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Abstract. We study projection measures for random countable (finite or infinite) con-
formal iterated function systems with arbitrary overlaps. In this setting we extend Feng’s
and Hu’s result from [6] about deterministic finite alphabet iterated function systems. We
prove, under a mild assumption of finite entropy, the dimensional exactness of the projec-
tions of invariant measures from the shift space, and we give a formula for their dimension,
in the context of random infinite conformal iterated function systems with overlaps. There
exist numerous differences between our case and the finite deterministic case. We give then
applications and concrete estimates for pointwise dimensions of measures, with respect to
various classes of random countable IFS with overlaps. Namely, we study several types of
randomized extensions of iterated function systems related to Kahane-Salem sets; also, a
random system related to a statistical problem of Sinai; and randomized infinite IFS in the
plane, for which the number of overlaps is uniformly bounded from above.

1. Introduction

Let (X, ρ) be a metric space. A finite Borel measure µ on X is called exact dimensional if

(1.1) dµ(x) := lim
r→0

log µ(B(x, r))

log r

exists for µ-a.e. x ∈ X and is equal to a common value denoted by dµ. Exact dimensionality

of the measure µ has profound geometric consequences (for eg [10], [15], [18]).

The question of which measures are exact dimensional attracted the attention at least since

the seminal paper of L.S Young [22], where it was proved a formula for the Hausdorff dimen-

sion of a hyperbolic measure invariant under a surface diffeomorphism, formula involving

the Lyapunov exponents of the measure. As a consequence of that proof, she established

what (now) is called the dimensional exactness of such measures. The topic of dimensional

exactness was then pursued by the breakthrough result of Barreira, Pesin, and Schmeling

who proved in [1] the Eckmann–Ruelle conjecture asserting that any hyperbolic measure

invariant under smooth diffeomorphisms is exact dimensional ([4]). Dimensional exactness,

without using these words, was also established in the book [11] for all projected invariant

measures with finite entropy, in the setting of conformal iterated function systems with count-

able alphabet which satisfy the Open Set Condition (OSC); in particular for all projected

invariant measures if the alphabet is finite and we have OSC.
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The next difficult task to deal with was the case of a conformal iterated function system

with overlaps, i.e. without assuming the Open Set Condition. For the case of iterated function

systems with finite alphabet and having overlaps, this was done by Feng and Hu in [6].

Overlaps in iterated function systems (IFS) are challenging. Our goal in the present

paper is to extend Feng’s and Hu’s result in two directions. Firstly, by allowing the alphabet

of a conformal iterated function system to be countable infinite; and secondly, to consider

random iterated function systems rather than deterministic IFS. Random IFS’s contain a

single (deterministic) IFS as a special case.

In general, infinite IFS with overlaps behave differently than finite IFS with overlaps

(for eg [11], etc). In the infinite case, the limit set is not necessarily compact (by contrast to

the finite IFS case), also the diameters of the sets φi(X) converge to 0, etc. In addition, for an

infinite IFS S, the boundary at infinity ∂∞(S) plays an important role, and we have to take

into consideration whether an invariant probability gives measure zero (or not) to ∂∞(S)

(for eg [11], [12], etc). Even when OSC is satisfied, the Hausdorff dimension of the limit set

is not always given as the zero of the pressure of a certain potential. However, a version of

Bowen’s formula for the Hausdorff dimension still exists; see [11]. For example even when

assuming OSC, and unlike in the finite alphabet case, the Hausdorff measure can vanish

and the packing measure may become locally infinite at every point. In addition for infinite

systems with overlaps we may have infinitely many basic sets of the system, overlapping at

points in the limit set J , or the number of overlaps may be unbounded over J .

In [12], we obtained lower estimates for the Hausdorff dimension of the limit set J of a

deterministic infinite IFS with overlaps, by using the pressure function and a preimage

counting function, that counts the overlaps at points of J . This preimage counting function

plays an important role in general, for iterated function systems with overlaps, and we found

also that the Hausdorff dimension of the limit set J takes its ”minimal” value exactly when

the number of overlaps over every point in J is k (assuming that this number of overlaps

is everywhere finite, and bounded above by an integer k ≥ 2). In addition, in [12] we gave

several classes of examples of infinite conformal iterated function systems with overlaps.

By extension from the case of infinite IFS with overlaps discussed above, the case of

random infinite IFS with overlaps presents even more differences and new phenomena,

when compared to the case of finite IFS with overlaps. For instance several proofs that used

compactness type arguments cannot be applied to random infinite IFS with overlaps. We

also have to impose certain conditions on the randomization process θ : Λ → Λ and on the

invariant probability measure µ on Λ× EN, etc.

Starting from the general strategy of Feng and Hu paper [6], we will prove under a

mild assumption of finite conditional entropy, the dimensional exactness of the projections
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of invariant measures from the shift space, in the context of random conformal iterated

function systems with countable alphabet and having arbitrary overlaps.

Our main result is contained in Theorem 3.13 where we prove dimensional exactness, and

provide a formula for the dimension of typical projection measures, by employing a random

projectional entropy and the Lyapunov exponents of the measure with respect to the random

countable IFS with overlaps. Also, in Theorem 2.5 we give lower and upper bounds for the

random projectional entropy of a measure. In the last Section, we apply these results to

pointwise dimension estimates for several concrete classes of random countable IFS with

overlaps. Our results work for both finite random systems, and for infinite random systems.

Randomization allows to have a unitary setting to study limit sets and measures in a family

of dynamical systems for generic parameter values, which proves useful in cases when a study

of individual systems is difficult. Moreover, randomization allows us to obtain new types of

fractal sets defined with the help of random series.

Hence, in Section 3 we introduce and investigate several classes of examples of random

countable iterated systems with overlaps. First, we will give several ways to randomize count-

able IFS related to generalizations of Kahane-Salem sets ([8]) and infinite convolutions of

Bernoulli distributions. Then, we shall give examples of random infinite conformal IFS with

overlaps in the plane, which have a uniformly bounded preimage counting function; we will

study the projection measures on the respective limit sets, finding lower and upper bounds

for their pointwise dimensions. We will also investigate a randomized finite iterated function

system based on a statistical problem of Sinai, and will verify the exact dimensionality of

projection measures on its limit set.

We mention that several authors investigated the question of dimension for measures in

the context of random dynamical systems or random finite iterated function systems, for eg

[2], [7], [14], [16], [19], etc. Our randomization here is different from the one studied in [14].

2. Preliminaries from Random Countable Alphabet Iterated Function

Systems.

First let us recall some well-known geometric concepts, see for eg [15], [18]). For a finite

Borel measure µ on a metric space (X, ρ), we denote by dµ(x) and dµ(x) respectively, the lower

and upper limits of log µ(B(x,r))
log r

, when r → 0. These lower, and upper pointwise dimensions of

µ are guaranteed to exist at every x ∈ X, in contrast to the limit in (1.1). Now define also

the dimensions:

HD?(µ) := inf{HD(Y ) : µ(Y ) > 0} and HD?(µ) = inf{HD(Y ) : µ(X \ Y ) = 0}.

In the case when HD?(µ) = HD?(µ), this common value is called the Hausdorff dimension

of the measure µ and is denoted by HD(µ).
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Analogous concepts can be formulated for packing dimension, with respective notation

PD?(µ), PD?(µ); if PD(µ) exists, it is called the packing dimension of the measure µ.

The first (and very basic) relations between these concepts are given in the following well–

known theorem (see for ex. [18]):

Theorem 2.1 (General properties of dimensions of measures on metric spaces). (i) If µ

is a finite Borel measure on a metric space (X, ρ), then

HD?(µ) = ess inf dµ, HD?(µ) = ess sup dµ, and PD?(µ) = ess inf dµ, PD?(µ) = ess sup dµ

(ii) If µ is an exact dimensional finite Borel measure on a metric space (X, ρ), then

both its Hausdorff dimension and packing dimension are well-defined and

HD(µ) = PD(µ) = dµ.

Let now X be a compact connected subset of Rq, q ≥ 1 with X = Int(X). Consider also

E to be a countable set (either finite or infinite), called an alphabet.

Definition 2.2. A random countable conformal iterated function system

S = (θ : Λ→ Λ, {λ 7→ ϕλe}e∈E)

is defined by an invertible ergodic measure-preserving transformation of a complete proba-

bility space (Λ,F ,m), namely

θ : (Λ,F ,m)→ (Λ,F ,m),

and by a family of injective conformal contractions on X, defined for each e ∈ E and λ ∈ Λ,

ϕλe : X → X,

all of whose Lipschitz constants do not exceed a common value 0 < s < 1. We in fact assume

that there exists a bounded open connected set W ⊂ Rq containg X, such that all maps

φλe : X → X extend confomally to (injective) maps from W to W . �

We will denote in the sequel by EN the space of one-sided infinite sequences ω =

(ω0, ω1, . . .), ωi ∈ E, i ≥ 0; and by E∗ the set of all finite sequences τ = (τ0, τ1, . . . , τk), τi ∈
E, 0 ≤ i ≤ k, k ≥ 1. We have the usual shift map σ : EN → EN.

We shall assume in the sequel that the contraction maps ϕλe : W → W satisfy the following

Bounded Distortion Property (BDP):

Property 2.3 (BDP). There exists a function K : [0, 1) → [1,∞) such that limt↘0K(t) =

K(0) = 1, and

sup

{∣∣(φλω)′(y)
∣∣∣∣(φλω)′(x)
∣∣ : e ∈ E, λ ∈ Λ, x ∈ X, ||y − x|| ≤ t · dist(x,Rq \W )

}
≤ K(t).
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We also require some common measurability conditions. Precisely, we assume that for

every e ∈ E and every x ∈ X the map

Λ 3 λ 7→ ϕλe (x)

is measurable. According to Lemma 1.1 in [3], this implies that, for all e ∈ E, the maps

Λ×X 3 (λ, x) 7→ ϕe(x, λ) := ϕλe (x)

are (jointly) measurable. For every finite sequence ω ∈ E∗, and every λ ∈ Λ, let us define

also the (randomized) composition of contractions

ϕλω := ϕλω1
◦ ϕθ(λ)

ω2
◦ . . . ◦ ϕθ|ω|−1(λ)

ω|ω|

This formula exhibits the random aspect of our iterations: we choose consecutive generators

ϕω1 , ϕω2 , . . . , ϕωn according to a random process governed by the ergodic map θ : Λ → Λ.

This random aspect is particularly striking if θ is a Bernoulli shift when, in the random

composition we choose φλe in an independent identically distributed way.

Given ω ∈ EN and λ ∈ Λ, we define, analogously to the deterministic case, the singleton

πλ(ω) :=
∞⋂
n=1

ϕλω|n(X),

and then the fractal limit set of the random countable IFS, corresponding to λ ∈ Λ is:

Jλ := πλ(E
N)

Let us denote by πΛ : Λ×EN → Λ and πEN : Λ×EN → EN, the projections on the first,

respectively the second coordinates. And by πRq : Λ× EN → Rq the projection defining the

limit sets Jλ, λ ∈ Λ, namely πRq(λ, ω) = πλ(ω), for (λ, ω) ∈ Λ× EN.

Let us also denote by ξ the partion of EN into initial cylinders of length 1; we will work

in the sequel with conditional entropies of partitions and of probability measures (see for

example [21], [9] for general definitions and properties).

Given a Lebesgue space (Y,B, µ) and two measurable partitions of it, η and ζ, we will

sometimes write Hµ(η|ζ) without loss of generality, for the measure-theoretic conditional

entropy Hµ(η|ζ̂) of the partition η with respect to the σ-algebra ζ̂ generated by ζ. We will

introduce now a notion of measure-theoretical projectional entropy for the random infinite

system and for a projection measure, which is similar to the projection entropy from [6], but

which is adapted to the random setting.

Definition 2.4. Given the random countable iterated function system S as above, and a

θ× σ–invariant probability measure µ on Λ×EN, define the random projectional entropy of

the measure µ relative to the system S, to be:

hµ(S) := Hµ

(
π−1
EN(ξ)

∣∣π−1
Λ (εΛ) ∨ (θ × σ)−1(π−1

Rq (εRq))
)
− Hµ

(
π−1
EN(ξ)

∣∣π−1
Λ (εΛ) ∨ π−1

Rq (εRq)
)
,

where εΛ, εRq are the point partitions of Λ, respectively Rq.
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In the sequel we will consider only those θ×σ–invariant probability measures µ on Λ×EN

whose marginal measure on the parameter space Λ is equal to m, i. e. such that

µ ◦ π−1
Λ = m

We denote then by (µλ)λ∈Λ the Rokhlin’s disintegration of the measure µ with respect to

the fiber partition (π−1
Λ )λ∈Λ. Its elements, {λ}×EN, λ ∈ Λ, will be frequently identified with

the set EN and we will treat each probability measure µλ as defined on EN.

The desintegration (µλ)λ∈Λ depending measurably on λ, is uniquely determined by the

property that for any µ-integrable function g : Λ× EN → R, we have∫
Λ×EN

gdµ =

∫
Λ

∫
EN
gdµλ dm(λ)

Thus from Lemma 2.2.3 in [2], we have the following equivalent desintegration formula for

the random projectional entropy:

(2.1) hµ(S) =

∫
Λ

Hµλ

(
ξ
∣∣σ−1(π−1

θ(λ)(εJθ(λ))
)
dm(λ)−

∫
Λ

Hµλ

(
ξ
∣∣π−1
λ (εJλ)

)
dm(λ)

Using Definition 2.4 and the definitions of conditional entropy and conditional expectations

(for eg from [21], etc.), we can then further write:

(2.2)

hµ(S) =

∫
Λ

[ ∫
EN

logEµλ
(
11[ω1]

∣∣π−1
λ (εJλ)

)
(ω)dµλ(ω)−

−
∫
EN

logEµλ
(
11[ω1]

∣∣(πθ(λ) ◦ σ)−1(εJθ(λ))
)
(ω)dµλ(ω)

]
dm(λ)

We will see that there are important differences from the finite deterministic case, since

here we have a family (Jλ)λ∈Λ of possibly non-compact limit sets, and a family of boundaries

at infinity (∂∞Sλ)λ∈Λ. The λ-boundary at infinity of S, denoted by Sλ(∞), is defined as the

set of accumulation points of sequences of type (φλen(xn))n, for arbitrary points xn ∈ X and

infinitely many different indices en ∈ E. Similarly as in the deterministic case [12], we define

S+
λ (∞) :=

⋃
ω∈E∗

φθ(λ)
ω (Sλ(∞))

We give now some results about the relations between the random projectional entropy

hµ(S) and the measure-theoretical entropy h(µ) of the (θ × σ)-invariant probability µ on

Λ× EN. In this way we get bounds for the random projectional entropy hµ(S).

Theorem 2.5. In the above setting, if S is a random countable iterated function system and

if µ is a (θ × σ)-invariant probability on Λ× EN, we have the following inequalities:

(a)

hµ(S) ≤ h(µ)
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(b) Assume that there exists an integer k ≥ 1, such that for µ-almost every (λ, ω) ∈ Λ×
EN there exists r(λ, ω) > 0 and k indices e1, . . . , ek ∈ E, so that if the ball B(πλ(ω), r(λ, ω)) ⊂
Rq intersects a set of type φλ

′
e (Jλ′), e ∈ E, λ′ ∈ Λ, then e must belong to {e1, . . . , ek}. Then

hµ(S) ≥ h(µ)− log k

Proof. (a) Let us denote by B the σ-algebra of borelian sets in Rq, and by ξ̂ the σ-algebra

generated by the partition ξ̃ = π−1
ENξ in Λ× EN. We want to prove first that

(2.3) ξ̂ ∨ (θ × σ)−1π−1
Rq B = ξ̂ ∨ π−1

Rq

But an element of the σ-algebra ξ̂ ∨ (θ × σ)−1π−1
Rq B is a set of type

∪
i∈E

(Λ× [i]) ∩ (θ × σ)−1π−1
RqAi,

where Ai ∈ B, i ∈ E. Let us take an element (λ, ω) ∈ π−1
Rq (Ai), so πRq(λ, ω) ∈ Ai, where

ω = (ω1, ω2, . . .). Then an element ζ from the preimage set (θ−1 × σ)−1(λ, ω), has the form

(θ−1λ, (ω0, ω1, . . .), for arbitrary ω0 ∈ E; if this element belongs in addition to Λ× [i], then

ω0 = i. Now πRq(ζ) = φθ
−1λ
i (πRq(λ, ω) ∈ φθ−1λ

i (Ai). Therefore we proved that

(Λ× [i]) ∩ (θ × σ)−1π−1
RqAi = (Λ× [i]) ∩ π−1

Rq (φθ
−1λ
i (Ai))

Thus ξ̂ ∨ (θ × σ)−1π−1
Rq B ⊆ ξ̂ ∨ π−1

Rq B, and after showing also the converse inequality of

σ-algebras we obtain (2.3), i.e that ξ̂ ∨ (θ × σ)−1π−1
Rq B = ξ̂ ∨ π−1

Rq B.

For an arbitrary integer n ≥ 1, let us denote the measurable partition ξ̃n−1
0 := ξ∨σ−1ξ . . .∨

σ−nξ. Using now the fact that the measure µ is (θ × σ)-invariant on Λ× EN, and the same

type of argument as in Lemma 4.8 of [6], we obtain that for every integer n ≥ 1,

(2.4) Hµ(ξ̃n−1
0 |(θ×σ)−nπ−1

Rq B)−Hµ(ξ̃n−1
0 |π−1

Rq B) = n ·
[
Hµ(ξ̃|(θ×σ)−1π−1

Rq B)−Hµ(ξ̃|π−1
Rq B)

]
Hence from formula (2.4) we obtain the following inequality:

nhµ(S) = Hµ(ξ̃n−1
0 |(θ × σ)−1π−1

Rq B)−Hµ(ξ̃n−1
0 |π−1

Rq B) ≤ Hµ(ξ̃n−1
0 )

Therefore, as h(µ) is the supremum of the limits of 1
n
Hµ

( n−1
∨
0

(θ× σ)−iτ
)

when n→∞, over

all partitions τ of Λ× EN, we obtain the upper bound hµ(S) ≤ h(µ).

(b) We remind that ξ is the partition of EN into the 1-cylinders [i] := {ω ∈ EN, ω =

(ω1, ω2, . . .), ω1 = i}, for i ∈ E; and also that for simplicity of notation, given in general 2

measurable partitions η, ζ of a Lebesgue space (Y, ν), we will sometimes write Hν(η|ζ) instead

of Hν(η|ζ̂) where ζ̂ is the σ-algebra generated by ζ. We now assume that for µ-almost every

(λ, ω) ∈ Λ × EN, there are at most k indices e ∈ E so that sets of type φλ
′
e (Jλ′), λ

′ ∈ Λ

intersect the ball B(πλ(ω), r(λ, ω)). Let us consider next the partition Pn of Rq with sets of

type I(i1,...,iq) = [ i1
2n
, i+1

2n
)× . . .× [ iq

2n
, iq+1

2n
), for all multi-indices (i1, . . . , iq) ∈ Zq.

For m-almost every λ ∈ Λ we will now construct the subpartitionRn(λ) ⊆ Pn, which uses

only those sets I(i1,...,iq) ∈ Pn that contain points πλ(ω) ∈ Jλ, ω ∈ EN, with r(λ, ω) > q/2n,
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and where the union of all the remaining cubes I(i1,...,iq) of Pn represents just one element

of Rn(λ). But we assumed that for µ-almost all (λ, ω) ∈ Λ × EN, there exists a radius

r(λ, ω) > 0, such that:

(2.5) Card{i ∈ E, ∃λ′ ∈ Λ s.t B(πλ(ω), r(λ, ω)) ∩ φλ′i (Jλ′) 6= ∅} ≤ k

So using the fact that n was chosen so that any cube I(i1,...,iq) ∈ Rn(λ) contains at least a

point of type πλ(ω), ω ∈ EN with r(λ, ω) > q
2n

, we obtain that any fixed set A from the

partition π−1
λ (Rn(λ)) of EN, intersects at most k elements of the partition ξ∨π−1

λ (Rn(λ)) of

EN. Recall also that µλ ◦ π−1
λ is a σ-invariant probability measure on EN, for λ ∈ Λ. Hence

from above and using [13], [21], it follows that the conditional entropy Hµλ

(
ξ|π−1

λ (Rn(λ))
)

satisfies:

(2.6) Hµλ

(
ξ|π−1

λ (Rn(λ))
)

= Hµλ(ξ ∨ π−1
λ Rn(λ))−Hµλ(π−1

λ (Rn(λ)) ≤ log k

But now, since we known that for µ-almost all (λ, ω) ∈ Λ×EN there exists a radius r(λ, ω) > 0

satisfying condition (2.5), we infer that π−1
λ (Rn(λ))↗ π−1

λ (εRq), when n→∞; and the same

conclusion for the respective σ-algebras generated by these partitions in EN. Therefore from

(2.6) and [13], and since µ◦π−1
Λ = m, it follows that for m-almost every λ ∈ Λ, the conditional

entropy Hµλ(ξ|π−1
λ B) satisfies the inequality

Hµλ(ξ|π−1
λ (B)) = lim

n→∞
Hµλ(ξ|π−1

λ Rn(λ)) ≤ log k

In addition we have that for m-almost any parameter λ ∈ Λ,

Hµλ(ξ|σ−1(π−1
θ(λ)εJθ(λ))) ≥ Hµλ(ξ|σ−1(B(EN))) = hσ(µλ),

since ξ is a generator partition for µλ on EN, and by using section 3-1 of [13]. Therefore,

from (2.1) and the last two displayed inequalities, we obtain the required inequality, namely

hµ(S) ≥
∫

Λ

hσ(µλ)dm(λ)− log k = h(µ)− log k

�

Remark 2.6. We remark that the condition in Theorem 2.5, part (b), implies that there are

no points from Sλ(∞) in any of the limit sets Jλ′ for all λ, λ′ ∈ Λ. We shall give an example

of such a random infinite system with overlaps in the last section. The difficulty without this

condition is that, there may be a variable number of overlaps at points from the possibly

non-compact fractal Jλ, and that this number may tend to ∞ even for a given λ, or that it

may tend to∞ when λ varies in Λ; in both of these cases, we cannot obtain however a lower

estimate for hµ(S) like the one in Theorem 2.5 (b).
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3. Pointwise dimension for random projections of measures.

Given a metric space (X, ρ) and a measurable map H : EN → X, then for every sequence

ω ∈ EN and every r > 0, we shall denote by

BH(ω, r) := H−1(Bρ(H(ω), r)).

Throughout this section we keep the setting and notation from the previous section. Our

main result in this section is the exact dimensionality of random projections µλ on Jλ, of

(θ × σ)-invariant probabilities µ from Λ×EN, for m-almost all parameters λ ∈ Λ. We start

the proofs with the following:

Lemma 3.1. For all integers k ≥ 0, every e ∈ E and λ ∈ Λ, and µλ-a.e. ω ∈ EN, we have

lim
r→0

log
µλ
(
Bπ

θk(λ)
◦σk(ω, r) ∩ [e]

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) = logEµλ
(
11[e]

∣∣(πθk(λ) ◦ σk)−1(BRq))
)
(ω).

Proof. Fix e ∈ E and define the following two Borel measures on Rq:

(3.1) νλ := µλ ◦ (πθk(λ) ◦ σk)−1, and

(3.2) νeλ(D) := µλ
(
[e] ∩ (πθk(λ) ◦ σk)−1(D)

)
, D Borel set in Rd.

Since νeλ ≤ νλ, the measure νeλ is absolutely continuous with respect to νλ. Let us then define

the Radon-Nikodym derivative of νeλ with respect to νλ:

geλ :=
dνeλ
dνλ

Then, by Theorem 2.12 in [10], we have that:

(3.3) geλ(x) = lim
r→0

νeλ(B(x, r)

νλ(B(x, r)

for νλ-a.e. x ∈ Rq. On the other hand, for every set F ∈ (πθk(λ) ◦ σk)−1
(
BRq
)
, say F =

(πθk(λ) ◦ σk)−1(F̃ ), F̃ ∈ BRq , we have∫
F

Eµλ
(
11[e]

∣∣(πθk(λ) ◦ σ)−1(BRq)
)
dµλ =

∫
F

11[e]dµλ = µλ(F ∩ [e])

= µλ
(
(πθk(λ) ◦ σk)−1(F̃ ) ∩ [e]

)
= νeλ(F̃ ) =

∫
F̃

geλdνλ

=

∫
F̃

geλd(µλ ◦ (πθk(λ) ◦ σk)−1) =

∫
Rq

11F̃ g
e
λd(µλ ◦ (πθk(λ) ◦ σk)−1)

=

∫
EN

11F̃ ◦ (πθk(λ) ◦ σk) geλ ◦ (πθk(λ) ◦ σk)dνλ

=

∫
EN

11F g
e
λ ◦ (πθk(λ) ◦ σk)dνλ

=

∫
F

geλ ◦ (πθk(λ) ◦ σk)dνλ.
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Since, in addition, both functions Eµλ
(
11[e]

∣∣(πθk(λ) ◦ σ)−1(BRq)
)

and geλ ◦ (πθk(λ) ◦ σk) are

non-negative and measurable with respect to the σ-algebra (πθk(λ) ◦ σ)−1(BRq), we conclude

that

geλ ◦ (πθk(λ) ◦ σ)−1(BRq)(ω) = Eµλ
(
11[e]

∣∣(πθk(λ) ◦ σ)−1(BRq)
)
(ω)

for µλ-a.e. ω ∈ EN. Along with (3.3) this means that

lim
r→0

µλ
(
Bπ

θk(λ)
◦σk(ω, r) ∩ [e]

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) = Eµλ
(
11[ω1]

∣∣(πθk(λ) ◦ σk)−1(εJλ)
)
(ω)

for µλ-a.e. ω ∈ EN. Taking logarithms the lemma follows.

�

Corollary 3.2. For all integers k ≥ 0, all λ ∈ Λ, and µλ-a.e. ω ∈ EN, we have

lim
r→0

log
µλ
(
Bπ

θk(λ)
◦σk(ω, r) ∩ [ω1]

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) = logEµλ
(
11[ω1]

∣∣(πθk(λ) ◦ σk)−1(BRq))
)
.

Proof. We have

lim
r→0

log
µλ
(
Bπ

θk(λ)
◦σk(ω, r) ∩ [ω1]

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) =

=
∑
e∈E

11[e](ω) lim
r→0

log
µλ
(
Bπ

θk(λ)
◦σk(ω, r) ∩ [e]

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

)
=
∑
e∈E

11[e](ω) logEµλ
(
11[e]

∣∣(πθk(λ) ◦ σk)−1(BRq)
)
(ω)

= logEµλ
(
11[ω1]

∣∣(πθk(λ) ◦ σk)−1(BRq))
)
(ω).

�

Now we shall prove the following.

Lemma 3.3. If Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞, then the function

g(λ, ω) := − inf
r>0

log
µλ
(
[ω1] ∩Bπ

θk(λ)
◦σk(ω, r)

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) ∈ R

is integrable with respect to the measure µ, that is it belongs to L1(µ).

Proof. Fix λ ∈ Λ. Fix also e ∈ E. As in the proof of Lemma 3.1 consider measures νλ and

νeλ defined by (3.1) and (3.2) respectively. By Theorem 2.19 in [10] we have that

νeλ

({
x ∈ Rq : inf

r>0

{
νeλ(B(x, r)

νλ(B(x, r))

}
< t

})
=

= νeλ

({
x ∈ Rq : sup

r>0

{
νλ(B(x, r))

νeλ(B(x, r))

}
> 1/t

})
≤ Cqtνλ(Rq) = Cqt,

10



where 1 ≤ Cq <∞ is a constant depending only on q. What we obtained means that

µλ

({
ω ∈ EN : inf

r>0

{
µλ
(
[e] ∩Bπ

θk(λ)
◦σk(ω, r)

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) }
< t

})
≤ Cqt.

Let us define also the function:

Ge
λ(ω) := inf

r>0

{
µλ
(
[e] ∩Bπ

θk(λ)
◦σk(ω, r)

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) }
.

Then the previous inequality can be rewritten as:

µλ
(
(Ge

λ)
−1([0, t))

)
≤ Cqt.

Define now the function gλ : EN → R by gλ(ω) = g(λ, ω). Thus the following equlity holds:

gλ =
∑
e∈E

−11[e] logGe
λ.

Noting also that gλ ≥ 0, we obtain therefore:∫
EN
gλdµλ =

∑
e∈E

−
∫

[e]

logGe
λdµλ =

∑
e∈E

∫ ∞
0

µλ
(
{ω ∈ [e] : − logGe

λ(ω) > s}
)
ds

=
∑
e∈E

∫ ∞
0

µλ
(
{ω ∈ [e] : Ge

λ(ω) < e−s}
)
ds

=
∑
e∈E

∫ ∞
0

µλ
(
{ω ∈ EN : Ge

λ(ω) < e−s} ∩ [e]
)
ds

≤
∑
e∈E

∫ ∞
0

min{µλ([e]), Cqe−s}ds

=
∑
e∈E

(∫ − log µλ([e])+logCq

0

µλ([e])ds+

∫
− log µλ([e])+logCq

Cqe−sds

)
=
∑
e∈E

(
−µλ([e]) log µλ([e]) + log(Cq)µλ([e])) + µλ([e])

)
= 1 + log(Cq) +

∑
e∈E

(
−µλ([e]) log µλ([e])

)
= 1 + log(Cq) + Hµl(ξ)

Since Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞, it therefore follows from Lemma 2.3 in [2] that∫

Λ×EN
gdµ =

∫
Λ

∫
EN
gλdµλdm(λ) ≤ 1 + log(Cq) +

∫
Λ

Hµl(ξ)

= 1 + log(Cq) + Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞

The proof is thus finished.

�

Remark 3.4. We assumed above the finite entropy condition Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
< ∞.

This is not a restrictive condition, and it is satisfied by many measures and systems. For
11



example, it is clearly satisfied if the alphabet E is finite. More interestingly, it is also satisfied

when E is infinite and µ = m× ν, where m is an arbitrary θ-invariant probability on Λ, and

ν is a σ-invariant probability on EN satisfying ν([i]) = νi, i ∈ E and

h(ν) = −
∑
i∈E

νi log νi <∞

Indeed, if A is the σ-algebra generated in Λ×EN by the partition π−1
Λ (εΛ), and if ξ̃ := π−1

ENξ,

then Hµ(ξ̃|A) =
∫
Iµ(ξ̃|A), where Iµ(ξ̃|A) is the information function

Iµ(ξ̃|A) := −
∑
A∈ξ̃

χA · logEµ(χA|A)

Now, the conditional expectation Eµ(χA|A) =: gA is A-measurable, and
∫
B×EN gdµ =∫

B×EN χAdµ, for all sets B measurable in Λ. Hence if A = Λ× [i], then
∫
gAdµ = µ(A∩ (B×

EN)) = m(B) · νi, so gA = νi and Hµ(ξ̃|A) = −
∑
i∈E

νi log νi. Therefore, if h(ν) <∞, then

Hµ(ξ̃|A) <∞

�

As an immediate consequence of Lemma 3.3, Corollary 3.2, and Lebesgue’s Dominated Con-

vergence Theorem, we get the following:

Lemma 3.5. If Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞, then

lim
r→0

log
µλ
(
[ω1] ∩Bπ

θk(λ)
◦σk(ω, r)

)
µλ
(
Bπ

θk(λ)
◦σk(ω, r)

) = logEµλ
(
11[ω1]

∣∣(πθk(λ) ◦ σk)−1(BRq))
)
(ω)

for µ-a.e. (λ, ω) ∈ Λ× EN, and the convergence holds also in L1(µ).

Now we shall prove the following:

Lemma 3.6. For every K ≥ 1 there exists R1 > 0 such that

[ω1] ∩Bπλ

(
ω,K

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r) ⊃ [ω1] ∩Bπθ(λ)◦σ(ω, r)

for all λ ∈ Λ, all ω ∈ EN, and all r ∈ [0, R1].

Proof. Let τ ∈ Bπθ(λ)◦σ(ω, r). Then τ1 = ω1 and πθ(λ)(σ(τ)) ∈ B(πθ(λ)(σ(ω)), r). Hence,

πλ(τ) = φλω1

(
πθ(λ)(σ(τ))

)
∈ φλω1

(
B(πθ(λ)(σ(ω)), r)

)
⊂ B

(
φλω1

(
πθ(λ)(σ(ω))

)
, K
∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r)
= B

(
πλ(ω), K

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r),
where, because of the Bounded Distortion Property (BDP), the inclusion sign ”⊂” holds

assuming r > 0 to be small enough. This means that

τ ∈ π−1
λ

(
B
(
πλ(ω), K

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r)) = Bπλ

(
ω,K

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r)
Since also already know that τ1 = ω1, we are thus done.

12



�

Lemma 3.7. For every K ≥ 1 there exists R2 > 0 such that

[ω1] ∩Bπλ

(
ω,K−1

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r) ⊂ [ω1] ∩Bπθ(λ)◦σ(ω, r)

for all λ ∈ Λ, all ω ∈ EN, and all r ∈ [0, R2].

Proof. Because of the Bounded Distortion Property (BDP), we have for all r ≥ 0 small

enough, say 0 ≤ r ≤ R2, that

Bπλ

(
ω,K−1

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r) = π−1
λ

(
B
(
πλ(ω), K−1

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r))
⊂ π−1

λ

(
φλω1

(
B(πθ(λ)(σ(ω)), r)

))
So, fixing τ ∈ [ω1] ∩Bπλ

(
ω,K−1

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r), we have τ1 = ω1 and

πλ(τ) = φλω1

(
πθ(λ)(σ(τ))

)
φλω1

(
B(πθ(λ)(σ(ω)), r)

)
.

This means that πθ(λ)(σ(τ)) ∈ B(πθ(λ)(σ(ω)), r)
)
, or equivalently, τ ∈ Bπθ(λ)◦σ(ω, r). The

required inclusion is thus proved and the proof is complete.

�

Since the measure µ is fiberwise invariant, we have for all ω ∈ EN, all r > 0, and m-a.e.

λ ∈ Λ that

(3.4)

µλ
(
Bπθ(λ)◦σ(ω), r)

)
= µλ

(
(πθ(λ) ◦ σ)−1

(
B(πθ(λ) ◦ σ(ω), r)

))
= µλ ◦ σ−1

(
π−1
θ(λ)

(
B
(
πθ(λ)(σ(ω)), r)

))
= µθ(λ)

(
Bπθ(λ)(σ(ω), r)

)
As an immediate consequence of this formula along with Lemma 3.6 and Lemma 3.7, we

get the following:

Lemma 3.8. For every K > 1 there exists RK > 0 such that

µλ
(
[ω1] ∩Bπλ

(
ω,K

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r))
µθ(λ)

(
Bπθ(λ)(σ(ω), r)

) ≥
µλ
(
[ω1] ∩Bπθ(λ)◦σ(ω, r)

)
µλ
(
Bπθ(λ)◦σ(ω), r)

)
and

µλ
(
[ω1] ∩Bπλ

(
ω,K−1

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣r))
µθ(λ)

(
Bπθ(λ)(σ(ω), r)

) ≤
µλ
(
[ω1] ∩Bπθ(λ)◦σ(ω, r)

)
µλ
(
Bπθ(λ)◦σ(ω, r)

)
for all ω ∈ EN, all r ∈ (0, RK ], and m-a.e. λ ∈ Λ.

Lemma 3.9. We have that∫
Λ

∫
EN

log µλ
(
Bπλ

(
ω, r)

)
dµλ(ω)dm(λ) > −∞

for all r > 0.
13



Proof. Since X is compact there exist finitely many points z1, z2, . . . , zl in X such that

l⋃
j=1

B(zj, r/2) ⊃ X.

For every λ ∈ Λ and every integer n ≥ 0 define the set of sequences:

An(λ) := {ω ∈ EN : e−(n+1) < µλ
(
Bπλ

(
ω, r)

)
≤ e−n}.

Assume that

An(λ) ∩ π−1
λ (B(zj, r/2)) 6= ∅

for some 1 ≤ j ≤ l. Fix γ ∈ An(λ)∩ π−1
λ (B(zj, r/2)) arbitrary. Then, because of the triangle

inequality, π−1
λ (B(zj, r/2)) ⊂ Bπλ(ω, r). Therefore,

µλ
(
An(λ) ∩ π−1

λ (B(zj, r/2))
)
≤ µλ

(
π−1
λ (B(zj, r/2))

)
≤ µλ

(
Bπλ(ω, r)

)
≤ e−n.

However, µλ(An(λ)) ∩ π−1
λ (B(zi, r/2))

)
= 0 ≤ e−n if An(λ) ∩ π−1

λ (B(zi, r/2)) = ∅, for some

1 ≤ i ≤ l. Hence, since
{
π−1
λ (B(zj, r/2))

}l
j=1

is a cover of EN, this implies that

µλ(An(λ)) ≤ le−n

Therefore we obtain,∫
EN
− log µλ

(
Bπλ

(
ω, r)

)
dµλ(ω) =

∞∑
n=0

∫
An(λ)

− log µλ
(
Bπλ

(
ω, r)

)
dµλ(ω)

≤
∞∑
n=0

(n+ 1)le−n

= l
∞∑
n=0

(n+ 1)e−n <∞.

Hence, from the above, we can conclude that∫
Λ

∫
EN

log µλ
(
Bπλ

(
ω, r)

)
dµλ(ω)dm(λ) ≤ l

∞∑
n=0

(n+ 1)e−n <∞.

�

Then employing this lemma and Birkhoff’s Ergodic Theorem, we obtain the following:

Lemma 3.10. For all r > 0 and µ-a.e. (λ, ω) ∈ Λ× EN, we have:

lim
n→∞

1

n
log µθn(λ)

(
Bπθn(λ)

(
σn(ω), r)

)
= 0

Now, we shall prove the following:

Lemma 3.11. If Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞, then for every K > 1, all r ∈ (0, RK) and µ-a.e.

(λ, ω) ∈ Λ× EN, we have that

(3.5) lim
n→∞

1

n
log µλ

(
Bπλ

(
ω,K−n

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣r)) ≤ −hµ(S),
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and moreover

(3.6) lim
n→∞

1

n
log µλ

(
Bπλ

(
ω,Kn

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣r)) ≥ −hµ(S).

Proof. We prove the first inequality by relying on the second inequality of Lemma 3.8. The

proof of the second inequality of the lemma is analogous and will be omitted. We have:

T−λ,n(ω) =

: = log µλ
(
Bπλ

(
ω,K−n

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣r))
=

n−1∑
j=0

log
µθj(λ)

(
Bπ

θj(λ)

(
σj(ω), K−(n−j)

∣∣(φθj(λ)

σj(ω)|n−j

)′
(πθn(λ)(σ

n(ω)))
∣∣r))

µθj(λ)

(
Bπ

θj+1(λ)

(
σj+1(ω), K−(n−(j+1))

∣∣(φθj+1(λ)

σj+1(ω)|n−(j+1)

)′
(πθn(λ)(σn(ω)))

∣∣r))+

+ log µθn(λ)

(
Bπθn(λ)

(
σn(ω), r)

)
=

n−1∑
j=0

log
µθj(λ)

(
[(σj(ω))1] ∩Bπ

θj(λ)

(
σj(ω), K−(n−j)

∣∣(φθj(λ)

σj(ω)|n−j

)′
(πθn(λ)(σ

n(ω)))
∣∣r))

µθj(λ)

(
Bπ

θj+1(λ)

(
σj+1(ω), K−(n−(j+1))

∣∣(φθj+1(λ)

σj+1(ω)|n−(j+1)

)′
(πθn(λ)(σn(ω)))

∣∣r))−
−

n−1∑
j=0

log
µθj(λ)

(
[(σj(ω))1] ∩Bπ

θj(λ)

(
σj(ω), K−(n−j)

∣∣(φθj(λ)

σj(ω)|n−j

)′
(πθn(λ)(σ

n(ω)))
∣∣r))

µλ
(
Bπ

θj(λ)

(
σj(ω), K−(n−j)

∣∣(φθj(λ)

σj(ω)|n−j

)′
(πθn(λ)(σn(ω)))

∣∣r)) +

+ log µθn(λ)

(
Bπθn(λ)

(
σn(ω), r)

)
≤

n−1∑
j=0

log
µθj(λ)

(
[(σj(ω))1] ∩Bπ

θj+1(λ)
◦σ
(
σj+1(ω), K−(n−(j+1))

∣∣(φθj+1(λ)

σj+1(ω)|n−(j+1)

)′
(πθn(λ)(σ

n(ω)))
∣∣r))

µθj(λ)

(
Bπ

θj+1(λ)
◦σ
(
σj+1(ω), K−(n−(j+1))

∣∣(φθj+1(λ)

σj+1(ω)|n−(j+1)

)′
(πθn(λ)(σn(ω)))

∣∣r)) −

−
n−1∑
j=0

log
µθj(λ)

(
[(σj(ω))1] ∩Bπ

θj(λ)

(
σj(ω), K−(n−j)

∣∣(φθj(λ)

σj(ω)|n−j

)′
(πθn(λ)(σ

n(ω)))
∣∣r))

µλ
(
Bπ

θj(λ)

(
σj(ω), K−(n−j)

∣∣(φθj(λ)

σj(ω)|n−j

)′
(πθn(λ)(σn(ω)))

∣∣r)) +

+ log µθn(λ)

(
Bπθn(λ)

(
σn(ω), r)

)
=

n−1∑
j=0

W−
n−j((θ × σ)j(λ, ω))−

n−1∑
j=0

G−n−j((θ × σ)j(λ, ω)) + log µθn(λ)

(
Bπθn(λ)

(
σn(ω), r)

)
,

where for all i ≥ 1,

W−
i (λ, ω) := log

µλ
(
[ω1] ∩Bπθ(λ)◦σ

(
σj+1(ω), K−(i−1)

∣∣(φθ(λ)
σ(ω)|i−1

)′
(πθi(λ)(σ

i(ω)))
∣∣r))

µλ
(
Bπθ(λ)◦σ

(
σj+1(ω), K−(i−1)

∣∣(φθ(λ)
σ(ω)|i−1

)′
(πθi(λ)(σi(ω)))

∣∣r))
and where

G−i (λ, ω) := log
µλ
(
[ω1] ∩Bπλ

(
ω,K−i

∣∣(φλω|i)′(πθi(λ)(σ
i(ω)))

∣∣r))
µλ
(
Bπλ

(
ω,K−i

∣∣(φλω|i)′(πθi(λ)(σi(ω)))
∣∣r)) .

Now, by virtue of Lemma 3.5 we see that Corollary 1.6, p. 96 in [9], applies to the

sequences (W−
i )∞i=1 and (W−

i )∞i=1. This, in conjunction with Lemma 3.5, Lemma 3.10, the

ergodicity of the measure µ with respect to the dynamical system θ × σ, and formula (2.2),
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gives us the following inequalities:

lim
n→∞

T−λ,n(ω) ≤
∫

Λ×EN

(
logEµλ

(
11[ω1]

∣∣(πθ(λ) ◦ σ)−1(BRq))
)
(ω)−

− logEµλ
(
11[ω1]

∣∣(π−1
λ (BRq))

)
(ω)
)
dµλ(ω)dm(λ)

= −hµ(S).

This finishes thus the proof.

�

Definition 3.12. In the above setting, let us define the Lyapunov exponent of the measure

µ with respect to the endomorphism θ × σ : Λ × EN → Λ × EN and the random countable

iterated function system S:

χµ :=

∫
Λ×EN

− log
∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣dµ(λ, ω).

Since the above dynamical system is ergodic, then Birkhoff’s Ergodic Theorem yields

that, for µ-a.e. (λ, ω) ∈ Λ× EN, we have

(3.7) lim
n→∞

1

n
log
∣∣(φλω|n)′(πθn(λ)(σ

n(ω)))
∣∣ = χµ.

As a consequence of this lemma and Lemma 3.11, we now prove the main result of our paper:

Theorem 3.13. If Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞, then for µ-a.e. (λ, ω) ∈ Λ× EN, we have

lim
r→0

log
(
µλ ◦ π−1

λ

(
Bπλ(ω, r)

))
log r

=
hµ(S)

χµ
.

Proof. What we want to prove is that:

lim
r→0

log µλ
(
Bπλ(ω, r)

)
log r

=
hµ(S)

χµ
.

Fix K > 1. Fix also (λ, ω) ∈ Λ×EN. Consider any r ∈
(
0, K−1

∣∣(φλω1

)′
(πθ(λ)(σ(ω)))

∣∣). There

then exists a largest n ≥ 0 such that

r ≤ K−n
∣∣(φλω|n)′(πθn(λ)(σ

n(ω)))
∣∣RK .

Then for n ≥ 1,

Bπλ(ω, r) ⊂ Bπλ

(
ω,K−n

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

)
, and

r ≥ K−(n+1)
∣∣(φλω|n+1

)′
(πθn+1(λ)(σ

n+1(ω)))
∣∣RK .
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Therefore,

log µλ(
(
Bπλ(ω, r)

)
log r

≥
log µλ(Bπλ

(
ω,K−n

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

))
log r

≥
log µλ(Bπλ

(
ω,K−n

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

))
−(n+ 1) logK + log

∣∣(φλω|n+1

)′
(πθn+1(λ)(σn+1(ω)))

∣∣+ logRK

=
1
n

log µλ(Bπλ

(
ω,K−n

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

))
−(1 + 1

n
) logK + 1

n
log
∣∣(φλω|n+1

)′
(πθn+1(λ)(σn+1(ω)))

∣∣+ 1
n

logRK

.

Hence, applying formula (3.5) from Lemma 3.11, and also Lemma 3.7, we get

lim
r→0

log µλ(
(
Bπλ(ω, r)

)
log r

≥ hµ(S)

logK + χµ

for all (λ, ω) in some measurable set Ω+
K ⊂ Λ× EN with µ(Ω+

K) = 1. Then

µ

(
Ω+ :=

∞⋂
j=1

Ω+
j+1
j

)
= 1

and

(3.8) lim
r→0

log µλ(
(
Bπλ(ω, r)

)
log r

≥ hµ(S)

χµ

for all (λ, ω) ∈ Ω+. For the proof of the opposite direction fix any K > 1 so small that

(3.9) K−1 > ess sup
{∣∣∣∣(φλe)′∣∣∣∣ : e ∈ E, λ ∈ Λ

}
.

Having (λ, ω) ∈ Λ × EN fix any r ∈
(
0, KRKess sup

{∣∣∣∣(φλe)′∣∣∣∣ : e ∈ E, λ ∈ Λ
}

. Because of

(3.9) there exists a least n ≥ 1 such that

Kn
∣∣(φλω|n)′(πθn(λ)(σ

n(ω)))
∣∣RK ≤ r.

Then, because of our choice of r, we have that n ≥ 2,

Kn−1
∣∣(φλω|n−1

)′
(πθn−1(λ)(σ

n−1(ω)))
∣∣RK ≤ r,

and

Bπλ(ω, r) ⊃ Bπλ

(
ω,Kn

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

)
.

Therefore,

log µλ(
(
Bπλ(ω, r)

)
log r

≤
log µλ(Bπλ

(
ω,Kn

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

))
log r

≥
log µλ(Bπλ

(
ω,Kn

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

))
(n− 1) logK + log

∣∣(φλω|n−1

)′
(πθn−1(λ)(σn−1(ω)))

∣∣+ logRK

=
1
n

log µλ(Bπλ

(
ω,Kn

∣∣(φλω|n)′(πθn(λ)(σ
n(ω)))

∣∣RK

))
−(1− 1

n
) logK + 1

n
log
∣∣(φλω|n−1

)′
(πθn−1(λ)(σn−1(ω)))

∣∣+ 1
n

logRK

.
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Hence, applying formula (3.5) from Lemma 3.11, and also Lemma 3.7, we get

lim
r→0

log µλ(
(
Bπλ(ω, r)

)
log r

≤ hµ(S)

− logK + χµ

for all (λ, ω) in some measurable set Ω−K ⊂ Λ× EN with µ(Ω−K) = 1. Then we have:

µ

(
Ω− :=

∞⋂
j=k

Ω−j+1
j

)
= 1,

where k ≥ 1 is taken to be so large that k+1
k

ess sup
{∣∣∣∣(φλe)′∣∣∣∣ : e ∈ E, λ ∈ Λ

}
< 1. Also,

lim
r→0

log µλ(
(
Bπλ(ω, r)

)
log r

≤ hµ(S)

χµ

for all (λ, ω) ∈ Ω−. Along with (3.8) this yields µ
(
Ω+ ∩ Ω−

)
= 1 and moreover,

lim
r→0

log µλ(
(
Bπλ(ω, r)

)
log r

=
hµ(S)

χµ

for all (λ, ω) ∈ Ω+ ∩ Ω−, which gives therefore the required dimensional exactness.

�

Therefore, from the above Theorem 3.13 and Theorem 2.1 we obtain the following result,

giving the (common) Hausdorff dimension and packing dimension of the projections µλ ◦π−1
λ

on the random limit sets Jλ:

Corollary 3.14. In the above setting if µ is a θ× σ-invariant probability on Λ×EN whose

marginal on Λ is m, and if Hµ

(
π−1
EN(ξ)|π−1

Λ (εΛ)
)
<∞, then for m-a.e λ ∈ Λ, we have

HD(µλ ◦ π−1
λ ) = PD(µλ ◦ π−1

λ ) =
hµ(S)

χµ
.

4. Applications to examples of random countable IFS with overlaps.

In this section we will study several examples of random IFS with overlaps and the

projections of (θ × σ)-invariant measures µ from Λ× EN to respective limit sets.

4.1. Randomizations related to Kahane-Salem sets.

In [8] Kahane and Salem studied the convolution of infinitely many Bernoulli distri-

butions, namely the measure µ = B( x
r0

) ∗ B( x
r1

) ∗ . . ., where B(x) denotes the Bernoulli

probability supported only at the points −1,+1 and giving measure 1
2

to each one of them.

The support of µ is the set F of points of the form ε0r0 + ε1r1 + . . ., where εk is equal to
18



+1 or −1 with equal probabilities. If we assume
∞∑
0

rk = 1, and if we introduce the sequence

(ρn)n≥0 defined by

r0 = 1− ρ0, r1 = ρ0(1− ρ1), r2 = ρ0ρ1(1− ρ2), . . . ,

then it can be seen that, if ρk >
1
2

for all but finitely many ks, then F contains intervals.

If, on the other hand, ρk <
1
2

for all k ≥ 0, then F is a Cantor set. If in addition to this,

lim
k→∞

2kρ0 . . . ρk−1 = 0, then F has zero Lebesgue measure and µ is singular.

A particular though interesting case is when rk = ρk, k ≥ 0, for some ρ ∈ (0, 1). Then the

corresponding set F = Fρ is the set of real numbers of type ±1± ρ± ρ2± . . .. If ρ < 1
2
, then

Fρ has zero Lebesgue measure and µ(ρ) is singular; if ρ > 1
2
, then Fρ contains intervals. The

convolution µ(ρ) is equal to the invariant probability of the IFS with two contractions

φ1(x) = ρx+ 1, φ2(x) = ρx− 1,

taken with probabilities 1/2, 1/2. This is a conformal system with overlaps, and Fρ is equal

to the limit set Jρ of this IFS. The measure µ(ρ) is the projection ν(1/2,1/2) ◦ π−1 of the

probability ν(1/2,1/2) from {1, 2}N, through the canonical projection π : {1, 2}N → Jρ. In [5]

Erdös proved that when 1/ρ is a Pisot number (i.e a real algebraic integer greater than 1 so

that all its conjugates are less than 1 in absolute value), then the measure µ(ρ) is singular.

In [17] it was shown that its Hausdorff dimension is strictly smaller than 1. In the other

direction, B. Solomyak showed in [20] that µ(ρ) is absolutely continuous for a.e ρ ∈ [1/2, 1).

Here we will give several ways to extend and randomize the idea of this construction, and

will apply our results on pointwise dimensions of projection measures for random infinite

IFS with overlaps:

Random system 4.1.1

A type of random IFS can be obtained by fixing numbers r1, r2 ∈ (0, 1), letting Λ =

{1, 2}Z, θ : Λ → Λ be the shift homeomorphism, and setting E = {1, 2} so the alphabet is

finite in this case. For arbitrary λ = (. . . , λ−1, λ0, λ1, . . .) ∈ Λ and e ∈ E, consider then the

affine contractions φλe in one real variable, defined by:

(4.1) φλ1(x) = rλ0x+ 1, φλ2(x) = rλ0x− 1

Then, for arbitrary λ = (. . . , λ−1, λ0, λ1, . . .} ∈ {1, 2}Z, the corresponding fractal limit set is

Jλ := πλ(E
N) = {φλω1

◦ φθ(λ)
ω2
◦ . . . , ω = (ω1, ω2, . . .) ∈ EN},

which can actually be described as a set of type±1 +
∑
i≥1

∑
(j,k)∈Zi

±ρk1ρ
j
2

 ,
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where for any pair of positive integers (j, k) ∈ Zi we have j + k = i, i ≥ 1, and where the

sets Zi are prescribed by the parameter λ ∈ {1, 2}Z, while the signs ± are arbitrary.

We then consider the 1-sided shift space EN, and a Bernoulli measure ν = νQ on EN given

by a probability vector Q = (q1, q2). Let also a Bernoulli measure m = mP on Λ associated

to the probability vector P = (p1, p2), and the probability µ = m× ν on Λ×EN. The above

random finite IFS is denoted by S.

Next, by desintegrating µ into conditional measures µλ, and projecting µλ to the limit set

Jλ, we obtain the projection measure µλ ◦ πλ, λ ∈ Λ. In this case the finiteness condition of

entropy from the statement of Theorem 3.13 is clearly satisfied since E is finite, so we obtain

the exact dimensionality of the measures µλ ◦ π−1
λ on Jλ for m-almost all λ ∈ Λ. And from

Corollary 3.14 and Theorem 2.5, we obtain an upper estimate for the pointwise dimension

of the projection measures,

dµλ◦π−1
λ

(πλ(ω)) =
hµ(S)

χµ
≤ h(mP ) + h(νQ)

−p1 log r1 − p2 log r2

=
p1 log p1 + p2 log p2 + q1 log q1 + q2 log q2

p1 log r1 + p2 log r2

Also, a possibility is to take µ = m× ν on Λ×EN, where m = mP as before and ν is an

equilibrium measure of a Hölder continuous potential on the 1-sided shift space EN.

Random system 4.1.2

Consider now a fixed sequence ρ̄ = (ρi)i≥1 of numbers in (0, 1) which are smaller than

some fixed ρ ∈ (0, 1), and let the parameter space Λ = {1, 2, . . .}Z with the shift home-

omorphism θ : Λ → Λ. Let also an infinite probability vector P = (p1, p2, . . .), and the

θ-invariant Bernoulli measure mP on Λ satisfying mP ([i]) = pi, i ≥ 1, where [i] := {ω =

(. . . , ω−1, ω0, ω1, . . .), ω0 = i}, i ≥ 1, and h(νP ) <∞. Let us take then the set E := {1, 2, . . .}
and a (θ× σ)-invariant probability measure µ on Λ×EN, having its marginal on Λ equal to

mP . For example we can take µ = mP × νQ, where Q = (q1, q2, . . .) is a probability vector,

and where νQ([j]) = qj, j ≥ 1 is a σ-invariant Bernoulli probability on EN; we assume in

addition that the entropy of νQ is finite, i.e that

−
∑
j≥1

qj log qj <∞

We now define infinitely many contractions φλe on a fixed large enough compact interval X,

for arbitrary e ∈ E, λ = (. . . , λ−1, λ0, λ1, . . .) ∈ Λ, λi ∈ {1, 2 . . .}, i ∈ Z, by:

φλn(x) = ρλn · x+ (−1)λ0 , n ≥ 1

It is clear that φλe are conformal contractions and they satisfy Bounded Distortion Property.

We construct thus a random infinite IFS denoted by S(ρ̄), which has overlaps.

For every λ ∈ Λ, we construct then the fractal limit set Jλ := πλ(E
N), which may

be non-compact. The fractal Jλ is the set of points given as φλω1
◦ φθ(λ)

ω2 ◦ . . ., for all ω ∈
EN. The main difference from the previous example 4.1.1 is that now, the plus and minus
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signs in the series giving the points of Jλ are not arbitrary, instead they are determined by

λ = (. . . , λ−1, λ0, λ1, . . .) ∈ Λ. The randomness in the series comes now from the various

possibilities to choose the sequences ω = (ω0, ω1, . . .) ∈ EN. Thus,

Jλ = {(−1)λ0+(−1)λ1ρλω1 +(−1)λ2ρλω1ρλω2 +. . .+x·ρλω1ρλω2 . . . , for arbitrary ωi ∈ N∗, i ≥ 0}

Given the (θ × σ)-invariant probability measure µ = mP × νQ, we see from Remark 3.4

that the condition Hµ(π−1
EN(ξ)|π−1

Λ (εΛ)) < ∞ is satisfied. For arbitrary λ ∈ Λ, we now take

the projection measure µλ ◦ π−1
λ on Jλ. Therefore, from Theorem 3.13 and Corollary 3.14

we obtain that for mP -almost all λ ∈ Λ, the measure µλ ◦ π−1
λ is exact dimensional and

its pointwise dimension has a common value equal to hµ(S(ρ̄))/χµ, where in our case the

Lyapunov exponent of µ with respect to the random infinite system S(ρ̄) is equal to:

χµ = −
∫

Λ×EN
log ρλω1dµ(λ, ω) = −

∑
i≥1

qi

∫
log ρλidmP (λ)

= −
∑
i,j≥1

pjqi log ρj = −
∑
j≥1

pj log ρj.

Moreover we have from Theorem 2.5 that the random projectional entropy of µ satisfies

hµ(S(ρ̄)) ≤ h(µ) = h(µP ) + h(νQ) = −
∑
i≥1

pi log pi −
∑
j≥1

qj log qj.

This helps to give a concrete upper estimate for the pointwise dimensions of µλ◦π−1
λ , namely

dµλ◦π−1
λ

(πλ(ω)) ≤

∑
i≥1

pi log pi +
∑
j≥1

qj log qj∑
j≥1

pj log ρj

Random system 4.1.3

Let us fix a sequence ρ̄ = (ρ0, ρ1, ρ2, . . .) in (0, 1), and Λ = [1 − ε, 1 + ε] for some small

ε > 0, together with a homeomorphism θ : Λ→ Λ which preserves an absolutely continuous

probability m on Λ. Let us take also the set E = {1, 2, . . .} and the σ-invariant Bernoulli

measure ν on EN given by ν([i]) = νi, i ≥ 1, where (ν1, ν2, . . .) is a probability vector. We

assume also that h(ν) = −
∑
i≥1

νi log νi < ∞. For arbitrary e ∈ E and λ ∈ Λ, we now define

the sequence of parametrized contractions:

φλ2n+1(x) = λρnx+ 1, φλ2n+2(x) = λρnx− 1, n ≥ 0.

By considering also the (θ×σ)-invariant probability µ = m×ν we obtain the random infinite

IFS with overlaps S(ρ̄).

The corresponding limit set Jλ := πλ(E
N) can be thought of as the set determined, for λ ∈ Λ,

in the following way: Jλ = {±1±λρi1±λ2ρi1ρi2±. . . , for all sequences of positive integers ω =

(i1, i2, . . .) ∈ EN}. The projection (πλ)∗µλ = µλ ◦ π−1
λ of the measure µλ, is a probability

measure on Jλ. We see that both (2.3) and the entropy condition Hµ(π−1
ENξ π

−1
Λ εΛ) <∞, are

satisfied in this case.
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Hence, we can apply Theorem 3.13 and Corollary 3.14, to obtain that for m-almost all

parameters λ ∈ [1− ε, 1 + ε], the projection measure µλ ◦ π−1
λ is exact dimensional, and that

its Hausdorff dimension has a common value, which is equal to

HD(µλ ◦ π−1
λ ) =

hµ(S(ρ̄))

χµ
,

where the Lyapunov exponent of µ with respect to S(ρ̄) is given by:

χµ = −
∫

Λ×EN
log(λρ

[
ω1−1

2
]
) dµ(λ, ω) = −

∫
Λ

log λ dm(λ)−
∑
i≥0

(ν2i+1 + ν2i+2) log ρi

From Theorem 2.5 we obtain an upper estimate for the random projectional entropy, hµ(S) ≤
h(m) −

∑
i νi log νi, and an upper estimate for the pointwise dimension and the Hausdorff

dimension of µλ ◦ π−1
λ ; namely for µ-almost every (λ, ω) ∈ [1− ε, 1 + ε]× EN,

dµλ◦π−1
λ

(πλ(ω)) = HD(µλ ◦ π−1
λ ) ≤

h(m)−
∑

i≥1 νi log νi

−
∫

Λ
log λ dm(λ)−

∑
i≥0(ν2i+1 + ν2i+2) log ρi

If all the contraction factors ρi are equal to some fixed ρ, then Jλ is a perturbation of the

set from the beginning of 4.1.

4.2. Randomizations of deterministic infinite IFS with bounded number of

overlaps.

In Example 5.11 of [12], we gave an example of a deterministic infinite IFS defined as

follows: let X = B̄(0, 1) ⊂ R2 be the closed unit disk and for n ≥ 1 take Cn to be the

circle centered at the origin and having radius rn ∈ (0, 1), rn ↗
n→∞

1. For each n ≥ 1 we

cover the circle Cn with closed disks Dn(i), i ∈ Kn, of the same radius r′n, where Kn is a

finite set and each disk Dn(i) intersects only two other disks of the form Dn(j), j ∈ Kn,

and where none of the disks Dn(i) intersects Ck, k 6= n. Moreover, we assume that for any

m 6= n,m, n ≥ 1, the families {Dm(i)}i∈Km and {Dn(i)}i∈Kn consist of mutually disjoint

disks. Consider contraction similarities φn,i : X → X, i ∈ Kn, n ≥ 0 whose respective images

of X are the above disks Dn(i), i ∈ Kn, n ≥ 0. For this deterministic system, the boundary

at infinity ∂∞S is contained in ∂X.

Assume now in addition, that there exists ε > 0, such that for m 6= n, any disk (1 +

ε)Dn(i), i ∈ Kn does not intersect any disk of type (1 + ε)Dm(j), j ∈ Km (where in general

for β > 0, βDn(i) denotes the disk of the same center as Dn(i) and radius equal to βr′n),

and that any disk (1 + ε)Dn(i) intersects only two other disks (1 + ε)Dn(j), j ∈ Kn.

We take now Λ = [1−ε, 1+ε] and θ : Λ→ Λ a homeomorphism which preserves an absolutely

continuous probability measure m on [1− ε, 1 + ε]. Let the following countable alphabet

E = {(n, i), i ∈ Kn, n ≥ 0},
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which will be our alphabet. Consider also a fixed probability vector P = (νe)e∈E, and the

associated Bernoulli probability ν = νP on EN, and let us assume that h(ν) <∞.

We now define the conformal contraction φλ(n,i)(x), as being a similarity with image φλ(n,i)(X)

equal to λDn(i), for i ∈ Kn, n ≥ 0 and λ ∈ Λ; its contraction factor is equal to λr′n, n ≥ 0.

Consider now the probability µ = m × ν defined on Λ × EN. We have constructed thus a

random conformal infinite IFS with overlaps, denoted by S; and, from Remark 3.4 and since

h(ν) <∞, we obtain also the finite entropy condition Hµ(π−1
ENξ|π−1

Λ εΛ) <∞.

The conditions in Theorem 3.13 and Corollary 3.14 are then satisfied, and therefore for

Lebesgue-almost all parameters λ ∈ Λ and ν-almost all ω ∈ EN, the pointwise dimension of

the projection (πλ)∗µλ = µλ ◦ π−1
λ on the non-compact limit set Jλ := πλ(E

N), is given by:

dµλ◦π−1
λ

(πλ(ω)) =
hµ(S)

χµ
,

where the Lyapunov exponent of µ with respect to the random system S is equal to:

χµ = − log λ−
∑

e=(n,i)∈E

νe log r′n > 0

From the construction of the disks λDn(i), i ∈ Kn, n ≥ 0, λ ∈ Λ above, we notice that the

condition in Theorem 2.5, part b) is satisfied with k = 2. Hence we can obtain a lower

estimate for the random projectional entropy of µ, namely

hµ(S) ≥ h(µ)− log 2 = h(m)−
∑
e∈E

νe log νe − log 2

Therefore by combining the last two displayed formulas and using Theorem 2.5, we obtain

that for µ-almost every pair (λ, ω) ∈ Λ× EN, the pointwise dimension of µλ ◦ π−1
λ satisfies:

h(m)−
∑
e∈E

νe log νe − log 2

− log λ−
∑

e=(n,i)∈E
νe log r′n

≤ dµλ◦π−1
λ

(πλ(ω)) ≤
h(m)−

∑
e∈E

νe log νe

− log λ−
∑

e=(n,i)∈E
νe log r′n

4.3. Constructions based on a problem of Sinai.

Ya. Sinai asked for which parameters α ∈ (0, 1) is the invariant measure of the IFS formed

by the the maps {1+(1−α)x, 1+(1+α)x}, with probabilities (1/2, 1/2), absolutely contin-

uous. The latter of the above maps is never a contraction. Nevertheless, this IFS contracts

on average, since a composition of n of the above maps, chosen i.i.d with probabilities 1/2,

1/2, contracts by a factor close to (1 − α2)n/2. A randomized version was investigated in

[14]. We can use our results to study other randomizations of this system, and the associated

projection measures, since our proofs can be adapted to random finite conformal IFS which

contract on average. Consider then the random system S given by the parameter space

Λ = [1− ε, 1 + ε]Z and m = mZ
0 , where m0 is the normalized Lebesgue measure; let θ to be

23



the shift homeomorphism on Λ. Given λ = (. . . , λ−1, λ0, λ1, . . .) ∈ Λ, let us introduce also

two parametrized conformal maps defined by:

φλ1(x) = (1− αλ−1)x+ λ0, φλ2(x) = (1 + αλ1)x+ λ2

The alphabet E = {1, 2} and if we take ν = ν( 1
2
, 1
2

) on EN, then h(ν) <∞. So if we consider

the product measure µ = m× ν, we obtain from Remark 3.4 the finiteness condition

Hµ(π−1
EN(ξ)|π−1

Λ (εΛ)) <∞

We see also immediately that, if ε(α) is chosen small enough, then for ε ∈ (0, ε(α)) the maps

φλi , i ∈ E are conformal and, since the indices 1, 2 are taken with equal probability, a typical

composition of n of them contracts by a factor smaller than (1− α2

2
)n/2.

We obtain then the exact dimensionality and the pointwise dimension of the projection

measures µλ◦π−1
λ on Jλ, by using Theorem 3.13 and Corollary 3.14. In our case, the Lyapunov

exponent of the probability µ with respect to the random system S, is equal to

χµ = −
∫

Λ

log
[
(1− αλ−1)(1 + αλ1)

]
dm(λ),

with λ = (. . . , λ−1, λ0, λ1, λ2, . . .) ∈ Λ. If ε(α) > 0 is small enough and if ε ∈ (0, ε(α)), then

χµ > 0. The pointwise dimension dµλ◦π−1
λ

(πλ(ω)) of the projection µλ ◦ π−1
λ , is then given as

the quotient hµ(S)

χµ
, for µ-almost all (λ, ω) ∈ Λ× EN.
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193-202, 1958. 1, 4
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