp,-matched) ¢pop(t) and ¢ip (£, ).

Our results are given in several Figures. Notably, Fig. 3
gives, for each given value of a5, what is the optimum
value of vpole which best fits (in the sense of the ratio
pB‘i’d, Eq. (35)) the NR data. Then, Fig. 4 plots the Lo,
distance (on a large time-interval roughly correspond-
ing to the full simulation of [20]) betweem ¢rop(t) and

Nk (tiu 4) as a function of a5 (for vpele = Vpole(as) given
by Fig. 3). We find that the absolute value of the max-
imum dephasing between EOB and NR can be as small
as 0.006 radians (or 0.001 GW cycles) if 30 S a5 S 52.
However, it is difficult to be precise about the “preferred”
valued of as. We recall in this respect that, recently,
Ref. [29] has tried to constrain the value of aj (keep-
ing, however, vpole fixed to ’UE;ISC(I/), and without using
our improved EOB waveform) by maximizing the over-
lap between EOB and NR plunge waveforms. They found
that the overlap was good (and flat) over a rather large
interval of values of a5 (that they denote as A), roughly
centered around as ~ 60. We note, however, that this be-
havior might be due (at least in part) to the phenomenon
pointed out in [25]. In the latter reference (where a5 was
denoted as bs), it was found that the use of EOB tem-
plates based on as = 50 (rather than as = 0) allowed one
to have large overlaps (large “effectualnesses”) with all
other EOB templates. At this stage, we therefore do not
have yet any precise knowledge of what might be the pre-
ferred “effective” value of as. Our work, however, shows
that there is a quite strict correlation between the best-fit
choices of a5 and vpole. When, in the future, as becomes
precisely known, it will be interesting to see what is the
corresponding value of vpoe(v = 1/4) and to compare it
to the best-fit value vpole(v = 0) 2~ 0.540 obtained in our
warm-up Sec. II.

For instance, the couple a5 = 40, vpole = 0.5074 yields
a remarkable good fit to the NR data reported in [20].
We show the comparison of the various phasings (NR,
EOB, T4) in Fig. 5. This Figure clearly exhibits how our
best-fit EOB phase does a much better job than any non-
resummed PN approximant at following the NR phase.
We finally get dephasings smaller than 4+0.006 radians
(i.e. <1072 GW cycles!) over about 30 GW cycles!

Finally, we exhibited in Fig. 7 how the amplitude of
our new, resummed 312-PN-accurate EOB waveform,
Eq. (4), exhibits a remarkable agreement with the corre-
sponding amplitude of the NR data of [20]. The agree-
ment is clearly better than any, non resummed PN am-
plitude, including the recent 3 PN-accurate one of Kid-
der [41].

We think that the present work, taken in conjunc-
tion with other recent works on the EOB-NR compar-



ison [29] [28, 30|, confirms the remarkable ability of
the EOB formalism (especially in its recently improved
avatars) to agree with NR results. Note in particular
that the level of phase agreement reached here is bet-
ter by a factor 30 (£0.001 GW cycles versus £0.03 GW
cycles for v = 1/4) than what was recently achieved,
for merger signals, in Ref. [29] using less accurate ver-
sions of EOB waveforms than the one used here. We
suggest that the ground-based interferometric GW de-
tectors should include in their template banks the new,
extended and improved EOB waveforms which are be-
ing developed and notably the resummed one introduced
in [30] and generalized here. We also suggest that NR
data be made available in some repository, soon after

14

the first published results, to expert theorists willing to
extract the physical information they contain.
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