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Abstract

We develop a general theory of extensions of flat functors along
geometric morphisms of toposes, and apply it to the study of the class
of theories whose classifying topos is equivalent to a presheaf topos.
As a result, we obtain a characterization theorem providing necessary
and sufficient semantic conditions for a theory to be of presheaf type.
This theorem subsumes all the previous partial results obtained on the
subject and has several corollaries which can be used in practice for
testing whether a given theory is of presheaf type as well as for gener-
ating new examples of theories belonging to this class. Along the way,
we establish a number of other results of independent interest, includ-
ing developments about colimits in the context of indexed categories,
expansions of geometric theories and methods for constructing theories
classified by a given presheaf topos.
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1 Introduction

Following [2|, we say that a geometric theory is of of presheaf type if it is
clagsified by a presheaf topos.

A geometric theory T is of presheaf type if and only if it is classified
by the topos [f.p.T-mod(Set), Set], where f.p.T-mod(Set) is (a skeleton of)
the full subcategory of T-mod(Set) on the finitely presentable T-models (cf.
5)).

The subject of theories of presheaf type has a long history, starting with
the book [19] by Hakim, which first introduced the point of view of classifying
toposes in the context of the theory of commutative rings with unit and
its quotients. The subsequent pionereeing work [25] by Lawvere led to the
discovery that any finitary algebraic theory is of presheaf type, classified by
the topos of presheaves on the opposite of its category of finitely presentable
models (cf. [23]). This result was later generalized to cartesian (or essentially
algebraic) theories as well as to universal Horn theories (cf. |3]). At the same
time, new examples of non-cartesian theories of presheaf type were discovered
(cf. for instance [2] for a long, but by no means exhaustive, list of examples),
and partial results in connection to the problem of characterizing the class
of theories of presheaf type emerged; for instance, [22], [2] and [32] contain
different sets of sufficient conditions for a theory to be of presheaf type.

Theories of presheaf type occupy a central role in Topos Theory for a
number of reasons:

(i) Every small category C can be seen, up to Cauchy-completion, as the
category of finitely presentable models of a theory of presheaf type
(namely, the theory of flat functors on C°P);

(ii) As every Grothendieck topos is a subtopos of some presheaf topos, so
every geometric theory is a quotient of some theory of presheaf type
(cf. the duality theorem of [9] between subtoposes of the classifying
topos of a geometric theory and quotients of the theory);

(iii) Every finitary algebraic theory (and more generally, any cartesian the-
ory) is of presheaf type;

(iv) The class of theories of presheaf type contains, besides all cartesian
theories, many other interesting mathematical theories pertaining to
different fields of mathematics (for instance, the coherent theory of



linear orders or the geometric theory of algebraic extensions of a given
field);

(v) The ‘bridge technique’ of [10] can be fruitfully applied in the context
of theories of presheaf type due to the fact that the classifying topos of
any such theory admits (at least) two quite different representations,
one of semantic nature (namely, set-valued functors on the category of
finitely presentable models of the theory) and one of syntactic nature
(namely, sheaves on the syntactic site of the theory).

It is therefore important to dispose of effective criteria for testing whether
a theory is of presheaf type, as well as of methods for generating new theories
of presheaf type.

In this paper, we carry out a systematic investigation of this class of the-
ories, obtaining in particular a characterization theorem providing necessary
and sufficient conditions for a theory to be of presheaf type, expressed in
terms of the models of the theory in arbitrary Grothendieck toposes. This
theorem, whose general statement is quite abstract, admits several ramifi-
cations and simpler corollaries which can be effectively applied in practice
to test whether a given theory is of presheaf type as well as for generating
new examples of theories of presheaf type, also through appropriate ‘modi-
fications’ of given geometric theories. All the partial results and recognition
criteria previously obtained on the subject are naturally subsumed by this
general result; moreover, the constructive nature of the characterization the-
orem allows to replace the requirements that the theory should have enough
set-based models in the sufficient criteria of |2] and [22] with explicit seman-
tic conditions which can be directly verified without having to invoke any
form of the axiom of choice.

In order to establish our characterization theorem, we embark, in the first
two sections of the paper, in a general analysis of indexed colimits in toposes
and extensions of flat functors along geometric morphisms. In fact, the nec-
essary and sufficient conditions for a theory T to be of presheaf type provided
by the characterization theorem arise precisely from the requirement that for
any Grothendieck topos &, the operation of extension of flat functors with
values in £ from the opposite of the category of finitely presentable models
of T to the geometric syntactic category of T should define an equivalence
of categories onto the category of T-models in &, naturally in £. We then
investigate the preservation, by ‘faithful interpretations’ of theories, of each
of the conditions in the characterization theorem, obtaining results of the
form ‘under appropriate conditions, a geometric theory in which a theory
of presheaf type faithfully interprets is again of presheaf type’. Finally, we
discuss known and new examples of theories of presheaf type in light of the
theory developed in the paper.

More specifically, the contents of the paper can be summarized as follows.



In section 2, we investigate £-indexed colimits of internal diagrams in
Grothendieck toposes £, analyzing in particular their behaviour with re-
spect to final £-indexed functors (cf. section 2.5) and establishing explicit
characterizations for a £-indexed cocone to be colimiting (cf. section 2.6).
In section 2.4, we exploit the abstract interpretation of colimits as kinds of
tensor products to derive commutation results which play an important role
in the subsequent parts of the paper as they allow us to interpret certain set-
indexed colimits arising in the context of our main characterization theorem
as special kinds of filtered indexed colimits.

In section 3, we investigate the properties of the operation on flat func-
tors induced by a geometric morphism of toposes via Diaconescu’s equiv-
alence. We focus in particular on geometric morphisms between presheaf
toposes induced by embeddings between small categories, and on geomet-
ric morphisms to the classifying topos of a geometric theory induced by a
small category of set-based models of the theory. We also establish, in sec-
tion 3.4, a general ‘hom-tensor’ adjunction between categories of £-valued
functors (for £ a Grothedieck topos) [C,€] and [D, £] induced by a functor
P :C — [D°P, Set], which generalizes the well-known adjunction induced by
Kan extensions along a given functor.

In section 4, in order to set up the field for the statement and proof of
the characterization theorem, we identify some notable properties of theories
of presheaf type, notably including the fact that every finitely presentable
model of such a theory is finitely presented - in a strong sense which we make
precise in section 4.3 - and admits an entirely syntactic description in terms of
the signature of the theory and the notion of provability of geometric sequents
over it in the theory (cf. section 4.1). We also show, in section 4.2, that for
any geometric theory T and any Grothendieck topos &, there exists for each
pair of T-models M and N in &£, an ‘object of T-model homomorphisms’ in
& from M to N which classifies the T-model homomorphisms in slices of £
between the localizations of M and N in it.

In section 5, we establish our main characterization theorem providing
necessary and sufficient conditions for a geometric theory to be classified
by a presheaf topos. We first state the result abstractly and then proceed
to obtain explicit reformulations of each of the conditions. We also derive
some corollaries which allow to verify the satisfaction of the conditions of
the theorem in specific situations which naturally arise in practice. Lastly,
we show that, once recast in the language of indexed colimits of internal
diagrams in toposes, the conditions of the characterization theorem for a
given geometric theory T amount precisely to requirement that every model
of T in any Grothendieck topos £ should be a canonical £-indexed colimit
of a certain E-filtered diagram of ‘constant’ finitely presentable models of T
which are £-finitely presentable.

In section 6, we introduce the notion of faithful interpretation of geomet-
ric theories and investigate to what extent the satisfaction of the conditions of



the characterization theorem is preserved by this kind of interpretations. As
applications of the general results that we obtain on this topic, we consider
in particular the case of quotients of a given geometric theory T and that
of injectivizations (i.e., theories obtained by adding, for each sort over the
signature of the theory, a binary predicate which is provably complemented
to the equality relation relative to that sort), providing various sufficient
conditions for these theories to be of presheaf type if T is. To this end, we
carry out in section 6.2 a general analysis of the relationship between finitely
presentable and finitely generated models of a given geometric theory. In
section 6.4.2, we treat the problem of finding a geometric theory classified
by a given presheaf topos [IC,Set], and prove a general theorem ensuring
that if the category KC can be realized as a full subcategory of the category
of finitely presentable models of a theory of presheaf type T, there exists a
quotient of T classified by the topos [KC, Set], which can be described in most
explicit ways in terms of T and K provided that some natural conditions are
satisfied. We also discuss, in section 6.4.1, the relationship between rigid
topologies on the opposite of the category of finitely presentable models of
a theory of presheaf type T and the presheaf-type quotients of T.

In section 7, we investigate expansions of geometric theories from the
point of view of the geometric morphisms that they induce between the
respective classifying toposes. In particular, we introduce the notion of a
localic (resp. hyperconnected) expansion, and show that it naturally corre-
sponds to the notion of localic (resp. hyperconnected) geometric morphism
at the level of classifying toposes; as a result, we obtain a logical characteri-
zation of the hyperconnected-localic factorization of a geometric morphism.
Next, we address the problem of expanding a given geometric theory T to
a theory classified by a presheaf topos of the form [/, Set], where K is a
small category of set-based models of T, and describe a general method for
defining such expansions.

In section 8, we discuss classical, as well as new, examples of theories of
presheaf type from the perspective of the theory developed in the paper. We
revisit in particular well-known examples of theories of presheaf type whose
finitely presentable models are all finite, notably including the geometric
theory of finite sets, and give fully constructive proofs of the fact that Mo-
erdijk’s theory of abstract circles and Johnstone’s theory of Diers fields are
of presheaf type. Next, we introduce new examples of theories of presheaf
type, including the theory of algebraic extensions of a given field, the theory
of locally finite groups, the theory of vector spaces with linear independence
predicates and the theory of abelian £-groups with strong unit. We also show
that the injectivization of the algebraic theory of groups is not of presheaf
type and explicitly describe a presheaf completion for it.



2 Indexed colimits in toposes

2.1 Background on indexed categories

Before proceeding further, we need to recall some standard notions and facts
from the theory of indexed categories; we refer the reader to [21] (especially
sections B1.2, B2.3 and B3) and to [29] for the background.

Given an internal category C in a topos £, we denote by C; its object of
arrows, by Cy its object of objects and by dS, d‘lC : C1 — Cy the domain and
codomain arrows.

Given a small category C and a topos £ defined over Set, we can always
internalize C into £ by means of the inverse image ~¢ of the unique geometric
morphism ~g : £ — Set from & to Set; the resulting internal category in &
will be denoted by the symbol C.

Indexed categories will be denoted by underlined letters, with possibly
a subscript indicating the indexing category; the fibre at an object F of a
E-indexed category A will be denoted by the symbol Ag, and the functor
Ar — Ag corresponding to an arrow ¢ : E — E’ in £ will be denoted by
the symbol A..

A E&-indexed subcategory Be of a £-indexed category Ag consists, for
each object every E € £, of a subcategory B of the category Ag such that
for any arrow « : B/ — E in £ the functor A, : A — Apg restricts to
the subcategories B and Bpr. This clearly defines a £-indexed category Bg
with a £-indexed inclusion Bg — Ag.

A &-indexed functor F' : B — A¢ is said to be full if for every object
E of £ the functor Fg : Ap — Bp is full. A £-indexed subcategory Be of a
E-indexed category Ag is said to be a full £-indexed category of Ag if the
associated £-indexed inclusion functor is full.

Every Grothendieck topos & gives rise to a £-indexed category £¢ ob-
tained by indexing & over itself.

Recall that if C = (d5,d$ : C; — Cy) is an internal category in a topos
&, a diagram of shape C in & is a pair (f : F — Cp,¢ : C; x¢, F — F) of
arrows in & satisfying appropriate conditions, where the pullback Cy x¢, F'
is taken relatively to the arrow d%: : C1 — Cq and the arrow f: F' — Cq:

Cixcg FX—~F

[ |

Cq

C
dO

For a Grothendieck topos £ and an internal category C in £, we have a
E-indexed category [C, £], whose underlying category is the category [C,&]
of diagrams of shape C in £ and morphisms between them.

Any internal category C in £ gives naturally rise to a £-indexed category,
which we call the £-externalization of C and denote by the symbol Cg. The




category [C, €] is equivalent (naturally in &) to the category [Cg,E¢le of
E-indexed functors Cg — £, and indexed natural transformations between
them (by Lemma B2.3.13 in [21]) and also to the category [C, £] (by Corollary
B2.3.14 in [21]). The equivalence between [C,&] and [C, &] restricts to an
equivalence between the full subcategories Tors(C, £) of C-torsors in £ (as
in section B3.2 of [21]) and Flat(C, &) of flat functors C — & (as in chapter
VII of [26]). For any internal functor between internal categories in £ or
internal diagram F' in &£, we denote the corresponding £-indexed functor by
the symbol F¢. For any functor F': C — &, we denote the internal diagram
in [C,&] corresponding to it under the equivalence [C,&] ~ [C,&] by the
symbol F.

The discrete opfibration p : F — C over C corresponding to a diagram
(f : F = Co,¢ : Cy x¢, F — F) of shape C in & is defined as follows:
Fo=F,F1=Cix¢, F,dy =np : 1 =Cy xc, F > F=Fy,d} =¢: F| =
C1X@0F—>F:F0,po:f:F():F—>(C0,p1 :7T12F1:(C1><(C0F—>(C1.
The discrete opfibration corresponding to a diagram F' € [C, £] will also be
denoted by w%pf : fOpfF — C.

For internal diagrams G € [C°P,&] it is also natural to consider the

discrete fibration corresponding to G, i.e. the opposite functor WOprOp :

f‘)pf G = ©oPoP — C. We shall denote this functor by ﬂ'é : ff G — C.
For any internal category C in a topos &, the category [C, ] of diagrams

of shape C in € is equivalent to the category DOpf/C of discrete opfibrations

over C (cf. Proposition B2.5.3 |21]); we shall denote this equivalence by

75 1 [C,&] — DOpf/C.

A diagram of shape C in £ lies in the subcategory Tors(C, ) of [C, £] if
and only if the domain of the corresponding discrete opfibration is a filtered
internal category in £.

Any internal functor H : C — D between internal categories C and
D in a topos & induces a functor [D,&] — [C,E&], denoted D — Do H,
which corresponds, at the level of £-indexed categories, to the composition
functor with the indexed functor corresponding to H, and, at the level of
discrete opfibrations associated to the internal diagrams, as the pullback of
them along the functor H. The latter pullbacks in the category of internal
categories in £ are computed ‘pointwise’ as pullbacks in &£, and they are
preserved by the dualizing functor C — C°P.

Let us recall from [29] the notion of (indexed) colimit of a &-indexed
functor, where £ is a cartesian category. We shall denote by !; the unique
arrow from an object I of £ to the terminal object 1 of £. Given a S-indexed
functor I' : X — A and an object A of Ay, we denote by A%A the £-indexed
functor X — A assigning to any E € £ the constant functor on Xz with
value Ay, (A).

Let X be any indexed category and I' : X — A any indexed functor.



An indexed cocone p : I' — A consists of an object A in A; together with
an indexed natural transformation p : I' — A%A, i.e. for each I in & an
ordinary cocone py : I'r = A(Ai, (A)) such that for each arrow av: J — I in
E afopur=pyoa*. fu: T — A%A is a universal such cone we say that it is
a colimit cone over the indexed functor I" with vertex A. If, furthermore, for
any object I of &, the localization pu/I : T'/I — (A%A)/I = Af//ll(AgI(A))
of p at I is a colimit cone we say that p is the indexed colimit of r/I.

We can describe this notion more explicitly in the particular case of &-
indexed functors with values in the £-indexed category £¢. Let us suppose
that Ag is a £-indexed category and D : A — £¢ is an indexed functor. A
cocone p over D consists of an object U of £ and, for each object E of &,
of a cocone pup : D — A(!},(U)) over the diagram Dg : Ap — £/E such
that for any arrow « : B/ — E in & we have o*(ug(c)) = pp/(As(c)) for
all ¢ € Ag, that is o*up = ppr Ay as arrows Dgi(Aq(c)) = o*(Dge(c) —
lp(U) = a*(15,(U)) in E/E’, where o* : £/E — £/E' is the pullback functor
(notice that Dgr o A, = o o Dp since D is a E-indexed functor).

Note that if A is the £-externalization of an internal category C in £ and
D : Ac — &£ is an indexed functor corresponding to an internal diagram
D € [C,€&], the discrete opfibration associated to the internal diagram in
[1(C),E/E] corresponding to the localization D/E : A¢/E — E¢/E =
E/iE /B is the image of the discrete opfibration associated to D under the
pullback functor '}, : £ — £/F along the unique arrow !g : E — 1¢.

The colimit colimg (D) in € of an internal diagram D € [C, £], where C is
an internal category in &, is defined to be the coequalizer of the two arrows

d({opf D, d{opf b (recall that f0pf D is the domain of the discrete opfibration
over C corresponding to the diagram D).

For any internal diagram G € [[F, £], its colimit colimg(G) is isomorphic
to the £-indexed colimit colimg(G¢) of the £-indexed functor G¢ : Fe — E¢
corresponding to it under the equivalence [F,&] ~ [F¢, Ecle.

If D € [C,€&] is an internal diagram in & with colimit colimg(D) =
coeq(dlfopf D, d{opf D), the colimiting £-indexed cocone (colimg (D), p) of the
corresponding €-indexed functor Dg : Cg¢ — E¢ can be described as fol-
lows. Let us denote by ¢ the canonical coequalizer arrow ([? ! D)y —
coeq(dgopf D, d{opf D) in £. For any object F of £ and any object z : E — Cy
of the category C¢FE, the arrow pp(z) : Dp(x) = rpy =5 (colimg(D)) =

f0pf D foz?f D . .
coeq(d; ,dy ) x E is equal to (c o z;,7;), where the arrow z, is de-
fined by the following pullback diagram:

R, = (fapf D)o

-

E Co .




2.2 ¢-filtered indexed categories

The following definition will be important in the sequel.

Definition 2.1. Let £ be a Grothendieck topos and A be a £-indexed cat-
egory. We say that A is E-filtered if the following conditions are satisfied:

(a) For any object E of £ there exists an epimorphic family {e; : E; —
E |ieI}in & and for each i € I an object b; of the category Ag;;

(b) For any E € £ and any objects a and b of the category Apg there exists an
epimorphic family {e; : E; — E | i € I} in £ and for each i € I an object
¢; of the category Ag, and arrows f; : A¢,(a) = ¢; and g; : A, (b) — ¢
in the category Apg;;

(c) For any object E of £ and any two parallel arrows u,v : @ — b in the
category Apg there exists an epimorphic family {e; : E; — E | i € I}
in £ and for each 7 € I an object ¢; of the category Apg, and an arrow
w; : Ag; (b) = ¢ in Ag, such that w; o A¢, (u) = w; o A, (v).

The E-externalization of any internal filtered category in &£ is E-filtered,
but it is not true that if the externalization of an internal category C in £ is
E-filtered then C is filtered as an internal category in .

A standard example of indexed E-filtered categories is provided by in-
dexed categories of elements of flat functors with values in £, in the sense of
the following definition.

Definition 2.2. Let P : C°? — &£ be a functor. The &-indexed category of
elements [ P_ of P assigns to any object E of & the category fPE whose

objects are the pairs (¢, z) where ¢ is an object of C and z : E — F(c) is a
an arrow in £, and whose arrows (c,x) — (d,y) are the arrows f : ¢ — d
in C such that F(f) oy = x, and to any arrow e : E/ — FE in £ the functor
fPe [P — fPE, sending any object (c, ) offPE to the object (¢, zoe)

of [ PE’ and acting accordingly on the arrows.

Proposition 2.3. Let F' : C°? — & be a flat functor. Then the indexed
category [ F_ is E-filtered.
L&

Proof Straightforward from the characterization of flat functors as filtering
functors given in chapter VII of [26]. O

2.3 Indexation of internal diagrams

Given an internal diagram D € [C, £], the corresponding £-indexed functor
Dg : Co — E¢ can be described as follows. For any object E of £, Dg :
Cr — &/F sends any object x : E — Cy of Cg to the object r, : R, — E
of £/E obtained by pulling (w%/)q : ([P F)o — Cy back along =, and any

10



artow h : E — Cy of Cg from z : E — Cq to 2’ : E — Cgy to the arrow
Dg(h) :ry = rp in E/E defined as follows. Consider the pullback squares

S — ([ D),
s l(wgpfh
E of]

and

: C / opf S D /
Since dy o h = 2’ we have that (7”7 )o o dj ou = ' o s and hence
by the universal property of the first pullback square, there exists a unique
opf
arrow 8 : S — R, such that rp» o 8 = s and zm/oﬂzdlf Do
As W%pf : fOpf F — C is a discrete opfibration, the diagram
d‘[opr
(S D) == (" D)o
lw";f)l lw‘g’f)o
Cy Co

0

is a pullback. ‘Composing’ it with the first pullback square thus yields a
pullback square

fopf Dou
S — (% D)
s l(wzﬁ’%

E—Cy.
dgoh 0

Now, since (Wg)f)o 0Zy =T OT; = dg o h or,, the universal property of
this pullback square provides a unique arrow v : R, — S such that sovy =r,

opf
and d({ Pouo v = zy. We define Dg(h) : 7, — rp in E/E to be equal to
the composite arrow oy : R, — Ry

2.4 Colimits and tensor products

For any internal category F in £, we denote by coeq(FF) the coequalizer of
the two arrows df and d..

11



From the above discussion it follows that for any D, P € [C, &], colimg(Po
77 = colime (D o 7%7). Indeed, if we consider the pullback square

R qr fopf P

\L qD 7r;pf

fopf D C

op
™D

in the category cat(€) of internal categories in &, we have that colimg (P o
7P 2= coeq(dom(qP)) = coeq(R) = coeq(dom(q)) = colime(D o 7%7).

Similarly, by exploiting the fact that the operation F — coeq(F) on in-
ternal categories in £ is invariant under the dualization functor F — F°P, we
obtain another commutation result, which we shall use in the sequel: for any
internal diagram F' € [C°P, ] and any internal diagram P € [C, ], we have
a natural isomorphism colimg (P o 711};) = colimg(F o w]j;). To prove this, we
consider the following pullback squares:

R qP fopf P S r¥ fopf F
in 7Tj;pf lrp 71.}>:1z)f
f f
f F - (C f P T) (COp .
F P

We have that
colimg(P o 71’{7) >~ coeq(dom(q")) = coeq(R),
while
colimg (F o wpys) = coeq(dom(rf)) = coeq(S) .

But the fact that the dualization functor preserves pullbacks in cat(€) im-
plies that S ~ R°P, whence coeq(R) = coeq(S), as required.
Summarizing, we have the following

Proposition 2.4. Let C be an internal category in a topos £, P and D
internal diagrams in [C,E] and F an internal diagram in [C°P,E]. Then we
have natural tsomorphisms

(1) colimg(P o W%pf) = colimg(D o Wloff);

(i) colimg(P o 7'['{;) & colimg(F o Trf),
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Let us now proceed to applying this proposition in the context of a functor
F . C® — &, where C is a small category and £ is a Grothendieck topos,
and a functor P : C — Set. To this end, we explicitly describe the discrete
opfibration corresponding to the diagram of shape C in £, where C is the
internalization of C in &, associated to a functor G : C — £. We denote by
Ob(C) the set of objects of C and by Arr(C) the set of arrows of C.

We have that F' = [[G(c) and that f: FF = [[G(c) - Cy = [[1¢ is
ceC ceC ceC
equal to [['g(), where lg(,) is the unique arrow G(c) — 1g in & (for any

ceC
cel).
Let Jf : G(dom(f)) = I G(dom(f)) (vesp. pc:G(c) = I G(e),
feArr(C) ce0b(C)
krp:le = [l 1lg, Ae:1lg = I 1g) be the canonical coproduct ar-

feArr(C) ce0b(C)
TOwWS.

First, let us show that the diagram

G

I Gldom(M)Z—~ 11 G(o)

feArr(C) ceO0b(C)

l I !'aaoms) i I lee
feArr(C) ce0b(C)

I 1 I 1e.

feArr(C) dg c€0b(C)

is a pullback, where the arrow d§ is defined by setting d§ o Jt = tgom(s) (for
any f € Arr(C)). We have to prove that, for any object E of £ and arrows
a:E— [ leand B: E — ][] G(c) such that [[ lgoB =

feArr(C) ce0b(C) ce0b(C)
dg o «, there exists a unique arrow v : F — 11 lG(dom(y)) such that
feArr(C)
a= [[ G(dom(f))o~vand 8 =dS o~. To this end, consider, for any
feArr(C)

c € 0b(C) and f € Arr(C), the commutative diagram

af af

Ef.e) Ey le
Pc Yf Kf .
E. Ze E a 11 1¢ 1e
feArr(C)
B(? B dC
Gle) OAn
Ob(C)
Gle)—" I Gcﬁe I1 L

ce0b(C ce0b(C
k /

13



where all the squares except for the lower-right one are pullbacks. The com-
mutativity of the diagram, combined with the fact that distinct coproduct
arrows are disjoint from each other, immediately implies that for any pair
(f,c) such that ¢ # dom(f), we have E(. = 0Og. On the other hand,
the stability of coproducts under pullbacks implies that £ = [ E., and

ce0b(C)
EF = H Ef; whence £ & H E(f,c) = H E(ﬂc),
feArr(C) (f,e)eArr(C)x0Ob(C) (f,e) | dom(f)=c

with canonical coproduct arrows §(s.) =yroqsr = 2copc: B — E. We
define, for each pair (f,c) such that ¢ = dom(f), the arrow () : E(s¢) —

G(dom(f)) as the composite Jr o . o p., and set v equal to the ar-
f
feArr(C)

row 11 Yife) P B — [I G(dom(f)). We have to verify that
(fs¢) | dom(f)=c feArr(C)

a= I !Gom(s) o and 8= dS o v or, equivalently, that for any pair
feArr(C)

(f,c) such that dom(f) = ¢, we have:

(1) aoloy= I lardom(s) V(e and
feArr(C)

(2) Bo&ife) =df oV(f.0)-

To prove (1), we preliminarily show that for any pair (f,c¢) such that
c = dom(f), we have ay o gy =!g(c) © Be o pe- Since the arrow Ae = Agom(y)
le = ]I 1g is monic, it is equivalent to prove that Agy, ;) o ayoqy =
ceOob(C
Acolge) oﬁio)pc. But the commutativity of the above diagram yields Agop,(f)©
ajoqr=d§orgoaroqr=dsoaoyroqr= [] lggoBoyroq =
c€0b(C)
H !G’(c) ofoz.0p. = H !G(c) O fic © e O pe = /\co!G(c) o B¢ © pe, as
c€0b(C) c€0b(C)
required.
We thus have a0 ¢y ) = aoyroqy =rpoayoqr = kypolgyoBeope =
lG(dom(f)) © V(f,c)- This proves condition (1).
feArr(C)
Further, 8o &) = B0 2zc0pe = fic © Be © Pe = fdom(f) © Be © Pe =
d§ o JsoBeop.=d§ o Y(f,c)- This proves condition (2).
Let us define the arrow

ai . [ Gldom(f) - ][] Glo)

feArr(C) ce0b(C)

by setting, for each f € Arr(C), d o J; = eod(f) © G(f)-
The discrete opfibration p : F — C corresponding to G can be described

as follows: Fo = [[ G(e¢), F1 = ][ G(dom(f)), the domain and
ce0b(C) feArr(C)

codomain arrows dIg,dIf : F; — Fy are respectively equal to dg; and to

14



d§, po : Fg — Cp is equal to ] lge) and p1 : F1 — Cy is equal to
ce0b(C)
'G(dom(y))- The composition law in the internal category I is defined
feArr(C)
in the obvious way.
We leave to the reader the straightforward task of verifying that this
is indeed the discrete opfibration corresponding to the functor G via the

composite of the equivalence [C,E] ~ [C, &] with the equivalence

75 1 [C,£] - DOpf/C.

Recalling that, for any functor F': C°P — &, the discrete fibration 7'('{; :

ffF — C associated to it is equal to w;pf()p : fOpf FP — covor — C,

we deduce the following explicit description of the discrete fibration 71{, :

ffF — C associated to a functor F' : CP? — &: (ffF)O = OIZIC F(c),
ce

(ff F), = A]_[ . F(cod(f)), the domain and codomain arrows a;g), dr
EArr

(ff F), — (Jfff F)(O)are defined by the conditions df o Jf = feod(y) and df o

Jf = Haom(p) © F(f) for all f € Arr(C) (where p.: F(c) - ][ F(c) and

Jy + F(cod(f)) — A]_[ . F(cod(f)) are the canonical copiigl;((fé arrows),

EArr

(1o : (J7 F), %fco i; )equal to 11 'pe and (xh)1 = (JTF), — C

is equal to ; AH(C)!F(COd(f)). The cgrenorf(()cs)ition law in the internal category
EArr

i T F is defined in the obvious way.

Theorem 2.5. Let F : C? — &£ be a functor from the opposite of a small
category C to a Grothendieck topos € and P : C — Set be a functor. Then
the following three objects are naturally isomorphic:

(i) colim(F 077{3)
(ii) colimg(F o 7T{-,£) = colimg(Pg o W%) (cf. Proposition 2.4)

(iii) colimg(&go%g),

where Pg is the internal diagram in [C,&] given by 7% o P.

Proof The isomorphism between colimg(Ps o 77%) and colimg(Pg o %5)

follows from the general fact that for any internal diagram G € [D,£] its

colimit colimg(G) is isomorphic to the E-indexed colimit colimg(Gg). It thus
f

remains to prove the isomorphism between colim(F o 7)) and colimg(F o

77}0, ). To this end, we recall the following three general facts:
&

15



(1) For any functor G : D — &, its colimit colim(G) is naturally isomorphic

to the colimit colimg(G);

(2) For any functor H : D — C between small categories C and D and any
functor M : C — &, we have a natural isomorphism F o H = F o~i(H);

(3) For any geometric morphism f : F — &£, the diagram

TC
[C, &] * -~ DOpf/C

lf*(—) lf*(—)
F*©

[/*(C), €] =~ DOpf/ f*(C)

commutes.

We therefore have that

colim(F o 7Tf) = colimg(F o 7Tf) = colimg(F o ")/g(ﬂ'{;.)) =~ colimg(F o 77}0,8),

where the first isomorphism follows from (1), the second from (2) and the
third from (3). O

We shall indicate the three isomorphic objects of the theorem by the
symbol F' ®@¢ P.

The following lemma is essentially contained in the proof of Giraud’s
theorem (cf. [18] or, for instance, the Appendix of [26]), but we were not
able to find its exact statement in the literature; we thus provide a proof of
it for the reader’s convenience.

Lemma 2.6. Let £ be a Grothendieck topos and {e; : E; — E [i € I}
an epimorphic family in £. Then the arrow []e; : [[E; — E yields an
icl iel
isomorphism ( [[E;)/R = E, where R is the equivalence relation in € on the
el
object [[E; given by the subobject || E; xg E; — || Eix Ej =
iel (i,9)eIxI (4,5)eIxI
[1E; x [1Ej; in particular, the arrow [le; : [[E; — E is the coequalizer
iel j€l iel el
n & of the two canonical arrows Il EixegE;— 1E:.
(4,5)eIxI iel

Proof Let R be the kernel pair of the epimorphism ][ e;, that is the pullback

el
of this arrow along itself; then, by the well-known exactness properties of
Grothendieck toposes, R is an equivalence relation on [] E; such that the
el
coequalizer in £ of the two associated projections is isomorphic to q. Now,
the fact that pullbacks preserve coproducts in a Grothendieck topos implies
that R is isomorphic to the subobject  [[ E;xpE; — [ EixE;=
(4,4)€IXI (3,§)eIXT
[IE; x [1Ej, as required. O
i€l jel
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Remark 2.7. The lemma admits an obvious generalization to arbitrary
separating sets for the topos £ (cf. the Appendix of [26]).

Corollary 2.8. Leta: A — FE and | : L — E be objects of the topos E/F,
and {e; : E; — E [i € I} an epimorphic family in £. Then a family of
arrows {f; : ef(a) — ef(l) [i € I} in the toposes £/E; defines a (unique)
arrow f:a — 1l in EJE such that ef(f) = fi for all i € I if and only if for
every i,j € I, q; (fi) = q;(f;), where the arrows q; and q; are defined by the

following pullback square:

ai
Ez’,j I Ez

€i,j
e

E,—Y-E.

2.5 &-final subcategories

The following definition will be important in the sequel. We shall borrow
the notation from section 2.4.

Definition 2.9. Let A¢ be a £-indexed category and i : By — Ag be a
E-indexed functor.

(a) We say that i is E-final if for every E € £ and x € Ap there exists
a non-empty set £ of triplets {(e;, b;, fi) | @ € I} such that the family
{e; : E; — E | i € I} is epimorphic, b; is an object of Bg, and f; :
Ae,(z) = ig,(b;) is an arrow in Ag, (for each i € I) with the property
that for any triplets {(e;, bs, fi) | EI} and {(€}ej f}) | J € J}in &g
there exists an epimorphic family {g;” : E}” — E;; | k € K;;} and for
each k E K j an object dzgj' Qf BEi,j and arrows ;7 : qu?gi,j(bi) — dy’
and s : quog]i,j (¢j) — dp’ in BE;-C,J- such that igii (ry?) o Ag, (fi) =

ZE;CJ (Sz’j) o qu (fj/)

(b) We say that a E-indexed subcategory Be of a £-indexed category Ag is
a £-final subcategory of Ag if the canonical £-indexed inclusion functor
i: B — Ag is E-final, in other words if for every E € £ and x € Ag
there exists a non-empty set £f of triplets {(e;, b;, f;) | ¢ € I} such that
the family {e; : E; — E | i € I} is epimorphic, b; is an object of By, and
fi + Ae;(z) — b; is an arrow in Ap, (for each ¢ € I') with the property that
for any triplets {(e;, b;, fi) | i € I} and {(e},¢;, f}) | 7 € J} in EF there
exists an epimorphic family {gz’j : E;] — E;j | k € K; ;} and for each

Qiogzj (bz) — d;c’] and

sy quog;;,j(c‘j) — dy? in BE;;,J- such that 17 o Ay, (fi) = sp7 o Ay, (f})-

k € K;; an object d;’] of B B and arrows r,i’ﬂ ' B

17



(c) We say that a £-indexed subcategory Bg of a £-indexed category Ag is a
E-strictly final subcategory of Ag if for any arrow f:a — b in Ap there
exists an epimorphic family {e; : E; — F | i € I'} in & such that for any
i € I, the arrow A, (f) : Ae,(a) = A, (b) lies in Bg,.

(d) We say that a E-indexed subcategory Be of a E-indexed category Ag is
E-full if for every arrow f : b — b in Ag, where b and b’ are objects of
Bg, there exists an epimorphic family {e; : E; — F | i € I} such that
for any ¢ € I the arrow A, (f) lies in Bp,.

Remarks 2.10. (a) Let B¢ be a &-indexed subcategory of Ag with the
property that for every object F of £ and any object a € Ap o : B/ — E,
there exists an epimorphic family {e; : E; — E | i € I} in € such that for
any ¢ € I, the object A, (a) lies in B, and for any arrow f : a — bin Ag
where a,b € B, there exists an epimorphic family {e; : E; — E | i € I}
in £ such that for any i € I, the arrow A, (f) : Ae,(a) — A, (b) lies in
Bg,. Then B¢ is a E-strictly final subcategory of Ag.

(b) Every &-strictly final subcategory is a £-final subcategory.

(c) If i is a &-full embedding of a &£-indexed category Bg into a E-filtered
E-indexed category Ag then i is £-final if and only if for every £ € £ and
x € Ap there exists a non-empty epimorphic family {e; : E; — E | i € I}
in £ and for each ¢ € I an object b; of By, and an arrow f; : A, (z) — b;
of Ag,.

Proposition 2.11. Let B¢ be a E-full £-indezed subcategory of a E-indexed
category Ag. Then Bg is E-filtered if and only if Ag is E-filtered.

Proof The proof is entirely analogous to the classical one and left to the
reader. OJ

The following result represents a £-indexed version of the classical theo-
rem formalizing the behaviour of colimits with respect to final subcategories.

Theorem 2.12. Let i : Be — Ag be a E-final functor and D : Ag — E¢ a
E-indexed functor. Then D admits a colimit (resp. a E-indexed colimit) if
and only if D oi admits a colimit (resp. a E-indexed colimit), and the two
colimits are equal.

Proof First, let us show that any cocone A over D o4 with vertex V' can bhe
(uniquely) extended to a cocone X over D. For any object a of Ap, we have
to define an arrow Ag(a) : Dp(a) —!%(V) in £/E. By our hypotheses, there
exists an epimorphic family £ = {e¢; : E; - E | i € I} in £ and a family of
arrows { f; : A¢,(a) — ig, (b;) | i € I}, where b; lies in Bg,. Consider, for each
i € I, the arrow Ag,(b;) o Dg,(fi) : Dg,(Ae,(a)) = e (Dg(a)) ='g,(V) =

18



*

e;('5(V)). By applying the condition in the definition of £-final functor to
the pair ((e;, fi, bi), (e, fi, b;)) and exploiting the fact that A is a cocone over
D o i, we obtain that ¢;"(Ag,(bi) o Dg,(fi)) = ¢;"(AE;(b;) © D, (f;)) (here
we use the notation of Corollary 2.8). By Corollary 2.8, the family of arrows
AE,;(Ae;(a)) (for ¢ € I) thus induces a unique arrow ug = Dg(a) =!5(V).
To be able to set S\E(a) equal to this arrow, we have to show that such
definition does not depend on the choice of the family {(e;, f;)}. But this
follows similarly as above, by applying the condition in the definition of
E-final functor and invoking the fact that A is a cocone over D o i.

Notice that if a € By then Ag(a) = Ag(a), and that for any cocone &
over D,{:fgi.

Now that we have showed that for any a € Ag the definition of the arrow
Ag(a) : Dg(a) ='5(V) in the topos £/E is well-posed, it remains to prove
that the assignment a — Ag(a) defines a cocone over the diagram Dy with
vertex 1(V), i.e. that for any arrow f : a — bin Ag, Ag(b)o De(f) = Ag(a)
as arrows in £/FE. Further, we have to show that the assignment £ — A
defines a £-indexed cone on the £-indexed functor D, i.e. that for any arrow
a:FE — Ein € and any a € Ag we have o*(Ag(a)) = Ag(Aq(a)). This
can be easily deduced from the fact that A is an indexed cocone over D o i.

The second part of the theorem, for indexed colimits, follows from the
first part by noticing that any localization of an indexed &-final functor with
respect to a localization functor £ — £/FE is a £/E-final functor. So it will
be sufficient to show the first part.

To complete the proof of the theorem, it remains to show that for any
cocone (U, p) over D, (U, ) is colimiting over D if and only if (U, o) is
colimiting over D.

Suppose that D has a colimiting cocone p with vertex U. We want to
prove that poi is a colimiting cocone for the functor Doi. Let A be a cocone
over the diagram D o ¢ with vertex V; then, as we have just proved, A is
a cocone over D with vertex V; therefore (U, 1) factors through (V, ), by
an arrow z : U — V in &. Clearly, z yields in particular a factorization of
(U, pwoi) across (V,A). The uniqueness of the factorization of (U, poi) across
(V, A) follows from the fact that for any two cocones & and x over D o, if
¢ factors through x by an arrow w then ¢ factors through x by the same
arrow. This proves that if (U, ) is a colimiting cocone over the diagram D
then (U, u o) is a colimiting cocone over the diagram D o i.

Conversely, suppose that (U, o) is a colimiting cocone over the diagram
Doi. (Z,x) is a colimiting cocone over the diagram D. For any cocone (Z, x)
over D, we have that (Z, xyo1) is a cocone over Doi; therefore (U, poi) factors
uniquely through (Z, x o) or equivalently (by similar arguments as above),
(Z, x) factors uniquely through (U, ). Therefore (U, u) is a colimiting cocone
over D, as required. O
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Let Setg be the £-indexed category given by: Setp = Set for all E € £
and Set, = lget (Where 1get is the identical functor on Set) for all arrows
a in €. There is a £-indexed functor

ve : Setg = E¢

defined by: vep = VE/E : Set — £/E (for any object E of £).

We shall consider £-indexed functors obtained by composing the £-indexed
functor ¢ : Setg — £¢ with a £-indexed functor D : As — Sete.

Notice that a £-indexed functor D : A — Set, consists of a functor
Dg : Ag — Set for each object E of £ such that for any arrow o : B/ — E
in 5, DE’ OAa = DE

Let us give an explicit description of the cocones over the £-indexed
functor ¢ o D. Specializing the general definition, we obtain that a cocone
(U, p) over ¢ o D consists of an object U of £ and of an arrow ug(a) :
Dg(a) =5 (U) in £/F (for each objects E of £ and a of Ag) such that for
any arrow f :a — bin Ag, ME’(b)O’Yz/E(DE(f)) = pp(a) and for any arrow
a:FE - Ein &, a*(ug(a)) = pp(Aaa)).

By using the well-known adjunction between ¢ and the global sections
functor £ — Set, we can alternatively present the above set of data as
follows: a cocone (U, u) over y¢ o D consists of an object U of £ and of a
function pg(a) : Dp(a) = Homg(E,U) (for each objects E of £ and a of
Apg) such that for any arrow f :a — bin Ag, pup/(b)oDg(f) = pe(a) and for
any arrow a: E' — F in &, Homg(a,U) o pp(a) = pp(Aq(a)) (notice that
the domains of these two arrows are the same since Dg(a) = Dg/(Ay(a))).

Theorem 2.13. Let F : C°? — &£ be a functor. Then the E-indexed subcate-
gory [ F offFf is strictly final.

Proof By definition of [ ng, for any object E of £ the category [ FfE has
as objects the arrows z: E — ][] F(c) and as arrows & — z’ the arrows
ce0b(C)
z:E— ] F(cod(f)) such that d}' o 2 = x and di" 0 2 = 2’. For any
feArr(C)

E € &, the category fFE thus identifies as a subcategory of the category

i FfE7 through the assignment sending any pair (¢, x), where x : E — F(c),

to the arrow pcox : E — J] F(c¢) and any arrow (¢,z) — (¢, 2) to
ce0b(C)

the arrow Jroa' : E —  [[ F(cod(f)) (here we use the notations of
feArr(C)

section 2.4). It is clear that these assignments make [ F_ into a &-indexed

f
subcategory of [ F .

To prove our thesis, we shall apply the criterion of Remark 2.10(a). To
show that the £-indexed subcategory [ F _ satisfies the first condition in the
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remark, we observe that for any object z : E— ][] F(c) of the category
ce0b(C)

i o 5, if we consider the pullbacks

Tc

E. F(c)

Bt I R

c€0b(C)

of x along the coproduct arrows u. : F(c) — ][] F(c), we obtain an
c€0b(C)

epimorphic family {e. : E. — E | ¢ € Ob(C)} such that fFi: (x) lies in the
subcategory [ Fp, .

It remains to prove that the second condition of Remark 2.10(a) is sat-
isfied. Let us suppose that (¢, z) and (¢, 2’) are objects of the subcategory

J F, and suppose that o : E —  [[ F(cod(f)) is an arrow such that
feArr(C)
dfoa=p.oxand df oa = py o'

E : [I F(cod(f)) E - [T Fleod(f))
feArr(C) feArr(C)
@ ldg o J{df
F(o ] F( Pe)———— 1] F(o).
c€0b(C) cc0b(C)

Consider, for each f € Arr(C), the following pullback square:

E; il F(cod(f))
ief Ljf
E %> II F(cod(f)) .
feArr(C)

The commutativity of the three diagrams above, combined with the fact
that distinct coproduct arrows are disjoint, implies that for any arrow f
of C such that dom(f) # c or cod(f) # ¢ we have Ey = 0g. We can
therefore restrict our attention to the arrows f such that dom(f) = ¢ and
cod(f) = ¢. For any such arrow f, we have oy = ' o ey (equivalently,
SINCe fe = fleog(f) 18 MONIC, fle O Af = fer © z' o ey). Indeed, py o af =
di' oJpoar=di ocaoces = pyoa’oes Therefore acer = Jroa' oey;
indeed, coef = Jyoay = Jyoa’ oes. Lastly, we observe that the arrow
f defines an arrow (c,z0ey) — (c/,2" 0 ey) in the subcategory ([ F)g,, i.e.
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F(f)ox'oey = woey. Indeed, the arrow figom(r) = fes is monic and we have
tdom(f) © F'(f)ox’ oef =dloJpoa’oef=Jroaoes=p.omoes.

The epimorphic family {ef : Ef — E | dom(f) = c and cod(f) = '}
thus satisfies the property that the arrow ([ Fjgc)ef () lies in the subcategory
(f F)g,. Our proof is therefore complete. O

Theorem 2.14. Let C be a small category, £ a Grothendieck topos, F :
C? — & and P : C — Set functors and Pg the internal diagram in [C,E]
given by vz o P. Then the restriction of the functor (Pg, oig) >~ Peo W%g

to the E-indezed subcategory [ F offFf; is naturally isomorphic to e o zg,
where zg : ng — Setg is the E-indexed functor defined by: zep((c,x)) =

P(c) and zeg(f) = P(f) (for any E € &, object (¢,x) and arrow f in the
category [ F ).

Proof We shall exhibit an isomorphism

Peo w%gE((c, z)) = (ve 0 2e)B((c, 2)),

natural in E € £ and (c,z) € [ F .
Consider the following pullback diagram in cat(€):

F®cP fOpf Pe
I 2
[1F C.

Since coproducts are stable under pullback in a topos, we have that:

(FecPlo= [] Flo)x+:(P(0)),
ce0b(C)

(FocPh= [I Fleod(f) x~E(P(dom(f))),

feArr(C)
tro: (Fec Plo= [] Fle) x (P /F IT 7o
cc0b(C) c€0b(C)

is equal to the arrow  [] Tr(c), Where Tp(.) is the canonical projection
c€0b(C)

F(c) x v4(P(c)) = F(c),

_ !
try: FscPh = [] Fleod(9) x 2 (Pldom(f) = ([ Fri= [ Fleods)

feArr(C) feArr(C)
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is equal to the arrow 11 ﬂ},(cod(f)), where ﬂ%(codm) is the canonical
feArr(C)
projection F(cod(f)) x v¢(P(dom(f))) — F(cod(f)) and the domain and

codomain arrows
dreel afecl . (F oc P), — (F @¢ P)o
are defined by the following conditions:

dy " o Wi = Zooa(f) © (Ti(eoar 1) Ve (P(F)) © bz (P(domi( 1))

and _
dy " o Ws = Zaom(s) © (F(f) © W(coa(r))s Hog(Pldom(n)+

where Hyz (P(dom(f))) is the canonical projection

F(cod(f)) x vg(P(dom(f))) = ve(P(dom(f)))

and
Wy : F(cod(f)) x vE(P(dom(f))) =[] Fleod(f)) x v(P(dom(f))),
feArr(C)
Ze: F(c) x v¢(P(c)) = HF x 7g(P(c))
ceOb(C

are the canonical coproduct arrows (respectlvely for f € Arr(C) and ¢ €
0b(C)).
Now, the internal diagram Pg o 77% corresponds precisely to the discrete

opfibration ¢ and hence the £-indexed functor Pg o 7%8 sends any general-

ized element x : E — ][] F(c) to the object of £/F given by the pullback
c€0b(C)
of t7, along it. In particular, since in a topos any diagram of the form

A; HAi
icl
fi llgfl
B; 1B,
icl

where the horizontal arrows are the canonical coproduct arrows, is a pull-
back and products commute with pullbacks, the functor (Pg o W%) g sends
any object (¢, z) of the category [ F, to the object given by the canonical
projection E x v£(P(c)) — E. But this object is canonically isomorphic to
'yg/E(P(c)) in £/F, which is the value at (¢, z) of the functor (yg o z¢)Eg.

Our proof is therefore complete. O
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Let us now explicitly describe the £-indexed colimiting cocone on the
restriction to the E-indexed subcategory [ Fg of the &-indexed diagram

Pco ﬂ'%g (cf. section 2.1 for the background). The vertex of this colimiting

cocone is the codomain of the coequalizer w : (F®c P)o — colimg (ngowi )
~&e " "Fe

of the pair of arrows d0F®CP, dlf@)cp : (F ®@¢ P)1 — (F ®c P)o. For any ob-

ject (¢, x) of the category [ F, the colimit arrow (PgOﬂ’%)E)((C, x)) =

'y;/E(P(c)) —> colimg(Pe, o %g) is given by the composite 5 (w) o hc g,
where hz) is the arrow 15(Z;) o (z X Lyx(p(e)), TE) 'yz/E(P(c)) >~ F X

e(P(e) =TI Fle) xye(Ple)) x B =5( [1 F(e) xz(P(c))); in
c€0b(C) c€0b(C)

ther words, the functi : P(c) — Home(E, colimg (Pe ;oL -

other words, the function § . : P(c) omg(E, colimg (Pe OWFS))corre

sponding to it assigns to every element a € P(c) the arrow wo Z.o(z,r.0!g),

where r, : 1¢ = v5(P(c)) = ][ 1lg is the coproduct arrow corresponding
a€P(c)
to the element a and !g is the unique arrow £ — 1g in £.
It is immediate to verify that, under the isomorphism

f

a f
_Fe

colimg(Pg o ) = colim(F o 7p)

of Theorem 2.5, the functions (. . : P(c) — colimg (P, ow%g) = colim(F o

71) admit the following description in terms of the colimiting arrows :
P g P g X(c,a)

F(c) — colim(F o 7T1f3): for any a € P(c), {(ca)(a) = X(c,a) © T-

2.6 A characterization of £-indexed colimits

In this section we establish necessary and sufficient conditions for a £-indexed
cocone on a small diagram in & to be a (€-indexed) colimit cone.

Before stating and proving the main theorem of this section, we need to
introduce some relevant definitions and a few technical lemmas.

Given a E-indexed functor D : As — ¢ and an object R of the topos
&, we denote by Ig the set of pairs of the form (z,y), where x is an object
of the category Ag and y is an arrow 1¢/gr — Dg(z) in the topos £/R. On
such a set we consider the equivalence relation Rg generated by the pairs
of the form ((x,y),(2',y")), where there exists an arrow f : x — 2/ in the
category Apg such that y' = Dr(f) o y.

The following remarks are useful in connection with the application of
the localization technique.

Remarks 2.15. (a) For any E € &, we have a natural bijection ZE =
7D/E
le/p?
bijection.

and the relation Rg corresponds to the relation Ri// i under this
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(b) For any arrow f : F' — E and any object x € Ag, Dp(Af(x)) =
[*(Dg(x)) (this follows from the fact that D is a &-indexed functor).
We shall denote the canonical arrow dom(Dp(A¢(x))) = dom(Dg(z))
by the symbol 7.

(¢) For any object x of Ap and any arrow y: (f : F — E) — Dpg(z) in the
topos £/ E, there exists a unique arrow yy : (1p : F' = E) = Dp(Ayf(z))
in the topos £/F such that rf o yf = y (where 7 is considered here as
an arrow in £/E in the obvious way);

(d) For any E-indexed cocone p over D with vertex U, any object x of Ag
and any arrow y : (f : FF — E) — Dg(z) in the topos £/FE, we have
pe(x) oy = (Iy x f) o up(Ag(x)) o yr. Moreover, we have pullback
squares

-
Dir(Ay(x)) = Dp()

lmAf(x)) luE(x)

UxF UxFE
1U><f
N
F ! E

in £, where mg and 7 are the obvious canonical projections. In par-
ticular, for any other pair (z/,1/), pp(x) oy = pup(z’) oy’ if and only if
pr(Ag(@)) oyy = pr(As(a) o yg;

(e) If Ac is the E-externalization of an internal category C in &, = is a
generalized element £ — Cp and y is an arrow (f : F — E) — Dg(x)
in £/F, there exists a unique arrow y7 : (1p : F — F) — Dp(xz o f) in
E/F such that z,of oy = 2, oy (this arrow is provided by the universal
property of the pullback square defining Dp(zo f)), which coincides with
the arrow yy defined in Remark 2.15(c);

(f) If a pair ((z,y),(2',y’)) belongs to RE then for any indexed cocone A
over D with vertex V, Ag(z) oy = Ag(2') o y/. Indeed, for any pair
((z,y), («',y")) with the property that there exists an arrow f :xz —
in the category Apg such that ' = Dg(f) oy, we have that Ag(z') oy’ =
Ag(2") o Dp(f) oy = Ar(x) oy (since Ag is a cocone).

Lemma 2.16. Let D € [C,&] be an internal diagram, x : 1 — Cy and
f:1— Cy generalized elements such that d5 o f = x and m : F — Dy(x)

an arrow in €. Then the unique arrow X : F' — (fOpf D)y in & such that

opf
d({ by Xm,f = Zz0m and (ﬂ_onf)l O Xm,f = folr (provided by the universal
property of the pullback square corresponding to the domains of the discrete

opf
opfibration associated to D) satisfies the property that z,om = d{ b O Xm, f
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opf
(by definition) and zy o Di(f) om = d{ =D Xm,f, where &’ is equal to

opf opf
D D . . .
dic of and d({ ,d{ are respectively the domain and codomain arrows

(S D)1 = (S D).
orf p

Proof By definition of Di(f), we have that z,» o D1(f) = d{ orof,
where r is defined by the pullback square

H—=L ([ D)

G

opf
and & is the unique arrow Dq(x) — H such that z, = d({ b orof, provided
by the universal property of the pullback square

™ o
H- o (fom‘ D)o

L

lg ———Cy .
€ dgof 0
It thus remains to prove that x,, s = 7o § om. But this immediately
follows from the universal property of the pullback

fOPf D

f0pf D1 L (fopf D)o

opf opf
lﬂ—D 1 le 0

- -
(Cl dg C07

opf
b Do(rogom) and’/TODprOXm,f:Wg)flo(Tofom).

O

since dof OXm,f = d({

Lemma 2.17. Let D be an internal diagram in [C,E] and x be an arrow
opf opf [ D / opf [ D
le = (f™ D). Let x = (73 oo dy ox, ' = (3 )ood; ox and

f= (ﬂjojﬂf)l ox. Then dS o f =z, dSof=a" and Di(f)oxo = x1, where

opf
Xo 18 the unique arrow lg — Dq(x) such that z, o xo = d({ b X (which
exists by the universal property of the pullback square defining D1(x)) and

opf
X1 18 the unique arrow lg — Dy (2) such that zy o x1 = d{ Do X (which
exists by the universal property of the pullback square defining Dy (z').
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Proof The first two identities follow straightforwardly from the definition.
It remains to prove that Di(f) o xo = x1. Let us refer to the proof of
Lemma 2.16 for notation. By the universal property of the pullback square
defining Dy (z'), it is equivalent to verify that z, o D1(f) o xo = 2w © X1

opf opf
But zmroDl(f)oXO:dlf Doro{oXO, while zm/oX1:d{ Dox; S0

to prove the desired equality it suffices to show that r o £ o xg = x. This
opf opf
follows from the fact that d({ Doro Eoxo=2z0X0 = d({ by x by virtue

of the universal property of the pullback square given by the domain of the
discrete opfibration associated to D. O

Proposition 2.18. Let D € [C,£&] be an internal diagram, x,x’ : 1 — Cy
generalized elements and y : 1l¢ — Di(x), vy : 1l¢ — Di(2’) arrows in E.
Then (zz0y, z0y') belongs to the equivalence relation on Home(1g, (fOpf D))

. fOPfD fOpr
generated by the pairs of the form (dj o a,dy oa) for some arrow
a:le — (fOpf D)1 if and only if ((x,y), (2',y')) belongs to RY..

Proof Let us first prove the ‘if” direction. We have that ((z,v), (z/,y))
belongs to Rﬁ if and only if there exists a finite sequence

(9507?/0) = (x)y)a ) (l“myn) = (Jj/uy/)
such that for any ¢ € {0,...,n — 1}

(1) either there exists f; : 1 — Cy such that dg o fi = x;, d(lc of; = x;11 and
D1(fi) o yi = yit1 or

(2) there exists g; : 1 — Cp such that d(g 0 ¢gi = Tit+1, d‘lC og; = x; and
D1(gi) © Yiv1 = ¥i-

In case (1), Lemma 2.16 implies (by taking m to be y; and f to be
fonD fOpr
fl) that Zx; OYi = d[) © Xyi,fi and Rriv1 O Yi+1 = dl O Xy, fi (here
the notation is that of the lemma). In case (2), Lemma 2.16 implies (by
opf
taking m to be ;11 and f to be g;) that 2z, , oy;11 = d({ by Xyis1,9; and

orf p
“r; OYi = d{ © Xyit1,9i-
From this it clearly follows that (z; oy, 2z, o y') belongs to the equiva-
lence relation T on Homg(1g, (f()pf D)) generated by the pairs of the form

opf opf
(dof by a, d{ by a) for some arrow a : 1lg — (fOpf D)1, as required.
Let us now prove the ‘only if” direction. If (2, oy, 2,» 0 y') belongs to the

equivalence relation T defined above, there exists a finite sequence xo, . . ., Xn

opf opf
of arrows 1g — ([ f D); and of arrows e; (which are either d({ P or dlf b

fopf D

opf opf
- we denote by €;” the arrow d{ Pif e is dy and the arrow d({ b
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opf
if e;is d  ©) such that ep o o = 2z 0y, €ir1 0 Yir1 = ¢ o y; for all
i€40,....,n—1}and e, 0 xp = 2w 0 Y.
To deduce our thesis, it suffices to apply Lemma 2.17 noticing that if
opf opf
eioX = zzn oy’ then yo = v if ¢; is dg D and x1 =" if e; is d{ b
(where xo and x; are the arrows defined in the statement of Lemma 2.17)

DPfD . . OPfD
Of O X = Zyr O y” (lf e; 1S dg ) and Zg!" O X1 =

orf p
[Py, O

since zgn o0 xg = d

fopr "o :
dy ox =zmoy’ (if e;isd
Theorem 2.19. Let D : A — E¢ be a E-indexed functor, where Ag is
equivalent to the E-externalization of an internal category in £. Then a
cocone 1 over D with vertex U is an indexed colimiting cocone for D if and
only if the following conditions are satisfied:

(i) For any object F' of £ and arrow h : F — U in the topos &, there exists
an epimorphic family {f; : F; — F [i € I} in € and for each i € I an
object x; € Af, and an arrow «; : 1g/p, — DF,(z;) in the topos E/F;
such that (ho fi,1r,) = pp(%i) o a; as arrows 1g/p, — F;(U) in £/ F;;

(1) For any pairs (x,y) and (2',y"), where x and ' are objects of Ag,
y is an arrow (f : F — E) — Dg(z) in E/E and y' is an arrow
(f: F— FE)— Dg(x') in E/E, we have ug(x)oy = pg(a’) oy if and
only if there exists an epimorphic family {f; : F; — F |i € I} in &
such that the pair ((Afor,(x), [ (), (Ator, (2'), fF () belongs to the
relation Rﬁ,.

Proof First, let us prove that, under the assumption that Ag is the &-
externalization of an internal category C in &, the colimit cone for D satisfies
the two conditions of the theorem.

Under this assumption, condition (i), applied to the colimiting cocone p
for D, rewrites as follows: for any object F' of £ and arrow h : F' — colim(D)
in &, there exists an epimorphic family {f; : F; — F |i € I} in € and for
each ¢ € I a generalized element x; : F; — Cp and an arrow «; : le/p, —
Dp (x;) in the topos £/F; such that (ho fi,1p) = co z;; o a; as arrows
(fi : le/p, — Ff(colim(D)) in £/ F; (where the notation is that of section
2.1).

Consider the following pullback square:

f/

F’ F
] .
(fon D)y = colim(D) .

Since the arrow c is an epimorphism, the arrow f’ : I/ — F is an epimor-
phism. This arrow will form, by itself, the single element of an epimorphic
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family satisfying condition (7). We set 2’ equal to the composite (w%pf)o oh/
(recall that (7%7), (fOpf D)y — Cy is the object component of the dis-

crete opfibration associated to D). Consider the following pullback square
defining Dp (2'):

Dy (2') u ("1 D),
J{v l(ﬁg’f)o
F o Co .

By the universal property of this pullback square, there exists a unique arrow
g+ F' = Dpi(2') in € such that uoay = b and voa, = 1p. So oy is an
arrow lg g — Dp(z') in the topos £/F', and (ho f', 1p) = (couoay, voay),
as required.

Under the assumption that Ag is the £-externalization of an internal
category C in &, condition (i), applied to the colimiting cocone u for D,
rewrites as follows: for any pairs (z,y) and (2/,y’), where z and 2z’ is a
generalized elements £ — Cy, y is an arrow (f : F' — FE) — Dg(z) in £/E
and y' is an arrow (f : F — E) — Dg(2’) in £/E, we have cozoy = cozoy’
if and only if there exists an epimorphic family {f; : F; - F |i € [} in £
such that the pair ((zo fo f,yo f;), (¢’ o fo fi,y' o f;)) belongs to the relation
RY.

Thanks to the localization technique, we can suppose F = 1g without
loss of generality. Indeed, condition (iz) for the diagram D, the cocone pu
and the object E is equivalent to condition (i7) for the diagram D/E, the
cocone p/E and the object 1¢/p, and p is, by our assumption, an indexed
colimiting cocone and hence stable under localization.

By Lemma 2.29, we have that co z, oy = co 2z oy if and only if
there exists an epimorphic family {f; : F; — F |i € I} in £ such that
for each i € T (2, oy o fi, 2z, 0y o f;) belongs to the equivalence relation
on the set Homg(F;, (fOpf D)o) generated by the set of pairs of the form

(d({om Poa, dlfopf P a), for a generalized element a : F; — (fon D)y in €.

By Remark 2.15(e), we have that (z; 0y o fi, 2y 0y o fi) = (2zofof, 0 (y©
fi), Zarofor, © (¥ © fi)). Our thesis then follows from Proposition 2.18, applied
to the toposes £/F; and the pairs ((z o fo fi,yo f;), (2’ o fo fi,y o fi)).

Let us now prove that the conditions of the theorem are sufficient for p
to be a colimiting cocone. For this part of the theorem, we shall not need to
assume the E£-indexed category Ag to be small.

Since conditions (i) and (i7) are both stable under localization, it suffices
to prove that p is a universal colimiting cocone over the diagram D. Suppose
that A is an indexed cocone over D with vertex V. We have to prove that
there exists a unique arrow [ : U — V in & such that for any £ € £ and
object x of Ag, (I x 1g) o pug(x) = Ag(x). To define the arrow | we shall
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define a function L : Homg(E,U) — Homg(E, V) natural in E € £. Given
h € Homg(E,U), by condition (i) in the statement of the theorem, there
exists an epimorphic family € ={e; : E;, - E | i € [} in £ and for each i € I
an object z; of Ap, and an arrow «; : lg/g, — Dg,(z;) in £/E; such that
(hoej, 1g,) = pE,(zi)oa;. The family of arrows {\g,(z;)oq; | i € I} satisfies
the hypotheses of Corollary 2.8. Indeed, using the notation of the corollary,
we have that ¢; (Ag,(2i) o o) = ¢j (Ag; (7;) o o)) for all 4,5 € I; this can be
easily proved by using condition (i7) of the theorem, the fact that the same
identity holds for the cocone p (in place of A\) and Remark 2.15(d). Therefore
there exists a unique arrow Li : E — V such that (L‘goei, 1g,) = Mg, (zi)oay
foralli € I. In order to be able to define L(h) as equal to L{ we need to check
that for any other epimorphic family &' = {¢} : E; — E | j € J} in &, we
have Li = Li/. To this end, consider the fibered product of the epimorphic
families € and &', that is the family of arrows p; ; = ejof; = elofi : F;; = E
(for i,j € I x J), where the arrows f; and fJ’ are defined by the following
pullback square:

fi
FZ7J > E’L

o
el

E,—~E.
It clearly suffices to verify that for any ,j € I, we have L‘Z op;j = Li’ op;j.
Now, we have that (Li oei,1g,) = Ag,(zi) o oy, while (L‘;’ ) e;-,lE;> =
)\E}(ac;-) o ;. Applying respectively f; and fJ’* to these two identities, we
obtain that (Li o Pij, 1Fm-> = AR, (w55) o fi(ay) and <Li, © Pijs 1Fz‘,j> =
Ar, (2] ;) o f7(B;), where ;; = Ay, (v;) and 2] ; = Afjf_ (), from which it
follows that the condition Lﬁ opij = Li’ o p;,j is equivalent to the condition
AF, (i) o fif(ou) = ARy, (x;j) o f](* (Bj)- This condition can be proved by
using condition (i7) of the theorem, the fact that the same identity holds
with the cocone p in place of A and Remark 2.15(d). More specifically, the
identities (hoe;,1g,) = pup;(2;) o a; and (ho e, 1E§_> = i, () o B; imply,
applying respectively f and f]{* to them, the identity pg, ;(7i;) o fi(aq) =
pr; ; (w5 ;) © f77(B;). From condition (ii) of the theorem, it thus follows that
for any i, € I x J, there exists an epimorphic family {g;” : G}) — Fj; | k €
K; j} such that the pair ((Ag;;,j(xi’j), [ (ai) o g”), (Ag};’j(x;j)’ fj{*(ﬁj) °g.”))
belongs to the relation Rgi,j. This in turn implies (by Remark 2.15(d))
that Agii (Ages (i) o (f (ai) o Qf{j) = Agd (Ag,i’j (7)) o (f*(B5) © g;”).
But Agii (Agii(zig)) o (ff (@) 0 gy") = (V x g,7)" (AR (i) © fi (i) and
)‘Gﬁ;’j (Agli’j (7)) o (f*(Bj) o gy) = (V>< 9.7V Ak, (25 5) © f7%(B;)), whence
(Vx g7 ) (Ap, (wig) o £ (i) = (V x g7 )" (Ar, (27 ;) 0 f7*(B;)), equivalently
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(since the gi’j are jointly epimorphic) A, ; (zi )0 fi (i) = AF, ; (@7 ;)0 £ (B)),
as required.

It is clear that the assignment h — L(h) defined above is natural in
E € &; it therefore remains to show that the resulting arrow [ : U — V
satisfies the required property that for any object £ € £ and any object x
of the category Ag, (I X 1g) o ug(x) = Ag(x). Take s to be the canonical
arrow s : Dg(x) — E in € and set 2/ = As(z), E' = Dg(z); then € Ap
and, considered the pullback square

Dg(z') ——= Dg(x)

Lok

E' 2 E

)

the unique arrow « : E' — Dpi(2') such that roa = 1g and toa = 1p
satisfies the property that (h,1g/) = pg/(2’) o @. So the epimorphic family
{1 : E' — FE'} satisfies condition (i) of the theorem with respect to the
arrow h = 7y o pg(x), where 7y : U x E — U is the canonical projection,
and hence loh = L(h) = Ag/(2) o ; therefore, (I X 1g) o up(z) = Ap(x), as
required.

The proof of the theorem is now complete. O

Remark 2.20. (a) The proof of the theorem shows that the sufficiency of
the conditions of the theorem holds more in general for any (i.e., not
necessarily small) £-indexed category Ag;

(b) The conditions in the statement of the theorem are both stable under
localization; that is, if the cone p over the diagram D satisfies them then
for any E € &£ the cone u/FE over the diagram D/FE does.

Proposition 2.21. Let Be be a E-final subcategory of an indezed category
Ac, D : A — E¢ a E-indezed functor and p a E-indexed cocone over D.
Then 1 satisfies the conditions of Theorem 2.19 with respect to the diagram
D if and only if poi satisfies them with respect to the diagram D o i, where
i s the canonical embedding By — Ag.

Proof Suppose that u satisfies the conditions of Theorem 2.19 with respect
to the diagram D. The fact that u o ¢ satisfies condition (i) of the theorem
with respect to the diagram D o ¢ immediately follows from the fact that p
does with respect to the diagram D, by using the fact that for each object
z; € A, there exists an epimorphic family {gi : Gi — F; | k € K;} such that
Agi (x;) lies in BG?; and for any arrow «; : 1¢/p, — DF,(2;) in the topos £/,
its image under the pullback functor g.” is an arrow lesgi = Dai (.Ag}; (xi))
in the topos £/G%. Let us now show that y o i satisfies condition (i) with
respect to the diagram D o .
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Let us first establish the following fact (): for any pairs (x,y) and (2, y")
in TF (see the beginning of this section for the notation), if ((z,y), (z/,v')) €
RE. there exists an epimorphic family {r; : R; — R | i € I} in &€ such that
((Ar, (), 77 (), (Ar (2), 75 () € RE.

If ((z,9), (z/,y)) € RE, there exists a finite sequence

(l’,y) = (.’L'(),yo), SRR (‘r’myn) = (xlv y/)

of pairs in Ig such that for any j € {0,...,n — 1}, either there exists an
arrow f; : x; — xj11 in Ag such that y;11 = Dg(f;) o y; or there exists an
arrow f; : j41 — x;j in Ag such that y; = Dg(f;j) o yj+1. By applying the
definition of £-final subcategory a finite number of times (using the fact that
the fibered product of epimorphic families is again an epimorphic family),
we can find an epimorphic family {r; : R; — R | ¢ € I} in £ such that for
every i € I and any j € {0,...,n — 1}, the arrow A, (f;) lies in Bg,. From
this it immediately follows that ((A, (z),7](y)), (Ar, (2'),7(/))) € RR, as
required.

Using fact (x), the proof of the fact that p o4 satisfies condition (i¢) of
the theorem with respect to the diagram D o4 follows straightforwardly from
the fact that u does with respect to the diagram D.

Conversely, let us suppose that poi satisfies the conditions of the theorem
with respect to Doi and deduce that p does with respect to D. The fact that
the validity of condition (i) for pod with respect to D o implies the validity
of condition (7) for p with respect to D is obvious. Concerning condition (%)
for (i, D), this can be deduced from condition (i7) for (o7, D o) by using
the fact that, given (x,y) and (2/,y) as in the statement of the condition for
(i, D), there exists an epimorphic family {e; : E; — E | j € J} such that
Ae,(z) and A, (2') lie in Bg, for all j € J.

The proof of the proposition is now complete. O

Remark 2.22. The proposition shows in particular that (the necessity of
the conditions of) Theorem 2.19 not only holds for £-indexed categories Ag
which are £-small (i.e., which are equivalent to the £-externalization of an
internal category in £.), but for any &-indexed category which is a £-final
subcategory of a E-small £-indexed category (for instance, to the £-indexed
categories of the form fig’ for a functor F': C°P — & - cf. Theorem 2.13).

Proposition 2.23. Let D : As — E¢ an indeved functor, where Ag is a
E-filtered category, R an object of £, (x,y), (2, y') pairs in IE. Then there
exists an epimorphic family {r; : R; — R [i € I} in € such thal for all
iel, (A (x),m(y)), (A (2", (Y))) € Rgi if and only if there exists an
epimorphic family {e; : E; — R | j € J} in £ with the property that for any
J € J there exist arrows f; : Ae;(v) — z and g; : A, (') — 2 in the category
Ag, such that Dg;(f;) oy = Dg;(g;) oy
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Proof The ‘if’ direction is obvious, so it remains to prove the ‘only if’
one. It clearly suffices to prove, by induction on the length of a sequence
(x1,91)s -+, (Tnyyn) of pairs in TF with the property that for any i €
{1,...,n — 1}, either there exists an arrow f; : x; — z;41 in Apg such
that y;j11 = DRr(fj) o y; or there exists an arrow f; : £j41 — x; in Ap such
that y; = DRr(fj) © yj+1, that there exists an epimorphic family {r; : R; —
R | i€ I}in & such that forall i € I, ((Ay, (z1), 75 (1)), (Ar, (@), 7 (yn))) €
Rgi. The case n = 1 is obvious. Suppose now that the claim is valid for
n and prove that it holds for n 4+ 1. There exists an epimorphic family
{e; : E; = R|j € J} in € such that for any j € J there exist arrows
fi + Ae;(m1) — z and g; : Ae;(zn) — z in the category Ag, such that
Dg,(fj)oyn = DE,(gj) ©yp,- On the other hand, there exists either an arrow
g : Ty — Tpi1 in Apg such that Dr(g)oyn = Yn+1 Or an arrow h : Tp41 — Tp
in Ag such that Dgr(g) © ynt1 = yn. In the latter case, the thesis follows
straightforwardly; so we can concentrate on the case when there exists an
arrow g : Tp — Tpy1 in Ag such that Dr(g) o yn = Yn+1-

By using the definition of £-final subcategory, we obtain an epimorphic
family {e; : E; — R|j € J} in £ and for each j € J two arrows f; :
Ae;(z1) = z and g; : A, (2n) — 2 such that Dg,(f;) o €j(y1) = D, (gj) o
€j(yn). Similarly, we obtain, for each j € J, an epimorphic family {1l -
F,g — Ej | k € K;} in £ and for each k € K arrows mi : Afg(z) — wi
and nj, : AfZ(Aej (Zn41)) — wi such that DFg(m{C) o DFg (Afg (gj)) o (fio
;) (yn) = DFZ (ng,) o DFg (Af;z (9)) © (fi ©€j)*(yn+1). Now, by definition of
E-final subcategory, for each j € J and k € K there exists an epimorphic
family {gl : Gk’] — F,g | E ij} and for each [ 6 ij an arrow pl

Aglk](wi) — vlk’j such that p omj, o AfJ(gj) = pl onj o AfJ(A (9)).

Forany j € JJk € Kj andl € Ly, set ajp; : A
to pf’j oA m(mi) oA g fj(fj) and bj g 0 A_ -,
P ki o A Jk(nk,) oA gFofice, (9)- It is readily seen that DGf,j(aM?l) o (ej o

. Of7ogk;(331) — v 7 equal

ko (Tn) — v 7 equal to

£ 0 919 wn) = Dgalbini) © e © £ 0 1Y) (yns1), whence the required

condition is satisfied (by taking as epimorphic family {e; o f,g o gf’j |j €
J,kEKj,lELk,j}). O

Combining the proposition with Theorem 2.19, we immediately obtain
the following result.

Corollary 2.24. Let D : As — £¢ an indezed functor, where Ag is a E-
filtered E-final subcategory of a small E-indexed category. Then a cocone p
over D with vertex U is a indezed colimiting cocone for D if and only if the
following conditions are satisfied:
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(i) For any object E of € and arrow h : F — U in the topos &, there exists
an epimorphic family {f; : F; - F |1 € 1} in E) and for each i € I an
object x; € Af, and an arrow «; : 1g/p, — Dp,(x;) in the topos E/F;
such that (ho fi,1r,) = pr, (i) o i as arrows 1g/p, — FF(U) in £/ Fy;

(1) For any pairs (x,y) and (2',y'), where x and z' are objects of Ag,
y is an arrow (f : F — E) — Dg(z) in E/E and y' is an arrow
(f: F— E)— Dg(2') in E/E, we have that ug(x)oy = pp(z’) oy’ if
and only if there exists an epimorphic family {f; : F; — F [i € I} in
E and for each i € I arrows g; : Afof,(x) — 2z and h; : Apoy,(2') — 2z
in the category Ap, such that Dg,(g;) o f¥(y) = Dr,(h:) o f5(v).

1

Moreover, if p is colimiting for D then the following ‘joint embedding
property’ holds: for any pairs (x,y) and (2',y'), where x and x’ are objects
of Ag, y is an arrow (f : F — E) — Dg(x) in E/E and y' is an arrow
(f : F — E) = Dg(2') in E/E, there exists an epimorphic family {e; :
F; — F |iel}in & and for each i € I arrows g; : Afoe,(x) = 2 and h; :
Afecs (/) = 7 in the category A, such that D, (g:)0 f£(y) = D, ()07 (s/)
and the diagram

Dp, (Af‘?ei (x))
Dr, (i) —
(FisAfoe, (=)
DFi (Afoei (33,)) )

where {(g ) : Dp(x) — colim(D) x E are the colimit arrows, commutes.

Remark 2.25. (a) In the statement of the corollary, we can suppose with-
out loss of generality the object f : F' — E of the topos £/E to be equal
to the terminal 15 : E — FE. Indeed, by Remark 2.15, for any object
x of Ag and any arrow y : (f : FF — FE) — Dg(x) in the topos £/E,
pe(z)oy = pp(a’) oy if and only if pp(Ag(z)) oyr = pr(Ap(z')) o yy.

(b) For any pairs (z,y) and (2/,y’), where z and 2’ are objects of Ag, y is
an arrow (f : F — E) — Dg(z) in £/E, y' is an arrow (f : F — E) —
Dg(2') in £/F, and any epimorphic family {g; : G; - F | j € J} in £,
condition (i) of Corollary 2.24 is satisfied by the pair ((z,y), (2/,y/)) if
and only if it is satisfied by the pair ((z,yog;), (z/,y 0g;)) for all j € J.

Let us now apply Corollary 2.24 in the context of a flat functor F' :
C°® — & and a functor P : C — Set, where C is a small category and

€ is a Grothendieck topos. Consider the restriction of the functor (Pg, o

oy~ f . . . . ——
T ) = Peomy (where Py is the internal diagram [C, £] given by vz o P)

_F¢
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to the &-indexed subcategory ng of fFf; Recall that, by Theorem 2.14,
the €-indexed functor (Pg, o ﬂ%g) is naturally isomorphic to the composite

functor ~g o zg, where z¢ : f?g — Set. is the £-indexed functor defined

by: zeg((c,x)) = P(c) and z¢ E(f) = P(f) (for any E € &, object (¢,x) and
arrow [ in the category [ Fp).

As observed in section 2.5, a &£-indexed cocone p over this diagram
with vertex U can be identified with a family of functions pi.,) : P(c) —
Homg(FE,U) indexed by the pairs (¢, ) consisting of an object ¢ of C and a
generalized element x : E' — F(c) satisfying the following properties:

(i) For any generalized element x : E — F(c) and any arrow f :d — ¢ in
C, H(c,z) © P(f) = H(c,F(f)ox)>

(ii) For any generalized element x : E — F(c) and any arrow e : E' — E,
H(c,zoe) = Homg(e, U) O f(c,x)-

The following theorem characterizes the cocones p which are colimiting.

Theorem 2.26. Let C be a small category, £ a Grothendieck topos, P : C —
Set a functor and F : C? — &£ a flat functor. Then a E-indexed cocone
p={tce) : P(c) = Homg(E,U) [c€C, x: E — F(c) in E} with vertex

fy
) =
Peo W%g (where Pg is the internal diagram [C,E| given by v§ o P) to the E-

U over the diagram given by the restriction of the functor (&g )

indezed subcategory [ F _ is colimiting if and only if the following conditions
are satisfied:

(i) For any generalized element v : E — U there exists an epimorphic
family {e; : E; — E [i € I} in &, for each index i € I an object ¢;
in C, a generalized element xz; : E; — F(c;) and an element y; € P(c¢;)
such that i, .,y(yi) = T o e;;

(11) For any pairs (a,x) and (b,x'), where a and b are objects of C and
x: E = F(a), © : E — F(b) are generalized elements, and any
elements y € P(a) and y' € P(b), p(a)(y) = tpan)(y') if and only
if there exists an epimorphic family {e; : B; — E [i € I} in & in
E and for each index i € I an object ¢; of C, arrows f; : a — ¢,
gi b= ¢;in C and a generalized element x; : E; — F(c¢;) such that

(z,2") oe; = (F(fi), F(gi)) o x; for all i € I and P(f;)(y) = P(g:)(v/).

Moreover, if u is colimiting the following ‘joint embedding property’ holds:
for any pairs (a,x) and (b,x"), where a and b are objects of C and v : E —
F(a), ' : E — F(b) are generalized elements, there exists an epimorphic
family {e; : E; — E | i € I} in € and for each index i € I an object ¢; of C,
arrows f; 1 a — ¢;, gi : b — ¢; in C and a generalized element x; : E; — F(¢;)
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such that (x,x') o e; = (F(f;), F(g;)) o x; for all i € I and (by Lemma 3.10)
the following diagram commutes:

H(a,z)

P(a) Homg(E,U)
P(f) \%M)
Heg,aq)
P(c;) Homg(E;,U)
/@ o) /@U)
P(b) - Homg(E,U)

In fact, the epimorphic family {e; : E; — E [i € I} can be taken to
be the pullback of the family of arrows (F(f),F(g)) : F(c) = F(a) x F(b)
(for all spans (f : a — ¢, g : b — ¢) in the category C) along the arrow
(x,2') : E — F(a) x F(b).

Proof The theorem can be deduced from Corollary 2.24 by reasoning as
follows. Concerning condition (7), its equivalence with condition (7) of Corol-
lary 2.24 follows from Remark 2.25(a) and the fact that for any object (z,¢)
of the category [ Fj and any arrow o« : lg/p — Dg((z,¢)) in the topos
E/E, denoting by !y : f.: F, = E — 1g/p the pullback of the coproduct
arrow u, : lg/p — 'y;;/E(P(c)) = Dg((z,¢)) in £/E (for each r € P(c)), the
arrows !y define, for r € P(c), an epimorphic family in £/F on the object
lg/p; indeed, this shows that we can suppose without loss of generality a to
factor through one of the coproduct arrows w, and hence to correspond to
an element y € P(c).

Concerning condition (i7), by Remark 2.25 we can suppose without loss
of generality that the pairs (z,y) and (2/,y’), where  (resp. z’) is an object
of [Fp, yis an arrow (f : F — E) — Dg(z) in £/F and ¢/ is an arrow
(f + F - E) = Dg(2)) in £/E, have respectively the form ((z,c),y),
where y = u,oly,.;, g and ((2',¢),y'), where y' = u0ly , (with the above
notation), for some 7,7’ € P(c). Thus we have that pug(z)oy = ug(z’) oy’
if and only if (Home(fr,U) o pyz))(r) = (Home(fr,U) o pigr ) (r'); but
(Home(fr,U) o :u(a:,c))(r) = /‘(c,xofr)(r) and (Homeg(fr,U) o /L(m’,c’))(rl) =
e arof,,) ("), whence (Home (fr, U)op(z,e))(r) = (Home(frr, U)opugs o) (1)
if and only if p(c.zof,) (1) = fi(e zof,) (T)- O

2.7 Explicit calculation of set-indexed colimits

Recall from [26] (cf. p. 355) that the colimit of a functor H : Z — &£ with
values in a Grothendieck topos £ can always be realized as the coequalizer
q: [[H (i) — colim(H) of the pair of arrows

el
ab: [ H(@) - [[HG)

wi—j in 7 el
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defined by:

ao Ay = K

and
bol, =kjoH(u)

(for every arrow w : i — j in Z), where Ay : H(dom(u)) — [ H(i) (for
any u:i— jinZ) and w; : H(i) — [[H(i) (for any i € I)u:;r_e)jtlfrllezcanonical
coproduct arrows. !

Given two arrows s,t : E — [[H(i), for every objects i,j € Z, we can
consider the following pullback dilgglrams:

at
E} : H{(i) E; —— H(j)

N

— [[HG)  E—— [[H()

el el

Let us also consider, for each i,j € J, the pullback square

S
Es,t 93, Es

2,7 )

qu,j lpf

J t
p;

and denote by rf; : Ef; — E the arrow pj o g ; = p; o qf’j. Notice that the
family of arrows {rf]t | 1,7 € I} is epimorphic.

We shall use these notations throughout the section.

The following lemma provides a characterization of the coequalizer of the

functor H, which will be useful to us later on.

Lemma 2.27. Let p : [[H(i) — A be an epimorphism. Then p is iso-
i€l
morphic to the canonical map q : [[H (i) — colim(H) if and only if for any
el
object E of £, any objects i,j € T and any generalized elements z : E — H (1)
and w: E — H(j), (kioz kjow) € Rg if and only if poz =pow.

Proof Asin a topos every epimorphism is the coequalizer of its kernel pair,
any two epimorphisms a : B — C and : B — D in £ are isomorphic in B/
£ if and only if their kernel pairs are isomorphic as subobjects of B x B. In
particular, p is isomorphic to ¢ if and only if the kernel pair of p is isomorphic
to R.
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The kernel pair S of p satisfies the property that for any generalized

elements s,t : E — [[H(i), (s,t) € Sg if and only if pos = pot. It thus
el
remains to prove that the following two conditions are equivalent:

(1) for any generalized elements s,¢: E — [[H(i), pos=potif and only
icl
if (s,t) € Rp;

(2) for any object E of £, any objects i, j € Z and any generalized elements
z:E — H(i)and w: E — H(j), pokjoz=pok;ow if and only if
(kioz kjow) € Rg.

It is clear that (1) implies (2). To prove the converse direction, we observe
that, as we remarked above, (s,t) € Rpg if and only if for every i,j € 7
(Kioafog; ;, K oa}oqij) € REZ_SI.;; but the latter condition is equivalent, under

assumption (2), to the requirement that for every i,j € Z, po k; o ajoqf; =

ont ot St 5 S oS st ot oot
poKjoa;oq;;, where sor; = k;joajoq;; and tor;” = kjoa;ogq;;, that
. . 57t . . . . _
is, as the family of arrows T s epimorphic, to the condition pos =pot,

as required. O

Lemma 2.28. Let B be an object of a topos £. Then an equivalence relation
i € on B can be identified with an assignment E — Rp of an equivalence
relation on the set Homg(E, B) satisfying the following properties:

(i) For any arrow f : E — E" in &, if (h,k) € R then (ho f,kof) € Rg;

(i) For any epimorphic family {e; : E; — E [i € I} in € and any arrows
fog € Homg(E,B), (foei,goe;) € Rg, for all i € I implies (f,g) €
Rg.

Proof Clearly, for any object A of C, the subobjects of A can be identified
with the Jg-closed sieves on A, or equivalently with the cj.-closed subob-
jects of the representable Homg(—A), where ¢, is the closure operation on
subobjects corresponding to the canonical Grothendieck topology Jg on £.
Applying this remark to A = B x B and noticing that the concept of equiva-
lence relation is cartesian and hence preserved and reflected by cartesian fully
faithful functors, in particular by the Yoneda embedding £ — [E°P, Set], we
immediately deduce the thesis. g

Lemma 2.28 implies that (s,t) € Rp if and only if for every i,j € 7
(ki oajoqij kjo az o q;ij) € RE;,;;; indeed, s o rf; = K; o aj oq;; and
tortt=ryoat o,

This shows that, in order to completely describe the relation R, is suffices
to consider elements of the form &; o z and kj o w, where z : E — H (i) and

w: E — H(j), and characterize when they belong to Rg.
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Lemma 2.29. Let £ be a topos, f,g: A — B arrows in £ with coequalizer
q: B — C and R — B x B the kernel pair of q. Then for any object E of £
and any elements h,k € Homg(E, B), (h,k) : E — B x B factors through
R if and only if there exists an epimorphic family {e; : E; - E [i €1} in &
such that for each i € I (hoe; koe;) belongs to the equivalence relation on
the set Homg(E;, B) generated by the set of pairs of the form (f oa,goa),
for a generalized element a : E; — A in .

Proof For any object E of £, consider the equivalence relation Rég on the
set Homg(E, B) consisting of the pairs (h, k) with the property that there
exists an epimorphic family {e; : E; — E | i € I} in € such that for each
i € I (hoe;, koe;) belongs to the equivalence relation on the set Homg(E;, B)
generated by the set of pairs of the form (foa, goa), for a generalized element
a:FE; — Ain £. The assignment F — Rgg clearly satisfies the conditions of
Lemma 2.28 and hence defines an equivalence relation on B in £. To prove
that R = R/, we argue as follows. Denoting by mi,m : R9 — B the
canonical projections, we have that for any E € £, Hom(FE, q) coequalizes
the arrows Hom/(FE,m1) and Hom(E, m2); therefore ¢ coequalizes 71 and o
in £. To prove that g is actually the coequalizer of 71 and 9 in £, we observe
that any arrow p : B — D such that pom; = pomg satisfies po f = pog and
hence, by definition of g, there exists a unique factorization of p through q.
As q is the coequalizer of Rf9 and in a topos all equivalence relations are the
kernel pairs of their coequalizers, we conclude that Rf9 = R, as required. O

Remark 2.30. Under the hypotheses of the lemma, R can be characterized
as the equivalence relation on B generated by the arrows f and g, i.e. as
the smallest equivalence relation on B containing the image of the arrow
(f,g9) : A — B x B. Indeed, clearly R contains the image of this arrow, and
if T is an equivalence relation on B containing the image of the arrow (f, g)
then the coequalizer z of T' factors through ¢ and hence the kernel pair of g,
namely R, is contained in the kernel pair of z, namely T'.

Recall that the internal language X¢ of a topos £ is the first-order signa-
ture consisting of one sort "E™ for any object E of £, one function symbol
Tf1:TA7 - "B for any arrow f: A — Bin £ in £ and a relation symbol
"R7—TA 7, ... T A, for each subobject R — A x---x A, in €. There is
a ‘tautological’ Yg-structure Sg in &, obtained by interpreting each sort as
the corresponding object, each function symbol as the corresponding arrow
and each relation symbol as the corresponding subobject.

We shall use the notation z C ' to denote a variable 2 of sort C, and
will omit the superscript when it can be unambiguously inferred from the
context.

Lemma 2.29 can be reformulated in logical terms as follows.

39



Lemma 2.31. Let £ be a topos, f,g: A — B arrows in £ with coequalizer
q: B — C and R the kernel pair of q. Let (25,2'8) € Gy g be an abbreviation
for the formula

2=2V@E)("f(x)=2ATgNx)=2") Vv (3T f(2) =2 ATgT(2)) = 2)
over Xg. Then the geometric bi-sequent

("R (y,y') A-y5 5 n\e/N(Elzl Azmzi=a Az, =2 A /\ (zi—1,2) € Gfgq))

1<i<n

18 valid in the X¢-structure Sg.

Proof The interpretation of the formula (z%,2/P) € Gy, is the sym-
metric and reflexive closure of the relation Sy, on B given by the im-
age of the arrow (f,g) : A — B x B, that is the union of the diagonal
subobject A : B — B x B of B x B, Sy, ~— B x B and the subob-
ject 70 Sy, of B x B given by the composite of Sy, with the exchange
isomorphism 7 : B x B — B x B. The interpretation of the formula

(Fz1...Fzp(z1 =Nz =2'A /\ (2i—1,2) € Gy,4)) thus coincides with
neN 1<i<n

the equivalence relation on B generated by Sy 4, that is with R (cf. Remark
2.30). O

Given a functor H : T — £ from a small category Z to a Grothendieck
topos € and an object E of £, we define ZZ as the set of pairs (i,z), where
i is an object of Z and x is a generalized element E — H(i). In the sequel
we shall occasionally identify a generalized element = : E — H (i) with its
composite x; o x with the coproduct arrow k;.

The following proposition can be established by means of arguments sim-
ilar to those employed in the proof of Lemma 2.29.

Proposition 2.32. Let H : T — & be a functor from a small category T
to a Grothendieck topos £. Then the equivalence relation R on the object
[1H (i) given by the kernel pair of the canonical arrow [[H (i) — colim(H)
il icl

satisfies the following property: for any object E of £ and any pairs (i,x)
and (i',2') in ZE, we have that (k; o x,ky o 2') € Rp if and only if there
exists an epimorphic family {ey : Ex, — E [ k € K} in £ such that for every
k € K, the pair ((i,zo0ex), (i',2' oey)) belongs to the equivalence relation on
the set Ifl’“ generated by the pairs of the form ((4,y), (7', H(f) oy)), where
f:7—=7 isan arrow in T and y is a generalized element Ey — H(j).

Proof Let us consider the pair of arrows a,b : I H@G) — [[H(®)
wi—jin T icl
defined at the beginning of section 2.7. The canonical arrow [[H(i) —
il

colim(H) is the coequalizer of a and b.
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For any object E of £, let Rg, be the relation on the set Homg(E, [[H (7))
1€l
consisting of the pairs (x,2’) with the property that for any i,j € Z there
exists an epimorphic family {e,(;’J) : E,(;’]) — B |k € K j} in € such
that for each k € K ), (v o rf’f/ o e,(:’j),x o rf’jw’ o e](;’j)) belongs to the
(4,5)

k

equivalence relation T,gw ) on the set 7 " generated by the set of pairs of

the form ((n,y),(m,H(z)oy)) (forne€Z, y: E,(:’]) — H(n)and z:n —m
in 7).

It is readily seen that the assignment E — Rp satisfies the hypotheses
of Lemma 2.28 (notice that the fibered product of two epimorphic families is
again an epimorphic family), whence it defines an equivalence relation R in

€ on the object [[H(7) such that for any generalized elements z,2’ : E —
el

[1H (@), (x,2') factors through R if and only if (z,2') € Rpg.
el

The arrow (a, b) factors through R since for every i, j € Z, (aorfj, bori’;)
belongs to the equivalence relation T,gi’j ),

By Remark 2.30, R thus contains the kernel pair of ¢q. The converse
inclusion follows from the fact that for any (x,2’) € Rg, gox = qox’; indeed,
if {el(;’j) : E,gw) — E;i" | k€ K5} in € is an epimorphic family such that

for each k € K(; ;, (:corg.”’“”, oel(f’j), zor®® oeg’j)) belongs to the equivalence

l’j Z7j
relation Tk(w) and hence we have gox o rf”f o e,(j’]) =qgoz'o rf”jx o e](;”) for
all k € K; ;), that is gox = go 2. O

Remark 2.33. The proposition could be alternatively deduced as a con-
sequence of Lemma 2.29, but the proof of such implication would be more
involved than the direct one that we have given above.

In the case of filtered indexing categories, the description of colimits given
above simplifies. We shall be concerned in particular with functors of the
form F o wp, where F' is a flat functor with values in a Grothendieck topos
and 7p is the fibration associated to a set-valued functor P.

Recall from chapter VII of [26] that a functor F': C°P — & is flat if and
only if it is filtering, i.e. the following conditions are satisfied:

(i) For any object E of £ there exists some epimorphic family {e; : E; —
E | i€ I}in € and for each index i an object b; of C and a generalized
element E; — F(b;) in &;

(ii) For any two objects ¢ and d in C and any generalized element (z,y) :
E — F(c) x F(d) in & there is an epimorphic family {e; : E; — FE | i €
I} in € and for each index i an object b; of C with arrows u; : ¢ — b;
and v; : d — b; in C and a generalized element z; : E; — F(b;) in €
such that (F(u;), F(v;)) 0 z; = (z,y) o e;;
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(iii) For any two parallel arrows u,v : d — ¢ in C and any generalized
element = : E — F(c) in & for which F(u) o z = F(v) o x, there is an
epimorphic family {e; : E; - E | ¢ € I} in £ and for each index i an
arrow wj; : ¢ — b; and a generalized element y; : E; — F(b;) such that
wiou =w;ov and F(w;)oy; =xoe;.

Notice that can suppose E' = 1¢ in condition (i) without loss of generality
and if all the arrows in the category C are monic then condition (iii) rewrites
as follows: for any two parallel arrows u,v : D — C in C, either u = v or the
equalizer of F(u) and F(v) is zero.

Proposition 2.34. Let C be a small category, £ a Grothendieck topos, P :
C — Set a functor and F : C°? — £ a flat functor. Let np : [ P — C be
the canonical projection from the category of elements of P to C°P. Then

colim(F o mp) = H F(e
(c,m)e [ P

where R is the equivalence relation in € defined by saying that, for any objects
(c,x) and (d,y) of the category [ P, the geometric bi-sequent

("RYN("E(ee) (1) "Eag) (V) Type yr
FEF@OYTF()T(E) =uATF(g)7(€) =)

Ci)agd/
P(f)(@)=P(9)(y)

18 valid in the Y¢-structure Sg.

In particular, for any objects (c,x),(c,y) of the category [ P, the geo-
metric bi-sequent

(TR ) (W), €y (@) Fr V. @EFO)CF(F)AE) = )
etral

P(f)(@)=P(f)(y)

18 valid in the Xg-structure Sg.

Proof Let II F(c) be the coproduct in € of the functor F o 7p,
(c,x)e[ P
with canonical coproduct arrows {.,) : F(c) = ][ F(c), and let T
(c,x)e[ P
be the equivalence relation on  [] F/(c) corresponding to the quotient
(c,x)e[ P

[T F(c) — colim(Forp). Then we have colim(Forp) = (  [[ F(c))/
(c,x)ef P (c,x)ef P
R, and by Lemma 2.29, the relation R is the equivalence relation on the
coproduct [I F(c) generated by the image of the arrow (a,b) where

(c,x)e[ P
s, t: 11 F(¢)—» ][I F(c) are the arrows defined above.
z:(c,x)—(dy) in [P (c,x)e[ P
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Let A, : F(c) — I F(c) be the canonical coproduct arrows
zi(c,x)—>(dy) in [P

(for each arrow z : (c,z) — (d,y) in the category [ P). Notice that for any
arrow z : (¢,z) — (d,y) in [ P thesequent T F re (Ta ("X (W), "b7("A (W) €
E(¢2),(dy) 18 valid in Sg.

The fact that the right-to-left implication of the bi-sequent in the state-
ment of the proposition holds in Sg is clear.

For any objects (c,z),(d,y) in [ P, let the expression (uF(©) pFd)) ¢
E(¢.2),(d) be an abbreviation of the formula V (BEF @YV TR(f)(E) =

ciaﬁ(i |
P(f)(z)=P(9)(y)

wATF(g)(€) = v)).

The validity of the left-to-right implication will clearly follow from Lemma
2.31 once we have shown that for any objects (¢, ), (d,y), (e,z) in [ P the
sequent

(u,0) € Eeay(dy) N (0, W) € Eay) (e,2) Tur© vP@ sree) (U, w) € Eeg) (e,2)

is valid in the Y ¢-structure Sg.

For simplicity we shall give the proof in the case & = Set, but all of our
the arguments are formalizable in the internal logic of the topos and hence
are valid in general. In fact, the lift of the proof from the set-theoretic to the
topos-theoretic setting is made possible by the following logical characteriza-
tion of flatness for a functor; specifically, the fact that a functor F : C°? — &
is flat can be expressed in terms of the validity of the following sequents in

the structure Sg:
(Try Y G )=o)
(Thprwyrm V(@O F(f)(2) =2 ATF(9)(2) = )

atscdb

for any objects a, b of C;

("E(f)(x) ="F(g9) (=) Fpr@ \% (3N (CF(R)(z) = 2))
h:a—c | hof=hog
for any pair of arrows f,g: b — a in C with common domain and codomain.

Now, given objects (¢, z), (d,y), (e,2) € [ P and elements u € F(c),v €
F(d),w € F(e), suppose that (u,v) € E4) (ay) and (v, w) € Egy) (e,2); We
want to prove that (u,w) € Ecz) (e,2)-

As (u,v) € Ecz) (dy), there exist arrows f :c - aand g:d = ain C
and an element & € F(a) such that F(f)(&) = u, F(g)(&) = v, P(f)(z) =
P(g)(y). Similarly, as (v,w) € E(g4y)(e,»), there exist arrows h : d — b and
k:e— bin C and an element x € F(b) such that F(h)(x) =v, F(k)(x) =w
and P(h)(y) = P(k) ().

Using condition (i¢) in the definition of flat functor, we obtain the exis-
tence of an object m of C, arrows r : @ - m and ¢t : b — m in C and an
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element € € F(m) such that F(r)(e) = £ and F(t)(e) = x. Now, consider
the arrows r o g,t o h : d — m; we have that F(r o g)(e) = F(t o h)(e) and
hence by condition (7i7) in the definition of flat functor there exists an arrow
s:m — nin C such that sorog=sotoh and an element o € F'(n) such
that F'(s)(«a) =e.
Consider the arrows soro f and sotok. They satisfy the necessary
conditions to ensure that (u,w) € E(cg)(ez), 1.6. F(soro f)(a) = u,
(sotok:)( ) =w, P(sorof)(x) = P(sotok)(z). Indeed, F(soro f)(a)=
NEE)EGs) (@) = FINHEF)(€) = F(FE) = u, F(sotok)(a) =
B)F()(F(s)(@)) = FR)(F()() = F(k)(x) = w and P(soro f)(z) =
sor)(P(f)(z)) = P(sor)(P(g)(y)) = P(sorog)(y) = P(sotoh)(y) =
sot)(P(h)(y)) = P(sot)(P(k)(2)) = P(s ot o k)(2), as required.
The second part of the proposition follows from the first by an easy
application of condition (7i7) in the definition of flat functor. O

A/_\A/_\

F
P
P

The following proposition represents the translation of Proposition 2.34
in the categorical language of generalized elements.

Proposition 2.35. Let C be a small category, £ a Grothendieck topos with
a separating set S, P : C — Set a functor and F : C°? — &£ a flat functor.
Let wp : [ P — C°P be the canonical projection from the category of elements
of P to C°?. Then the equivalence relation R defined by the formula

colim(F o mp) = H F(c
(c,x)e[ P

admits the following characterization: for any objects (c,z),(d,y) of [P
and generalized elements u : E — F(c), v : E — F(d) (where E € S),
((e) © U, E(ay) © V) € Rp if and only if there exists an epimorphic family
{e; : E; - E |i€ I, E; €S} and for each index i € I an object a; € C, a
generalized element h; : E; — F(b;) and two arrows f; : ¢ — a; and f! :d —
a; in C such that P(f;)(x) = P(f])(y) and (F(fi), F(f!)) o h; = (u,v) oe;.
In particular, for any objects (c,x) and (c,y) of | P and any generalized
element u: B — F(c) (where E € S), (§c.2)0u,{ay)ov) € Re if and only if
there exists an epimorphic family {e; : E; — E [i € I, E; € S} and for each
index i € I an object a; € C, a generalized element h; : E; — F(a;) and an
arrow f; : ¢ — a; in C such that P(f;)(x) = P(f!)(y) and F(f;)oh; =uoe;.

7

d

3 Extensions of flat functors

In this section, we investigate the operation on flat functors induced by a
geometric morphism of toposes. This will be relevant for the characterization
of the class of theories classified by a presheaf topos addressed in section 5.
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3.1 General extensions

Let (C,J) and (D, K) be Grothendieck sites, and v : Sh(D, K) — Sh(C, J) a
geometric morphism. This morphism induces, via Diaconescu’s equivalence,
a functor

fg : FlatK(D,E) — FlatJ(C,S),

where we write Flatz(R, ) for the category of flat Z-continuous functors
from R to £.

This functor can be described explicitly as follows. For any flat K-
continuous functor F : D — &£ with corresponding geometric morphism
fr : €& = Sh(D,K), the flat functor F := £¢(F) : C — & is given by
fhou*olc, wherele : C — Sh(C, J) is the composite of the Yoneda embedding
ye : C — [C°P, Set| with the associated sheaf functor [C°P, Set] — Sh(C, J).

For any natural transformation « : F© — G between flat functors in
Flaty (D, &), the corresponding natural transformation f,* : fr* — fg*,
applied to the functor u*ol¢, gives rise to a natural transformation & : F—G
which is precisely &¢(a).

We can express F directly in terms of F' by using a colimit construction,
as follows.

For any ¢ € C, the K-sheaf u*(I¢(c)) : D°P — Set, considered as an object
of [D°P,Set|, can be canonically expressed as a colimit of representables,
indexed over its category of elements A.; specifically, u*(l¢(c)) = colim(yp o
7c) in [D°P, Set], where 7. : A, — D is the canonical projection functor. As
the associated sheaf functor ax : [D°P, Set] — Sh(D, K') preserves colimits,
the functor u*(l¢(c)) is isomorphic in Sh(D, K) to the colimit of the functor
Ip o, Therefore F(c) = (frou*olc)(c) = fi(colim(lpom.)) = colim(f} o
Ip ome) = colim(F o).

For any (d,z) € A., we write n@%) . F(d) — F(c) for the canonical
colimit arrow.

Proposition 3.1. (i) For any natural transformation o : F — G between
flat functors F,G : D — & in Flatg (D, E), the natural transformation
a: F — G is characterized by the following condition: for any object
(d, z) of the category A, the diagram

a(c)

F(c) —=G(c)

commutes.

(i) The functor & @ Flatix(D,E) — Flat;(C,E) is natural in E; that is,
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for any geometric morphism f : F — &, the diagram

Flaty (D, &) —~ Flat,(C, )

lf*o— lf*o—

Flat(D, F) — - Flat(C, F)
commautes.
(iii) For any arrow f :c — ¢ in C and any object (d, z) in A, the diagram

F(e) 2L pe)

F
Iﬂ(d,z)T %
(du*(lc(£)(2))

F(d)

commautes.

Proof (i) The given square commutes as it is the naturality square for the
natural transformation f,* : fr* — fg* with respect to the canonical colimit
arrow yp(d) — u*(lc(c)) in [D°P, Set] corresponding to the object (d, z) of
Ae.

(7i) This follows as an immediate consequence of the fact that Dia-
conescu’s equivalences are natural in &£.

(#41) Given a natural transformation 8 : P — P’ of presheaves P and
P’ in [D°, Set], denoting by x* : [P — D and k" : [P' — D the
canonical projection functors and by /{@72) typd — P, /{5,72,) :ypd — P the
canonical colimit arrows in [D°P, Set| (for (d,z) € [P and (d',7') € [ P'),
we clearly have that g o /ﬂflz) = k‘@/’ 8(d) ()" To obtain our thesis it suffices
to apply this result to the natural transformation 8 : u*(l¢(f)) : u*(lc(c)) —
u*(lc()); indeed, by applying the functor f}. to the resulting equality we
obtain precisely the identity in the statement of the proposition. O

3.2 Extensions along embeddings of categories

Let D be a subcategory of a small category C. Then the inclusion functor
i : D — C induces a geometric morphism E(i) : [D,Set] — [C, Set] and
hence, by Diaconescu’s equivalence, a functor

£ : Flat(D, £) — Flat(CP, €) .

We can describe F' directly in terms of F as follows. For any ¢ € C, the
functor E(i)*(yc(c)) : D — Set coincides with the functor Home(c,—) :
D — Set. Its category of elements A. has as objects the pairs (d, h) where
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d is an object of D and h is an arrow h : ¢ — d in C and as arrows (d,h) —
(d',n') the arrows k : d’ — d in D such that koh’ = hin C. As f}. preserves all
small colimits and Homg¢(c, —) is the colimit in [D, Set] of the composition
of the canonical projection m, : A, — D° with the Yoneda embedding
DP — [D,Set], the object F(c) can be identified with the colimit of the
composite functor F o7, : A, — E. For any object d of D, the pair (d, 14)
defines an object of the category Ay and hence a canonical colimit arrow
xa : F(d) — F(d), also denoted by x5. For any object (d,h) of A, the
colimit arrow g : F'(d) — F(c) is equal to the composite F(h) o xg4.

Remarks 3.2. (i) The functor & : Flat(DP, &) — Flat(C°P,E) coin-
cides with the (restriction to the subcategories of flat functors) of
the left Kan extension functor [D°P,&] — [CP,&] along the inclusion
DP — C°P (cf. Remark 3.13 below).

(ii) For any object d € D the diagram

F(d) 2% G(ay

commutes (cf. Proposition 3.1(a)).

(iii) For any object d € D, the arrow xq4 : F(d) — F(d) is monic. Indeed, it
can be identified with the image of the canonical subfunctor inclusion
Homp(d,—) — Home(d,—) under the inverse image f7 of the geo-
metric morphism fp. From this, in view of Remark 3.2(a), it follows
at once that the functor & : Flat(D°P, &) — Flat(C°P, £) is faithful.

(iv) For any flat functors F,G : D°? — & and natural transformation 3 :
F — G, 8 = & for some natural transformation o : F — G if and only
it for every d € D the diagram

commutes. One direction follows from Remark 3.2(a). To prove the
other one we observe that §(c) = a(c) for all ¢ € C if and only if for
every object (a, 2) € Ae, B(c)ok(q,z) = a(c)om(&z) Now, B(c)oki(q,z) =
Ble)oF(z)oxk = G(z)oBa)oxd = G(z)ox{ oala) =k,  oala) =
a(c) o m@ 2 (where the third equality follows from the naturality of S
and the last from Proposition 3.1(a)), as required.
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(v) Let d be an object of D and ypd = Homp(—,d) : D — Set the
representable on D associated to d. Then & (ypd) = yed, where yed =
Home(—,d) is the representable on C associated to d (considered here
as an object of C). Indeed, the flat functor ypd corresponds to the
geometric morphism whose inverse image is the evaluation functor evf :
[D, Set] — Set at the object d, and the composite ev? o E(i)* coincides
with the evaluation functor e§ : [C, Set] — Set at the object d, which
corresponds to the flat functor yed.

(vi) Let € be a Grothendieck topos and v¢ : € — Set the unique ge-
ometric morphism from £ to Set. Then by Proposition 3.1(ii) and
Remark 3.2(v), for any object d of D, the functor {¢ : Flat(D?, &) —
Flat(C°P, £) sends the flat functor vz o ypd to the functor 73 o yed.

Proposition 3.3. Under the natural equivalences ec : Ind-C ~ Flat(C°?, Set)
and ep : Ind-D ~ Flat(D?,Set), the functor get corresponds to the functor
Ind-i : Ind-D — Ind-C.

Proof Let us first recall the definition of the functor Ind-i : Ind-D — Ind-C.
For any flat functor F' : C°? — Set, Ind-i(F') is the functor given by the
colimit in Ind-C of the composite functor i o wp, where mp : f F — D is the
canonical projection from the category of elements [ F of F' to D. For any
¢ € C, we thus have Ind-i(F')(c) = colim(ev.oiomp), where ev. : Ind-C — Set
is the evaluation functor at c.

Now, the functor ev. o i : D — Set is equal to the functor Home(c, —) :
D — Set considered above, and F(c) = colim(F o w.) : A. — Set, where
A, is the category of elements of ev. o ¢ and 7, : A, — D°P the associated
canonical projection. The commutativity of the tensor product between
a presheaf and a covariant set-valued functor (cf. chapter VII of [26] or
Theorem 2.5 above) thus yields a natural isomorphism between the two sets,
as required. O

Corollary 3.4. Let D — C be an embedding of small categories and F :
D — &£ a flat functor. With the above notation, for any object ¢ € C, we
have

where R, is the equivalence relation in £ defined by saying that, for any
objects (a, z),(d,2') of the category A, the geometric bi-sequent

(’_R—l(rg(a,z)_l(x)v rf(a’,z’)—l(l‘/)) _”_xF(a) ! F(al)

Ey ) CF() () =2 ATF(9)(y) = ')
abodar

foz:goz/
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is valid in the tautological Yg-structure Sg (defined in section 2.7), where
for any object (a, z) of the category Ac, {(az) : F(a) — F(c) is the canonical
colimit arrow.

In particular, for any objects (a, 2), (a, 2') of the category A., the geomet-
ric bi-sequent

(TR0 (@), Ea (@) Frprr V@O CF() () = )
fo b
18 valid in the Yg-structure Sg.

Semantically, the relation R. can be characterized by saying that, for
any objects (a,z),(d’,z") of the category A. and any generalized elements
r:E — Fla), 2’ : E = F(d), (Kaz) © %K@, © ') € Re if and only
if there exists an epimorphic family {e; : E; — E [i € I} and for each
index i € I an object b; € D, a generalized element h; : E; — F(b;) and
two arrows f; : a — b; and f] : ' — b; in D such that fl o2’ = fioz and
(F(fe), F(f})) o hi = (x,2") o €.

In particular, for any objects (a, z) and (a,z') of A. and any generalized
element x : E — F(a), (K(a,2) 0%, K(q,0T) € Re if and only if there exists an
epimorphic family {e; : E; — E [i € I} and for each index i € I an object
b; € D, a generalized element h; : E; — F(b;) and an arrow f; : a — b; in D
such that f; 02 = fioz and F(f;)oh; =z oe;.

Proof The corollary can be obtained by applying Proposition 2.34 (and its
categorical reformulation provided by Proposition 2.35) to the flat functor F' :
D°P — & and the functor P : D — Set given by ev.oi = Home(c,—) : D —
Set, whose category of elements coincides with A. and whose associated
fibration mp coincides with 7. : A, — D°P. O

3.3 Extensions from categories of set-based models to syn-
tactic categories

Let T be a geometric theory and K a small category of set-based T-models.
Then the family of geometric morphisms Set — Sh(Cr, Jr) corresponding
to the T-models in K induces a geometric morphism

pk : [K,Set] — Sh(Cr, Jr)

whose associated T-model in [IC, Set] is given, at each sort, by the corre-
sponding forgetful functor.
We thus have, for each Grothendieck topos £, an induced functor

u}r,c,g) : Flat(K°P, £) — Flat ;. (Cr, &),

which the following theorem describes explicitly.
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Before stating it, we need to introduce some notation. For any any object
{Z . ¢} of Cr, we write A’{Cf_(ﬁ} or simply Az 41 when the category K can
be obviously inferred from the context, for the category whose objects are
the pairs (M,w), where M € K and w € [[Z . ¢]]p and whose arrows
(M,w) — (N, z) are the T-model homomorphisms g : N — M in K such
that g(w) = z. We denote by Wf{%.qs} : Agz.¢y — K°P the canonical projection
functor.

Theorem 3.5. Let T be a geometric theory. Then for any flat functor F :
K°P — &, the functor F = U?K,g)(F) : Cr — & sends any object {Z . ¢}
of Ct to the colimit colim(F o W’{Cf.d)}) and acts on the arrows in the obvious
way. In particular, for any formula {Z . ¢} presenting a T-model Mz 4y in

K, u gy (FY|T . ¢}) = F(Mz.4))-

Proof Let gr : £ — [K, Set] be the geometric morphism corresponding, via
Diaconenscu’s equivalence, to the flat functor F. Then the functor u'(ﬂ;c’ £) (F)
is equal to the composite gjopi-oy, where y : Cr — Sh(Cr, Jt) is the Yoneda
embedding.

Now, for any geometric formula {Z . ¢} over ¥, px-(y({Z . ¢})) is the
functor Fyz 41 sending to any model M € K the set [[Z'. ¢]]as. This functor
can be expressed as the colimit colim(y'om(z 41 ), where y' : K — [KC, Set] is
the Yoneda embedding, since the functor 7z 4 coincides with the canonical
projection from the category of elements of the functor Fiz 4y to K.

Therefore uq(rlc’g) (F){7 . ¢}) = gp(colim(y’ o miz.4y)) = colim(gf. oy o
Tz.¢}) = colim(F o miz4y), as required. O

Remark 3.6. From the proof of the theorem, it is clear that the isomor-
phism uq(rlc,g) (F){Z . ¢}) = F(Myz.4y) is natural in {Z . ¢}; that is, for any
geometric formulae {& . ¢} and {§ . ¢} respectively presenting T-models
Mz 4 and Mgy and any T-provably functional formula 6 : {Z . ¢} —
{¥ . ¢} inducing a T-model homomorphism My : Myjy — Myz4y, the
arrow UETK £) (F)(G) is given by the image of the arrow F(My) across the

isomorphisms u, (K.8) (F){Z . ¢}) = F(Mz4) and ufy (K.,€) ({y - v}) =
F(Mg.y))-

Corollary 3.7. Let T be a geometric theory, o = (¢ Fz ) a geometric
sequent over the signature of T and F : K°? — &£ a flat functor. If o is
valid in every T-model in K then F({Z . ¢}) < F({Z . }) as subobjects of
F{Z.T}) in €&,

Proof By Theorem 3.5, we have that F({Z . ¢}) = colim(F o T{z.6})s
F({Z . v}) = colim(F o Tiz.e}) and F({Z.T}) = colim(F o Tz7))- Now,
Agz¢y and Az canonically embed as subcategories of Az 1), and if o is
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valid in every T-model in K then we have a canonical functor i : Agz 4y —
Ayz.yy which commutes with these embeddings. Tt thus follows from the

functoriality of colimits that F({Z . ¢}) < F({Z . ¥}) as subobjects of
F{Z.T})in &, as required. O

Let us now apply Proposition 2.35 in the context of extensions F — F
of flat functors induced by the geometric morphism

P [lC,Set] — Sh(C'H‘, JT) .

The following characterization is obtained by applying it in conjunction
with Proposition 4.5.

Proposition 3.8. Let T be a geometric theory over a signature 3, K a small
category of set-based T-models, £ a Grothendieck topos with a separating set
S and F : KP — & a flat functor. With the above notation, for any geometric
formula-in-context ¢(ZT) over ¥, we have

F{z. o =( [ FM)/Rigy,

(M,z)EA (7.4}

where Rz g4y is the equivalence relation in £ defined by saying that for any
objects (M, z), (N,w) of the category Az gy and any generalized elements
r:E— F(M), 2 : E— F(N) (where E € S), we have (§ar,2) © T, §(nw) ©
x') € Ryz.4y if and only if there exists an epimorphic family {e; : E; —
E /i€l E; €S} and for each index i € I a T-model a; in IC, a generalized
element h; : E; — F(a;) and two T-model homomorphisms f; : M — a; and
I+ N — a; such that fi(z) = fl(w) and (F(f;), F(f])) o h; = (x,2') oe;
(where for any object (M, z) of the category Az}, K(m,z) : F(M) — F{z.
¢}) is the canonical colimit arrow).

In particular, for any objects (M, z) and (M, w) of Az 4\ and any gener-
alized element x : £ — F(M) (where E € S), (K(u,2) 0%, K(Muw) o) € Rz}
if and only if there exists an epimorphic family {e; : E; - E [i € I, E; € S}
and for each index i € I a T-model a; in K, a generalized element h; : E; —
F(a;) and a T-model homomorphism f; : M — a; such that fi(z) = fi(w)
and F(f;)oh; =z oe;.

d

Let Mt the universal model of T in the syntactic category Cr. We can
represent the model F(Mr) as a E-indexed filtered colimit of set-based mod-
els of T. For simplicity, we shall first establish this representation in the case
of the topos of sets, and then generalize it to an arbitrary topos.

Let F : K°° — Set be a flat functor. By Theorem 3.5, for any sort A
over ¥, F(Mp)A = F({z? . T}) = colim(F o TzA T}), Where mo a1y is
the canonical projection functor Ag,a 1) — K to K from the category

o1



of elements Ag,a 1y of the functor P4 : K — Set which assigns any model
M in K to the set M A and acts accordingly on the arrows. Now, it follows
from the commutativity of the tensor product between a presheaf and a
covariant set-valued functor (cf. chapter VII of [26] or section 2.5 above) that
the colimit colim(F o my,a 1}) is isomorphic to the colimit colim(Pa o mg),
where mp : [ F — K is the canonical projection functor from the category
of elements of the functor F' to K. Since the functor F' is flat, the category
[ F is filtered. Therefore, as filtered colimits in T-mod(Set) are computed
sortwise as in Set, F'(Mr) = colim(ionr), where i : K < T-mod(Set) is the
canonical inclusion. So for any object (¢, z) of the category [ F we have a T-
model homomorphism & ) : ¢ — F(Mry), which can be expressed in terms
of the colimit arrows k(g ) : F(a) — F({z? . T}) = F(Mp)A (for y € cA
and A sort over X) as follows: for any sort A over X, §.,)A(y) = K(cy) (7).
The explicit description of filtered colimits in the category Set thus yields,
for each sort A over X, the following characterizing properties of the colimit
colim(P4 o m) in terms of the arrows & ,):

(i) For any element x of F'(Mr)A there exists an object (¢, ) of the cate-
gory [ F and an element y of cA such that §. ;) A(y) = ;

(ii) For any objects (c,z) and (¢, 2’) of the category [ F' and elements y €
cA and y' € A, we have . ;) A(y) = {2 A(Y') if and only if there
exists an object (¢”,2”) of [ F and arrows f:c— ¢’ andg:d — ¢
in K such that F(f)(z") =z, F(g)(z") = 2" and fA(y) = gA(v).

Moreover, the filteredness of the category [ F' implies the following ‘joint
embedding property’: for any objects (c,z) and (¢/,2’) of the category [ F
there exists an object (¢”,2”) of [ F and arrows f:c— ¢’ and g: ¢ — ¢’
in KC such that F(f)(z") =z, F(g)(2") = 2" and {2y 0 f = &(cz) 0 9-

Let us now proceed to establish the £-indexed generalization of this re-
sult.

Suppose that F' : K°? — £ is a flat functor, where K is a small subcat-
egory of the category T-mod(Set). By Theorem 3.5, for any sort A over
¥, we have that F(Mp)A = F({z# . T}) = colim(F o TizAT}); in partic-
ular, for any object (a,y) of the category Agza Ty we have a colimit arrow
K(ay) * Fla) — F({z* . T}) = F(Mg)A in £. More generally, for any
formula-in-context ¢(#) over X, any model ¢ in K and any element § of
[ . #]]c, we have a colimit arrow k(g : F(c) — F({Z. $}).

Proposition 3.9. Let T be a geometric theory over a signature 3, K a
small subcategory of the category T-mod(Set), € a Grothendieck topos and
F : K — & a flat functor. With the above notation, for any pair (c,x) con-
sisting of an object ¢ of K and of a generalized element x : E — F(c), there
is a Y-structure homomorphism &z @ ¢ — Homg (E, F(Mr)) defined as
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follows: for any sort A over ¥, the function { ) : cA — Homg(E, F({z? .
T})) sends any element y € cA to the generalized element Keg) o+ B —

F({zA.T}).
Proof We have to verify that:

(1) For any function symbol f: Aj,..., A, — B over ¥, the diagram
cf

CAi X -+ X cAp,
lg(c,z)Alx'"Xg(c,z)An
Homg(E,F({z* . T}) x --- x F({zA» . T}))

|

Homg(E, F({xAl, Coxfn L TY)

Home (E,F([f]))

where i is the canonical isomorphism F({zA . T}) x - x F({z? .
TY) = F({z,...,z% . T}) induced by the preservation of finite prod-

ucts by F', commutes;

(2) For any relation symbol R — Ay, ..., A, over 3, we have a commutative
diagram
cR Homg(E, F({z*,... 2" . R))
cAi X -+ X cAy Homg(E,F({:rAl,...,mA" . TH),

where the unnamed vertical arrows are the canonical ones and the lower
horizontal arrow is Homg(E, i) 0 §cp) A1 X -+ + X & 2) An-

To prove (1), we first observe that for any n-tuple ¥ = (y1,...,yn) €
cALX XA, 19(K(cy1)s -+ -5 F(eyn)) = (e Indeed, forany i € {1,...,n},
the arrow F(m;) o, where m; : {zA1,... 24 . T} — {z% . T} is the
canonical projection arrow in the syntactic category Cr, is equal to the i-
th product projection F({z* . T}) x --- x F({z? . T}) — F({z% .
T}), by Proposition 3.1(iii). Therefore, to prove the required condition it is
equivalent to verify that for any n-tuple § = (y1,...,yn) € cA1 X -+ X cAp,
ey Blef (7)) = F([f]) 0 k(e © @, where [f] : {a, ... a4 T} — {25 .
T} is the arrow in the syntactic category Cr corresponding to the function
symbol f. But §. . B(cf(¥)) = K(c,cr(i)°%, and we have that F‘([f])oﬁ(
K(c,cf(7)), @gain by Proposition 3.1(iii).

To prove (2), it suffices to observe that, by Proposition 3.1(iii), for any
n-tuple ¥ = (y1,...,Yn) € cA1 X --- X Ay in cR, K.z factors through the
canonical subobject F(R) — F({zA1,... 24 . T}).

o) —

O
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The following lemma describes some basic properties of the homomor-
phisms £ ;).

Lemma 3.10. Let T be a geomeltric theory over a signature 3, K a small
subcategory of the category T-mod(Set) and F : K — & a flat functor with
values in a Grothendieck topos £. Then

(i) For any generalized element x : E — F(c) and any arrow f :d — ¢ in
K, é(c,a:) of= g(c,F(f)oa:);

(i) For any generalized element x : E — F(c) and any arrow e : E' — E,
g(c,xoe) = Hom(e, F(MT)) o g(c,x)

Proof These properties can be easily proved by using the definition of the
arrows &, ;) in terms of the arrows k() and Proposition 3.1(iii). O
Proposition 3.11. Let T be a geometric theory over a signature 33, KC a small
subcategory of the category T-mod(Set) and F : K°P — £ a flat functor with
values in a Grothendieck topos E. Let M be the T-model F(Mr) in €. Then,
for any sort A over X, we have that

(i) For any generalized element © : E — MA there exists an epimorphic
family {e; : E; — E [i € I} in &, for each index i € I a T-model a;
in KC, a generalized element x; : E; — F(a;) and an element y; € a; A
such that &g, ) A(yi) = z 0 e;.

(i1) For any pairs (a,z) and (b,z), where a and b are T-models in K and
x: E = F(a), © : E — F(b) are generalized elements, and any
elements y € aA and y' € bA, we have that § ) A(y) = EpenAWY') if
and only if there exists an epimorphic family {e; : E; — E [i € I} in
E in € and for each index i € I a T-model ¢; in IC, arrows f; : a —
¢i, gi ' b= ¢; and a generalized element x; : E; — F(c¢;) such that
(x,2") oe; = (F(fi), F(g:)) o i for alli € I and fiA(y) = g:iA(Y').

Moreover, the following ‘joint embedding property’ holds: for any pairs
(a,z) and (b,2"), where a and b are T-models in K and x : E — F(a),
'« E — F(b) are generalized elements, there exists an epimorphic family
{e; : E; = E [iel}in& in & and for each index i € I a T-model ¢; in K,
arrows f; 1 a — ¢i, g;i : b — ¢; in K and a generalized element x; : E; — F(¢;)
such that (x, 2"y o e; = (F(fi), F(gi)) oz for alli € T and (by Lemma 3.10)
the following diagram commutes:
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E(a,z)

a Homg(E, M)
X \%
g((‘ )
c; Homg(E;, M)
/ /7@7
€,
Homg(E, M)

In fact, such family can be taken to be the pullback of the family of arrows
(F(f),F(g)): F(c) = F(a) x F(b) (for all spans (f :a — ¢, g:b— ¢) in
the category K) along the arrow (z,z') : E — F(a) x F(b).

Proof Recall from Theorem 3.5 that for any sort A over X, F(Mg)A =
colim(F o WﬁA.T}); now, WﬁA'T} is precigely the functor P4 : K — Set
sending a model N in C to the set NA.

The proposition then straightforwardly follows from Theorem 2.26, ap-
plied to the functors P4 : K — Set (with A varying among the sorts of X),
in view of Theorems 2.5 and 2.14. 0

3.4 A general adjunction

Let C be a small category and £ a Grothendieck topos. Recall from [5] that
the indexed category [C &]. is locally small, that is for any two functors

F,G : C — & there exists an object Hom[c el (F,G) of &£ satistying the

universal property that for any object F of £ the generalized elements £ —
Hom[C €] (F,G) correspond bijectively, naturally in E € C, to the natural
ie

transformations !, o F' =3, 0 G.

The following theorem establishes a general adjunction between cate-
gories of E-valued functors induced by a functor P : C — [D°P, Set].

Before stating it, we need to introduce some notation. For any object
¢ of C, we denote by [ P(c) the category of elements of the functor P(c) :
D°P — Set and by 7. : [ P(c) — D the canonical projection functor. We
denote by yp : D°° — [D,Set] the Yoneda embedding. For any functor
H : D — & and any object (d, z) of the category [ P(c), we denote by
K(d,z) : H(d) — colim(H o 7.) the canonical colimit arrow.

Theorem 3.12. Let C and D small categories, £ a Grothendieck topos and
P :C — [D°P,Set] a functor. Let (=) : [D,E] — [C,&] be the functor sending
to any functor F : D — & the functor F defined by:

for any c € C, F(c) = colim(F on.), and

for any arrow f : ¢ = &, F(f) : colim(F o m.) — colim(F o my) is
defined by the conditions F(f) o Ii{;z) = /ﬁ&P(f)(Z)) (for any object (d, z) of
the category [ P(c))
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and which acts on arrows in the obvious way.

Let (=), : [C,E] — [D,€&] be the functor assigning to any functor G :
C — & the functor Hom‘[gci]g (7§ oyp—, G), and acting on the arrows in the
obuvious way.

Then the functors

(—):[D,&] = [C,€E]

and
(=)r:[C,E] = [D, €]

are adjoint to each other ((—) on the left and (=), on the right). The unit
n:F — (F), and the counit ¢ : (G,) — G are defined as follows:

For any d € D, nF(d) : F(d) — (F).(d) is the arrow in & defined by
means of generalized elements by saying that it sends any generalized element

E — F(d), regarded as a natural transformation 72/]3 oypd =I5, 0 F, to the
image of this arrow 7§/E o ypd =% o F under the functor (:), regarded as
a generalized element E — Hom@‘E (v o y{)d, F) = (F).(d).

For any ¢ € C, €9(c) : (Gy)(c) = colim(G, o m.) — G(c) is defined
by setting, for each object (d, z) of [ P(c), “(c) o ’{(Gdfz) equal to the arrow
G, (d) — G(c) defined by means of generalized elements by saying that a gen-
eralized element © : E — G, (d), corresponding to a natural transformation
T G ovfoypd = fy;/Eoypd —!5,0G, is sent to the arrow E — G(c) obtained
by composing T(c) with the component of ’yg/E(yéd(c)) corresponding to the
element of yéd(c) given by the image of the identity on d wvia the colimit
arrow K,g(/;j) : (ypd)(d) — ypd(c).

Proof For simplicity we shall prove the result only in the case £ = Set,
the proof of the general case being entirely analogous (the only care that one
has to take is to use generalized elements in place of standard set-theoretic
elements).

We shall define a bijective correspondence between the natural trans-
formations F — G and the natural transformations F — G,, natural in
F € [D,Set] and G € [C, Set].

Given a natural transformation « : F — G, we define 7(a) : F — G
by setting, for each ¢ € C, 7o(c) : F(c) — G(c) equal to the arrow de-
fined as follows. As F(c) is the colimit of the cone {/@&2) : F(d) —
F(c) | (d,2) € [P(c)}, it suffices to define an arrow U,z : F(d) — G(c)
for each pair (d,z) where d € D and z € P(c)(d), checking that when-
ever (d,z) and (d’,2') are pairs such that for an arrow f : d — d in
D, P(c)(f)(¢") = z then uy .o F(f) = u(z); indeed, by the universal
property of the colimit, such a family of arrows will induce a unique ar-
row To(c) : F(¢) = G(c) such that 7o(c) o /{@’Z) = u(q,z) (for each (d,z)
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in [ P(c)). We set ug, : F(d) = G(c) equal to the function sending ev-
ery element x € F(d) to the element a(d)(ac)(c)(n%j)(ld)). Let us check

that the compatibility condition is satisfied. Given an arrow f : d — d’
such that P(c)(f)(2') = z, we have to verify that for every x € F(d),

a(d)(Ff(2))(e) (5%, (1a) = ald)(z)(e) (+/7%)(1)). This identity imme-
diately follows from the commutativity of the naturality diagram

a(d ~
F(d) L. G(d) = Home seq)(ypd, G)
() lGT(f)=oy73f
F(d’) o) Gr(d') = Home get) (ypd', G)

for o with respect to the arrow f and that of the diagram

~ f ~
ypd'(¢) ——ypd(c)

4 ypd
St I
d ——— ypd
Y8 @) VP

which is an instance of Proposition 3.1(i).

Indeed, a(d)(Ff(@))(0)(x5% (1)) = a(d)(@)ypf @) (5%, (1a))) =
a(d)(x)(n?:?i/)(f)) = a(d)(m)(c)(m?(%j)(ld)), where the first equality follows
from the commutativity of the first diagram, the second follows from the
commutativity of the second diagram, and the last follows from the fact that
the family {nl(/fg) | (d,z) € [ P(c)} is a cocone.

To complete the definition of 7(«), it remains to check that the assign-
ment ¢ — 7(a)(c) defines a natural transformation F' — G. We have to
verify that for any arrow f : ¢ — ¢ in C, the diagram

F(e) " (o)

iﬁm lcm
F / G(c
) @@

commutes.

As, by definition of F(f), the diagram

Fe) 2YL f(e

F
H(d,z)T /
Fa,P(£)(2))

F(d)



commutes and the arrows m@’z) are jointly epimorphic (as they are colimit
arrows), the square above commutes if and only if the arrows G(f)o7(a)(c)o
m@’z) and 7(a)(c') o n@f(f)(z)) are equal, that is if and only if they take the
same values at any element « € F(d). Let us set 2/ = P(f)(d)(z). By defini-
tion of (a), 7(0) () (5%, () = (@) () (@) L3 (14)), while T(@)(e) (6F 1 () =

a(d)(z)(d)(k ?fj)(ld)). Now, for any d € D and any z € F(d), a(d)(z) is a

natural transformation yd — G, in particular, the diagram

yi(c) G(o
i?fd(f) lG(f)
() G(©)

F
R(a,P(£)(2))

cominutes.
The commutativity of this diagram, together with that of the diagram

y(c) 2L g

(which follows by the definition of yd(f)) now immediately implies our thesis.

Let us now define a function y assigning to any natural transformation
B : F — G a natural transformation x(8) : F — G,. For any d € D, we
define x(5)(d) : F(d) — Gr(d) by setting, for each z € F(d), x(8)(z) equal
to the natural transformation 8 o dy : yd — G, where ay : yd — F is the
natural transformation corresponding, via the Yoneda lemma, to the element
x € F(c).

To verify that x(5) is well-defined, we have to check that for every arrow
g :d — d in D, the diagram

commutes, i.e. for every z € F(d), G-(9)(x(8)(d)(x)) = x(8)(d")(F(g)(x)).
Now, G (9)(x(B)(d)(z)) = Boaoyg, while x(8)(d')(F(g)(x)) = Boap(g)(a);

but ap(g)(z) = @z © Yypg, from which our thesis follows.
The proof of the fact that the correspondences 7 and 5 are natural in F
and G is straightforward and left to the reader.
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To conclude the proof of the theorem, it thus remains to show that 7 and
x are inverse to each other. The verification of the fact that the unit and
counit of the adjunction coincide with those given in the statement of the
theorem is straightforward and left to the reader.

Let us show that for any natural transformation o : F' — G,, x(7(«)) =
a. Let us set § = 7(«). We have to prove that for any d € D, z € F(d)
and z € P(c)(d"), a(d)(x)(c) o ,aggd) = x(B)(d)(z)(c) o H@d) as functions

ypd(d') — G(c), i.e. that for any element g € ypd(d'), (d)(m)(c)(/f?(’;’,i) (9)) =

(x(B)(d)(z)(c) o n?(f;dz))(g). Now, by definition of the functor (;) and of the
correspondence 7, the diagram

dz(c) B(c)

ypd(e) === F(e) = G(c)
| | AL
ypd(d') —= F(d)

az(d)

commutes, and since x(8)(z) = Bod, : ypd — G, we have that (x(8)(d)(z)(c)o
K24 ) () is equal to a(d)(F(g)(@))(e) (k5% (1a)).

Now, the naturality diagram for o with respect to the arrow g : d — d’
yields the equality a(d)(z) o ypg = a(d’)(Fg(z)) and hence the equality
o d)(@)(e) 0 ypg(c) o WIEY = ad)(Fy(x))(c) o 2L,

But the commutativity of the diagram

~ “d(a)(e) ~
yod () P22y pd (e
Hde/ T Tnde
(d’,z) (d,z)

(which follows by definition of the functor (—)) implies that a(d)(x)(c) o

ypd'

ypy(c )OH(d, ) = a(d)(x)(c)o;g(d, 2)°YDY- Therefore oz(d)(x)(c)ori(d, 2)°UDg =
a(d)(Fg(x))(c) o i d,dl) and evaluating at 14 yields the desired equality.
Finally, let us show that the composite 7 o x is equal to the identity.
Let 8 : F — G be a natural transformation. We have to show that 8 =
T(x(B)). Let us set & = x(5). To prove that 5 = 7(«) it is equivalent
to verify that for every object ¢ € C, any pair (d,z) with d € D and z €
z)

P(c)(d) and any element z € F(d), 8(c)(xE Kd, () = 1(a)(c)(k @2)@))
But 7(a)(¢) (k) (@) = a(d)(@)(e)(x{75(1a)) = X(B)(x)(c)(x{F2)(1a)) =

)(c
(80 dp)(e) (k{52 (1a)) = Ble)((d2)(c)(x 355 (14))). Thus our thesis follows
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from the commutativity of the diagram

- dx(c) =
ypd(c) — F(c)
ypd T TKF
K(d,z) (d,2)
az(d)

yd(d) —— F(d),

which is an immediate consequence of the definition of the functor (—).

g

Remarks 3.13. (a) Let f : D — C be a functor between two small cate-

gories, and let P : C — [D°P,Set] be the functor ye(—) o f°P. Notice
that P is the flat functor corresponding, via Diaconescu’s equivalence,
to the essential geometric morphism [D°P, Set] — [C°P, Set] induced by
the functor f°P : D°P — C°P. The functor (—) : [D,€&] — [C,€&] coin-
cides with the left Kan extension functor along f, while the right adjoint
functor (—), coincides with the functor —o f : [C,&] — [D, &].

Let uw : Sh(D, K) — Sh(C, J) be a geometric morphism. Then for any
Grothendieck topos &, u induces as in section 3 a functor

fg : FlatK(D,S) — FlatJ(C,é’) .

By Diaconescu’s equivalence, the morphism u corresponds to a flat func-
tor C — Sh(D, K), which composed with the canonical geometric inclu-
sion Sh(D, K) — [DP, Set| yields a functor P : C — [D°P, Set]. Then
& coincides with the restriction of the functor (—) : [D,&] — [C, €] in-
duced by P as in the theorem to the full subcategories Flatx (D, &) —
[D, €] and Flat;(C,€) — [C,€]. In general, the right adjoint functor
(=)r : [C,E] — [D,&] does not restrict to these subcategories, but if
it does, it becomes a right adjoint to the functor ¢ : Flatx(D,€) —
FlatJ(C7 5)

This notably applies in the case of the geometric morphism
px : [K,Set] — Sh(Cr, Jr)

considered in section 3.3. In this case, C = Cr, D = K° and P is the
functor Cr — [K, Set] sending any geometric formula ¢(Z) to the functor
M — [[Z. ¢]]n-

By a basic property of adjoint functors, the (left adjoint) functor
(=):[D,&] = [C. €]

is full and faithful if and only if the unit ¥ : F — (F), is an isomorphism
for any F in [D,&]. It easily follows (by purely formal considerations)
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that for every full subcategory H of [D,£] with canonical embedding
i : H = [D,£&], the composite functor (—) o is full and faithful if and
only if the unit " : F — (F'), is an isomorphism for any F in H.

The following proposition will be useful in the sequel; see section 2.2 for
the notation employed in it.

Proposition 3.14. Let f : D — C be a functor between small categories, £
a Grothendieck topos and F o functor C°P — €. Then the E-indezed functor
[(Fo f"p); — fF; sending any object (c,z) of [(F o f°P)g to the object
(f(c),z) of ([ F)E is E-final if and only if the E-indexed functor fng :
[(F o~f"1’); — fF; induced by the natural transformation € : Fo f — F
of Theorem 8.12 is E-final.

Proof From the general analysis of section 3.1 we know that for any ¢ € C,
Fo for(c) = colim(F o f° o ), where m, is the canonical projection to
D°P from the category A. whose objects are the pairs (d,h), where d is
an object of the category D and h is an arrow ¢ — f(d) in C, and whose
arrows are the obvious ones. The arrow e : Fo f — F is defined by
the property that for any object (d,h) of A., €7'(c) o ""él,h) = F(h), where
’f@,h) : F(f(d)) — colim(F o f°P o .. is the canonical colimit arrow.

Now, the thesis follows immediately from the fact that for any object of
the category [(F oNfOP)E of the form (c, /f&h) oy), where y is a generalized
element E — F(f(d)), ([)r((c, /f&h) oy)) = (¢, F(h) oy), invoking the
fact that the colimit arrows are jointly epimorphic. O

4 Preliminary results on theories of presheaf type

In this section we establish some results on theories of presheaf type which
will be important in the sequel.

4.1 A syntactic description of finitely presentable models

For a theory of presheaf type T, it is possible to give an explicit syntactic
description of the finitely presentable T-models; specifically, we have the
following result.

Theorem 4.1. Let T be a theory of presheaf type over a signature ¥ and
{Z . ¢} be a formula over ¥ presenting a T-model Uiz.gy- Then Uz gy is
isomorphic to the 3-structure Mz 4y defined as follows:

(i) for any sort A over ¥, Mz 41 A is equal to the set Home, ({7 . ¢}, {z4 .
TY) of T-provably functional geometric formulae from {Z . ¢} to {4 .
T}
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(ii) for any function symbol f : Ay,..., A, — B over X, the function
Mz gy f « Home, ({Z . ¢}, {aM . T}) x - x Home,({T . ¢}, {a?n .
T}) = HomCT({f . ¢}7{xA17"-7xAn : T}> - HomC'ﬂ‘({f : ¢}7{mB :
TY) is equal to [f] o — (where [f] : {1, . 24 . T} — {2B . T} is
the morphism in Ct corresponding to f);

(i%) for any relation symbol R ~— Ay,..., An, Mz 4 R is the subobject of
Home, ({Z . ¢}, {4 . T}) x --- x Home, ({& . ¢}, {zAn . T}) =
Home,({Z . ¢}, {o, ...,z . T}) given by [R] o —, (where [R] :
{zM, xRy — {aM . 24 . TV is the subobject in Cy corre-
sponding to R).

Proof Recall that we have a canonical equivalence of categories
Flat ;. (Ct, Set) ~ T-mod(Set),

sending any flat Jy-continuous functor F' : Ct — Set to the T-model F'(Mr),
where Mt is the universal model of T in Cr.

We know from [8] that for any theory of presheaf type T over a signature
Y., any formula-in-context {Z . ¢} over X which presents a T-model is T-
irreducible, in the sense that every Jr-covering sieve on {Z . ¢} in Cr is
maximal. From this it easily follows that the (flat) representable functor
Home,({Z . ¢}, —) : Cr — Set is Jy-continuous; indeed, for any Jp-covering
sieve S on an object {¢ . ¥} of Cr, any arrow v : {Z . ¢} — {¢ . ¥} in Cp
factors through one of the arrows belonging to S as the pullback of S along
7 is Jp-covering and hence maximal. The image Home, ({Z . ¢}, Mt) under
this functor of the model My, which clearly coincides with the -structure
M¢z.4) in the statement of the theorem, is therefore a T-model. In order to
deduce our thesis, it thus remains to verify that the model Mz 4, satisfies
the universal property of the T-model presented by the formula {Z . ¢},
Le. that for any T-model N in Set, the T-model homomorphisms Mz 4, =
Home,({Z . ¢}, MT) — N are in natural bijection with the elements of the
set [[Z . ¢]]n. But the T-model homomorphisms Home,({Z . ¢}, M) — N,
are in natural bijection, by the equivalence Flat ;. (Cr, Set) ~ T-mod(Set),
with the natural transformations Home, ({Z . ¢}, —) — Fi, that is, by the
Yoneda lemma, with the elements of the set Fx({Z . ¢}) = [[Z . ¢]]n, as
required. O

Remarks 4.2. (a) If T is a universal Horn theory (in the sense of [3])
and ¢(Z) is a finite conjunction of atomic formulas in a context & =
(zA41,...,24) then the set Mz 4yA can be identified with the set of
equivalence classes of terms over 3 of type Aq,..., A, — A modulo the
equivalence relation which identifies two terms t¢; and to precisely when
the sequent (¢ Fz t1 = t2) is provable in T. Indeed, it is shown in [3] (cf.
p. 120 therein) that any T-provably functional geometric formula 0(Z, %)
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between Horn formulae over ¥ is T-provably equivalent to a formula of
the form ¢ = f(f), where ¢ is a sequence of terms of the appropriate sorts
in the context .

(b) Let T be a geometric theory over a signature X, K a small category of
set-based T-models and ¢(Z) a geometric formula over ¥ presenting a
T-model in K. If the geometric morphism

p: [K,Set] — Sh(Cr, Jr)

has the property that its inverse image p* is full and faithful (for instance,
if p is hyperconnected) then ¢(Z) is T-irreducible and the argument in
the proof of Theorem 4.1 applies yielding a syntactic description of the
model presented by ¢(Z) as specified in the statement of the theorem.
Indeed, denoted by y and ¢y’ the Yoneda embeddings respectively of Cr
into Sh(Cr, Jr) and of K° into [K, Set], we have that p*(y{Z . ¢}) =
Y (Myzg4)). Now, as y'(Mz4)) is an irreducible object in the topos
[IC,Set| and the property of an object of a topos to be irreducible is
reflected by full and faithful inverse images of geometric morphisms,
y{Z . ¢} is an irreducible object of the topos Sh(Cr, Jr), equivalently
¢(Z) is T-irreducible, as required.

4.2 Objects of homomorphisms

For any first-order signature > and any Grothendieck topos &£, we have a
E-indexed category Y-str(€) whose fibre at E € £ is the category Y-str(E)
and whose ‘change of base’ functors are the obvious pullback functors. For
any sort A over 3, we have a £-indexed forgetful functor Uy : ¥-str(€) — E¢
assigning to any X-structure M in the topos £/E the object M A. 1t is easy
to see, by adapting the classical proof in the case £ = Set and exploiting
Theorem 2.12, that the £-indexed functors Uy jointly create colimits of &£-
indexed diagrams defined on &£-final and E-filtered subcategories Ag of a
small &£-indexed category. Indeed, the notion of Y-structure only involves
finite set-indexed limits, and, as we have remarked above, the colimit functor
colimg : [Ag,Eg] — E¢ preserves them. Moreover, the structure used in
interpreting geometric formulae over Y is all derived from set-indexed finite
limits and arbitrary colimits, which are both preserved by colimg (the fact
that colimits commute with colimits is obvious, while the commutation with
finite limits has been observed above). This implies that for any geometric
theory T over 3, the &£-indexed full subcategory T-mod(E) of X-str(€) is
closed in X-str(€) under E-indexed colimits of diagrams defined on E-final
and E-filtered subcategories Ag of a small £-indexed category.

The following result asserts that the indexed category of models of a
geometric theory in a Grothendieck topos is locally small.
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Theorem 4.3. Let T be a geometric theory. Then for any T-models M and
N in a Grothendieck topos £ there exists an object Homg]._mod(g)(M, N) of

E, called the ‘object of T-model homomorphisms from M to N°, satisfying
the universal property that for any object E of £ the generalized elements
EF— Hom%_mod(g)(M, N) are in bijective correspondence, naturally in E €

&, with the T-model homomorphisms 15,(M) =5 (N) in T-mod(E/E).

Proof We recall from [5] that for any small category C and any Grothendieck
topos &, for any two functors F, G : C — £ there exists an object Hom?® (F, Q)
satisfying the property that for any object E of £ the generalized elements
E — Homf(F,G) are in bijective correspondence, naturally in £ € &, with
the arrows |0 F" —=!3,0G in [C, £/ E], that is with the natural transformations
o F =%, 0G. This implies that for any Grothendieck topos £ the indexed
category [C, £] . of functors on C with values in £ and natural transformations
between them is locally small. Clearly, it follows at once that any £-indexed
full subcategory of [C,&]_, such as for example the indexed category of J-
continuous flat functors on C with values in &, is also locally small.

Now, every geometric theory T is Morita-equivalent to the theory of flat
Jr-continuous functors Cr (cf. [21]); in other words, the £-indexed category
T-mod(€) is equivalent to the £-indexed category of flat Jp-continuous func-
tors on Ct with values in £. Hence T-mod(€) is locally small, as required. O

Remarks 4.4. (a) The assignment (M,N) — Hom%_mod(g)(lw7 N) is func-
torial both in M and N; that is, any homomorphism f : M — M’ in
T-mod (&) (resp. any homomorphism g : N' — N in T-mod(€)) induces
an arrow

Hom%—mod(é') (f7 N) : Hom%—mod(n‘f) (Ml? N) - Hom%—mod(g) (M7 N)

(resp. an arrow

Hom5 noq(ey(M. 9) : Homf oq(ey (M, N') = Homs oq(ey (M, N)

functorially in f (resp. functorially in g).

(b) For any Grothendieck topos £ and T-models M and N in &, we have a
canonical embedding

Hom{ poqey(M,N) =[] NAMA
A sort of 2

induced by arrows

TA Hom%_mod(g)(M, N) — NAMA
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(for any sort A of ) defined in terms of generalized elements as follows:
mA sends any arrow F — Hom%_mod(g)(M, N) in &, corresponding to

a T-model homomorphism 7 :I%,(M) =L M in £/E, to the arrow £ —
NAMA whose transpose is the ‘evaluation’ I, (M A) =15 (NA) at A of
T.

(¢) For any T-models M and N in a Grothendieck topos € and any geometric
morphism f : F — &, there is a canonical arrow

f*(Hom%_mod(g)(M, N)) — Hom%:_mod(]:)(f*(M)a f5(N)) .

Indeed, this arrow corresponds, by the universal property of the object
HomTf_mOd(}-)(f*(M), f*(N)) to the T-model homomorphism

P (HOMS, o) (M, N)) X f*(M) = f*(HomEpyoq(ey (M, N)) x f*(N) .
in the topos f/(f*(HomJTT_mod(g)(M, N))) whose first component, at any

sort A, is the canonical projection and whose second component at A is
the arrow

£ (Hom& poaey (M, N) X f*(MA) = £*(Hom& a6y (M, N)x MA) — f*(NA) .

obtained by taking the image under f* of the arrow

Hom§ poq(ey (M, N) x MA — NA

given by the transpose of the arrow 74 : Hom%_mod(g) (M,N) = NAMA
defined above.

(d) Since the &-indexed category T-mod (&) is locally small (cf. the proof of
Theorem 4.3), we have a £-indexed hom functor

Hom_oq(e)(— =) : T-mod(€) x T-mod(€) — &

The following proposition provides an explicit description of the gener-
alized elements of the objects of homomorphism of Theorem 4.3 in a par-
ticular case of interest. In the statement of the proposition, for a T-model
M in a Grothendieck topos £, we denote by Homg(E, M) the ¥-structure
in Set obtained as the image of M under the product-preserving functor
Homg(E,—) : £ — Set.

Proposition 4.5. Let T be a geometric theory over a signature 3, M a model
of T in a Grothendieck topos &€, ¢ a set-based T-model and E an object of £.
Then the generalized elements x : E — Hom%_mod(g) (v£(c), M) correspond

bijectively to the X-structure homomorphisms &, : ¢ — Homg(E, M).
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Proof By definition of Hom§ A (E) (vé(c), M), a generalized element

E — Hom%_modm(g) (v&(c), M) corresponds precisely to a T-model homo-

*

morphism vz p(c) =!(M) in the topos £/E. Concretely, such a T-model
homomorphism consists of a family of arros 74 : ’y;/E(CA) =15 (MA) in
E/E indexed by the sorts A over ¥ which satisfies the preservation con-
ditions defining the notion of Y-structure homomorphism. Now, each of
the arrows 74 : 7§/E(CA) —1%.(MA) corresponds, via the adjunction be-
tween 'V;E/E and the global section functor on the topos £/F, to a func-
tion {4 : cA — Homg(E, MA), and it is immediate to see that the above-
mentioned preservation conditions translate precisely into the requirement
that the arrows £4 : cA — Homg(E, M) should yield a X-structure homo-
morphism ¢ — Homg(c, M). O

Remark 4.6. If the model c is finitely presentable also as a T.-model, where
T. is the cartesianization of T as defined in section 6.4 (notice that this is
always the case if X is finite and T has only a finite number of axioms,
cf. Theorem 6.4 [6]) then, if ¢(Z) is a formula over ¥ which presents it,
the X-structure homomorphisms ¢ — Homg(E, M) can be identified with
the elements of the interpretation of the formula ¢(Z) in the -structure
H omeg (E y M )

4.3 Strong finite presentability

We shall show in this section that the finitely presentable models of a theory
T of presheaf type enjoy a strong form of finite presentability by a geometric
formula with respect to the models of T in arbitrary Grothendieck toposes.
Let T be a geometric theory over a signature X, ¢ a set-based model of
T, ¢(Z) a geometric formula over ¥ and @ an element of [[Z . ¢]].. Then for
any model M of T in a Grothendieck topos £ there is a canonical arrow

7_(1]5\(45),11‘ : Hom%‘—mod(é’)(’y;(c)a M) — [[:Z: . qb]]M
in £, defined on generalized elements as follows: T(%E) z sends a generalized
element
E— Hom%—mod(&') (ve(e), M),

corresponding under the bijection of Proposition 4.5 to a X-structure ho-
momorphism f : ¢ = Homg(E, M), to the image of @ under f; notice
that such element indeed belongs to Home(E,[[Z . ¢]|a) since, as f is a
Y-structure homomorphism, the image of [[Z . ¢]]. under f is contained
in [[Z . @]l Home (,a), Which is contained in Home(E,[[Z . ¢]]ar) since the
functor Homg(E, —) is cartesian.
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Definition 4.7. Let T be a geometric theory over a signature X, and ¢ a
model of T in Set. The T-model ¢ is said to be strongly finitely presented if
there exists a geometric formula ¢(&) over ¥ and a finite string of elements
@ of [[Z . @], called the strong generators of ¢, such that for any T-model
M in a Grothendieck topos £ the arrow

£

S - Homb moare) (V6 (Myz.gy), M) = [[Z . ¢]]mr

To(
is an isomorphism (equivalently, the X-structure homomorphisms £ : ¢ —
Homg(FE, M) are in natural bijection with the generalized elements E —
[[Z . ¢]]p via the assignment £ — £()).

Remark 4.8. If the latter condition in the definition is satisfied by all models
M of T inside Grothendieck toposes for ¥ = 1¢ then it is true in general, by
the localization principle.

Theorem 4.9. Let T be a theory of presheaf type classified by the topos
[, Set], where K is a small subcategory of T-mod(Set), M a T-model in a
Grothendieck topos € and ¢ a T-model in JC. Then there is a natural bijective
correspondence between the X-structure homomorphisms ¢ — Homg(E, M)
and the elements of the set Homg(E, Fyrc), where Fyy is the flat functor
K — & corresponding to the model M via the canonical Morita-equivalence
for T.

Proof We can clearly suppose without loss of generality £ = 1g. The
adjunction between ¢ and the global sections functor I'e : £ — Set pro-
vides a natural bijective correspondence between the elements of the set
Homg(E, Fye) and the natural transformations 7§ o yc — Fy. By the
canonical Morita-equivalence

7¢ : Flat(K°P, £) ~ T-mod(&),

for T, such natural transformations are in natural bijective correspondence
with the T-model homomorphisms vg(c) = 7(vg o yc) = 7(Fu) = M. But
these homomorphisms are, by Proposition 4.5, in natural bijective correspon-
dence with the X-structure homomorphisms ¢ — Homg(1g, M), as required.

O

Corollary 4.10. Let T be a theory of presheaf type and ¢(Z) a formula
presenting a T-model Mz 41. Then Mz 4\ is strongly finitely presented by
o(%), i.e. for any T-model M in a Grothendieck topos £ and any object E
of &, the Y-structure homomorphisms Mz 4, — Homg(E, M) correspond
bijectively to the elements of the set Homg(E, [[Z . ¢]|a), via the assignment
sending a X-structure homomorphism Mz o — Homg(E, M) to the image
under it of the generators of Mz 4}
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Proof Clearly, we can suppose without loss of generality £ = 1¢.
By the results of [5], the canonical Morita-equivalence

Flat(f.p.T-mod(Set)°?, £) ~ T-mod (&)

for T can be described as the correspondence sending, on one hand, to any
T-model M the flat functor Fiy := Homp.meq(e)(75(c), M) and conversely

to any flat functor F : fp.T-mod(Set)® — &£ the model F(Mr), where
F : Cr — & is the extension of F to the syntactic category Cr (in the sense of
section 3.3). By Theorem 3.5, for any T-model M in a Grothendieck topos &,
there is an isomorphism 2(MAz.0)) FM(M{i.‘¢}) =2 Fy({@. o)) =1Z. 9l|lm-
Thus, applying Theorem 4.9 to the model ¢ = Myz4), we obtain a bi-
jective correspondence between the X-structure homomorphisms Mz 41 —
Homg(1g, M) and the elements of the set Homg(1g, [[Z . ¢]]ar). It remains
to show that this correspondence can be identified with the assignment send-
ing a Y-structure homomorphism Mz 4, — Homg(lg, M) to the image un-
der it of the generators of Mz 41. Recall that the bijection of Theorem 4.9
can be described as follows: any X-structure homomorphism f : Mz 4 —
Homg(1g, M), corresponding to a T-model homomorphism ~vg(Mz ) —
M, and hence, via the canomnical Morita-equivalence for T, to a natural
transformation vg o yM(z 4y = FVE(M{M}) — Fyy (where y is the Yoneda
embedding f.p.T-mod(Set)’® — [f.p.T-mod(Set), Set]), is sent to the global
element of Fy(M{z4y) corresponding via the Yoneda lemma to this trans-
formation. To deduce our thesis, it thus remains to verify that the canonical
isomorphism of functors vz o yMz 41 = 7z © Frgz gy = FVE(M{f.¢})’ when
evaluated in Mz 41 and composed with the isomorphism 2y (Mz ) A7-0})
Fyp Mgz p) Mizoy) = (7 - Ol gy = %(E - 0y, ) sends the co-
product component of Vg (y Mz 4} (Mz.4))) corresponding to the identity on
Miz.4y to the coproduct component of vi([[Z . ¢]]a,,,) corresponding to
the generators of Mz 4. By the naturality in £ of the Morita-equivalence
for T we can clearly suppose, without loss of generality, £ equal to Set.
But from the proof of Theorem 4.1, it is clear that the generators of Mz 4,
correspond to the identity on {Z . ¢}) via the Yoneda lemma; hence they
correspond to the identity on Mz 41 via the above-mentioned bijection, as
required.

Remark 4.11. We can express the bijective correspondence of Corollary
4.10 by saying that for any Grothendieck topos & the £-indexed functor
[[Z. ¢]]- : T-mod(€) — £¢ assigning to any T-model M the interpretation
of ¢() in M is represented as a E-indexed functor by the object vi(Mz .4} ),
in the sense of being naturally isomorphic to the &-representable functor

HOW@(%(M{@@), -)-

g
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4.4 Semantic £-finite presentability

In this section, we introduce a semantic notion of E-finite presentability
of a model M of a geometric theory T in a Grothendieck topos £, which
generalizes the classical notion in the context of finitely accessible categories,
and show that all the ‘constant’ finitely presentable models of a theory of
presheaf type in a Grothendieck topos £ are E-finitely presentable.

For any Grothendieck topos £, we can make any small category C into
a &-indexed category Cg defined by: Cp = C for all E € £ and C, = 1¢
for all arrows « in €. To any (set-indexed) diagram D : C — & corre-
sponds a &-indexed functor Dg : C¢ — £ defined by: for any object E of
E, DgE =%, 0 D, where !}, : £ — £/E is the pullback functor along the
unique arrow E — 1g in €. Since the pullback functors preserve all small
limits and colimits, giving a colimiting cocone (resp. a limiting cone) on the
diagram D in the classical sense is equivalent to giving a £-indexed colim-
iting cocone (resp. limiting cone) over the £-indexed diagram Dg. Since
the &£-indexed category E¢ is complete, for any E-indexed category Ag, the
E-indexed functor category [Ag, E¢] is also complete (since limits are com-
puted pointwise); in particular, it has limits of diagrams defined on £-indexed
categories of the form Cg. On the other hand, if Ag is a £-final E-filtered
subcategory of a small £-indexed category, the cocompleteness of £¢ as a &-
indexed category ensures that there exists a well-defined £-indexed colimit
functor colimg : [Ag,E¢] — E¢. 1t is easy to see, by mimicking the classical
proof of the fact that finite limits commute with filtered colimits, that this
functor preserves limits of diagrams defined on &-indexed categories of the
form C¢ for a finite category C.

Definition 4.12. Let T be a geometric theory and M be a model of T
in a Grothendieck topos £ Then M is said to be E-finitely presentable if
the &£-indexed functor Hom%_mod(g) (M,—) : T-mod(€) — E¢ of section 4.2

preserves E-filtered colimits (of £-final and E-filtered subcategories of a small
E-indexed category).

Theorem 4.13. Let T be a theory of presheaf type and c a finitely presentable
T-model. Then for any Grothendieck topos £, the T-model v¢(c) is E-finitely
presentable.

Proof If c¢ is presented by a geometric formula ¢(&) over the signature
3 of T, by Corollary 4.10, the functor Hom%_mod(g)(’yg(c),M) is naturally
isomorphic to the functor [[Z . ¢]]— : T-mod(€) — &¢.

This latter functor preserves E-filtered colimits (of £-final and E-filtered
subcategories of a small £-indexed category) since the structure used in in-
terpreting geometric formulae over ¥ is all derived from set-indexed finite
limits and arbitrary colimits, which, as remarked above, are all preserved by
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E-indexed functors of the form colimg : [Ag, E¢] — E¢ where Ag is a E-final
E-filtered subcategory of a small £-indexed category. O

Remarks 4.14. (a) The proof of the theorem shows that, more generally,
for any strongly finitely presentable model ¢ of a geometric theory T
in the sense of Definition 4.7 (for instance, a finite model of T if the
signature of T is finite - note that such a model is finitely presented
with respect to the empty theory over the signature of T by Theorem
6.4 [6]) and any Grothendieck topos &, the T-model v5(c) is E-finitely
presentable.

(b) We could have more strongly required in Definition 4.12 the preserva-
tion of all existing colimits of diagrams defined on &-filtered £-indexed
categories, in the sense of Definition 2.1. The theorem remains true with
respect to this stronger notion, but a smallness condition for the domain
category, such as the requirement for it to be a £-final and E-filtered
&-indexed subcategory of a small £-indexed category, is necessary to
dispose of the explicit characterization of filtered colimits provided by
Corollary 2.24.

The following proposition provides an explicit characterization of the &-
finitely presentable models of a geometric theory T.

Proposition 4.15. Let T be a geometric theory, £ a Grothendieck topos
and ¢ a T-model in £. Then c is E-finitely presentable if and only if for
every E-indexved diagram D : Age — T-mod(E) defined on a E-filtered E-
final subcategory Ag of a small E-indexed category with E-indexed colimiting
cocone (M, 1) (we denote by jpy) : Dp(x) —!5(M) the colimit arrows),
the following conditions are verified:

(a) For any object E of £ and T-model homomorphism h :;(c) =5 (M) in
the topos £/ E there exists an epimorphic family {e; : E; — E [i € I} in
E and for each i € I an object x; of Ag, and a T-model homomorphism
;i g (¢) = Dg,(z;) in the topos E/E; such that for all i € I, g, 4, ©

a; = e;(h);

(b) For any pairs (x,y) and (z',y’), where x and x’ are objects of Ap, [ is an
arrow F'— E in &, y is a T-model homomorphism '5.(c) — f*(Dg(x))
inE/F and y' is a T-model homomorphism 5,(c) — f*(Dg(2')) in E/F,
we have f*(up(z)) oy = f*(up(x)) oy’ if and only if there exists an
epimorphic family {f; : F; — F [i € I} in € and for each i € I arrows
Gi : Apog,(x) = 2z and hy : Agop, (') — 2 in the category A, such that
Dr,(gi) o fi(y) = Dr,(hi) o fi(y').

Proof The proposition follows as an an immediate consequence of Corollary
2.24, applied to the composite £-indexed functor Hom%_mod(g) (c,—)oD. O
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Remark 4.16. By the construction of (small) &-indexed colimits in the
E-indexed category T-mod(€), a E-indexed cocone (M, u) over a diagram
D : A — T-mod(€) as in the statement of the proposition is colimiting
if and only if for every sort A over the signature of T, UA((M,u)) is a
colimiting cocone over the diagram Ujg o D in £g.

5 Semantic criteria for a theory to be of presheaf
type

In this section we establish our main characterization theorem providing
necessary and sufficient conditions for a geometric theory to be of presheaf
type. These conditions are entirely expressed in terms of the models of the
theory in arbitrary Grothendieck toposes.

We shall first prove the theorem and then proceed to reformulate its
conditions in more concrete terms so for them to be directly applicable in
practice.

5.1 The characterization theorem

Recall from [5] that the classifying topos of a theory of presheaf type T can
be canonically represented as the topos [f.p.T-mod(Set), Set] of set-valued
functors on the category f.p.T-mod(Set) of finitely presentable T-models in
Set. This is not the only possible representation of the classifying topos of
T as a presheaf topos, but for any small category IC, T is classified by the
topos [KC, Set] if and only if the Cauchy-completion of K is equivalent to
f.p.T-mod(Set).

Theorem 5.1. Let T be a geometric theory over a signature % and let K
be a full subcategory of f.p.T-mod(Set). Then T is a theory of presheaf type
classified by the topos [IC,Set] if and only if all of the following conditions
are satisfied:

(i) For any T-model M in a Grothendieck topos £, the functor Hys :=
HO’”M(’Y;(—),M) 1 K — & is flat;

(ii) The extension Hyr : Cr — & of the functor Hyr : K7 — & to the
syntactic category Ct (in the sense of section 3.8) satisfies the property
that the canonical morphism Hy(Mt) — M is an isomorphism;

(11i) Any of the following conditions (equivalent, under assumptions (i) and
(ii)) is satisfied:

(a) For any model ¢ in KC, T-model M in a Grothendieck topos £ and
geometric morphism f : F — &, the canonical morphism

f*<H0m%-mod(€) (ve(e), M)) — Hom%.mod(f) (vx(c), fF(M))
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provided by Remark 4.4 (c) using the identification v3(c) = f*(v(c)),
18 an isomorphism;

(b) For any flat functor F : K°? — &, the canonical natural transfor-
mation

0" F = Homf yeue)(vE (=), F(Mr)) = Homfag, ey (Eoyx (=), F)

of Theorem 3.12 is an isomorphism, where yx : K°P — Flat(K°P, Set)
is the Yoneda embedding;

(¢) The functor
u(ic.¢ : Flat(K, &) = Flat s, (Cr, €) =~ T-mod(€)
of section 8.3 is full and faithful.

Proof Let us begin by proving that each of the three listed conditions are
necessary.

By the results in [5], if T is of presheaf type classified by the topos [K, Set]
then we have a Morita-equivalence

7¢ : Flat(K°P, £) ~ T-mod(€)

which can be supposed canonical without loss of generality, i.e. which sends
any finitely presentable T-model ¢ in K to the functor yzoyxc. It follows that
for any T-model M in a Grothendieck topos &, with corresponding flat func-
tor Fys under this Morita-equivalence, the object Hom%_mod(g) (v¢(c), M) is

isomorphic to the object Homf?lat(lcop,g) (V& o yxe, Fur) = Fu(c), naturally

in M and in c¢. Therefore the functor

Hom%—mod(é’) (ve(—=),M): KP = &

is flat, it being isomorphic to Fjs. This proves that condition (i) of the
theorem is satisfied.

Next, we notice that the left-to-right functor forming the canonical Morita-
equivalence 7¢ for T can be described as follows: for any flat functor F :
K°P — &, the T-model corresponding to it is naturally isomorphic to the
model F(Mr). Indeed, as the Morita-equivalence for T is canonical, it is
induced by the canonical geometric morphism (in fact, equivalence) px :
[K,Set] — Sh(Cr,Jr), i.e. it is given by the composite of the induced
equivalence Flat(K°P, &) ~ Flat . (Cr, &) with the canonical equivalence
Flat ;. (Ct, &) ~ T-mod(€) sending any flat Jp-continuous functor G on Cr
to the T-model G(Mr).

The fact that 7¢ is an equivalence thus implies that the canonical arrow
Hy; — M is an isomorphism. This shows that condition (i) of the theorem
is satisfied.
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The fact that condition (iii)(c) is satisfied also immediately follows from
the fact that 7¢ is an equivalence.

We have thus proved that conditions (), (77) and (ii7)(c) of the theorem
are necessary.

Let us now show that conditions (i), (i7) and (i7i)(b) are, all together,
sufficient for the theory T to be classified by the topos [/, Set].

First, we notice that condition (#i7)(b) implies condition (i77)(a) under
the assumption that condition (i) holds. Indeed, for any T-model M in a
Grothendieck topos &, condition (7) ensures that the functor Hys : KP? — £
is flat. On the other hand, for any geometric morphism f : 7 — £ condition
(797)(b) yields, in view of the naturality in £ of the operation (—), a natural
isomorphism between the flat functor f*o Hjys and the functor H - 7). This
ensures that the requirement of condition (iii)(a) is satisfied.

Under conditions (), (7¢) and (i¢)(b), we shall construct, for any Grothen-
dieck topos &, a categorical equivalence

Flat(K°P, &) ~ T-mod(E)

natural in &.

We shall define two functors Gg : Flat(KP,€) — T-mod(€) and Hg :
T-mod(€) — Flat(KP, £) which are natural in £ and categorical inverses to
each other (up to isomorphism).

We set Heg(M) equal to the functor

Hom%—mod(g) (ve(=), M) : K = & .

This assignment is natural in M (cf. Remark 4.4) and hence defines a functor
Hg : T-mod(€) — Flat(K°P, &), which is natural in £ by condition (¢i7)(a).

In the converse direction, for any flat functor F : K°P — & we set
Gg(F) = F(My). Clearly, this assignment is natural in F and defines a
functor G¢ : Flat(K°P, &) — T-mod(€).

For each Grothendieck topos &£, the functors Gg and Hg are categorical
inverses to each other (up to isomorphism). Indeed, condition (7iz)(b) ensures
that Hg o G¢ is naturally isomorphic to the identity, while condition (i)
ensures that G¢ o Hg is naturally isomorphic to the identity.

Now, the functors

Gg : Flat(KP, £) — T-mod (&)

and
Hg : T-mod(€) — Flat(K°P, &)

are natural in £ and therefore induce geometric morphisms

G : [f.p.T-mod(Set), Set] — Sh(Cr, Jr)
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and
H: Sh(C’I[*, JT) — [IC, Set] .

The fact that G and H are two halves of a categorical equivalence between
[K,Set] and Sh(Cr, Jr) follows immediately from the fact that for every
Grothendieck topos £ there are natural isomorphisms between Hg o G¢ and
the identity functor on Flat(K°P, &) and between Gg¢ o Hg and the iden-
tity functor on T-mod(&), provided respectively by condition (i4i)(b) and
condition (7).

Finally, let us show that, under the assumption of conditions (¢) and (i)
of the theorem, conditions (iii)(a), (4i1)(b), (iii)(c) are all equivalent.

Conditions (#4¢)(b) and (i4i)(c) are equivalent by Remark 3.13(c). The
necessity of condition (#ii)(a) follows from Remark 4.11 and the fact that any
finitely presentable model of a theory of presheaf type is finitely presented
(ct. [8]).

Having already verified that conditions (i), (i¢) and (ii)(b) imply all
together that T is classified by the topos [K, Set], and that conditions (ii7)(a)
and (i11)(d) are both necessary conditions for T to be of presheaf type, it
remains to check that, under conditions () and (i7) of the theorem, condition
(7i7)(a) implies condition (7i7)(b). We shall do so by verifying that conditions
(i), (i1) and (#ii)(a) imply all together that T is classified by the presheaf
topos [IC, Set].

Under conditions (7), (i7) and (4ii)(a), we clearly have functors

Ge : Flat(K°, &) — T-mod(€)
and
Hg : T-mod(€) — Flat(K°P, &)

which are natural in £ and therefore induce geometric morphisms
G : [K,Set] — Sh(Cr, Jr)

and
H: Sh(c']r, JT) — [IC, Set] .

Notice that the morphism G coincides with the morphism px canonically
induced by the universal property of the classifying topos for T by the T-
models in K.

Notice that for any T-model P in &, Hg(P) = fp o H* o yx, where
fp: € = Sh(Cr, Jr) is the geometric morphism corresponding to P via the
universal property of the classifying topos and yx : K°P — [K, Set] is the
Yoneda embedding.

Under our assumptions, we have to prove that

HoG= 1[1C,Set]
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or equivalently, that G* o H* o yx =2 yx.
Let us consider the geometric morphisms

en : Set — [K, Set]

corresponding to the models NV of T in K. As the ey are jointly surjective,
it is equivalent to prove that e} o G* o H* oy = e} o yx = Homy(—, N)
naturally in N € K.

Let us denote by M¢ the T-model in [, Set] corresponding to the geo-
metric morphism G. Clearly, for any T-model N in K, e} (Mg) = N.

We have that G* o H* o Yy = H[/QSet](MG)' But H[K,Set](MG) =
Hom(’y[*laset](—), Mg), and, by condition (iii)(a),
e*N<H0m(7E;C,Set] (_>7 MG')) = HomT—mod(Set)(_ﬂ e}kV(MG)) = Hom’C(_v N)?

(we have omitted the subscripts and superscripts in the Homs above to
lighten the notation), as required.

On the other hand, if condition (i¢) holds then G o H is isomorphic to
the identity, so we can conclude that T is classified by the topos [K, Set].
In particular, T satisfies condition (i7¢)(b). This completes the proof of the
theorem. g

Remarks 5.2. (a) The following condition is sufficient, together with con-
ditions (i) and (i7) of the theorem (or equivalently, together with con-
dition (¢) and the requirement that the models in K should be jointly
conservative for T), to ensure that T is classified by the topos [/, Set]
but necessary only if one assumes the axiom of choice:

(*) There is an assignment M — ¢ps(237) to a T-model in K of a formula
oéar(x3r) presenting it such that every T-model homomorphism M — N
between models in C is induced by a T-provably functional formula from

N (TN) to dnr(zhr).
This condition can be easier to verify in practice than the original con-

dition since it allows to work with distinguished presentations (rather
than with all of them) of finitely presentable models of the theory.

The necessity of condition (x), under the axiom of choice, was estab-
lished in [8]. In the converse direction, it suffices by Theorem 5.1 to
prove that, under conditions (i) and (i7) (or equivalently, under condi-
tion (¢) and the assertion that the models in K are jointly conservative
for T), condition (%) implies condition (#ii)(c). First, we remark that
under either of these assumptions, the canonical geometric morphism
pr : [KK,Set] — Sh(Cr, Jr) is a surjection. From this it easily follows
that for any geometric formulae {Z . ¢} and {y . ¥} over X respectively
presenting models ¢ and d in I, there can be at most one provably func-
tional formula {Z . ¢} — {¢ . ¥} over X, up to T-provable equivalence,
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inducing a given homomorphism of T-models d — ¢. Condition (x) thus
implies that we have a well-defined full and faithful functor X — Cr.
From this it is immediate to see, by invoking Theorem 3.5 and Remark
3.6, that condition (ii)(c) is satisfied.

If conditions (i) and (i7) in the theorem are satisfied then the canonical
geometric morphism

Prc [/C, Set] — Sh(C']r, J']r)

is a surjection; in other words, the models in K are jointly conservative
for T. Indeed, by condition (i) the functor Hjs, where M is the universal
model of T lying in its classifying topos, is flat. By applying Corollary
3.7 to it we thus obtain that for any geometric sequent o = (¢ Fz )
over the signature of T, Hy({Z . ¢}) < Hpy({Z . }); condition (i7),
combined with the conservativity of M, thus allows to conclude that o
is provable in T, as required.

Under condition (7), if condition (iii)(a) is satisfied and the models in
KC are jointly conservative for T (that is, every geometric sequent over
Y} which is valid in every model in K is provable in T) then T satisfies
condition (i7). Indeed, the assertion that the models in K should be
enough for the theory T is precisely equivalent to the requirement that
the geometric morphism px should be a surjection. By the naturality in
€ of the operation (—) and that of the functor Hg (notice that the latter
follows from condition (éii)(a)), it suffices to verify, since pi is surjective,
that the canonical morphism H, v (Mt) — M is an isomorphism for M
equal to a model in K. But the fact that this condition holds is obvious,
as required.

Conditions (i7) and (7i)(c) in Theorem 5.1 admit invariant formulations,
which can be profitably exploited in presence of different representations
for the classifying topos of T. Indeed, they can both be entirely refor-
mulated in terms of the extension of flat functors operation (in the sense
of section 3.1) along the canonical geometric morphism

pk : [, Set] — Set[T]

to the classifying topos Set[T] for T induced by the T-models in K.
Specifically, any site of definition (C,.J) for Set[T] gives rise to a functor

GE7) : Flat(K, £) — Flat,(C, €) .

Condition (7i7)(c) asserts that this functor, whose explicit description is
given section 3.1, is full and faithful, while condition (ii) asserts that,
denoting by

ug : Flat ;(C, €) ~ T-mod(€)
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the equivalence canonically induced by the universal property of the
classifying topos of T, for any T-model M in a Grothendieck topos &,

the canonical morphism ug(G‘(gc’J) (Hpr)) — M is an isomorphism.

(e) Condition (#44)(b) can be split into two separate conditions: nf is point-
wise monic and 7% is pointwise epic. We shall refer to the first condition
as to condition (7i7)(b)-(1) and to the second as to condition (ii7)(b)-(2).
By Theorem 3.12 and Lemma 7.11 below, condition (#ii)(b)-(1) is equiv-
alent to the requirement that the functor uq(T,Q £) should be faithful.

5.2 Concrete reformulations

In this section we shall give ‘concrete’ reformulations of the conditions of
Theorem 5.1, in full generality as well as in some particular cases in which
they admit relevant simplifications.

5.2.1 Condition (i)

In this section we shall give an explicit reformulation of condition (i) in
Theorem 5.1.

Theorem 5.3. Let T be a geometric theory, KC a small category of set-based
models of T, £ a Grothendieck topos with o separating set S and M o T-model
in E. Then the following conditions are equivalent:

(i) The functor

Hy = Hom%_mod(g)(’yg(—),M) K — &

1s flat.

(i) (a)

(b)

(c)

There exists an epimorphic family {E; — 1¢ [ i € I,E; € S} and
for each i € I a T-model ¢; in K and a X-structure homomorphism
¢i — Homg(E;, M);

For any T-models ¢ and d in K and X-structure homomorphisms
x:c— Homg(E,M) (where E € S) and y : d - Homg(E, M),
there exists an epimorphic family {e; : E; — FE [i € I,E; € S}
and for each i € I a T-model b; in K, T-model homomorphisms
u; ¢ — by, v; :d— b and a X-structure homomorphism z; :
bi — Homg(E;, M) such that Homg(e;, M) o x = z; o u; and
Homg(e;, M) oy = z ov;.

For any two parallel homomorphisms u,v : d — ¢ of T-models in
K and any X-structure homomorphism x : ¢ — Homg(E, M) in
E (where E € S) for which x ou = x owv, there is an epimorphic
family {e; : E; — E |i € I,E; € S} in € and for each index i
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a homomorphism of T-models in K w; : ¢ — b; and a X-structure
homomorphism y; : b; — Homg(E;, M) such that w; ou = w; ov
and y; o w; = Homg(e;, M) o z.

Proof This follows immediately from Proposition 4.5 in view of the charac-
terization of flat functors as filtering functors established in chapter VII of
[26] and reported in section 2.7. O

Remarks 5.4. (a) If for any T-model M in a Grothendieck topos £ and

any object E of £ the Y-structure Homg(FE, M) is a T-model then the
three conditions (a), (b) and (c) are satisfied if they are satisfied in the
case £ = Set.

Condition (i7)(b) implies condition (ii)(c) if all the T-model homomor-
phisms in any Grothendieck topos are monic.

Condition (ii)(a) follows from condition (ii)(a) of Theorem 5.7 below
if the signature of T contains at least one constant. Indeed, for any T-
model M in a Grothendieck topos, the interpretation of such constant
in M will be an arrow 1 — M A in the topos, where A is the sort of the
constant; applying part (a) of condition (i7) of Theorem 5.7 thus yields
an epimorphic family satisfying the required property.

If all the T-models in K are finitely generated as »-structures and all
the Y-structure homomorphisms of the form ¢ — Homg(E, M) (where
c is a T-model in K and M is a T-model in &) are injective if E 2 0,
a sufficient condition for property (ii)(b) to hold is that, for any con-
text @, the disjunction (T Fz \/ ¢(Z)) be provable in T, where
¢()ETE
Ifg is the set of geometric formulae in the context & which strongly
finitely present a T-model in I (in the sense of Definition 4.7). Indeed,
for any two X-structure homomorphisms x : ¢ — Homg(E, M) and
y:d— Homg(FE, M), where ¢ and d are finitely generated X-structures
and E 2 0, the substructure r. : e — Homg(E, M) of Homg(E, M)
generated by the images of ¢ under z and of y under y is finitely gen-
erated, say by elements &1,...,&,; by choosing a context & of the same
length as the number of generators of e, we obtain an epimorphic family
{e;: By - FE|i€l B €S E; 20} with the property that for each
i € I there exists a geometric formula ¢;(¥) strongly presenting a T-
model u; in K such that (& oe;,...,&, oe;) factors through [[Z . ¢;]|ar-
Therefore, by the universal property of u; as T-model strongly presented
by the formula ¢;(Z), for each ¢ € I we have a Y-structure homomor-
phism z; : u; — Homg(E;, M) which sends the generators of u; to the
element (&1 0e;,...,&, 0¢€;). Since z; is injective by our hypothesis and
its image contains a set of generators for e, we have a factorization of
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Homg(ej, M) o r. through r;. Therefore both Homg(e;, M) o x and
Homg(e;, M) oy factor through z;. This shows that condition (i7)(b) is
satisfied.

Let us suppose that every T-model in K is strongly finitely presented by
a formula over ¥ (in the sense of Definition 4.7) and that every T-model
homomorphism between two models in K is induced by a T-provably func-
tional formula between formulas which present them. Then, in light of the
discussion preceding Definition 4.7, we can express the conditions for the
functor Hys to be flat (equivalently, filtering) in terms of the satisfaction by
M of certain geometric sequents involving these formulas. Specifically, we
have the following result.

Theorem 5.5. Let T be a geometric theory over a signature 3, K o small
full category of the category of set-based T-models and P a family of geo-
metric formulae over X such that every T-model in K is strongly presented
by a formula in P and for any two formulae ¢(Z) and Y(y) in P present-
ing respectively models ¢ and d in IC, any T-model homomorphism d — ¢
is induced by a T-provably functional formula from ¢(Z) to (y). Then T
satisfies condition (i) of Theorem 5.1 with respect to the category K if and

only if the following conditions are satisfied:

(i) The sequent
(Thy V Goe@)

o(Z)eP
is valid in M ;

(1) For any formulae ¢(Z) and ¥ (y) in P, the sequent

O(Z) AY(T) Fag V (32)(01(Z, ) A 02(%,9)),

is valid in M ;
(11i) For any T-provably functional formulae 01,6 : ¢(Z) — () between
two formulae ¢(Z) and ¥ (y) in P, the sequent

el(fv g) AQQ(fv g) l_:?,ﬂ \/ (35)7(57 f)
x(2)€P,

{Zx}>{Z.¢} in Cr,
TAO1 1T AO2

15 valid in M.

Proof The fact that every model ¢ in K is strongly finitely presented by a
formula ¢(Z) in P ensures that for any object E of £ and any T-model M in £
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the X-homomorphism ¢ — Homg(E, M) are in bijective correspondence with
the generalized elements E — [[Z . ¢]]as in €. The thesis then follows from
the Kripke-Joyal semantics for the topos &, noticing that by our hypotheses
for any two formulae ¢(Z) and ¥ (¥) in P presenting respectively models ¢
and d in K, any T-model homomorphism d — ¢ is induced by a T-provably
functional formula from ¢(Z) to ¥(7). O

Remarks 5.6. (a) For any geometric theory T and category K satisfying
the hypotheses of the theorem, all the sequents in the statement of the
theorem are satisfied by every model in K. Therefore, adding them to
T yields a quotient of T satisfying condition (i) of Theorem 5.1 with
respect to the category K.

(b) Under the alternative hypothesis that every model of K is both strongly
finitely presentable and finitely generated (with respect to the same gen-
erators), for any two formulae ¢(Z) and (%) in P presenting respectively
models c and d in K, the T-model homomorphisms ¢ — d are in bijection
(via the evaluation of such homomorphisms at the generators of ¢) with
the tuples of elements of d which satisfy ¢, each of which has the form
(t1(2),...,tn(2)) (where n is the length of the context Z) for some terms
t1,...,t in the context Z over the signature . Conditions (i7) and (i77)
of Theorem 5.5 can thus be reformulated more explicitly as follows:

(') For any formulae ¢(Z) and o (§) in P, where & = (2, ... z2n)

and ¥ = (y{gl, ...,yBm) the sequent

(BDNY(D) Fzg \V @A N\ (@ =43 Ay =s;(2),

X(DEPA (), ..t (2) ig{i7...,n}7
SPL(D),ems B (2) jellm)

where the disjunction is taken over all the formulae x(Z) in P and all
the sequences of terms tfl (2),...,t4n(2) and sP1(2),. .., sBm(2) whose

output sorts are respectively A1,..., A,, B1,..., By and such that, de-
noting by ¢ the set of generators of the model Mz, (strongly) finitely

=

presented by the formula x(2), (¢ (&), ..., t2(€)) € [[Z . ¢l and
(SlBl (g)’ ceey sﬁm (5)) € [[37 . Q’Z)H]W{Z.Xp is valid in ]\47

(#41") For any formulae ¢(%) and ¥ (¢) in P, where ¥ = (xfl, i)
and § = (y;,...,yEm), and any terms ¢ (%), 57 (), - - - , 2" (¥), san (i)
whose output sorts are respectively Ay, ..., Ay, the sequent

(N G@=si@)Ad(tr/z1, . tafza) Ad(s1/1, . 50/20) AD(F)

ie{1,...,n}

g \V} (@) A N\ i =u(2),

X(D)EPuLL(2),...ulm (2) je{l,...m}
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where the disjunction is taken over all the formulae x(Z) in P and
all the sequences of terms u?'(2),...,uB"(2) whose output sorts are
respectively By, ..., By, and such that, denoting by E the set of gener-
ators of the model Mz, (strongly) finitely presented by the formula

—

X(g)a (ujlgl (g)v s 7uﬁm(§)) € Hg . w]]f\/f{g,x} and ti(u1(€>) R um(g)) =

—

si(u1($), ..., um(€)) in Mz for all i € {1,...,n}, is valid in M.

5.2.2 Condition (i7)

In this section we shall give concrete reformulations of condition (i7) of Theo-
rem 5.1, under the assumption that condition (i) of Theorem 5.1 is satisfied.

First, notice that the canonical morphism H, M (Mt) — M considered in
condition (7i) is an isomorphism if and only if for every sort A over X, the
induced arrow Hp({z* . T}) — M A is an isomorphism in £. To understand
this condition more concretely, we apply Proposition 3.8 to the geometric
formula {24 . T} and the flat functor F = Hjs : K°° — £. Recall that the
category ‘AI{C:EA.T} defined in that context has as objects the pairs (¢, z) where

cis a T-model in K and z is an element of the set cA and as arrows (¢, z) —
(d,w) the T-model homomorphisms g : d — ¢ in K such that gA(w) = z,
and that the equivalence relation Ry, 4 T} is defined by the condition that for
any generalized elements z : E — F(c) and 2’ : E — F(d), (z,2') € Rya 1y
if and only if there exists an epimorphic family {e; : E; — E | i € I} and for
each index ¢ € I a T-model a; in K, a generalized element h; : E; — F(b;)
and two T-model homomorphisms f; : ¢ — b; and f/ : d — b; in K such that
JiAGz) = fLAw) and (F(fs), F(f))) o hs = (,2") o ci.

This yields that the canonical arrow Hy ({24 . T}) — M A is an isomor-
phism if and only if (using the notation of Proposition 3.8):

(1) the canonical arrows k(. .) : Hy(c) = MA for (c,2) € AggaTy are
jointly epimorphic and

(2) for any two objects (c,2) and (d,w) of the category Ag,a 1y and any
generalized elements x : E — Hy(c) and 2/ : E — Hpy(d) (where
E€58), Kez) 0T = K(guw) o2’ if and only if (z,2") € Ryza 1y

Thanks to the identification between the generalized elements x : F —
Hys(c) and the ¥-structure homomorphisms f, : ¢ = Homg(E, M) provided
by Proposition 4.5, we can rewrite conditions (1) and (2) more explicitly.

To this end, we preliminarily notice that for any object (¢, z) of the cate-
gory Agza Ty, the canonical arrow k() : Hay(c) = Hom%_mod(g) (vé(e), M) —

M A can be described in terms of generalized elements as the arrow sending
any generalized element « : E — H/(c), corresponding via the identification
of Proposition 4.5 to a 3-structure homomorphism f, : ¢ = Homg(E, M),
to the generalized element ' — M A of M A given by f,A(z). Therefore, for
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any generalized elements x : E — Hj/(c) and 2’ : E — H)(d), correspond-
ing respectively to Y-structure homomorphisms f, : ¢ = Homg(E, M) and
for + d — Homg(E, M), we have that (. .) 0 & = K(gy) o @' if and only if
foA(z) = farA(w)

Now, condition (1) can be formulated by saying that for any generalized
element x : E — MA (where E € S) there exists an epimorphic family
{ei - E; — E|ie€ l,E € S}, afamily {(c¢;,z) | i € I} of objects of the
category Ayg,a 1y and generalized elements {y; : E; — Hp(c;) | @ € I'} such
that x oe; = &, .,) 0y for every i € I.

Under the identification of Proposition 4.5, condition (1) thus rewrites as
follows: for any generalized element x : E — M A (where E € S) there exists
an epimorphic family {e; : E; — E | i € I, E; € S}, a family {(¢;, 2i) | i € I'}
of objects of the category A, 4 1y and X-structure homomorphisms f; : ¢; —
Homg(FE;, M) such that f;A(z;) =z oe;.

Concerning condition (2), we observe that for any objects (¢, z) and (d, w)
of the category A{xA.T} and any X-structure homomorphisms f, : ¢ —
Homg(E, M) and f,y : d — Homg(E, M) (where E € S) corresponding
respectively to generalized elements x : E — Hys(c) and 2/ : E — Hys(d)
via the identification of Proposition 4.5, we have that (z,2') € Ry,a 1y if
and only if there exists an epimorphic family {e; : E; - E | i € I, E; € S}
and for each index ¢ € I a T-model a; in I, a Y-structure homomorphism
h; : by = Homg(E;, M) and two T-model homomorphisms f; : ¢ — b; and
fl:d— b in K such that f;A(z) = f/A(w) and h; o f; = Homg(e;, M) o f,
and h; o f/ = Homg(ej, M) o fur.

Summarizing, we have the following result.

Theorem 5.7. Let T be a geometric theory, K a small full subcategory of the
category of set-based models of T, £ a Grothendieck topos with a separating
set S and M a T-model in £. Then the following conditions are equivalent:

(i) The extension Hy 2 Cr — & of the functor Hyp + K% — € to the
syntactic category Ct (in the sense of section 3.83) satisfies the property
that the canonical morphism Hy;(Mr) — M is an isomorphism;

(ii) For any sort A over X, the following conditions are satisfied:

(a) For any generalized element v : E — MA (where E € S) there
exists an epimorphic family {e; : E; — E |i € I,E; € S} and
for each index i € I a T-model ¢; in KC, an element z; of ¢;A and
a X-structure homomorphism f; : ¢; — Homg(E;, M) such that
(fiAd)(zi) =z oei;

(b) For any two pairs (c,z) and (d,w) consisting of T-models ¢ and d
in IC and elements z € cA,w € dA, and any 3-structure homomor-
phisms f :¢c— Homg(E, M) and ' :d — Homg(E, M) (where E
is an object of S), we have that fA(z) = f'A(w) if and only if there

82



exists an epimorphic family {e; : E; — E | j € J,E; € S} and for
each index j € J a T-model b; in K, a X-structure homomor-
phism hj; : bj = Homg(E;, M) and two T-model homomorphisms
fi e = bjand fi:d — by in K such that fjA(z) = f;A'(w),
hjo fj = Homg(ej, M) o f and hjo fi = Homeg(ej, M) o f'.

Remarks 5.8. (a) If all the T-model homomorphisms in any Grothendieck
topos are monic and T satisfies condition (i2)(b) of Theorem 5.3 then
condition (i7)(b) of Theorem 5.7 is automatically satisfied.

(b) A sufficient condition for condition (#7)(a) to hold is that the disjunction

(TF: V ¢(x)) be provable in T, where Z¢ is the set of geometric
¢(x)ETL

formulae in one variable which strongly finitely present a T-model in K

(in the sense of Definition 4.7).

(c) If for every sort A over ¥ the formula {z# . T} strongly presents a
T-model F4 in K then condition (i) of the theorem is automatically sat-
isfied; indeed, under this hypothesis for any sort A over X the canonical
arrow Hy (M)A = Hom%_mod(g) (vé(Fa), M) — M Ais an isomorphism

(cf. section 4.3).

The following result provides an explicit formulation of condition (i)
of Theorem 5.1 holding for theories T with respect to small categories K
such that every model of K is both strongly finitely presentable and finitely
generated (with respect to the same generators).

Theorem 5.9. Let T be a geometric theory over a signature X and K a
small full subcategory of the category of set-based T-models such that every
model in K is both strongly finitely presentable and finitely generated (with
respect to the same generators). Then T satisfies condition (ii) of Theorem
5.1 with respect to the category K if and only if for every model M of T in a
Grothendieck topos, the following conditions are satisfied (where P denotes
the set of formulae over ¥ which present a model in K):

(i) For any sort A over ¥, the sequent

(T l_LEA \/ (32)(96(2) Nx = t(g)))a

X(2)EP tA(2)

where the the disjunction is taken over all the formulae x(Z) in P and
all the terms t4(Z) whose output sort is A;

(ii) For any sort A over X, any formulae ¢(Z) and (y) in P, where
T = (x‘fh, oz and g = (yPr, . yBr), and any terms tA(E) and
sA(7), the sequent
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(8(F) A(F) AHT) = s(7) Fag \ (3D (x (DA
X(Z)EP,PiL(),.piin (2)
@ L(2),qBm (2)

AN (@i=pi(E) Ay = gi(2),
ie{l,...,n},
je{1,...,m}

where the disjunction is taken over all the formulae x(Z) in P and all
the sequences of terms p’fh(,?), A and qlBl(Z), o, qBm (2) whose
output sorts are respectively Ay, ..., Ap, B1,..., By and such that, de-

noting by £ the set of generators of the model Myz.,y (strongly) finitely
presented by the formula x(Z), (p{*(£),....p2"(9) € [ . dllmey,

— —

and (g7 (€),--,a5(€)) € [T - Wmp,, and tpi(S),-- - pa(€)) =

—

s(q1(€), .., qm(E)) in Mz

Proof The proof is analogous to that of Theorem 5.3 and left to the reader.
O

Remark 5.10. All the sequents in the statement of the theorem are satisfied
by every model in K. Therefore, adding them to any theory T satisfying the
hypotheses of the theorem yields a quotient of T satisfying condition (i) of
Theorem 5.1 with respect to the category K.

5.2.3 Condition (ii7)

In this section, we shall give concrete reformulations of conditions (7ii)(a)-(b)-(c)
of Theorem 5.1.

Let us begin our analysis with a proposition which shows that, under
some natural assumptions which are often verified in practice, condition
(7i7)(a) of Theorem 5.1 is satisfied.

Proposition 5.11. Let T be a geometric theory over a signature ¥ and let
K be a small category of T-mod(Set). Then

(1) If T is a quotient of a theory S satisfying condition (iii)(a) of Theo-
rem 5.1 with respect to a category H of set-based S-models and IC is a
subcategory of H then T satisfies property (iii)(a) of Theorem 5.1 with
respect to KC;

(1) If every T-model in K is strongly finitely presented (in the sense of sec-
tion 4.3) then T satisfies condition (iii)(a) of Theorem 5.1 with respect
to the category IC;

84



(113) If for every T-model c in K the object Hom‘%_mod(g) (vé(c), M) can be

built from ¢ and M by only using geometric constructions (i.e. con-
structions only involving finite limits and arbitrary small colimits) then
T satisfies condition (iii)(a) of Theorem 5.1 with respect to the category
K.

Proof If T is a quotient of S then for every Grothendieck topos &, the
category T-mod(€) is a full subcategory of the category S-mod(€). This
clearly implies that for any T-models M and N in a Grothendieck topos &,
Hom%_mod(g)(M, N) = Homg_mod(g)(M, N); in particular, for any T-model ¢

in IC and any T-model M in a Grothendieck topos &, Hom%_mod(g) (vé(e), M) =

Homg_mod(g) (7&(c), M). The fact that S satisfies condition (i7)(a) of Theo-

rem 5.1 with respect to the category H thus implies that T does with respect
to the category K, as required.

If every T-model ¢ in K is strongly finitely presented (in the sense of
section 4.3) by a formula ¢(Z) over the signature of T then for any T-model

~ -

M in a Grothendieck topos, Hom%_mod(g) (v&(e), M) = [[Z . ¢]]ar (cf. section

4.3). Therefore, as the interpretation of geometric formulae is always pre-
served by inverse image functors of geometric morphisms, condition (iii)(a)
of Theorem 5.1 is satisfied by the theory T with respect to the category K.

The fact that condition (4i7) implies condition (iii)(a) of Theorem 5.1
follows immediately from the fact that geometric constructions are preserved
by inverse image functors of geometric morphisms. O

We shall now proceed to giving concrete reformulations of the conditions
(747)(b)-(1) and (i7i)(b)-(2) of Theorem 5.1 introduced in Remark 5.2(e), in
order to make them more easily verifiable in practice.

First, let us explicitly describe, for any object ¢ of IC, the arrow

n"(c) : F(c¢) = Hom§ poq(e)(7E(0), F(Mr))

of condition (7i7)(b) of Theorem 5.1 in terms of generalized elements.

For any generalized element 2 : E — F(c), %' (c)(z) corresponds under
the identification of Proposition 4.5 to the Y-structure homomorphism z, :
¢ — Homg(E, F(Mr)) defined at each sort A over ¥ as the function cA —
Homg(E,F({z* . T})) sending any element y € cA to the generalized
element £ — F({z* . T}) obtained by composing the canonical colimit
arrow m@y) . F(¢) —» F({z* . T}) with the generalized element z : E —
F(e).

It follows that n'(c)(z) is a monomorphism if and only if for any gen-
eralized elements z,2’ : E — F(c), néjy) ox = fcf;y) o’ for every sort
A over ¥ and element y € cA implies z = z’. By Proposition 3.8, the
condition ‘mfz o= ni ) © x" is satisfied if and only if there exists an
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epimorphic family {e; : E; — E |i € I} in £ and for each index i € I
a T-model a; in K, a generalized element h; : E; — F(a;) and two T-
model homomorphisms f;, f/ : ¢ = a; in K such that f;A(y) = f/A(y) and
(F(f), F(f)) o hi = (w,0') o c;

To obtain an explicit characterization of the condition for %' (c)(x) to be
an epimorphism, we notice that an arrow f : A — B in a Grothendieck topos
£ is an epimorphism if and only if for every generalized element z : £ — B
of B there exists an epimorphic family {e; : E; — E | i € I} in € and for
each index 7 € I a generalized element y; : E; — A such that foy, =z oe;.
Applying this characterization to the arrow 7% (c)(x) modulo the identifi-
cation of Proposition 4.5, we obtain the following criterion: n'(c)(z) is an
epimorphism if and only if for every object E of £ and any X-structure ho-
momorphism v : ¢ — Homg(E, F(Mr)), there exists an epimorphic family
{e; : E; — E|i € I} in £ and for each index ¢ € I a generalized ele-

ment x; : By — F(c) such that z,, = Homg(e;, F(Mr)) o v for all i. The

condition ‘z,, = Homeg(e;, F(Mr)) o v’ can be explicitly reformulated as

the requirement that for every sort A over ¥ and every element y € cA,
Fc7y) ox; = vA(y) o e;.

K
(
Summarizing, we have the following

Theorem 5.12. Let T be a geometric theory over a signature 3, K be a
small subcategory of T-mod(Set), £ a Grothendieck topos with a separating
set S and F : K°P — & a flat functor. Then

(i) F satisfies condition (iii)(b)-(1) of Theorem 5.1 if and only if for any
T-model ¢ in K and any generalized elements x,2' : E — F(c) (where
E € S), if for every sort A over X and any element y € cA there exists
an epimorphic family {e; : E; — E [i € I, E; € S} and for each index
i € I a T-model a; in K, a generalized element h; : E; — F(a;) and two
T-model homomorphisms f, f! : ¢ — a; in K such that f; A(y) = flA(y)
and (F(f;), F(f])) o hi = (x,a') oe; then v = 2.

(11) F satisfies condition (iii)(b)-(2) of Theorem 5.1 if and only if for any
T-model ¢ in IC, any object E of S and any %-structure homomorphism
v:ice — Homg(E,F(MT)), there exists an epimorphic family {e; :
E;— FE |icl, E; € S} and for each index i € I a generalized element
x; + By — F(c) such that for every sort A over X and any element

Yy € CA, m{cy) ox; = vA(y)oe,.

O

Under the hypothesis that for any sort A over ¥ the formula {z4 . T}
presents a T-model F4, the model F(MT) is isomorphic to the model inter-
preting each sort A with the object F'(F4), and the homomorphism z, : ¢ —
Homg(E, F(Mr)) corresponding to a generalized element z : E — F(c) can
be described as follows: for any sort A over X, 2, A : cA — Homg(E, F(Pya))

86



assigns to any element y € cy4, corresponding to a T-model homomorphism

sy @ Fy — c via the universal property of Fl, the generalized element

F(sy) o xz. Therefore, given two generalized elements z,z’ : E — F(c) and

an element y € cA, 2z, A(y) = 2 A(y) if and only if F(sy)ox = F(sy)oa’.
Summarizing, we have the following

Theorem 5.13. Let T be a geometric theory over a signature 33, such that for
any sort A over X the formula {z? . T} presents a T-model Fa, K be a small
subcategory of T-mod(Set) containing the models Fx and F : K°? — & a flat
functor with values in a Grothendieck topos £. Then F satisfies condition
(732)(b)-(1) of Theorem 5.1 with respect to the category K if and only if for
every T-model ¢ in K the family of arrows {F(sy) : F(c) — F(Fa) | A €
Y, ,y € cA} is jointly monic.

g

The representation of F(Mr) as a filtered E-indexed colimit established
in section 3.3 allows us to obtain a different reformulation, in terms of the
Y-structure homomorphisms . ,) defined in that context, of Theorem 5.12:

Theorem 5.14. Let T be a geometric theory over a signature ¥, IC a small
Jull subcategory of T-mod(Set) and F : K°? — & be a flat functor with values
in a Grothendieck topos €. Then

(i) F satisfies condition (iii)(b)-(1) of Theorem 5.1 if and only if for any
T-model ¢ in K and any generalized elements z,2' : E — F(c), the
Y-structure homomorphisms §(. .y and §. . are equal if and only if
x =21

(i) F satisfies condition (iii)(b)-(2) of Theorem 5.1 if and only if for any
T-model c in IC, any object E of £ and any X-structure homomorphism
z:c— Homg(E, F(Mr)) there exists an epimorphic family {e; : E; —
E /i€ I} in & and for each index i € I a generalized element x; :

E; — F(c) such that Homg(e;, F(Mrt)) 0 2 = (¢ g,y for all i € I.

Proof (i) The equality {4y = (o) holds if and only if for every sort A
over ¥ and any y € cA, {2 AY) = o) AWY), 1.6, Key) 0T = K(ey) 0T’
Now, by Proposition 3.8, this latter condition is satisfied if and only if there
exists an epimorphic family {e; : E; — E | i € I} in € and for each index
i € I a T-model a; in K, a generalized element h; : E; — F(a;) and two
T-model homomorphisms f;, f/ : ¢ — a; such that f;A(y) = f/A(y) and
(F(fi),F(f])) o hi = (x,) o e;, as required.

(73) Tt suffices to notice that the condition that for every sort A over X

and every element y € cA, mfz y) OTi = zA(y) o e; can be reformulated as the

requirement that Homeg(e;, F'(Mr)) 0 z = §(¢z,) (for any i € I). O
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Thanks to this different reformulation of condition (7i7)(b)-(1) of Theorem
5.1, we can prove that if all the arrows in C are sortwise monic then T always
satisfies the condition.

First, we need a lemma.

Lemma 5.15. Under the hypotheses specified above, if all the homomor-
phisms in the category K are sortwise monic then for any pair (c,z) consist-
ing of an object ¢ of K and of a generalized element x : E — F(c) such that
E % Og, the X-structure homomorphism §.,) @ a — Homge (E, F(Mr)) is
sortwise injective.

Proof For any sort A over X, the function . )A : cA — Homeg(E, M A)
sends any element y € cA to the generalized element £ (., ox. Now, for any
Y1,Y2 € cA, we have, by Proposition 3.8, that K(cy,) 0@ = K(cy,) oz if and
only if there exists an epimorphic family {e; : E; - E | i € I} in £ and for
each index ¢ € I a T-model a; in K, a generalized element h; : E; — F(a;)
and a T-model homomorphism f; : ¢ — a; in K such that f;A(y1) = fiA(y2)
and F(f;) oh; =z oe;. If E 2 0g then the set I is non-empty, that is there
exists ¢ € I; thus we have that f;A(y1) = fiA(y2), which entails y; = y2 as
fi 1s sortwise monic by our hypothesis. O

Corollary 5.16. Let T be a geometric theory over a signature X2, K a small
full subcategory of T-mod(Set) whose arrows are all sortwise monic homo-
morphisms. Then T satisfies condition (i4i)(b)-(1) of Theorem 5.1.

Proof By Proposition 3.11, for any  : E — F(c) and 2’ : E — F(c),
the following ‘joint embedding property’ holds: there exists an epimorphic
family {e; : E; — E | i € I} in € and for each index i € I a T-model ¢; in
K, homomorphisms f; : ¢ = ¢;, ¢; : ¢ — ¢; in K and a generalized element
x; : B; — F(¢;) such that (z,2') o e; = (F(f;), F(g:)) oz, Homg(E;, M) o
g(c,x) = 5(671,067:) o f; and Homg(Ei,M) o é(c,x’) = g(%xi) o g; (fOI“ all ¢ € I).
Clearly, we can suppose without loss of generality all the objects E; to be
non-zero.

Now, since all the arrows in IC are sortwise monic homomorphisms, by
Lemma 5.15 for each i € I the arrow ., ;) 1s sortwise monic and hence
(ee) = §(car) implies f; = g;. Therefore zoe; = x' oe; for all i € T (since
(x,2') oe; = (F(f;), F(gi)) o x;), and hence x = 2/, as required. O

We shall now proceed to identifying some natural sufficient conditions for
a theory T to satisfy condition (4i7)(b)-(2) of Theorem 5.1. Before stating
the relevant theorem, we need a number of preliminary results.

Lemma 5.17. Let ¥ be a signature without relation symbols and T a geo-
metric theory over a signature X' obtained from X by solely adding relation
symbols whose interpretation in any T-model in a Grothendieck topos is the
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complement of the interpretation of a geometric formula over ¥ (for instance,
the injectivization of a geometric theory over X in the sense of Definition
6.33). Let f : M — N and g : P — N be homomorphisms of T-models in
a Grothendieck topos £, and let k be an assignment to any sort A over ¥ of
an arrow kA : MA — PA such that gAo kA = fA. Then, if g is sortwise
monic, k defines a T-model homomorphism M — P such that go k = f.

Proof The fact that k preserves the interpretation of function symbols
over Y follows from the fact that f and g do, as g is sortwise monic. It
remains to prove that for any relation symbol R — Aj,..., A, over ¥’ and
any generalized element z : E — MA; x --- x MA, in &, if x factors
through Ry; — MA; X --- x MA, then (kA; x --- X kA,) o x factors
through Rp — PA; x --- x PA,. Now, if Rp is the complement of the
interpretation iy : [[¢(Z)]]p — PAy x --- x PA, of a geometric formula
H(Z) = p(x, ..., 247) in the model P, this latter condition is equivalent to
the requirement that the equalizer e of (kA; X --- x kA,) oz and iy be zero;
but, since g is a X/-structure homomorphism, the subobject e is contained
in the equalizer of the arrows (gA; X -+ x gA,) o (kA; X --- X kA,)ox =
(fA1 x - x fAy)ox and [[¢(Z)]|]y — NAj x--- x NA,, which is zero since
f is a X'-structure homomorphism and Ry is the complement of [[¢(Z)]]n-
Therefore e 22 O¢, as required. O

Lemma 5.18. Let € be a Grothendieck topos. Then the inverse image func-
tor vz : Set — & of the unique geometric morphism e : £ — Set is faithful
if and only if € is non-trivial (i.e., 1¢ 2 O¢ ).

Proof It is clear that if £ is trivial then v : Set — £ is not faithful, it
being the constant functor with value Og.
In the converse direction, suppose that £ is non-trivial. Given two func-

tions f,g: A — B in Set, the arrows v:(f),74(g) : [[1le = [[le in & are
acA beB
characterized by the following identities: for any a € A vg(f) o sa = ty(q)

and 7£(g) 0 sa = tya), Where s, : 1 — [[leg and t, : 1 — []1lg are re-
acA beB
spectively the a-th and b-th coproduct arrows (for any a € A and b € B);

s0 72 (f) = 7¢(g) if and only if for every a € A, tf,) = t4q). Now, since a
subobject with domain 1g in a non-trivial topos £ cannot be disjoint from
itself, it follows that f(a) = g(a) for every a € A. Therefore f = g, as
required. (|

Corollary 5.19. Let T be a geometric theory over a signature X, £ a non-
trivial Grothendieck topos (i.e., 1g¢ 2 Og), M and N two T-models in Set
and f a function sending each sort A over ¥ to a map fA: MA — NA
in such a way that the assignment A — v&(fA) : vE(MA) — v5(NA) is a
T-model homomorphism in . Then the assignment A — fA is a T-model
homomorphism M — N in Set.
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Proof We have to prove that f preserves the interpretation of function
symbols over ¥ and the satisfaction of atomic relations over X. Since the
preservation of the interpretation of function symbols over ¥ can be expressed
as the commutativity of a certain square involving finite products of sets of
the form M A and N A, its satisfaction follows from that of 42 (f) by virtue of
Lemma 5.18. Tt remains to prove that f preserves the satisfaction of atomic

relations over . Let R — Aq,..., A, be a relation symbol over ¥. From the
fact that vz(f) : v4(M) — v5(IN) preserves the satisfaction by R it follows
that for any n-tuple @ = (ay,...,a,) € Ry, the coproduct arrow : 1lg —
11 1¢ corresponding to the n-tuple (fA1(a1),. .., fAn(an))
(bl,A..,bn)GNAlx---XNAn
factors through the subobject I 1le— 11 le. But
(bl,...,bn)GRN (bl,...,bn)ENAlx---xNAn

this immediately implies, since distinct coproduct arrows are disjoint from
each other and the topos £ is non-trivial, that f(d@) € Ry, as required. [

Corollary 5.20. Let ¥ be a signature without relation symbols and T a
geometric theory over a signature X' obtained from X by solely adding relation
symbols whose interpretation in any T-model in a Grothendieck topos is the
complement of the interpretation of a geometric formula over ¥ (for instance,
the injectivization of a geometric theory over ¥ in the sense of Definition
6.33). Let I be a small full subcategory of T-mod(Set), a and b T-models
in IC, M a T-model in a Grothendieck topos € and f : a — Homg(E, M),
g:b— Homg(E, M) X' -structure homomorphisms, where E is an object
of £. Let k be an assignment sending any sort A over ¥ to a function
kA :aA — bA such that gAo kA = fA. Suppose that either

(1) there are no relation symbols in ¥/ except possibly for a binary relation
symbol which is T-provably complemented to the equality relation on a
sort of ¥ and the X'-structure homomorphisms [ and g are sortwise
monic; or

(i) E 2 0g and the T-model homomorphism § : fyz/E(b) — M correspond-
ing to g under the identification of Proposition 4.5 is sortwise monic.

Then the assignment A — kA defines a T-model homomorphism a — b in
Set.

Proof We have to verify that k preserves the interpretation of function
symbols over ¥’ as well as the satisfaction by any binary relation symbol
which is T-provably complemented to the equality relation on some sort over
3.

By Lemma 6.34 below, k preserves the interpretation of any binary re-
lation symbol which is T-provably complemented to the equality relation on
some sort over X if and only if it is sortwise monic. This holds under hypoth-
esis (4) since f is sortwise monic and for every sort A over ¥, gAokA = fA.
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On the other hand, under hypothesis (i), the fact that k preserves the inter-
pretation of function symbols over ¥/ follows from the fact that g and f do,
since ¢ is sortwise monic and gA o kA = fA for every sort A over X. This
shows that our thesis is satisfied under hypothesis (4).

Let us now suppose that hypothesis (i7) holds. Consider the T-model
homomorphisms f : 'yz/E(a) — M and g : 'yg/E(b) — M corresponding to
f and g under the identification of Proposition 4.5. Clearly, the assignment
A — kA = WE/E(/{A) satisfies A o kA = fA for all sorts A over X. It

thus follows from Lemma 5.17 that A — kA is a T-model homomorphism
WE/E(G) — fy;/E(b); but this in turn implies, by Corollary 5.19 (notice that
E 2 0g if and only if the topos £/F is non-trivial), that the assignment
A — kA is a T-model homomorphism a — b, as required. a

Theorem 5.21. Let X be a signature without relation symbols and T a ge-
omelric theory over a signature Y’ obtained from X by solely adding rela-
tion symbols whose interpretation in any T-model in o Grothendieck topos
is the complement of the interpretation of a geometric formula over ¥ (for
instance, the injectivization of a geometric theory over ¥ in the sense of Def-
inition 6.33). Let KC be a small full subcategory of T-mod(Set) whose objects
are all finitely generated T-models. Suppose that

(1) either all the arrows in KC are sortwise monic homomorphisms and there
are no relation symbols except possibly for a binary relation symbol
which is T-provably complemented to the equality relation on a given
sort of X or

(ii) all the T-model homomorphisms in any Grothendieck topos are sortwise
monic.

Then T satisfies condition (iii)(b)-(2) of Theorem 5.1 with respect to the
category K.

Proof By Theorem 5.14, we have to verify that for any T-model ¢ in K, any
object E of £ and any Y-structure homomorphism z : ¢ = Homg(E, F(Mr))
there exists an epimorphic family {e; : E; — E | ¢ € I} in £ and for each
index i € I a generalized element z; : E; — F(c) such that Homg(e;, M)oz =
§(e,ay) Tor all i € 1.

If £ = 0g then the condition is trivially satisfied; indeed, one can take
I = (). We shall therefore suppose E = O¢ or, equivalently, that the topos
E/FE is non-trivial.

From now on, we shall suppose for simplicity that ¥ is one-sorted, but
all our arguments can be straightforwardly extended to the general case.

Let {r1,...,rn} be a set of generators for the model c¢. Consider their
images 2(r1),...,2(ry) : E — M under the homomorphism z. By Propo-
sition 3.11, for any i € {1,...,n} there exists an epimorphic family {ej :

91



E; — E|j € I;} in € and for each index j € J; a T-model az- in K, a
generalized element xi : E; — F(aé—) and an element y; € aé- such that
&(at )(y]) =2(r;) o€l

For any tuple k= (k1y...,kn) € J1 X -+ X Jy, consider the iterated
pullback e : Ep =: E,il Xg - xg B} — E. The family of arrows {e;
Ep — E | ke XX In} is clearly epimorphic. For any i € {1,...,n}
and k; € J;, set x% cEp— F(a}cl_) equal to the composite of the generalized
element zj : Ej — F(aj ) with the canonical pullback arrow pj, : Ep —
E}CZ For any fixed ke J1 X --+ X Jn, by inductively applying the joint
emlaedd{ng property of Proposition 3.11, we can find an epimorphic family
{uf : U} - E; |l € L 7} and for each index [ € L a T-model dj in K, a

generahzed element a;l Ul — F(dk), and arrows fl a}%i — dfz in K such
that xﬁoul = (fl)oxl (forallie {1,...,n} and [ € Ly).
Let us prove that z(r;) oej o uf = §(d}—,7m§;)(flk(y,ii)) (for any 4,k and [).
We have already observed that for any i € {1,...,n}, we have z(r;)oe;. =
5(%1_7%1_)(3/21_). Composing both sides of the equation with pj and applying
Lemma 3.10(ii) yields the equality z(r;) o ez = & zx%)(y}%) On the other

hand, by Lemma 3.10(i) we have that §(al 2t (yk )o ufg = §(d;; xg)(flg(y,i))
7 l’ l 1
Our thesis thus follows by combining the former identity with the one ob-

tained by composing both sides of the latter identity with uf
Let us now consider the ¥'-structure homomorphisms

Home(eg o uy ,F(M'ﬂ‘)) oz:c— Homg(Ul , F(Mr))

and
g(dk k) dl _>H0m€(Ul7 (MT))

1>T1
Since, under either assumption (i) or (ii), the arrows of the category K
are sortwise monic homomorphisms, by Proposition 5.15 the homomorphism

& (dF oF) is injective. Therefore, since the image of all the generators ry,...,r,
127

of ¢ under the homomorphism Homg (e o ,F(MT)) o z is contained in the
image of the homomorphism & (dF oFy» a0 €asy induction on the structure
171

t(r1,...,my) of the elements of ¢ shows that the image of all elements of ¢
belongs to the image of & d,; z.; in other words, there exists a factorization

1)’

kl]; cc— d? of Homeg(ej o ,F(M'ﬂ‘)) o z across & (dF )" By Corollary 5.20,
i

such factorization is a T-model homomorphism. We have thus found an
epimorphic family on E, namely {e; o uf | keJix - xJy L€ Lz}, and
for every k and [ a T-model homomorphism kk c— dk in IC such that

Homg(ekoul,F(MT))oz—ﬁ(dk i okl .

%]
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The composites z} : UIE — F(c) of the generalized elements xlE : UZE —
F(dF) with the arrows F(kF) thus yield generalized elements such that

Homeg(ej; o uf,F(MT)) oz = f(d,; oF) © k:f = f( By where the last equal-
1] C,Il'
ity follows by Lemma 3.10(i). This completes our proof. O

Remark 5.22. The assumption that all the arrows in K be sortwise monic
in condition (7) is weaker in general than the requirement of condition (i)
that all the T-model homomorphisms in any Grothendieck topos be sortwise
monic. Anyway, condition (i7) is a necessary condition for T to be classified
by the topos [K, Set] if all the arrows in K are sortwise monic (cf. Corollary
6.9).

Corollary 5.23. Let T be a geometric theory satisfying the hypotheses of
Theorem 5.21 with respect to a small full subcategory K of T-mod(Set). Then
T is of presheaf type classified by the topos [K,Set] if and only if it satisfies
condition (i) of Theorem 5.1 and condition (ii)(a) of Theorem 5.7.

Proof Condition (iii) of Theorem 5.1 is satisfied by Theorem 5.21, while
the first part of condition (77) holds by Remark 5.8(a). O

5.3 Abstract reformulation

Thanks to the general theory of indexed filtered colimits developed in section
2, we can reformulate the conditions of Theorem 5.1 in more abstract, though
less explicit, terms as follows.

Let T be a geometric theory over a signature X and K a small full sub-
category of T-mod(Set).

Condition (i) of Theorem 5.1 for T with respect to K can be reformulated
as the requirement that for every model M of T in a Grothendieck topos &,
the £-indexed category of elements [ f H)y of the functor H)s (or equivalently
its &-final subcategory [ Hys_, cf. Theorem 2.13) be E-filtered.

For any sort A over X, we have a functor P4 : K — Set of evaluation
of models in K at the sort A. Using the notation of Theorem 2.5, we have
an associated internal diagram (Pa)e in [K, £] and hence £-indexed functor
Kg — &¢. These functors, with A varying among the sorts over X, clearly
lift to a £-indexed functor P : Kg — T-mod(€).

In these terms, condition (i7) of Theorem 5.1 for the model M can be
reformulated as the requirement that the canonical £-indexed cone over the
&-indexed functor P o ﬂ'{{fM be colimiting (cf. the proof of Proposition 3.11).

Conditions (i) and (i¢) can thus be interpreted by saying that every T-
model M in a Grothendieck topos £ is canonically a E-filtered colimit of
constant finitely presentable T-models in Set which belong to K.

Under the assumption that conditions (i) and (ii) are satisfied, condi-
tion (7i7) is equivalent to the requirement that for any T-model ¢ in K and
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any Grothendieck topos &£, the T-model 7Z(c) be E-finitely presentable (in
the sense of section 4.4) or, more weakly, that the internal £-indexed hom
functor Hom%_mod(g) (vé(e), =) : T-mod(E) — E¢ preserve E-filtered colimits

of diagrams of the form ¢ o D, where D is a diagram defined on a (€-final
subcategory of a) small internal filtered category. Indeed, the fact that this
condition is necessary for T to be of presheaf type follows from Theorem
4.13, while the fact that it is sufficient, together with conditions (i) and (i7)
of Theorem 5.1, for T to be classified by the topos [K, Set] can be proved
by showing that it implies condition (¢i7)(a) of Theorem 5.1. In fact, this
immediately follows from the fact that inverse image functors of geometric
morphisms preserve internal (filtered) colimits in view of the fact that, by
condition (i7), every T-model M in a Grothendieck topos £ is canonically a
E-filtered colimit of ‘constant’ finitely presentable T-models in K.

Overall, we can conclude that a geometric theory T is of presheaf type if
and only if every T-model in any Grothendieck topos £ is a E-filtered colimit
of its canonical diagram made of ‘constant’ finitely presentable models which
are E-finitely presentable.

6 Faithful interpretations of theories of presheaf
type

In this section we introduce the notion of faithful interpretation of geometric
theories and establish sufficent criteria for faithful interpretations of theories
of presheaf type to be again of presheaf type. We shall treat conditions (i),
(ii) and (iii) of Theorem 5.1 separately.

6.1 General results

Definition 6.1. A geometric morphism a : Set[T] — Set[T’| between the
classifying toposes of two geometric theories is said to be a faithful interpre-
tation of T into T if the induced morphism

ag : T-mod(€) — T'-mod (&)

of categories of models is faithful, reflects isomorphisms and the equality
relation between objects.

For any faithful interpretation of T/ into T and any Grothendieck topos
&, we have a subcategory Im(ag) of T'-mod(€) whose objects (resp. arrows)
are exactly the models (resp. the model homomorphisms) in the image of
the functor ag. For any functor F' : A — T-mod(&), F is full and faithful
if and only if its composite ag o F' with ag is full and faithful as a functor
A—1T m(ag).

94



Remarks 6.2. (a) Any quotient S of a geometric theory T defines a faithful
interpretation of T into S;

(b) Any expansion (in the sense of section 7.3) T of a geometric theory T’
over a signature which does not contain new sorts with respect to the
signature of T defines a faithful interpretation of T” into T; in particular,
the injectivization T,, (in the sense of Definition 6.33) of a geometric
theory T defines a faithful interpretation of T into T,,.

Given a faithful interpretation of T” into T as above, we can reformulate
the conditions of Theorem 5.1 for the theory T with respect to a small full
subcategory K of T-mod(Set) in alternative ways, as follows.

Condition (7i7)(c) of Theorem 5.1 for T with respect to K can be formu-
lated as follows: the composite functor

qs = ag oux : Flat(KP, &) — T'-mod(€)

is full and faithful into the image Im(ag) of ag, where ux is the functor
Flat(K°P, £) — T-mod(€) induced by the canonical geometric morphism
pk : K, Set] — Set[T].

Condition (i¢) of Theorem 5.1 for T with respect to K can be reformulated
by saying that for any T-model M in a Grothendieck topos &, the canonical
morphism

qe(Hn) — ag(M)

is an isomorphism.
Suppose moreover that the functor

aset : T-mod(Set) — T'-mod(Set)
restricts to a functor
f:K—H,
where H is a small full subcategory of T'-mod(Set).
We have a commutative diagram

i, Set] 22U 131, Set]

ip,c lpﬂ
Set [T] 40,) Set {T/],
where pi (resp. py) is the canonical geometric morphism determined by the
universal property of the classifying topos of T (resp. of T').

Also, for any T’-model M in a Grothendieck topos &, the functors ag
induce a £-indexed functor
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between the £-indexed categories of elements [ H,, and [ HES’( ary of the
functors
HY, = Hom%_mod(g)('yz(f),M) K — &

and

Hy gy = Homb oqie) (VE(=), as(M)) : HP — € .

Since a is by our hypothesis a faithful interpretation of theories, [a is
faithful and reflects equalities and isomorphisms. Suppose now that [ a is
moreover E-full (in the sense of Definition 2.9). Since for any functor F' with
values in a Grothendieck topos, F' is flat if and only if its £-indexed category
of elements is E-filtered, we conclude by Proposition 2.11 that if [ a is -final
then the theory T satisfies condition (i) of Theorem 5.1 with respect to the
category K if T/ does with respect to the category H. Moreover, Proposition
3.14 and Theorem 2.12 ensure that if T’ satisfies condition (ii) of Theorem
5.1 with respect to the category H then T does with respect to the category
K.

Summarizing, we have the following result.

Theorem 6.3. Let a : Set[T] — Set[T']| be a faithful interpretation of
geometric theories and let K and H be small subcategories respectively of
T-mod(Set) and of T'-mod(Set) such that the functor

aset : T-mod(Set) — T'-mod(Set)

restricts to a functor KK — H and the E-indexed functor

/a:/H?&—)/HE;(M)

is E-full and satisfies the equivalent conditions of Proposition 6.5.

Then the theory T satisfies condition (i) (resp. condition (ii)) of Theorem
5.1 with respect to the category K if T' satisfies condition (i) (resp. condition
(ii)) of Theorem 5.1 with respect to the category H.

0

Remark 6.4. If T is the injectivization of T’ (in the sense of Definition 6.33)
or if T is a quotient of T’ then the functor [a is E-full. Indeed, in the first
case this follows from the fact that if the composite of two arrows is monic
then the first one is monic, while in the second it follows from the fact that
the category of models of T is a full subcategory of the category of models
of T’

The following proposition provides an explicit rephrasing of the finality
condition for the functor [ a.
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Proposition 6.5. Let a : Set[T| — Set[T'] be a faithful interpretation of
geometric theories let M be a T-model in o Grothendieck topos € such that
the functor H;TSI(M) 1s flat. Then the following conditions are equivalent:

(a) the functor [a is E-final;

(b) For any object E of £, any T'-model ¢ in H, any T-model M in E and
any T'-model homomorphism x : WE/E(C) —!(ag(M)), there exists an
epimorphic family {e; : E; — E |i € I} in € and for each i € I a
T’ -model homomorphism f; : ¢ — aget(ci), where ¢; is a T-model in K,
and a T'-model homomorphism x; : ’yz/Ei(aset(ci)) —!g,(ag(M)) such
that x; Ofyg/Ei(fi) =ei(x) foralliel;

(¢) For any object E of £ and any X-structure homomorphism x : ¢ —
Homg(E,ag(M)), where ¢ is a T'-model in H, there exists an epimor-
phic family {e; : E; — E [i € I} in € and for each i € T a T'-model
homomorphism f; : ¢ — aset(ci), where ¢; is a T-model in K, and a
Y-structure homomorphism x; : aget(c;) — Homg(E;, ag(M)) such that
x;o fi = Homg(e;,ag(M))ox for alli € I.

Proof The equivalence between the first two conditions immediately follows
from the fact that, Hys being flat, the E-indexed category [ H) is E-filtered
and hence Remark 2.10(c) applies, while the equivalence between the second
and the third condition follows from Proposition 4.5. O

Remark 6.6. If £ = Set and T is a quotient of T’ the condition rewrites as
follows: for any T-model M in Set, any model ¢ in H and any T’-model ho-
momorphism f : ¢ — M, there exists a T-model d in K and homomorphisms
g:c—dand h:d— M such that hog = f.

In the particular case where T’ is the empty theory over a signature 3,
T is a F-finitary geometric theory over ¥ (in the sense of [32]), H is the
category of finite X-structures and K is the category of finite T-models, the
condition, required for every model M of T in Set, specializes precisely to
the ‘finite structure condition’ of [32].

The following result shows a relation between the action on points of a
morphism of classifying toposes and a related induced action on flat functors.

Theorem 6.7. Let a : Set[T| — Set[T'] be an interpretation of geometric
theories and KK and H small subcategories respectively of T-mod(Set) and of
T’ -mod(Set) such that the functor

aset : T-mod(Set) — T'-mod(Set)

restricts to a functor f : KK — H. Then for any Grothendieck topos & the
extension functor

Flat(H, E) — Flat(K, £) — T-mod(E)
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along the geometric morphism [f,Set] : [K,Set] — [H, Set| takes values in
the full subcategory Im(ag) of T-mod(E).

Proof The diagram

(1, Set] P Set[T']
[f,Set]T GT
[IC, Set] T Set[T|

clearly commutes by definition of the functor f. Therefore, in view of Di-
aconescu’s theorem, for any Grothendieck topos £ we have a commutative
diagram

T/
U(H,€)

Flat(#H°P, &) T'-mod(€)
55T . QST
Flat(K°P, &) ) T-mod (&),

where uq(l;C £) and ug{ g) are the functors of section 3.3 and &g is the extension

functor induced by the geometric morphism [f, Set], from which our thesis
immediately follows. O

The following corollary can be obtained as a particular case of the the-
orem by taking T’ to be the geometric theory of flat functors on C°P, T to
be its injectivization (in the sense of Definition 6.33), H equal to C and K
equal to D.

Corollary 6.8. Let D be a small subcategory of a small category C whose
arrows are all monic (in C), and € a Grothendieck topos. Then

(a) For any object d € D, F(d) is a decidable object of &;

(b) For any natural transformation a : F — G between two flat functors
F,G:D%? - &, a(c) : F(c) = G(c) is monic in E for every c € C. In
particular, o(d) : F(d) = G(d) is monic in & for every d € D.

O

The following corollary is obtained by applying the theorem in the case
T is equal to the injectivization of T’ (in the sense of Definition 6.33) and
H =K =1{.p.T'-mod(Set).

Corollary 6.9. Let T be a theory of presheaf type such that all the T-model
homomorphisms between its finitely presentable (set-based) models are sort-
wise injective. Then every T-model homomorphism in every Grothendieck
topos s sortwise monic.

O
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6.2 Finitely presentable and finitely generated models

In this section, we discuss, for the purpose of establishing our main criteria for
the injectivization of a theory of presheaf type to be again of presheaf type,
the relationship between finitely presentable and finitely generated models
of a given geometric theory.

Throughout this section, we shall assume for simplicity all our first-order
signatures to be one-sorted, if not otherwise stated. It is certainly possible
to extend our definitions and results to the general situation, but we shall
not embark in the straightforward task of making this explicit.

Let ¥ be a first-order signature. Recall from [20] that, given a 3-structure
M and a subset A C M, the X-structure (A) generated by A is the small-
est Y-substructure of M containing A; by the proof of Theorem 1.2.3 [20],

(A) can be concretely represented as the union [(J Ay, where the subsets
neN

A,, are defined inductively as follows: Ag = AU {cM}, where ¢M are the
interpretations in M of the constants over ¥, and A, = A, U {fM(a) :
for some n > 0, f is a n-ary function symbol of ¥ and @ is a n-tuple of ele-
ments of A,}. A Y-structure M is said to be finitely generated if there exists
a finite subset A C M such that M = (4).

In the category T-mod(Set) of set-based models of a geometric theory
T, we say that an object B is a quotient of an object A if there exists a
surjective T-model homomorphism A — B.

Proposition 6.10. Let T be a geometric theory over a signature . Then
any quotient in T-mod(Set) of a finitely generated T-model is finitely gener-
ated.

Proof Let ¢: M — N be a surjective homomorphism of T-models. Suppose
that M is finitely generated, by a finite subset A C M. Set B = ¢q(A). This
set is clearly finite, and N is equal to (B). To prove this we show, by induc-
tion on n, that for any n € N, ¢(4,,) = By,. As ¢ is a X-structure homomor-
phism, we have that ¢(Ag) = By and if ¢(A4,,) = B, then clearly ¢(A,+1) =

B +1.- Now, as q is surjective, N = q(A) =q¢( JAn) = Uqe(4n) = U Bn,
neN neN neN
as required. O

Proposition 6.11. Let T be a geometric theory over a signature 3 whose
azioms are all of the form (¢ bz ), where ¥ is a quantifier-free geometric
formula. Then any finitely presentable T-model is finitely generated.

Proof First, we notice that any geometric theory over a signature X such
that all its axioms are of the form (¢ bz 1), where v is a quantifier-free
geometric formula, satisfies the property that any substructure of a model
of T is a model of T.
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Let M be a finitely presentable T-model. We can clearly represent M as
a filtered colimit (actually, directed union) of its finitely generated substruc-
tures (equivalently, submodels, cf. the above remark). By definition of finite
presentability, the identity on M factors through one of the embeddings of a
finitely generated T-submodel of M into M; such embedding is thus neces-
sarily an isomorphism, and M coincides with its domain. In particular, M
is finitely generated, as required. O

Proposition 6.12. Let T be a geometric theory over a signature > whose
category of set-based models is finitely accessible (in particular, a theory of
presheaf type). Then any finitely generated T-model is a quotient of a finitely
presentable models of T in the category T-mod(Set).

If moreover all the axzioms of T are of the form (¢ bz 1), where ¢ is
a quantifier-free geometric formula, then the finitely generated T-models are
precisely the quotients of the finitely presentable models of T in the category
T-mod(Set).

Proof Asthe category T-mod(Set) is finitely accessible, M can be expressed
as a filtered colimit (M = colim(N;),{J; : N; — M | i € I}) of finitely
presentable models N;. Let aq,...,a, a finite set of generators for M. As
the family of arrows {J; : N; - M | ¢ € I} is jointly surjective (since
filtered colimits in T-mod(Set) are computed pointwise as in Set), for any
generator a; there exists an index kj € Z and an element d; of N, such
that Ji;(d;) = a;. Now, the set of generators a; being finite and the index
category Z being filtered, we can suppose without loss of generality that all
the k; are equal. We thus have an index k € Z and a string of elements of IVj,
which are sent by Ji to the generators of M; hence the arrow Ji : N — M
is surjective.

The second part of the proposition follows from Propositions 6.11 and
6.10, which ensure that every quotient of a finitely presentable model is
finitely generated. O

Proposition 6.13. Let ¥ be a signature without relation symbols and T a
geometric theory over a larger signature X' obtained from X by solely adding
relation symbols whose interpretation in any set-based T-model coincides with
the complement of a geometric formula over ¥ (for instance, the injectiviza-
tion of a geometric theory over X.). Suppose that all the T-model homomor-
phisms between set-based T-models are injective. Then any finitely generated
T-model is finitely presentable.

Proof From Proposition 6.11, we know that every finitely presentable T-
model is finitely generated. It thus remains to prove the converse.

We observed in [6] (Lemma 6.2) that, given a category D with filtered
colimits, an object M of D is finitely presentable in D if and only if for any
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filtered diagram D : Z — D, any arrow M — colim(D) factors through
one of the canonical colimit arrows J; : D(i) — colim(D) and for any ar-
rows f : M — D(i) and g : M — D(j) in D such that Jijo f = Jjog,
there exists £ € Z and two arrows s : ¢ — k and ¢t : j — k such that
D(s)o f = D(t) og. Now, the latter condition is automatically satisfied if
all the arrows of D are monic (since the category Z is filtered); in particu-
lar, applying this criterion to the case of our theory T yields the following
characterization of the finitely presentable T-models: a set-based T-model
M is finitely presentable if and only if for any filtered colimit colim(N;) of
set-based T-models, with colimit arrows J; : N; — colim(N;), any T-model
homomorphism f : M — colim(N;) factors through at least one arrow J; in
the category T-mod(Set).

Now, if M is finitely generated by elements a1, ..., a,, for any of gener-
ator a; of M there exists an index k; of Z and an element b; € Ny, such that
f(a;) = Ji(b;). As the category 7 is filtered, we can suppose without loss of
generality that all the k; are equal to each other. Therefore there exists an
index k € 7 and elements by, ..., b, of Ni such that f(a;) = Jx(b;) for all 1.
The image of M under f is thus entirely contained in Ny and hence we have
a function g : M — Ny, such that J, o g = f. Let us prove that g is a X'-
structure homomorphism. The fact that g is a 3-structure homomorphism,
i.e. that it commutes with the interpretation of the function symbols over
3, follows from the fact that f is by the injectivity of Ji. Concerning the
preservation of atomic relations over Y, this is guaranteed by the fact that,
were they not preserved, f would preserve the relations of satisfaction by
elements of the geometric formulae over ¥ defining the complements of such
relations, contradicting the fact that f is a ¥/-structure homomorphism. [

A useful sufficient condition for condition (4i7)(b)-(1) of Theorem 5.1 to
hold, which is applicable to categories K whose arrows are not necessarily
monomorphisms is the following.

Theorem 6.14. Let T be a geometric theory over a signature 3, and K a
small full subcategory of T-mod(Set) such that every model in K is a quotient
of a T-model which is finitely presented by a geometric formula over 2. Then
T satisfies condition (iii)(b)-(1) of Theorem 5.1 with respect to the category
K.

Proof We have to show that the extension functor
(i) : Flat(K, €) — Flat s, (Cr, €)

of section 3.3 is faithful.

By Theorem 3.5, for any formula {¥ . ¢} presenting a T-model Mz 4,
u“{,c’g) (F)({# . ¢}) = F(M{z4}). The thesis thus follows immediately from
Proposition 6.17. 0
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6.3 Reformulations of condition (7ii) of Theorem 5.1

Let us work in the context of a faithful interpretation of theories as in the
last section.
Let
(i e : Flat(K°, &) — T-mod (&)

and
uq(r%g) : Flat(HP, £) — T'-mod(€)

be the functors of section 3.3.

Suppose that T’ is of presheaf type and that H contains a category P
whose Cauchy-completion coincides with the category of finitely presentable
T’-models (so that T’ is classified by the topos [P, Set]). Notice that, since
the functor f : K — H is a restriction of the functor aget, K gets identified
under it with a subcategory of H and hence, by Remark 3.2(c), the extension

functor
&e : Flat(K°P, &) — Flat(H°P, &)

along the geometric morphism [f, Set] is faithful.
From the fact that T’ faithfully interprets in T (in the sense of Definition
6.1) it follows that the functor u?(l"C g) 1s faithful (resp. full and faithful) if

and only if the composite functor ug{ £)° &e is, when regarded as a functor

with values in the subcategory I'm(ag) of T'-mod(€). The interest of this
reformulation lies in the alternative description of the functor

uly e : Flat(H?, €) = T'-mod(€)

which is available under our hypotheses. Indeed, the following proposition
holds.

Proposition 6.15. Under the hypotheses specified above, the functor
Uj(];_[’g) : Flat(?—[wyg) RN T/_mod(g) ~ Flat(P"p,E)

sends any flat functor F : HP — & to its restriction F|P : PP — &, and
acts accordingly on the natural transformations.

Proof This immediately follows from Theorem 3.5 in view of the fact that
‘H contains P and all the objects of P are finitely presented T’-models (since
T’ is by our hypothesis of presheaf type classified by the topos [P, Set]). O
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As a corollary of the proposition, we immediately obtain the following
result.

Theorem 6.16. Under the hypotheses specified above, we have that

(i) T satisfies condition (i1i)(b)-(1) of Theorem 5.1 with respect to the cat-
egory K if and only if for any Grothendieck topos £, every natural
transformation between flat functors in the image of the functor &g is
determined by ils restriction to the category P;

(ii) T satisfies condition (iii)(b)-(2) of Theorem 5.1 with respect to the cat-
egory K if and only if for any Grothendieck topos £, every natural
transformation between restrictions to P of flat functors in the image
of the functor & can be extended to a natural transformation between
the functors themselves.

Let us now consider the satisfaction of condition (i77)(b) of Theorem 5.1
by the injectivization of a geometric theory T satisfying the hypotheses of
Propositions 6.11 and 6.13. Since by the proposition every finitely generated
T-model is finitely presentable in T-mod(Set) and every model of T is a
directed union of its finitely generated submodels, the category T-mod(Set)
is equivalent to Flat(f.g.T-mod(Set)?, Set), where f.g.T-mod(Set) is the
full subcategory of T-mod(Set) on the finitely generated T-models. The
following theorem shows that condition (i7i)(b)-(1) is satisfied. Before stating
it, we need a lemma.

Lemma 6.17. Let C be a small category, £ a topos and F : CP — &£ a flat
functor. Then for any epimorphism f : a — b in C, the arrow F(f) : F(b) —
F(a) is monic in £.

Proof The thesis follows at once from the fact that flat functors preserve
all the finite limits which exist in the domain category using the well-known
characterization of monomorphisms in terms of pullbacks. U

Theorem 6.18. Let T be the injectivization of a theory of presheaf type T’
(in the sense of Definition 6.33) such that the every finitely presentable T'-
model is finitely generated (cf. for instance Proposition 6.11) and the finitely
generated T'-models are all quotients (in the sense of section 6.2) of finitely
presentable T'-models (cf. for instance Proposition 6.12). Then T satisfies
condition (ii1)(b)-(1) of Theorem 5.1 with respect to the category of finitely
generated T'-models.

Proof It suffices to apply Proposition 6.15 and Lemma 6.17 in conjunction
with Theorem 6.16 by taking K equal to the category of finitely generated
T’-models and sortwise monic homomorphisms between them, H equal to
the category of finitely generated T'-models and homomorphisms between
them and P equal to the category of finitely presentable T’-models. O

103



The following proposition can be useful in verifying that condition (i)
of Theorem 6.16 holds.

Proposition 6.19. Let D be a full subcategory of a category C with filtered
colimits such that

o for any object ¢ of C there exists an epimorphism a — ¢ in C from an
object a of D to c,

o cvery object of D is finitely presentable in C and

o cvery object ¢ of C can be canonically expressed as a filtered colimait
colim(d;) of objects of D, with colimit arrows J; : di — ¢ (for i € I).

Let F and G be flat functors C? — E. Then a natural transformation
B : Flp — G|p lifts (uniquely) to a natural transformation F — G if and
only if for every epimorphism q : a — b of the form J;, the arrow ((a) :
F(a) — G(a) restricts to an arrow F(b) — G(b) along the monomorphisms
F(q): F(b) = F(a) and G(q) : G(b) — G(a).

Proof Clearly, the ‘only if’ direction is trivially satisfied, so we only have
to care about the ‘if’ direction. The uniqueness of the extended natural
transformation follows from Proposition 6.17, so we just have to prove the
existence.

Notice that for every object ¢ of C there exists an ¢ € Z such that the
arrow J; : d; — ¢ is an epimorphism. Indeed, by our hypotheses there exists
an epimorphism g : a — ¢ to ¢ from an object a of D to ¢ and, since a is
finitely presentable in C, ¢ necessarily factors through an arrow of the form
J;, which is necessarily epic as q is.

Let 8 : F|p — G|p be a natural transformation. Choose an ¢ € Z such
that the arrow J; : d; — ¢ is an epimorphism (such arrow exists by the above
remark), and set a(c) equal to the restriction of 3(d;) along the arrows F'(.J;)
and G(J;).

First, let us verify that this definition is well-posed, i.e. that it does not
depend on the choice of ¢ € Z. For any other index j such that J; is an
epimorphism with codomain ¢, the filteredness of Z ensures the existence of
an index k and two arrows £ : 4 — k and x : j — k in Z, whence J; 0 & = J;
and J, o x = J;. Now, if we denote by u the restriction of the arrow (3(dy)
along the arrows F(J;) and G(Ji) we obtain, by invoking the naturality of
B with respect to the arrows £ and x in Z, that v is equal to the unique
restriction of 3(d;) along the arrows F'(J;) and G(J;) and to the unique
restriction of 3(d;) along the arrows F(J;) and G(J;); in particular, these
two restrictions are equal, as required.
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It remains to show that the assignment ¢ — «(c) is natural in ¢, i.e. that
for any arrow f :c — ¢ in C, the following naturality square commutes:

F(e) -2 ()

To prove this we observe that, using the fact that there exists an epimorphism
J;i : d; — cfrom an object of D to ¢, we can suppose without loss of generality
¢ to lie in D; indeed, since G sends epimorphisms to monomorphisms, the
commutativity of the naturality square above is equivalent, by definition of
a(c), to the commutativity of the naturality square relative to the arrow
f oJ;. Now, consider the canonical representation of ¢ as a filtered colimit
colim(e;) (for j € J) of objects in D, with colimit arrows Kj : ej — ¢
(j € J). Since c lies in D, c is finitely presentable in C by our hypotheses
and hence there exists an index j € J and an arrow r : ¢ — e; such
that K; or = f. The commutativity of our diagram thus follows from the
commutativity of the naturality square of g relative to the arrow r and the
definition of a(c’) in terms of B(e;). O

The following result, obtained by combining Theorem 6.45 and Proposi-
tion 6.19, gives a criterion for condition (7i7)(b)-(2) to hold.

Theorem 6.20. Let T be the injectivization of a theory of presheaf type T
such that every finitely presentable T'-model is finitely generated (cf. for in-
stance Proposition 6.11), the finitely generated T'-models are all quotients
(in the sense of section 6.2) of finitely presentable T'-models (cf. for in-
stance Proposition 6.12) and every monic T'-model homomorphism between
finitely generated models of T is sortwise monic. Then T satisfies condition
(7i1)(b)-(2) of Theorem 5.1 with respect to the category C of finitely generated
models of T' and sortwise monic homomorphisms between them if and only
if for any flat functors F,G : C°? — &, denoting by F and G their extension
to the category of finitely generated T'-models and homomorphisms between
them and by P the full subcategory of C on the finitely presentable T'-models,
any natural transformation o : F|p — G|p satisfies the following property:
for any quotient T-model homomorphism q : a — b, where a is finitely pre-
sentable and b is finitely generated, the arrow a(b) restricts along the monic
arrows F(q) and G(q).

O

Remark 6.21. Notice that if F' and G are representable functors then the
condition of the theorem is trivially satisfied, the category T’-mod(Set) being
finitely accessible.
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6.4 Quotient theories

Recall from [9] that a gquotient of a geometric theory T over a signature ¥ is
a geometric theory T’ over 3 such that every axiom of T is provable in T'.
It is often useful, in investigating whether a given geometric theory S is
of presheaf type, to consider it in relation to a theory T of presheaf type of
which S is a quotient.
The following result is a corollary of Theorem 6.3 and Proposition 6.5.

Corollary 6.22. Let T be a theory of presheaf type over a signature X and
S be a quotient of T such that all the finitely presentable S-models are finitely
presentable as T-models (for instance, T can be the empty theory over a finite
signature and S can be any geometric theory over 3 whose finitely presentable
models are all finite, cf. Theorem 6.4 [6]). Suppose moreover that for any
object E of a Grothendieck topos £ and any -structure homomorphism x :
¢ — Homg(E, M), where ¢ is a finitely presentable T-model and M is a
S-model in £, there exists an epimorphic family {e; : E; — E |1 € I} in
E and for each i € I a T-model homomorphism f; : ¢ — ¢;, where ¢; is
a finitely presentable S-model, and a X-structure homomorphism x; @ ¢; —
Homg(E;, M) such that x; o f; = Homg(e;, M) ox for alli € I. Then S is
of presheaf type.

Proof Condition (iii) of Theorem 5.1 satisfied by Proposition 5.11, while
the fact that conditions (i) and (i7) of Theorem 5.1 are satisfied follows
immediately from Theorem 6.3 in view of Proposition 6.5 (take T equal to S,
T’ equal to T, K equal to the category of finitely presentable S-models and
H equal to the category of finitely presentable T-models - the fact that [a
is E-full is clear). O

We shall say that the family of homomorphisms x; in the statement of
the corollary defines a ‘localization’ of the homomorphism .

Remarks 6.23. (a) Corollary 6.22 generalizes Theorem 3.6 [32], whose hy-
potheses, which are expressed syntactically in terms of geometric logic,
once interpreted in topos-theoretic semantics, are stronger than those of
Corollary 6.22 in the particular case where T is the empty theory over
a finite signature and S is any geometric theory over ¥ whose finitely
presentable models are all finite.

(b) Theorem 6.28 follows as an immediate consequence of the corollary, ob-
serving that if T and T’ are theories as in the hypotheses of the theorem
then any T-model homomorphism having as codomain a T’-model also
has as domain a T’-model whence the hypotheses of the corollary are
trivially satisfied.
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(c) Assuming the first hypothesis of the corollary, the second is actually
necessary for S to be of presheaf type. Indeed, if S is of presheaf type
then every model M of S is a £-filtered colimit of the associated canonical
diagram of ‘constant’ finitely presentable S-models (cf. sections 4.4 and
5.3), which by the first hypothesis are also finitely presentable T-models;
the E-finite presentability of ¢ thus implies the second hypothesis of the
corollary (cf. Proposition 4.15).

(d) Corollary 6.22 is often applied to pairs of the form (S, T = S.), where S is
a geometric theory over a signature Y and T equal to the cartesianization
(or finite-limit part) of S. of S, namely the cartesian theory over X
consisting of all the cartesian sequents over X which are provable in
S (recall that a S-cartesian sequent is a sequent over X involving S-
cartesian formulae over X, that is formulae built from atomic formulae
by only using finitary conjunctions and S-provably unique existential
quantifications). Notice that the cartesianization of S is the biggest
cartesian theory over the signature of S of which S is a quotient.

The question of whether for any theory of presheaf type T, every finitely
presentable T-model is finitely presentable as a T.-model is still open and
will be addressed in full generality in another paper. For the moment,
we limit ourselves to remarking that this property is satisfied by all the
examples of theories of presheaf type considered in this paper (cf. section
8).

Corollary 6.22 can also be applied to pairs consisting of a geometric
theory over a signature X and the empty theory over the same signature,
provided that the former satisfies appropriate hypotheses. In order to apply
the corollary in this context, we need the following lemma. Below, when we
say that a Y-structure c is finite we mean that for every sort A over X, cA
is finite.

Lemma 6.24. Let T be a geometric theory over a finite signature ¥ with a
finite number of axioms each of which is of the form (T bz \/¢;), where the
¢; are finite conjunctions of atomic formulae. Then for anyl%‘[—model M in a
Grothendieck topos £, any object E of £ and any X-structure homomorphism
fic— Homg(E, M) from a finite ¥-structure c there exists an epimorphic
family {e; : E; — E | i € I} in € and for each i € I a finile X-substructure
¢i of Homg(FE;, M) which is a model of T and a X-structure homomorphism
fi ¢ = ¢ such that Homg(e;, M) o f = j; o f; (where j; is the canonical
inclusion of ¢; into Homg(E;, M)).

Proof For each axiom o of the form (T k. \/ ¢7) and any finite tuple

1€l
{ of elements of ¢ of the same type as 2, since M is by our hypotheses a
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T-model, there exists an epimorphic family {eg : Ef — E|i€l,}in & such

that for any i € I,, f(€) o ef factors through [[#5 . ¢i]]a. Since there is
only a finite number of axioms of T and of elements of ¢, and the fibered
product of a finite number of epimorphic families is again an epimorphic
family, there exists an epimorphic family {e; : Exy — E | k € K} such that
for any k € K, any axiom o of T and any tuple 5 of elements of ¢ of the
appropriate sorts, the element f(g) oer, € Homg(FEy, M) satisfies the formula
on the right-hand side of the sequent o. Hence if we consider, for each
k € K, the surjection-inclusion factorization iy o f of the homomorphism
Homg(eg, M) o f : ¢ - Homg(Ex, M) (in the sense of Lemma 6.51), we
obtain that ¢j is finite, since f; is surjective, and that all the axioms of T
are satisfied in ¢ (since the formulae ¢; are finite conjunctions of atomic
formulae and ¢ is a substructure of Homg(Ey, M)), that is all the ¢ are
models of T. This proves our thesis. O

Corollary 6.25. Let T be a geometric theory over a finite signature 3 with a
finite number of axioms each of which is of the form (T Fz \/¢;), where the
o; are finite conjunctions of atomic formulae. Suppose thatzfolr any T-model
M in a Grothendieck topos £ and object E of £, every finitely generated -
substructure of Homg(E, M) has sortwise only a finite number of elements
besides the constants (for instance, when the signature ¥ does not contain
Junction symbols except for a finite number of constants). Then T is of
presheaf type, classified by the category of covariant set-valued functors on
the category of finite models of T.

Proof As the signature of T is finite, every model which sortwise contains
only finitely many elements besides the constants is finitely presentable as a
model of the empty theory over the signature of T (c¢f. Theorem 6.4 [6]). This
remark ensures, by Lemma 6.24, that the theory T satisfies the hypotheses
of Corollary 6.22 with respect to the empty theory over its signature. Since
the latter theory is clearly of presheaf type, it follows that T is of presheaf
type as well, as required. O

6.4.1 Presheaf-type quotients and rigid topologies

In this section we shall analyze the presheaf-type quotients of a presheaf-type
theory T in terms of the associated subtoposes of the classifying topos for T.

We know from [9] that every quotient T” a theory of presheaf type T corre-
sponds to a unique Grothendieck topology J on the category f.p.T-mod(Set)°?
(under the duality theorem of [9]).

Recall from [21] (Definition C2.2.18) that a Grothendieck topology J on
a category C is said to be rigid if for every object ¢ of C, the family of all
the arrows to ¢ in C from J-irreducible objects of C (i.e., objects d with the
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property that the only J-covering sieve on d is the maximal one), generates
a J-covering sieve.

We can characterize the topologies J such that the corresponding subto-
pos Sh(f.p.T-mod(Set)°?, J) — [f.p.T-mod(Set), Set] is an essential geo-
metric inclusion (that is, a geometric inclusion whose inverse image which
admits a left adjoint) by using the following site characterizations:

(1) A canonical geometric inclusion Sh(C, J) < [C°P, Set| from a topos
Sh(C, J) which is equivalent to a presheaf topos and such that C is a Cauchy-
complete category, is essential if and only if the topology J is rigid;

(2) A geometric morphism (resp. geometric inclusion) [C, Set] — [D, Set],
where D is a Cauchy-complete category, is essential if and only if it is induced
by a functor (resp. by a full and faithful functor) C — D.

The latter characterization is well-known (cf. Lemma A4.1.5 [21] and
Example A4.2.12(b)), while the former can be proved as follows. If J is
rigid then, denoting by D the full subcategory of C on the J-irreducible ob-
jects, the Comparison Lemma yields an equivalence Sh(C,J) ~ [D°P, Set]
which makes the canonical inclusion Sh(C,J) < [C°P, Set] isomorphic to
the canonical geometric inclusion [D°P, Set| — [C°P, Set| induced by the full
inclusion of categories D°P < C°P: in particular, the morphism Sh(C, J) <
[C°P, Set] is essential. Conversely, if the canonical geometric inclusion i :
Sh(C, J) < [C°P, Set] is essential then if Sh(C, J) is equivalent to [D°P, Set],
by property (2) i; is isomorphic to a geometric inclusion [D°P,Set] —
[C°P,Set| induced by a full embedding D°P <« C°P. Now, the topology
Jp on C defined by saying that a sieve R on c is J-covering if and only if
it contains all the morphisms from objects of D to c is clearly rigid, and
the Comparison Lemma yields an equivalence Sh(C, Jp) ~ [D°P, Set] which
makes the geometric morphism [DP,Set] — [C°P, Set] isomorphic to the
canonical inclusion Sh(C, Jp) < [C°P, Set| (cf. Example A2.2.4(d) [21]). Tt
thus follows that J = Jp; in particular, J is rigid.

These site characterizations define the arches of a ‘bridge’ (in the sense
of [13]) leading to the following result (cf. also Theorem 6.8 [6] for a related
result).

Theorem 6.26. Let T’ be a quotient of a theory of presheaf type T, cor-
responding to a Grothendieck topology J on the category f.p.T-mod(Set)’”
under the duality theorem of [9]. Suppose that T' is itself of presheaf type.
Then every finitely presentable T’ -model is finitely presentable also as a T-
model if and only if the topology J is rigid.

Proof If every finitely presentable T’-model is finitely presentable also as
a T-model then the geometric inclusion corresponding via the duality the-
orem to the quotient T” of T is induced by the inclusion of the respective
full subcategory of f.p.T-mod(Set) on the T’-models. In view of the above
characterizations, the topology J is rigid. Conversely, if J is rigid then
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Sh(f.p.T-mod(Set)°?, J) is equivalent to the presheaf topos [D, Set], where
D°P is the full subcategory of f.p.T-mod(Set)°? on the J-irreducible objects.
Clearly, this subcategory is Cauchy-complete (as f.p.T-mod(Set) is Cauchy-
complete and the condition of J-irreducibility is stable under retracts) and
hence, since T’ is of presheaf type, it is equivalent to the category of finitely
presentable T’-models; in particular, any such model is finitely presentable
as a T-model. 0

Remark 6.27. (i) Under the hypothesis that every finitely presentable
T'-model is finitely presentable as a T-model, the full subcategory
£.p.T’-mod(Set) of f.p.T-mod(Set) and the topology J can be defined
in terms of each other as follows (cf. the proof of the theorem): the
objects of f.p.T’-mod(Set) are precisely the J-irreducible objects of
f.p.T-mod(Set), and a sieve S in f.p.T’-mod(Set) on an object ¢ is
J-covering if and only if it contains all the arrows in f.p.T-mod(Set)
from finitely presentable T’-models to c.

(i) If TV is a presheaf-type quotient of a theory of presheaf type T then for
any finitely presentable T-model ¢, any T’-model M and any T-model
homomorphism f : ¢ — M, there exists a T-model homomorphism
g : ¢ — c to a finitely presentable T’-model ¢’ and a T-model homo-
morphism A : ¢ — M such that hog = f. Indeed, M can be expressed
as a filtered colimit of finitely presentable T’-models ¢’; therefore, as
¢ is finitely presentable as a T-model, f necessarily factors through a
colimit arrow ¢/ — M.

(iii) Under the hypothesis that every finitely presentable T'-model is finitely
presentable as a T-model, by the duality theorem of [9], the syntactic
description of T’ in terms of J given therein and the description of J
in terms of f.p.T"-mod(Set) given in Remark 6.27(a), T’ can be charac-
terized as the quotient of T obtained by adding all the sequents of the
form (¢(%) bz \/3z:0;(7;, Z)), where {0;(z;, Z) : ¢i(T;) — ¢(Z)} is the

i€l
family of T-provably functional formulae from the formulae ¢;(z;) pre-
senting a T'-model to a T-irreducible formula (equivalently, a formula
presenting a T-model) ¢(Z).

The following result provides a natural class of presheaf-type quotients
of presheaf-type theories whose associated topologies are rigid.

Theorem 6.28. Let T be a theory of presheaf type over a signature 2. Then
any quotient T' of T obtained from T by adding sequents of the form ¢tz L,
where ¢(Z) is a geometric formula over ¥, is classified by the topos [T, Set],
where T is the full subcategory of f.p.T-mod(Set) on the T'-models.

Proof By covering each ¢(Z) by T-irreducible formulae in the syntactic
category Cr of T, we can suppose without loss of generality all of the ¢(Z) to
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be T-irreducible, that is to present a T-model M. Then, by the results of
[9], the quotient T’ is classified by the topos Sh(f.p.T-mod(Set)°?, J), where
J is the smallest Grothendieck topology on f.p.T-mod(Set)°? which contains
all the empty sieves on the models My presented by the formulae ¢ involved
in the axioms ¢ -z 1 added to T to form T’. Let 7 be the full subcategory
of f.p.T-mod(Set) on the T’-models. Then T is J-dense; indeed, any object
not in 7 admits an arrow from a model of the form M, and hence is covered
by the empty sieve. Further, for any object of T, the J-covering sieves on it
are exactly the maximal ones; therefore, the Comparison Lemma yields an
equivalence Sh(f.p.T-mod(Set)°?, J) ~ [T, Set], as required. O

6.4.2 Finding theories classified by a given presheaf topos

The following theorem provides a method for constructing theories of presheaf
type whose categories of finitely presentable models are equivalent, up to
Cauchy-completion, to a given small category of structures.

Theorem 6.29. Let T be a theory of presheaf type and A a full subcategory of
f-p.T-mod(Set). Then the A-completion T’ of T (i.e., the set of all geometric
sequents over the signature of T which are valid in all models in A) is of
presheaf type classified by the topos [A,Set]; in particular, every finitely
presentable T'-model is a retract of a model in A.

Proof Since every model in A is finitely presentable as a T-model, we have
a geometric inclusion 7 : [A, Set] < Set[T] ~ [f.p.T-mod(Set), Set] induced
by the canonical inclusion A < f.p.T-mod(Set). This subtopos corresponds,
by the duality theorem of [9], to a quotient T” of T classified by the topos
[A, Set], which can be characterized as the collection of all geometric se-
quents which hold in every model in A, that is, as the A-completion T of T
(recall that theories of presheaf type have enough set-based models). There-
fore T’ is of presheaf type classified by the topos [A, Set]; but the finitely
presentable T’-models are the finitely presentable objects of Ind-A, that is
the retracts of objects of A in Ind-A ~ T’-mod(Set). This completes the
proof of the theorem. O

Remarks 6.30. (a) Theorem 6.29 is a generalization of Joyal and Wraith’s
recognition theorem (Theorem 1.1 [2]), as well as of Proposition 5.3 [22].
Indeed, the former theorem can be obtained as the particular case of
Theorem 6.29 when T’ has enough set-based models and every set-based
model of T" is a filtered colimit of finitely presentable models of T” which
are also finitely presentable as T-models, while Proposition 5.3 [22] can
be obtained as the specialization of this latter theorem to the case when
T’ is a disjunctive theory and T is a cartesian theory (in view of the fact,
proved in [22], that the category of set-based models of a disjunctive
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theory is multiply finitely presentable and hence that every set-based
model of a disjunctive theory can be expressed as a filtered colimit of
finitely presentable models of it).

(b) It is worth to compare Theorem 6.29 with Theorem 5.1. If T is a quotient
of a theory of presheaf type T and K is a small category of set-based T’-
models such that every model in K is finitely presentable as a T-model
then, in order to conclude that T’ is of presheaf type classified by the
topos [IC, Set|, we can either verify conditions (i) and (i¢) of Theorem
5.1 or to verify that the models in K are jointly conservative for T’; in
fact, as observed in Remark 5.2(c), conditions (i) and (i) of Theorem
5.1 together imply that the models in K are jointly conservative for T’.

Corollary 6.31. Assuming the aziom of choice, every coherent theory (or,
more generally, any theory in a countable fragment of geometric logic as in
the hypotheses of Theorem 5.1.7 [27]) T over a finite relational signature
whose axioms do not contain existential quantifications is of presheaf type.

Proof Since the axioms of T do not contain quantifications, every substruc-
ture of a model of T is a model of T. Moreover, since the signature of T
is relational, every finitely generated substructure over the signature of T
contains only a finite number of elements besides the constants. Therefore
every finitely presentable model of T contains only a finite number of ele-
ments besides the constants (as any model of T is a filtered union of its finite
submodels); on the other hand, since the signature of T is finite, every such
model is finitely presentable as a model of the empty theory over the signa-
ture of T (cf. Theorem 6.4 [6]). Therefore condition (éii) of Theorem 5.1
is satisfied (cf. Proposition 5.11(i)). Now, under the axiom of choice, every
theory satisfying the hypotheses of Theorem 5.1.7 [27], in particular any co-
herent theory, has enough models, whence our thesis follows from Theorem
6.29. O

It is nonetheless important, from a constructive viewpoint, to be able to
prove that a theory is of presheaf type without invoking the axiom of choice.
Theorem 5.1 allows us to do so in a great variety of cases.

Theorem 6.29 shows that a good first step in constructing a geometric
theory classified by a presheaf topos [KC, Set] consists in finding a theory of
presheaf type T such that the category K can be identified as a full sub-
category of the category of finitely presentable models of T. Indeed, under
these hypotheses, Theorem 6.29 ensures the existence of a quotient Ty of
T classified by the topos [KC, Set|, which can be characterized as the theory
congisting of all the geometric sequents over the signature of T which are
valid in every model in . In most cases, if one has a natural candidate S
for a theory classified by the topos [C, Set], the theory T can be chosen to
be the Horn part of S or the cartesianization S, of S.
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Of course, the abstract characterization of T as the theory consisting of
all the geometric sequents over the signature of T which are valid in every
model in K is not very useful in specific contexts, where one looks for an
axiomatization of Tx as simple and ‘economical’ as possible. To this end, we
observe that if every M in K is strongly finitely presented as a model of T as
well as finitely generated (in the sense that for any sort A over the signature
of T the elements of the set M A are precisely given by the interpretations
in M of terms t4(Z) (or more generally of T-provably functional predicates)
over the signature of T, where & are the generators of M as strongly finitely
presented model of T) then we dispose of an explicit axiomatization of the
theory Tx, as given by the following

Theorem 6.32. Let T be a geometric theory over a signature X and IC a full
subcategory of the category set-based T-models such that every T-model in IC
is both strongly finitely presentable and finitely generated (with respect to the
same generators). Then the following sequents (where we denote by P the set
of geometric formulae over ¥ which strongly present a T-model in K), added
to the axioms of T, yield an aziomatization of a quotient of T classified by the
topos [K,Set] via a Morita-equivalence induced by the canonical geometric
morphism [K,Set] — Sh(Cr, Jr).

In particular, if the theory T is of presheaf type (whence every finitely
presentable T-model is strongly finitely presentable) and all the models in the
full subcategory K of T-mod(Set) are finitely presented and finitely gener-
ated (with respect to the same generators), the following sequents yield an
aziomatization of the theory T defined above:

(i) The sequent
(THy \/ GBe));

o(Z)eP

(ii) For any formulae ¢(Z) and Y (y) in P, where & = (a:’fh, o,z and
Y= (lel, oo yBm) | the sequent

(S@N(G) Faz V @A N (@i =t(Z) Ay = 55(2)),
X(DEPH (D), ti™ () ie{lnl,
$PL(Z),....sBm (2) JE{Lim}
where the disjunction is taken over all the formulae x(2) in P and all
the sequences of terms t{1(2), ...t (2) and s21(2),. .., sBm(2) whose

output sorts are respectively Ay, ..., An, B1,..., By and such that, de-
noting by & the set of generators of the model Mz, (strongly) finitely

presented by the formula x(2), (t{ (&),...,t4 () e [[Z. ¢llmy,, and

— —

(s72(€), - sBm(©) € 17 - Yl IMeyy i

113



iii) For any formulae &(Z) and (i) in P, where & = (z, ..., zA»
(ii1) y f ) Y(y , 1 4

S Th")
_, B Arp— Ay »
7= (y’' ..., yBm), and any terms t72(5), 572 (), - - -, 2o (), s ()
whose output sorts are respectively Ay, ..., A, the sequent

(' N G@) = si@) Ad(tr /@1, tn/mn) A S(s1/T15 s 50 /20) A (F)

g \V (@FEHA N 5 =u(2),

X(D)EP ! (2),...ub (2) gL, m}

where the disjunction is taken over all the formulae x(Z) in P and
all the sequences of terms uP'(2),... ,ubm (2) whose output sorts are
respectively By, ..., By, and such that, denoting by E the set of gener-
ators of the model Mz, (strongly) finitely presented by the formula

— — —

X(Z)} (ulBl (5)7 s 7“’7%7”(5)) € H:’j : wﬂl\/f{g‘x} and ti(u1(€)7 s 7um(g)) =

—

si(ui(€), ..., um(€)) in Mz forallie{1,...,n};

(iv) For any sort A over ¥, the sequent

(Thea VGG Az =1(2),

X(2)EPtA(2)

where the the disjunction is taken over all the formulae x(2) in P and
all the terms t*(Z) whose output sort is A;

(v) For any sort A over ¥, any formulae ¢(Z) and Y(y) in P, where

T = (x‘fh, o xiny and g = (yPr, .. yBr), and any terms tA(T) and
s4(i), the sequent

(&(%) AN p(Y) NE(E) = s(Y) Fag \/ (F2) (x(2)A
X(EP P (2),pia™ (2)
L (E),an™(2)

AN (@i=piE) Ay =qi(2)),
i€{1,...,n},
je{1,...m}

where the disjunction is taken over all the formulae x(2) in P and all
the sequences of terms p‘fl(E’), o pin and q{‘%l(é'), ooy qBm(2) whose
output sorts are respectively Ay, ..., An, B1,..., By and such that, de-
noting by gthe set of generators of the model Myz.\y (strongly) finitely

presented by the formula x(2), (pi2(€),...,pa (&) € [T . Pz

—

and (g0 (8),....aB(€)) € [[§ - Y., and tpi(§),...,pa(d)) =

—

s(@1(€),- -, am()) in Mz
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Proof Let R be the geometric theory obtained from T by adding all the
sequents specified above. The objects in K are clearly models of R (cf.
Remarks 5.6(a) and 5.10). From the fact that they are strongly finitely
presentable it follows by Proposition 5.11(ii) that condition (iii) of Theorem
5.1 is satisfied by the theory R with respect to the category K. By Theorems
5.3 and 5.9 and Remarks 5.6(a) and 5.10, R also satisfies conditions (7)
and (i¢) of Theorem 5.1 with respect to /. Theorem 5.1 thus implies that
R is of presheaf type classified by the topos [IC, Set]. Moreover, it can be
readily seen that the resulting Morita-equivalence is induced by the canonical
geometric morphism from [/, Set] to the classifying topos for T; this ensures
in particular that if T is of presheaf type then R is equal to the theory Ty. [J

6.5 Injectivizations of theories

For any geometric theory T, we can slightly modify its syntax so to obtain a
geometric theory whose models in Set are the same as those of T and whose
homomorphisms between them are precisely the sortwise injective T-model
homomorphisms.

This construction is useful in many contexts. For instance, in [9] we
showed that if the category f.p.T-mod(Set) of finitely presentable models
of a theory of presheaf type T satisfies the amalgamation property then
the quotient of T corresponding to the subtopos Sh(f.p.T-mod(Set)°?, J,:)
of [f.p.T-mod(Set), Set] (where J,; is the atomic topology) via the duality
theorem of [9] axiomatizes the homogeneous T-models (in the sense of [5]) in
any Grothendieck topos. Now, the notion of homogeneous T-model, which
is strictly related to the notion of weakly homogeneous model considered in
classical Model Theory (cf. [20]), is mostly interesting when the arrows of
the category T-mod(Set) are all monic; indeed, as shown in [6], a necessary
condition for T to admit an associated ‘concrete’ Galois theory, is that all
the arrows in f.p.T-mod(Set) should be strict monomorphisms.

This motivates the following formal definition.

Definition 6.33. Let T be a geometric theory over a signature ¥. The
injectivization T, of T is the geometric theory obtained from T by adding
a binary predicate D4 — A, A for each sort A over ¥ and the coherent
sequents

(DA('rAv yA) N xA - yA) l_acA,yA J*)
and

(T FwA’yA DA(xA, yA) vt = yA) .

The models of T,, in an arbitrary topos £ coincide with the models M
of T in & which are sortwise decidable, in the sense that for every sort A
over the signature of T the object M A of £ is decidable, i.e. the diagonal
subobject of M A is complemented (by the interpretation of D4 in M).
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As shown by the following lemma, the arrows M — N in the category
T,,-mod(Set) are precisely the T-model homomorphisms f : M — N such
that for every sort A over the signature of T, fA: M A — N A is a monomor-
phism in &.

Lemma 6.34. Let A and B be decidable objects in a topos € and f : A — B
an arrow in E. Let Dy ~— A X A and Dp — B x B denote respectively the
complements of the diagonal subobjects 04 : A — AXA and ép : B — BxB.
Then f is a monomorphism if and only if f X f: Ax A — B x B restricts
to an arrow Dg — Dp.

Proof It is immediate to see that f : A — B is a monomorphism if and
only if the diagram
A—L B

oo e

Ax A——=Bx B,
Ixf

is a pullback.

Since pullback functors preserve arbitrary unions and intersections of
subobjects in a topos (they having both a left and a right adjoint), we have
that (f x /)*(Dp) = —(f x f)*(6p). Now, f x f: Ax A — B X B restricts
to an arrow D4 — Dp if and only if Dy < (f x f)*(Dp). But this condition
holds if and only if DAN(fx f)*(dp) = 0, i.e. if and only if (fx f)*(dp) < da,
which is equivalent to the condition (fx f)*(dp) = da (asda < (fx f)*(dB)).

O

Several injectivizations of theories of presheaf type have been considered
in the literature, e.g. in [26] and in [21]; see also [7] and [6] for some appli-
cations of this type of theories in the context of topos-theoretic Galois-type
equivalences.

As we shall see below, under certain conditions, the injectivization of a
theory of presheaf type is again of presheaf type.

The following proposition is a corollary of Theorem 4.3.

Proposition 6.35. Let T be a geometric theory. Then for any T-models M
and N in a Grothendieck topos € which are sortwise decidable there exists an
object 1'—1'0771%771_mod(g)(M7 N) of € satisfying the following universal property:

for any object E of £ we have an equivalence
Homg(E, Hom%, _oie)(M, N)) = Homz, _moate /) (‘5(M), '5(N))

natural in £ € €.

Remarks 6.36. (a) For any £, M and N, Hom%m_mod(g)

canonically as a subobject of Hom‘%_mod(g)(M, N).

(M, N) embeds

116



(b)

Let T be a geometric theory over a signature X, ¢ a finitely presentable
T-model and M a sortwise decidable model of T in a Grothendieck topos
&. Then the subobject

Hom§ noa(e)(VE(c), M) — Homi ey (7E(c), M)

can be identified with the interpretation of the formula

xer= N\ @al(fOFE@), ma(f(1E®))) € Dara,
A sort over X,

T,yECA, zFY

written in the internal language of the topos &£, where

wa s Hom§ poq(e)(M, N) — NAMA

is the arrow defined in Remark 4.4(b) and Z,7 : 1 — ¢ are the arrows in
Set corresponding respectively to the elements z and y of cA. Indeed, a
T-model homomorphism f : v%(c) — M is sortwise monic if and only if
for every sort A over ¥ and any distinct elements x,y € cA, fA(7E(T))
and fA(y%(y)) are disjoint, in other words they satisfy the relation Dy 4.

It follows that if for every finitely presentable T-model ¢, the formula
Xc 1s equivalent to a geometric formula over the signature of T,,, for
instance when ¥ only contains a finite number of sorts and for any sort
A and any finitely presentable T-model the set c4 is finite, then the
theory T,, satisfies condition (7i7)(a) of Theorem 5.1 with respect to the
category of finitely presentable T-models if T does.

Let T be a geometric theory over a signature X, ¢ a finitely presentable T-
model and M a sortwise decidable model of T in a Grothendieck topos &£.
If ¢ is strongly finitely presented by a geometric formula ¢(Z) over ¥ then

—

the subobject Hom%_modm(g) (vé(c), M) of HomgT_mod(g) (ve(e), M) = [[&

®]]ar can be identified with the intersection of the interpretations in M
of the formulae of the form —(3x4)(61(Z, z4) A 02(F, 24)), where A is a
sort over ¥ and 61,0y are T-provably functional formulae from {Z . ¢}
to {z4 . T}.

Lemma 6.37. Let T be a geometric theory over a signature X, ¢ a set-
based T-model and M a T-model in a Grothendieck topos £. A general-
ized element x : E — Gp(c) = Hom%m_mod(g)(’yg(c),M) can be identified

with a X-homomorphism &, : ¢ — Homg(E, M) which is sortwise disjunc-
tive in the sense that for every sort A over X, the function ;A : cA —
Homg(E,MA) has the property that for any distinct elements z,w € cA,
the arrows £, A(2), & A(w) : E — M A have equalizer zero in E.
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Proof The thesis follows from Proposition 4.5, observing that, by Lemmas
6.41 and 6.43, an arrow 74 : 'yz/E(cA) —!I(MA) in £/E is monic in £/FE
if and only if the corresponding arrow {4 : cA — Homg(E, M A) satisfies
the property that for any distinct elements z,w € cA, the arrows £4(2) :
E — MA and {4(w) : E — M A have equalizer zero (notice that two arrows
s,t:(a:A— E)— (b: B— E)in £/E have equalizer zero in £/F if and
only if the arrows s : A — B and t : A — B have equalizer zero in £). O

Remark 6.38. Suppose that the formula {z# . T} strongly presents a T-
model F4. Then a Y-structure homomorphism s : Fqy — Homg(E, M),
corresponding to a generalized element z : F — M A, is sortwise disjunc-
tive if and only if for any sort B over X and any two T-provably inequiv-
alent T-provably functional geometric formulae #; and 6y from {z? . T}
to {#® . T}, the generalized elements [[61]]as o z and [[f2]]ar © 2 are dis-
joint. Indeed, from the proof of Theorem 4.1 we know that that for any
sort B and T-provably functional geometric formula 6 from {z4 . T} to
{xB . T}, the function [[0]]p, : FAA = Home,({z* . T}, {z* . T}) —
FaB = Home,({z . T},{z® . T}) coincides with [0] o — : Home, ({z* .
TH{zA . T}) = Home, ({z* . T},{2P . T}), while the generator u of F A
is precisely the identity arrow on {z# . T}. Now, it is immediate to see that
for any Y-structure homomorphism s : Fy — Homg(E, M) and any sort B
over %, the diagram

sA

F4A Homg(E,MA)
l[alo l[[enMo
FuB B . Home(E, MB)

commutes, i.e. sA(uq) = sB(0). From these remarks, our claim immediately
follows.

Note that if T is a universal Horn theory (in the sense of [3]) then we
can suppose without loss of generality 6; and 6; to be functional formulae of
the form 28 = t(z4), where t is a term of type A — B over ¥ (cf. Remark

1.2(a)).

6.5.1 Condition (iii) of Theorem 5.1 for injectivizations

In this section we shall establish a general result about injectivizations of
theories of presheaf type, namely that for any theory of presheaf type T such
that all the monic arrows in the category f.p.T-mod(Set) are sortwise monic,
the injectivization of T satisfies condition (#4i) of Theorem 5.1 with respect
to the category f.p.T-mod(Set).

Before proving this theorem, we need a series of preliminary results.
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Lemma 6.39. Let r : R — A X A a subobject in a Grothendieck topos &,
e: E— Ax A an arrow in € and {f; : E; — E |i € I} an epimorphic
family in E. If for every ¢ € I the arrow eo f; factors through r then e factors
through r.

Proof The arrow [][f;: [[E; — E induced by the universal property of the
i€l i€l

coproduct is an epimorphism, since by our hypothesis the family {f; : E; —

E | i € I} is epimorphic. The factorizations b; : F; — R of the arrows e o f;

through 7 induce an arrow b:= [[b;: [[ Ei — R, such that rob=-eo []f;.
iel el icl
Consider the epi-mono factorization b = h o k in £ of the arrow b, where

kE: ]]F; - U and h : U — R, and the epi-mono factorization e = mon
el
of the arrow e in &, where n : E — T and m : T — A. Clearly, the arrow

eo []fi factorizes both as mo(no [[f;) and as (roh)ok. Now, as m, roh are
iel il
monic and no [[fi, k are epic, the uniqueness of the epi-mono factorization
i€l
of a given arrow in a topos implies that there exists an isomorphism ¢ : T'= U

such that rohoi =m and iono [[f; = k. The arrow hoion thus provides
el
a factorization of e through r, as required. O

Lemma 6.40. Let {f; : A; — B /i € I} be a family of arrows in a

Grothendieck topos €. Then the arrow [[fi — [[4i — B is monic if
i€l icl

and only if for every i € I, f; is monic and for every i,i € I, either i = i’

or the subobjects f; : Aj — B and f! : Ay — B are disjoint.

Proof The ‘if’ direction follows from Proposition IV 7.6 [26], while the ‘only
if” one follows from the fact that coproducts in a topos are always disjoint
(cf. Corollary IV 10.5 |26]) and the composite of a given monomorphism
with two disjoint subobjects yields two disjoint subobjects. O

Remark 6.41. If in the statement of Lemma 6.40 the objects A; are all
equal to the terminal object 1¢ of £ then the arrows f; are automatically
monic and any two of them are disjoint if and only if their equalizer is zero.

The notation employed in the statements and proofs of the following
results is borrowed from section 3.2.

Lemma 6.42. Let F : D? — &£ be a flat functor from a subcategory D of a
small category C to a Grothendieck topos € and x : E — F(d) a generalized
element which factors through x4 : F(d) — F(d) as x5 ox'. Then the natural
transformation g : 7;/E oyed =% 0 F corresponding to x is equal to oy,
where o 1s the natural transformation 7;‘/E oypd —!L 0 F' corresponding to

z.

Proof Straightforward from the results of section 3.2. O
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Given a small category C, we shall write C,, for the category whose objects
are the objects of C and whose arrows are the monic arrows in C between
them. The following results concern extensions F of flat functors F' along
the embedding C,, — C.

Below, for a given flat functor H : C°? — &£ with values in a Grothendieck
topos £ and any object E of £, we write Hg for the flat functor !3, 0 H :
C® - E/E.

Proposition 6.43. Let C be a small category and and F : C,,°P — £ a flat
functor. Then for any object ¢ € C and any generalized element x : £ —
F(c), = factors through xF : F(c) — F(c) if and only if the corresponding
natural transformation ’y(’é/E oycc — % oF is pointwise monic.

Proof The ‘only if’ direction follows at once from Lemma 6.42 and Theorem
6.8. To prove the ‘if’ one, thanks to the localization technique, we can
suppose without loss of generality F = 1¢.

Suppose that the natural transformagion Qg Ygoycc — F corresponding
to the generalized element x : 1 — F(c) is pointwise monic. We want
to prove that z factors through % : F(¢) — F(c). Recall that ay(d) :

[I 1lg — F(c) is defined as the arrow which sends the component of
fe€Home(d,c)

the coproduct indexed by f to the generalized element F(f) oz : 1 — F(d).

By Lemma 6.40, if « is pointwise monic then for any object d € C and
arrows f,g : d = ¢ in C, either f = g or the equalizer of F(f) ox and
F(g) oz is zero. Consider the pullbacks of the jointly epimorphic arrows
K(a,z)  F(a) — F(c) along the arrow z : 1¢ — F(c):

ha2)
E(a,z) F(a)
ie(mz) l“(avz)
1 F(c)

We shall prove that the epimorphic family {e(q.) : E(a,) — le | (a,2) € Ac}
satisfies the condition that for any (a, z) € A, the composite arrow zoe(, )
factors through x¥ : F(¢) — F(c); this will imply our thesis by Lemma
6.39. Asif E,) = 0 then x o e(,,) factors through ¥ F(e) = Fle),
we can suppose E(, ;) 2 0. Under this hypothesis, the arrow z : ¢ — a is
monic in C. Indeed, for any two arrows f,g:b — c¢such that zo f =z oy,

F(f) OTOCa,z) = F(f)o’%(a,z) oh(a,z) = F(f)OF(Z) Oxgoh(a,z) = F(g)o
F(z)oxfoh(a’z) = F(g)om(ayz)oh(mz) = F(g)oxoe(mz), whence either f = ¢
or the the equalizer of F(f) oz and F(g) o x is zero. But if the equalizer
of F(f) ox and F(g) oz were zero then E, ) would also be isomorphic to
zero (since it would admit an arrow to zero), contrary to our hypothesis; so

f = g, as required. O

120



Remark 6.44. By Proposition 6.35, Proposition 6.43 can be reformulated
as follows: for any object ¢ € C, F(c) = Hom%cm_mod(g) (7% o yee, F), where

Te,, is the geometric theory of flat functors on Cpy.

Theorem 6.45. Let C be a small category and Flat,,(CP,E) the subcategory
of Flat(C°P, &) whose objects are the same as Flat(CP,E) and whose arrows
are the natural transformations between them which are pointwise monic.
Then the extension functor

¢« Flat(Cp,?, €) — Flat(C™, €),

along the embedding Cp, — C, which by Theorem 6.8 takes walues into
Flat,,(C°?, &), is full on this latter calegory.

Proof Let F,G be flat functors C,;,°? — £ with values in a Grothendieck
topos &, and let 3 : F = Gbea pointwise monic natural transformation
between them. We want to prove that there exists a natural transformation
a : F — G such that § = a. It suffices to show that for any ¢ € C, S(c) :
F(c) = G(c) restricts (along the arrows £ : F(c) = F(c) and X : G(c) —
G(c)) to an arrow F(c) — G(c). To this end, we define a function vp
Homg(E, F(c)) — Homg(E,G(c)) natural in E € £. By Remark 3.2(iii),
the set Homg(E, F(c)) (resp. the set Homg(E,G(c))) can be identified
with the set of arrows E — F(c) (resp. with the set of arrows E — G(c))
which factor through x% (resp. through x&). By Proposition 6.43, for any
flat functor H : C°P — &, the arrows E — H(c) which factor through xH
correspond precisely to the natural transformations ¢ /B O Yec = Hp which
are pointwise monic. Now, since (3 is pointwise monic then !; 0/ : Frp — Gg
is also pointwise monic (smce the functor !, preserves monomorphlsms it
being the inverse image of a geometric morphlsm), hence any generalized
element E — F(c¢) which factors through xE gives rise, by composition
with 17, o 8 of the corresponding, pointwise monic, natural transformation
'yg/Eoycc — Fg, to a poitwise monic natural transformation ’Yg/EOyCC — Fg,

that is to a generalized element £ — G(c) which factors through x&. But
this generalized element is precisely B. o z. So (c) : F(c) — G(c) restricts
to an arrow F'(c¢) — G(c), as required. O

We can now prove the following

Theorem 6.46. Let T be o theory of presheaf type over a signature 3. Then
the injectivization of T satisfies condition (iii)(b)-(1) of Theorem 5.1 with
respect to the category f.p.T-mod(Set), ., and condition (iii)(b)-(2) with re-
spect to the same category if every monic arrow in f.p.T-mod(Set) is sortwise
monic (for instance, by Proposition 6.47, if for every sort A over X there
exists the free T-model on A).
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Proof By Theorem 6.7, the composite functor
& : Flat(f.p.T-mod(Set),,°", €) — Flat(f.p.T-mod(Set)’?, £) ~ T-mod(£),

takes values in the subcategory T,,-mod(€) of T-mod(€). The functor &
is faithful by Proposition 3.2(iii) and full on T,,-mod(€) by Theorem 6.45
in view of the fact that for any sortwise monic T-model homomorphism
f:M — N in &, the natural transformation oy : Fiy — Fy corresponding
to it under the Morita-equivalence

Flat(f.p.T-mod(Set)°?, &) ~ T-mod (&)

for T is pointwise monic. This latter fact can be proved as follows. For
any object D of the category f.p.T-mod(Set), the value of oy at D can be
identified with the arrow [[Z . ¢||]ar — [[¥ . ¢]]n canonically induced by
f, where ¢(Z) is ‘the’ formula which presents the model D; therefore if f
is sortwise monic then ay(D) is monic in &, it being the restriction of a
monic arrow (namely fA; x --- x fA,, where Z = (z41,...,z4)) along two
subobjects. O

The following proposition identifies a class of theories of presheaf type T
with the property that the monic arrows of the category f.p.T-mod(Set) are
sortwise monic.

Proposition 6.47. Let T be a theory of presheaf type over a signature %
in which for every sort A over ¥ the formula {z? . T} presents a T-model,
and let f : M — N be a homomorphism of finitely presentable T-models M
and N. Then f is monic as an arrow of f.p.T-mod(Set) (equivalently, as an
arrow of T-mod(Set)) if and only if it is sortwise monic.

Proof Let A be a sort over ¥. As {24 . T} presents a T-model F then
for any model P of T in Set we have an equivalence Homr.moq(set)(Fa, P) =
PAnatural in P. In particular we have equivalences Hom_mod(set)(Fa, M) =
MA and Homr.meq(set)(Fa, N) = NA under which the function fo — :
Hom_mod(set)(Fa, M) — Homp_medset)(Fa, V) corresponds to the func-
tion fA : MA — NA. Now, if f is monic then the function f o — :
Homp_med(set)(Fa, M) — Homp_pedset)(Pa, V) is injective, equivalently
fA: MA — NA is injective, as required. O

6.5.2 A criterion for injectivizations

In this section we shall establish a result providing a sufficient condition for
the injectivization of a theory of presheaf type of a certain form to be again
of presheaf type. Before stating it, we need some preliminaries.

The following definition gives a natural topos-theoretic generalization of
the standard notion of congruence on a set-based structure.
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Definition 6.48. Let X be a one-sorted first-order signature and M a -
structure in a Grothendieck topos £. An equivalence relation R — M x M
on M in & is said to be a congruence if for any function symbol f over 3 of
arity n, we have a commutative diagram

R" —— (M x M)" = M™ x M"

l lfMXfM

R M x M .

Proposition 6.49. Let X be a one-sorted first-order signature and M a X-
structure in o Grothendieck topos £. For any congruence R on M there exists
a X-structure M /R on € whose underlying object is the quotient in € of M
by the relation R, and a X-structure epimorphism pr : M — M/R given
by the canonical projection. Conversely, for any X-structure epimorphism
q: M — N, the kernel pair R, of q is a congruence on M such that q is
isomorphic to M/R,.

Proof The proof of the proposition is immediate by using the exactness
properties of Grothendieck toposes relating epimorphisms and equivalence
relations. U

Proposition 6.50. Let T be a geometric theory over a one-sorted signature
> and M a T-model in a Grothendieck topos £. If the axioms of T are all of
the form (¢ bz 1), where ¢ does not contain any conjunctions, then for any
congruence R on M the ¥-structure M /R is a T-model.

Proof The thesis can be easily proved by induction on the structure of
geometric formulae over Y, using the fact that the action of the canonical
projection homomorphism pr : M — M/R on subobjects (of powers of
M) preserves the top subobject, the natural order on subobjects, image
factorizations and arbitrary unions. O

The following lemma shows that one can always perform image factor-
ization of homomorphisms of structures in regular categories.

Lemma 6.51. Let ¥ be a first-order signature and C a reqular category.
Then any %-structure homomorphism f : M — N in C can be factored as
hog, where h : N' — N is a X-substructure of N and g : M — N’ is
sortwise a cover.

Proof First, we notice that in any regular category finite products of cov-
ers are covers; indeed, composite of covers are covers (this can be easily
proved by using the definition of cover as an arrow orthogonal to the class
of monomorphisms), and the product of two covers f x g, where f: A — B
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and g : C' — D, is equal to the composite (15 x g) o (f X 1¢) of two arrows
which are pullbacks of covers.

For every sort A over 3 we set N'A equal to Im(fA), gA equal to the
canonical cover MA — Im(fA) and hA equal to the canonical subobject
N’A — NA. For any function symbol £ : Ay,... A, — B over X, we set N'¢
equal to the restriction N'A;x---xN'A,, = N'Bof N : NA; x---xNA, —
N B. This restriction actually exists (and is unique) since f is a X-structure
homomorphism and gA; x --- X gA, is a cover. For any relation symbol
R over ¥ of type A1,...,A,, we set N'R equal to the intersection of NR
with the canonical subobject N'A; x -+ x N'Ap, > NA; x---x NA,. It is
clear that f = h o g, that g is sortwise a cover and that h is a substructure
homomorphism, as required. O

The following proposition, giving an explicit characterization of decidable
objects in terms of their generalized elements, was stated in [26] as Exercise
VIIIL.8(a).

Proposition 6.52. Let £ be a cocomplete (in particular, a Grothendieck)
topos and A an object of £. Then A is decidable if and only if for any
generalized elements x,y : E — A there exists an epimorphic family (possibly
consisting of just two elements) {e; : E; — E [ i € I} such that for anyi € I,
either x o e; = y o e; or the equalizer of x o e; and y o e; is zero.

Proof Let us suppose that A is decidable. Let p : P — A x A be the
complement of the diagonal subobject A : A — Ax A. Consider the pullback
of (z,y) : E — A x A along p:

% .p
b
E-"Ya5 A

The equalizer i : R — E’ of x o s and y o s is zero; indeed, by definition of
P, the diagram
0 A
Lk
P

—=Ax A
P

is a pullback, and the arrows z := rosoi = yosoi: R —+ Aand uoi : R — P
satisfy the condition Aoz =powuoi.

Let us denote by ¢ : E” »— E the pullback of the subobject A : A — AxA
along (z,y). The arrows s : E' — F and t : E” — E are jointly epimorphic,
they being the pullbacks of arrows which are jointly epimorphic, namely A
and p.
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Therefore, by setting I = {0,1}, Eg = E', Ey = E”, eg : Ey — E equal to
sand ey : By — F equal to t, we have that the family {e; : E; — E | i € I'}
satisfies the condition in the statement of the proposition.

Conversely, let us suppose that the condition in the statement of the
proposition is satisfied. To prove that A is decidable, we have to show that
the subobject AV —-A — A x A is an isomorphism, in other words that any
subobject (z,y) : E — A x A factors through it.

Notice that for any generalized elements z’,y : E/ — A, the arrow
(',y') + B/ — A x A factors through =A — A x A if and only if the
equalizer of 2/ and ¢ is zero. Indeed, (z/,y’) factors through —A if and
only if its image does, and by definition of =A this holds if and only if the
pullback of it (or equivalently, of (x’,y’)) along A is zero, i.e. if and only if
the equalizer of 2’ and ¥/ is zero.

Now, by our hypotheses, there exists an epimorphic family {e; : E; —
E | i € I} such that for any ¢ € I, either x o e; = y o e; or the equalizer of
xoe; and yoe; is zero. By Lemma 6.39, to prove that (x,y) factors through
AV -A — A x A it suffices to prove that for any i € I, (x oe;,y o e;)
factors through AV =A — A x A. But by our hypothesis, for any given
i € I, either z oe; = yoe; (which implies that (zoe;,yoe;) factors through
A:Ar— Ax A) or the equalizer of x o e; and y o e; is zero (which implies,
as we have just seen, that (zoe;,yoe;) factors through A — A x A — A);
therefore for any ¢ € I, (z o e;,y o e;) factors through AV -A »— A x A, as
required. O

Proposition 6.53. Let ¥ be a one-sorted signature, ¢ a finite X-structure
in Set, M a X-structure in a Grothendieck topos € whose underlying object
1s decidable and E an object of £. Then for any X-structure homomorphism
f:c— Homg(E, M) there exists an epimorphic family {e; : E; — E | i €
I} in € and for each i € I a quotient map q; : ¢ — ¢;, where ¢; is a finite
Y-structure, and a disjunctive L-structure homomorphism (in the sense of
Lemma 6.37) J; : ¢; — Homg(E;, M) such that J; o ¢ = Homg(e;, M) o f
foralliel:

c Homg(E, M)
qi lf
c; - Homg(E;, M) .
Proof Let us suppose that ¢ has n elements z1,...,z,. We know from

Proposition 6.52 that for any pair (4,7) where 4,5 € {1,...,n}, there exist
arrows e(; j) : B ;) — E and e’(l. e EEZ ;) — £ such that e(; ;) and e'(ij) are
jointly epimorphic, f(x;) oe(; ;) = f(x;) oe( ;) and f(x;)o e’(i’j), f(zj)o e’(i’j)
are disjoint. The iterated fibered product of all these epimorphic families
(corresponding to the pairs (7, 7) such that 4,j € {1,...,n}) thus yields an

125



epimorphic family {uy : Uy — E | k € K} such that for every k € K there
exists a subset Sy C {1,...,n} x {1,...,n} such that for every (i,j) € S,
f(zi) oup = f(z;) o uy and for every (i,5) ¢ Sk, f(x;i) our and f(x;) o ug
are disjoint. For each k € K, consider the quotient g; : ¢ — ¢4 of ¢ by
the congruence generated by the pairs of the form (z;,z;) for (i,5) € S.
By definition of this congruence relation, the X-structure homomorphism
Homg (e, M) o f factors through g, and the resulting factorization is a
disjunctive X-structure homomorphism. We have thus found a set of data
satisfying the condition in the statement of the proposition, as required. U

Proposition 6.54. Let T be a theory of presheaf type over a signature X
such that the finitely presentable T-models coincide with the finitely pre-
sentable Tp,-models. Suppose that the following condition is satisfied: for
any Grothendieck topos £, object E of £ and X-structure homomorphism
x : ¢ — Homg(E, M), where ¢ is a finitely presentable T-model and M is
a sortwise decidable T-model, there exists an epimorphic family {e; : E; —
E i€ I} in& and for each i € I a T-model homomorphism f; : ¢ — ¢; of
finitely presentable T-models and a sortwise disjunctive 2-structure homo-
morphism x; : ¢; — Homg(E;, M) such that x; o f; = Homg(e;, M) o z for
alli € I. Then the injectification T, of T satisfies conditions (i) and (ii) of
Theorem 5.1 (with respect to its category of finitely presentable models).

Proof The proposition represents the particular case of Theorem 6.3 for the
faithful interpretation of T into its injectivization, with K = H equal to the
category of finitely presentable T-models. The hypotheses of the theorem
are satisfied since the functor [ a is full (cf. Remark 6.4). O

Remark 6.55. Any geometric theory T such that the finitely presentable T-
models are precisely the finitely generated ones and all its axioms are of the
form (¢ bz 1), where 1 is a quantifier-free geometric formula, satisfies the
first of the hypotheses of the Corollary. Indeed, every finitely presentable T-
model is clearly finitely presentable as a T,,-model, and since by Proposition
6.11 the substructures of models of T are again models of T, every model of
T can be expressed as the directed union of its finitely generated submodels;
so the finitely presentable T,,-models are precisely the finitely generated
T-models.

Corollary 6.56. Let T be a theory of presheaf type over a signature Y such
that the finitely presentable T-models coincide with the finitely presentable
T,,-models and the monic T-model homomorphisms in Set are precisely the
homomorphisms which are sortwise monic. Suppose that the following condi-
tion is satisfied: for any Grothendieck topos €, object E of £ and X-structure
homomorphism x : ¢ — Homg(E, M), where c is a finitely presentable T-
model and M is a sortwise decidable T-model, there exists an epimorphic
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family {e; : E; — E [i € I} in € and for each i € I a T-model ho-
momorphism f; : ¢ = ¢ of finitely presentable T-models and a sortwise
disjunctive X-structure homomorphism z; : ¢; — Homg(E;, M) such that
x; o fi = Homg(e;, M) ox for all i € I. Then the injectification T, of T is
of presheaf type.

Proof By Theorem 6.46, T,, satisfies condition (iii) of Theorem 5.1 (since
all the the monic arrows in the category f.p.T-mod(Set) are injective func-
tions), while Proposition 6.54 ensures that conditions (i) and (i7) of Theorem
5.1 are satisfied. We can thus conclude that the theory T,, is of presheaf
type. O

As a consequence of Corollary 6.56, we obtain the following result.

Corollary 6.57. Let T be a geometric theory over a one-sorted signature X
such that any quotient of a finitely presentable T-model is a T-model (for
instance, a theory whose azioms are all of the form (¢ btz ), where ¢
does not contain any conjunctions - cf. Proposition 6.50). Suppose that
the finitely presentable T-models are exactly the finite T-models and that all
the the monic arrows in the category f.p.T-mod(Set) are injective functions.
Then if T is of presheaf type, T., is of presheaf type as well.

Proof Propositions 6.50 and 6.53 ensure that all the conditions of Corollary
6.56 are satisfied. We can thus conclude that T,, is of presheaf type, as
required. O

7 Expansions of theories

7.1 General theory

In this section we introduce the syntactic notion of expansion of a geometric
theory, and show that it corresponds in a natural way to having a geometric
morphisms between the respective classifying toposes. Further, we charac-
terize the expansions of theories whose corresponding geometric morphisms
are localic and hyperconnected. This section has been inspired by section
6.2 of [17], which contains a brief informal discussion of this topic.

Definition 7.1. Let T be a geometric theory over a signature 3.

(i) A geometric expansion of T is a geometric theory obtained from T by
adding sorts, relation or function symbols to the signature X and ge-
ometric axioms over the resulting extended signature; equivalently, a
geometric expansion of T is a geometric theory T over a signature con-
taining > such that every axiom of T, regarded as a geometric sequent
in the signature of T’, is provable in T’.
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ii) A geometric expansion T’ of T is said to be localic if no new sorts are
g
added to X to obtain the signature of T’.

(iii) A geometric expansion T’ of T is said to be hyperconnected if no new
function or relation symbols which only involve sorts over 3 are added
to ¥ to form the signature of T, and for any geometric sequent o over
Y, o is provable in T’ if and only if it is provable in T.

Notice that if T is an expansion of a geometric theory T then there is
a canonical morphism of sites (Cr,Jr) — (Crv, Jrv) inducing a geometric
morphism pl. : Set[T’] — Set[T].

We say that a geometric expansion T’ of T is faithful (resp. fully faithful)
if for every Grothendieck topos &£, the induced functor

(pF)e : T'-mod(€) — T-mod(€)

is faithful (resp. full and faithful).

We know from Theorem 9.1 [9] that the inclusion part of the surjection-
inclusion factorization of the geometric morphism pl : Set[T’] — Set[T] can
be identified with the classifying topos of the quotient of T consisting of all
the sequents over ¥ which are provable in the theory T'.

Recall (cf. for instance section A4.6 of [21]) that a geometric morphism
f+ F — & is localic if every object of F is a subquotient (i.e. a quotient
of a subobject) of an object of the form f*(a), where a is an object of &;
the morphism f is hyperconnected if f* is full and faithful, and its image is
closed under subobjects in F.

The following technical lemma will be useful in the sequel.

Lemma 7.2. Let f : F — & a geometric morphism between Grothendieck
toposes and C a full subcategory of £ which is separating for £. Suppose that
the following conditions are satisfied:

(i) C is closed in € under finite products;

(1) f satisfies the property that the restriction f*|c : C — F of f* to C is
full and faithful;

(iii) for any family of arrows T in C with common codomain, if the image
of T under f* is epimorphic in F then T is epimorphic in &, and

(iv) every subobject in F of an object of the form f*(c) where ¢ is an object
of C, is, up to isomorphism, of the form f*(m) (where m is a subobject

in &).

Then f is hyperconnected.
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Proof We have to prove that, under the specified hypotheses, f*: & — F
is full and faithful and its image is closed under subobjects in F.

To prove that f* is faithful, we have to verify that for any arrows h, k :
u—wvin&, f*(h) = f*(k) implies h = k. Since C is a separating set for £, we
can suppose without loss of generality u to lie in C. Now, h = k if and only if
the equalizer z : w — wu of h and k is an isomorphism. The family of arrows
from objects of C to w is epimorphic, whence, as f*(z) is an isomorphism
(since f*(h) = f*(k)), the family formed by the composition of these arrows
with z is epimorphic on u; indeed, the members of this latter family all lie
in C and the image of this family under f* is epimorphic. It follows that z
is an epimorphism, equivalently an isomorphism, that is h = k, as required.

To prove the fullness of f*, we have to verify that for any objects a and
b of £ and any arrow s : f*(a) — f*(b) in F, there exists a (unique) arrow
t:a — bin &£ such that f*(t) =s. As C is a separating set for £ there exist
epimorphic families {f; : ¢, = b|i € I} and {g; : dj - a|j € J}in &
consisting of arrows whose domains lie in C.

For any ¢ € I and j € J, consider the pullback square

Ti A

lqi J/f*(fi)

1) e 1 (B)

By the universal property of pullbacks, the arrow (p;,q;) : ri; — f*(¢;) %
f*(d;) = f*(¢; x dj) is a monomorphism. Since ¢; x d; lies in C by our
hypothesis, r; ; lies in the image of f* and hence can be covered by arrows
A e = rij (for k € K ;) where each object ek’j lies in C. Consider
the arrows p; o hy? : f* (e v7) 5 f*(c;) and g o by ¢ f*(ep?) — f*(d;). Since
the family {f*(gj omy’) | i € I,j € J, k € K;;} is epimorphic in F, our
hypotheses ensure that the family {gjomZ’j : efc’j —Aliel,jeJkeK;;}
is epimorphic in £. To define an arrow ¢ : a — b in & it is therefore equivalent
to specify, for each ¢ € I, j € J and k € K, j, an arrow UIZ’J e Z’] — b in such
a Way that the compatibility conditions of Corollary 2.8 are satlsﬁed Take

7 equal to f; o l; “J The compatibility conditions hold since the images of
them under the functor f* do and, as we have proved above, f * is faithful.
Thus we have a unique arrow ¢ : a — b in £ such that tog; o mk = fio ll
The fact that f*(t) = s follows at once.

To conclude the proof of the lemma, it remains to show that the image of
f* is closed under subobjects in F. Let a be an object of £ and k : z — f*(a)
a subobject in F. Since C is a separating set for £, the canonical arrow from
the coproduct of all objects in C to a is an epimorphism y; by pulling back
f*(y) along the monomorphism k we obtain a monomorphism u from 2’ to
dom(f*(y)) and an epimorphism e : 2/ — z. Now, by our hypotheses, the
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pullbacks of u along the coproduct arrows belong to the image of f*; from
the fact that f* preserves coproducts it thus follows that w itself belongs
to the image of f*, it being of the form f*(m), where m is a coproduct in
& of subobjects in C. Now, since e is an epimorphism, z is isomorphic to
the coequalizer of its kernel pair r : w — f*(b) x f*(b) = f*(b x b), where
b = dom(m). Using the coproduct representation of m and the fact that C is
closed under finite products in £, one can prove by considering the pullbacks
of r along the images under f* of the coproduct arrows to bx b, that r lies, up
to isomorphism, in the image of f*; therefore, as f* preserves coequalizers,
k is isomorphic to a subobject in the image of f*, as required. OJ

Theorem 7.3. Let T be a geometric theory over a signature ¥ and T’ a
geometric expansion of T over a signature X'. If T is a hyperconnected (resp.
a localic) expansion of T then pr : Set[T'] — Set[T] is a hyperconnected
(resp. a localic) geometric morphism.

In particular, the hyperconnected-localic factorization of the geometric
morphism p%l : Set[T’] — Set[T] is given p%” op%:,, where T” is the inter-
mediate expansion of T obtained by adding to the signature ¥ of T no new
sorts and all the relation and function symbols over Y’ which only involve
the sorts over X, and all the sequents over this extended signature which are
provable in T’.

Proof Suppose that T’ is localic over T. We have to prove that every object
of Set[T’] is a quotient of a subobject of an object of the form f*(H) where
H is an object of Set[T]. Since the signature of T’ does not contain any
sorts already present in the signature of T and the objects of the category
Cr form a separating set for the topos Set[T'], we can conclude that the
subobjects of the objects of the form p%/*({f . T}) form a separating set
for Set[T’]. Therefore any object of Set[T’] is a quotient of a coproduct of
subobjects of objects of the form p%/*({f. T} = A{Z. T}; but the fact that
p%/* preserves coproducts immediately implies that any such coproduct is a
subobject of an object in the image of p%/*.

Suppose instead that T’ is hyperconnected over T. We have to prove
that p%/* is hyperconnected. It suffices to apply Lemma 7.2 by taking &
equal to Set[T] and C equal to the syntactic category Cr; the fact that the
hypotheses of the lemma are satisfied follows immediately from the fact that
T’ is hyperconnected over T. O

Theorem 7.4. Let T be a geometric theory, £ a Grothendieck topos and M
a model of T in E. Then £ is the classifying topos for T and M is a universal
model for T if and only if the following conditions are satisfied:

(i) The family F of objects which can be built from the interpretations in
M of the sorts, function symbols and relation symbols over the signature
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of T by using geometric logic constructions (i.e. the objects given by
the interpretations in M of geometric formulae over the signature of
T) is separating for &;

(i) The model M is conservative for T; that is, for any geometric sequent
o over the signature of T, o is valid in M if and only if it is provable
n T;

(i1i) Any arrow k in € between objects A and B in the family F of point
(i) is definable; that is, if A (resp. B) is equal to the interpretation of
a geometric formula ¢(Z) (resp. (Y)) over the signature of T, there
exists a T-provably functional formula 6 from ¢(¥) to ¥(Z) such that
the interpretation of 0 in M is equal to k.

Proof By the universal property of the geometric syntactic category Ct of
T, the T-model M corresponds to a geometric functor Fis : Cp — £ assigning
to each object (or arrow) of Cr its interpretation in M. Condition (i) in
the statement of the theorem is equivalent to the assertion that the functor
Fyy is faithful, while condition (iii) is equivalent to saying that Fjs is full.
Therefore under conditions (i7) and (iii), Ct embeds as a full subcategory of
E. Now, condition (7) ensures that Cr is dense in £, whence the Comparison
Lemma yields an equivalence & ~ Sh(Cr, J), where J is the Grothendieck
topology on Ct induced by the canonical topology on &, that is the geometric
topology on Cr. By the syntactic construction of classifying toposes and
universal models, we can thus conclude that £ is ‘the’ classifying topos for
T and M is a universal model for T. 0

As immediate corollaries of Theorem 7.4, one recovers the following
known results:

(i) Let C be a separating set of objects for a Grothendieck topos &, and
Y¢ the signature consisting of one sort "¢ for each object ¢ of C and
one function symbol " f7 for each arrow f in £ between objects in C.
Then there exists a geometric theory T over the signature ¢ classified
by &, whose universal model is given by the ‘tautological’ ¥¢-structure
in € (cf. p. 837 [21]);

(ii) Let B be a pre-bound for £ over Set (that is, an object such that the
subobjects of its finite powers form a generating set for £); then there

exists a one-sorted geometric theory T classified by £ and a universal
model for T whose underlying object is B (cf. Theorem D3.2.5 [21]).

The first result can be obtained from Theorem 7.4 by observing that the

theory T of the tautological Y¢-structure obviously satisfies all the hypothe-
ses of the theorem. That the first two conditions are satisfied is obvious,
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while the fact that the third holds can be proved as follows. Since every
object of the syntactic category of T is a subobject of a finite product of
objects of the form {gr:rc1 . T} (for ¢ € C), it is enough to prove that every
arrow k : R — ¢ in &£ having as codomain an object ¢ in C is definable. Sup-
pose that R = [[Z . ¢]]ar, where the sorts of the variables in & = (z1,...,2,)
are respectively "¢} 7,..., ¢, and denote by r : R — ¢} x -+ x ¢, the
corresponding subobject. Since C is a separating set for &, the family of
arrows {f; : ¢; = R | i € I} from objects of C to R is epimorphic; hence the
geometric formula

Fe; ! N | _r, 1 Tcl'_r q
\/(3% J@1="g1"(z) A A ="gn () Az & =Tko fi(2)),
el

where r o f; = (g1,...,gn), is T-provably functional from {Z . ¢} to {ar:rc1 :
T} and its interpretation coincides with k. By Diaconescu’s theorem, the
theory T can be explicitly characterized as the theory of flat Jg—continuous
functors on C, where Jg is the Grothendieck topology on C induced by the
canonical topology on £.

The second result can be deduced from Theorem 7.4 by taking T to be
the theory of the tautological structure over the one-sorted signature Xp
consisting of an n-ary relation symbol " R for each subobject R — B™ in £.
The fact that T satisfies the first two conditions of the theorem is obvious,
while the validity of the third condition follows from the fact that the graphs
of morphisms B" — B in £ are interpretations of (n + 1)-relation symbols
over Xp.

The following theorem provides a converse to Theorem 7.3.

Theorem 7.5. Let p: £ — Set[T] be a geometric morphism to the classi-
fying topos of a geometric theory T. Then p is, up to isomorphism, of the
form p%/ for some geometric expansion T' of T. If p is hyperconnected (resp.
localic) then we can take T’ to be a hyperconnected (resp. localic) expansion
of T.

Proof Choose a triplet 7 = (Cop, Carr, Crer) consisting of a set C,p, of objects
of £, of a set Cgppr of arrows in € from finite products of objects of Cy, to
objects of C,p, and of a set C,.¢ of subobjects of finite products of objects of
Cop with the property that the family of objects of £ which can be built out
of objects in Cup, arrows in Cup and subobjects in C,..; by using geometric
logic constructions is separating for £. By definition of Grothendieck topos,
such a triplet always exists. Let us define an expansion T of T as follows:
the signature X of Ty is obtained by adding to the signature of T one
sort "¢ for each object ¢ in Cy, which is not of the form f*(H) for some
object H of Ct — Set[T], one function symbol ™ f7 for each arrow f in Cypp
whose domain or codomain is not of the form f*(H) (with the obvious sorts),
one relation symbol for each subobject in C,¢; (with the obvious sorts, the

132



ones corresponding to an object of the form f*({Z . ¢}) being the sorts of
the variables ¥) and an additional relation symbol "R™ for any subobject
R >— ¢1 X -+ X ¢ in &€ (where ¢q,...,¢, are objects in Cy) which cannot
be obtained from the data in 7 by means of geometric logic constructions
(whose sorts are the obvious ones).

Consider the tautological T-r-structure M in £ obtained by interpreting
each sort "¢ by the corresponding object ¢ (and similarly for the function
and relation symbols added to the signature of T), and each sort A over the
signature of T by the object f*({z* . T}) (and similarly for the function
and relation symbols over the signature of T). Define T to be the theory of
M over the signature T7. The theory T’ satisfies the conditions of Theorem
7.4; the validity of the first two conditions is obvious, while the validity of
the third follows from the fact that any subobject of a product of objects
in C,, is definable in T’ and the model M is conservative for T’, whence
the formula defining the graph of the given arrow is T’-provably functional
from the formula defining the domain to the formula defining the codomain.
Therefore T’ is classified by the topos £ with universal model M. Notice
that T’ is an expansion of T. This proves the first part of the theorem.

Suppose now that f is localic. We can define a triplet 7 = (Cop, Carr, Crer)
satisfying the conditions specified above as follows: we set C,, equal to the
set of objects of the form f*(H) where H is an object of Ct < Set[T], Cyyr
equal to the empty set and C,¢; equal to the set of all subobjects of (finite
products of) objects in C,,. Alternatively, one can take C,, to be the set of
objects of the form f*({z# . T}) (where A is any sort over the signature of
T), Carr to be the set of arrows of the form f*(]f]), where [f] is an arrow in
Cr, and C,¢ to be the set of all subobjects of (finite products of) objects in
Cop. In either case, the signature of the resulting expansion will contain no
new sorts with respect to the signature of T and hence it will be localic.

Suppose instead that f is hyperconnected. Given any set of objects K
of & which, together with the objects of the form f*(H) (where H is an
object of Ct — Set[T]), form a separating set of £, we can define a triplet
T = (Cob, Carr, Crer) satisfying the required conditions by setting Cop = K,
Carr = 0 and Cre; = 0. Since f is hyperconnected, f* is full and the image
of f* is closed under subobjects; hence the signature of T+ does not contain
any relation or function symbol only involving the sorts of T. On the other
hand, any geometric sequent over the signature of T is provable in T’ if and
only if it is provable in f*(Mrt), where Mt is the universal model of T lying
in Set[T] (since f* is full and faithful), i.e. if and only if it is provable in T’.
Hence T’ is a hyperconnected expansion of T, as required.

This completes our proof. O

Theorem 7.5 yields, in view of the equivalence between conditions (i4i)(b)

and (i77)(c) of Theorem 5.1 and Remark 5.2(d), the following reformulation
of a particular case of Theorem 6.46.
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Theorem 7.6. Let T be a theory of presheaf type such that the finitely pre-
sentable models of T coincide with the finitely presentable models of T,,.
Then there is a faithful expansion (in the sense of section 7.1) of the in-
jectwization of T which is classified by the topos [f.p.T-mod(Set), ,Set].
If moreover all the monic homomorphisms in T-mod(Set) are all sortwise
monic then this expansion can be taken to be fully faithful.

g

A simple example of a theory satisfying both of the hypotheses of the
theorem is the theory A of commutative rings with unit. Indeed, the finitely
presented commutative rings with unit coincide precisely with the finitely
generated ones, that is with the finitely presentable models of A,,; also, the
monic ring homomorphisms are precisely the injective ones.

Another consequence of Theorem 7.4 is the following criterion for a geo-
metric theory to be of presheaf type.

Theorem 7.7. Let T be a geometric theory over a signature . Then T is
of presheaf type if and only if the following conditions are satisfied:

(i) Every finitely presentable model is presented by a geometric formula
over X;

(ii) Every property of finite tuples of elements of a (finitely presentable)
T-model which is preserved by T-model homomorphisms is definable by
a geometric formula over 3;

(iii) The finitely presentable T-models are jointly conservative for T.

Proof The fact that any theory of presheaf type satisfies the given conditions
was established in [13]. It thus remains to prove the ‘if’ part of the theorem.

Consider the ¥-structure U in the topos [f.p.T-mod(Set), Set] given by
the forgetful functors at each sort. Clearly, U is a T-model.

To deduce our thesis, we shall verify that T satisfies the conditions of
Theorem 7.4 with respect to the model U.

Since every finitely presentable T-model is presented by a geometric for-
mula over Y, the first condition of the theorem is satisfied; indeed, any
representable functor Homy, 1.moed(set) (¢, —) is isomorphic to the interpre-
tation of a formula ¢(Z) in the model U (take as ¢(Z) any formula presenting
¢). The second condition of the theorem follows immediately from the fact
that the finitely presentable T-models are jointly conservative for T. It re-
mains to show that the third condition of the theorem is satisfied. To this
end, we observe that for any geometric formulae ¢(Z) and () over the
signature of T, the graph of any arrow [[Z . ¢]]ly — [[¥ - ¥]]u in the topos
[f.p.T-mod(Set), Set| is a subobject of the product [[Z . ¢]|y x [[J . ¥]]u in
[f.p.T-mod(Set), Set] and hence it defines a property of tuples of elements
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of finitely presentable models of T which is preserved by T-model homomor-
phisms; therefore, by our assumptions, there exists a formula 0(Z, ) over
3} such that its interpretation in U coincides with such subobject. Since
U is conservative and such subobject is the graph of an arrow in the topos
[f.p.T-mod(Set), Set|, the formula 0(Z, ) is T-provably functional from ¢(Z)
to ¥(¥), as required. d

7.2 Expanding a geometric theory to a theory of presheaf
type

In this section we shall discuss the problem of expanding a geometric theory
T to a theory of presheaf type classified by the topos [f.p.T-mod(Set), Set].
We shall say that a geometric theory is a presheaf completion of a geomet-
ric theory T if it is an expansion of T such that the geometric morphism
pr : Set[T'] — Set[T] is isomorphic to the canonical geometric morphism
[f.p.T-mod(Set), Set] — Set[T].

The results of section 7.1 show that in order to obtain a presheaf com-
pletion of a given geometric theory T we can add a new sort "¢ for each
finitely presentable T-model ¢ which is not presented by a geometric for-
mula over the signature of T, and a relation symbol for each subobject
of a finite product of objects of [f.p.T-mod(Set), Set] which are either of
the form Homgp, T-mod(set) (¢ —) (where ¢ is not presented by any geomet-
ric formula over the signature of T), or of the form Uy (evaluation functor
f.p.T-mod(Set) — Set at the sort A) where A is a sort over the signature
of T (the sort corresponding to such a representable Hom(c,—) being "¢
and to a functor Uy being A). Indeed, by Theorem 7.4, the theory of the
tautological structure over this extended signature will be an expansion of
the theory T classified by the topos [f.p.T-mod(Set), Set]. Notice that if T
satisfies the property that every finitely presentable model of T is presented
by a geometric formula over its signature then this expansion of T is localic
over T.

Of course, as it is clear from the results of section 7.1, there are in general
many syntactic ways of ‘completing’ a given geometric theory to a theory
of presheaf type; the procedure described above represents just a particular
choice which is by no means canonical. In fact, what is most interesting in
practice is to obtain explicit axiomatizations of presheaf-type completions of
a given theory T directly from the axioms of T (cf. section 8 below for some
examples). Nonetheless, the results established above provide a useful guide
in seeking such axiomatizations, as they indicate that in order to complete a
geometric theory T to a theory classified by the topos [f.p.T-mod(Set), Set]
one should expand the language of T in order to make each finitely pre-
sentable T-model presented by a formula in the extended signature and ev-
ery property of finite tuples of elements of finitely presentable models of T
definable by a geometric formula in the extended signature; we shall see con-
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crete applications of these general remarks in section 8. In fact, Theorem 7.7
ensures that making every finitely presentable model T finitely presented by
a formula written in a possibly expanded signature is a necessary condition
for the resulting theory to be classified by the topos [f.p.T-mod(Set), Set].
Moreover, if one is able to prove that any finitely presentable T-model is
strongly finitely presented as a model of the theory T, when the latter is
considered over an extended signature ', condition (zii) of Theorem 5.1 is
automatically satisfied, while conditions (z) and (i7) can be made to hold
at the cost of adding further axioms to T over the signature ¥’ (cf. The-
orem 6.29). On the other hand, by Theorem 7.7, in order to complete T
to a theory of presheaf type classified by the topos [f.p.T-mod(Set), Set],
one should also expand the signature of T by adding relation symbols for
making any property of finitely presentable T-models which is preserved by
homomorphisms of models definable over the extended signature (if it is not
already definable over the original signature).

The following lemma shows that, under appropriate conditions, models
which are finitely presented over a given signature remain finitely presented
over a larger signature obtained from the former by adding relation symbols
characterized by disjunctive sequents of a certain form.

Lemma 7.8. Let T be a geometric theory over a signature X, ¥ a signature
obtained from X by only adding relation symbols R and S a geometric theory
over X' obtained from T by adding pairs of azioms of the form (T bz R(Z)V
Vol(2)) and (RA \9F(Z) Fz L), where for each i € I ¢ is a geometric
icl el

formula over X such that there exists a geometric formula wZR(Z) over X with
the property that the sequents (pF A F bz 1) and (T Fz ¢F v F) are
provable in S.

Let R be the cartesianization of S (in the sense of Remark 6.23(d)) and
o(%) = Pp(x1,...,x,) a R-cartesian formula over X' with the property that
there ezists a R-model My with n generators E=(&4,....&) € 7 . dlln,
such that for any R-model N, the elements of the interpretation ([T . ¢]|n
are in natural bijective correspondence with the X-structure homomorphisms
f: My — N such that F(&) € [[Z. ¢lln through the assignment f — f(£).
Then My is finitely presented by the formula {Z . ¢} as a R-model.

Proof We have to prove that, for any R-model N and any tuple @ € [[Z .
¢]]n, the unique X-structure homomorphism f : My — N such that f&=a
preserves the satisfaction of all the relation symbols R in ¥, i.e. that for
any such symbol R of arity m and any m-tuple (yi,...,ym) of elements of
My satistfying Ry, the m-tuple (f(y1),. .., f(ym)) satisfies Ry.

As My is by our hypothesis generated by the elements &1,...,&,, each y;
is equal to the interpretation in My of a term ¢;(&1,...,&,) evaluated in the
tuple {: (&1,...,&,). For each i € I, consider the formula @Z);R(ajl, ce sy Ty)
obtained by replacing each of the variables 21, ..., 2, in the formula sz with
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the corresponding term ¢;. Let us show that the sequent ¢ Fz 1)’ ZR is valid in
every R-model. This amounts to showing that for any R-model P and any
tuple be [Z. ¢]lp, b satisfies the formula YR, To prove this, we observe that,
since My is by our hypotheses a S-model, the m-tuple (y1,...,yn) satisfies

the formula ¢/ (for each i € I). Now, (y1,...,ym) € [[§ - ¥]]a, means that
(&1,..., &) €7 . w;RHM(ﬁ, which implies, since f; : My — P is a ¥-structure
homomorphism, that be [[ngH N, as required. Since R has enough models
as it is cartesian, we can conclude that the sequent ¢ Fz v/ lR is provable
in R and hence in S (for each ¢ € I). It follows that the cartesian sequent
¢z R(ti/z1,...,tm/2m) is provable in R. By evaluating this sequent in the
model N at the tuple f(£) € [[Z . ¢]]n, and using the fact that S-structure
homomorphisms commute with the interpretation of X-terms, we obtain that
() ) = G ED)s o Ftn® (€)= W (S, N (FE)

satisfies Ry, as required. O

Notice that if a model of a geometric theory T is finitely presentable as
a model of its cartesianization then it is strongly finitely presented. In fact,
any structure of the form Homg(E, M), where M is a model of T in a topos
&, is a model of the cartesianization of T, as it is obtained by applying a
global section functor, which is cartesian, to a model of T. Conversely, if
a theory T is of presheaf type then any finitely presentable model of T is
strongly finitely presented (cf. Corollary 4.10) and hence finitely presented
relatively to whatever sub-theory S of T (that is, theory S of which T is a
quotient) whose set-based models admit representations as global sections
Homg(E, M) of models M of T in Grothendieck toposes (pairs of theories
satisfying these conditions are investigated for instance in [14] and [16]).
This remark can be often profitably applied to the cartesianization of T,
even though it is not known in general if it is always the case that every
model of it admits a sheaf representation of the above kind.

Summarizing, we have the following theorem.

Theorem 7.9. Let T be a theory of presheaf type and S be a sub-theory of T
such that every set-based model of S admits a representation as a structure
of global sections Homg(1, M) of a model M of T in a Grothendieck topos
E. Then every finitely presentable model of T is finitely presented as a model
of S.

O
7.3 Faithful expansions

Let T be a geometric theory over a signature ¥ and T’ a geometric expansion
of T over a signature 3.
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Suppose that C is a subcategory of the category of finitely presentable
T’-models such that the canonical functor

(P )set : T'-mod(Set) — T-mod(Set)

induced by the geometric morphism pf : Set[T'] — Set[T] restricts to a
functor
j: C — f.p.T-mod(Set) .

Then we have a commutative diagram

T/
Pr

Sh(CT’7 J']Iv) Sh(CT, JT)

[C, Set] [f.p.T-mod(Set), Set],

[7,Set]
where the geometric morphisms
sg :[C,Set] = Sh(Cp, Jpv)

and
tT : [f.p.T-mod(Set), Set] — Sh(Cr, J1)

are the canonical ones and [j, Set| is the geometric morphism canonically
induced by the functor j. We shall refer to this diagram as to (x).

Theorem 7.10. Let T be a theory of presheaf type over a signature X and T’
a geometric expansion of T over a signature X'. Suppose that T’ is classified
by the topos [C,Set], where C is a full subcategory of f.p.T'-mod(Set) such
that the functor (pt )set : T'-mod(Set) — T-mod(Set) restricts to a faithful
functor j : C — f.p.T-mod(Set). Then for any model ¢ of T' in C whose
associated T-model j(c) is finitely presented by a geometric formula ¢(Z)
over X3, there exists a geometric formula ¥ (Z) over ¥/ in the context & which
presents the T'-model ¢ and such that the sequent 1) 3 ¢ is provable in T'.

Before giving the proof of the theorem, we need to recall the following
straightforward lemma, of which we give a proof for the reader’s convenience.

Lemma 7.11. Let R: A — B and L : B — A be a pair of adjoint functors,
where R is the right adjoint and L is the left adjoint. Letn:1g — Ro L be
the unit of the adjunction and b an object of B. Then n(b) is monic if and
only if for any arrows f,g in B with codomain b, Lf = Lg implies f = g. In
particular, n is pointwise monic if and only if the functor L is faithful.

Proof Let us denote by 7, the bijection between the sets Hom 4(Lb,a)
and Hompg(b, Ra) given by the adjunction. By the naturality in b of 7., for
any arrow h : b — b in B, the arrow n, o h corresponds under 7753 to the
arrow Lh. Therefore, as 775 is a bijection, n, o f = n, o g if and only if
Lg = Lf. From this the thesis follows at once. O
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We can now prove the theorem.

Proof The geometric morphism
[7,Set] : [C,Set] — [f.p.T-mod(Set), Set|

is essential, that is its inverse image [j, Set]* admits a left adjoint [j, Set];,
namely the left Kan extension along the functor j, and the following diagram
commutes:

[C, Set] b Setl [f.p.T-mod(Set), Set]

§ j

cop f.p.T-mod(Set)°?,

Jr

where y¢ and y are the Yoneda embeddings.
The functor

[7,Set]; : [C, Set] — [f.p.T-mod(Set), Set]

satisfies the property that for any object ¢ of C and any arrows o, 8 : P —
ye(c), where P is an object of [C,Set], [j,Set]i(a) = [j, Set|i(8) implies
a = (. Indeed, this is clearly true for P equal to a representable by the
commutativity of the above diagram, the full and faithfulness of the Yoneda
embeddings yc and vy’ and the fact that the functor j is faithful by our
hypotheses, and one can always reduce to this case by considering a covering
of P in [C, Set] by representables.

Now, by our hypotheses the geometric morphisms sCT/ and tT defined
above are equivalences. Lemma 7.11 thus implies that the geometric mor-
phism p%/ is essential and the unit of the adjunction between (p%/)* (right
adjoint) and (pI); (left adjoint) is monic when evaluated at any object
of the form yc,({# . x}), where x(¥) is a formula presenting a T’-model.
Let ¢ be a T’-model in C. Since T’ is classified by the topos [C, Set], ¢ is
finitely presented by a formula {Z . x} over the signature X’ of T'. The
commutativity of the above square and of diagram (%) thus implies that
that (p%/)!(ycT,({g' - x}) = ye,({Z . ¢}), where ¢(Z) is a formula over
the signature ¥ which presents the model j(c) and ye, : Cr — Sh(Cr, Jr),
Ycy : Crv — Sh(Cr, Jv) are the Yoneda embeddings. By definition of the
geometric morphism pl , we have that (pt )*(ye. ({7 . ¢})) = Yo, {7 . ¢})
(where the latter ¢ is considered as a formula over the signature ¥’). The
unit of the adjunction between (pr)* and (pf ) thus yields a monic ar-
row ye, ({7 - x}) — pE (0% (e ({7 - x3))) = ye,, ({F . ¢}) in the topos
Sh(Cy, Jy), in other words a monic arrow { . x} — {Z . ¢} in the geomet-
ric syntactic category Cr. Therefore {¢ . x} is isomorphic, as an object of
Cr/, to an object {Z . ¢'} such that the sequent (¢’ Fz ¢) is provable in T’;
hence ¢/(Z) presents ¢ as a T'-model, as required. O
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8 Examples

In this section we shall discuss in detail various non-trivial examples of the-
ories of presheaf type in light of the theory developed in the paper.

8.1 Theories whose finitely presentable models are finite

As an application of Corollary 6.25, one can recover at once the well-known
results that the following theories are of presheaf type:

1. The theory of decidable objects (cf. [23] and p. 907 of [21]);
2. The theory of decidable Boolean algebras (cf. Example D3.4.12 [21]);
3. The theory of linear orders;

4. The theory of total orders with endpoints (cf. section VIIL.8 of [26])

Notice that the former two theories are injectivizations of two cartesian
theories, namely the empty theory over a signature consisting exactly of one
sort and the algebraic theory of Boolean algebras. The latter two theories
clearly satisfy the hypothesis of Corollary 6.57; hence their injectivizations
are of presheaf type as well.

8.1.1 The theory of abstract circles

The theory C of abstract circles has been introduced by I. Moerdijk and
shown in [28] to have the property that the points of Connes’ topos of cyclic
sets (cf. [15]) can be identified with the set-based models of C. In the
same paper it is also stated that Connes’ topos actually classifies C, but the
argument given therein seems incomplete.

We shall prove in this section, by using Corollary 6.22, that C is of
presheaf type classified by Connes’ topos. Specifically, we shall show that C
satisfies the hypotheses of the corollary with respect to its Horn part (i.e.,
the Horn theory consisting of the collection of all Horn sequents which are
provable in C). We will also prove that the injectivization of C is of presheaf
type as well.

The signature ¥ of the theory C consists of two sorts P and S (variables
of type P will be denoted by letters x,, ..., while variables of type S will
be denoted by letters a,b,...), two unary function symbols 0 : P — S and
1: P — S, two unary function symbols dg : S — P and 61 : S — P, one
unary function symbol * : S — S and a ternary predicate R of type S. The
axioms of C can be formulated as follows:

1. Non-triviality axioms:

(T Fp Bz)(z = 2));
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(T Fay (B0)(B0(a) = & A 81 (a) = )
(0(z) = 1(2) b 1)
2. ‘Equational’ azioms:
(T kg a* =a);
(T Fa do(a”) = d01(a));
(T Fa 00(0(z)) = 2 A 61(0(2)) = x);
(T Fe 0(z)" = 1(2));
(dp(a) =xNbi1(a) = Fpqa=0(x)Va=1(z));
3. Azioms for concatenation:
(R(a,b,c) A\ R(a,b, c/) Fapbee €= c’);

(R(a,b,c) Fape do(c) = do(a) Adi(c) = 61(b));
(R(a,b,c) Fape R(c™,a,b"));
R(a,b,d) A R(c,d ) Fapede (3)(R(b, c,€) A R(a, €', e));
(R(a,0,0(z)) Fape a=0(x));
(0o(a) = ez R(0(x),a,a);
(01(a) = 60(b) Fap (Fc)R(a,b,c) V (Id)R(b*, a",d)) .

A model of C in Set is said to be an abstract circle. Any set of points P
of the circle S' defines an abstract circle Sp whose segments a € S such that
do(a) = = and 6;(a) = y are the oriented arcs on S! from the point z to the
point y. For any natural number n > 0, there is exactly one abstract circle,
up to isomorphism, whose set of points has n elements; we shall denote it by
the symbol C,.

To prove that C is of presheaf type, we first notice that the sequent

(0p(a) = do(b) A d1(a) = 61(b) Fapa=D)

is provable in C. We shall refer to it as to the ‘uniqueness axiom’. This
sequent can be easily deduced as a consequence of the seventh axiom of
group 3 and the fifth axiom of group 2.

It follows that, modulo the non-triviality axioms and the uniqueness ax-
iom, we can replace any expression of the form (3¢)¢(c) arising in an axiom
of C with the requirement that the unique segment d such that do(d) = dp(c)
and 91(d) = d1(c) satisfies ¢. In particular, the fourth axiom of group 3 is
provably equivalent, modulo the non-triviality axioms and the uniqueness
axiom, to the following sequent:

(00(u) = 60(b)Ad1(u) = 01(c)AR(a,b,d)AR(d, c,e) Fapcden R(b, c,u)NR(a,u,e)) .
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Similarly, the seventh axiom of group 3 is provably equivalent, modulo
the non-triviality axioms and the uniqueness axiom, to the following sequent:

(00(c) = do(a) Nd1(c) = 01(b) Adi(a) = 0o(b) Fape R(a,b,c)V R(b*,a,c")) .

From these remarks we see that C admits a presentation in which all
the axioms do not contain quantifications except for the first and second of
group 1.

Let us show that C satisfies the hypotheses of Corollary 6.22 with respect
to its Horn part and the category of finite C-models.

Given a homomorphism f : ¢ — Homg(E, M), where c is a finite model
of the Horn part of C, M is a model of C in a Grothendieck topos £ and E is
an object of £, we can ‘localize’ f (in the sense of section 6.4) a finite number
of times (once for the first axiom and once for each point of ¢ for the second
axiom) to obtain X-substructure homomorphisms f; : ¢; < Homg(E;, M)
such that the structures ¢; are finite models of the Horn part of C satisfying
the non-triviality axioms (notice that any substructure of a structure of
the form Homg(E;, M), where M is a model of C in &, satisfies all the
Horn sequents provable in C). We can clearly further localize each of these
homomorphisms so to obtain the satisfaction of all the other axioms of C;
since this can be done without modifying their domains, the final result will
be a family of homomorphisms whose domains are structures which satisfy
all the axioms of C.

Next, we notice that for any set-based model M of the Horn part of C,
any point z € M P and any segment a € M S there exists a finite substructure
N of M such that NP contains  and NS contains a (take N equal to the
substructure of M given by the sets

NP = {z,00(a),d1(a)}
and

NS = {a,0(z), 1(z),0(do(a)), 0(d1(a)), 1(do(a)), 1(01(a)))}) -

Moreover, any two finite substructures N; and Ns of M are contained in a
common substructure N of M (take N equal to the substructure of M given
by NP = N;PU N3P and N1S = N1.S U NyS5).

This discussion, combined with the argument above (specialized to the
case £ = Set), shows that every model of C in Set is a directed union of
finite models of C. It follows in particular that every finitely presentable
C-model is finite (it being a retract of a finite model). On the other hand,
every finite model of C is finitely presentable as a model of the Horn part
of C (cf. Theorem 6.4 [6]). We can thus conclude that the hypotheses of
Corollary 6.22 are satisfied, whence C is of presheaf type classified by the
topos of covariant set-valued functors on the category of finite models of C.
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Due to the presence of conjunctions in the premises of some axioms of
C, we cannot directly apply Corollary 6.57 to conclude that the the injec-
tivization C,, of C is of presheaf type. We shall instead apply Corollary
6.56. Since every C-model in Set is a directed union of finite C-models,
the finitely presentable C,,-models are exactly the finite C-models. More-
over, by Proposition 6.47, the monic C-model homomorphisms in Set are
precisely the homomorphisms which are sortwise injective; indeed, the for-
mulae {z¥ . T} and {2 . T} strongly present respectively the C-models
C1 and C5. To show that the hypotheses of Corollary 6.56 are satisfied, it
remains to verify that for any Grothendieck topos &, object E of £ and -
structure homomorphism x : ¢ - Homg(E, M), where ¢ is a finite C-model
and M is a sortwise decidable C-model, there exists an epimorphic family
{e; : E; - E|i € I} in & and for each i € I a C-model homomorphism
fi : ¢ = ¢; of finite C-models and a sortwise disjunctive Y-structure homo-
morphism z; : ¢; = Homg(E;, M) such that x; o f; = Homg(e;, M) o x for
all ¢ € I.

In order to apply Proposition 6.53, we make C into a one-sorted theory
by identifying points « with the segments 0, and rewriting the axioms appro-
priately. The proposition yields an epimorphic family {e; : E; — E | i € I}
in £ and for each ¢ € I a sortwise surjective homomorphism ¢; : ¢ — ¢,
where ¢; is a finite Y-structure, and a disjunctive X-structure homomor-
phism (in the sense of Lemma 6.37) J; : ¢; — Homg(E;, M) such that
Jioq = Homg(e;, M) o f for all i € I. Now, since ¢ is a C-model and g¢;
is sortwise surjective, the structure c¢; satisfies the non-triviality axioms. We
can clearly suppose E; 2 0 without loss of generality, and hence the arrows J;
to be injective. If we consider the image factorizations of the 3-structure ho-
momorphisms J; (in the sense of Lemma 6.51), we thus obtain substructures
¢, — Homg(E;, M) whose underlying sets are the same as those of ¢; (since
the J; are injective) and 3-structure homomorphisms ¢, : ¢ — ¢}. Since the
¢, have the same underlying set as ¢;, they all satisfy the non-triviality ax-
iom, and, at the cost of refining the epimorphic family {e; : F; — E | i € I},
we can suppose them to satisfy all the other axioms of C (cf. the argument
given above for showing that C satisfies the hypotheses of Corollary 6.22
with respect to its Horn part and the category of finite C-models). So the
hypotheses of Corollary 6.56 are satisfied, and we can conclude that C,, is of
presheaf type classified by the topos of covariant set-valued functors on the
category of finite models of C and injective homomorphisms between them.

8.1.2 The geometric theory of finite sets

In this section we shall revisit, from the point of view of the theory developed
in the paper, a well-known example of a non-trivial theory of presheaf type,
namely the geometric theory T of finite sets. Recall from [21] (Example
D1.1.7(k)) that the signature ¥ of T consists of one sort A and a n-ary
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relation symbol R, for each n > 0. The axioms of T are the following: for
each n, one has the axiom

on = (Rp(x1,...,20) Fay \/ Yy =x;),

1<i<n

expressing the requirement that if an n-tuple of individuals satisfies the re-
lation R, then it exhausts the members of (the set interpreting) the sort A.
(The case n = 0 of this axiom is (Ro Fpp L), which says that if Ry holds
then the interpretation of the sort A must be empty.) We also have, for each
n > 0, the axiom

(Try V Gz1)-+ Gzn)Ra(z,. . 20))

1<i<n

Finally, to ensure that the interpretations of the R,, are uniquely determined
by that of the sort A (i.e. that R, holds for all n-tuples which exhaust the
elements of the interpretation of sort A, and not just for some of them), one
adds the axioms

(Rn(21, -5 70)) Py, Rm(fff(l)v e 7xf(m)))

whenever f:{1,2,....m} — {1,2,...,n} is a surjection, and

(Rn(l‘l, ce ,l’n) Nz =T '_:Jcl,...,xn Rnfl(l’l, ey L1, LTy e ,:L'n))

whenever 1 <i < j <n.

We can deduce that T is of presheaf type as an application of Corollary
6.22.

The models of T in Set can be identified with the finite sets, while the
T-model homomorphism are the precisely the surjective functions between
them.

We can regard T as a quotient of its Horn part (i.e. of the theory consist-
ing of all the Horn sequents over the signature of T which are provable in T).
The criterion for finite presentability given by Lemma 6.2 [6] ensures that
every finite set, regarded as a model of T, is finitely presentable as a model
of the Horn part of T. Indeed, the finiteness of the structure immediately
implies that the second condition of the lemma is satisfied (cf. the proof of
Theorem 6.4 [6]), while the satisfaction of the first condition follows from
the fact that every function from a finite model of cardinality n of the Horn
part of T to a set-based model M of the Horn part of T which preserves the
predicate R,, preserves the predicate R, for any m < n (by the ‘introduc-
tion’ and ‘elimination’ rules expressed by the last two groups of axioms for
T).

To apply Corollary 6.22, it thus remains to prove that the second con-
dition in the statement of the corollary is satisfied. Given a homomorphism
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f:a— Homg(E, M), where a is a finite model of the Horn part of T and
M is a T-model in a Grothendieck topos &, if the cardinality of aA is n then
for any m > n, the sequent oy, is satisfied in a provided that o, is. Indeed,
if m > n then for any m-tuple (y1,...,ym) of elements in aA there exists a
sub-n-tuple of elements of a A obtained by removing m — n repetitions, which
satisfies the relation R, if the m-tuple (y1, ...,y ) satisfies the relation R,,,
since a, as a model of the Horn part of T, satisfies the Horn sequent express-
ing the ‘elimination’ rule (i.e., the last group of axioms for T). Similarly, by
invoking the ‘introduction’ rules, one can prove that if the cardinality of a A
is n then for any k < n, the sequent oy, is satisfied in a provided that oy, is.

Let us show that we can inductively localize the morphism f to eventually
arrive at X-structure homomorphisms f; : a; — Homg(E;, M) defined on -
structures a; which satisfy all the axioms of T. Notice that if the X-structure
homomorphisms h; : @ — a; in such localization are quotient maps (in the
sense that a tuple in a; satisfies a relation if and only if it is the image under
h; of a tuple satisfying that relation in a) then the fact that the a; satisfy
the last two groups of axioms of T will follow automatically from the fact
that a does. It will thus be enough to show, by the above considerations,
that each a; satisfies the sequent o,,,, where n; is the cardinality of a; A, and
the second axiom of T.

Starting from a 3-structure homomorphism f : a — Homg(E, M), where
a is a finite model of the Horn part of T, from the fact that M is a model of
T it follows that there exists an epimorphic family {e; : E; — F | i € I} and
for each 7 € I a natural number n; and a n;-tuple (&1,...,&,,) of generalized
elements E; — M A such that (&1, ...,&,,) factors through the interpretation
of R,, in M. By taking a; to be the X-substructure of Homg(FE;, M) on the
finite subset consisting of the elements &1, ..., &,, plus all the elements in the
image of the homomorphism Homg(e;, M) o f, we clearly obtain a structure
satisfying the second axiom of T. This structure will also satisfy the last
two groups of axioms for T (the validity of Horn sequents is inherited by
substructures). Now, in order to obtain from this family of »-structure
homomorphisms a localization such that the domains of its homomorphisms
satisfy all the axioms of T, for each ¢ € I, it suffices to localize each f; a finite
number of times (one for each (n; + 1)-tuple @ of elements of a;, where n; is
the cardinality of a;), endowing the sets d; arising in the surjective-injective
factorizations of the homomorphisms with the quotient structure induced
by the domains a; via the relevant quotient map ¢; (in the sense that the
interpretation of each relation symbol R over the signature of T in such a set
d; is defined to be equal to the image of the interpretation of R in a; under
the quotient map ¢;). By the above remarks, these structures will satisfy all
the axioms of T.

This completes the proof of the fact that the hypotheses of Corollary 6.22
are satisfied by the theory T with respect to its Horn part and the category
C of finite T-models; therefore the theory T is of presheaf type classified by
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the topos [C, Set].

8.2 The theory of Diers’ fields

As observed in [22], the coherent theory T of fields is not of presheaf type.
In fact, one can easily identify two properties which are preserved by homo-
morphisms of fields but which are not definable by geometric formulae in
the signature of the coherent theory of fields: the property of a field to have
characteristic 0, and the property of a tuple (z1, ..., Ty, Tpt+1) of elements of
a field that the element x,4; is transcendental over the subfield generated
by the elements x1,...,2z,. This can be easily seen by arguing as follows.
Assuming the axiom of choice, the theory T has enough Set-based models (it
being coherent). Hence if the property of having characteristic 0 were defin-
able by a geometric sentence ¢ over the signature of fields then the sequent
(T Fp oV Vép), where P is the set of prime numbers and ¢, (for each p € IP)
peP

is the sentence p . 1 = 0 expressing the property of having characteristic p,
would be provable in T. But, T being coherent, the infinitary disjunction
on the right-hand side of the sequent would then be provably equivalent to
a finite subdisjunction, which is absurd as it would imply that the set of
all possible characteristics of a field is finite. A similar argument works for
the other property, which, like the former, is the complement of a property
definable by a strictly infinitary geometric formula.

In order to make such properties definable and possibly obtain a presheaf
completion of the theory T, it is thus necessary to enlarge the signature of
T with new relation symbols. In fact, Johnstone introduces in [22] a O-ary
predicate Ry, expressing the property of a field to have characteristic 0, and
for each natural number n > 0 a n + l-predicate R,i1(21,...,Tn, Tnt1)
expressing the property of x,41 of being transcendental over the subfield
generated by the elements x1,...,2,. Let ¥’ be the resulting signature.
Formally, one has to impose the following axioms over Y’ to ensure that these
predicates have indeed the required meaning (below we use the abbreviation
Inv(z) for the formula (3z)(x-z2=1Az-z=1)):

(TERyv \/p.1=0);
peP
(RoAp.1=0F L)
(for each p € P);

m
(T Farvoznis Bu(@r, s zm )V \/ (ZPC?mel:O)/\ \/  Inv(Pz)))
j=0

K2
mEN,c?f,...,cﬁl 1€{0,1,...,m}

(for each natural number n > 0), where the former disjunction is taken over
all the natural numbers m > 0 and all the tuples ¢! (for ¢ € {0,...,m}) of
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integer coefficients (i.e., coefficients of the form 1+ -4 1 an integer number
of times) of polynomials in n variables x1,...,x, of degree < m and the
expression Py (for each i € {0,...,m}) denotes the polynomial term in the

variables x1, ..., z, corresponding to the tuple c_?, and

(Ru(@1,- s 2y g )N/ (ZPC?:U{LH:O)/\ \/ Ino(P3))) Fayengn L) -

mEN,C,....cH, Jj=0 i€{0,1,...,m}

Let D be the theory, called in [22] of Diers fields, obtained from T by
adding these new predicates and the above-mentioned axioms.
Note that the geometric formula

Vo (X Pama=0A  \/ Inv(Py))
mGI\T,c?‘,...,cﬁL Jj=0 i€{0,1,....m}

is D-provably equivalent to a disjunction of geometric formulae, namely,

m . - .
the formulae ( Y Pzl ., = 0) A Inv(Pgz) (for each m, ¢},...,cf, and
j=0 1

i € {0,...,m}), each of which has a D-provable complement, namely the

m .
formula I'nuv( ZPJ,Q:%H =0)V Pz =0.
5 J (3

Jj=0
Notice also that, for any tuples c_? (for i € {0,...,m}) of integer coefhi-
cients of polynomial expressions P in the variables x1, ..., zy,, the cartesian
sequent '

m
() (Rn(21,.. ., Ty Tpg1) A Inv(Pc?) Faangs In0( chjlxiwrl =0))
j=0

is provable in D.

Following [22], we observe that the theory I satisfies the property that
every finitely presentable model of it, i.e. any finitely generated field, is
finitely presented as a model of its cartesianization. This will follow from
Lemma 7.8 once we have proved that every finitely generated field F' is
presented by a finite set of generators, in the weak sense of the lemma, by a
formula over the signature of ID. To this end, we regard T as axiomatized in
the signature of von Neumann regular rings, which contains a unary function
for the operation of pseudoinverse; indeed, over this signature, every finitely
generated field (in the sense of field theory) becomes finitely generated (in
the sense of model theory).

Notice that, by the above remarks, D satisfies the first set of hypotheses
of Lemma 7.8 with respect to the theory T.

We shall prove that every finitely generated field F' is (weakly) presented
(as a model of the cartesianization of D) by a geometric formula over the
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signature of D by induction on the number n of generators of F. If n =0
then F' is equal to its prime field; so, either F' has characteristic p, in which
case it is equal to Zp, or F' has characteristic 0, in which case it is equal
to Q. Now, the field Z, is clearly (weakly) presented by the formula p .
1 = 0, while the field Q is (weakly) presented by the formula Ry since the
sequent Ry F Inv(n . 1) is provable in the cartesianization of D for each
non-zero natural number n. Now, consider a field F' generated by n + 1
elements x1,...,ZTyn, Tnt1. If we denote by Fj its prime field, we have that
F =Fy(z1,...,20)(Tpt1)-

Suppose that Fy(zq,...,z,) is (weakly) presented by a formula in n
variables ¢(Z) with the elements zy, ..., x, as generators.

There are two cases: either the element x,1 is transcendental over the
field Fy(x1,...,x,) or not.

In the first case, F' is isomorphic to the field of rational functions in
one variable with coefficients in Fy(x1,...,z,), and it is (weakly) presented
by the formula ¢ A Ry (z1,...,Zn, Tne1) with generators xi,..., Ty, Tni1;
in other words, for any model (A, {(R,)a n € N}) of the cartesianization
of D, the function which assigns a ring homomorphism f : FF — A with
the property that f(x1,...,2n, Tnt1) € (Ruy1)a N[[Z . ¢]]4 to the element
f(z1,...,Zn,Tpt1) is injective and surjective on (Ry41)a N [[Z . ¢]]a. This
can be proved as follows. Since F' is generated by the elements x1, ..., Tp11,
the injectivity is clear, so it remains to prove the surjectivity, i.e. that for
any (n+1)-tuple (ai1,...,an, ant1) € (Rnt1)aN[[Z . ¢]]4 there exists a ring

homomorphism F' — A which sends z; to a; for each i € {1,...,n + 1}.
By the induction hypothesis, since (a1,...,a,) € [[Z . ¢]]a, there exists a
unique ring homomorphism ¢ : Fy(z1,...,2,) — A such that g(z;) = a;

for each ¢ € {1,...,n}. By definition of F, there exists a ring homo-
morphism f : F — A which extends ¢ and sends z,+1 to a,41 if and
only if for every polynomial P with a non-zero coefficient P (x1,...,25)

m .
in Fo(x1,...,2n), Y g(Ps)d’ is invertible in A. But since P (z1,...,2y)
]:O J T

is non-zero (equivalently, invertible) in the field Fy(zq,...,z,), its image

9(Paz(x1,...,20)) = Pz(g9(r1),...,9(zn)) under the homomorphism g is

invertible in A; therefore, since the sequent () holds in A, the condition
m

(f(x1)y..., f(zn),a) € (Ry)4 entails the fact that Z(:)g(PC?)aj is invertible
in A, as required. ’

In the second case, consider the minimal polynomial P for x,4; over
Fo(x1,...,x,); then F' is isomorphic to the quotient of Fy(z1,...,zy) by
the ideal generated by the polynomial P. It is immediate to see that F' is
(weakly) presented by the formula in n + 1 variables ¢ A P(zp41) = 0 with
generators Z1,...,%n, Tnyl-

These arguments show that the theories T and D satisfy the hypotheses
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of Lemma 7.8. It follows that all the finitely generated fields are finitely
presented models of the cartesianization of D, as required. Condition (ii7)
of Theorem 5.1 is therefore satisfied (cf. Proposition 5.11(i)). Alternatively,
we could have deduced the fact that the theory ID satisfies condition (4i7) of
Theorem 5.1 from Corollary 5.16 and Theorem 5.21.

In [22], Johnstone shows that D is a theory of presheaf type by assuming
a form of the axiom of choice to ensure that D has enough set-based mod-
els. Theorem 5.1 allows to prove that I is of presheaf type directly, without
assuming any non-constructive principles. Having already proved that con-
dition (7i7) of the theorem is satisfied, it remains to see that conditions (7)
and (i7) hold as well.

The fact that condition (ii)(a) of Theorem 5.7 holds follows immediately
from the above-mentioned discussion in view of Remark 5.8(b). Condition
(73)(c) of Theorem 5.3 is automatically satisfied while condition (ii)(a) of
Theorem 5.7 follows from condition (ii)(a) of Theorem 5.7 (cf. Remarks
5.4(b)-(c)), By Remark 5.8(a), to prove that condition (i7)(b) of Theorem
5.7 holds, it suffices to verify that condition (iz)(b) of Theorem 5.3 does.
It thus remains to verify that condition (i7)(b) of Theorem 5.3 holds, i.e.
that for any finitely generated fields ¢ and d, D-model M in a Grothendieck
topos £ and Y/-structure homomorphisms = : ¢ = Homg(E, M) and y : d —
Homg(E, M), there exists an epimorphic family {e; : E; - E |i€ I} in £
and for each ¢ € I a finitely generated field b;, field homomorphisms u; : ¢ —
bi, v; : d = b; and a X'-structure homomorphism z; : b; — Homg(E;, M)
such that Homg(e;, M) o x = z; o u; and Homg(e;, M) oy = z; o v;.

We can prove this by induction on the sum n of the minimal number of
generators of ¢ and of d.

Before proceeding with the proof, it is convenient to remark the follow-
ing fact: for any non-zero model (A, {(R,)a n € N}) of the cartesianization
of D (for instance, a X'-structure of the form Homg(E, M), where M is a
model of D in the topos £ and FE is a non-zero object of £) and any field
e, considered as a model of D, all the ¥'-structure homomorphisms e — A
reflect the satisfaction of the relations Ry, i.e. f(z1,...,2,) € (Ry)a implies
(x1,...,2n) € (Ry)e. This easily follows from the disjunctive axioms of D
defining R,, and the cartesian axiom (). Note also that such homomor-
phisms are always injective (since their domain is a field and their codomain
is a non-zero ring).

In proving our claim, we can suppose without loss of generality all the
objects E arising in ¥/-structure homomorphisms to structures of the form
Homg(E, M) to be non-zero (since removing zero arrows from an epimorphic
family leaves the family epimorphic).

If n = 0 (that is, if both ¢ and d are equal to their prime fields) then ¢
and d have the same characteristic; indeed, equalities of the form n .1 =0
are preserved and reflected by the homomorphisms = and y (cf. the above
remarks). So ¢ and d are isomorphic, whence the claim is trivially satisfied.
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Let us now assume that the condition is true for all £ < n and prove it for
n+ 1. We can represent ¢ as ¢/(z) in such a way that a set of generators
for ¢ can be obtained by adding x to a set of generators for ¢’; then by the
induction hypothesis there exists an epimorphic family {¢; : E; — E | i € I}
and for each ¢ € I a finitely generated field u;, field homomorphisms f; : ¢ —
u; and g; : d — w; and a X-structure homomorphism r; : u; — Homg(E;, M)
such that r; o f; = Homg(E, M) o f|+ and r; 0 g; = Homg(E, M) o g. Now,
consider for each i € I the element f(x)oe; € Homg(E;, M). Suppose
that ¢’ has m generators x1, ..., xm; then for each i € I, by the disjunctive
axiom of DD involving R,,, there exists an epimorphic family {f;; : F;; —
E; | j € J;} such that for any j € J;, either Ry, ((rio fi)(x1)o€io fij, ..., (rio
fi)(xm) oeio fij, f(x)oeio fi;)or f(x)oe;o fi;is the root of a non-zero
polynomial P with coefficients belonging to the von Neumann regular sub-
ring of Homg (F; j, M) generated by the elements (r;o f;)(x1)oeiofi j, ..., (rio
fi)(xm) o €i o fi ;. In the first case, f(z) oe; o f;; is transcendental over ¢/
via the embedding Homg(f; j, M) or;o f; and over w; via the embedding
Homeg(fi;, M) or; (apply the above remarks to these two embeddings); it
follows that the homomorphism f; extends to a homomorphism from ¢ =
d () to u;.

In the second case, the homomorphism Homeg(e; o f; j, M) o f being
injective, there exists a non-zero polynomial P with coefficients in ¢’ such
that f(z) oe; o f;; is a root of the image of P under Homg(f; j, M) or;o
fi = Homg(e; o fij, M) o f|o. It follows that z is a root of P in c. We
can thus clearly suppose P to be irreducible without loss of generality, and
represent ¢ = ¢/ (x) as ¢ = [z]/P(z), via an isomorphism sending z to x;
denoting P’ the image of P under the homomorphism f;, we thus obtain
that the arrow f; yields an arrow ¢ = [z]/P(z) — u;[w]/P'(w) and the
homomorphism Homeg(f; ;, M) o r; factors through the quotient map u; —
u;[w]/P'(w) yielding a ring homomorphism which is in fact a ¥'-structure
homomorphism (by Lemma 7.8, cf. the argument given above for proving
that every finitely generated field is finitely presented as a model of the
cartesianization of D).

From these remarks it is now straightforward to obtain a set of data
satisfying the requirements of our condition.

We could have alternatively proved that D satisfies condition (i7)(b) of
Theorem 5.3 either by using Remark 5.4(d) or by applying Theorem 5.5.

8.3 The theory of algebraic extensions of a given field

Let F be a field. We define the theory T of algebraic extensions of F' as the
expansion of the coherent theory of fields obtained by adding one constant
symbol @ for each element a € F' and the following axioms:

(TH1p=1)

150



(T H0F =0);
(TFa+b=a+rb),

for any elements a,b € F (the symbol +p denotes the addition operation in
F); -
(Tka-b:a-pb),

for any elements a,b € F (the symbol - denotes the multiplication operation
in F'), plus the algebraicity axiom

(The \ Gz + T2 @ =0)

neNag,...,an—1,an €F

We shall prove that Tr is of presheaf type. Clearly, the finitely pre-
sentable models of Ty are exactly the finitely generated algebraic extensions
of F, that is the finite extensions of F. One can prove, by adapting the
argument used in the proof of the result that every finitely generated field is
finitely presented as a model of the cartesianization of the theory of Diers’
fields established in section 8.2, that every finite extension of F' is finitely
presented as a model of the cartesianization of Tp. Specifically, every finite

extension F'(x1,...,x,) of F is presented by the conjunction of the formulae
of the form P;(z1,...,7i11)(x;) = 0 (for i = 0,...,n — 1), where P is the
minimal polynomial for the element x; 1 over the field F'(xq,..., ;).

Condition (ii¢) of Theorem 5.1 is thus satisfied by the theory Tr with
respect to the category of finite extensions of F' (cf. Proposition 5.11(i)).

In verifying that conditions (7) and (4i) of Theorem 5.1 are satisfied, one
is reduced as in section 8.2 to check that condition (i7)(b) of Theorem 5.3
holds; this can be done again by adapting the argument given in section 8.2
to this case. We can thus conclude that Tr is of presheaf type classified by
the topos of covariant set-valued functors on the category of finite extensions
of F.

Next, let us consider the theory Sg of Tr of separable extensions of F,
that is the quotient of Ty obtained by adding the following sequent:

(T by \ " + Gpga™ 4+ a5 = 0),
n€N,(ao,...,an—1,0n)ESE

where S% is the set of n-tuples of elements aq,...,a, of F' such that the
polynomial a, Z"+a, 1Z" ' +---  +ag € F[Z] is irreducible and separable.

Clearly, the finitely presentable Sp-models are precisely the finite sep-
arable extensions of F. In particular, every finitely presentable Sp-model
is finitely presentable as a Tp-model. In fact, by Artin’s primitive element
theorem, every finite separable extension of F is presented by a formula of
the form {x . @,2" + @, 12" ' +--- +a = 0}.

The hypotheses of Corollary 6.22 are trivially satisfied; indeed, for any
Tr-model homomorphism M — N (in an arbitrary Grothendieck topos), if
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N is separable (i.e., a model of Sg) then M is a fortiori separable as well.
We can thus conclude that also the theory Sg is of presheaf type, classified
by the category of covariant set-valued functors on the category of finite
separable extensions of F'.

Remark 8.1. The theory of fields of a fixed finite characteristic p which are
algebraic over their prime field, which was proved in [11] to be of presheaf
type classified by the category of covariant set-valued functors on the cate-
gory of finite fields of characteristic p, is (trivially) Morita-equivalent to the
theory Tz, introduced above.

8.4 Groups with decidable equality

In this section we shall study the injectivization G of the (algebraic) theory
of groups.

Clearly, the finitely presentable G-models are precisely the finitely gen-
erated groups.

Even if G satisfies condition (7i7) of Theorem 5.1 with respect to the
category of finitely generated groups and injective homomorphisms between
them (by Theorem 5.21 and Corollary 5.16), G is not of presheaf type. To see
this, consider the property of an element z of a group G to be non-nilpotent.
This property is clearly preserved by injective homomorphisms of groups, so
if G were of presheaf it would be definable by a geometric formula ¢(x) over
the signature of G. Then the sequent

(The \/oV@"=1)),

neN

would be provable in G (since G has enough set-based models and this se-
quent is valid in every set-based G-model by definition of ¢) and hence, as
G is coherent, the disjunction on the right hand side would be G-provably
equivalent to a finite sub-disjunction; but this is absurd since it implies that
there exists a natural number n such that every nilpotent element x of a
group satisfies 2™ = 1.

To obtain a presheaf completion of the theory G, we add to the signature
of G a relation symbol R%; for each natural number n and any normal sub-
group of the free group F), on n generators, and the following axioms (where
the symbol # denotes the predicate of G which is G-provably complemented
to the equality relation):

(T k& Ry (T)V( V w # w)V( V w=uw'))
w(Z),w' (Z)EF, | ww'—1eEN w(Z),w' (E)EF, | ww'~1¢N
and
(RA%(Z)A( \V w# w'V \ w=w)tgz L)
w(Z),w (Z)EF, | ww'~leN w(Z),w (Z)EF, | ww'~1¢N
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(for any n € N and any normal subgroup N of F},), and

(Trz \/ Ry(@),

NeN,

where N, is the set of normal subgroups of F,, (for any n € N).

Let G, be the resulting theory; we shall prove that it is of presheaf type.

Notice that the theories G and G, satisfy the first set of hypotheses of
Lemma 7.8.

Let us first show that every finitely generated group is finitely presented
as a model of the cartesianization of G,. By Lemma 7.8, to prove that F, /N
is presented by the formula RR,(Z) as a model of the cartesianization of G,,
it suffices to verify that for any set-based model (G',{(R%)c |n € N,N €
N, }) of the cartesianization of G,, denoting by E = (&1,...,&,) the gen-
erators of the group F,, the group homomorphisms f : F,/N — G’ such
that f(€) € [ . RY]]ar correspond exactly to the n-tuples 7 of elements
of G which belong to the interpretation in G’ of the formula R}, (via the
assignment f — f (E)) Given a n-tuple ¥ of elements of G’ which belong
to the interpretation of RY; in G’, we can define a function f : F,/N — G’
by setting f([w]) = wer (7). This is a well-defined injective group homomor-
phism since the following sequents are provable in the cartesianization of G,
and hence are valid in G:

(RY bz w =)
for any w,w’ € F, such that ww'~!' € N, and
(RN Fzw # ')

for any w,w’ € F, such that ww'~! ¢ N. Since every finitely generated
group is, up to isomorphism, of the form F, /N for some natural number n
and a normal subgroup IV of F;,, we can conclude that the theory G, satisfies
condition (ii¢) of Theorem 5.1 (cf. Proposition 5.11(i)). An alternative way
to prove this would have been to invoke Corollary 5.16 and Theorem 5.21.

As in the case of Diers fields treated in section 8.2, in order to verify that
the theory G,, satisfies conditions (¢) and (4i) of Theorem 5.1, one is reduced
to show that condition (i7)(b) of Theorem 5.3 is satisfied; but this follows
from Remark 5.4(d). The theory G, is thus of presheaf type classified by
the topos [f.g.Grp, Set], where f.g.Grp is the category of finitely generated
groups and injective homomorphisms between them.

The category f.g.Grp is cocartesian; indeed, it has an initial object
(namely, the trivial group) and pushouts (given by the free product with
amalgamation construction, cf. [30]). It follows the topos [f.g.Grp, Set] is
coherent. The theory Gy, in spite of being infinitary, is thus classified by
a coherent topos. This fact has various implications for G,. For instance,

153



the coherence of the classifying topos for G, implies that every formula over
the signature of G, presenting a finitely generated group (regarded as a G-
model) is not only G,-irreducible, but also a coherent object of the classifying
topos; in particular, for any Gp-compact formula {Z . ¢} over the signature
of G,, the formula {z,y . ¢(x) A ¢(y)} is also G,-compact (recall that a
formula {Z". x} over the signature ¥ of a geometric theory T is T-compact if
whenever {Z'. x} T-provably entails a disjunction of geometric formulas over
Y, {Z. x} T-provably entails a finite sub-disjunction of it). Semantically, a
formula {Z . ¢} is G,-compact if whenever {S; | i € I'} is a family of assign-
ments G — SiG C G" sending each finitely generated group G to a subset
S¢ C [[Z . ¢]]¢ in such a way that every injective homomorphism f : G — G
of groups sends tuples in S& to tuples in S&, if [[Z . ¢]lc = USE for all
el

G then there exists a finite subset J C I such that [[7 . ¢]l¢ = JS. The
ieJ

fact that the classifying topos of G, is coherent also implies, by Deligne’s

theorem (assuming the axiom of choice), the existence of set-based mod-

els for any non-contradictory quotient of G, whose associated Grothendieck

topology on f.g.Grp°P is of finite type.

8.5 Locally finite groups

Let A be the algebraic theory of groups. Since every finite group is finitely
presented as a A-model (cf. Theorem 6.4 [6]) and A is of presheaf type,
Theorem 6.29 ensures that there exists a quotient U of A classified by the
topos [C, Set], where C is the category of finite groups and homomorphisms
between them, which can be characterized as the set of all geometric sequents
over the signature of A that are valid in every finite group. On the other
hand, since U is classified by the topos [C, Set], the set-based models of U
are exactly the groups which can be expressed as filtered colimits of finite
groups, such groups are exactly the groups which validate all the geometric
sequents over the signature of A which hold in every finite group. As a
by-product, we obtain the following characterization of locally finite groups
(equivalently, of the groups which can be expressed as filtered colimits of
finite groups).

Proposition 8.2. The locally finite groups are exactly the groups which sat-
1sfy all the geometric sequents over the signature of the theory of groups which
hold for all finite groups.

Proof In view of the above remarks, it remains to verify that a group is
locally finite (in the sense that all its finitely generated subgroups are finite)
if and only if it is a filtered colimit of finite groups. This can be proved
as follows. If a group is locally finite then it is the filtered union of all its
finitely generated (and hence finite) subgroups. Conversely, suppose that G
is a filtered colimit of finite groups. Then G is the directed union of the
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images in G of these finite subgroups, which are again finite. It follows that
every finitely generated subgroup H of G is contained in one of them (notice
that, since the union is filtered, there exists one of them which contains all
the generators of H) and hence it is a fortiori finite, as required. O

The injectivization of A is also of presheaf type (by Corollary 6.57) and
can be characterized as the quotient of G consisting of all the geometric
sequents over the signature of the injectivization G of the theory of groups
which hold in all finite groups.

8.6 Vector spaces

Let Vi be the expansion of the algebraic theory of vector spaces over a
field K obtained by adding a n-ary predicate R, for each natural number n
expressing the property of a n-tuple of elements to be linearly independent,
i.e. the following sequents:

(T bz Rn(Z) V Vo kit + k= 0),
(k1o kn ) EK™
k;7#0 for some 1
and
(Ra@ A\ kit +Enpa, =0) bz 1)
(K1, kn)EK™
k;#0 for some ¢
The category of models of the theory Vi in Set has as objects the vector
spaces over K and as arrows the injective homomorphisms between them.
The finitely presentable Vg -models are precisely the finite-dimensional vec-
tor spaces over K.
By using techniques analogous to those employed in section 8.2, one can
prove that Vi is of presheaf type.
Also, by using Corollary 6.22, one can eagily prove that for any fixed
natural number n, both the expansion of the theory of vector spaces over a
field K and of the theory Vg obtained by adding the sequent

T Fay,znia) \/ k1x1 + - + kn1Zn1 = 0)

(k1seskn1) €K
ki#0 for some ¢

are of presheaf type.
The models in Set of the latter theory are precisely the vector spaces
over K of dimension < n.
8.7 The theory of abelian /-groups with strong unit
Recall that an abelian [-group with strong unit is a lattice-ordered group

(G,0,<) with a distinguished element u, called the unit of the group, such
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that for any element x € G such that z > 0 there exists a natural number n
such that x < nu, where nu = v+ --- + u n times. We refer the reader to
chapter 2 of [31] as an introduction to the theory of lattice-ordered groups.

We can axiomatize the theory L, of abelian I-groups with strong unit over
a signature Y consisting of four binary function symbols +, —, inf, sup, two
constants 0 and v and a binary relation symbol <, by using Horn sequents to
formalize the notion of abelian [-group and the following geometric sequent
to express the property of strong unit:

(IZO}—I\/xgnu).
neN

The following lemma will be useful in showing that the theory L, is of
presheaf type.

Lemma 8.3. Let G be an abelian group with a distinguished element u and
generators x1,...,xy. If for everyi € {1,...,n} there exists a natural num-
ber k; such that |x;| < kju then u is a strong unit for G.

Proof Recall that the absolute value |z| of an element x of an abelian I-
group with unit (G, 0, +, —, <,inf, sup) is the element sup(x,—z). For any

x €G, x| >0 |z| =] -z, and for any x,y € G, the triangular inequality
|z +y| < |z|+ |y| holds.

Since G is generated by elements x1, . .., zy, every element x of G can be
expressed as the interpretation ¢(x1,...,x,) of a term t over the signature

Y. We shall prove that there exists a natural number n such that |z| < nu
by induction on the structure of ¢. This will clearly imply our thesis, since
if x > 0 then |z| = x. If t is a variable then the claim is clearly true by
our hypothesis. If z = 2’ + 2” with |2/| < n’u and |2”| < n”u then by the
triangular inequality we have |z| < n’+n”, and similarly for the subtraction.
The inf and sup cases are similarly straightforward. O

Let us now verify that the theory L, satisfies the hypotheses of Corollary
6.22 with respect to its Horn part H.

We have to prove that for any finitely presentable H-model ¢, any model
G of L, in a Grothendieck topos £, any object E of £ and any X-structure
homomorphism f : ¢ = Homg(E,G), there exists an epimorphic family {e; :
E; — E|i€I}in & and for each i € I a finitely presentable model ¢; of L,
and Y-structure homomorphisms f; : ¢ — ¢; and u; : ¢; - Homg(F;, G) such
that Homg(e;, G)o f = u;o f; for all i € I. Let us suppose that ¢ is presented
as a H-model by a cartesian formula ¢(¢) with generators xy,...,x,. Since
G is a l-group with strong unit, there exists an epimorphic family {e; : E; —
E|iel}in & and for each k € {1,...,n} and 7 € I a natural number my;
such that f(|z:]) oe; < My iUpome (B,,c) (Where Upom, (E, c) denotes the unit
of the ¢-group Home(E;,G)). For each i € I, let ¢; the H-model presented
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by the cartesian formula ¢(z1,...,zn) A lz1| <mii A .. Az, < my, ;. For
each ¢ € I, we have a natural quotient homomorphism f; : ¢ — ¢; through
which Homg(e;, G) o f factors; the resulting factorization wu; satisfies the
required property Homg(e;, G) o f = u; o f;. Since H is a Horn theory, each
¢; is generated by the n-tuple fi(x1),..., fi(zy) which presents it as a H-
model (cf. Remark 4.2(a)). Therefore the ¢; are [-groups with strong unit
by Lemma 8.3.

This argument also shows that the finitely presentable LL,-models are
exactly the finitely presented H-models whose unit is strong (cf. Theorem
6.26).

Therefore all the hypotheses of Corollary 6.22 are satisfied and we can
conclude that the theory L, is of presheaf type. In fact, L, is Morita-
equivalent to the (algebraic) theory of MV-algebras (cf. [12]).
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