DIMENSIONAL EXACTNESS OF SELF-MEASURES FOR
RANDOM COUNTABLE ITERATED FUNCTION SYSTEMS WITH
OVERLAPS

EUGEN MIHAILESCU AND MARIUSZ URBANSKI

ABSTRACT. We study projection measures for random countable (finite or infinite) con-
formal iterated function systems with arbitrary overlaps. In this setting we extend Feng’s
and Hu’s result from [6] about deterministic finite alphabet iterated function systems. We
prove, under a mild assumption of finite entropy, the dimensional exactness of the projec-
tions of invariant measures from the shift space, and we give a formula for their dimension,
in the context of random infinite conformal iterated function systems with overlaps. There
exist numerous differences between our case and the finite deterministic case. We give then
applications and concrete estimates for pointwise dimensions of measures, with respect to
various classes of random countable IFS with overlaps. Namely, we study several types of
randomized extensions of iterated function systems related to Kahane-Salem sets; also, a
random system related to a statistical problem of Sinai; and randomized infinite IFS in the
plane, for which the number of overlaps is uniformly bounded from above.

1. INTRODUCTION
Let (X, p) be a metric space. A finite Borel measure p on X is called ezact dimensional if
(1.1) d,(x) := lim log u(B(w.r))
r—0 log r

exists for p-a.e. € X and is equal to a common value denoted by d,. Exact dimensionality
of the measure p has profound geometric consequences (for eg [10], [15], [18]).
The question of which measures are exact dimensional attracted the attention at least since
the seminal paper of L.S Young [22], where it was proved a formula for the Hausdorff dimen-
sion of a hyperbolic measure invariant under a surface diffeomorphism, formula involving
the Lyapunov exponents of the measure. As a consequence of that proof, she established
what (now) is called the dimensional exactness of such measures. The topic of dimensional
exactness was then pursued by the breakthrough result of Barreira, Pesin, and Schmeling
who proved in [I] the Eckmann—Ruelle conjecture asserting that any hyperbolic measure
invariant under smooth diffeomorphisms is exact dimensional ([4]). Dimensional exactness,
without using these words, was also established in the book [I1] for all projected invariant
measures with finite entropy, in the setting of conformal iterated function systems with count-
able alphabet which satisfy the Open Set Condition (OSC); in particular for all projected
invariant measures if the alphabet is finite and we have OSC.
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The next difficult task to deal with was the case of a conformal iterated function system
with overlaps, i.e. without assuming the Open Set Condition. For the case of iterated function
systems with finite alphabet and having overlaps, this was done by Feng and Hu in [0].

Overlaps in iterated function systems (IFS) are challenging. Our goal in the present
paper is to extend Feng’s and Hu’s result in two directions. Firstly, by allowing the alphabet
of a conformal iterated function system to be countable infinite; and secondly, to consider
random iterated function systems rather than deterministic IFS. Random IFS’s contain a
single (deterministic) IFS as a special case.

In general, infinite IFS with overlaps behave differently than finite IFS with overlaps

(for eg [11], etc). In the infinite case, the limit set is not necessarily compact (by contrast to
the finite IF'S case), also the diameters of the sets ¢;(X) converge to 0, etc. In addition, for an
infinite IF'S S, the boundary at infinity 0.,(S) plays an important role, and we have to take
into consideration whether an invariant probability gives measure zero (or not) to Ju(S)
(for eg [11], [12], etc). Even when OSC is satisfied, the Hausdorff dimension of the limit set
is not always given as the zero of the pressure of a certain potential. However, a version of
Bowen’s formula for the Hausdorff dimension still exists; see [11]. For example even when
assuming OSC, and unlike in the finite alphabet case, the Hausdorff measure can vanish
and the packing measure may become locally infinite at every point. In addition for infinite
systems with overlaps we may have infinitely many basic sets of the system, overlapping at
points in the limit set .J, or the number of overlaps may be unbounded over J.
In [12], we obtained lower estimates for the Hausdorff dimension of the limit set J of a
deterministic infinite IFS with overlaps, by using the pressure function and a preimage
counting function, that counts the overlaps at points of J. This preimage counting function
plays an important role in general, for iterated function systems with overlaps, and we found
also that the Hausdorff dimension of the limit set J takes its "minimal” value exactly when
the number of overlaps over every point in J is k£ (assuming that this number of overlaps
is everywhere finite, and bounded above by an integer k > 2). In addition, in [12] we gave
several classes of examples of infinite conformal iterated function systems with overlaps.

By extension from the case of infinite IFS with overlaps discussed above, the case of
random infinite IFS with overlaps presents even more differences and new phenomena,
when compared to the case of finite IF'S with overlaps. For instance several proofs that used
compactness type arguments cannot be applied to random infinite IFS with overlaps. We
also have to impose certain conditions on the randomization process # : A — A and on the
invariant probability measure y on A x EY, etc.

Starting from the general strategy of Feng and Hu paper [6], we will prove under a
mild assumption of finite conditional entropy, the dimensional exactness of the projections



of invariant measures from the shift space, in the context of random conformal iterated
function systems with countable alphabet and having arbitrary overlaps.

Our main result is contained in Theorem where we prove dimensional exactness, and

provide a formula for the dimension of typical projection measures, by employing a random
projectional entropy and the Lyapunov exponents of the measure with respect to the random
countable IFS with overlaps. Also, in Theorem [2.5| we give lower and upper bounds for the
random projectional entropy of a measure. In the last Section, we apply these results to
pointwise dimension estimates for several concrete classes of random countable IFS with
overlaps. Our results work for both finite random systems, and for infinite random systems.
Randomization allows to have a unitary setting to study limit sets and measures in a family
of dynamical systems for generic parameter values, which proves useful in cases when a study
of individual systems is difficult. Moreover, randomization allows us to obtain new types of
fractal sets defined with the help of random series.
Hence, in Section 3 we introduce and investigate several classes of examples of random
countable iterated systems with overlaps. First, we will give several ways to randomize count-
able IFS related to generalizations of Kahane-Salem sets ([§]) and infinite convolutions of
Bernoulli distributions. Then, we shall give examples of random infinite conformal IFS with
overlaps in the plane, which have a uniformly bounded preimage counting function; we will
study the projection measures on the respective limit sets, finding lower and upper bounds
for their pointwise dimensions. We will also investigate a randomized finite iterated function
system based on a statistical problem of Sinai, and will verify the exact dimensionality of
projection measures on its limit set.

We mention that several authors investigated the question of dimension for measures in
the context of random dynamical systems or random finite iterated function systems, for eg
12, [7], [14], [16], [19], etc. Our randomization here is different from the one studied in [14].

2. PRELIMINARIES FROM RANDOM COUNTABLE ALPHABET ITERATED FUNCTION
SYSTEMS.

First let us recall some well-known geometric concepts, see for eg [15], [18]). For a finite
Borel measure 1 on a metric space (X, p), we denote by d,,(r) and d,,(z) respectively, the lower
W, when 7 — 0. These lower, and upper pointwise dimensions of

p are guaranteed to exist at every x € X, in contrast to the limit in ([I.1)). Now define also

and upper limits of

the dimensions:
HD, (x) := inf{HD(Y) : u(Y") > 0} and HD*(p) = inf{HD(Y) : u(X \ Y) = 0}.

In the case when HD,(p) = HD*(p), this common value is called the Hausdorff dimension

of the measure p and is denoted by HD(u).
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Analogous concepts can be formulated for packing dimension, with respective notation

PD,(u), PD*(u); if PD(u) exists, it is called the packing dimension of the measure p.

The first (and very basic) relations between these concepts are given in the following well—
known theorem (see for ex. [1§]):

Theorem 2.1 (General properties of dimensions of measures on metric spaces). (i) If p

is a finite Borel measure on a metric space (X, p), then
HD,(u) = essinfd,, HD*(uu) = esssupd,, and PD,(u) = ess infd,, PD*(u) = esssupd,

(i) If p is an exact dimensional finite Borel measure on a metric space (X, p), then

both its Hausdorff dimension and packing dimension are well-defined and

HD (1) = PD(4) = d.

Let now X be a compact connected subset of R?, ¢ > 1 with X = Int(X). Consider also
E to be a countable set (either finite or infinite), called an alphabet.

Definition 2.2. A random countable conformal iterated function system
S=(0:N—= AN {\— @lteer)
is defined by an invertible ergodic measure-preserving transformation of a complete proba-
bility space (A, F,m), namely
0: (A, F,m)— (A, F,m),
and by a family of injective conformal contractions on X, defined for each e € F and A € A,
) X = X,

all of whose Lipschitz constants do not exceed a common value 0 < s < 1. We in fact assume
that there exists a bounded open connected set W C RY containg X, such that all maps
#> : X — X extend confomally to (injective) maps from W to W. U

We will denote in the sequel by EN the space of one-sided infinite sequences w =
(wo, w1, ...),w; € E;i > 0; and by E* the set of all finite sequences 7 = (79,71, ...,7k), T; €
E,0<i <k, k> 1. We have the usual shift map o : EN — EN.

We shall assume in the sequel that the contraction maps ¢ : W — W satisfy the following
Bounded Distortion Property (BDP):

Property 2.3 (BDP). There ezists a function K : [0,1) — [1,00) such that limy o K (t) =
K(0) =1, and

su M'e EXxeAzreX — || <t-dist(x, R? W}<Kt
p{’(%),@”. eE A eNzeX |ly—z| < t(z, R\ W) » < K(¢).
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We also require some common measurability conditions. Precisely, we assume that for

every e € F and every x € X the map
A3 A ) ()
is measurable. According to Lemma 1.1 in [3], this implies that, for all e € E, the maps
AxX3\a) = @z, \) = @) (z)

are (jointly) measurable. For every finite sequence w € E*, and every A € A, let us define

also the (randomized) composition of contractions

|w|—1
o=l 0Pl ool

This formula exhibits the random aspect of our iterations: we choose consecutive generators
Gy Py - - - » Py, according to a random process governed by the ergodic map 6 : A — A.
This random aspect is particularly striking if 6 is a Bernoulli shift when, in the random
composition we choose ¢ in an independent identically distributed way.

Given w € EN and )\ € A, we define, analogously to the deterministic case, the singleton

m(w) = () ¢, (X),

and then the fractal limit set of the random countable IF'S, corresponding to A € A is:
Jy = m(EY)

Let us denote by 7a : A x EN — A and 7gn : A x EN — EN, the projections on the first,
respectively the second coordinates. And by e : A x EN — RY the projection defining the
limit sets Jy, A € A, namely mrq()\, w) = m\(w), for (A\,w) € A x EN.

Let us also denote by & the partion of EY into initial cylinders of length 1; we will work
in the sequel with conditional entropies of partitions and of probability measures (see for
example [21], [9] for general definitions and properties).

Given a Lebesgue space (Y, B, 1) and two measurable partitions of it, n and ¢, we will
sometimes write H,(n|¢) without loss of generality, for the measure-theoretic conditional
entropy H M(n|6 ) of the partition 1 with respect to the o-algebra é generated by (. We will
introduce now a notion of measure-theoretical projectional entropy for the random infinite
system and for a projection measure, which is similar to the projection entropy from [6], but
which is adapted to the random setting.

Definition 2.4. Given the random countable iterated function system S as above, and a
6 x o—invariant probability measure z on A x EV, define the random projectional entropy of
the measure p relative to the system S, to be:

h(S) = Hu (g (€) |73 (a) V (0 x 0) ™ (g (€ra))) — Hu (w0 (€)1 () V gy (a)).

where €,, egre are the point partitions of A, respectively RY.
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In the sequel we will consider only those # x o—invariant probability measures z on A x EN

whose marginal measure on the parameter space A is equal to m, i. e. such that
-1 _
Oy =m

We denote then by (px)xea the Rokhlin’s disintegration of the measure p with respect to
the fiber partition (7, ")aca. Its elements, {\} x EN, X\ € A, will be frequently identified with
the set EN and we will treat each probability measure p, as defined on EV.

The desintegration (uy)rea depending measurably on A, is uniquely determined by the
property that for any u-integrable function g : A x EN — R, we have

/ gdu—// gdpy dm(X)
AxEN A JEN

Thus from Lemma 2.2.3 in [2], we have the following equivalent desintegration formula for
the random projectional entropy:

21 () = [ (€l k(e )dm() = [ Hoy (€l ) amO)

Using Definition and the definitions of conditional entropy and conditional expectations
(for eg from [21], etc.), we can then further write:

,(8) = [ [ [ 108 By (B |75 e.0)) @dis )

(2.2)
_ /EN log E,,, (]l[wl]|(7r9()\) o a)—l(ng)))(w)dp,\(w)}dm()\)

We will see that there are important differences from the finite deterministic case, since
here we have a family (J))aea of possibly non-compact limit sets, and a family of boundaries
at infinity (0sxoSx)rea. The A-boundary at infinity of S, denoted by Sy(00), is defined as the
set of accumulation points of sequences of type (¢7 (2,))n, for arbitrary points z, € X and

infinitely many different indices e,, € E. Similarly as in the deterministic case [12], we define
Si(o0) = | ¢V (Sa(20))
wek*
We give now some results about the relations between the random projectional entropy

h,(S) and the measure-theoretical entropy h(p) of the (f x o)-invariant probability p on
A x EN. In this way we get bounds for the random projectional entropy h,(S).

Theorem 2.5. In the above setting, if S is a random countable iterated function system and
if puis a (0 x o)-invariant probability on A x EN, we have the following inequalities:
(a)

hyu(S) 6§ h(p)



(b) Assume that there exists an integer k > 1, such that for p-almost every (\,w) € A x
EN there exists r(\,w) > 0 and k indices ey, . .., e, € E, so that if the ball B(my(w),r(\,w)) C
RY intersects a set of type gbi‘/(J,\/), e € E,N € A, then e must belong to {e1,...,ex}. Then

hu(S) = h(p) — log k

Proof. (a) Let us denote by B the o-algebra of borelian sets in R?, and by f the o-algebra
generated by the partition & = Wgéf in A x EN. We want to prove first that

(2.3) EV(0x o) tngiB=EV g,
But an element of the o-algebra €V (0 X )~ Tpe B is a set of type
U (A [i]) N (0 x o) s Ay,

i€ER
where A; € B,i € E. Let us take an element (\,w) € g, (4;), so mre(\,w) € A;, where
w = (w1, ws,...). Then an element ¢ from the preimage set (#~! x )71 (\,w), has the form
(07N, (wo,wy, - - .), for arbitrary wy € F; if this element belongs in addition to A x [i], then
wo = i. Now mge(C) = ¢! " Mmme(\,w) € ¢?*(A;). Therefore we proved that
(A [i]) (0 x o)t A = (A x [i]) Nt (6] ()

Thus é V(0 x o) WRqB C 5 \% WR;B and after showing also the converse inequality of
o-algebras we obtain , i.e that £V (0 x o) g, B = Ev Tga B.

For an arbitrary integer n > 1, let us denote the measurable partition ég—l =E&Vo LV

o~"¢. Using now the fact that the measure p is (6 x o)-invariant on A x EN, and the same

type of argument as in Lemma 4.8 of [6], we obtain that for every integer n > 1,
(2.4) Hu(& (0% 0) " B) = Hu(& ™ s B) = n- [Hu(€](0 % 0) 'y B) — Hy (€| mzy B))
Hence from formula (2.4)) we obtain the following inequality:

nh(S) = H,(& (0 x 0) ' B) — H, (65 |ma B) < Hu(&7)

Therefore, as h(p) is the supremum of the limits of X, ( (9 X ¢)7't) when n — oo, over

all partitions 7 of A x EN we obtain the upper bound h (S) < h(p).

(b) We remind that ¢ is the partition of EY into the l-cylinders [i] := {w € EN, w =
(wy,wa,...), wy =i}, for i € E; and also that for simplicity of notation, given in general 2
measurable partitions 7, ¢ of a Lebesgue space (Y, v), we will sometimes write H,(n|() instead
of H, (17|<: ) where é is the o-algebra generated by (. We now assume that for pu-almost every
(A\,w) € A x EN, there are at most k indices e € E so that sets of type ¢} (Jy), N € A
intersect the ball B(my(w), (A, w)). Let us consider next the partition P,, of R? with sets of

type Lii,..ip) = [;—;, Z;—nl) X ... X [;—‘f“ ’gtl), for all multi-indices (iy,...,1,) € Z.

For m-almost every A € A we will now construct the subpartition R, (A) C P, which uses

) € P, that contain points m)(w) € Jy,w € EV, with r(A,w) > ¢/2",
7

only those sets I;,
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and where the union of all the remaining cubes [(;, . ;) of P, represents just one element

.....

of R,()\). But we assumed that for p-almost all (\,w) € A x EN, there exists a radius
r(A,w) > 0, such that:

(2.5) Card{i € E, 3N € A s.t B(m\(w),r(A\w)) N¢Y (Jy) # 0} <k

So using the fact that n was chosen so that any cube I(;, . ;) € R,(\) contains at least a

point of type my(w),w € EN with r(\,w) > 5%, we obtain that any fixed set A from the
partition 7, ' (R,(\)) of EY, intersects at most k elements of the partition £V ;' (R, (\)) of
EN. Recall also that py o 7r;1 is a o-invariant probability measure on EY, for A € A. Hence
from above and using [13], [21], it follows that the conditional entropy H,, (&|75" (R, (N)))

satisfies:
(2.6) Hy, (&7 (Ra(N))) = Hy (€V 13 RA(N) = Hyy (131 (Ra(N)) < logk

But now, since we known that for u-almost all (\,w) € Ax EN there exists a radius 7(\, w) > 0
satisfying condition , we infer that 7} '(R,(\)) / 7} ' (ega), when n — oo; and the same
conclusion for the respective o-algebras generated by these partitions in EN. Therefore from
and [13], and since o, ! = m, it follows that for m-almost every A € A, the conditional
entropy H,, (¢|my ' B) satisfies the inequality

Hy (€75 (B) = lim H, (€75 Ro(V) < log b
In addition we have that for m-almost any parameter A € A,

Hﬂx(fyg_l(ﬂe_(i\)eje(x))) > Hux(g‘g_l(B(EN))) = hc?(:u)\)’

since £ is a generator partition for p, on EN, and by using section 3-1 of [13]. Therefore,
from (2.1)) and the last two displayed inequalities, we obtain the required inequality, namely

hu(S) = / ho(pn)dm(X) — log k = h(yz) — log k
O

Remark 2.6. We remark that the condition in Theorem [2.5] part (b), implies that there are
no points from Sy(co) in any of the limit sets Jy for all \, N € A. We shall give an example
of such a random infinite system with overlaps in the last section. The difficulty without this
condition is that, there may be a variable number of overlaps at points from the possibly
non-compact fractal Jy, and that this number may tend to oo even for a given A, or that it

may tend to oo when A varies in A; in both of these cases, we cannot obtain however a lower

estimate for h,(8S) like the one in Theorem [2.5] (b).



3. POINTWISE DIMENSION FOR RANDOM PROJECTIONS OF MEASURES.

Given a metric space (X, p) and a measurable map H : EY — X, then for every sequence
w € EN and every r > 0, we shall denote by
Bp(w,r) = H ' (B,(H(w),7)).

Throughout this section we keep the setting and notation from the previous section. Our
main result in this section is the exact dimensionality of random projections py on Jy, of
(6 x o)-invariant probabilities 4 from A x EN, for m-almost all parameters A € A. We start
the proofs with the following:

Lemma 3.1. For all integers k > 0, every e € E and X € A, and py-a.e. w € EN, we have
) 20 (Bﬂ'ek.o\)oak (wv ’I“) A [6])
lim log
r—0 [958 (Bﬂek(k)ogk (OJ, 7"))

= log EMA (]l[e]’<779k(>\) o Uk)fl(BRq)))(w).

Proof. Fix e € E and define the following two Borel measures on R?:
(31) Uy = )0 (7T9k(/\) o O'k)_l, and
(3.2) v5(D) == pr([e] N (mgr(ny 0 )71 (D)), D Borel set in R?.

Since v§ < vy, the measure v§ is absolutely continuous with respect to v,. Let us then define
the Radon-Nikodym derivative of v§ with respect to vy:

. A5
gx = dV)\
Then, by Theorem 2.12 in [I0], we have that:
(B
(3.3) g5(x) = lim vi(B(z, )

r—0 vy (B(x,r)

for vy-a.e. x € R%. On the other hand, for every set F' € (mgr(y) © a’“)_l(BRq), say F' =
(mgr(ny 0 %) "H(E), F € Bga, we have

/ By, (Lig)| (mor (2 0 0) ™ (Bza) ) dpn = / idpx = pa(F O [e])
F F

— i ((Fary 0 )N (F) 1 [el) = v3(F) = [ g

F

g5d(px © (mgr(ny 0 0") ) = / 17 g5d(px © (mgr(ny 0 0*) 1)
R4

Lzo0 (77919()\) o ak) gs o <7T9k(>\) o ak)dy)\



Since, in addition, both functions E,, (1g|(mer(xy © 0) " (Bra)) and g5 o (mer(n) © o*) are
non-negative and measurable with respect to the o-algebra (mpe(y) 0 0) ! (Bga), we conclude
that
g5 © (Ton(ny © 0) ' (Bra) (w) = By (L | (mgra) 0 0) ™" (Bra)) (w)
for py-a.e. w € EN. Along with this means that
s (B oot (0,7) (1]

. _ ky—1
lim 12 (Bryy oot (w,7) = By, (L | (mor(r) 0 0%) 7 e)) (@)

for py-a.e. w € EN. Taking logarithms the lemma follows.

O
Corollary 3.2. For all integers k >0, all A\ € A, and py-a.e. w € EN, we have
Hx (Bw k() 00F (w,m) N [wl])
lim log ) =log B, (L1,,1](mercny 0 )71 (Bra))).
0 MA(Bﬂ'Gk()\)oo'k(w)r)) .“A( [ 1]‘( 0% () ) ( R )))
Proof. We have
) 25N (Bwek()\)ocrk((“-)?r) N [wl])
lim log =
r—0 L (ngk()\)ook (w,7))
25N (Bw@k()\)ocr’C (wa T) N [6])
= Z 1 (w) lim log
gy r—>0 J75) (Bﬁek(k)ogk (w, 7’))
= Z ]l lOg (]l[e]}(ﬂ'gk()\) e} O'k)il(BRq» ((.U)
eckl
= 10g By, (L) | (e (a) 0 0°) 71 (Bra))) (w).
OJ

Now we shall prove the following.
Lemma 3.3. If H,(7;{(&)|my" (ea)) < oo, then the function

HA([Wl] N ngko\)oak (w’ ’f‘))
g(\,w) := —inf log
r>0 L (Bﬂ.eko\)oo.k (w,r))

is integrable with respect to the measure u, that is it belongs to L' ().

eR

Proof. Fix A € A. Fix also e € E. As in the proof of Lemma consider measures v, and
v§ defined by (3.1) and (3.2) respectively. By Theorem 2.19 in [10] we have that

u§<{x€Rq1125{%} <t}> )
- {rewem{aifis) )

< Cytva(RY) = Cyt,
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where 1 < C, < 00 is a constant depending only on g. What we obtained means that

N . IJ’A([e] ﬂBwek<)‘)ook(w77’))
1 w € E" :inf <t < Cyt.
>0 L (Bﬂ_ek(/\)oo.k (w, 7”))

Let us define also the function:

G5 (w) := inf

r>0

25 ([6] N Bﬂ9k<)\>oak (wa 71))
e (Bwek(”ook (wv 7“)) '
Then the previous inequality can be rewritten as:
A ((G5)71([0,1))) < Cot.
Define now the function gy : EN — R by gy(w) = g(\,w). Thus the following equlity holds:

gr = Z — 1 log G5.

eck
Noting also that g, > 0, we obtain therefore:

[ oo =30~ [ tomGiain =3 [ (o€ 1] ~logG5(@) > )

- Z/OOO pin({w € [e] : G5(w) < e™"})ds

Z/OOO i ({w € BV : G5 (w) < e*} N e])ds

IN

Z /000 min{u,([e]), Cqe *}ds

—log ux([e])+log Cq
/ wa(le])ds + / Cqe *ds
0 —log px([e])+log Cq

(—a(le]) log pua(le]) +1og(Co)palle])) + pa(le]))

I
e
m
2

ecE

o
&S]

S

=1+10g(Cy) + Y (—malle]) log pua(fe]))

eck

=1+ 1log(C,) + H,, (€)

Since H, (7.1 (€)|m3 " (ea)) < oo, it therefore follows from Lemma 2.3 in [2] that

| atn= [ [ admdm) < 1+108C) + [ B(6)
=1 +108(Cy) + B (rph Oy (20)) < o0

The proof is thus finished.
O

Remark 3.4. We assumed above the finite entropy condition H, (7 (€)|my ' (ea)) < oo.

This is not a restrictive condition, and it is satisfied by many measures and systems. For
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example, it is clearly satisfied if the alphabet E is finite. More interestingly, it is also satisfied
when F is infinite and g = m x v, where m is an arbitrary #-invariant probability on A, and
v is a o-invariant probability on EY satisfying v([i]) = v;,i € E and
h(v) = —Zyilogui < 00
i€E
Indeed, if A is the o-algebra generated in A x EN by the partition 7, *(es), and if £ = Wgéf,
then H,(¢|A) = [ 1,(€|A), where I,(€]A) is the information function

L(EIA) = = xa - log Bu(xalA)
Aeé
Now, the conditional expectation E,(xa|A) =: ga is A-measurable, and foEN gdp =
S g Xadp, for all sets B measurable in A. Hence if A = A x [i], then [ gadp = p(AN (B x
EY)) =m(B) - v, s0 ga = v; and H,(£|A) = — 3 v;log v;. Therefore, if h(r) < oo, then

i€ER
H, (€| A) < oo
[

As an immediate consequence of Lemma Corollary and Lebesgue’s Dominated Con-
vergence Theorem, we get the following:

Lemma 3.5. If H, (7;}(&)|my " (ea)) < oo, then
MA([WI] N Bwek()\)ook (wa 7”))
lim log
r—0 L (Bﬂ,ek(/\)oo-k (w,7))

for p-a.e. (\,w) € A x EN, and the convergence holds also in L*(j).

= 10g EH/\ (ﬂ[wﬂ ’ (7T9k(>\) o O'k)_l(BRq))) (w)

Now we shall prove the following:

Lemma 3.6. For every K > 1 there exists Ry > 0 such that

[wr] ﬂBm( K!( wl) Toon (0 (w)))|r) D [wi1] N Brygyyo0 (W, )
forall N € A, allw € EN, and all r € [0, Ry].

Proof. Let T € By, 00(w,7). Then 71 = wy and 7y (0(7)) € B(mg(n)(0(w)), 7). Hence,
m(1) = &2, (oo (0(7))) € ¢2, (B ( (W), 7))
C B(3, (mooy(0(w)), K[ (42,) (moy (o (@)))]r)
= B(TD\ K{ 7T9(>\)( (w)))|7’),

where, because of the Bounded Distortion Property (BDP), the inclusion sign ”C” holds
assuming r > 0 to be small enough. This means that

m € (B(m(w), K|(62,) (maoy(@(@))r)) = Br, (w0, K|(2,) (maoy (o (@)]7)

Since also already know that 7 = wy, we are thus done.
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Lemma 3.7. For every K > 1 there exists Ry > 0 such that

[wl] N B7TA (w) K_l}( 3)1),(77'9()\)(0'((,«))»‘7”) C [wl] N BF@(A)OU(W)T)
for all X € A, allw € EY, and all r € [0, Ry).

Proof. Because of the Bounded Distortion Property (BDP), we have for all » > 0 small
enough, say 0 < r < Rs, that
By, (w, K7Y(¢2,) (o (0 (@)))|r) = w3 (B (ma(w), K7 (¢2,) (o (c(w)))|r))
C 7y (62, (B(moy (0(w)), 7))

So, fixing 7 € [wy] N B, (w, K| (¢)) )/(7r9(,\)(a(w)))|r), we have 77 = w; and

w1

(1) = 00, (oo (0(7))) 03, (B(mon (0(w)), 7).

This means that mo(c(7)) € B(mg(o(w)),r)), or equivalently, T € Bryiyoo(w; ). The
required inclusion is thus proved and the proof is complete.
O

Since the measure p is fiberwise invariant, we have for all w € EY, all » > 0, and m-a.e.
A € A that
17 (Bryiny00 (W), 7)) = pux((mo(xy © 0) " (B(mo(n) © o(w), 7))
(3.4) = pyoo " (77(;&) (B(mon(o(w)), 7))
= o) (Brys, (0(w), 7))

As an immediate consequence of this formula along with Lemma [3.6] and Lemma [3.7] we
get the following:

Lemma 3.8. For every K > 1 there exists R > 0 such that

:u/\([wl] N Bm (w’ K‘ ( 31)1(7@()\)(0(‘*})))‘7’)) > MA([wl] N Bﬂe(A)OG@J’ T))
Ho(x) (BWQ(A) (o(w), 7”)) B Hx (Bﬂ'G(A)OO' (w), T))

and
pa([wr] 0 Br, (w, K(02,)' (mooy (0@)))[r)) _ #a([61] 0 Brygy o0 (7))
Ho(x) (Bﬂe(x) (O’(W), T)) - 75 (Bﬂgwog(w, 7“))
for allw € EN, allr € (0, Rg], and m-a.e. X € A.

Lemma 3.9. We have that
//Nlogu,\(Bm (w, 7)) dpr(w)dm(X) > —oo
AJE

for all r > 0.
13



Proof. Since X is compact there exist finitely many points z1, 29, ..., 2, in X such that

!

U B(z,r/2) o X.

j=1
For every A € A and every integer n > 0 define the set of sequences:

A\ = {we BN e < (i (B, (w, 7)) < e "}
Assume that
An(N) Ny 1 (B(z,7/2) # 0

for some 1 < j < [. Fix v € A,(\) Nny '(B(zj,7/2)) arbitrary. Then, because of the triangle
inequality, ' (B(zj,7/2)) C By, (w,r). Therefore,

20 (ATL()‘) N ﬂ-;l(B(’zja 70/2)>) < Hox (7;1(B<2j7 7n/2)>) < Hox (Bm\ (wa 7”)) < e "
However, (\(A,(A)) Ny (B(z;,7/2))) =0 < e ™ if A, (N) Ny (B(z;,7/2)) = 0, for some
1 <i < 1. Hence, since {my " (B(z;, r/2))};:1 is a cover of EN| this implies that

ia(An() < L

Therefore we obtain,

oo

/EN —1og 1 (Bx, (w, 7)) dpa(w) = Z/A o —l1og 1 (Bx, (w, 7)) dpia(w)
< i(n +1)le™"

Hence, from the above, we can conclude that

// 10g o1 (Bry (w, 7)) dp (w)dm (X Zn—l—l
EN "

Then employing this lemma and Birkhoft’s Ergodic Theorem, we obtain the following:

Lemma 3.10. For all v > 0 and p-a.e. (\,w) € A x EN, we have:

1 n
lim — log pgn (5 (Bﬂgnw (6™(w),r)) =0

n—oo N,

Now, we shall prove the following:

Lemma 3.11. IfH, (7} (&)|my " (ea)) < o0, then for every K > 1, allr € (0, Rk) and pi-a.e.
(\,w) € A x EN, we have that

(35) T~ og i (B (0, K[ (62),) (ron o (0" @)]1)) < ~(S),
14



and moreover
1 n n
(3.6) lim —log 1, (B, (w, K [(63),) (Ton o (0™ (@)))]r)) = —hu(S).
n—oo
Proof. We prove the first inequality by relying on the second inequality of Lemma [3.8, The
proof of the second inequality of the lemma is analogous and will be omitted. We have:

Tyn(w) =
= log i (Br, (w, K[ (€2,) (mon (0" (@))]1))
“ 01 (B, ) (7 (@), K| (60,0)) Y (mangy (0" (@)))|r))

= log y
Z ) (Brysia g, (074 (W), K==+ | (¢ Zai Y ) (7o (3 (0™ (w))) 1))

w)'n (G+1)

+ log pgn (z) (Bﬂenu) (Un(w>’ T)) _
L sy (09 @) 0 Bry (09 (@), KO (@20, ) (e (0" (@)))]r)

|
- 0g ) . J
- Hos ) (Bryyr ) (0741 (), K-G0 (67500 Y (g oy (07 ()] )

o—]+1(w)|n7(g+l)

5 NN By () ) (%) e en (" @)Ir)
g ia (B, (09 (w), K== (6752 ) (mgnay (07 (w))|1) )
+10g () (Bryn ) (0" (@), 7))
< nzi og pos o ([(07 (w))1] mB”aHl(A)OU(ajH( ) 1‘( cerj:l - <J+1))/<7Te »(@" @)
=0 Ho1 ) (Bryyo 00 (07 (), K00 (J+1))‘(¢iﬁl((i)>ln G )( "o @))r)
5 g e (DI 0 Bry () KO ) (T (0" @))]7))
=0 MA(BWW( I (w), K ‘(%]((i)”n ]) (Wen(x)@"(w)m?”))
+ log 116m ( ﬂgnm( (W), ))
=Y W((0xa)( ZGn (0 x 0y (N, w)) + log gn(r) (Brgn y, (0" (@), 7)),
=0 =0

where for all i > 1,
( o )/(Wai(A)(Ui(w))) 7"))

/‘U\([wl]mBﬂ'e(/\)OU(O-j+1(w)’K ‘ Jw)| 1 ‘
/LA(BMM)OU(UJ Yw), K0~ )‘(¢§—(( ))| l)l(ﬂei()\)(ai(w)))‘r))

W, (A w) :=log

and where
,u)\([wl] N Bm\ (wv K_il ( 3‘1),(71'91'()\) (Uz(w)»

7))
i3 (B (w0, K7(0),) (oo (07 (@)))]r))

G, (\w) =

Now, by virtue of Lemma we see that Corollary 1.6, p. 96 in [9], applies to the
sequences (W), and (W,7)2,. This, in conjunction with Lemma Lemma 3.10} the

ergodicity of the measure p with respect to the dynamical system 6 x o, and formula ({2.2]),
15



gives us the following inequalities:

T 75,(0) < [ (log By (R (o o) (B20) )=

108 By (L | (75 (Ba))) () ) diaa () dm(A)
= —h,(S).

This finishes thus the proof.
O

Definition 3.12. In the above setting, let us define the Lyapunov exponent of the measure
i with respect to the endomorphism 6 x o : A x EN — A x EN and the random countable
iterated function system S:

Xw:/ —log |(¢2,) (mox (0(w)))]du(A, w).
AxEN

Since the above dynamical system is ergodic, then Birkhoff’s Ergodic Theorem yields
that, for p-a.e. (\,w) € A x EN, we have

(3.7) lim = log | (623, )/ (o) (0" (@)))] = X

n—oo N,

As a consequence of this lemma and Lemma[3.11], we now prove the main result of our paper:
Theorem 3.13. If H,, (7 (&)|my (e)) < 00, then for p-a.e. (\,w) € A x EN, we have

i log(,uA omy! (Bm (w, r))) _ hM(S)‘

r—0 log r Xu

Proof. What we want to prove is that:

. 10g pux (Bry (w, 7)) ~ h,(S)
0 logr Xu

Fix K > 1. Fix also (\,w) € A x EN. Consider any 7 € (0, K~'|(¢2,) (ma(0(w)))|). There
then exists a largest n > 0 such that

r < K7|(65),) (mon i (0" (@) R

Then for n > 1,
By, (w,r) C By, (w,K_"|(¢j)|n)/(7rgn(>\)(0”(w)))‘RK), and

r> K_("H)’( A ),(W9n+1()\)(0”+1(w)))}RK.

w|n+1

16



Therefore,
log jir(Bry (w,r)) _ log ia(Br, (w0, K7 (0,) (Tom () (0™ (@))) | Ric))
log r - log r
log fix(Br, (w, K7|(2),) (Ton ) (0™ (w)))| Rx))
—(n+1)log K +log | (¢}, +1)/ Tgni1(x a”“(w)))‘ + log Ri
¥ log pa (B, (w, K| (63),) (Mo (07 (@))) | B ))
(1 + 1) log K + 1 10g|( o +1) (Tgn+1(x (a”“(w) )| + 2log R
Hence, applying formula (3.5)) from Lemma , and also Lemma , we get

i log u,\((Bm (w, r)) > h,(S)
=0 logr log K + x,

for all (\,w) in some measurable set O} C A x EN with p(Q)) = 1. Then

(i)

and
1 Br, (w, h
(3.8) ti 28 ((Bra@:7)) | hu(S)
r—0 logr X
for all (A, w) € QF. For the proof of the opposite direction fix any K > 1 so small that
(3.9) K’1>esssup{‘|(¢é\)/” ce€ B, A e A}

Having (A, w) € A x EV fix any r € (0, K Rgesssup {H(gbé‘)lH e € E,\ € A}. Because of
there exists a least n > 1 such that

n ! n
K |( wln ) (Ton(n) (0 (w)))]RK <.
Then, because of our choice of , we have that n > 2,

K" |(63),.) (mon-109(0" 7 (W)))| Ric < 7,

and
By (@,7) O By (w0, K| (62),) (om0 ()| o).
Therefore,
log s (Bry (w,7) _ 108 10n(Br, (0, K™ (98,) (mon oy (0" ()| )

logr - logr
log 1) (Br, ( K"|( w|n) (Wen(A)(Un(W)MRK))
= (n—D)log K + log (63, ) (man- s (0" ()] + log R
Llog pix (B, (w K"’( w|n) (Ton(r) (0" (w))) | Ric) )

—(1=1)log K + L1og | () A 1) (mgn-10 (071 (w)))] + L log Rk
17




Hence, applying formula (3.5) from Lemma [3.11] and also Lemma 3.7 we get

mlogu)\((B,u(w,7’)) < h,(S)
r—0 log r — —log K + x,

for all (\,w) in some measurable set Q. C A x EN with p(Q,) = 1. Then we have:

1 (Q_ = ﬁQh) =1,
=k’

where k > 1 is taken to be so large that %ess sup {H(qbg\)/H ce€e B )€ A} < 1. Also,

m log :LL)\((BTD\<W7 T)) < h,u(S)
r—0 log r Xu

for all (\,w) € Q. Along with (3.8)) this yields M(QJr N Q_) = 1 and moreover,

L logn((Bry(@.r)  hy(S)
r—0 log r Xu

for all (A\,w) € QT N Q~, which gives therefore the required dimensional exactness.
O

Therefore, from the above Theorem [3.13| and Theorem [2.1| we obtain the following result,
giving the (common) Hausdorff dimension and packing dimension of the projections y o 7r;1
on the random limit sets Jy:

Corollary 3.14. In the above setting if ji is a 0 x o-invariant probability on A x EN whose
marginal on A is m, and if H, (7 ;1 (€)|73" (ea)) < oo, then for m-a.e A € A, we have

hyu(S)

HD(py oy ') = PD(upomy ') = .
n

4. APPLICATIONS TO EXAMPLES OF RANDOM COUNTABLE IF'S WITH OVERLAPS.

In this section we will study several examples of random IFS with overlaps and the

projections of (§ x o)-invariant measures p from A x EY to respective limit sets.
4.1. Randomizations related to Kahane-Salem sets.

In [8] Kahane and Salem studied the convolution of infinitely many Bernoulli distri-

butions, namely the measure u = B(;Z) * B(;-) * ..., where B(x) denotes the Bernoulli
probability supported only at the points —1,+1 and giving measure % to each one of them.
The support of u is the set F' of points of the form eyrg + €71 + ..., where €, is equal to

18



+1 or —1 with equal probabilities. If we assume » 7, = 1, and if we introduce the sequence

0
(pn)nZO defined by

ro=1—po,m1 = po(1 — p1),72 = popr1(1 — p2), ...,

then it can be seen that, if pp > % for all but finitely many ks, then F' contains intervals.
If, on the other hand, p, < % for all £ > 0, then F is a Cantor set. If in addition to this,

khm 2%po ... pr—1 = 0, then F has zero Lebesgue measure and p is singular.
—

A particular though interesting case is when r, = p¥, k& > 0, for some p € (0,1). Then the
corresponding set F' = F, is the set of real numbers of type £1+p+p*+.... If p < =, then
F, has zero Lebesgue measure and p'®) is singular; if p > 2 1 , then F), contains 1ntervals The
convolution ;") is equal to the invariant probability of the IFS with two contractions

o1(x) = pr+ 1, ¢o(x) = pxr — 1,

taken with probabilities 1/2, 1/2. This is a conformal system with overlaps, and F), is equal
to the limit set J, of this IFS. The measure ,u(p) is the projection v(1/91/2) © 71 of the
probability v(1/21/2) from {1,2}", through the canonical projection 7 : {1,2} — J,. In [5]
Erdés proved that when 1/p is a Pisot number (i.e a real algebraic integer greater than 1 so
that all its conjugates are less than 1 in absolute value), then the measure p(®) is singular.
In [I7] it was shown that its Hausdorff dimension is strictly smaller than 1. In the other
direction, B. Solomyak showed in [20] that u(®) is absolutely continuous for a.e p € [1/2,1).

Here we will give several ways to extend and randomize the idea of this construction, and
will apply our results on pointwise dimensions of projection measures for random infinite

IF'S with overlaps:

Random system 4.1.1

A type of random IFS can be obtained by fixing numbers 1,7, € (0,1), letting A =
{1,2}%2, 0 : A — A be the shift homeomorphism, and setting £ = {1,2} so the alphabet is
finite in this case. For arbitrary A = (..., A_1, Ao, A\1,...) € A and e € FE, consider then the
affine contractions ¢, in one real variable, defined by:

(4.1) ¢ () = raz + 1, @o(x) =gz — 1

Then, for arbitrary A = (..., A_1, Xo, A1, ...} € {1,2}Z, the corresponding fractal limit set is
Ty i=mA(EY) = {¢), 0 iV o, w=(wi,w,...) € B},

which can actually be described as a set of type

+14+> > o) p

i>1 (j,k)eZ;
19



where for any pair of positive integers (j, k) € Z; we have j + k =4, i > 1, and where the
sets Z; are prescribed by the parameter \ € {1,2}%, while the signs 4 are arbitrary.

We then consider the 1-sided shift space EY, and a Bernoulli measure v = vg on EN given
by a probability vector @ = (g1, ¢2). Let also a Bernoulli measure m = mp on A associated
to the probability vector P = (p1, p2), and the probability g = m x v on A x EN. The above
random finite IFS is denoted by S.

Next, by desintegrating p into conditional measures py, and projecting py to the limit set
J», we obtain the projection measure uy omy, A € A. In this case the finiteness condition of
entropy from the statement of Theorem |3.13|is clearly satisfied since E is finite, so we obtain
the exact dimensionality of the measures u) o 7T;1 on Jy for m-almost all A € A. And from
Corollary and Theorem [2.5, we obtain an upper estimate for the pointwise dimension
of the projection measures,

A (my(w) = h,(S) < h(mp) + h(vg) _ M log p1 + p2logps + q1log q1 + g2 1og g2
pemy AT Xp ~ —pilogry — palogry p1logry + palogry

Also, a possibility is to take 1 = m x v on A x EN, where m = mp as before and v is an
equilibrium measure of a Holder continuous potential on the 1-sided shift space EV.

Random system 4.1.2

Consider now a fixed sequence p = (p;);>1 of numbers in (0,1) which are smaller than
some fixed p € (0,1), and let the parameter space A = {1,2,...}% with the shift home-
omorphism ¢ : A — A. Let also an infinite probability vector P = (p1,ps,...), and the
f-invariant Bernoulli measure mp on A satistying mp([i]) = p;, ¢ > 1, where [i] := {w =
(..., w_1,wo,wi,...),wo =1}, i > 1,and h(vp) < co. Let us take then the set F :={1,2,...}
and a (0 X o)-invariant probability measure p on A x EN, having its marginal on A equal to
mp. For example we can take y = mp X vg, where @ = (q1,¢o, . ..) is a probability vector,
and where vg([j]) = ¢;,7 > 1 is a o-invariant Bernoulli probability on EY; we assume in
addition that the entropy of v is finite, i.e that

— Z g;logg; < oo
Jj=21

We now define infinitely many contractions ¢ on a fixed large enough compact interval X,

for arbitrary e € E.A = (..., A1, o, A\1,...) €A, N €{1,2...},i € Z, by:
Gn(@) = pa, -+ (1), n>1

It is clear that ¢ are conformal contractions and they satisfy Bounded Distortion Property.
We construct thus a random infinite IFS denoted by S(p), which has overlaps.

For every A € A, we construct then the fractal limit set Jy := m,(EY), which may
be non-compact. The fractal Jy is the set of points given as ¢;\)1 o ¢f}j) o... forall w e

EYN. The main difference from the previous example 4.1.1 is that now, the plus and minus
20



signs in the series giving the points of Jy are not arbitrary, instead they are determined by
A= (..., 1,0, A1,...) € A. The randomness in the series comes now from the various

possibilities to choose the sequences w = (wp,w,...) € EN. Thus,
Jy = {(—1)’\0+(—1)’\1p,\w1+(—1)’\2p,\W1p,\w2+. - +TPA, PA, - - -5 fOr arbitrary w; € N* i > 0}

Given the (f x o)-invariant probability measure 1 = mp X vg, we see from Remark
that the condition H,(71(§)|my " (ea)) < oo is satisfied. For arbitrary A € A, we now take
the projection measure py o7y ' on Jy. Therefore, from Theorem and Corollary |3.14

1 is exact dimensional and

we obtain that for mp-almost all A € A, the measure py o m)
its pointwise dimension has a common value equal to h,(S(p))/x,, where in our case the

Lyapunov exponent of p with respect to the random infinite system S(p) is equal to:

Xu = —/ log px.,, dp(A, w) Zqz/logmidmp(k)
AxEN

i>1
==Y pjgilogp; ==Y p;logp;.
4,521 Jj=>1
Moreover we have from Theorem that the random projectional entropy of u satisfies
ha(S(p)) < h(i) = hpp) + hivg) = =Y pilogp; — > g;logg;.
i>1 7>1

This helps to give a concrete upper estimate for the pointwise dimensions of 1y o7r;1, namely

> pilogp; + Z qjlog q;
i>1

dmowgl(ﬂx\(w)) < S log 0;
jz1

Random system 4.1.3

Let us fix a sequence p = (pg, p1,p2,.-.) in (0,1), and A = [1 — ¢,1 + ¢| for some small
e > 0, together with a homeomorphism 6 : A — A which preserves an absolutely continuous
probability m on A. Let us take also the set E = {1,2,...} and the o-invariant Bernoulli
measure v on EYN given by v([i]) = v;,7 > 1, where (v1,vs,...) is a probability vector. We

assume also that h(r) = — > v;logy; < co. For arbitrary e € E and A € A, we now define
i>1
the sequence of parametrized contractions:

¢;\n+1($) = Apn + 1, ¢;‘n+2($) = Apnz — 1, n > 0.
By considering also the (6 x o)-invariant probability © = m X v we obtain the random infinite
IFS with overlaps S(p).
The corresponding limit set Jy := m(EY) can be thought of as the set determined, for X € A,
in the following way: Jy = {+1+\p;, £A%p;, pi, . . ., for all sequences of positive integers w =
(i1,42,...) € EN}. The projection (my).ux = pr o my ' of the measure py, is a probability
measure on J,. We see that both 1.} and the entropy condition H, (7 EN€ Ty er) < 00, are

satisfied in this case.
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Hence, we can apply Theorem and Corollary [3.14] to obtain that for m-almost all
parameters A € [1 —e, 1+ ¢], the projection measure p o 7r;1 is exact dimensional, and that
its Hausdorff dimension has a common value, which is equal to

HD(IIJ)\ o 7_‘_;1) _ h#(;j(ﬁ))

Y

where the Lyapunov exponent of p with respect to S(p) is given by:
Xp = —/ log()\P[L—l}) dp(A, w) = — / log A dm(}) — Z(V2i+1 + 14i+2) log p;
AxEN 2 A >0

From Theorem [2.5|we obtain an upper estimate for the random projectional entropy, h,,(S) <
h(m) —>_.v;logy;, and an upper estimate for the pointwise dimension and the Hausdorff
dimension of y1y o 7y '; namely for p-almost every (\,w) € [1 —¢,1+¢] x EV,

h(m) — > ., vilogy;
d = HD < =
,u/\oﬂ-)\l(ﬂ-)\(w)) (/JL)\ o 7T)\ ) - log)\ dm >\ _ ) Voii1 + Voji9 log Pi
A >0

If all the contraction factors p; are equal to some fixed p, then J, is a perturbation of the

set from the beginning of 4.1.

4.2. Randomizations of deterministic infinite IFS with bounded number of
overlaps.

In Example 5.11 of [12], we gave an example of a deterministic infinite IFS defined as
follows: let X = B(0,1) C R? be the closed unit disk and for n > 1 take C, to be the

circle centered at the origin and having radius r, € (0,1), r, " 1. For each n > 1 we
n—o0o

cover the circle C,, with closed disks D, (i), € K, of the same radius r;

n’

finite set and each disk D, (i) intersects only two other disks of the form D,(j),j € K,,
and where none of the disks D,, (i) intersects Cy, k # n. Moreover, we assume that for any

where K, is a

m # n,m,n > 1, the families {D,,(7)};ck,, and {D,(i)};cx, consist of mutually disjoint
disks. Consider contraction similarities ¢, ; : X — X,7 € K,,,n > 0 whose respective images
of X are the above disks D, (i),i € K,,,n > 0. For this deterministic system, the boundary
at infinity 0,.S is contained in 0.X.

Assume now in addition, that there exists ¢ > 0, such that for m # n, any disk (1 +
e)D,(i),i € K,, does not intersect any disk of type (1 +¢)D,,(j),j € K,, (where in general
for B > 0, fD, (i) denotes the disk of the same center as D, (i) and radius equal to fr],),
and that any disk (1 + ¢)D,(4) intersects only two other disks (1 +¢)D,(j),5 € K,.

We take now A = [1—¢,1+¢] and 6 : A — A a homeomorphism which preserves an absolutely
continuous probability measure m on [1 — ¢, 1+ ¢|. Let the following countable alphabet

E ={(n,i), 1 € K,,n > 0},
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which will be our alphabet. Consider also a fixed probability vector P = (1,)cep, and the
associated Bernoulli probability v = vp on EN, and let us assume that h(v) < oo.
We now define the conformal contraction ¢E\n7i)(x), as being a similarity with image ¢Z\n,i)(X )
equal to AD,, (i), for i € K,,n >0 and X € A; its contraction factor is equal to Ar/,,n > 0.
Consider now the probability ;1 = m x v defined on A x EN. We have constructed thus a
random conformal infinite IF'S with overlaps, denoted by S; and, from Remark and since
h(v) < oo, we obtain also the finite entropy condition H,(r i¢|m " er) < oo.
The conditions in Theorem and Corollary are then satisfied, and therefore for
Lebesgue-almost all parameters A € A and v-almost all w € EV, the pointwise dimension of
the projection (7 ).px = pix o Ty ' on the non-compact limit set Jy := m\(EY), is given by:
yort (M) = @
where the Lyapunov exponent of y with respect to the random system S is equal to:
Xp = —log A — Z velogr! >0
e=(n,i)eE
From the construction of the disks AD,(i),7 € K,,n > 0,\ € A above, we notice that the
condition in Theorem , part b) is satisfied with & = 2. Hence we can obtain a lower
estimate for the random projectional entropy of p, namely
h,(S) > h(p) —log2 = h(m) — Z velog v, — log 2
ecE
Therefore by combining the last two displayed formulas and using Theorem [2.5] we obtain

that for u-almost every pair (\,w) € A x EN, the pointwise dimension of z o 7r;1 satisfies:

h(m) — > v.log v, —log?2 h(m) — > velogu,
eck eckE
<d _ - <
—logA— > wv.logr! — ’“O”kl(m(w)) — —logA— > v.logr!

e=(ni)eEE e=(ni)eEE

4.3. Constructions based on a problem of Sinai.

Ya. Sinai asked for which parameters a € (0, 1) is the invariant measure of the IFS formed
by the the maps {1+ (1 —a)z, 1+ (1+«)x}, with probabilities (1/2,1/2), absolutely contin-
uous. The latter of the above maps is never a contraction. Nevertheless, this IFS contracts
on average, since a composition of n of the above maps, chosen i.i.d with probabilities 1/2,
1/2, contracts by a factor close to (1 — a?)™?2. A randomized version was investigated in
[14]. We can use our results to study other randomizations of this system, and the associated
projection measures, since our proofs can be adapted to random finite conformal IFS which
contract on average. Consider then the random system S given by the parameter space

A =[1-¢,1+¢]% and m = m%, where mg is the normalized Lebesgue measure; let 6 to be
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the shift homeomorphism on A. Given A = (..., A_1, Ao, A\1,...) € A, let us introduce also
two parametrized conformal maps defined by:

B)a) = (1—aA)a+ X, @)(a) = (1+ak)e+ Xy

The alphabet £/ = {1,2} and if we take v = v,
the product measure p = m x v, we obtain from Remark the finiteness condition

Hy (7 gin(§)lmy ' (a)) < o0

We see also immediately that, if £(«) is chosen small enough, then for € € (0, e(a)) the maps

11y 01 EN then h(v) < oo. So if we consider

2,1 € E are conformal and, since the indices 1,2 are taken with equal probability, a typical
composition of n of them contracts by a factor smaller than (1 — 0‘72)"/ 2,

We obtain then the exact dimensionality and the pointwise dimension of the projection

measures /1,07, ' on Jy, by using Theorem and Corollary . In our case, the Lyapunov

exponent of the probability 4 with respect to the random system S, is equal to

Xp = — /Alog [(1 = aX_1)(1+ aXi)]dm(N),

with A= (..., A1, Ao, A1, A2, ...) € AL If e(a) > 0 is small enough and if € € (0,e(«)), then

Xu > 0. The pointwise dimension dMo

the quotient h‘;—(f), for p-almost all (\,w) € A x EN.

7T;1<7T)\(W)) of the projection piy oy ', is then given as
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