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Comparing Effective-One-Body gravitational waveforms to accurate numerical data
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We continue the program of constructing, within the Effective-One-Body (EOB) approach, high
accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling
and coalescing binary black holes. We present the comparable-mass version of a new, resummed

3 PN-accurate EOB quadrupolar waveform that we recently introduced in the small-mass-ratio
limit. We compare the phase and the amplitude of this waveform to the recently published results
of a high-accuracy numerical simulation of 15 orbits of an inspiralling equal-mass binary black hole
system performed by the Caltech-Cornell group. We find a remarkable agreement, both in phase and
in amplitude, between the new EOB waveform and the published numerical data. More precisely:
(i) in the gravitational wave (GW) frequency domain Mω < 0.08 where the phase of one of the non-
resummed “Taylor approximant” (T4) waveform matches well with the numerical relativity one, we
find that the EOB phase fares as well, while (ii) for higher GW frequencies, 0.08 < Mω <

∼ 0.14,
where the Taylor T4 approximant starts to significantly diverge from the numerical relativity phase,
we show that the EOB phase continues to match well the numerical relativity one. We further
propose various methods of tuning the two inspiral flexibility parameters, a5 and vpole, of the EOB
waveform so as to “best fit” EOB predictions to numerical data. We find that the maximal dephasing
between EOB and numerical relativity can then be reduced below 10−3 GW cycles over the entire
span (30 GW cycles) of the simulation (while, without tuning them, the dephasing is < 8 × 10−3

cycles). In addition, our resummed EOB amplitude agrees much better with the numerical relativity
one than any of the previously considered non-resummed, post-Newtonian one (including a recently
derived, non-resummed 3 PN-accurate one). We think that the present work, taken in conjunction
with other recent works on the EOB-numerical-relativity comparison confirms the ability of the
EOB formalism (especially in its recently improved avatars) to faithfully capture the “real” general
relativistic waveforms.

PACS numbers: 04.25.Nx, 04.30.-w, 04.30.Db

I. INTRODUCTION

A ground-based network of interferometric gravita-
tional wave (GW) detectors is currently taking data. Co-
alescing black hole binaries are among the most promis-
ing GW sources for these detectors. In order to suc-
cessfully detect GWs from coalescing black hole binaries
and to be able to reliably measure the source physical
parameters, one needs to have in advance a large bank
of “templates” that accurately represent the GW wave-
forms emitted by these binaries. In the terminology of
[1] one needs templates that are both effectual and faith-

ful. The construction of faithful GW templates for co-
alescing binaries comprising spinning black holes (with
arbitrary masses m1, m2 and spins S1, S2) poses a dif-
ficult challenge. Due to the multi-dimensionality of the
corresponding parameter space, it seems impossible for
state-of-the-art numerical simulations to densely sample
this parameter space. This motivates the need to develop
analytical methods for computing (as a function of the
physical parameters m1, m2, S1, S2) the corresponding
waveforms. The Effective-One-Body (EOB) method [2–

∗Supported by a fellowship from the Istituto Nazionale di Fisica
Nucleare (Italy).

5] was developed to analytically represent the motion of,
and radiation from, coalescing binary black holes with
arbitrary masses and spins. As early as 2000 [3] this
method made several quantitative and qualitative predic-
tions concerning the dynamics of the coalescence, and the
corresponding waveform, notably: (i) a blurred transition
from inspiral to a “plunge” that is just a smooth contin-
uation of the inspiral, (ii) a sharp transition, around the
merger of the black holes, between a continued inspiral
and a ringdown signal, and (iii) estimates of the radiated
energy and of the spin of the final black hole.

The recent impressive breakthroughs in numerical rel-
ativity (NR) [6–20] have given us access to extremely
valuable, and reliable, information about the dynamics
and radiation of binary black hole coalescence. It is com-
forting (for theorists) to note that the picture which is
emerging from the recent numerical simulations (for a
review see [21]) broadly confirms the predictions made
by the EOB approach. This gives us confidence in the
soundness of the various theoretical tools and assump-
tions used in this approach, such as the systematic use
of resummation methods, notably Padé approximants (as
first suggested in [1]).

An important aspect of the EOB approach (which was
emphasized early on [5]) is its flexibility. As was men-
tioned in the latter reference “one can modify the ba-
sic functions [such as A(u)] determining the EOB dy-
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namics by introducing new parameters corresponding to
(yet) uncalculated higher PN effects.[. . . ]. Therefore,
when either higher-accuracy analytical calculations are
performed or numerical relativity becomes able to give
physically relevant data about the interaction of (fast-
spinning) black holes, we expect that it will be possible to
complete the current EOB Hamiltonian so as to incorpo-
rate this information”. Several aspects of the EOB flexi-
bility have been investigated early on, such as a possible
“fitting” of a parameter (here denoted as a5), represent-
ing unknown higher PN effects, to numerical relativity
data [22] concerning quasi-equilibrium initial configura-
tions [23, 24], and the extension of the EOB formalism
by several new “flexibility parameters” [25], and notably
a parameter, here denoted as vpole, entering the Padé re-
summation of the (energy flux and ) radiation reaction
force.

In view of the recent progress in numerical relativity,
the time is ripe for tapping the information present in
numerical data, and for using it to calibrate the vari-
ous flexibility parameters of the EOB approach. This
general program has been initiated in a series of recent
papers which used 3-dimensional numerical relativity re-
sults [26–29]. In addition, numerical simulations of test
particles (with an added radiation reaction force) moving
in black hole backgrounds have given an excellent (and
well controllable) “laboratory” for learning various ways
of improving the EOB formalism by comparing it to nu-
merical data [30]. The latter work has introduced a new
resummed 3 PN-accurate quadrupolar waveform which
was shown to exhibit a remarkable agreement with “ex-
act” waveforms (in the small mass ratio limit). In the
present paper, we shall present the comparable-mass ver-
sion of our new, resummed 3 PN-accurate quadrupolar
waveform and compare it to the published results [20]
concerning recent high-accuracy numerical simulation of
15 orbits of an inspiralling equal-mass binary black hole
system. We then show how the agreement between the
two (which is quite good even without any tuning) can
be further improved by tuning the two main EOB flexi-
bility parameters: a5 and vpole. Our work will give new
evidence for the remarkable ability of the EOB formalism
at describing, in fine quantitative details, the waveform
emitted by a coalescing binary.

II. CALIBRATING vpole, IN THE

SMALL-MASS-RATIO CASE, FROM

NUMERICAL DATA

As a warm up towards our comparable-mass flexibil-
ity study, let us first consider the much simpler small-
mass-ratio case, ν ≪ 1. Here, ν denotes the symmet-
ric mass ratio ν = m1m2/(m1 + m2)

2 of a binary sys-
tem of non-spinning black holes, with masses m1 and
m2. We also denote M = m1 +m2 (“total rest mass”),
and µ = m1m2/M (“effective mass for the relative mo-
tion”), so that ν = µ/M . In the small-mass-ratio limit

ν ≪ 1, the conservative dynamics of the small mass (say
m2 ≃ µ) around the large one (m1 ≃ M) is known,
being given by the Hamiltonian describing a test parti-
cle µ in the background of a Schwarzschild black hole
of mass M . On the other hand, the energy flux toward
infinity, say F = (dE/dt)rad, or the associated radiation
reaction force FRR, cannot be analytically computed in
closed form. One must resort to black hole perturbation
theory, whose foundations were laid down long ago by
Regge and Wheeler [31], and by Zerilli [32] (for the non-
spinning case considered here). The waveform emitted
by a test particle is then computed by solving decou-
pled partial differential equations (for each multipolarity
(ℓ,m) of even or odd parity π) of the form

∂2
t h

(π)
ℓm − ∂2

r∗
h

(π)
ℓm + V

(π)
ℓ (r∗)h

(π)
ℓm = S

(π)
ℓm , (1)

where V
(π)
ℓ is an effective radial potential and where the

source term S
(π)
ℓm [32–34] is linked to the dynamics1 of

m2 ≃ µ around m1 ≃M .
At this stage we have two options for solving Eq. (1):

(i) use numerical methods, or (ii) use an analytical ap-
proximation scheme for solving (1) by successive approx-
imations. The numerical approach led, long ago, to the
discovery of several important features of gravitational
radiation in black hole backgrounds, such as the sharp
transition between the plunge signal and a ringing tail
when a particle falls into a black hole [36]. The analyt-
ical approach to solving Eq. (1) by successive approxi-
mations, of the post-Newtonian (PN) type, has been re-
cently driven to unprecedented heights of sophistication
(and iteration order). See [37] for a review.

Our purpose in this introductory section is to illus-
trate, on a simple case, how accurate numerical data can
be used to optimize the resummation of PN-expanded
analytical results. We consider the case of a particle on
a circular orbit. The numerical solution of this prob-
lem [38, 39] leads to an accurate knowledge of the radi-
ated energy flux F as a function of the orbital radius, or
equivalently (and more invariantly) of the “velocity pa-
rameter” v = (GMΩ)1/3. See Fig. 1 where the solid
(“Exact”) line represent the “Newton-normalized flux
function”

F̂ (v) ≡ F (v)

FN(v)
; with FN(v) ≡ 32

5
ν2v10 . (2)

On the other hand, post-Newtonian perturbation the-
ory allows one to compute F̂ (v) as, essentially, a Taylor

1 As discussed in [30, 35] the small-mass-ratio limit of the EOB
formalism leads to a generalization of the Regge-Wheeler-Zerilli
formalism in that the dynamics of the sourcing particle µ is not
taken to be geodesic, but is assumed to be modified by a radiation
reaction force FRR. The main issue of interest here is to optimize
the resummation of the analytical approximation to FRR, which
is given by a badly convergent post-Newtonian expansion (known
only to some finite order).
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series in powers of v (modulo the appearance of loga-
rithms of v in the coefficients An when n ≥ 6, except for
n = 7) [37], say

F̂Taylor(v) = 1 +A2v
2 +A3v

3 + · · · +Anv
n + · · · . (3)

It was emphasized by Poisson [39] that the successive
Taylor approximants obtained from Eq. (3) converge
both slowly and erratically to the numerically determined
“exact” F̂ (v). Subsequently, Ref. [1] pointed out that
the resummation of the series (3) by means of succes-
sive (near diagonal) Padé approximants led to a much
better sequence of approximants. See Fig. 3 in Ref. [1]
for a comparison between Taylor approximants and Padé
approximants. The convergence of the sequence of Padé
approximants was found to be much improved (the v5 ap-
proximant being already very close to all its successors),
and to be monotonic. This led to the suggestion of us-
ing such Padé approximants also in the comparable-mass
case, though we do not know (yet) the finite-ν analog of
the exact flux function F (v; ν).

The Padé resummation advocated in Ref. [1] involves
one flexibility parameter, vpole, which parametrizes the
location of the (real and positive) pole of the Padé-

resummed F̂Pade(v, vpole) which is closest to the ori-
gin in the complex v plane. Technically speaking,
F̂Pade(v; vpole) is defined as (1− v/vpole)

−1 times the rel-
evant near-diagonal Padé approximant 2 of the vpole −
modified Taylor series F̂

′Taylor(v, vpole) ≡ F̂Taylor(v) −
(v/vpole)F̂

Taylor(v) = 1 − v/vpole + A2v
2 + · · · . Ref. [1]

advocated to use, as a fiducial value for vpole, vpole =

1/
√

3 = 0.57735 in the test-mass limit ν → 0, and a
slightly larger, ν-dependent value, say vDIS

pole(ν) (moti-
vated by Padé resumming an auxiliary “energy function”
e(v; ν) ) given in Eq. (4.8) there. Here, we point out that,
when ν → 0, a slightly different choice for the numerical
value of vpole can very significantly improve the closeness
between the Padé flux and the exact (numerical) one.

Our results are displayed in Fig 1 (a) and (b). In
both panels, the solid line represents the “exact” result
for the flux function F̂ (v) as numerically computed by
Poisson. In the upper part of Fig 1 (a) one compares

F̂Exact(v) to two different Padé (P 5
6 ) approximants re-

summing the same v11-accurate (or 5.5 PN) Taylor ap-

proximant [40]: the “standard” F̂Pade(v; vpole = 1/
√

3)

and a “vpole-flexed” [25] version of F̂Pade(v; vpole) using
the optimized value vbest

pole(5.5PN) = 0.5398. This choice
of vpole yields a Padé approximant which is amazingly
close to the exact value. The lower panel of Fig. 1

2 Given a certain order for the Taylor approximant, say F̂ ′Taylor =
1 + · · ·+ vN , the general prescription is to resum it with a near-

diagonal Padé, P m
n , such that m + n = N and n = m + ǫ with

ǫ = 0 or 1. In the (exceptional) cases where such a near-diagonal
Padé contains a “spurious pole” (i.e., a real pole between 0 and
vpole), one should use another choice for m and n (staying as
close as possible to the diagonal m = n).

(a) exhibits the differences ∆ = F̂Pade − F̂Exact for
the two choices of vpole. While the standard choice of

vpole (namely 1/
√

3 = 0.57735) leads to a rather good
agreement (with |∆| being smaller than 5 × 10−3 up to
v ≃ 0.355, which corresponds to a radius r = 7.93GM ,
and |∆| reaching 2.4 × 10−2 at the Last Stable Or-
bit (LSO) at r = 6GM), the “flexed choice” vbest

pole =
0.5398± 0.0001 yields an amazing agreement all over the
interval 0 ≤ v ≤ vLSO = 1/

√
6 = 0.40825 . The largest

value of |∆| over this interval is max|∆| ≃ 9× 10−4, and
is reached around v = 0.38. Note that the 4-digit accu-
racy quoted for vbest

pole = 0.5398 ± 0.0001 corresponds to

(somewhat arbitrarily) imposing that the value of |∆| at
the LSO is smaller than about 1×10−4. The rounded off
value vpole = 0.54 would still yield an amazing fit with
max|∆| ≃ 10−3.

In Fig. 1 (b) we explore what happens when using a
much lower accuracy for the Taylor approximant of the
flux. We consider here, as an example of relevance for
the finite ν case, the case where one starts from a v6-
accurate (3PN) Taylor approximant for the flux3. For

that case the standard-choice vpole = 1/
√

3 still leads to a
rather good agreement ( with |∆| < 10−2 up to v ≃ 0.325
and |∆|LSO ≃ 5 × 10−2), while the flexed choice vbest

pole =
0.53 yields an excellent agreement all over the interval
0 ≤ v ≤ vLSO (with max|∆| ≃ 3 × 10−3 being reached
around v ≃ 0.355). Though the closeness is less good
than in the 5.5 PN case (3×10−3 versus 0.9×10−3), it is
even more amazing to think that, starting from a 3PN-
expanded flux function which (as shown, e.g., in Fig. 3
of Ref. [1]) differs from the exact result when 0.3 <∼ v <∼
vLSO by about 10%, a suitably flexed Padé resummation
can decrease the difference below the 3 × 10−3 level!

Summarizing: In the small ν limit, the value of the
flexibility parameter vpole can be calibrated to yield an
excellent agreement (from 3 × 10−3 to 0.9 × 10−3 de-
pending on the PN accuracy) between the Padéed flux

function F̂Pade(v; vpole) and the numerically determined

“exact” flux F̂Exact(v) all over the interval 0 ≤ v ≤ vLSO.
This gives an example of the use of accurate numerical
data to calibrate a theoretical flexibility parameter enter-
ing the EOB approach. In the following, we shall consider
the equal-mass case, ν = 1/4, and investigate to what ex-
tent accurate numerical data [20] can be similarly used
to calibrate the two main EOB flexibility parameters a5

and vpole
4.

3 The result for the v7-accurate expansion would be very simi-
lar and the final difference would be invisible to the naked eye.
However, as we shall mention below, some problems with spuri-
ous poles creep up in the near diagonal 3.5 PN Padé approximant
when ν = 1/4 and vpole ≤ 0.55. Therefore we prefer to exhibit
here the spurious-pole-free 3 PN Padé case.

4 Note that, as already suggested in Ref. [1], one expects the “true”
value of vpole to depend on ν. Therefore, we cannot a priori

assume that the above best values, say vbest
pole ≃ 0.53, will yield a

close agreement for the flux function (or the radiation reaction)
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III. NEW, RESUMMED 3 PN-ACCURATE EOB

INSPIRAL WAVEFORM

After having considered the importance, for fitting
high-accuracy numerical data, of the flexibility parame-
ter vpole in the simpler small-mass-ratio limit, we wish
to move on to the observationally urgent comparable
mass case 4ν ∼ 1. As we are going to see, this case
involves two, rather than one, relevant flexibility param-
eters: vpole (entering radiation reaction) and a5 (entering
the conservative orbital dynamics). To understand the
meaning of these parameters when 4ν ∼ 1, let us present
the comparable-mass version of the new, improved “ver-
sion” of EOB which has been introduced in Ref. [30]
and shown there to exhibit a remarkable agreement, in
phase and in amplitude, with “exact” small mass ratio
NR waveforms. Ref. [30] considered the small ν limit,
but with the clear methodological aim of using this limit
to test improved EOB waveforms defined for any value
of ν. We here continue this program by comparing this
improved EOB waveform to the recent numerical relativ-
ity data of [20]. The improvements in the EOB approach
introduced in Ref. [30] concern several of the separate
“bricks” entering this approach. Indeed, it included: (i)
a resummed, 3 PN-accurate description of the inspiral
waveform, (ii) a better description of radiation reaction
during the plunge, (iii) a refined analytical expression of
the plunge waveform, and (iv) an improved treatment of
the matching between the plunge and ring-down wave-
forms. As the present paper will compare this improved
EOB approach to the inspiralling NR results of [20], we
shall only make use here of the improvement (i).

A. Improved, resummed 3PN-accurate waveform

The new, resummed 3PN-accurate inspiral waveform5

derived in Ref. [30] takes the form (when neglecting the
“non quasi-circular” flexibility parameters, a and b, in-
troduced to better represent the “plunge” which follows
the inspiral)

(

Rc2

GM

)

hinspiral
22 (t) = −8

√

π

5
ν(rωΩ)2F22e

−2iΦ , (4)

where Φ(t) is the EOB orbital phase, Ω = Φ̇ is the EOB
orbital frequency, rω ≡ rψ1/3 is a modified EOB radius 6,

in the comparable mass case ν 6= 0.
5 Contrary to Ref. [30] where we used a Zerilli-Moncrief nor-

malized waveform Ψ22, we use here the same h22 normaliza-
tion as Ref. [41]. They differ simply by a numerical factor:

Rhℓm =
p

(ℓ + 2)(ℓ + 1)ℓ(ℓ − 1)
“

Ψ
(e)
ℓm + iΨ

(o)
ℓm

”

.
6 The quantity rω is such that, during adiabatic inspiral, it is re-

lated to Ω by a standard Kepler-looking law Ω2r3
ω = 1, without

correcting factors. However, during the plunge rω starts signifi-
cantly deviating from Ω−2/3 [43].
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FIG. 1: Panel (a) compares the “exact” Newton-normalized

flux function F̂ (v) [39] to two different Padé resummed,
v11–accurate analytical flux functions: one using the stan-
dard value vpole = 1/

√
3 = 0.57735 and the other one using

an “optimized” flexed value vpole = 0.5398. The bottom part

of (a) plots the corresponding differences ∆ = F̂Pade−F̂Exact.
Panel (b) plots the same quantities, except for the fact that
it uses only v6–accurate analytical flux functions.

with ψ being defined in Eq. (22) of Ref. [43], and where
the crucial novel PN-improving factor F22 is given as the
product of four terms

F22(t) = ĤeffT22f22(x(t))e
iδ22(t) . (5)

Here Ĥeff is the effective EOB Hamiltonian divided by µ
(it describes the quasi-geodesic dynamics of the “effective
test mass” µ), and T22 is the particularization to ℓ =
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m = 2 of a resummed “tail correction factor” introduced
in Ref. [30]. Its explicit expression (in the general, finite
ν case) reads

Tℓm =
Γ(ℓ+ 1 − 2i

ˆ̂
k)

Γ(ℓ+ 1)
eπ

ˆ̂
ke2i

ˆ̂
k log(2kr0) , (6)

where
ˆ̂
k ≡ GHrealmΩ differs from k = mΩ by a

rescaling involving the real (rather than effective) EOB
Hamiltonian. This “tail factor” is the exact resumma-
tion of an infinite number of “leading logarithms” ap-
pearing in the perturbative multipolar-post-Minkowskian
(MPM) expansion [44–48] of “tail effects” in the (ℓ,m)
radiative moment. For instance, at the leading or-
der in the monopole×multipole interaction the radiative
quadrupole Uij(TR) contains a tail integral [49]

2GI

∫ ∞

0

dτM
(4)
ij (TR − τ)

[

log

(

τ

2r0

)

+
11

12

]

, (7)

while at the next to leading order it contains a tail inte-
gral [50]

2G2I2

∫ ∞

0

dτM
(5)
ij (TR − τ)

[

log2

(

τ

2r0

)

+ c1 log

(

τ

2r0

)

+ c0

]

.

(8)

[Here, I denotes the monopole of the source, i.e.
I = MADM = Hreal]. The factor Tℓm resums the infinite
series of the contributions to Uℓm proportional to

GnIn

∫ ∞

0

dτM
(ℓ+1+n)
ℓm (τR − τ) logn

(

τ

2r0

)

. (9)

The real factor f22(x) was computed in Ref. [30] (as
indicated in footnote 8 there) to 3 PN accuracy for all
values of ν by starting from the 3 PN-accurate multipolar
post-Minkowskian results of Refs. [51–55]. The explicit
form of its (PN) “Taylor” expansion reads

fTaylor
22 (x) = 1 +

1

42
(−86 + 55ν)x

+
1

1512

(

−4288− 6745ν + 2047ν2
)

x2

+

(

21428357

727650
− 856

105
eulerlog(x) − 34625

3696
ν

+
41

96
π2ν − 227875

33264
ν2 +

114635

99792
ν3

)

x3

+

(

− 5391582359

198648450
+

36808

2205
eulerlog(x)

)

x4

+

(

− 93684531406

893918025
+

458816

19845
eulerlog(x)

)

x5

+ O(νx4) + O(x6) . (10)

where eulerlog(x) ≡ γE + 2 log 2 +
1

2
log x. For greater

accuracy, we have added in Eq. (10) the small ν limit
of the 4PN and 5PN contributions (as deduced from the
results of [40, 56]).

Finally, the additional phase δ22(t) is given by

δ22 =
7

3
HrealΩ +

428

105
π (HrealΩ)

2 − 24νx5/2 . (11)

At the time of the writing of [30] we had derived the
full ν-dependent waveform (4)-(11), except for the ac-
curate value of the coefficient of νx5/2 in Eq. (11), be-
cause this value was not meaningful for us as it could
be absorbed in the “non quasi-circular phase flexibility
parameter” b included in Eq. (14) of [30]. Taking b = 0,
we have recently derived from scratch the value −24 for
this coefficient7. In the meantime, Kidder [41] has inde-
pendently realized that it might be useful to compute the
ℓ = m = 2 part of the waveform to 3 PN accuracy and
has derived a 3 PN-accurate non-resummed (2, 2) wave-
form [See also [42] for an earlier 2.5 PN-accurate deriva-
tion of the (non-resummed) (2, 2) waveform]. We have
compared our result (5)-(11) with his and found perfect
agreement (when PN-reexpanding our result).

Speaking of choices, there are more to be made to con-

vert the PN-expanded amplitude factor fTaylor
22 , Eq. (10),

into a better, “resummed” EOB waveform factor. As
said in Ref. [30], we propose to improve the conver-
gence properties of the Taylor expansion (10) by replac-
ing it by a suitable Padé approximant. We use the
upper diagonal (3, 2) Padé, i.e. we use in our calcula-

tions f22(x; ν) = P 3
2

[

fTaylor
22 (x; ν)

]

8. The final choice

we need to make concern the argument x(t) of f22(x(t))
in Eq. (10). As discussed in Ref. [30] this argument is
“degenerate” during the inspiral in that it can be equiva-
lently expressed in various ways in terms of the dynamical
variables of the system, namely (in the general finite ν
case) x = Ω2/3 = (rωΩ)2 = 1/rω. We emphasized that
some choices might be better than others to automati-
cally capture some non quasi-circular effects during the
plunge. However, as we are here concerned with the in-
spiral phase, we do not expect that the precise choice of
x(t) will matter. Some preliminary checks indicate that

7 As was emphasized in Refs. [20, 41, 57] the small additional
phase term ∝ νx5/2 has anyway very little effect on observable
quantities during the inspiral.

8 A technical remark concerning the Padé approximants we use
(both for the flux function F (v) and the waveform f22(x)): con-
trary to the prescription suggested in Ref. [1], we find simpler
(and numerically more or less equivalent) not to factor out the
log-dependent terms (appearing at 3 PN and beyond), but in-
stead to define the Padé approximants by considering the loga-
rithms appearing in the PN expansion on par with the normal nu-
merical Taylor coefficients: e.g., 1+c1x+ · · ·+(c03 +c13 log x)x3 is
Padéed by first Padeing the usual Taylor series 1+c1x+· · ·+c3x3,
and then replacing c3 → c03 + c13 log x in the result.



6

this is indeed the case. For simplicity, we shall use here
the argument x(t) = Ω2/3 for f22(x(t)) in Eq. (5).

B. Effective One Body relative dynamics

Let us briefly recall here the EOB construction of the
relative dynamics of a two-body system (for more de-
tails on the recent improvements in the EOB approach
see [28, 30]). The EOB approach to the general relativis-
tic two-body dynamics is a non-perturbatively resummed

analytic technique which has been developed in Refs. [2–
5, 28, 30, 43]. The EOB approach uses as basic input the
results of PN and MPM perturbation theory, and then
“packages” this PN-expanded information in special re-

summed forms, which are expected to extend the validity
of the PN results beyond their normal weak-field-slow-
velocity regime into (part of) the strong-field-fast-motion
regime. At the practical level, and for what concerns the
part of the EOB approach which deals with the relative
orbital dynamics, the method consists of two fundamen-
tal ingredients: (i) the “real Hamiltonian” Hreal, and (ii)
the radiation reaction force Fϕ.

It is convenient to replace the adimensionalized radial
momentum pr (conjugate to the EOB adimensionalized
radial coordinate r = R/M) by the conjugate pr∗

to the
“EOB tortoise radial coordinate”

dr∗
dr

=

(

B

A

)1/2

; B ≡ D

A
. (12)

In terms of pr∗
(and after the rescaling Ĥeff ≡ Heff/µ,

pϕ ≡ Pϕ/(µM)) the real, 3 PN-accurate Hamiltonian [4]
reads

Hreal(r, pr∗
, pϕ) ≡ µĤreal = M

√

1 + 2ν
(

Ĥeff − 1
)

,

(13)
with

Ĥeff(r, pr∗
, pϕ) ≡

√

√

√

√p2
r∗

+ A(r)

(

1 +
p2

ϕ

r2
+ z3

p4
r∗

r2

)

,

(14)
where z3 = 2ν (4 − 3ν), and where the PN expansion of
the crucial radial potential A(r)

(

≡ −geffective
00

)

has the
form [2, 4]

ATaylor(u) = 1 − 2u+ 2νu3

+

(

94

3
− 41

32
π2

)

νu4 + a5νu
5 + O(νu6) ,

(15)

with u = 1/r. As suggested in Ref. [5] we have
parametrized the presence of presently uncalculated 4 PN
(and higher) contributions to A(u) by adding a term
+a5(ν)u

5, with the simple form a5(ν) = a5ν. [Indeed,
it was remarkably found, both at the 1 PN, 2 PN [2],

and the 3 PN [4] levels, that, after surprising cancella-
tions between higher powers of ν in the various contribu-
tions to the coefficient an(ν) = a1

nν+ a2
nν

2 + · · · of un in
A(u), only the term linear in ν remained for n=2,9 3 and
4. Ref. [5] introduced this term with the idea that “one
might introduce a 4 PN contribution +a5(ν)u

5 to A(u),
as a free parameter in constructing a bank of templates,
and wait until LIGO-VIRGO-GEO get high signal-to-
noise ratio observations of massive coalescing binaries to
determine its numerical value”. We do not dispose yet
of such real observations, but, as substitutes we can (as
started in Refs. [22, 29]) try to use numerical simulations
to determine (or at least constrain) the value of the un-
known parameter a5. This is what we shall do below,
where we shall compare our results to previous ones.

As discussed in [4], the most robust choice10 for re-
summing the Taylor-expanded function A(u) is to re-
place it by the following Padé approximant A(u) ≡
P 1

4 [ATaylor(u)]. Similarly, the secondary metric func-
tion D(u) = P 0

3 [DTaylor(u)] where DTaylor(u) is given in
Eq. (2.19) of Ref. [5].

The EOB equations of motion for (r, r∗, pr∗
, ϕ, pϕ)

are then explicitly given by Eqs. (6-11) of Ref. [28].
They are simply Hamilton’s equations following from the
Hamiltonian (13), except for the pϕ equation of motion
which reads

dpϕ

dt
= F̂ϕ , (16)

where, following Refs. [1, 3] the r.h.s. contains a re-

summed radiation reaction force, which we shall take in
a form recently suggested in Ref. [43], namely

F̂ϕ ≡ Fϕ

µ
= −32

5
νΩ5r4ω

fDIS(vϕ; ν, vpole)

1 − vϕ/vpole
, (17)

where vϕ ≡ Ωrω, rω ≡ rψ1/3 (with ψ defined
as in Eq. (22) of Ref. [43]). Here fDIS denotes a
suitable Padé resummation of the quantity denoted
F̂ ′Taylor(v, vpole) above, i.e., the Taylor expansion of

(1 − v/vpole)F̂
Taylor(v; ν) where F̂Taylor is the Newton-

normalized (energy or) angular momentum flux along
circular orbits (expressed in terms of vcirc = Ω1/3 for
comparable-mass circular orbits). Here again, to com-

pletely define F̂ϕ we must clearly state what is the start-
ing Taylor-expanded result that we use, and how we re-
sum it. For greater accuracy, we are starting from

F̂Taylor(v; ν) = 1 +A2(ν)v
2 +A3(ν)v

3 +A4(ν)v
4

+A5(ν)v
5 +A6(ν, log v)v6 +A7(ν)v

7

+A8(ν = 0, log v)v8 , (18)

9 Actually, for n = 2, i.e. the 1 PN contribution to A(u), the
cancellations even led to a complete cancellation a2(ν) = 0!

10 And the simplest one ensuring continuity with the ν → 0 limit.
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where we have added to the known 3.5 PN-accurate [51–
55] comparable-mass flux the small-mass-ratio 4 PN
contribution [40]. Then, we use as Padé approximant
of this (quasi-)v8-accurate expansion fDIS(v; v, vpole) ≡
P 4

4

[

(1 − v/vpole)F̂
Taylor(v; ν)

]

. We indeed found that

this specific (diagonal) Padé approximant (as well as the
less accurate P 3

3 one) was robust under rather large varia-
tions of the numerical value of vpole (by contrast to other
ones, such as P 3

4 or P 4
3 , which exhibit spurious poles

when vpole becomes too small). Finally, note that, for
integrating the EOB dynamics from some finite start-
ing radius (or frequency) we need some appropriate ini-
tial conditions. Refs. [3, 25, 58] indicated how to define
some “post-adiabatic” initial conditions. In view of the
high accuracy of the NR data of [20] (and notably of
their extremely reduced eccentricity), we found useful to
go beyond Refs. [3, 25, 58] and to define some, iterated
“post-post-adiabatic” initial data allowing us to start in-
tegration at a radius r = 15.

Summarizing: In the comparable-mass case, the phas-
ing, and the amplitude, of the new, resummed 3 PN-
accurate inspiral waveform introduced in Ref [30] is given
by inserting the solution of the EOB dynamics (given by
Eqs. (13)-(17)) into the waveform (4)-(11). This wave-
form depends on two flexibility parameters, a5 and vpole,
that parametrize (in an effective manner) current un-
certainties in the EOB approach: a5 parametrizes un-
calculated 4 PN and higher orbital effects, while vpole

parametrizes uncertainties in the resummation of radia-

tion effects (also linked to ν dependent 4 PN and higher
radiative effects).

IV. COMPARING THE NEW, RESUMMED

EOB WAVEFORM TO ACCURATE NUMERICAL

DATA

Thanks to the recent breakthroughs in numerical rel-
ativity one can now start to make detailed comparisons
between EOB waveforms and numerical relativity ones.
Working with high-accuracy data can further allow us
to calibrate the “flexibility parameters” [25] entering ex-
tended versions of the EOB formalism. A first step in this
direction was recently taken by Buonanno et al. [29] by
utilizing numerical gravitational waveforms generated in
the merger of comparable-mass binary black holes. How-
ever, the merger data that were used were relatively short
(about 7 inspiralling orbits before merger when ν = 1/4).
Here, we shall instead consider the information contained
in a recent, high accuracy, low-eccentricity simulation
covering 15 orbits of an inspiralling equal-mass binary
black hole [20]. [See also the previous results of the Jena
group which covered ∼ 9 inspiralling orbits [59]].

Boyle et al. [20] have published their results in the
form of differences between the numerical relativity data
and various, Taylor-type PN predictions We recall that
there are many ways of defining some Taylor-type PN
waveforms. Ref. [60] introduced a nomenclature which

included three sorts of PN-based “Taylor approximants”;
from Taylor T1 to Taylor T3, as well as several other
resummed approximants (Padé, and EOB). In addition,
the definition of each such Taylor approximant makes
two further choices: the choice of PN accuracy on the
phasing, and the choice of PN accuracy in the amplitude.
A fourth Taylor approximant, T4, was also considered in
previous NR-PN comparison [26, 27, 61] and Ref. [26] had
pointed out that it seemed to yield a phasing close to the
NR one. Boyle et al. [20] confirmed this “experimental”
fact and found that Taylor T4 at 3.5 PN phasing accuracy
agreed much better with their long, accurate simulations
than the other Taylor approximants.

Here we shall use as EOB quadrupolar metric wave-
form the new, resummed 3 PN-accurate inspiral wave-
form explicitly presented above, say hEOB

22 (t; a5, vpole),
defined in Eq. (4) and the following equations of the pre-
vious section. Note, however, that [20] uses as basic grav-
itational radiation variable the ℓ = m = 2 projection of
the corresponding Weyl curvature quantity, which is re-
lated to the metric waveform h22 by
(

Rc2

GM
Ψ22X

4

)

(t) ≡ ∂2

∂t2

(

Rc2

GM
hX

22

)

(t) ≡ AX(t)e−iφX(t) .

(19)
Here, A and φ denote the amplitude and phase of the
curvature wave considered by Boyle et al. [20]. We have
introduced a label X which will take, for us, three values:
X≡NR denotes the numerical relativity result of Ref. [20],
X≡EOB denotes the improved EOB waveform presented
in the previous section and X=T4 will denote the “Taylor
T4” waveform highlighted in Ref. [20] (as well as in previ-
ous PN-NR comparisons [27, 61]) as giving a particularly
good fit.

The precise definition of this T4 waveform (as used in
Ref. [20]) is as follows. As indicated in Eq. (19), Ψ22T4

4 is
obtained by taking two time derivatives of a correspond-
ing metric T4 waveform hT4

22 . The latter waveform is
defined (if we understand correctly the combined state-
ments of Refs. [20] and [41]) by the following procedure.
First, one defines a certain “T4 orbital phase” ΦT4(t) by
integrating the ODEs

dΦT4

dt
=
x3/2

GM
, (20)

dx

dt
=

64ν

5GM
x5aTaylor

3.5 (x) , (21)

where

aTaylor
3.5 (x) = 1 + ā2(ν)x+ ā3(ν)x

3/2 + ā4(ν)x
2

+ ā5(ν)x
5/2 + ā6(ν, log x)x3 + ā7(ν)x

7/2 ,
(22)

is the 3.5 PN Taylor approximant (for finite ν) to the
Newton-normalized ratio (flux-function)/(derivative of
energy function)=F (v)/E′(v), which enters the adiabatic
evolution of the orbital phase (see, e.g. [1, 60]). In

the relevant case ν = 1/4, aTaylor
3.5 (x) is explicitly given
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as the quantity within curly braces on the r.h.s. of
Eq. (45) of [20]. Having in hand the result, ΦT4(t),

ΩT4(t) ≡ dΦT4/dt ≡ x
3/2
T4 /GM , of integrating Eqs. (20)-

(21) one then defines a nPN-accurate, T4 (ℓ = 2,m = 2)

waveform by truncating to order x
n/2
T4 included the Taylor

series
(

c2R

GM
hT4

22

)

(t) = −8

√

π

5
νe−2iΦT4(t)xT4

×
[

1 + h̃2xT4 + h̃3x
3/2
T4 + h̃4x

2
T4 + h̃5x

5/2
T4 + h̃6x

3
T4

]

,

(23)

where the coefficients h̃n are obtained from the coeffi-
cients hn in the Taylor-expanded 3 PN-accurate (2,2)
waveform derived by Kidder [41] by setting to zero all
the terms proportional to log(x/x0) or log2(x/x0) (but
keeping the separate log x term entering h6), and replac-
ing ν = 1/4.

Note that our resummed waveform (4)-(11) differs from
the 3 PN-accurate version of (23) in several ways: (i) the
“orbital phase” evolution is given, for us, by the EOB
resummed dynamics, (ii) we do not neglect the phase
terms linked to log(x/x0), but include them either in the
resummed tail factor T22 or in δ22, and (iii) we resum the

amplitude of h22 by factoring both Ĥeff and the modulus
of T22, and by Padeing f22.

Ref. [20] presents in their Fig. 19 the differences, in
phase and amplitude (of the radiative Weyl-curvature
components Ψ4), between Taylor T4 3.5/2.5 (i.e., 3.5 PN
in phase and 2.5 PN in amplitude) and the (unpublished)
corresponding Caltech-Cornell NR data, say

(∆φ)T4NR ≡ φT4(t) − φNR(t) , (24)
(

∆A

A

)

T4NR

≡ AT4(t) −ANR(t)

ANR(t)
, (25)

as plotted in the two panels of Fig. 19 of Ref. [20]. Our
main aim here is to compare the “numerical data” (24)-
(25) to the corresponding theoretical predictions made
by the EOB formalism, say

(∆φ)T4EOB ≡ φT4(t) − φEOB(t) , (26)
(

∆A

A

)

T4EOB

≡ AT4(t) −AEOB(t)

AEOB(t)
. (27)

As just said, as the most complete, and best plotted data,
concern Taylor T4 3.5/2.5, we shall use the 3.5 PN ac-
curate Eq. (22) but only consider the 2.5 PN truncation
of the Taylor-expanded waveform (23) (i.e. a waveform
essentially contained in the 2.5 PN h+ and h× results of
Arun et al. [62]). [As we use the T4 waveform only as
an intermediary between the NR and EOB results, we
are allowed to use any convenient “go between”, even
if its PN accuracy differs from the (formal) one of our
resummed EOB waveform].

To effect the comparison between NR and EOB, i.e.,
to compute the crucial difference φEOB−φNR, we needed

to extract actual numerical data from Fig. 19 of [20]. We
did that in several ways. First, we measured (with milli-
metric accuracy; on an A3-size version of the left panel of
Fig. 19) sufficiently many points on the solid upper curve
(Taylor T4 3.5/2.5 matched at Mω4 ≡ 0.1 ) 11 to be
able to replot (after “splining” our measured points) this
upper curve with good (visual) accuracy. We could then
use this splined version of eleven (adequately distributed)
selected points on the upper curve on the left panel of
Fig. 19 as our basic (approximate) “numerical data”. It
gives us a (continuous) approximation to the ω4-matched
phase difference ∆ω4φT4NR(t̄ω4) = φω4

T4(t̄
′
T4) − φNR(t̄ω4).

[Here, t̄ω4 denotes the time shifted so that t̄ω4 = 0 cor-
responds to the ω4 matching point between T4 and NR].
As we have separately computed φT4(tT4) by integrating
Eqs. (20)-(21) (and that it is easy to shift it to obtain
φω4

T4(t̄
′
T4)) we have thereby obtained an approximation to

φNR(t̄ω4). We then shift again the time argument to our
basic EOB dynamical time so as to obtain φNR(tEOB)
(with the condition that ωEOB(tω4

EOB) = ω4 corresponds
to t̄ω4 = 0).

There are then several ways of comparing φNR(tEOB)
to the EOB phasing φEOB(tEOB), obtained from the pro-
cedure explicated above. We wish to emphasize here that
there is a useful way of dealing with the information con-
tained in (any) phasing function φX(tX) where X=NR,
EOB, T4, etc. Indeed, a technical problem concerning
any such phasing function is the presence of two shift am-
biguities: a possible arbitrary shift in φX (φX → φX+cX)
and a possible arbitrary shift in the time variable tX
(tX → tX + τX). Similarly to what one does in Eu-
clidean plane geometry where one can replace the Carte-
sian equation of a curve y = y(x) by its intrinsic equation
K = K(s) (where K is the curvature and s the proper
length), we can here (in presence of a different symme-
try group) replace the shift-dependent phasing function
φX(tX) by the shift-independent intrinsic phase evolution
equation: dωX/dtX = αX(ωX), where ωX ≡ dφX/dtX (for
simplicity we shall use here M = m1 +m2 = 1). It is also
convenient to factor out of the phase acceleration αX(ω)
its “Newton” approximation12,

αN (ω) ≡ cνω
11/3; cν =

12

5
21/3ν (28)

and to consider the reduced phase acceleration function

11 Ref. [20] computes various differences ∆ωmφ(t) = φωm

T4 (t′T4) −
φNR(t) where, given a “matching” frequency ωm, φωm

T4 (t′T4) de-
notes a version of φT4(tT4) which is shifted in φ and in t so
that 0 = ∆ωmφ(t) = d∆ωmφ(t)/dt at the moment tωm

NR where
dφNR/dt = ωm. We shall denote the four matching frequen-
cies used in [20] as Mω1 ≡ 0.04, Mω2 = 0.05, Mω3 = 0.063,
Mω4 = 0.1

12 Note that we are dealing here with the gravitational (curva-
ture) wave frequency ω. If we were dealing with the orbital
frequency Ω = dΦ/dt, we would instead consider the following
reduced phase acceleration (dΩ/dt)/(Cν Ω11/3) = AΩ(Ω) with
Cν = (96/5)ν.
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FIG. 2: Reduced phase-acceleration curves as defined in
Eq. (29) (with M ≡ m1 + m2 = 1). The inset highlights
how the “tuned” EOB curve nearly coincides (for ω <

∼ 0.08)
with the NR (and T4) curves, while the “non-tuned” EOB
one lies slightly below.

aX
ω defined by

ω̇X

cνω
11/3
X

= aX
ω (ωX) . (29)

Independently of the label X the function aX
ω → 1 as

ω → 0. The phasing comparisons then boil down to com-
paring the various (reduced) phase acceleration functions
aNR

ω (ω), aT4
ω (ω) and aEOB

ω (ω; a5, vpole). The last two
functions can be straightforwardly (numerically) com-
puted from the formulas written above. As for aNR

ω (ω) it
is, in principle, also straightfiorwardly computable from
φNR(tNR). However, as we do not have access to an ac-
curate estimate of φNR(tNR) but only to a rather rough
cubic spline approximation to it, we can only compute
an even rougher estimate of aNR

ω (ω). [As is well known,
taking (two!) derivatives of approximate results consid-
erably degrades the accuracy.] Still, as we think that this
is the conceptually clearest way of presenting the com-
parison, we used the data we had in hand to compute the
various “acceleration curves” presented in Fig. 2.

Actually, it is instructive to include further phase-
accelerations in the comparison. In Fig. 2 we show
the following phase-acceleration functions (versus ω, i.e.,
Mω): (i) Taylor T4 3.5/2.5, (ii) NR, (iii) a standard
“non-tuned” EOB with a5 = 0 (i.e. essentially the
3 PN approximation) and vpole = vDIS

pole(ν) [1] for ν =

1/4, which corresponds to our current knowledge, (iv)
a “tuned” EOB with a5 = 40 and vpole = 0.5074 (see
below), and finally (v) the adiabatic EOB for a5 = 40
and vpole = 0.5074. Here, the adiabatic approximation
to aω is that defined by the usual adiabatic approach

to inspiral phasing (see e.g. [1]), leading to aω(ω) =

F̂ (v)/Ê′(v) where v = (ω/2)1/3 and where F̂ is the

Newton-normalized circular flux and Ê′ the Newton-
normalized derivative of the circular energy function.
[When applying these general concepts to the EOB we
need, as discussed in Ref. [3], to use the analytical, adi-
abatic approximation to EOB inspiral, with, notably,
pϕ = jadiabatic(u) obtained by solving ∂HEOB/∂r = 0
with pr = 0].

Several preliminary conclusions can be read off Fig. 2.
(i) In the frequency domain (sayMω < 0.08) where the

T4 3.5 phasing matches well with the NR phasing, both
the standard “non-tuned” EOB (a5 = 0, vpole = vDIS

pole)

and “tuned” EOB phasing (defined above) match well
with the NR phasing. However, a closer look at the ac-
celeration curves (see inset) shows that the “tuned” EOB
phasing agrees better with NR (and T4). [The “non-
tuned” aEOB

ω is slightly below aNR
ω (and aT4

ω ) by roughly
1.5 × 10−3 when Mω ∼ 0.06 ].

(ii) For higher frequencies (0.08 < Mω <∼ 0.14), Tay-
lor T4 3.5/2.5 starts to significantly diverge from the
NR phasing. 13 By contrast, both the standard “non-
tuned” EOB phasing and the “tuned” EOB one continue
to match quite well the NR phasing. This will be shown
below by using other diagnostics than the acceleration
curves. Indeed, when Mω >∼ 0.08 our “NR accelera-
tion curve” exhibits fake oscillations which come from
our use of a coarse approximation to NR data. The visi-
ble “kinks” in our NR acceleration curve are due to our
taking (numerical) second derivative of a cubic spline in-
terpolant of approximate NR data points. We expect that
the exact “NR acceleration curve” (computed with accu-
rate numerical data instead of our approximate ones) will
be a smooth curve lying close to the two EOB curves in
Fig. 2.

(iii) The fact that the adiabatic EOB curve diverges
quite early, and upwards, from the full EOB curve is a
confirmation of the conclusion derived in Ref. [3] (see
Figs. 4 and 5 there), namely that , “ in the equal mass
case ν = 1/4 the adiabatic approximation starts to sig-
nificantly deviate from the exact evolution quite before
one reaches the LSO”. This further confirms the sugges-
tion of [20] that the good early (Mω < 0.08) agreement
between T4 and NR is coincidental.

Because of our lack of an accurate knowledge of aNR
ω ,

we cannot use the acceleration curves of Fig. 2 to make
any accurate comparison between EOB and NR data.
In the following we shall use other tools for doing this
comparison and, in particular, for constraining the values
of a5 and vpole.

13 Though Ref. [20] tends to mainly emphasize how well Tay-
lor T4 3.5/2.5 agrees with the NR phasing one should note that
the high curvature of the upper ω4 curves when Mω >

∼ 0.08 in
the left panel of Fig. 19, and the subsequent fast rise of all the
∆ωmφ, are clear signals that Taylor T4 3.5/2.5 starts to signifi-
cantly (and increasingly) diverge from the NR phasing.
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FIG. 3: Correlation between vpole and a5 (top panel) ob-
tained by imposing the constraint (35). The numerical ac-
curacy with which Eq. (35) is satisfied is displayed in the
left-bottom panel. The right-bottom panel displays the ex-
tent to which, as a5 varies, the other ratios ρωm

, Eq. (34),
approximate unity.

The first tool we shall use consists in selecting among
our eleven approximate points on the ∆ω4φT4NR curve
two special ones, namely

∆ω4φT4NR(tω4

NR − 1809M) ≡ δbwd
4 ≃ 0.055 , (30)

∆ω4φT4NR(tω4

NR + 44.12M) ≡ δfwd
4 ≃ 0.01 , (31)

to which we shall refer as the (main) “backward” and
“forward” ω4 data. In addition, we also measured a cou-
ple of selected points on the ω2- and ω3-matched lower
∆φ curves. Namely,

∆ω2φ(tω2

NR + 1000M) ≡ δ2 ≃ −0.01 , (32)

∆ω3φ(tω3

NR − 1000M ≡ δ3 ≃ −4.3 × 10−3 . (33)

We can then use, in a numerically convenient way, these
data to quantitatively compare (with an hopefully rea-
sonable numerical accuracy) NR to EOB by considering
four ratios, ρω2

, ρω3
, ρbwd

ω4
, ρfwd

ω4
(where we recall that

ω2 = 0.05, ω3 = 0.063 and ω4 = 0.1), with

ρωm
(a5, vpole) ≡

∆ωmφT4EOB (tωm

NR + δtm)

δm
, (34)

and ωm = ω2, ω3 and ωbwd
4 or ωfwd

4 .
If our approximate measures (given in Eqs. (30)-

(33)) of the various δm’s were accurate, a per-
fect match between NR and EOB would corre-
spond to having all those ratios equal to unity:
ρω2

(a5, vpole) = 1, ρω3
(a5, vpole) = 1, ρbwd

ω4
(a5, vpole) = 1,

and ρfwd
ω4

(a5, vpole) = 1. This would give four equations
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FIG. 4: The L∞ norm of the phase difference between EOB
(when vpole is correlated to a5 as in Fig. 3) and numerical
relativity, as defined by Eq. (36).

for two unknowns (a5 and vpole). Even if we had ex-
act values for the various δm’s, we do not, however, ex-
pect that there would exist special values of a5 and vpole

for which all these ratios would be equal to one. In-
deed, a5 and vpole are only “effective” parameters that
are intended to approximately mimic an infinite number
of higher ν-dependent, resummed PN-effects. The best
we can hope for is to find values of a5 and vpole allow-
ing one to give a good overall match between φNR(t) and
φEOB(t) (or aNR

ω and aEOB
ω ). To investigate this issue,

it is then convenient to focus first on only one compari-
son observable. We choose ρbwd

ω4
because it is, among the

data which we could measure with reasonable accuracy,
the one which has the largest “lever arm”. [Indeed, it
corresponds to some weighted integral of the difference
aEOB

ω − aNR
ω over a significantly extended frequency in-

terval]. Imposing the constraint

ρbwd
ω4

(a5, vpole) = 1 , (35)

then gives a precise way of exploring which extended
EOB models best match the NR phasing . Note first that
this equation could have no solutions. [For instance, if
we were using the adiabatic approximation to EOB there
would be no solutions]. To admit solutions is already a
sign that EOB can provide a much better match to NR
than T4. Then, the solutions could exist only if both a5

and vpole are close to some “preferred” values. Actually,
we found that Eq. (35) defines a continuous curve in the
(a5, vpole) plane14.

14 Consistently with what was found for lower approximations, and
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For all values of a5 ≥ 0, we (numerically) found
a unique value of vpole satisfying the constraint (35).
This continuous curve is plotted in the upper panel of
Fig. 3. When remembering that Eq. (30) is only ap-
proximate,15 we have to mentally replace the continuous
curve in the upper panel of Fig. 3 by a narrow valley of
“best fitting” values of (a5, vpole). Let us first remark
that this valley extends only on a rather small range
of values of vpole, around 0.55. It is comforting that
this range includes the values that were previously sug-
gested for vpole: namely vusual

pole (ν = 0) = 1/
√

3 = 0.57735,

vDIS
pole(ν = 1/4) ≃ 0.6907, vbest

pole(ν = 0) ≃ 0.54 (discussed

above).

To go beyond this result and see whether the other
measurements constrain the value of a5, we plot on the
lower, right panel of Fig. 3 the values of the ratios ρω2

, ρω3

and ρfwd
ω4

along the ρbwd
ω4

= 1 curve. As, along this curve,
vpole is a function of a5, the above three ratios depend
only on a5. Ideally, we would like to find values of a5 for
which the remaining ratios are all close to unity. [Given
the coarse nature of our measurements, we cannot expect
to get exactly unity]. We see on Fig. 3 that the ratio
ρfwd

ω4
is reasonably close to unity for most values of a5.

By contrast, the two other ratios ρω2
and ρω3

happen to
have the wrong sign. This negative sign means, in terms
of the phase-acceleration curves of Fig. 2, that around
frequencies ω2 and ω3, a

NR
ω (ω) is slightly above aT4

ω (ω),
while it seems that aEOB

ω (ω) tends to be generally slightly
below aT4

ω (ω). On the other hand, for larger frequencies,
it seems clear that aNR

ω crosses aT4
ω to become below aT4

ω ,
and to become in rather good agreement with aEOB

ω . At
this stage, the best we can do is to say that an overall
best match between EOB and NR will be obtained when
a5 belongs to a rather large interval (say 10 <∼ a5

<∼ 80)
centered around a5 ≃ 40, where ρω2

and ρω3
are negative,

but rather small (say −0.5 <∼ ρω3

<∼ 0)

To get another, potentially better measure of the
“closeness” between NR and EOB we looked at the “L∞”
distance between the two functions φNR(t) and φEOB(t)
on the time interval (in EOB time) 900M ≤ tEOB ≤
3460M (which roughly corresponds to the time interval
plotted in Fig. 19 of Ref. [20]). More precisely, we com-
puted the quantity

L∞(a5) ≡ sup
900M≤tEOB≤3460M

∣

∣φEOB(tEOB) − φω4

NR

(

t′ω4

NR

)
∣

∣ ,

(36)
where φω4

NR

(

t′ω4

NR

)

is matched to the EOB phase at ω4,
and where the EOB was constrained to lie along the
curve vpole(a5) plotted in Fig. 3 (i.e., satisfying Eq. (35)).

for the presently computable contributions to a5 [25], we expect
that a5 ≥ 0, and we shall therefore only work in the correspond-
ing half plane.

15 We estimate the accuracy of our measurement result Eq. (30) to
be such that the “backward time-shift”, corresponding to a r.h.s.
exactly equal to 0.055, is (−1809 ± 15)M .
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FIG. 5: The upper panel compares various phase differences
∆ωmφT4X versus time (with M = 1), ωm denoting a matching
frequency and the label X being either EOB or NR. The lower
panel exhibits the ω4–matched phase difference between EOB
and NR. The flexibility parameters of EOB have been tuned
here to a5 = 40 and vpole = 0.5074.

We show this L∞ norm in Fig. 4. This Figure displays
the remarkable agreement between EOB and NR phas-
ing over an interval where T4 exhibits a clear dephasing
with respect to NR. Indeed, Fig. 19 of [20] shows that
on this interval all Taylor T4 3.5 templates dephase by
≈ 0.08 radians (because of the divergence at the end, cor-
responding to the divergence of the acceleration curves
in Fig. 2 when ω >∼ 0.08). By contrast, the dephasing
between EOB and NR can be as small as 0.006 radians if
30 <∼ a5

<∼ 52, or 0.008 radians if 10 <∼ a5
<∼ 80. Again, we

find that a largish interval of a5 values centered around
a5 ∼ 40 seems to be preferred (when vpole is correlated
to a5 via the curve of Fig. 3) to give the best possible
overall match between EOB and NR.

To give a better feeling of how well EOB matches NR
phasing all over the time interval explored by the sim-
ulation of Ref. [20], we plot in Fig. 5 the superposition
of the upper curve in Fig. 19 of [20] (i.e., the difference
∆ω4φT4NR, as measured and splined by us) with the cor-
responding EOB difference ∆ω3φT4EOB, for the values
a5 = 40, vpole = 0.5074 approximately corresponding
to the smallest L∞ norm in Fig. 4. We also plot the
ω2- and ω3-matched phase differences ∆ω2φT4EOB and
∆ω3φT4EOB. Apart from the slightly wrong curvatures
of the ω2- and ω3- curves (for ω <∼ 0.08), this Figure ex-
hibits a truly remarkable visual agreement with the left
panel of Fig. 19 of [20]. It exhibits again two facts: (i)
the EOB phasing agrees extremely well with the NR one
on the full time interval (900M ≤ tEOB ≤ 3460M), (ii)
by contrast Taylor T4 3.5/2.5 starts diverging from EOB
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pole(ν = 1/4) = 0.6907) and NR. The top
panel shows that the gravitational wave phases φEOB and φNR

(versus time) are nearly indistinguishable to the naked eye.
The bottom panel quantifies the small difference between the
two.

when ω >∼ 0.08 in precisely the same way that it diverges
from NR. In the bottom panel of Fig. 5 we give a pre-
cise quantitative measure of the difference between EOB
and NR phasings by plotting the ω4-matched difference
φEOB(t)−φω4

NR

(

t′ω4

)

. This phase difference vanishes both
when ωEOB (tω4

EOB) = ω4 (by construction), and at the
time tbwd

EOB = tω4

EOB − 1809M (by our optimized choice of
the link vpole = vpole(a5), such that Eq. (35) holds). We
see how, indeed (in agreement with Fig. 4) the dephas-
ing remains smaller, in absolute value, than about 0.006
radians, i.e. 0.001 GW cycles.

This remarkably small dephasing concerns a “tuned”
EOB phasing (with optimized flexibility parameters a5

and vpole). However, as it is clear on Fig. 2, even the
standard , “non-tuned” EOB phasing corresponding to
our current analytical knowledge a5 = 0, vpole = vDIS

pole(ν),
agrees quite well with the NR phasing over the entire sim-
ulation time. To exhibit this important fact in quantita-
tive detail we compare in Fig. 6 the (splined) NR phase
φNR(t′) (after suitable shifts in φ and t) to the stan-
dard, “non-tuned” EOB phase φEOB(t) (a5 = 0, vpole =
vDIS
pole(ν)). As the visual agreement (top panel) is too good

to allow one to distinguish the two curves, we show (bot-
tom panel) the phase difference φEOB(t) − φNR(t′). As
expected, the dephasing is less good than in the above
“tuned” case, but it remains impressively good: ±0.05
radians, i.e., ±0.008 GW cycles, over the full time inter-
val 900M ≤ tEOB ≤ 3460M .

Finally, we claim that, not only the phase, but also
the amplitude of the new, resummed EOB waveform
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FIG. 7: Comparison between relative amplitude differences
(∆ωmA/A)T4X versus time, ωm denoting the matching fre-
quency and the label X being either EOB (for a5 = 40,
vpole = 0.5074) or NR.

Eq. (4) exhibits a remarkable agreement with the NR
data of [20]. Again, as Ref. [20] gave their results in
the form of differences T4-NR, we plot in Fig. 7 the
analog of the right panel of Fig. 19 there. We choose
again the “optimum” values a5 = 40, vpole = 0.5074
used in Fig. 5 and plot the NR → EOB analogs of the
curves plotted by them in Fig. 19. Namely, we plot,
at once, the ω2-, ω3- and ω4-matched amplitude differ-
ences [∆ωnA/A]T4EOB = (Aωm

T4 −AEOB) /AEOB, where,
as above, the T4 time is shifted so that ωT4(t

′) and
ωEOB(t) agree when ωEOB(tm) = ωm. In addition,
we plot, as empty circles, some points taken (by ap-
proximate measurements of ours) from the correspond-
ing curve [∆ω4A/A]T4NR plotted on the right panel of
Fig. 19 of [20]. The remarkable visual agreement be-
tween these empty circles and our (∆ω4A/A)T4EOB curve
shows that: (i) the new, resummed 3 PN amplitude in-
troduced in Ref. [30] and defined in Eqs. (4) (11) above
agrees remarkably well with the NR one on the full
time interval, 900M ≤ tEOB ≤ 3460M , (ii) by con-
trast the Taylor T4 3.5/2.5 PN amplitude shows a signif-
icant disagreement (∼ −8%) in the same interval. Note
that, though Ref. [20] emphasizes that the non-resummed

3 PN-accurate waveform of [41] “improves agreement sig-
nificantly” compared to the 2.5 PN one (used above), this
improvement only concerns the early part of the inspiral.
Indeed, Fig. 21 of [20] shows that the amplitude of Tay-
lor T4 3.5/3.0 tends again to diverge together with Tay-
lor T4 3.5/2.5 at the end of the inspiral: i.e., we think,
precisely around the “dip” (near ω4) exhibited in Fig. 7
above.
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V. CONCLUSIONS

We have investigated the agreement (in phase and
in amplitude) between the predictions of the Effective-
One-Body (EOB) formalism and some accurate numer-
ical data. We used as numerical data both (as a warm
up) some old results on the energy flux from circular or-
bits of a test mass around a non spinning black hole [39],
and some very recent results of the Caltech-Cornell group
about the ℓ = m = 2 gravitational wave emitted by 15
orbits of an inspiralling system of two equal-mass non-
spinning black holes [20].

In our warm up, test-mass example we showed how a
slight tuning of the flexibility parameter [25] vpole (away
from the naively expected value vstandard

pole (ν = 0) =

1/
√

3 = 0.57735) to the value vbest
pole(ν = 0) ≃ 0.540

allowed one to fit remarkably well the flux function
F (v; ν = 0) during the full inspiral, 0 ≤ v ≤ vLSO =

1/
√

6.
In the comparable mass case (ν = m1m2/(m1+m2)

2 ∼
1/4) we followed [30] in introducing a new, resummed
3 PN-accurate16 EOB-type ℓ = m = 2 waveform. We
then showed how to compute, for any values of the EOB
flexibility parameters a5 (parametrizing 4 PN and higher
conservative orbital interactions) and vpole (parametriz-
ing ν-dependent 4 PN and higher effects in the re-
summed radiation reaction) the EOB predictions for the
ℓ = m = 2 gravitational curvature wave Ψ22

4 ∝ ∂2
t h

EOB
22 ∝

AEOB(t)e−iφEOB(t).
We then compared the EOB predictions for the grav-

itational wave (GW) phase, φEOB(t), and amplitude,
AEOB(t), to the numerical relativity results of [20], say
φNR(t), ANR(t), using often as intermediary (as Ref. [20])
the so-called Taylor T4 3.5/2.5 post-Newtonian predic-
tions φT4(t), AT4(t). Our main conclusions are:

(i) In the GW frequency domain Mω < 0.08 where
the Taylor T4 3.5/2.5 phase matches well with the NR
phase, the EOB phase matches at least as well with the
NR phase. A good EOB/NR match is obtained both
for the standard “non-tuned” EOB flexibility parameters
a5 = 0, vpole = vDIS

pole(ν) corresponding to our current an-

alytical knowledge [1, 4] and for “tuned” EOB flexibility
parameters.

(ii) For higher GW frequencies, 0.08 < Mω <∼ 0.14,
while Taylor T4 3.5/2.5 starts to significantly diverge
from the NR phase, we showed that the standard “non-
tuned” EOB phasing continues to stay in phase with NR
within ±8 × 10−3 GW cycles (see Fig. 6). Moreover,
one can calibrate a5 and vpole so that the EOB phase
matches with the NR phasing to the truly remarkable
level of ±10−3 GW cycles over 30 GW cycles!

16 Actually, our waveform has a greater accuracy than 3 PN in
that it incorporates the test-mass limit of the 4 PN and 5 PN
amplitude corrections. We shall occasionally refer to this PN
accuracy as being 3+2-PN.

(iii) We proposed several ways of “best fitting” the
(a5, vpole)-dependent EOB predictions to accurate NR
data: (a) by using the intrinsic representation of the
phase evolution given by the reduced phase-acceleration
function aω(ω), Eq. (29); (b) by using selected ratios
∆ωmφT4EOB/∆

ωmφT4NR and constraining them to be
close to unity; and (c) by using an L∞ norm of the dif-
ference between (ωm-matched) φEOB(t) and φωm

NR

(

t′ωm

)

.

Our results are given in several Figures. Notably, Fig. 3
gives, for each given value of a5, what is the optimum
value of vpole which best fits (in the sense of the ratio
ρbwd

ω4
, Eq. (35)) the NR data. Then, Fig. 4 plots the L∞

distance (on a large time-interval roughly correspond-
ing to the full simulation of [20]) betweem φEOB(t) and
φω4

NR

(

t′ω4

)

as a function of a5 (for vpole = vpole(a5) given
by Fig. 3). We find that the absolute value of the max-
imum dephasing between EOB and NR can be as small
as 0.006 radians (or 0.001 GW cycles) if 30 <∼ a5

<∼ 52.
However, it is difficult to be precise about the “preferred”
valued of a5. We recall in this respect that, recently,
Ref. [29] has tried to constrain the value of a5 (keep-
ing, however, vpole fixed to vDIS

pole(ν), and without using

our improved EOB waveform) by maximizing the over-
lap between EOB and NR plunge waveforms. They found
that the overlap was good (and flat) over a rather large
interval of values of a5 (that they denote as λ), roughly
centered around a5 ≃ 60. We note, however, that this be-
havior might be due (at least in part) to the phenomenon
pointed out in [25]. In the latter reference (where a5 was
denoted as b5), it was found that the use of EOB tem-
plates based on a5 = 50 (rather than a5 = 0) allowed one
to have large overlaps (large “effectualnesses”) with all
other EOB templates. At this stage, we therefore do not
have yet any precise knowledge of what might be the pre-
ferred “effective” value of a5. Our work, however, shows
that there is a quite strict correlation between the best-fit
choices of a5 and vpole. When, in the future, a5 becomes
precisely known, it will be interesting to see what is the
corresponding value of vpole(ν = 1/4) and to compare it
to the best-fit value vpole(ν = 0) ≃ 0.540 obtained in our
warm-up Sec. II.

For instance, the couple a5 = 40, vpole = 0.5074 yields
a remarkable good fit to the NR data reported in [20].
We show the comparison of the various phasings (NR,
EOB, T4) in Fig. 5. This Figure clearly exhibits how our
best-fit EOB phase does a much better job than any non-
resummed PN approximant at following the NR phase.
We finally get dephasings smaller than ±0.006 radians
(i.e. < 10−3 GW cycles!) over about 30 GW cycles!

Finally, we exhibited in Fig. 7 how the amplitude of
our new, resummed 3+2-PN-accurate EOB waveform,
Eq. (4), exhibits a remarkable agreement with the corre-
sponding amplitude of the NR data of [20]. The agree-
ment is clearly better than any, non resummed PN am-
plitude, including the recent 3 PN-accurate one of Kid-
der [41].

We think that the present work, taken in conjunc-
tion with other recent works on the EOB-NR compar-
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ison [29] [28, 30], confirms the remarkable ability of
the EOB formalism (especially in its recently improved
avatars) to agree with NR results. Note in particular
that the level of phase agreement reached here is bet-
ter by a factor 30 (±0.001 GW cycles versus ±0.03 GW
cycles for ν = 1/4) than what was recently achieved,
for merger signals, in Ref. [29] using less accurate ver-
sions of EOB waveforms than the one used here. We
suggest that the ground-based interferometric GW de-
tectors should include in their template banks the new,
extended and improved EOB waveforms which are be-
ing developed and notably the resummed one introduced
in [30] and generalized here. We also suggest that NR
data be made available in some repository, soon after

the first published results, to expert theorists willing to
extract the physical information they contain.
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