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Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars
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To detect the gravitational-wave signal from binary neutron stars and extract information about the equation
of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates.
We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different
compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces
the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the
≃ 22 gravitational-wave cycles are∆φ ≃ ±0.24 rad, thus with relative phase errors∆φ/φ ≃ 0.2%. We
also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all
of the numerically-computed phase evolutions, in contrastwith what found when adopting a tidally corrected
post-Newtonian Taylor-T4 expansion.
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Introduction.Inspiralling binary neutron stars (BNSs) are among the strongest sources of gravitational waves (GWs) and certain
targets for the advanced and new-generation ground-based GW detectors LIGO/Virgo/GEO/ET [1]. These detectors will be
sensitive to the inspiral GW signal up to GW frequencies∼ 1000 Hz, which are reached soon before the merger. The late
inspiral signal will be influenced by tidal interaction between the two neutron stars (NSs), which, in turn, encodes important
information about the equation of state (EOS) of matter at nuclear densities. However, to reliably extract such information, both
a large sample of numerical simulations and an analytical model of inspiralling BNSs which is able to reproduce them accurately,
are needed. In this work we report on significant progress on this problem by presenting the longest (to date) simulationsof
merging equal-mass BNSs and by showing how to use them to calibrate an effective-one-body (EOB) model of tidally interacting
BNSs.

Numerical simulations of merging BNSs in full general relativity have a long history (see the Introduction of [2] for a brief
review). However, it has been possible only recently to obtain a more precise and robust description of this process and to
include additional physical ingredients such as magnetic fields and realistic EOSs. In particular the use of adaptive mesh
refinement techniques has made it possible not only to increase the level of accuracy, but also to compute the full evolution
of the hypermassive NS up to black hole formation [2, 3], withand without magnetic fields [4], with idealized and realistic
cold EOSs [5]. On the other hand, the analytical descriptionof tidally-interacting binary systems has been initiated only very
recently [6, 7]. Two major results can be summarized from this bulk of work. First, the dimensionless quantitykℓ (Love
number) in the (gravito-electric) tidal polarizability parameterGµℓ ≡ 2kℓR

2ℓ+1/(2ℓ − 1)!! measuring the relativistic coupling
(of multipolar orderℓ) between a NS of radiusR and the external gravitational field in which it is embedded has been found to
be a strongly decreasing function of the compactness parameterC ≡ GM/(c2R) of the NS. Second, a comparison between the
numerical computation of the binding energy of quasi-equilibrium circular sequences of BNSs [8] and the EOB description of
tidal effects [7] has suggested that higher-order post-Newtonian (PN) corrections to tidal effects increase by a factor of order two
the tidal polarizability of close NSs. The main aim of this paper is extend the domain of applicability of the EOB method [9],
from the inspiralling binary black hole (BBH) case (for which it recently provided a very accurate analytic description[10, 11]),
to the yet unexplored case of inspiralling BNSs. To this aim we have performed accurate and long-term BNS simulations
covering∼ 20− 22 GW cycles of late inspiral, and we will show that they can be reproduced accurately almost up to the merger
by a new tidal extension of the EOB model, which yields relative phase errors∆φ/φ ≃ 0.2%.

Tidal corrections in the EOB approach.We recall that the EOB formalism [9] replaces the PN-expanded two-body dynamics

by a resummeddescription with, in particular, an Hamiltonian of the form: HEOB ≡ Mc2
√

1 + 2ν(Ĥeff − 1), whereM ≡

MA+MB is the total mass and whereν ≡ MAMB/(MA +MB)
2 is the symmetric mass ratio. Here the “effective Hamiltonian”

Ĥeff is a simple function of the momenta and it incorporates the relativistic gravitational attraction mainly through the so-called
“EOB radial potential”A(r). The structure ofA(r) is remarkably simple at 3 PN:A3PN(r) = 1− 2u+2 ν u3 + a4 ν u

4, where
a4 = 94/3− (41/32)π2, andu ≡ GM/(c2rAB). An excellent description of BBHs has been found to be given by [10]

A0(r) = P 1
5

[

1− 2u+ 2νu3 + a4νu
4 + a5νu

5 + a6νu
6
]

,
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wherePn
m denotes an(n,m) Padé approximant and where values of the coefficienta5 = −6.37, a6 = +50 provide a very good

agreement between EOB and numerical-relativity (NR) waveforms for BBHs [10] (The results presented here are insensitive
to this choice as long asa5, a6 are chosen in a well defined range). Ref. [7] suggested to include tidal effects as a correction
Atidal(u) to the radial potential,i.e.A(u) = A0(u) +Atidal(u), with

Atidal =
∑

ℓ≥2

−κT
ℓ u

2ℓ+2Âtidal
ℓ (u) . (1)

HereκT
ℓ u

2ℓ+2 describes the leading-order (LO) tidal interactions. It isa function of the two masses, of the two compactnesses
CA,B, and of the two (relativistic) Love numberskA,B

ℓ

κT
ℓ = 2

MB M2ℓ
A

(MA +MB)2ℓ+1

kAℓ
C2ℓ+1
A

+ { A ↔ B} . (2)

The additional factor̂Atidal
ℓ (u) in Eq. (1) represents the effect of higher-order relativistic contributions to the tidal interactions:

next-to-leading order (NLO), and next-to-next-to-leading order (NNLO), etc. A number of different prescriptions canbe con-
sidered for the tidal potential̂Atidal

ℓ and these will be presented in a longer companion work [12]. Here, we will limit ourselves

to a “Taylor-expanded” expression̂Atidal
ℓ (u) ≡ 1 + ᾱ

(ℓ)
1 u + ᾱ

(ℓ)
2 u2 [7], whereᾱ(ℓ)

n are pure numbers in the equal-mass case,
but functions ofMA, CA andkAℓ in the general case. The unknown coefficientsᾱ1, ᾱ2 will be constrained via comparison with
the simulations. Analogous coefficients parametrizing higher-order relativistic contributions in the waveform, have been found
to have a small effect [12] and will be neglected here. Of course, tidal effects can also be accounted for via modificationsof one
of thenon-resummedPN description, such as the Taylor-T4 expansion [6]; a comparison between the NR results and the EOB
and PN descriptions will be presented below.

In order to measure the influence of tidal effects, it is useful to consider the “phase acceleration”ω̇ ≡ dω/dt ≡ d2φ/dt2,
whereφ ≡ φ22 is the phase of either the curvature or of the metric GWs. The functionω̇(ω) is independent of the two “shift
ambiguities” that affect the GW phaseφ(t), namely the shifts in time and phase, and thus a useful intrinsic measure of the quality
of the waveform [14]. Here, however, we use another dimensionless diagnostic to measure the phase acceleration,i.e. the phase
evolution “quality-factor”

Qω(ω) =
dφ

d ln ω
=

ω dφ/dt

dω/dt
=

ω2

ω̇
. (3)

In analogy with the “quality factor”Q of a damped oscillator,Qω(ω) measures the number of GW cycles spent by the binary
within an octave of the GW frequencyω.

Numerical Simulations.They were performed with theCactus-Carpet-Whisky [15] codes and, in essence, we use the
same gauges and numerical methods already discussed in [2],to which we refer the reader for details. As initial data we use
quasi-equilibrium irrotational binaries generated with the multi-domain spectral-method codeLORENE, within a conformally-
flat spacetime metric [16]. The EOS of the initial data is the polytropic onep = K ρΓ, wherep, ρ, K = 123.6, andΓ = 2 are
the pressure, rest-mass density, the polytropic constant and adiabatic index, respectively (in units wherec = G = M⊙ = 1).
The evolutions are instead performed with either a polytropic EOS or an “ideal-fluid” one,p = ρǫ(Γ − 1), whereǫ is the
specific internal energy; the differences introduced by thedifferent EOSs are below the numerical error bars and will bedetailed
in [12]. Because the stellar compactness represents the most important parameter determining the size of tidal effects, we
have considered two different binaries having total ADM/baryonic mass of either2.69/2.89M⊙ or 3.00/3.25M⊙, thus with
compactnessesC = 0.12 orC = 0.14. Hereafter the two binaries will be referred to asM2.9C.12 andM3.2C.14, respectively.
The number of refinement levels and their resolutions are thesame as those in [2], but the initial coordinate separation between
the stellar centers is of60 km, considerably larger than the one considered in [2]. Thisyields about10 orbits before merger, thus
the longest BNS waveforms produced to date.

Discussion.We start our comparison between the NR results and the analytic-relativity (AR) ones by showing in Fig. 1 the
Qω diagnostics for various possible LO/NLO tidal models and for GW frequenciesMω . 0.06 (i.e. up to 3/5 GW cycles
before merger for the binaryM2.9C.12/M3.2C.14, respectively). The first thing to note is that the EOB LO corrections (dot-
dashed line) are clearly insufficient, both for theM2.9C.12 (upper panel) and theM3.2C.14 binaries (lower panel), to match
the corresponding NR curve (dashed line with open circles).This clearly indicates the need for NLO effects. The dephasing
accumulated by EOB LO relative to the NR data over the frequency interval where the simulations overlap is∼ 5 rad, thus much
larger than the NR phasing error related to the finite resolution, which was measured to be∆φ = ±0.24 [12]. By contrast, after
suitably choosing the parametersᾱ1, ᾱ2, it is possible to obtain a very good match between theQω curves (solid and dashed
lines) and the NR data (dashed line with open circles) forbothbinaries, with a final phase difference that is≪ 1 rad.

Several remarks are worth making at this point. First, because of its definition, even fractionally small differences∆Qω ∼ 1
in Qω ∼ 100 lead to very significant differences (of∼ 1 rad) in the accumulated phases. Second, because it involvesseveral
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FIG. 1: Comparison of the AR curves forQω at NLO for different choices of the parameters (solid, dashed lines) with the corresponding NR
ones (dashed lines with open circles) for the two binaries considered. Also shown are theQω curves for the LO term (dot-dashed line) and
when tidal effects are ignored (dotted line).

time derivatives, the calculation ofQω is challenging when made from the early-inspiral part of theNR waveforms, as the latter
is affected by a series of contaminating errors. These, however, can be filtered out by fitting the NR phase evolution with an
analytical expression that reproduces at lower order the behavior expected from the PN approximation (more details will be
presented in [12]). Third, all the NLO models are “degenerate” in that several choices of the free parameters can be made that
match the NR data with an uncertainty onQω of order1. Finally, a similarly good agreement can also be obtained with a constant
“effective” value ofÂtidal

ℓ (u), namely withkeffℓ = 2.5kℓ, which is the same for the two binaries (cf. dot-dashed line in Fig. 2).
The value of the amplification factor is sensitive to the numerical truncation error and a slightly smaller value (namely≈ 1.85)
is obtained when considering the resolution-extrapolatedGWs [12]; this smaller value is also compatible with the estimates
suggested by the analysis using the binding energy of circular BNSs [8].

Figure 2 also reports the phase quality-factor as obtained when using the Taylor-T4 approximant either at LO (thick dashed
line) or at NLO with different amplification factors (solid and dashed lines). While the introduction of NLO terms does improve
the match between the NR data and the Taylor-T4 approximant,the amplification factors are different for the two binaries,
with the accumulated dephasing for theM2.9C.12 binary being about ten times larger than that forM3.2C.14 for the same
amplification factor. In contrast, the EOB amplification factor is equally good for the two binaries, with a dephasing within
the numerical error bar. These results suggest that the EOB modelling of LO/NLO tidal effects may be more robust than the
corresponding Taylor-T4 one.

We next consider the comparison of the waveforms, in the timedomain andover the full inspiral up to the merger. This is
shown in Fig. 3, whose left panels refer to theM2.9C.12 binary and the right ones toM3.2C.14, and where the top parts
compare the (real part) of the EOB and NR metrich22 waveform withᾱ1 = 7, ᾱ2 = 70, while the bottom panels show the
corresponding phase differences,∆φEOBNR(t) ≡ φEOB(t) − φNR(t) (suitably shifted in time and phase à la [13]). The two
vertical lines indicate two possible markers of the “time ofthe merger”; more specifically, the dashed lines refer to thetime
at which the modulus of the metric NR waveform reaches its first maximum, while the vertical dash-dotted line represents the
EOB estimate of the “formal” contact [7]. Fig. 3 clearly shows that the agreement in the time domain between the analytic EOB
description and the numerical one is extremely good essentially up to the merger, with a phase error which is well within the
estimated error bar. Again, a few notes should be made. First, the match between the two descriptions during most of the long
inspiral phase is excellent and it is only during the last100M before contact that the dephasing grows significantly. Second,
the break-down of the analytic description near the merger is clearly expected and is exaggerated by having chosen as endof
the inspiral the maximum of the GW amplitude. Last and most important, once asinglechoice is made for the tidal parameters
within the EOB approach, the match is very good forbothbinaries. This is not the case for the Taylor-T4 approximation, for
which two different choices are needed to reach a match with the NR waveforms which is also less good than the EOB one.

Conclusions.We have presented the first NR-AR comparison of the GWs emitted during the inspiral of relativistic BNSs. In
particular, we have analyzed the longest to date numerical simulations of equal-mass and irrotational BNSs with two different
compactnesses. In this way we were able to highlight that tidal effects are significantly amplified by higher-order relativistic
corrections even in the early inspiral phase and that NLO corrections are therefore necessary. The present accuracy of the
NR data and the incomplete knowledge of the NLO terms leave uswith an uncertainty about their functional form and with a
number of different choices which currently reproduce the NR data equally well. Nevertheless, when asinglechoice for the free
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FIG. 2: The same as Fig. 1 but when using the Taylor-T4 approximant either at LO (thick dashed line) or at NLO with differentamplification
factors (solid and dashed lines). Also shown as a reference is the EOBQω curve at NLO withκeff

ℓ = 2.5κℓ (dot-dashed line).

FIG. 3: Comparison between NR and AR phasing for theM2.9C.12 (left panels) andM3.2C.14 (right panels) binaries. The top panels
show the real parts of theh22 waveforms, while the bottom panels show the corresponding phase differences. Note the excellent agreement
almost up to the time of merger (vertical dashed and dot-dashed lines) and the very large errors when tidal effects are neglected (dotted line).

parameters in the NLO terms is made, the EOB model is able to reproduce all of the NR phase evolutions with great precision and
essentially up to the merger. Typical errors over the& 20 GW cycles are well within the error-bar of≃ ±0.24 rad, thus leading
to relative phase errors which are smaller than≃ 0.2%. Despite the degeneracy in the EOB modelling, the comparison with NR
data has shown a cleareffective increaseof the Love numbers by a factor which is≈ 2.5. Finally, we have also considered the
differences between the NR waveforms and the ones obtained with Taylor-T4 PN expansion when tidal effects are introduced.
Overall we have found that a good match with the NR data is possible also in this case, although with somewhat larger phasing
errors. Most importantly however, the parameterization ofthe tidal effects is not the same for the two binaries considered and
needs therefore to be suitably tuned in a case-by-case manner. This seems to suggest that the EOB-based representation of tidal
effects may be more robust than the Taylor-T4 one.

The work reported here provides the first evidence that an accurate analytic modelling of the late inspiral of tidally interacting
BNSs is possible, thereby opening the possibility to extract reliable information on the EOS of matter at nuclear densities from
the data of the forthcoming advanced GW detectors. These encouraging results, however, also call for a continued synergy
between more accurate numerical simulations and higher-order analytic results.
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