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Abstract

We construct Dirac operators and spectral triples for certain, not necessarily self-similar, fractal sets
built on curves. Connes’ distance formula of noncommutative geometry provides a natural metric on the
fractal. To motivate the construction, we address Kigami’s measurable Riemannian geometry, which is a
metric realization of the Sierpinski gasket as a self-affine space with continuously differentiable geodesics.
As a fractal analog of Connes’ theorem for a compact Riemmanian manifold, it is proved that the natural
metric coincides with Kigami’s geodesic metric. This present work extends to the harmonic gasket and
other fractals built on curves a significant part of the earlier results of E. Christensen, C. Ivan, and the
first author obtained, in particular, for the Euclidean Sierpinski gasket. (As is now well known, the
harmonic gasket, unlike the Euclidean gasket, is ideally suited to analysis on fractals. It can be viewed
as the Euclidean gasket in harmonic coordinates.) Our current, broader framework allows for a variety
of potential applications to geometric analysis on fractal manifolds.

1 Introduction

In this article, we provide a general construction of a Dirac operator and its associated spectral triple for a
large class of sets built on curves, which includes the self-similar Sierpinski gasket, the self-affine harmonic
gasket, and other spaces which carry an intrinsic metric. Using methods from noncommutative geometry, it
is shown that the intrinsic metric can be recovered from the spectral triple. In this sense, there are ‘target’
geometries in mind, which are recovered using the operator-theoretic data contained in a spectral triple.
Informally, this method involves using a space of functions on the underlying space as coordinates. If the
function space is a commutative C∗-algebra, then one can tease from it a topological space. This is a conse-
quence of Gelfand’s theorem. If that topological space is metrizable, then more information is needed in order
to determine a metric. Knowledge of a certain Hilbert space of vector fields on the space and a particular
differential operator is enough to determine a metric in many instances. This way of constructing a geometry
is part of the broader theory of noncommutative geometry.

Alain Connes [9, 10] proved that for a compact spin Riemannian manifold, M , a triple of objects, called
a spectral triple, encodes the geometry of M . The spectral triple consists of the C∗-algebra of complex-
continuous functions on M , the Hilbert space of L2-spinor fields, and a differential operator called the Dirac
operator. The Dirac operator is constructed from the spin connection associated to M and can be thought
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of as the square root of the spin-Laplacian (mod scalar curvature). Connes’ formula, though very simple,
uses the information from the spectral triple in order to recover the geodesic distance on M , and hence the
geometry of M (by the Meyers–Steenrod Theorem [38]). The observation that the Dirac operator defines the
geometry is one of Connes’ contributions to the field of geometry [46]. Indeed, it is a springboard for defining
generalized manifolds and geometries in the context of spaces which admit a meaningful generalization of
the Dirac operator, but not meaningful generalizations of smooth structure or metric or even paths in the
space. In the absence of spin or even orientability, this result still holds, though the Dirac operator may not
be uniquely defined. The reason for the name noncommutative geometry is that the arguments involved in
this result do not rely on the commutativity of the C∗-algebra, which opens the door to the possibility of
defining geometries on noncommutative C∗-algebras. The applications of noncommutative geometry in this
article, however, stay within the context of the commutative C∗-algebras of complex-continuous functions on
a class of sets.

Previous work by Michel Lapidus has provided applications of the methods of noncommutative geometry
to fractals. His program for viewing fractals as generalized manifolds and possibly noncommutative spaces
is outlined in [34]. Building in particular upon [33] and [32], he investigated in many different ways the
possibility of developing a kind of noncommutative fractal geometry, which would merge aspects of analysis
on fractals (as now presented, e.g., in [24]) and Connes’ noncommutative geometry [10]. (See also parts of
[32] and [33].) Central to [34] was the proposal to construct suitable spectral triples that would capture
the geometric and spectral aspects of a given self-similar fractal, including its metric structure. In [2], Erik
Christensen and Cristina Ivan constructed a spectral triple for the approximately finite-dimensional (AF)
C∗-algebras. The continuous functions on the Cantor set form an AF C∗-algebra since the Cantor set is
totally disconnected. Hence, it was quite natural to try to apply the general results of that paper for AF
C∗-algebras to this well-known example. In this manner, they showed in [2] once again how suitable noncom-
mutative geometry may be to the study of the geometry of a fractal. Since then, the authors of the present
article have searched for possible spectral triples associated to other known fractals. The hope is that these
triples may be relevant to both fractal geometry and analysis on fractals. We have been especially interested
in the Sierpinski gasket, a well-known nowhere differentiable planar curve, because of its key role in the
development of harmonic analysis on fractals. (See, for example, [1], [24], [27], [28], [43], [44].) In [5], Erik
Christensen, Christina Ivan and Michel Lapidus applied these noncommutative methods to some fractal sets
built on curves—including trees, graphs, and the Sierpinski gasket. The work in [5] on the more complex sets
is based largely on the Dirac operator and spectral triple on the circle. It is important to note that the work
in [5] on the Sierpinski gasket is with respect to the Sierpinski gasket in the Euclidean metric as opposed to
the treatment of the Sierpinski gasket in the harmonic metric of the present paper. Of many results in [5], the
application of noncommutative methods to the Euclidean Sierpinski gasket recovered the geodesic distance,
volume measure (in that case, the natural Hausdorff measure), and metric spectral dimension (there, the
Hausdorff dimension).

The Sierpinski gasket is a fractal set which is not a smooth manifold nor even a topological manifold. It
is shown below in Figure 1 (of Section 2) as it is usually viewed, in the Euclidean metric. The Sierpinski
gasket has a natural metric structure induced by the Euclidean metric in R2, given by the existence of a
shortest path (non unique) between any two points. These shortest paths are piecewise Euclidean segments
and hence piecewise differentiable, but in general not differentiable. In [25] (see also [26]), Jun Kigami uses a
theory of harmonic functions on the Sierpinski gasket (see, e.g., [24]) in order to construct a new metric space
that is homeomorphic to the Sierpinski gasket. This new space shown below (Figure 2 of Section 2), called
the harmonic gasket or the Sierpinski gasket in harmonic coordinates, is actually given by a single harmonic
coordinate chart for the Sierpinski gasket. The harmonic gasket has a C1 shortest path (non unique) between
any two points. It is interesting to note that the harmonic coordinate chart smoothes out the Sierpinski gas-
ket. Kigami [22, 25, 26], building on work by Kusuoka [29, 30], has found several formulas in the setting of
the harmonic gasket which are measurable analogs to their counterparts in Riemannian geometry. In par-
ticular, he has found formulas for energy and geodesic distance involving measurable analogs to Riemannian
metric, Riemannian gradient, and Riemannian volume. For this reason, this geometry is appropriately called
measurable Riemannian geometry.

2



In this article, as an example, we recover Kigami’s measurable Riemannian geometry using spectral triples.
As in [5], here the basis for the construction of these spectral triples is the spectral triple for a circle: Finite
and countable direct sums of the circle triples are used to construct the desired spectral triples. We have
constructed several spectral triples for the harmonic gasket, all of which recover the geodesic distance on
the harmonic gasket as well as on the (Euclidean) Sierpinski gasket. We use direct sums of circle triples to
construct the desired spectral triples. The general construction provided in Proposition 1 below applies to
a class of sets built on countable unions of curves in Rn which includes the Sierpinski gasket and harmonic
gasket. The spectral triple on the harmonic gasket provides a fractal analog to Connes’ theorem. Indeed,
on the one hand, there is a target geometry that is a fractal analog of Riemannian geometry—Kigami’s
measurable Riemannian geometry. On the other hand, there is our construction of the Dirac operator and
spectral triple for fractal sets which can be used to recover Kigami’s geometry, namely through the Dirac
operator.

We point out that our results, which make use of and extend the methods of [5], encompass the results of
[5] concerning the construction of Dirac operators and the recovery of the geodesic metric. Furthermore, our
results allow more flexibility and are better suited to a further development of geometric analysis on fractals.
Indeed, in particular, in light of the results of [29, 30, 25, 26, 44, 45, 20, 21], the harmonic gasket (rather
than the ordinary Euclidean gasket) is the appropriate model for studying probability theory and harmonic
analysis as well as the analog of Riemannian geometry on such a fractal. Recent developments (some of which
are alluded to in Section 7) suggest that many other fractal geometries can be similarly viewed as fractal
(Riemannian) manifolds.

In the concluding remarks of this article, in addition to providing several additional references relevant
to this paper, we discuss work in progress which includes a different construction of a Dirac operator and
spectral triple from the ones built from direct sums. This global Dirac operator is defined directly from
Kigami’s measurable Riemannian metric and gradient, giving it a stronger resemblance to Connes’ Dirac
operator on a compact Riemannian manifold. The Hilbert space of the triple is constructed from Kigami’s
L2-vector fields on the gasket, again giving a stronger fractal analog to Connes’ theorem. In addition, the
global construction may prove a better starting point for showing that the Dirac operator squares to the
appropriate Laplacian in this setting, the Kusuoka Laplacian. We also discuss two open problems. These
problems, which are inherently linked, are the computation of the spectral dimension and volume measure
induced by the spectral triples for the harmonic gasket.

The remainder of this paper is organized as follows:

In Section 2 are provided various preliminaries concerning spectral triples and Connes’ formula, some of
the methods and results of [5] which we will extend, as well as analysis on fractals (focusing on the Euclidean
and harmonic Sierpinski gaskets) and the results of [25] concerning measurable Riemannian geometry, par-
ticularly the construction of the geodesic metric and the existence of C1 (but not usually C2) geodesics on
the harmonic gasket.

In Section 3, we discuss spectral geometry on a new class of fractal sets built on curves. [In short, there
are compact metric length spaces (see Definition 4 of Section 3) satisfying two basic axioms.] These “fractals”
(which are not necessarily self-similar or even “self-alike”) include both discrete structures (such as certain
infinite trees, as considered in [5]) and continuous structures (such as the Euclidean and harmonic gaskets).
We construct Dirac operators and associated spectral triples on such fractals. We also show that one can
recover the natural geodesic metric on them.

In Section 4 and Section 5, respectively, we show that the Euclidean gasket and the harmonic gasket
belong to the class of fractals introduced in Section 3. In particular, we deduce from the results obtained
in Sections 3 and 4 that the Euclidean geodesic metric on the Sierpinski gasket can be recovered from the
spectral triple (as was already done in [5]). Furthermore, we deduce from the results obtained in Sections
3 and 5 the new fact according to which the C1 geodesic metric of [25] can be recovered from the spectral
triple constructed in Section 5.
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In Section 6, we provide several alternative constructions of spectral triples associated with the har-
monic gasket and compare the corresponding eigenvalue spectra and spectral dimensions. We also show that
they all induce the same noncommutative metric, namely, the harmonic geodesic metric (just as in Section 5).

Finally, in Section 7, as was mentioned in more detail above, we discuss further work connected to various
aspects of the present paper, as well as propose several open problems and directions for future research in
the area of noncommutative fractal geometry [34] and geometric analysis on fractals.

2 Preliminaries

2.1 Spectral triples, Dirac operators, and noncommutative geometry

From the perspective of noncommutative geometry, the geometric information of a space is encoded in a
triple. One part of the triple is a C∗-algebra. Recall that a C∗-algebra is a Banach algebra with a conjugate
linear involution ∗ satisfying: (xy)∗ = y∗x∗ and ||x∗x|| = ||x∗||||x|| = ||x||2. Some relevant examples of
C∗-algebras are the complex numbers C, the complex continuous functions C(X) on a compact Hausdorff
space X, and the bounded linear operators B(H) on a Hilbert space H.

The Gelfand–Naimark Theorem [10, 46] states that every unital commutative C∗-algebraA is ∗-isomorphic
to C(X), for some compact Hausdorff space X. The space X is unique, up to homeomorphism. In fact, X is
determined as the set of all pure states (characters) of A, with the weak ∗-topology assigned. Note that if X
is a compact metric space, then the weak∗-topology on the set of pure states is metrizable. A second, more
general, result due to Gelfand and Naimark is that any C∗-algebra can be faithfully represented in B(H),
for some Hilbert space H.

The Gelfand–Naimark Theorem yields a perspective for partitioning topologies (or geometries) roughly
through the following correspondences (modulo Morita equivalence, see [10, 46]):

1. commutative topologies/geometries (X) ⇐⇒ commutative C∗-algebras (C(X));

2. noncommutative topologies/geometries ⇐⇒ noncommutative C∗-algebras.

Since C(X) is commutative, we say that X has a commutative topology or geometry. In this way, one may
consider noncommutative rings of functions on some ‘noncommutative spaces’. The geometries presented in
this article are examples of commutative, yet non-classical, geometries.

Specifying a natural or intrinsic distance function on a set or space is central to noncommutative geometry.
In the context of C∗-algebras, it was first suggested by Connes ([9], see also [10]) that from a suitable Lipschitz
seminorm one obtains an ordinary metric on the state space of the C∗-algebra. (See also Reiffel’s work in
[41, 42] and the references therein for further abstractions and extensions of this point of view.) Let X be a
compact metric space with metric ρ. Defined on real-valued or complex-valued functions on X, the Lipschitz
seminorm, Lipρ, determined by ρ, is given by

Lipρ(f) = sup

{
|f(x)− f(y)|

ρ(x, y)
: x 6= y

}
. (1)

The space of ρ-Lipschitz functions on X is comprised of those functions f on X satisfying Lipρ(f) <∞. One
can recover the metric ρ, in a simple way, from Lρ, by the following formula [42]:

ρ(x, y) = sup{|f(x)− f(y)| : Lipρ(f) ≤ 1}.
In noncommutative geometry, a standard way to specify the suitable Lipschitz seminorm is via a Dirac

operator D on a Hilbert space H, the remaining parts of the triple. Dirac operators have origin in quantum
mechanics, but will be defined here in the context of unbounded Fredholm modules and spectral triples.
Following [5], we will use the following definitions (see also, e.g., [11]):
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Definition 1. let A be a unital C∗-algebra. An unbounded Fredholm module (H,D) over A consists of
a Hilbert space H which carries a unital representation π of A and an unbounded, self-adjoint operator D on
H such that

i. the set {a ∈ A : [D,π(a)] is densely defined and extends to a bounded operator on H} is a dense subset
of A,

ii. the operator (I +D2)−1 is compact.

Definition 2. Let A be a unital C∗-algebra and (H,D) an unbounded Fredholm module of A. If the underlying
representation π is faithful, then (A, H,D) is called a spectral triple. In addition, D is called a Dirac
operator.

We will refer to (A, H,D) as either a spectral triple or unbounded Fredholm module whether or not π is
faithful.

Using the information contained in the spectral triple for a compact spin Riemannian manifold (M, g),
Connes’ Formula 1 below recovers the geodesic distance and hence the geometry of (M, g). Let A = C(M),
H be the Hilbert space of L2-spinors, D the Dirac operator associated to the spin connection on (M, g), and
let dg be the geodesic distance on (M, g). Connes’ formula can now be stated ([9]; [10], p. 544) as follows:

Formula 1. For any points p, q ∈M , we have

dg(p, q) = sup
a∈A
{|a(p)− a(q)| : ||[D,πa]|| ≤ 1},

where ||.|| denotes the norm on the space of bounded linear operators on H.

We will usually refer to Formula 1 as the spectral distance or the distance induced by the spectral triple
via Formula 1. In all of our applications, π is a representation as a multiplication operator and it will be
clear that our Dirac operator D satisfies

[D,πa](g) = πDa(g) = (Da)g.

In other words, the commutator operator is multiplication by the function Da. Since the operator norm of
a multiplication operator is equal to the essential supremum of the function by which it multiplies, we have

||[D,πa]|| = ||πDa|| = ||Da||∞,M ,

where in general M will be a compact length space in Rn. This allows us to equivalently write the spectral
distance as

dg(p, q) = sup
a∈A
{|a(p)− a(q)| : ||Da||∞,M ≤ 1}.

Let d be the metric on M and ||.||∞,M denote the supremum norm on M . Then dg = d if (and only if)
||Da||∞,M = Lipd(a), where Lipd is the Lipschitz seminorm with respect to d (see Equation (1)). The brief
argument for the ‘if’ part of the statement is well known and is given in the proof of Theorem 2 below. Due
to this relationship, several lemmas to follow show, for various settings, that ||Da||∞,M = Lipd(a). These
lemmas allow us to recover the metric d on M as the spectral distance.

In [5], an additional definition associated to a spectral triple is used to define the spectral dimension of
the spectral triple. (It is also called the metric dimension in [11].) This is a generalization of the dimension
of a manifold—and indeed, in the case of a compact Riemannian manifold, recovers the dimension of the
manifold [10]. (See also, for example, [12, 33, 34, 28, 16, 17, 2, 3, 5, 6, 4, 7] for the case of fractal spaces.)
This information is contained in the pairing of the Dirac operator and the Hilbert space, in the form of the
asymptotics of the eigenvalues of the Dirac operator:
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Definition 3. Let D be the Dirac operator associated to the spectral triple in Definitions 1 and 2. If
Tr((I+D2)−p/2) <∞ for some positive real number p, then the spectral triple is called p-summable or just
finitely summable. The number ∂ST , given by

∂ST = inf{p > 0 : tr(D2 + I)
−p
2 <∞},

is called the spectral dimension of the spectral triple.

2.2 Circles, curves, and sets built on curves

The fundamental building block for spectral triples for fractal sets built on curves in [5] is the spectral triple
for a circle. Using circle triples, the authors of [5] construct spectral triples for an array of sets. Let Cr denote
the circle with radius r > 0. In [5], the natural spectral triple for the circle STn(Cr) = (ACr, Hr, Dr) is
defined as follows:

I. ACr is the algebra of complex continuous 2πr-periodic functions on R;

II. Hr = L2([−πr, πr], (1/2πr)µ);

III. Dr = −i ddx ;

IV. The representation π sends elements of ACr to multiplication operators on Hr.

Note that Hr has a canonical orthonormal basis given by exp
(
ikx
r

)
, where i =

√
−1. The operator Dr is

actually defined as the closure of the restriction of the above operator to the linear span of the basis. Then
Dr is self-adjoint and

[Dr, πr(f)] = πr(−iDf) or just − iDf.

for any C1 2πr-periodic function f on R. Thus the natural spectral triple is a spectral triple, and the eigen-
values of the Dirac operator are given as λk = k/r for k ∈ Z.

To use the circle triple as the basis for constructing spectral triples on more complex sets, it will be
necessary to take countable sums of circle triples. To avoid the problem of having 0 as an eigenvalue with
infinite multiplicity, the translated spectral triple is used in [5]:

1. Let Dt
r = Dr + 1

2r I.

2. STt(Cr) = (ACr, Hr, D
t
r) is called the translated spectral triple for the circle.

The set of eigenvalues becomes {(2k + 1)/2r : k ∈ Z}, but the domain of definition stays the same and
most importantly, as to not change the effect of the spectral triple,

[Dt
r, πr(f)] = [Dr, πr(f)].

Let dc be the geodesic distance function on the circle. Theorem 2.4 in [5] gives the following results:

• The metric induced by the spectral triple STn(Cr) coincides with the geodesic distance on Cr, i.e.,

dc(s, t) = sup{|f(t)− f(s)| : ||[Dr, πr(f)]|| ≤ 1};

• The circle triple is p-summable for any real s > 1 but not summable for s = 1, thus the spectral
dimension of the spectral triple is 1, coinciding with the dimension of a circle.
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The interval is studied by means of the circle—by taking two copies of the interval and gluing the endpoints
together. There is an injective homomorphism Ψ from the continuous functions on an interval [0, α] to the
continuous functions on [−α, α] defined by

Ψα(f)(t) = f(|t|).

The circle triple (ACα/π, Hα/π, D
t
α/π) is then used to describe the spectral triple for C([0, α]). The fact

that the following definition indeed defines a spectral triple follows immediately from the results on the circle:
For α > 0, the α-interval spectral triple STα = (Aα, Hα, Dα) is given by the following data:

i. Aα = C([0, 1]);

ii. Hα = L2([−α, α],m/2α), where m/2α is the normalized Lebesgue measure;

iii. the representation πα : Aα → B(Hα) is defined for f in Aα as the multiplication operator which
multiplies by the function Ψα(f);

iv. an orthonormal basis {ek : k ∈ Z} for Hα is given by ek = exp(iπkx/α) and Dt
α is the self-adjoint

operator on Hα which has all the vectors ek as eigenvectors and such that Dt
αek = (π(2k + 1)/2α)ek

for each k ∈ Z. Thus the eigenvalues of Dt
α are λk = (π(2k + 1)/2α) for each k ∈ Z.

Let dα(s, t) = |s− t| be the geodesic distance for the α-interval. Results for the α-interval spectral triple,
which follow immediately from the results for the circle, are stated in Theorem 3.3 in [5]:

• The metric induced by the α-interval triple coincides with the geodesic distance for the α-interval, i.e.,

dc(s, t) = sup{|f(t)− f(s)| : ||[Dα, πα(f)]|| ≤ 1};

• The α-interval triple is p-summable for s > 1 but not summable for s = 1, thus it has spectral dimension
1, coinciding with the dimension of the α-interval.

Let T be a compact Hausdorff space and r : [0, α]→ T a continuous injective mapping. The image in T
will be called the continuous curve and r the parameterization. The r-curve triple, STr, is given by the
interval triple as follows:

Let r be as above and (Aα, Hα, D
t
α) be the α-interval spectral triple. Then STr = (C(T ), Hα, D

t
α) is an

unbounded Fredholm module with representation πr : C(T ) → B(Hα) defined via a homomorphism φr of
C(T ) onto Aα given by

a. For all f ∈ C(T ), for all t ∈ [0, α], φr(f)(t) := f(r(t));

b. For all f ∈ C(T ), πr(f) := πα(φr(f)).

Remark 1. We will use the r-curve triple quite often; so it is convenient to use the notation for its Dirac
operator, Dr = Dt

α. Moreover, if there are curves rj, and it is clear we are using the rj-curve triples,
then we will use Dj = Drj . Note that from (iv) above, the eigenvectors of Dr are ek = exp(iπkx/α) with
corresponding eigenvalues λk = (π(2k + 1)/2α), for each k ∈ Z.

As is expected, the curve triple is summable for s > 1 but not for s = 1; so its spectral dimension is
1 (see Proposition 4.1 in [5]). One can recover a metric distance on the image of the curve in T , of course
dependent of parameterization. If T is a metric space, then a parameterization can be chosen so that the
recovered metric distance coincides with the metric distance inherited from T (see Proposition 4.3 in [5]).

The applications in [5] focused on sets built on curves, including finite collections of curves in a compact
Hausdorff space, parameterized graphs, trees, and the Sierpinski gasket. The general method for constructing
triples for these sets given in [5] is by taking sums of triples for curves (circles, intervals). Let {Rj}j be a

collection of curves in a space T (e.g., compact Hausdorff space, compact metric space, compact subspace of
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Figure 1. Construction of the Sierpinski gasket by the removal of triangles

RN ). Then, following [5], the triple for the union of these curves is, in general, given by

S =

C(T ),
⊕
j

Hj ,
⊕
j

Dj

 .

If T is a compact Hausdorff space, then (even with a finite collection of rectifiable curves) it is not always
true that S is an unbounded Fredholm module. However, in the case when there are finitely many rectifiable
curves which pairwise intersect at finitely many points, S is an unbounded Fredholm module ([5], Prop. 5.1).
This type of construction is used in [5] for parameterized (finite) graphs, infinite trees, and for the self-similar
Sierpinski gasket, with T considered as a subspace of Euclidean space. In the case of the Sierpinski gasket
embedded in the 2-dimensional Euclidean space R2, a countable sum of circle triples forms a spectral triple
for the gasket. The countable collection of circles corresponds to the countable collection of triangles, whose
closure forms the Sierpinski gasket. The spectral dimension is computed as log 3/ log 2, which corresponds
to its classic fractal dimension(s). The spectral distance function recovers the Euclidean-induced geodesic
distance and the (renormalized) standard measure on the gasket is recovered via the Dixmier trace [5]. The
construction of the spectral triple for the gasket and the recovering of its geometric data from the spectral
triple is streamlined, due to its self-similarity. One of the motivating factors for this article is to generalize such
constructions and results to possibly non-self-similar sets built on curves, including the harmonic (Sierpinski)
gasket which is perfectly suited to study analysis on the ordinary Euclidean (Sierpinski) gasket. In addition,
Proposition 1 in the current article unifies the constructions for many of the applications in [5]. By considering
T as a compact length space in RN , and without any assumptions on the intersections of curves, we provide
(in Proposition 1) a spectral triple construction for a large class of sets built on countable collections of
curves which includes both the Sierpinski gasket and the harmonic gasket (see Axiom 1 below). In the next
subsection, we conclude the preliminaries with definitions of the Sierpinski gasket and the harmonic gasket,
as well as a discussion of the ‘measurable Riemannian geometry’ of the Sierpinski/harmonic gasket.

2.3 Sierpinski gasket and harmonic gasket

The most common and intuitive presentation of the Sierpinski gasket is as a solid equilateral triangle which
has a smaller equilateral triangle removed from its center, and again an even smaller triangle removed from
each of the three remaining triangles and so on, ad infinitum, as seen in Figure 1. This is done a countable
number of times, and the closure of this process is called the Sierpinski gasket. See the left side of Figure 2
for a high approximation of the Sierpinski gasket.

Considering the gasket in stages, or as approximations, is intuitive but also fundamental to defining
additional structure on the gasket. Graph approximations will be the starting point for defining measure,
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operators, harmonic functions, etc. on the gasket.

The Sierpinski gasket is well described analytically as the unique fixed point of a certain contraction map-
ping on a metric space. The contraction mapping to be defined is composed of three contraction mappings
of R2 that will allow for analysis, not just on graph approximations, but on arbitrarily small portions of the
gasket, called cells.

Although continuity inherited from the Euclidean topology of the plane naturally connects with the analy-
sis of the gasket, it is not critical to the definitions of measure, operators, harmonic functions, etc. (In fact, it
turns out that harmonic functions, defined exclusively in terms of graphs, are necessarily continuous functions
in the Euclidean induced topology of the gasket.) To generate the desired structure on the gasket, Euclidean
neighborhoods are replaced with graph neighborhoods. To begin, we define the following contractions on the
plane:

Fix =
1

2
(x− pi) + pi

i = 1, 2, 3 ; pi is a vertex of a regular 3-simplex, P.

The Sierpinski gasket is the unique nonempty compact subset of R2 such that K =
⋃3
i=1 Fi(K). For any

integer m ≥ 1, let w be the multi-index given by w = (w1, ..., wm), wj ∈ {1, 2, 3} and Fw be given by
Fw = Fw1

◦ · · · ◦ Fwm
. Then K satisfies K =

⋃
|w|=m Fw(K). This is called the decomposition of K into

m-cells, with Fw(K) being the m-cell given by w, denoted Kw. Note that Kw is a subset of K.
The multi-index w also provides a convenient addressing system for points of K, using words whose letters

are elements of the set S = {1, 2, 3}. Let Σ = SN, W0 = {∅}, and Wm = Sm for m > 0. (Note that for
m ≥ 0, Wm is the set of all words of length m.) The set of all words of finite length is W∗ =

⋃
m≥0Wm.

To describe the identification of words with points of K, it is useful to define the vertices V ∗ of K given by
V∗ =

⋃
m≥0 Vm, where V0 = P = {p1, p2, p3} and Vm =

⋃
w∈Wm

Fw(V0). Consider Σ, the set of infinite words,
to have the standard metric topology on sequences and K to have the Euclidean topology inherited from the
plane. Then it is well known (see, e.g., [24, 43]) that there is a continuous surjection π : Σ→ K such that

π(w) =
⋂
m≥0

Kw1,...,wm

and

|π−1(x)| =
{

2, x ∈ V∗ − V0

1, otherwise.

Graph approximations of K and their associated vertices are central to all further analysis of the gasket.
The mth-level graph approximation, Γm, is given by Γm =

⋃
|w|=m Fw(V0) and has vertices Vm. Thus V ∗ is

the union of the vertices of all graph approximations. A graph cell, Γw, is defined as Γw = V0 for |w| = 0 and
Γw = Fw(V0) for |w| > 0. The transition from analysis on graphs to analysis on K comes readily since V ∗ is
a dense subset of K. The functions on K that we will consider will be continuous (in the Euclidean subspace
topology) and therefore they will be completely determined by their values on the collection of vertices.

The energy form on K is constructed from graph energies, independent of a notion of Laplacian or
differential operators. The graph energy form on Γm, Em[u, v], is given by ([24, 43])

Em(u, v) =

(
5

3

)m ∑
p∼=q:p,q∈Vm

(u(p)− u(q))(v(p)− v(q)),

where Vm is the set of vertices of Γm and for p, q ∈ Vm, the notation p ∼= q means that p and q are neighbors
in the finite graph Γm. The energy form, E(u, v), on K is then given by E(u, v) = limm→∞ Em(u, v) with the
energy, E(u), on K given by E(u) = E(u, u).

9



Since Em is a non-decreasing sequence, the above limit defining E(u, v) exists and is finite by design, for
all u, v ∈ dom E = {u ∈ C(K) | limm→∞ Em(u, u) <∞}. The expression for the graph energies has several
motivations. Kusuoka in [29, 30], and Goldstein in [14], have independently constructed the Brownian motion
on the Sierpinski gasket as a scaling limit of random walks. To view the energy as an analytic counterpart
to Brownian motion on the gasket, one must think of it is a Dirichlet form (see [1, 22, 23, 24, 29, 30]). Other
physical interpretations of the energy are provided in terms of electrical resistance networks (see [23, 24]), as
well as in terms of systems of springs attached to point masses assigned to graph vertices (see [39, 40] and,
e.g., [43]).

The theory of harmonic functions on K is a generalization of classical harmonic theory in which there are
the standard equivalences: 1) u is harmonic; 2) u is an energy minimizer, for given boundary values; 3) u
has the mean value property; 4) ∆u = 0. A suitable springboard for harmonic theory on K is that of energy
minimization. It is the case that a harmonic function defined in this way will enjoy a mean value property
as well the Laplacian condition. To be precise, let u be defined on V0. (Here, V0 should be thought of as the
‘boundary’ of K.) Then, there is a unique extension of u from V0 to Vm+1, denoted û, which minimizes the
energy Em+1 with the relation

E0(u) =

(
5

3

)m
Em+1(û).

The function û is called the harmonic extension of u. Given values of a function u on V0, u can be uniquely
extended harmonically to Vm for any m and therefore can be extended to V∗. The function û, defined in this
way, is (uniformly) continuous on V∗ which is dense in K with respect to the Euclidean inherited topology.
Hence, û extends uniquely to a function u on K, called a harmonic function on K.

Note that the harmonic function u, is uniquely determined by its boundary value, u|V0
. Let the space

of harmonic functions be denoted by H. In this case, H forms a 3-dimensional linear space which we can
identify with R3 by associating u ∈ H to the triple (u(p1), u(p2), u(p3)) in R3. Moreover, modding out H by
the constant functions on K, we have H/{constant functions} ∼= R3/{span(1, 1, 1)}. Note that the right side
is the 2-dimensional subspace of R3,

M0 := {(x, y, z) ∈ R3 | x+ y + z = 0}.

The Sierpinski gasket is not a smooth, nor even a topological manifold; yet, we can look at it as a space
to be geometrized. The analysis has been based on graphs and the neighbor relation so that the bending,
stretching, and twisting of K away from how it sits in the flat plane, while preserving the neighbor relations
of vertices, does not affect the analysis. So even though the standard visualization of K is in the plane, this
perspective begs to see K as a more abstract object, awaiting a metric.

In this section, K is assigned or geometrized by the harmonic metric to become the ‘geometric’ space
called the harmonic gasket (or sometimes, the harmonic Sierpinski gasket) and denoted KH , a particular
geometric realization of K. The latter perspective hints at K and KH as being distinct spaces equipped
with their own geometries: K with the geometry implied by its specific manner of inclusion in the Euclidean
plane, and KH with the geometry implied by its configuration in the plane M0 in R3. The harmonic gasket is
defined using the space of harmonic functions, H. Recall that a harmonic function, h, is determined uniquely
by its values on V0. Identifying H with R3, take {h1 = (1, 0, 0), h2 = (0, 1, 0), h3 = (0, 0, 1)}, as a basis
for H. In terms of the evaluation of harmonic functions, this is equivalent with hi(pj) = δij for i, j = 1, 2, 3
and pj ∈ V0. The final step in the construction of the harmonic gasket is to use h1, h2, and h3 as a single
‘coordinate chart’ for K in the plane M0. Kigami [22] (see also [25]) defines the following map,

Φ : K →M0

by Φ(x) =
1√
2

 h1(x)
h2(x)
h3(x)

− 1

3

 1
1
1

 ,
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Sierpinski Gasket homeomorphism harmonic gasket

Φ−→

Figure 2. The Sierpinski gasket K is pictured on the left and the ‘harmonic gasket’ KH pictured on the
right is the homeomorphic image of K by Φ, which is a ‘harmonic coordinate chart’ for the Sierpinski gasket.

which is a homeomorphism onto its image (see Figure 2). Then K ∼= Φ(K) ≡ KH defines the harmonic gasket
or Sierpinski gasket in harmonic metric. Though KH is not a self-similar fractal, it is self-affine and can be
given as the unique fixed point of a certain contraction mapping, induced by the iterated function system
{Hi}3i=1 defined below. The homeomorphism Φ preserves compactness, so that KH is a compact subset of
M0. To be precise, let P be the orthogonal projection from R3 to M0. Let

qi =
P (ei)√

2
for i = 1, 2, 3,

where {ei}3i=1 is the standard basis for R3. The qi’s form a 3-simplex in M0. For each i = 1, 2, 3, choose fi
such that {

qi
|qi|

, fi

}
gives an orthonormal basis for M0. Also, define the maps Ji : M0 →M0 by

Ji(qi) =
3

5
qi and Ji(fi) =

1

5
fi.

Using the Ji’s, define the following contractions Hi : M0 →M0 by Hi(x) = Ji(x− qi) + qi for i = 1, 2, 3. The

harmonic gasket, KH , is then the unique nonempty compact subset of M0 such that KH =
⋃3
i=1Hi(KH).

Recall that, unlike K, which is self-similar, KH is only self-affine. The contractions Hi naturally relate to
the contractions Fi used to define K via the homeomorphism Φ which commutes with the contractions, in
the sense that Φ ◦ Fi = Hi ◦ Φ for i = 1, 2, 3. The graph approximations of KH can be attained through Φ
from the Fi’s or directly from the Hi’s as in the case of K. See Figure 2 for a comparison of the Sierpinski
and harmonic gaskets.

In the sequel, we denote by Jw the linear map obtained by composing the Ji’s corresponding to the finite
word w. Specifically, Jw = Jw1 ◦ · · · ◦ Jwm if w = w1 · · ·wm ∈Wm.

2.4 Measurable Riemannian geometry

The primary ingredients of Kigami’s prototype for a measurable Riemannian geometry are the measur-
able Riemannian structure and geodesic distance; see [25]. The measurable Riemannian structure is due to

Kusuoka [29] and is a triple (ν, Z, ∇̃), where ν is the Kusuoka measure on K, Z is a non-negative symmetric
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matrix, and ∇̃ is an operator analogous to the Riemannian gradient. More precisely, Kusuoka has shown in
[29, 30] that for any u and v in the domain dom E of the energy functional on the Sierpinski gasket, K, we have

E(u, v) =

∫
K

(∇̃u, Z∇̃v)dν,

where Z, ∇̃u, and ∇̃v, are ν-measurable functions defined ν-a.e. on K; see also [22] and [25]. The equal-
ity above is analogous to its smooth counterpart in Riemannian geometry, and thus gives validity to the
title ‘measurable Riemannian structure’ for (ν, Z, ∇̃). Here, the Kusuoka measure ν is the analog of the
Riemannian volume and Z is the analog of the Riemannian metric. In [25], Kigami furthers the likeness
to Riemannian geometry by introducing a notion of smooth functions on K, as well as a theorem relating
the Kusuoka gradient to the usual gradient on the Euclidean plane (see also [22]), and a notion of geodesic
distance on K, which is realized by a C1 path in the plane.

The Sierpinski gasket, in Euclidean or standard metric does not have C1 paths between points, in gen-
eral. In order to get C1 paths, Kigami views the gasket in harmonic coordinates, as the harmonic gasket
described earlier. The harmonic gasket, KH , does have C1 paths between any two points. Then via the
homeomorphism, Ψ, a geodesic distance, realized by a C1 path on KH of minimal length, is attached to K.
(It is noteworthy that such a geodesic path is C1 but not usually C2; see [44].)

The Kusuoka measure is the measurable analog of Riemannian volume. The existence of the Kusuoka
measure ν on K is due to Kusouka [29]. Further details on the Kusuoka measure can be found in [29], [30],
[22], [25], [44] and [45].

The measurable analog of the Riemannian metric, or the measurable Riemannian metric Z, is also due
to Kusuoka [29, 30]. In Proposition 2.11 of [25], the definition of Z is given as follows: Let w ∈ Wm and
define Zm(w) = J tw(Jw)/||Jw||2HS , where J tw is defined in terms of the transpose (or the adjoint) of Jw and
||Jw||HS denotes the Hilbert–Schmidt norm of Jw. Then Z(w) = limm→∞ Zm(w1...wm) exists ν-a.e. for
w ∈ Σ, rankZ(w) = 1 and Z(w) is the orthogonal projection onto its image for ν-a.e. w ∈ Σ.

In order to define the metric on K, let Z∗(x) = Z(π−1(x)), where π was defined in Subsection 2.3. Then
Z∗ is well defined, has rank 1 and is the orthogonal projection onto its image for ν-a.e. x ∈ K. Similar as
with the Kusuoka measure, the ∗ is dropped and Z is used instead of Z∗. It also holds that Z is well defined
on V∗, since for x ∈ V∗ and π−1(x) = {w, τ}, we have Z(w) = Z(τ); see [25].

There are a few characterizations of the gradient in the setting of the measurable Riemannian structure.
The first we will mention is due to Kusuoka [29]. In Theorem 2.12 in [25], Kigami gives Kusuoka’s result

which is the existence of an assignment ∇̃ : dom E → {Y | Y : K →M0, Y is ν-measurable} such that

E(u, v) =

∫
K

(∇̃u, Z∇̃v)dν,

for any u, v ∈ dom E .

Kigami’s approach to the gradient on K is to start with the usual gradient on open subsets of the plane
M0 which contain KH . More precisely, fixing an orthonormal basis for M0 and identifying M0 with R2, the
gradient on M0 is given by ∇u = t(∂u/∂x1, ∂u/∂x2). In Proposition 4.6 of [25], it is shown that if U is an
open subset of M0 which contains KH , v1, v2 ∈ C1(U), and v1|KH

= v2|KH
, then (∇v1)|KH

= (∇v2)|KH
. In

this sense, the gradient of a smooth function on KH is well defined by the restriction of the usual gradient to
an open subset of M0. Then, using Φ, this theory can be pulled back to K. Precisely, in [25], Kigami defines

C1(K) = {u : u = (v|KH
) ◦ Φ, where v is C1 on an open subset of M0 containing KH}

and for u ∈ C1(K),
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∇u = (∇v|KH
) ◦ Φ.

In Theorem 4.8 of [25], the following results are established:

1. C1(K) is a dense subset of dom E under the norm ||u|| =
√
E(u, u) + ||u||∞,K ;

2. ∇̃u = Z∇u for any u ∈ C1(K);

3. E(u, v) =

∫
K

(∇u, Z∇v)dν for any u, v ∈ C1(K).

Thus Kigami shows that his gradient, ∇, ‘essentially’ coincides with the Kusuoka gradient, ∇̃—at least up to
its role in the energy formula. For related representations of the gradient for the harmonic gasket, see [44].

The first important theorem regarding a geodesic, or segment, or shortest path between two points on K,
in the context of K in harmonic coordinates, is due to Teplyaev. First, a boundary curve τ of the gasket in
harmonic coordinates, is defined by Teplyaev as a parameterization of a boundary of a connected component
of M0\KH . In Theorem 4.7 of [44], Teplyaev states the following:

1. τ is concave and is a C1 curve but is not a C2 curve;

2. for any x ∈ K such that Ψ(x) ∈ τ , the projection Px is, in harmonic coordinates, the orthogonal
projection onto the tangent line to τ .

Let h∗(p, q) := inf{ l(γ) | γ is a rectifiable curve in KH between p and q}, where l(γ) is the length of the
curve γ. Kigami makes use of the above results to prove Theorem 5.1 in [25] which states that for any
p, q ∈ KH , there exists a C1 curve γ∗ : [0, 1]→ KH such that γ∗(0) = p, γ∗(1) = q, Z(Φ−1(γ∗(t))) exists and
dγ∗
dt ∈ ImZ(Φ−1(γ∗(t))) for any t ∈ [0, 1], and

h∗(γ∗(a), γ∗(b)) =

∫ b

a

(
dγ∗
dt

, Z(Φ−1(γ∗(t)))
dγ∗
dt

) 1
2

dt

for any a, b ∈ [0, 1] with a < b. Note that due to this result, the infimum in the definition of h∗ can be
replaced by the minimum. Kigami calls γ∗ a geodesic between p and q. The proof of this theorem is lengthy,
with the majority of the work going into proving Theorem 5.4 of [25]. Kigami credits Teplyaev (Theorem 4.7
in [44]) for the latter result but gives his own proof. He uses the distance function h∗ in order to define the
harmonic shortest path metric on K, d∗(., .), for x, y ∈ K, as

d∗(x, y) = h∗(Φ(x),Φ(y)),

or with slight abuse,

d∗(x, y) =

∫ b

a

〈γ̇, Zγ̇〉
1
2 dt,

where γ is a geodesic (shortest path) between x and y in KH with γ(a) = x and γ(b) = y. This latter repre-
sentation provides a strong analogy with the geodesic distance on a Riemannian manifold, where a smooth
metric has been replaced by a measurable metric, Z.

Note that d∗ corresponds to the geodesic metric on the harmonic gasket KH . Further note that, clearly,
a geodesic between any two points of KH (or, equivalently, a shortest harmonic path between any two points
of K) is usually not unique. (See Figure 2.)
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3 Spectral Geometry of Fractal Sets

This section is motivated by the desire to specify a natural or intrinsic metric on certain sets built on curves,
including certain fractal sets (and certain infinite graphs), via a Dirac operator and its associated spectral
triple. In this section, we look at a class of sets built on curves in Rn, each of which is assumed to have a
shortest path metric which we will call the geodesic distance. The construction of the Dirac operator detailed
in this section is a generalization of a construction for a finite collection of curves used in [5]. We show that
the spectral distance function induced by the Dirac operator recovers the geodesic distance for this class of
sets. The Sierpinski gasket and the harmonic gasket both fall in this class of sets, whereas only the former
example lies within the scope of [5]. The harmonic gasket as well as alternate constructions for the Dirac
operator for the harmonic gasket are discussed in the next section. First we recall some definitions related
to length spaces and a relevant result, the Hopf–Rinow Theorem (see, e.g., [15] for the general case of length
spaces and [38] for the original case of Riemannian manifolds):

Definition 4. Let (M,d) be a metric space. The induced intrinsic metric dI = dI(x, y) is defined as the
infimum of the d-induced lengths of (continuous) paths from x to y. When there is no path from x to y, then
dI(x, y) is defined to be infinite. If d(x, y) = dI(x, y) for all x and y in M , then (M,d) is called a length
space and the metric d is said to be intrinsic.

Definition 5. Let (M,d) be a length space and γ : I →M be a continuous path parameterized by arclength,
where I is an interval of the reals. If d(γ(t1), γ(t2)) = |t1 − t2| for all t1 and t2 in I, then γ is called a
minimizing geodesic or shortest path.

Theorem 1. (Hopf–Rinow) If a length space (M,d) is complete and locally compact, then any two points
in M can be connected by a minimizing geodesic, and any bounded closed set in M is compact.

Let X ⊂ Rn be a compact length space. Then X is necessarily complete. Furthermore, by the Hopf–
Rinow Theorem (Theorem 1), X has minimizing geodesics. Let L(γ) denote the length of the continuous
curve γ parameterized by its arclength. We consider the following axioms for X:

Axiom 1 : X = R, where R =
⋃
j∈NRj ; Rj is a rectifiable C1 curve for each j ∈ N, with L(Rj)→ 0

as j →∞.

Axiom 2 : There exists a dense set B ⊂ X such that for each p ∈ B and each q ∈ X, one of the
minimizing geodesics from p to q can be given as a countable (or finite) concatenation of the Rj ’s.

Remark 2. In Axiom 2, it is understood that the countable concatenation of Rj’s begins with p ∈ B as the
initial endpoint of some Rj. Therefore, B is a subset of the collection of endpoints of the Rj curves, and
hence, Axiom 2 implies that the endpoints are dense in X.

For p, q ∈ X and γ a minimizing geodesic between p and q, we will define the geodesic distance, dgeo , by
dgeo(p, q) = L(γ).

Proposition 1. Suppose X is a compact length space which satisfies Axiom 1. Then the countable sum of
Rj-curve triples, S(X), is a spectral triple for X. Furthermore, if D is the Dirac operator associated to S(X)
and L(Rj) = αj for each j ∈ N, then the spectrum of D is given by

σ(D) =
⋃
j∈N

{[
(2k + 1)π

2αj

]
: k ∈ Z

}
.

Moreover, the spectral dimension of X with respect to S(X) (or equivalently, the metric dimension of
S(X)) is given by

dS(X) = inf

p > 1 :
∑
j∈N

αpj <∞

 .
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Proof. For each j ∈ N, let Rj be parameterized such that L(Rj) = αj . Using the r-curve triple with r = Rj
and α = αj yields the unbounded Fredholm module

Sj = (C(X), Hj , Dj)

for Rj , with representation πj . To construct a spectral triple for X, we define

⊕
j∈N

Sj =

C(X),
⊕
j∈N

Hj ,
⊕
∈N

Dj

 ,

with representation ⊕
j∈N

πj .

We refer to S(X) as the countable sum of Rj-triples, with the notation

S(X) =
⊕
∈N

Sj , D =
⊕
∈N

Dj , H =
⊕
j∈N

Hj , and π =
⊕
j∈N

πj ,

so that S(X) = (C(X), H,D).

By the Stone–Weierstrass Theorem, the real linear functionals on Rn are a dense subset of C(X). The real
functionals will suffice as a dense subset having bounded commutators with the Dirac operator D. Indeed,
if f(x1, ..., xn) = a1x1 + ...+ anxn is an arbitrary real functional and Rj is parameterized (by arclength) in
the variable τ , then (letting ||.||∞ := ||.||∞,Rn , i :=

√
−1 and using the discussion following Formula 1 in

Subsection 2.1 in order to justify the first two equalities), we obtain

||[Dj , πj(f)]|| = ||Dj(f)|| = ||Dj(f)||∞ =

∣∣∣∣∣∣∣∣1i dfdτ
∣∣∣∣∣∣∣∣
∞

= ||a1(x′1(τ)) + ...+ an(x′n(τ))||∞

≤ |a1|+ ...+ |an|.
Since this bound is not dependent on j, we have

||[D,π(f)]|| = sup
j
{||[Dj , πj(f)]||} ≤ |a1|+ ...+ |an|.

Therefore, as claimed above, the real linear functionals on Rn form a dense subspace of C(X) comprised of
elements having bounded commutators with D.

The eigenvalues of Dj are determined by the length αj of Rj and are given in Remark 1 of Subsection
2.2 above as (π(2k + 1)/2αj) for k ∈ Z. The eigenvalues of D are the disjoint union of the eigenvalues for
the Dj ’s; so

σ(D) =
⋃
j∈N

{[
(2k + 1)π

2αj

]
: k ∈ Z

}
.

Since αj → 0 as j → ∞, we deduce that (D2 + I)−1 is a compact operator. The self-adjointness of D
follows from the fact that its summands Dj are self-adjoint for each j. Thus S(X) is an unbounded Fredholm
module. Furthermore, since a function in the image of π is densely defined on X, the representation is
faithful, so that S(X) is a spectral triple. (See Definitions 1 and 2 in Subsection 2.1.)

Using the expression for the spectrum σ(D) obtained above, we see that the spectral dimension (Definition
3 in Subsection 2.1) is given by

dS(X) = inf

p > 0 :
∑
j∈N

∑
k∈Z

∣∣∣∣ (2k + 1)π

2αj

∣∣∣∣−p <∞
 .
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Now, the double sum over j and k is finite if and only if the sum over k,
∑
k∈N(2k + 1)−p, and the sum

over j,
∑
j∈N α

p
j , are both finite. (Indeed, up to a trivial multiplicative factor, the double sum can be written

as the product of these two single sums.) Since, clearly,
∑
k∈N(2k + 1)−p <∞ if and only if p > 1, it follows

that

dS(X) = inf

p > 1 :
∑
j∈N

αpj <∞

 ,

as desired.

Remark 3. It follows from the expression obtained for d = dS(X) in Proposition 1 that the spectral dimension
of X always satisfies the inequality d ≥ 1.

Since X is a compact metric space in the geodesic metric, dgeo, we define its associated Lipschitz seminorm
Lipg as in (1); namely,

Lipg(f) = sup

{
|f(x)− f(y)|
dgeo(x, y)

: x 6= y

}
.

The following lemma will be useful in recovering dgeo from the Dirac operator via Formula 1:

Lemma 1. Let X be a compact length space satisfying Axioms 1 and 2, and let Lipg be the Lipschitz seminorm
for the compact metric space X with respect to dgeo. Then, for any function f in the domain of D, we have

||Df ||∞,X = Lipg(f).

Proof. For any f in the domain of D, we have (with i :=
√
−1)

||Df ||∞,X = sup
j

{
||Djf ||∞,Rj

}
= sup

j

{∣∣∣∣∣∣∣∣1i dfdx
∣∣∣∣∣∣∣∣
∞,Rj

}

= sup
j

{
sup
p,q∈Rj

{
|f(p)− f(q)|
dgeo(p, q)

}}
≤ Lipg(f).

The first equality follows since R is dense in X, according to Axiom 1. The last inequality is clear since Lipg
is the supremum over all p 6= q ∈ X, not just those p 6= q restricted to being in the same Rj .

The inequality in the other direction will come from Axiom 2. First suppose p ∈ B and q ∈ X. Then
there is a geodesic from p to q which is a concatenation of Rj curves. Let {(pj , pj+1)} be the sequence of pairs
of endpoints tracking the Rj curves such that p1 = p and limn→∞ pn = q along γ. We have the following
estimate:

|f(p)− f(pn)| = |
n∑
j=1

f(pj)− f(pj+1)| ≤
n∑
j=1

|f(pj)− f(pj+1)|

≤
n∑
j=1

(
dgeo(pj , pj+1)||Djf ||∞,Rj

)
≤ (||Df ||∞,X)

n∑
j=1

dgeo(pj , pj+1)

= ||Df ||∞,Xdgeo(p, pn).

By the continuity of f(x) and letting a(x) := dgeo(p, x), we deduce that

|f(p)− f(q)|
dgeo(p, q)

≤ ||Df ||∞,X .
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Note that the above estimate does not rely on the fact that p ∈ B, but only on the fact that p is an endpoint;
see Remark 2 above.

Now suppose p and q are arbitrary distinct points in X. By Axiom 2, there is a minimizing geodesic γ in
X connecting p and q. Since B is dense in X, γ intersects some point of B, say r0. Let l1 be the length of γ
from r0 to p and l2 be the length of γ from r0 to q. Thus the total length of γ is l1 + l2.

By Axiom 2, there exist minimizing geodesics γ1 and γ2 from r0 to p, and from r0 to q, respectively,
which are countable concatenations of curves in R originating out of r0. It follows that γ1 has length l1 and
γ2 has length l2. For completeness, we briefly explain why this is the case. Indeed, supposing the length of
γ1 is less than l1 implies that the concatenation of γ1 with γ from r0 to q would have length less than l1 + l2,
contradicting the fact that γ is a shortest path. Moreover, if we suppose that γ1 has length greater than
l1, then it follows that γ is a shorter path from r0 to p , contradicting the fact that γ1 is a shortest path.
The same arguments hold for γ2. Hence, the concatenation of γ1 and γ2 has length l1 + l2 and is therefore a
geodesic between p and q.

Let γ2 be tracked by endpoints {ri} of the concatenated curves Ri inR such that r1 = r0 and limi→∞(ri) =
q. Define γ1i to be the path obtained by concatenating the first i paths of γ2 with γ1 at r0. Using the estimate
for an endpoint to a point in X, applied to γ1i from ri to p, we have

|f(p)− f(ri)|
dgeo(p, ri)

≤ ||Df ||∞,X for all i ∈ N.

Again using the continuity of the functions f(x) and a(x) := dgeo(p, x), we have

|f(p)− f(q)|
dgeo(p, q)

≤ ||Df ||∞,X .

Since p and q are arbitrary points in X, it follows that Lipg(f) ≤ ||Df ||∞,X , as desired.

We can now state and prove our main result for this section:

Theorem 2. Let X be a compact length space satisfying Axioms 1 and 2, and let dX be the distance function
on X induced by the spectral triple via Formula 1. Then dX = dgeo, with the spectrum σ(D) of the Dirac
operator and the spectral dimension d = dS(X) as given in Proposition 1.

Proof. First, we note that the spectrum of the Dirac operator and the spectral dimension are given as in
Proposition 1 since X satisfies Axiom 1.

To prove that dX = dgeo, let p, q ∈ X. To compare dgeo(p, q) with dX(p, q), note that for any f (in the
domain of D) such that ||Df ||∞,X ≤ 1, we have by Lemma 1 that Lipg(f) = ||Df ||∞,X and hence,

|f(p)− f(q)|
dgeo(p, q)

≤ 1.

In this case, |f(p) − f(q)| ≤ dgeo(p, q), and it holds that dX(p, q) ≤ dgeo(p, q). To get the inequality in the
other direction, define the function h(x) = dgeo(p, x). Then, Lipg(h) = 1 and

|h(p)− h(q)| = |0− dgeo(p, q)| = dgeo(p, q).

Therefore, since h is a Lipschitz function on X, h is witness to the inequality dgeo(p, q) ≤ dX(p, q), and we
have shown that dX(p, q) = dgeo(p, q), as desired.

Theorem 2 is an extension of Connes’ theorem on a compact Riemannian manifold to the class of compact
length spaces determined by Axioms 1 and 2. In the next two sections, we provide examples of fractal
sets which fall in this class of length spaces. The first example is the Sierpinski gasket, in which case its
geometry has been recovered using similar methods in [5]. The second example is the harmonic gasket and
its measurable Riemannian geometry which provide a setting closer to that of Riemmanian manifolds, and
for which our results are new.
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4 Spectral Geometry of the Sierpinski Gasket

In this section, we show that the Sierpinski gasket, K, is a model for Theorem 2. It is shown in [5] that K
is a compact length space. It remains to prove that K satisfies Axiom 1 and Axiom 2:

Proposition 2. The Sierpinski gasket K satisfies Axioms 1 and 2.

Proof. Let K be decomposed into its cell edges by decomposing each of its graph cells Γw into Γw,j , for
j ∈ {l, r, b}, where l, r, and b denote the left, right, and bottom, respectively, of each graph cell (triangle)
of the gasket. Then, the union over |w| = n ∈ N and j ∈ {l, r, b} of the Γw,j ’s is the countable union of cell
edges whose closure is K. Indeed, this union contains the set of vertices V ∗, which is dense in K. We can
reorder the cell edges with N, with each cell edge given by Rj , for some j ∈ N, in non-increasing order. Let

R =
⋃
j∈N

Rj .

Then K = R. The first graph cell has R1, R2, and R3 as its edges, which are of equal finite length. An Rj
curve which is an edge of a graph cell of Γm has length proportional to (1/2m). There are 3m curves of this
length. It follows that the sequence of (Euclidean) lengths αj = L(Rj) satisfies L(Rj) → 0 as j → ∞ and
that each Rj is a rectifiable C1 curve (a straight line segment in R2 with bounded length). Therefore, K
satisfies Axiom 1.

We now show that K satisfies Axiom 2. The key properties which allow K to satisfy Axiom 2 are its
connectedness and the fact that every edge curve is itself a minimizing geodesic between its endpoints. Let
p ∈ V ∗ and q ∈ K. A shortest path to q from p is constructed by considering the lowest graph approximation
Γm which puts p and q in separate cells, Kw and Kw′ , respectively, with |w| = |w′| = m. First suppose p is
a vertex in the graph cell Γw, with |w| = m.

By connectedness, the shortest (in fact, any) path from p to q must pass through a vertex v of Γw′ .
There is an Rj which is an edge of a graph cell in Γm connecting p to v. Each Rj is a straight line segment
and is therefore itself a minimizing geodesic between its endpoints. Hence, the curve Rj connecting p to v
suffices as the first leg of the shortest path from p to q. We repeat the previous argument, finding the lowest
graph approximation placing v and q in different cells. Since v is necessarily a vertex of this (higher) graph
approximation, we apply the same argument to the cells separating v and q. Continuing in this manner, we
obtain a path that is a countable concatenation of Rj ’s which are edges of cells whose diameters go to zero.
The finite intersection property yields a unique limit point, which is necessarily q.

For the case when p ∈ V ∗ but is a vertex of a higher approximation than Γm, we can use the special case
above. Let u be a vertex of Γw and p ∈ Kw. The argument above for a shortest path from p to q applies to
the shortest path from u to p. However, in this case, since p ∈ V ∗, the process terminates after finitely many
iterations. Indeed, there is a ‘last’ graph cell the path must travel to until it is at most one edge curve away
from p. This finite concatenation can be reversed from p to u and then concatenated with the path from u to
q. The resulting path is a minimizing geodesic from p to q which is a countable concatenation of Rj curves.
Since V ∗ is dense in K, Axiom 2 is satisfied.

In the light of Proposition 2, we have the following immediate corollary to Theorem 2.

Corollary 1. The spectral triple, S(K), constructed from the countable sum of Rj-curve spectral triples,
satisfies the following: (1) The distance function induced by S(K) via Formula 1 coincides with the geodesic
distance function on K; (2) The spectral dimension of S(K) is equal to log 3/ log 2.1

1This value coincides with the Hausdorff dimension of K, both with respect to the Euclidean metric (as is well known, see,
e.g., [13, 37]) and with respect to the geodesic metric of K (according to the results of [5]). It does not, however, coincide with
the Hausdorff metric of KH with respect to the geodesic metric, which is also > 1 but close to 1.3 (as was recently shown in
[19, 20, 21]). (To our knowledge, the fractal dimension of KH with respect to the Euclidean metric is still unknown.)
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5 Spectral and Measurable Riemannian Geometry

As mentioned in Subsection 2.4, it is shown in [25] that KH is a compact length space and that the min-
imizing geodesics have a representation in the language of measurable Riemannian geometry analogous to
the corresponding representation of geodesics in Riemannian geometry. In this section, we show that the
harmonic gasket, KH , satisfies Axioms 1 and 2 and is thus a model for Theorem 2. The result is that we
are able to recover Kigami’s geodesic distance from the spectral triple and Dirac operator for the harmonic
gasket via Formula 1. Let D be the Dirac operator on KH and let A = C(KH). Corollary 2 at the end of
this section yields the following result:

Theorem 3. Let p and q be arbitrary points in KH , and let γ be a minimizing geodesic from p to q such
that γ(t1) = p and γ(t2) = q. Then we have∫ t2

t1

〈γ̇, Zγ̇〉
1
2 dt = sup

a∈A
{|a(p)− a(q)| : ||[D,πa]|| ≤ 1} . (2)

As measurable Riemmannian geometry extends notions of smooth Riemmanian geometry to a certain
fractal set, equality (2) extends Connes’ theorem for a compact Riemannian manifold to this setting. We
first show that KH satisfies Axioms 1 and 2:

Proposition 3. The harmonic gasket KH satisfies Axioms 1 and 2.

Proof. Using the homeomorphism Φ between K and KH , and whose definition was recalled towards the end
of Subsection 2.3, we can decompose KH from the decomposition we used for K. The edges of graph cells in
KH are exactly given as Φ(Rj), where the Rj ’s are edges of graph cells of K. Let

R =
⋃
j∈N

Φ(Rj).

Because Φ is a homeomorphism and since K satisfies Axiom 1 (by Proposition 2), we have that KH = R. By
Theorem 5.4 in [25] (Theorem 4.7 in [44] gives the same result), Φ(Rj) is a C1 curve. Moreover, by Lemma
5.5 in [25], the curve Φ(Rj) is rectifiable. Since every cell edge is an affine image of an edge of the first graph
cell, with maximum eigenvalue 3/5, it follows that the sequence of (Euclidean) lengths of the curve Φ(Rj)
satisfies L(Φ(Rj))→ 0 as j →∞. Therefore, KH satisfies Axiom 1.

The argument that KH satisfies Axiom 2 is analogous to the argument for K (given in the second part
of the proof of Proposition 2), except that convexity is a proxy for straight lines. To be precise, we need
to show that if p and q are the endpoints of an edge, Φ(Rj), then Φ(Rj) is the minimizing geodesic in KH

between p and q (and thus the shortest path between any two points on Rj lies on Φ(Rj)). Let p and q be
vertices of a cell KH,w of KH and pq be the straight line segment in M0 connecting p and q. Let Φ(Rj) be
the cell edge connecting p and q and Dpq be the compact region bounded by pq ∪Φ(Rj). Lemma 5.5 in [25]
states that Dpq is convex and that Φ(Rj) is rectifiable.

Theorem 5.2 in [25] states that if C ⊂ D are compact subsets in R2 with C convex and ∂D a rectifiable
Jordan curve, then L(∂C) ≤ L(∂D). Lemma 5.6 in [25] uses this theorem to show that Φ(Rj) is a shortest
path between p and q among all rectifiable paths in KH,w between p and q. Since we would like to show this
holds among all rectifiable paths in KH , we follow the proof of Lemma 5.6 in [25], except that we allow for
p̃q to be any rectifiable (w.l.o.g., non-intersecting) curve in KH connecting p and q.

Let D′pq be the compact region bounded by p̃q ∪ pq. Since Φ is a homeomorphism and thus preserves
the holes, and hence the interior and exterior of K, we have that (Dpq\Φ(Rj)) ∩KH is empty. It therefore
holds that Dpq ⊂ D′pq and by Theorem 5.2 in [25], L(p̂q ∪ pq) ≤ L(p̃q ∪ pq). Subtracting off the segment,
pq, which the two boundaries have in common, yields L(p̂q) ≤ L(p̃q). We have now shown that Φ(Rj) is the
minimizing geodesic in KH between p and q.
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Next, let p ∈ Φ(V ∗) (i.e., p is a vertex of KH) and let q ∈ KH . Since KH is topologically equivalent to
K, the argument for a geodesic from p to q is the same as for K (in the proof of Proposition 2), except that
the straight line edges, Rj , are replaced with the harmonic edges, Φ(Rj). Therefore, a geodesic from p to q
can be given as a countable concatenation of Φ(Rj)’s. Since Φ(V ∗) is dense in KH (because V ∗ is dense in
K and Φ is a homeomorphism from K onto KH), it follows that KH satisfies Axiom 2.

Proposition 3 shows that KH is a model for Theorem 2, and thus we have the following corollary, which
is the exact counterpart for KH of Corollary 1 stated for K at the end of Section 5:

Corollary 2. The spectral triple, S(KH), constructed from the countable sum of Φ(Rj)-curve triples satisfies
the following: (1) The spectral distance induced by S(KH) via Formula 1 coincides with Kigami’s geodesic
distance on KH ; (2) The spectrum σ(D) of the Dirac operator and the spectral dimension d = dS(KH) are
given as in Proposition 1 (with X = KH).

6 Alternate Constructions for KH

In this section, we first construct the Dirac operator for KH in analogy with the construction for K in [5].
More precisely, we construct a spectral triple for KH using triples for the graph cells (distorted triangles) of
the harmonic gasket, and therefore the construction comes directly from circle triples. This construction has
the benefit of keeping track of the ‘holes’ in the gasket. We show that it also recovers Kigami’s geometry, yet
the spectrum of the Dirac operator, though asymptotically the same, is not exactly the same as in the edge
construction in the previous section. We conclude this section with a construction which is the direct sum
of the edge construction and the cell construction. It is shown that this construction also recovers Kigami’s
measurable Riemannian geometry.

6.1 Harmonic cell triple

Recall from Subsection 2.3 that Γw denotes a graph cell of K associated with the finite word w. Using the
homeomorphism Φ from K onto KH , we can define the corresponding graph cell Tw = Φ(Γw); clearly, Tw is a
graph cell of KH . We can construct a spectral triple on Tw by carrying the spectral triple on a circle directly
to Tw, as is done in [5] for an arbitrary graph cell of the Sierpinski gasket. Let r be the radius of a circle. Since
it is the complex continuous functions on the circle that are of interest, we make the natural identification
with the complex continuous 2πr-periodic functions on the real line. Let the R2 induced arclength of Tw be
denoted by αw. (Here and in the sequel, we use the notation analogous to the one introduced towards the
end of Subsection 2.2.)

Considering a circle of radius αw, the appropriate algebra of functions consists of the complex continuous
2παw-periodic functions on the real line. Let rw : [−παw, παw] → Tw be an arclength parameterization of
Tw, counterclockwise, with rw(0) equal to the vertex joining the bottom and right sides of Tw. According to
Definition 8.1 in [5], the mapping rw induces a surjective homomorphism Ψw of C(KH) onto C([−παw, παw])
given by

Ψw(f)(τ) := f(rw(τ)),

for f ∈ C(KH) and τ ∈ [−παw, παw]. Let

Hw = L2([−παw, παw], (1/2παw)m),

where m is the Lebesgue measure on [−παw, παw], and let Πw : C(KH)→ B(Hw) be the representation of f
in C(KH) defined as the multiplication operator which multiplies by Ψw(f). We will again use the translated
Dirac operator and define Dw = Dt

αw. (See Subsection 2.2 above.)

The triple S(Tw) = (C(KH),Hw,Dw) is an unbounded Fredholm module with representation Πw. The
results in the following proposition follow from the corresponding results regarding the spectral triple on a
circle obtained in Section 2 of [5].
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Proposition 4. The triple S(Tw) = (C(KH),Hw,Dw) associated to Tw is an unbounded Fredholm module
satisfying the following properties:

1. The spectrum of the Dirac operator, Dw, is given by

σ(Dw) =

{[(
(2k + 1)π

2αw

)]
: k ∈ Z

}
.

2. The metric dw induced by S(Tw) on Tw coincides with the R2 induced arclength metric lTw on Tw.

3. The spectral dimension of Tw is 1.

Remark 4. Proposition 4 does not state that the metric dw coincides with the restriction to the cell Tw of
Kigami’s geodesic metric on KH , because in general this is not the case. Indeed, points on different sides of
Tw will be connected by a geodesic that does not lie completely on Tw, and thus dw ≥ dgeo. However, from
the proof of Proposition 3, it follows that dw restricted to an edge of Tw coincides with Kigami’s geodesic
distance.

6.2 Construction from cell triples

We now construct a spectral triple on KH using the countable sum of triples S(Tw) = (C(KH),Hw,Dw).
This is a natural construction of the spectral triple with respect to its holes and connectedness; this is also
the construction used for the Sierpinski gasket in [5].

To be precise, this construction yields a spectral triple for each closed path, or cycle, in the space. Fol-
lowing the line of reasoning on page 23 of [5], each of these spectral triples associated to a cycle induces an
element in the K-homology of each graph approximation of KH . Each of these members of the K-homology
group measures the winding number of a nonzero continuous function around the cycle to which it is associ-
ated, keeping track of the connectedness type of the graph approximation.

To formally construct the countable sum of S(Tw) triples, we will use the following notation:

1. HKH
=
⊕n∈N
|w|=n Hw;

2. ΠKH
=
⊕n∈N
|w|=n Πw;

3. DKH
=
⊕n∈N
|w|=nDw.

(In each case, the countable orthogonal direct sum is extended over W∗ =
⋃
m≥0Wm, the set of all finite

words, where Wm is the set of all finite words w of length |w| = m ∈ N on the alphabet S = 1, 2, 3; see
Subsection 2.3 above.) The countable sum of the S(Tw) triples is defined as S(KH) = (C(KH),HKH

,DKH
).

In order to show that S(KH) is a spectral triple, we first note that a function in the image of ΠKH
is densely

defined on KH , so that we indeed have a faithful representation.

Next, we show that there is a dense set of functions f in C(KH) such that the commutator of ΠKH
(f)

with the Dirac operator DKH
is bounded. The real-valued linear functions on R2 restricted to KH , are dense

in C(KH). Furthermore, any real-valued linear function, f(x, y) = ax+by, restricted to the graph cell Tw, has
a bounded commutator with Dw with bound |a|+ |b|, independent of w. Thus ||[DKH

,ΠKH
(f)]|| ≤ |a|+ |b|

and hence the real-valued linear functions on R2, restricted to KH , form a dense subset of C(KH) consisting
of elements having bounded commutators with DKH

.

To see that the operator (D2
KH

+ I)−1 is compact, we look at the eigenvalues of DKH
, which are given

by the disjoint union of the eigenvalues of all of the Dw’s:

σ(DKH
) =

⋃
n∈N

⋃
|w|=n

{[
(2k + 1)π

2αw

]
: k ∈ Z

}
,

21



where we have used part 1 of Proposition 4. As mentioned before, the αw’s are the lengths of the boundaries
of the w-cells. As a result, the eigenvalues of (D2

KH
+ I)−1 go to zero and therefore, (D2

KH
+ I)−1 is com-

pact. In addition, one verifies that DKH
is symmetric when acting on its eigenvectors, so that it is self-adjoint.

To compare the spectral distance function induced by S(KH) with dgeo, we have the following analog of
Lemma 1 in Section 3, which characterizes ||DKH

||∞,KH
in terms of dgeo.

Lemma 2. For any function f in the domain of DKH
, we have

||DKH
f ||∞,KH

= Lipg(f).

Proof. For any f in the domain of DKH
, we have (with i :=

√
−1)

||DKH
f ||∞,KH

= sup
w
{||Dwf ||∞,T w} = sup

w

{∣∣∣∣∣∣∣∣1i dfdx
∣∣∣∣∣∣∣∣
∞,T w

}

= sup
w

{
sup

p,q∈T w

{
|f(p)− f(q)|
dw(p, q)

}}
≤ sup

w

{
sup

p,q∈T w

{
|f(p)− f(q)|
dgeo(p, q)

}}
≤ Lipg(f),

since dw ≥ dgeo (as was noted in Remark 4). The last inequality holds since Lipg(f) is the supremum over
all possible non-diagonal pairs of points on the harmonic gasket, which includes the non-diagonal pairs of
points restricted to belonging to the same graph cell.

To achieve the reverse inequality, we note that the critical inequality used to get this direction in Lemma 1
was

|f(pj)− f(pj+1)| ≤ dgeo(pj , pj+1)||DRj
f ||∞,Rj

,

where the pj ’s represent the decomposition of the geodesic constructed in Lemma 1, and Rj is the edge
curve connecting pj to pj+1. Recalling Remark 4 following Proposition 4, we have that the spectral distance
induced on Tw by S(Tw) coincides with dgeo when restricted to the edges of Tw. This is of course a sufficient
condition to replace Rj with Tw in the above inequality. Indeed, for pj and pj+1 belonging to the same edge,

|f(pj)− f(pj+1)|
dgeo(pj , pj+1)

=
|f(pj)− f(pj+1)|
dw(pj , pj+1)

≤ ||Dwf ||∞,Tw
.

Therefore,

|f(pj)− f(pj+1)| ≤ dgeo(pj , pj+1)||Dwf ||∞,Tw
.

Now it follows from the argument used in the proof of Lemma 1 that for an arbitrary point q and a vertex p,

|f(p)− f(q)|
dgeo(p, q)

≤ ||DKH
f ||∞,KH

.

The extension to the case when p and q are both arbitrary points in KH also follows the same argument as
in the proof of Lemma 1 and therefore,

Lipg(f) ≤ ||DKH
f ||∞,KH

.

We deduce that ||DKH
f ||∞,KH

= Lipg(f), and hence, the proof of the lemma is completed.

Let hspec be the distance function induced by S(KH) and let bKH
be the spectral dimension of KH

with respect to SKH
. Just as Lemma 1 gives dspec = dgeo, Lemma 2 gives hspec = dgeo using the exact

same argument as in the proof of Theorem 2. The following theorem, an analog for the harmonic gasket of
Proposition 1 and Theorem 2, summarizes the results for the spectral triple S(KH) = (C(KH),HKH

,DKH
).

22



Theorem 4. The triple S(KH) = (C(KH),HKH
,DKH

) associated to KH is a spectral triple satisfying the
following properties:

1. The spectrum of the Dirac operator, DKH
, is given by

σ(DKH
) =

⋃
n∈N

⋃
|w|=n

{[
(2k + 1)π

2αw

]
: k ∈ Z

}
.

2. The metric distance hspec induced by S(KH) coincides with Kigami’s geodesic distance, dgeo.

3. The spectral dimension bKH
is the infimum of all p > 1 such that∑

n∈N

∑
|w|=n

(αw)p <∞.

In particular, bKH
≥ 1.

Proof. That S(KH) is a spectral triple for KH and the first two claims (1 and 2) of Theorem 4 follow directly
from the text just above Theorem 4. The third claim (3), much as in the proof of Proposition 1, follows from
the fact that by definition, and in light of the first part (1),

bKH
= inf

p > 0 :
∑
n∈N

∑
|w|=n

∑
k∈Z

∣∣∣∣ (2k + 1)π

2αw

∣∣∣∣−p <∞
 .

It is clear that the triple sum in the expression above is finite if and only if the double sum over n and w,∑
n∈N

∑
|w|=n(αw)p, and the sum over k,

∑
k∈N |2k+1|−p, are both finite. Since, clearly,

∑
k∈N(2k+1)−p <∞

if and only if p > 1, it follows that

bKH
= inf

p > 1 :
∑
n∈N

∑
|w|=n

(αw)p <∞

 ,

as desired.

The corollary to follow compares the geometries of the Sierpinski gasket induced by S(KH) and S(KH):

Corollary 3. For the spectral distance functions, dspec and hspec, and the spectral dimensions, dKH
and

bKH
, the following equalities hold:

1. dspec = hspec.

2. dKH
= bKH

.

Proof. The first fact follows immediately from Corollary 2 and Theorem 4. The second fact is true since

αw =
∑

s∈{L,R,B}

αw,s.
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6.3 The direct sum of S(KH) and S(KH)

In this section, we point out that the two spectral triples on KH , S(KH) and S(KH), constructed above can
be summed together, giving a spectral triple that also recovers Kigami’s distance on KH . This construction
involves the refinement of the curve triple construction and also keeps track of the holes in KH .

Theorem 5. Let S(⊕) = S(KH)⊕S(KH), with π⊕ = πKH
⊕ ΠKH

. Then S(⊕) is a spectral triple for KH

and the distance, d⊕, induced by S(⊕) on KH coincides with Kigami’s geodesic distance on KH .

Proof. Let DKH
denote the Dirac operator associated to S(KH). It is clear from Proposition 1 and Theorem 4

that for any real-valued linear function, f(x, y) = ax+ by on KH , we have

||[DKH
, πKH

(f)]|| ≤ |a|+ |b| and ||[DKH
,ΠKH

(f)]|| ≤ |a|+ |b|.

Since D⊕ = DKH
⊕DKH

, it follows that

||D⊕, π⊕(f)]|| ≤ |a|+ |b|.

(Recall that the underlying Hilbert space is the orthogonal direct sum of the Hilbert spaces associated with
each spectral triple.) Thus the real-valued linear functions on KH have bounded commutators with D⊕ and
hence, the dense subalgebra condition is satisfied.

The operator, (D2
⊕ + I)−1 is compact, as the set of eigenvalues of D⊕ is the disjoint union of the eigen-

values of DKH
and DKH

. Indeed, the union is countable and can be arranged in a non-increasing order
according to which the eigenvalues tend to zero. The self-adjointness of D⊕ is also clearly inherited from its
summands.

To prove the claim of recovery of Kigami’s distance, we need to verify that

||D⊕f ||∞,KH
= Lipg(f),

for any f in the domain of D⊕. Indeed, by Lemma 1 and Lemma 2,

||D⊕f ||∞,KH
= max{||DKH

||∞,KH
, ||DKH

||∞,KH
} = Lipg(f).

It then follows immediately that d⊕ = dgeo.

7 Concluding Comments and Future Research Directions

In this final section, we discuss several possible avenues for future investigation connected with the results of
this paper.

7.1 Spectral dimension and measure vs. Hausdorff dimension and measure

We conjecture that the spectral dimension ∂ of the Dirac operator DKH
(for any of the spectral triples

considered in this paper) is equal to the Hausdorff dimension H of (KH , dgeo), the harmonic gasket equipped
with the harmonic geodesic metric: ∂ = H.

Moreover, we conjecture that (by analogy with the results obtained in [5] for the Euclidean Sierpinski gas-
ket, as well as results and conjectures in [9, 10, 12, 33, 34, 28]), the harmonic spectral measure, defined as the
positive Borel measure naturally associated (via the Dixmier trace) with the given Dirac operator D = DKH

,
is proportional to the normalized Hausdorff measure H = HH , defined as the normalized H-dimensional
Hausdorff measure of the metric space (KH , dgeo). (Recall that by definition, H is the probability measure
naturally associated with the standard H-dimensional Hausdorff measure of (KH , dgeo).)
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More specifically, if Trω is any suitable Dixmier trace, then, for every f ∈ C(KH), we have (with ∂ = H,
the Hausdorff dimension of (KH , dgeo)):

Trω
(
D−∂KH

f
)

= c

∫
KH

fdH, (3)

for some positive constant c (equal to the spectral volume of (KH , dgeo), see [28, 33, 34]). (It follows from
the results in the present paper that the left-hand side of Equation (3) makes sense; see, e.g., [10, 33, 34].)

We note that the exact counterpart of the result conjectured just above is obtained in [5] in the case of
the standard Sierpinski gasket K, equipped with the (intrinsic) Euclidean geodesic metric.

7.2 Global Dirac operator and Kusuoka Laplacian

We expect that a suitable modification of the constructions provided in this paper should yield a global
Dirac operator on KH , and an associated spectral triple, with the same spectral dimension ∂ = H and
corresponding spectral volume (proportional to the harmonic Hausdorff measure, as in Equation (3)), and
whose square coincides with (or is in some sense spectrally equivalent to) the Kusuoka Laplacian (that is,
minus the Laplacian with respect to the Kusuoka measure). Some further discussion of this topic will be
provided in Subsection 7.4 below.

Remark 5. Recently, after this work was completed (but independent of it), generalizing to the specific
case of the harmonic gasket and the Kusuoka Laplacian Weyl’s asymptotic formula for p.c.f. (i.e., finitely
ramified) fractals obtained in [27] by Jun Kigami and the first author (see also the later paper [28]), and also
using results from [25, 26], Naotaka Kajino ([19] and, especially, [20, 21]) has determined the leading spectral
asymptotics of the Kusuoka Laplacian on KH . In particular, he has shown in [19] that (twice) the spectral
dimension of the Kusuoka Laplacian coincides with the Hausdorff dimension H of (KH , dgeo). Furthermore,
in [20], he has shown that the Hausdorff measure of (KH , dgeo) can be recovered from the leading asymptotics
of the Kusuoka Laplacian restricted to the (nonempty) open subsets of KH . These results in [19, 20] are
consistent with the conjectures made in Subsections 7.1 and 7.2 above. Furthermore, we expect that some
of the techniques developed in [19, 20, 21] will be very useful in addressing and eventually resolving these
conjectures, in this and more general settings.

Finally, we note that it is also shown in [19, 20, 21] that the Hausdorff and Minkowski (i.e., box-counting)
dimensions of (KH , dgeo) coincide (which is of interest in light of [31–37], for example), and that 1 < H < 2.

7.3 Energy measure on the gasket

Based in part on the results of [5], various refinements and extensions of the spectral triples discussed in
[5] were recently introduced by Erik Christensen, Cristina Ivan, and Elmar Schrohe in [4]. In particular, in
[7], using the refinements introduced in [4], along with the earlier results and methods of [5], Fabio Cipriani,
Daniele Guido, Tommaso Isola and Jean-Luc Sauvageot have shown that the Dirichlet energy form on the
Euclidean Sierpinski gasket K can also be recovered from the Dirac operator (and the associated spectral
triple) via a suitable Dixmier trace construction. In light of the results of the present paper and the conjec-
tures made in Subsections 7.1 and 7.2, it is natural to expect that the results of [7] can be extended to the
harmonic gasket (as well as eventually, more general fractals). Namely, conjecturally, not only the Hausdorff
dimension and Hausdorff measure of (KH , dgeo), but also the energy form on the gasket can be recovered (via
a Dixmier trace construction) from a suitable modification of the spectral triples discussed in this paper and
in Subsection 7.2 above. In the process of establishing such a result, it would be helpful to further examine
the potential connections between the Dirichlet form, the harmonic geodesic metric on KH , and the effective
resistance metric (or intrinsic metric) on K, as transported to KH via the homeomorphism Φ (see [23, 24]).

Finally, we note that the modification in [4] of the spectral triple constructed in [5] may be better suited
to the study of the noncommutative topology and K-homology of the fractals studied in the present paper,
particularly for the harmonic gasket KH (once our own extended construction has been taken into account).

25



This question remains to be explored, in conjunction with suitable modifications of the various spectral triples
constructed in this paper, including in Section 6.

7.4 Geometric analysis on the harmonic gasket

It would be interesting to further develop geometric analysis on the harmonic Sierpinski gasket KH , viewed
as a measurable Riemannian manifold (in the sense of [25, 26]). In the long term, one should be able to
extend to this setting the differential calculus on smooth (Riemannian) manifolds, including the notions of
differential forms and (metric) connections. At least for this important special example, this would be a
significant step towards realizing aspects of the research program outlined in [32–36]. (The recent results
obtained in [8] for differential 1-forms on the Euclidean gasket may be useful in this setting; see also [6] along
with the survey article [18] and the relevant references therein.) Again, in the long term, we expect aspects
of geometric analysis to be developed from the present perspective on a broad class of fractal manifolds.
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