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Abstract

We show that conditional expectations, optimal hypotheses, disintegrations, and
adjoints of unital completely positive maps, are all instances of Bayesian inverses. We
study the existence of the latter by means of the Tomita—Takesaki modular group and we
provide extensions of a theorem of Takesaki as well as a theorem of Accardi and Cecchini

to the setting of not necessarily faithful states on finite-dimensional C*-algebras.
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1 Introduction

There have been many recent advancements in the categorical approach towards probability
theory and statistics. For example, the Kolmogorov zero-one law, Basu’s theorem, Fisher—
Neymann factorization, and de Finetti’s theorem have all been proved synthetically using
the framework of Markov categories [20, 22, 21]. An immediate question is whether or not
such techniques could be used to derive new results in quantum probability. To answer this,
the second author constructed generalizations of Markov categories to allow both classical
and quantum probabilistic concepts [40]. Among the many additional axioms possible for
Markov categories, some of them, such as positivity, causality, and a.e. modularity, were
proved for quantum operations in [40]. Other, more subtle, axioms such as the existence
of disintegrations, the existence of Bayesian inverses, or the existence of conditionals were
studied in [43], [44], and [41], respectively, the first two of which were accomplished by the
second and fourth authors of the present paper, and the third of which was done by the
second.

The categorical approach towards quantum probability parallels the algebraic approach
towards quantum probability, but a closer inspection comparing and contrasting the two
approaches has not yet been carried out in detail other than the preliminary results in [40].
In this article, we bring many such connections, most importantly including Tomita—Takesaki
modular theory [55]. For example, we prove an equivalence between the existence of Bayesian
inverses of unital completely positive maps and an intertwining condition between the modular
groups due to Accardi-Cecchini [1] and Anantharaman-Delaroche [4]. The usage of modular
theory in recent years in quantum information theory [11, 29, 30, 15, 54, 38] and quantum
field theory [61, 16, 32, 31, 13] indicates its importance. In addition, the Bayesian inverses, in
the special case of faithful states given by the vacuum state, have been recently used as a
notion of inversion for generalized global gauge symmetries of subfactors and local quantum
field theories [6, 7, 8] in the algebraic setting [26].

Besides contributing to the dictionary between the categorical and algebraic approaches
towards quantum probability, we also develop several new results and applications to quantum
information theory and quantum probability. For example, we work with not necessarily
faithful states, where the modular group no longer exists but is replaced with a semigroup.
Although one naively might think that any statement said about faithful states can be
immediately extended to non-faithful ones by looking at the support algebras, we show
that this is not always the case. For example, although we prove that disintegrations for
non-faithful states exist if and only if they exist on the underlying support algebras, this is
not the case for Bayesian inverses. Since non-faithful states and their evolution along (noisy)
quantum channels are of relevance to quantum information theory, these results are important



for the reversibility of quantum operations involving non-faithful states (such as pure states).
Finally, we illustrate how the non-commutative Bayes’ theorem of [44] generalizes a recent
result of Carlen and Vershynina [11], which itself is a partial generalization of a result of
Nakamura, Takesaki, and Umegaki [37].

The paper is organized as follows. In Section 2, we recall the basic definitions of conditional
expectation, state-preserving unital completely positive map, and disintegration in the context
of C*-algebras. A unital *-homomorphism is interpreted as a deterministic quantum channel,
while an honest unital completely positive map is interpreted as a stochastic one. We also
review the Tomita—Takesaki modular operators and the modular automorphism group in
the special case of finite-dimensional C*-algebras, also called multi-matrix algebras, that
we shall mainly deal with in this work. We prove the equivalence between state-preserving
conditional expectations and disintegrations on matrix algebras and multi-matrix algebras,
both with respect to faithful and non-faithful states. In Section 3, we recall the definition of
Bayesian inverse of a state-preserving unital completely positive map and we compare it with
the notion of adjoint due to Accardi and Cecchini in the context of operator algebras and
quantum probability and with the notion of Petz recovery map in quantum information theory.
In the case of faithful states, we characterize the existence of Bayesian inverses on matrix
algebras and multi-matrix algebras by means of the modular group. For arbitrary states
on multi-matrix algebras, we show that Bayesian inverses generalize disintegrations in the
same way as Accardi—-Cecchini adjoints generalize state-preserving conditional expectations.
In Section 4, we generalize Takesaki’s theorem [56], which characterizes the existence of
state-preserving conditional expectations by means of the modular group, to non-faithful
states on matrix algebras and multi-matrix algebras. In particular, we find an additional
necessary condition for the existence of such state-preserving conditional expectations, which
is also sufficient together with the usual modular group condition on the support algebras. In
Section 5, as a further generalization of Takesaki’s theorem, we study the existence of Bayesian
inverses with respect to non-faithful states on matrix algebras. Appendix A provides a review
of Carlson’s theorem from complex analysis. Appendix B provides an explicit characterization
(without the aid of modular theory) of the states on multi-matrix algebras (expressed by
means of density matrices and classical probability distributions on the centers) that admit a
state-preserving conditional expectation onto a given subalgebra.

2 Conditional expectations, disintegrations, and the modular
group

2.1 A brief review of definitions

Notation 2.1. In this work, all C*-algebras will be unital, and all C*-subalgebras of a
(unital) C*-algebra will be assumed to have the same unit as the larger C*-algebra unless
specified otherwise. The notation B C A will be used to express that a C*-algebra B is such a
C*-subalgebra of a C*-algebra A. A linear map from a C*-algebra B to a C*-algebra A will
be written as B~ A, while a *-homomorphism will be written as B — A. The letters U, C,
and P will be used to abbreviate unital, completely, and positive. For example, a UCP map is
a unital completely positive map. If A € A, then Ad(A) will denote the CP map that sends
A’ € Ato AA'A*. In calculations, this map may also be written as Ad4. Inner products
will be denoted with angular brackets as ( -, - ) and will be linear in the right variable and
conjugate linear in the left variable. See [45] for background.



Definition 2.2. Let A and B be C*-algebras. A linear map F : B~ A is x-preserving iff
F(b*) = F(b)* for all b € B.

On occasion, we will need to restrict domains and codomains of functions to particular
subsets in order to slightly redefine functions and make rigorous sense of certain compositions.
As such, we include the following notation.

Notation 2.3. Let F' : B~ A be a linear map of C*-algebras. Let S and T be subsets of A
and B, respectively. The notation Fig : S~~~ A will be used to denote the restriction of F
to the subset S. If the image F'(B) of F is contained in 7', then the notation 7| F' : B ~~T will
be used to denote the corestriction of F, i.e., the unique function such that the composite

F
B-X ST A equals F'. The notation 7| Fjg : S ~~1T'is used to combine restriction and
corestriction.

Definition 2.4. Let A and B be C*-algebras, with B C A. A conditional expectation is
a linear map F : A~ A such that

1. FE is a projection onto B, i.e., E(b) = b for all b € B,
2. E is left B-modular, i.e., E(ba) = bE(a) for all b € B, a € A, and
3. E is positive.

If w: A~~C is a state on A, i.e., a positive unital functional, an w-preserving
conditional expectation is a conditional expectation E as above such that wo F = w.

Remark 2.5. Since a conditional expectation E is positive, it is *-preserving. As such,
left B-modularity of E implies right B-modularity. Indeed, if E is left AN/-modular, then
E(ab) = E(b*a*)* = (b*E(a*))* = E(a)b for all a € A and b € B. Hence, E is B-bimodular
in the sense that E(bjaby) = b1 E(a)by for all by, by € B, a € A. Since the unit of A belongs
also to B by our standing assumption on B C A, the map FE is unital and it has operator
norm equal to 1.

Theorem 2.6 (Tomiyama [57]). Let A and B be C*-algebras with B C A. Every projection
of norm 1 from A to B is a conditional expectation and vice versa.

Proof. See also [52, Section 9.1]. O

Remark 2.7. A conditional expectation is automatically completely positive by a theorem of
Nakamura, Takesaki, and Umegaki [37]. In particular, it is a unital Schwarz map, meaning
that E(a*a) > E(a)*E(a) for all a € A. We will discuss generalizations of this result for
finite-dimensional C*-algebras later in this manuscript.

Another concept that appears in this work is that of a disintegration. To define it, we
first recall the notion of a.e. equivalence and a.e. determinism [40].

Definition 2.8. Let A and B be C*-algebras, let w : A ~~C be a state on A, and let
F,G : B~~~ A be x-preserving maps. Then F' is said to be w-a.e. equivalent to G iff any
of the following equivalent conditions hold. !

i. w(AF(B)) = w(AG(B)) for all A€ A and B € B.

!The equivalence between these two conditions is proved in [40, Theorem 5.12].



ii. F(B)—G(B) € N, where
No:={AecA: w(A*A) =0}
denotes the nullspace of w.

In this case, the notation F' = G will be used.

Definition 2.9. A non-commutative/quantum probability space? is a pair (A,w) con-

sisting of a C*-algebra A and a state w : A ~ C. The state w is said to be faithful whenever
its nullspace IV, consists of just the zero vector. Otherwise, w is said to be non-faithful. The
quantum probability space (A,w) is called non-degenerate (resp., degenerate) whenever
w is faithful (resp., not faithful).

Definition 2.10. Let (A,w) and (B,¢) be quantum probability spaces. Let F': B~ A be
a UCP state-preserving map, i.e., wo F =¢.

A disintegration® of (F,w) is a UCP map G : A~ B such that G is state-preserving,
ie,o0G =w, andGoF?idB.

Remark 2.11. Using the notation of Definition 2.9, if G is state-preserving and satisfies the
stronger condition G o F' = idg, then G is called an optimal hypothesis (e.g., [5, 42]).

When dealing with degenerate quantum probability spaces, it will be absolutely necessary
to generalize the notion of a *-homomorphism to allow for an almost everywhere version of it.
This is called a.e. determinism and is defined explicitly for C*-algebras in the following [40,
Section 6].

Definition 2.12. Let (A,w) be a quantum probability space, let B be a C*-algebra, and let
F : B> A be a positive unital map. Then F' is said to be w-a.e. deterministic iff

F(BlBg) — F(Bl)F(BQ) €N, VY B1,Bs € B.

If F'is w-a.e. deterministic, it is not necessarily the case that it is w-a.e. equivalent to a
x-homomorphism [40, Example 6.5]. Nevertheless, for von Neumann algebras 4 and B, it is
equivalent to the condition F(B1Bs)P, = F(B1)F(B2)P, for all By, By € B, where P, is the
support projection of w [40, Example 6.4].

Lastly, we review the Tomita—Takesaki modular operator and the modular automorphism
group for normal faithful states [55]. Other standard references include [10, Ch. 2.5] and
[18, Sections 9.1 and 9.2]. For shorter reviews, we recommend [53] and [61, Section ITL.A.].
However, we simplify the following presentation by specializing to the finite-dimensional
setting.

Lemma 2.13. Let ‘H be a finite-dimensional Hilbert space. Let M C B(H) be a unital
x-subalgebra and assume that there exists a cyclic and separating vector Q € H for M, i.e.,
H=MQ and AQ2 =0 for any A € M implies A = 0. Then the assignment

FTIEENEY,

(2.14)
AQ — A*Q

s a conjugate-linear operator.

2In this case “non-commutative” should be read as “not necessarily commutative.” Furthermore, “quantum”
could also be hybrid quantum/classical.
3The motivation for the terminology is discussed in [43, Appendix A] and [40, Example 7.5].



Proof. The cyclic and separating condition guarantees well-definedness of Sq. The map is
manifestly conjugate-linear. O

Definition 2.15. Let Sq = JQA:;)/Q be the polar decomposition of (2.14), where Agq is
positive definite and Jq is an antiunitary involution.* The maps Aq = S53Sq and Jqo are
called respectively the modular operator and modular conjugation of (M, Q).

Lemma 2.16. Let H, M, and Q2 be as in Lemma 2.15. Then
A = Q, J=idy, and  JoMJg =M,

where M' C B(H) is the commutant of M inside B(H). Furthermore, A% is unitary for all
t € R and the assignment A

is a one-parameter group of *-automorphisms of M. Finally, the induced state

w (Q,mQ)
Mosm&s 21
1212

is a faithful state on M satisfying
wom'EMyg):w vViteR.
Proof. See [10, Thm. 2.5.14]. O

Definition 2.17. The one-parameter automorphism group constructed in Lemma 2.16 is
called the modular automorphism group of (M, Q) inside B(H). More generally, let M be
a unital finite-dimensional C*-algebra and let w be a normal faithful state on M. The modular
automorphism group of (M,w) is the modular automorphism group of (M, Q2), where € is
any pure state representing w (such as from the GNS representation). Since it only depends
on M and w, this automorphism group will be denoted by R > ¢ — mf M) € Aut(M).

In what follows, we illustrate what the modular automorphism group looks like for faithful
states on matrix and multi-matrix algebras over C. In the terminology of [25, Ch. 2|, a multi-
matriz algebra is a finite direct sum of matrix algebras, i.e., an arbitrary finite-dimensional
C*-algebra up to #-isomorphism.

Notation 2.18. For the matrix algebra M, (C), we denote by tr the unnormalized trace (so
that tr(1,,) = m, where 1,, is the identity matrix). When multiple matrix algebras appear in
the same formula, the size m of the trace tr will be clear by the matrices it is evaluated on.

Lemma 2.19. Let p be an invertible density matriz on M := M, (C) with associated faithful
state w := tr(p - ). Then log(p) is a strictly negative operator, i.e., all its eigenvalues are
strictly below 0, and the modular automorphism group of (M,w) is given by

RSt miy,, = Ad(p") = Ad(e"e)),

Proof. See [10, Example 2.5.16]. O

4This follows from the fact that Sq is involutive, namely S3 = idy. Note that the adjoint S& of the
conjugate-linear map Sq is defined by the equation (SGz,y) = (x, Say) = (Say, z) for all z,y € H.




Lemma 2.20. Let w = Y _ypztr(ps - ) be a faithful state on A := @, cx M, (C) =
DB.cx Ac, where X is a finite set, my € N, (pz)zex defines a nowhere vanishing probability
measure on X, and each pgy € My, (C) is an invertible density matriz. Then the modular
group of (A,w) is given by

Ra>t— m’EAw) = @ Ad(p') = @ Ad(eitlog(’)’”)).
zeX rzeX
Proof. Tt follows as in the matrix case [10, Example 2.5.16] by checking that the KMS
condition with respect to w is fulfilled by R > ¢ — @D, x Ad(p¥). O

Remark 2.21. Note that, in the multi-matrix case, the states w corresponding to different
choices of p, >0, Y .5 pz = 1 give the same modular automorphism group of A.

For future reference, we also state and prove some lemmas that will be needed later.
First, we recall a general representation formula for conditional expectations between type
I factors [58, Prop. 2.4]. Given two von Neumann algebras A and B realized on the same
Hilbert space, we denote by A V B the von Neumann algebra generated by A and B, i.e.,
the smallest von Neumann algebra inside the von Neumann algebra of bounded operators
containing both A and B.

Lemma 2.22. Let N C M be a type I subfactor. Namely, N = M, (C), M = M,,(C) and
1 @ M, (C) 2N C M = M(C) ® M, (C), with m = nk, for some n,m,k € N or n,m = occ.
Every normal (not necessarily faithful) conditional expectation E : M ~— M onto N can be

represented as a partial trace. Namely, there is a (not necessarily invertible) density matriz
T € My(C) such that E = tr(7-) ® id,,, where id,, : M,(C) — M., (C) is the identity map.

Proof. For type I subfactors, M =N "M)VN =2 (N NM)@N and N' N M is a type
I factor. The restriction E} : NV N M ~~N' NN = C1,, is a normal state on the relative
commutant. Thus E) is represented by a unique positive, not necessarily invertible, trace one
operator 7 € NN M by the formula

E(A®1,) =tr(tA)1,,

where A € N' N M and tr is the trace on N7 N M = M;,(C). The representation formula has
a unique extension to simple tensors in M by A -bimodularity, namely

E(A® B) = E((A®1,)(1; ® B)) = tr(tA)1, ® B
for Ac N'NM, B €N, thus to M. O

2.2 Disintegrations on matrix algebras

In the first proposition below, we prove several equivalent conditions for disintegrations to
exist on matrix algebras equipped with faithful states. We prove this directly using only
methods of linear algebra and complex analysis (as opposed to the full power of Takesaki’s
theorem and modular theory [56]) because the techniques used here will also be used later in
this work.

Proposition 2.23. Let F' : M, (C) — M,,1(C) = My (C) @M, (C) be given by F(A) :=1;,® A
and let w = tr(p - ) be a faithful state on M,;(C) that pulls back to & = tr(o - ) along F. Let
mEMnk(C),w)’ t € R, denote the modular group associated to (M,;(C),w). Then, the following
conditions are equivalent.



i. The pair (F,w) admits a disintegration.

it. There exists an w-preserving conditional expectation E : My (C) ~~ M, (C) onto the
subalgebra 1 @ M, (C).

iii. There exists an invertible density matriz 7 € My (C) such that p =7 ® 0.

. The modular group menk(C) leaves the subalgebra F(M,(C)) = 1; ® M, (C) C M,,1(C)

invariant for every t € R.

?w)

Proof. Throughout this proof, set A := M,,;(C) and B := M,,(C).

(1 = ii) Let G : B~~~ A be a disintegration of F. Then G o F' = idp by faithfulness of w
and the fact that F is injective. Hence, E := F o G is a UCP map such that E? = F and is
therefore a conditional expectation onto the C*-subalgebra F'(M,,(C)) by Tomiyama’s theorem
(Theorem 2.6).° The state-preserving condition follows from wo E =wo FoG=£(0G =w
because G is a disintegration.

(1 <= 4i) Given such a conditional expectation F, set

E F)~!
Gﬁ:<A;%%;»nk®BﬁﬂﬁLlﬁ ).

Then it immediately follows that G is a disintegration of (F,w).

(1 < i) This follows from [43, Theorem 4.3] and the fact that p is invertible implies 7 is
invertible.

(791 = iv) Suppose there exists a (necessarily invertible) density matrix 7 € M (C) such that
p =T ®o. In what follows, we will first prove p* = 7% ® ¢* for all z € C using Carlson’s
theorem (Theorem A.4). Afterwards, we will express the modular group in terms of this
result and prove it fixes the subalgebra A := 1; ® M, (C). Fix arbitrary vectors v,w € C™*
and define f : C — C by

Co 2z f(2):= (v, p*w) — (v, 7° ® c*w).

Then f is entire since p* = e#108(0) and similarly for 7 and o, which are all well-defined by
the faithfulness assumption. For any z € C,

FLE (I + 7o) el by Cauchy-Schwarz
< (\\6Z1°g(”)}| + He“"g“’HHe“”“”H) o[l wl]
= (e\lelog(p)ll + ellellog(T)lle\lelog(J)H) [ v][[|w]] since HeBH < el Bl
< 2||v||||w|| e~ ogtrollzl, (2.24)

where pg is the smallest eigenvalue of p (and equals the product of the smallest eigenvalues of
7 and o). Secondly, since p is self-adjoint, p = e l0g(p) ig unitary for all ¢ € R and similarly
for 7 and o. Hence, |p| = ||7%]| = ||0®|| = 1 for all t € R and

[f@)] <2follfwl  VteR

5The norm of a UCP map H is always 1 since it equals ||[H(1)| = ||1|| = 1.



by the first line in (2.24). Thirdly, for any [ € N,
pf=rled = f()=0.

Hence by Carlson’s theorem (setting C := 2||v||||w]|, v := —log(po), and 7/ := 0), f = 0. Since
this calculation was independent of v, w € C™, we have p* = 77 ® o for all z € C. Therefore,
by Lemma 2.19,

mléMnk(C),w)(]lk (%9 A) = Adpit(]].k & A) = (Tit & Uit)(]lk (%9 A)(T_it & U_it) =1 ® Ad (A)
for every A € M, (C), which proves the first implication.

iv = iii) Suppose the modular group R > ¢ — m! = Ad(p") leaves the subalgebra
(M (C)w)

W
F(M,(C)) invariant. Since p* = ¢®*1°8(") and p is a strictly positive matrix, the functional
calculus guarantees p? exists for all z € C. By assumption,

[Adpn (1x ® M, (C)), M, (C) ® ]14 =0 VteR. (2.25)

To see that this identity extends to all complex t as well, let v,w € C™, A € M,(C), and
A" € M(C) and define

Cozw f(z):= <v, [P(1r® A)p~ % A ® ]ln]w>.

Then f is holomorphic for all z € C. By assumption (2.25), f equals zero on the imaginary
axis and therefore is identically zero by the identity theorem (Theorem A.1). Since this holds
for all v,w € C™* A € M,,(C), and A’ € M,(C), this proves

p* (1 @M, (C))p* C 1, ®M,(C) VzeC.
Setting z = 1, for each A € M,,(C), there exists a B € M, (C) such that
p(l ® A) = (1, ® B)p.

If we write p as p = Z” Eij ® pij, where E;; are the matrix units in My (C), then this
condition is equivalent to
pijA= Bpij  Vi,j.

Since p is strictly positive, each of the blocks pj; are strictly positive because (v, pv) > 0
for all non-zero vectors v € C™. Hence, pjj is invertible for all j. In particular, we obtain
pllApl_ll = B. Upon plugging this into the arbitrary ¢j equations we obtain

pijA = B,Ol'j = pllApfllpij < p;llpijA = Apilpij VAe Mn((C)

In other words, P1_11 pij is in the commutant of M., (C), which is just C1,,. Thus, there exists a
Aij € C such that pii'pij = Nijln, ie.,

Pij = Aijp11-

Therefore, p can be expressed as the tensor product

11
p = tr(pn) Z )\ijEij X (tr€p11)> =7 ®d
i’j



of two density matrices. The fact that the left factor 7/ is positive is simply because p and
p11 are positive while the fact that it is a density matrix follows from the computation

L=tr(p) =Y tr(py;) = Y tr(hipn) = D Ay tr(pn) = tr [ tr(pn) D AijEi
i i i i

It immediately follows from this that ¢’ = o by the condition w o F' = ¢, which holds if and
only if try, (¢)(p) = o O

Remark 2.26. The equivalence (i < i), under the present faithfulness assumption on w, holds
more generally and with the same proof for unital injective x-homomorphisms F' between
von Neumann algebras, cf. [35, Lemma 7.2]. Under the faithfulness assumption on w, the
equivalence (it < iv) is Takesaki’s theorem [56], which we reproved above for completeness
(passing through 4i7) in the finite-dimensional matrix algebra context. We shall further discuss
and generalize it in Section 4.

A generalization of Proposition 2.23 to the case of non-faithful states (e.g., pure states on
matrix algebras) is not entirely trivial. This is mainly because items #ii and v are problematic
when w is non-faithful—one cannot simply work with the truncated modular group, see
Remark 2.29 below. Nevertheless, items ¢ and 47 above are still equivalent, and a modified
version of item ¢7 holds, as the following proposition shows.

Proposition 2.27. Given the same assumptions as in Proposition 2.23 with the exception
that the state w = tr(p - ) need not be faithful, the following conditions are equivalent.

i. The pair (F,w) admits a disintegration.

ii. There exists an w-preserving conditional expectation E : M, (C) ~~ M, (C) onto the
subalgebra 1 @ M, (C).

iii. There ezists a density matriz T € My (C) such that p=7® 0.

Proof. 1t is easy to see that item 47 implies 7. As for the converse, if G is a disintegration, so
that it satisfies Go F' ? idpr,, (c), it follows that G actually satisfies G o F' = idyy,, () by [43,

Theorem 4.3 (which itself relies on an important result on a.e. equivalence [43, Theorem 2.48]
and on the factoriality of M, (C)), so that ¢ implies ii as well.

The implication (7ii = i) is also easy to see, while for the explicit implication (i = #i7),
with 7 a (not necessarily invertible) density matrix, follows from Lemma 2.22. In more detail,
for finite type I subfactors, every (normal) faithful conditional expectation E : M,,(C) =
My (C) @ M, (C) ~~ F(M,,(C)) = 1} ® M,,(C), with m = nk, by Lemma 2.22 is represented
as a partial trace with respect to a density matrix 7 € My (C). Thus, the condition of E being
w-preserving, i.e., w = w o F, reads

tr(p(A ® B))

tr(p(1 ® tr(tA)B))
tr(r A) tr(p(1x @ B))
tr(7A) tr(oB).

Since the tensor product of the traces on My (C) and M,,(C) is the trace on M,,(C), we get
tr((p—7®0)(A®B)) = 0 for all A, B. Therefore, by the faithfulness of the trace, we conclude
pP=TRoO. O

10



Remark 2.28. One can also directly show the equivalence (i < iii) holds by different arguments
cf. [43, Theorem 5.1].

Remark 2.29. The least trivial condition to generalize to the non-faithful setting is item fv
in Proposition 2.23. One naive replacement for the non-faithful setting would be to work
with the Hilbert space H, := P,C" and the C*-algebra P,M,;(C)P,, where P, is the
support projection of w. On this subalgebra, p defines an invertible element, denoted p;, and
wp = tr(p; - ) is faithful with associated modular group mf PV (C)Po o) However, even
after one makes sense of a condition analogous to invariance under the modular group, this
condition alone does not guarantee the existence of a state-preserving conditional expectation.
More on this will be discussed in Section 4, where we generalize Takesaki’s theorem [56] and
we find the extra condition needed to guarantee the existence of a state-preserving conditional
expectation.

2.3 Disintegrations on multi-matrix algebras

After being exposed to the simpler matrix algebra case, we extend Proposition 2.23 and
Proposition 2.27 to the finite-dimensional C*-algebra case in this section. In particular, we
show the equivalence between disintegrations and state-preserving conditional expectations on
finite-dimensional C*-algebras with not necessarily faithful states. The next general lemma
will be used throughout.

Lemma 2.30. Let F': (B,£) ~ (A,w) be a state-preserving UCP map between quantum
probability spaces. Then the nullspaces satisfy F'(N¢) € N,. Furthermore, if A and B are
finite-dimensional (or more generally, W*-algebras), then F(Pg-) < Py and F(P;) > P,. In
particular, P,F(P¢)P,, = P,,.

Proof. To see F'(N¢) C N,,, let B € B satisfy {(B*B) = 0. Then
0 < w(F(B)*F(B)) < w(F(B*B)) = {(B*B) =0,

where the Kadison—Schwarz inequality for F' was used in the second inequality. From this,
it immediately follows that F (Pgi) € N, = AP}. Since F is *-preserving (because it is
positive), F (Pgi) is self-adjoint and therefore F' (Pél) € P-APZ}. Furthermore, since F
is order-preserving and unital, F’ (Pfi) < 14. But the largest element in PL AP  that is
bounded from above by 14 is precisely P+. Hence, F (Psi) < P}. The claim F(P) > P,
follows immediately from this and the definition of +. Finally, since P, < F (Pe) < 1g4,

applying the CP (and hence order-preserving) map Adp, to this pair of inequalities gives
P, < P,F(P¢)P, < P, which proves the last claim P,F(P¢)P, = P, O

Notation 2.31. The following notation will be used throughout this section. Set A =
@b;_ M, (C), B = @;‘:1 M, (C). A x-homomorphism F : B — A is determined by its
multiplicities {c;; € NU{0}} in the following sense. First, m; = Z;Zl cijnj for every i. As a
result, every element A; € M,,,(C) can be expressed as a ¢ X ¢ matrix

Aiin o A

Ai=| :
A A

11



where the ki-th subblock, A;.x, is a (cixnk) % (ciyny) matrix. A block diagonal matrix, i.e.,
A;jq = 0 for all k # [ will often be denoted by diag(A;:11, ..., Ai) or EE|§:1 A; ;5. Second, up
to unitary conjugation on the codomain, F has the form F(, B;) = @, H; (1., ® B)) =
P, diag(1,,, ® Bi,...,1., ® B;). For convenience, set X :={1,...,s} and Y := {1,... ¢t}
A state w on A will often be decomposed as w = Yy petr(pe - ), with p, € My, (C) a
density matrix and p a probability distribution on X. Similarly, write £ = Zer gy tr(oy - )
for a state on B.

Theorem 2.32. Let F' : B — A be a (unital) x-homomorphism of finite-dimensional C*-
algebras, let w be a not necessarily faithful state on A and let £ := w o F' be the corresponding
state on B. Set N := F(B). Then, the following conditions are equivalent.

i. The pair (F,w) admits a disintegration.
ii. An w-preserving conditional expectation E : A~~~ A onto N exists.

i1. For each i € X and j € Y, there exist non-negative matrices 7;; € M.,,(C) such that

tr (ZTJ> =1 VjeY\N,
i=1

and
t

pipi = FH(ajm; ® 05) = diag(qma ® o1, ..., qre @ 0v) Vi€ X.
j=1

If, in addition, w is faithful, then these conditions are equivalent to

1. The modular group m’EA’w) leaves the subalgebra N C A invariant for every t € R.

Proof. Let Np := {j €Y 1 ¢j=0Vie X}. Note that Np C N,, where Ny is the nullspace
of the uniquely determined probability measure ¢ associated to £ = Zer gy tr(oy - ). This
last fact follows from Lemma 2.30 since F(N¢) € N, and that if F(B) € N, then 0 =
w(F(B)*F(B)) = w(F(B*B)) = {(B*B), which shows that B € N¢. In particular, if FI(B) =
0, then B € N¢. Also note that F restricts to a -isomorphism F : @, ¢y n, M, (C) SN

(1 < i) This equivalence was proved in [43, Theorem 5.108]. In the original proof, one sees
that it is still possible to choose 7j; such that ), 7;; is a density matrix for all j € Y\ Np.
Since Nr C Ny, this allows one to obtain a disintegration of the form

G(A) _ trMCij (©) ((Tij & ]]-nj)Ai;jj) ifjey \ Np (2 33)
s 1 tr(Az-)]lnj lfj € Np ’

smy;
which is {-a.e. equivalent to the formula provided in [43].

(i < i1) Suppose F is an w-preserving conditional expectation onto A. Then, since every
linear map G : A~ B is determined by the values on different factors, set G to be the map
uniquely determined by the two composites

AN @D M, (©)

JEY\NFp
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and
M]l A s M,,,(C).

Then G is a disintegration of (F,w).

(i = ii) Suppose (F,w) admits a disintegration G. Then, Equation (2.33) provides one such
disintegration. Using this formula, one sees that F' o G defines an w-preserving conditional
expectation onto A. Indeed,

(Fo@)(W)=@P > | H Lo, ®trm, o (i © L) Ais)

i'€X i€X \jJEY\Np

Note that the second expression in Equation (2.33) vanishes because F(B) = 0 for all
B € M,,(C) with j € Np. Therefore, the fact that F' o G fixes N follows immediately
from this calculation upon taking A to be in N, which means it must be of the form
Dicx Hjey (Le,; ® Aj), with A; € M, (C).

(tit & dv) If w is faithful, this equivalence follows from a proof analogous to the one in
Proposition 2.23 when combined with Lemma 2.20. O

Remark 2.34. One can also directly prove (ii < 4ii) in Theorem 2.32 by the classification of
not necessarily faithful state-preserving conditional expectations on direct sums of matrix
algebras. This is different from the proof of (i < 4ii) in [43, Theorem 5.108], which uses Kraus
operators and facts about C*-modules. The proof using conditional expectations provides
useful techniques and is given in Appendix B.

Remark 2.35. An analogue of the end of Remark 2.29 applies here as well regarding the
modular group for non-faithful states. We will come back to this in Section 5.

3 On a theorem of Bayes, Accardi, Cecchini, and Petz

3.1 Bayesian inverses

Recent work in categorical probability theory has allowed a potentially powerful and completely
diagrammatic formulation of a version of Bayes’ theorem involving the idea of a Bayesian
inverse [20, 12, 40].° We begin with a definition followed by a partially historical account of
the appearance of this concept, though under different names, in the literature on operator

algebras. We will use interchangeably the notation A Lo BforG: A ~— B, and A S, B for
G : A — B (cf. Notation 2.1).

Definition 3.1. Let B <+ A be a UCP map between finite-dimensional C*-algebras, let
A~ C be a state, and set £ := wo F. A Bayesian inverse of (F,w) is a UCP map

A S5 B such that £(G(A)B) = w(AF(B)) for all A € A and B € B. The notation F will
also be used to denote a Bayesian inverse of (F,w).

6See also [41, Section 3] for a concise review and a subtle distinction between two versions of Bayes’
theorem. The present work only deals with the Bayesian inversion form.
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The equation £(G(A)B) = w(AF(B)), in the form presented above, seemed to have first
appeared in the work of Accardi and Cecchini in 1982 [1], though they did not explicitly
mention any connection to Bayes’ theorem. Indeed, they were mainly concerned with
faithful states w and &, modular theory, and generalizing Takesaki’s theorem. In the case
of faithful states, they showed that a Bayesian inverse is a generalization of the notion of
a state-preserving conditional expectation by extending a theorem of Takesaki [56], where
Takesaki’s theorem was the special case where F' is a unital injective *-homomorphism
(which corresponds to a subalgebra of A). In fact, they introduced a more general notion of
conditional expectation (called the -conditional expectation in [1]), which always exists in
the not necessarily commutative setting, even when a state-preserving conditional expectation
does not.

In follow-up work, Accardi and Cecchini [2] and Frigerio [19] continued investigations with
this generalized conditional expectation, providing further examples and properties. Accardi
and Cecchini proved that the generalized conditional expectation also specializes to the usual
notion of classical conditional expectation for commutative algebras (see also [11], where a
lucid exposition is given in the finite-dimensional setting). In 1984, Petz generalized this
further to allow for UCP maps (not necessarily subalgebra inclusions), and provided many
properties of the generalized conditional expectation [47], which was eventually called the
transpose channel [38]. This map is known as the Petz recovery map due to all the work
by Petz that followed in subsequent decades [48, 49]. The Petz recovery map has taken
precedence in the quantum information community, particularly in recent years due to the
intimate connection between the existence of recovery maps and saturation of certain measure
distances (like relative entropies, f-divergences, and data-processing inequalities) between
quantum states [49, 15, 29, 30, 60, 54, 28|.

Both Bayesian inverses and Petz recovery maps agree a.e. in the case of commutative
algebras, so that both can technically be viewed as generalizations of Bayesian inversion to
the non-commutative setting. However, they are in general different (not even a.e. equivalent)
on non-commutative algebras when the corresponding states are not faithful. For some
illustrative examples exemplifying the difference in Bayesian inference in quantum systems,
see [41]. In this paper, we will mainly focus on the Bayesian inverse, which we feel deserves
further study. But before getting there, we will extend some of the results of [44] regarding
the existence of Bayesian inverses.

3.2 Bayesian inversion and the modular group

Proposition 3.2. Let B := M,,(C) ~5~ M,,(C) =: A be a UCP map and let A Bowil /SN
be a faithful state on A, with pullback § == wo F =: tr(o - ) that is also faithful. Then the
following are equivalent.

i. A UCP Bayesian inverse of (F,w) exists (and is necessarily unique).
it. F(ocB)p = pF(Bo) for all B € B.

iti. F acts as an intertwiner for the modular groups of w and &, i.e., F'o sz 6 = mIEA ) © F
for allt € R.

We will call the intertwining condition in item ¢ of Proposition 3.2 the Accardi—Cecchini
(AC) condition.
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Proof. The equivalence between items 7 and i is covered by the results in [44, Section 5].
The equivalence between i and #i¢ is proved in [1, Proposition 6.1] (see also [4, Lemma 2.5]).
Nevertheless, we feel it is instructive to see a direct proof of the equivalence between iz and
7ii. We first prove ¢ii implies ii. Since

mfA’w) = Ad(pit) and mi&&) = Ad(ait)
for all t € C, item 4ii reads ‘ ' ' '
F(O_ztBo_fzt) — pth(B)pfzt

for all t € R and B € B. By finite-dimensionality, this equation also holds for all ¢ € C by the
identity theorem (Theorem A.1). Hence, setting t = —i gives F(cBo~!) = pF(B)p~! for all
B € B. In particular, choosing B of the form Bo gives F(0B) = pF(Bo)p~!. Multiplying by
p on the right gives condition 4. The direction ¢ implies ¢i¢ is a bit more involved. First,
note that F(¢B)p = pF(Bo) for all B € B implies

F(o*B)pk = pF(¢* 'Bo)p*~t = ... = p*F(Bo")

for all B € B and for all k € N. Note that this is also true when k£ = 0. Fixing B and vectors
v,w € C", define

C3 2z ®(2) == (w|F(6°Bo™ %) — p*F(B)p *|v).
Then ® satisfies the conditions of Carlson’s theorem (Theorem A.4) with constants
v = 2max{|[logo|, [logpll},  C:=2|F|IBll[v[[lw],  +:=0

and noting that the map B 3 B — ¢*Bo~? has norm bounded by e2/#/llogll (the rest of the
argument follows the same ideas those from the proof of Proposition 2.23). Since v, w, and B
were arbitrary, this proves iii. ]

The previous result also generalizes to finite-dimensional C*-algebras.

Proposition 3.3. Let B := @, ¢y M, (C) N DBocx M, (C) =: A be a UCP map of

finite-dimensional C*-algebras and let A m C be a faithful state on A, with

pullback £ .= wo F =: Zer qytr(oy - ) that is also faithful. Write Fpy : M, (C) ~~ M, (C)
for the map yy,, (C)JF{Mny((C) (cf. Notation 2.3). Then the following are equivalent.

i. A UCP Bayesian inverse of (F,w) exists (and is necessarily unique).
ii. Foy(oyBy)ps = puFey(Byoy) for all By, € M, and for allz € X, y €Y,

iti. F acts as an intertwiner for the modular groups of w and &, i.e., F o mEB 6 = mEA W) © F
for allt e R.

Proof. The equivalence between i and i is covered by [44, Section 6]. Therefore, we prove ii
is equivalent to 7ii. By Lemma 2.20, the modular groups associated to w and £ are given by

mfA,w) = @ Ad(pﬁf) and mEB,g) — @Ad(a;f)
reX yey

15



for all t € R, though these automorphisms are well-defined even for ¢ € C, provided that one
uses the inverse operator rather than the adjoint (the automorphism is not a #-isomorphism
in general). A quick calculation shows that i holds if and only if

ny(G;tByay_it) = ?ny(By)p;it

for all B, € M,,,, for all t € R, and for all z € X and y € Y. Thus, the same techniques from
the proof of Proposition 3.2 apply here. 0

These two results show that the condition F(0cB)p = pF(Bo) for matrix algebras (and
the more general equation for direct sums) is equivalent to the Accardi-Cecchini condition
for the modular group.

Remark 3.4. Note that the condition F(0B)p = pF(Bo) is computationally easier to check
than the modular group condition for two reasons: (1) a single time suffices and (2) there is
no need of taking exponentials of density matrices. In fact, for B = M,,(C), one needs to only
check at most n? equations since the condition F'(¢B)p = pF(Bo) is linear in B, so that one

can plug in matrix units B = EZ(J") (or any basis) to check this condition.

More still needs to be said in the non-faithful setting, where an equation such as F'(oB)p =
pF(Bo) still makes sense, while the modular group condition does not. This will be elaborated
upon in the remaining subsections.

3.3 Bayesian inverses and disintegrations

Bayesian inverses are generalizations of disintegrations just as the adjoints of Accardi—Cecchini
are generalizations of state-preserving conditional expectations. This section will explain this
in more detail as well as provide some of the functorial properties of Bayesian inverses [20, 40].

Proposition 3.5. Under the same assumptions as in Proposition 2.23, all conditions are
equivalent to

v. The pair (F,w) admits a Bayesian inverse (or any of the equivalent conditions in Propo-
sition 3.2).

Rather than proving this, we state a much more general result that is valid for not
necessarily faithful states.

Theorem 3.6. Let (5,§) L (A,w) be a state-preserving UCP map between two finite-
dimensional non-commutative probability spaces with A = @;_; My, (C) and B = @;:1 M, (C)
for some finite sets X and Y. Then the following conditions are equivalent.

i. The pair (F,w) admits a Bayesian inverse and F is w-a.e. deterministic in the sense of

Definition 2.12.
it. The pair (F,w) admits a disintegration.
Proof. This follows from [40, Corollary 8.6]. O

Remark 3.7. If w and & are faithful, the conditions in Theorem 3.6 are equivalent to any of the
conditions in Proposition 3.3 and therefore also to the conditions in Theorem 2.32 because the
existence of a state-preserving UCP left-inverse between non-degenerate quantum probability
spaces guarantees that F'is an injective *-homomorphism, see e.g. [36, Theorem 5].
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However, if the states are not faithful, then A/ := F(B) need not be a subalgebra of A even
if the disintegration condition holds, and so it is not even possible to formulate conditions i1,
119, and tv of Theorem 2.32 as stated. In this way, the notion of disintegration generalizes
that of conditional expectation since it requires fewer assumptions and uses less structure
explicit in its definition.

It is well-known that conditional expectations obey functoriality /compositionality. The
same can be said of disintegrations and Bayesian inverses. Since we will need these statements
in some theorems later, we provide them now.

Proposition 3.8 (Compositional properties of Bayesian inverses). In what follows, let
(C,(Q), (B,&), and (A,w) be finite-dimensional quantum probability spaces.

i. The identity map id 4 is a Bayesian inverse of (id 4, w).

ii. Let (C,() Ly (B,€) L (A,w) be a pair of composable state-preserving UCP maps that
admit Bayesian inverses (A,w) ~2 (B, €) BN (C,¢). Then G o F is a Bayesian inverse

of (Go F,w).

iii. Let (B,&) ~5 (A, w) be an invertible UCP map, whose inverse F~ is UCP. Then F~
is a Bayesian inverse of (F,w).

Remark 3.9. We have been careful about the statements of Proposition 3.8 when the states
are not faithful. The following comments justify this caution.

i. If id4 is a Bayesian inverse of (A,w), then id 4 = id4. In other words, the two maps need
not be equal on the nose when w is not faithful. However, if A is a matrix algebra, then
id4 = id 4, though this is a non-trivial fact [43, Theorem 2.48].

ii. If F o G denotes a Bayesian inverse of (F'oG,w), then F o G = GoF. In other words, the

composite of Bayesian inverses need not equal an arbitrary Bayesian inverse of (F o G,w),
but they are a.e. equal.

i73. Note that I’ and F~! being UCP automatically implies F and F'~! are %-isomorphisms
(for a string-diagrammatic proof, see [40, Corollary 4.15]).

4 Takesaki’s theorem for non-faithful states

If w is a state on a finite-dimensional C*-algebra A with support projection F,, that is strictly
less than 14, then the modular automorphism group as in Definition 2.17 does not exist.
Instead, one can either define the modular automorphism group on the support algebra P, AP,,,
where the state w restricts to a faithful state, or one can define a modular automorphism
semigroup on A. If now B L, Ais a unital injective *-homomorphism and £ := w o F' is the
induced state, invariance of the subalgebra F'(B) under the modular group is not enough to
guarantee the existence of a state-preserving conditional expectation. In fact, it need not be
the case that the induced map P:BP: ~ P, AF, is even a *-homomorphism, so asking for
the invariance of a subalgebra on the supported algebras under the modular group does not
even make sense. The purpose of this section is to address this and generalize Takesaki’s
theorem [56], which relates the existence of state-preserving conditional expectations to
the modular group, to the setting of (not necessarily faithful) states on finite-dimensional
C*-algebras.
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4.1 Matrix algebra case

Definition 4.1. Let M ~%» C be a state on a finite-dimensional C*-algebra M, let P, be the
projection of ¢, and set Mp, := P, MP, to be the support algebra associated to (M, p)
(this is also called the corner algebra in the literature). Also, let €p, : M~~~ Mp, be the
corestriction rqp, | Adp, map, which is UCP.

It is immediate from this definition that the diagram

(:é:;;;;;Q;::jd éepw (4.2)

Mp,
commutes, where ¢} := @ o tp, is the induced faithful state from the (non-unital) inclusion
LP
./Vl P, L—g ./\/l.

Although the modular group is not defined for ¢, one can still define a closely related
object with many similar properties since the modular automorphism group associated to ¢
is well-defined. Indeed, set

t R t
R3tm m(M#P) = lp, © m(PsaMPvaor) © Q:RP'

Although not an automorphism group, this provides a family of partial isometries on M that
agrees with the modular group when restricted to B, MP, and sends the remaining vector
subspaces RPMP;-, P;;MPW and Pj;MPé to zero.

As such, this family of maps will be called the modular automorphism semigroup
associated to the state.

In summary, the modular automorphism group on the support algebra and the modular
automorphism semigroup on the original algebra are related by the commutative diagrams

Mad,) Ma,g)

% N
Me—mmM MM
J\ §/¢P¢ and ¢P¢§/ J
M, ¢ M, M, e Mp,

(Mpg 1) (Mpg¢1)

for all t € R.
Notation 4.3. It will be helpful to set up the following notation for the next few subsections.

Let (B,¢) L (A,w) be a state-preserving UCP map. Let R := P, and Q := P: be the

¢
support projections. Let B BN Bg and A BN Apr be the projections onto the support
79
algebras. Finally, let Bg -~~~ Ag be the induced map given by F}? :=Cro Fojg, where

J . . . .
Bo <—Q> B is the non-unital inclusion.

Lemma 4.4. In terms of Notation 4.3, the map Fg is UCP and the diagram

At

\w Vad

13

Cr \N(CJ[J Cq
N

I S

AR&VV\;:@VMBQ

R
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commutes.

Proof. Lemma 2.30 implies F g (Q) = RF(Q)R > R. However, since F ]g is the composite of a
sub-unital map, the non-unital inclusion Bg — B, followed by two unital maps, F' and Cg,
it follows that Fg is sub-unital, i.e., Fg(Q) < R. Hence Fg(Q) = R so that Fg is unital.
Since Fg is the composite of CP maps, F' g is UCP. Finally, the diagram commutes because

RF(B)R = RF (QBQ +QBQ +QtBQ + QLBQL) R
= RF(QBQ)R+ RF(QBQT)R+ RF(Q*BQ)R+ RF(Q*BQH R
—— ———— ———
cARL €RL A €RLARL
= RF(QBQ)R
= FR(QBQ). 0

Lemma 4.5. In terms Notation 4.3, the Accardi—Cecchini (AC) condition on the support
algebra is equivalent to

Adp, oF om{ =m/, 0 F o Adp, VteR. (4.6)

Proof. Indeed, temporarily let i : Ap, — A and j : Bp, < B denote the non-unital inclusions.
If the AC condition holds on the support algebras, then

AdpwoFomé:jo€pwoFoz’omérijP)E
. P,
:jonjomgo(’:Pg
. P,
:jomfdroFPpo:p5
:jomZIOQPWOFOAdpg

:mfquoAdpg.

Conversely, if (4.6) holds, then

Pe
Fp

w

omg:@pwoFozi(/’:Eomgoj
=Adp,

:Q:PWOAdPWOFomZOj

= €p, oml, 0 FoAdp, oj

——

=J
. t .
=Cp, ozomwroQ:Pw oFoj
Y
:ldAPw

=mt, o Fpt. O
Definition 4.7. Both conditions from Lemma 4.5 will be referred to as the Accardi—

Cecchini (AC) condition.

Although the AC condition is a consequence of the Bayes condition, which reads w(AF(B)) =
¢(G(A)B) for all A € A and B € B, it is not equivalent to the Bayes condition. In fact, even
if ' is an injective *-homomorphism (and hence describes a unital subalgebra inclusion), then
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the invariance of the subalgebra F'(B) under the modular automorphism semigroup (which
is equivalent to the AC condition) is not sufficient for the existence of a state-preserving
conditional expectation, when the states in question are not faithful. We will soon show that
demanding Fg to be a x-homomorphism is a necessary condition, and combined with the AC
condition it is also sufficient.

Before analyzing the general case, we first consider the more explicit case of (unital)
inclusions of matrix algebras. In terms of Notation 4.3, let A = My, (C) and B = M,,(C),
with £ € N, and F(B) = 1, ® B for all B € B. Represent the states w and &, respectively on
My, (C) and M, (C), by density matrices as w = tr(p - ) and £ = tr(o - ). In this case, Fg is
given by

FZ : M,(C)g ~~ My (C)g

QBQ — R(1;, ® QBQ)R. (45)

Theorem 4.9 (Non-faithful state generalization of Takesaki’s theorem on matrix algebras).
Given the data set up in the previous paragraph, the following are equivalent.

i. There exists a unique w-preserving conditional expectation Mkn(C)vgkan((C) onto the
subalgebra 1 @ M, (C) = M, (C), i.e., (F,w) admits a disintegration.

1. The pair (Fg,w[) has a disintegration.

i15. The map Fg defined in (4.8) is a unital x-homomorphism and satisfies the Accardi—
Cecchini condition, i.e.,

¢ Q_ pQ Jmt
MMy (C) rowy) © Fp=rgo MM, (C)g.&) VteR. (4.10)

Proof. The proof of item ¢ implies item ¢4 will be provided in much greater generality in
Theorem 4.14. The equivalence between items 47 and iii proceeds as follows. First, note
that the Bayes condition is equivalent to the AC condition by Proposition 3.5. Therefore,
Theorem 3.6 shows items 7 and 477 are equivalent since the state w; is faithful.

The only thing left to prove is therefore the implication (iii = i), which proceeds as
follows. We will freely use the equivalence between items ¢ and #4i. Since 1 ® Q > R by the
state-preserving condition on the inclusion F', the non-unital inclusion Mg, (C)r — My, (C)
factors through My,(C) ® M,,(C)q. Therefore, the composite F' g followed by this non-unital
inclusion gives a non-unital *-homomorphism M, (C)g — M(C) ® M,,(C)q. Hence, there

exists a projection S € My (C) and a unitary R(C* ® C") Y, (S ® Q)(C* ® C") such that
(AdU oFg) (QBQ)=S®QBQ Y QBQ e M,(C)o. (4.11)

Since 1, ® Q > R, the vector spaces R(C* ® C") and (S ® Q)(C* ® C™) are both subspaces

of (1 ® Q)(C* ® C"). Hence, there exists a unitary extension (1 ® Q)(C* @ C") Y,

(1; ® Q)(CF ® C") acting as U on the subspace R(C* ® C"). Thus, V can be viewed as an
element of M (C)®M,,(C)q. Then L := VR € M (C)®M.,,(C)q is a partial isometry such that
1(s2Q)(Cracr)Lir(crecn) = U as alinear operator. In particular, L(1x®QBQ)L* = SRQBQ
for all QBQ € M,,(C)g by (4.11).

In the next step of the argument, we will show Ad; = Adwgg, when restricted to
1, ® M, (C)q, for some partial isometry W € M(C) such that WIWV* = S. Write L =
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>0 Wa ® V,, as a generic tensor product, where the sum is over a finite index set and where
Weo € My(C) and V,, € M,,(C)q for all o. By assumption, Zaﬁ I/VOJ/V[}k ® VaYVE =5SY
for all Y € M,,(C)g. Let {eZ(Q) } be an orthonormal basis of QC™ with corresponding basis
{EZ(]Q) = |e§Q)>(e§-Q)|} of M,(C)g so that i,j € {1,...,rank(Q)}. Then the previous equation
is equivalent to >, s WoWj; ® VaEZ-(J(-?)V* S® E(Q) for all ¢, 5. Let (V, )(] )= = (e (Q)\V |e )
be the corresponding matrix entries of V., with v € {a B}. Therefore, expanding the left- hand
gives

(@ _ V@ (@) >
SOED =3 WoWj @ VuE? VB—ZZ I WaWs @ ByY) Vi,
7ﬁ 7ﬁ7‘

By linear independence of the matrix units,

S V) Ve DWalg = S (Vi) @ (Ve) D610y WaW5 Vi,
a’/B 76

W= S = 3 50

Setting

we conclude

Adweo(1y,®Y) =Ad (1, ®Y) VY € M, (C)g.
Note that W is a partial isometry since WW* = 5. Hence, there exists a unitary extension
W € My,(C) such that”
Adg o (FR(Y)) = Adweo(FR(Y) = S@Y
for all Y € M,,(C)g. Now, since W is unitary, the inverse of Adgrg o 1s given by

-1 .
AdW@Q Ady. 90

as *-isomorphisms from the algebra M, (C) @M., (C)q to itself and satisfying Ad;~V1®Q(S RY) =
R(1y ®Y)R for all Y € M,,(C)g, i.e.,

FE(Y)=W*SW Y
for all Y € M,,(C)q. In particular, taking Y = @Q gives
R=T®Q, where T :=W*SW.
Therefore, My, (C) g = My (C)r © M, (C)g and FE(Y) =T @Y for all Y € M, (C)g.

Now, by i3, [1, Proposition 6.1] (see also [4, Lemma 2.5]) implies the existence of a

Bayesian inverse M, (C)r SO M,,(C)g of ( R,w). Hence, G is a disintegration by [40,
Proposition 7.31] (see also Theorem 3.6). Proposition 2.23 then implies p = 7 ® o for some
invertible density matrix 7 € M (C)7. Viewing this equation in M, (C) shows that p = T® 0o
and the map My, (C) ~%» M,,(C) defined by E := try, () (T ® 1y, - ) is a disintegration, which
defines a state-preserving conditional expectation. Uniqueness of this expectation follows
from [43, Theorem 4.3], for example. O

"Warning: It need not be the case that Adgeo(le ®Y) = Adweq(Lle ®Y) for all Y € My (C)q unless
W was already unitary to begin with. It is only true that AdW®Q and Adwgq are equal when acting on the
subalgebra My, (C)r.
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In order to show the necessity of both the Accardi-Cecchini (AC) condition and F g
being a *-homomorphism in Theorem 4.9, we provide two counterexamples where only one of
the two conditions holds, showing that there does not exist a state-preserving conditional
expectation.

Ezample 4.12 (AC does not hold, but F}? is a *-homomorphism). It is enough to take a faithful
state on My, (C) in such a way that the Takesaki condition is not satisfied (i.e., the density
matrix is not a pure tensor) and then Fg is just the injection, which is a *-homomorphism of
course.

Ezample 4.13 (AC holds, but F g is not a *-homomorphism). This example is illustrated in [43,
Theorem 4.3] and it is about the EPR state. Let My (C) <% M, (C) be the inclusion and set

00 00
pi=1 [8 A 8] , which is the projection onto the subspace generated by %(61 ®ey—ea®e).
00 00

the support algebra of My(C) becomes isomorphic to C because the support of p is one
dimensional, while the support algebra of My(C) is itself, since the state 9 is faithful on it.
Moreover since C is commutative, and since v is tracial, we have that the AC condition is
satisfied (the modular groups both act as the identity), but Fg cannot be a *-homomorphism,
since it is a map from a higher dimensional simple algebra to a lower dimensional one. In this
case a direct proof of the non disintegrability of the system is given in [43].

4.2 Multi-matrix algebra case

We now generalize Theorem 4.9 to the setting of arbitrary finite-dimensional C*-algebras.
Since the relationships between conditional expectations, disintegrations, Bayesian inverses,
and the AC condition have already been established, we state the result in its greatest
generality.

Theorem 4.14 (Non-faithful state generalization of Takesaki’s theorem on finite-dimensional
C*-algebras). In terms of Notation 4.3 with A, B arbitrary finite-dimensional C*-algebras and
w, & states, as well as assuming F is a unital x-homomorphism, the following are equivalent.

i. The pair (F,w) admits a disintegration, i.e., there exists a w-preserving conditional
expectation from A to itself onto the subalgebra F(B).

i. The pair (Fg,w[) admits a disintegration. In particular, Fg 18 a unital injective *-
homomorphism.

Remark 4.15. In contrast to Theorem 4.9, The conditional expectation in item ¢ of Theo-
rem 4.14 need not be unique. Indeed, let m,n € N, with n > 1, and consider the unital
inclusion M, (C) & C — M,,,(C) & M,,(C). Let w be the state on M,,(C) & M,,(C) uniquely
determined by sending A @ B to w(A @ B) := tr(pA) for some density matrix p € M,,(C).
Then id,, ®¢ : M;,,(C) & M,,(C) ~~M,,,(C) & M,,(C) defines an w-preserving conditional
expectation onto the subalgebra M, (C) @ C for any state ¢ on M, (C).

Proof.

(i = ii) Let F be a disintegration of (F,w). Set G := €g o F o jp. We claim that G is
a disintegration of (F' g, wr). We will prove this in three steps by first showing G preserves
states, then showing G is unital, and finally showing that G is a left-inverse of Fg.
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Step 1. G preserves states because

§(G(A4) =& (QF(RAR)Q) by definition of G
=¢(F(RAR)) by (4.2) for &
= w(RAR) since F is state-preserving
= w(A) by (4.2) for w

for all A= RAR € Apg.

Step 2. Unitality of G, meaning G(R) = Q, then follows from G(R) = QF(R)Q = Q, where
the second equality holds by Lemma 2.30 since F' is UCP and state-preserving.

Step 3. The condition G o Fg = idg,, for G to be a disintegration®

is equivalent to QF(RF(B)R)Q = QBQ for all B = QBQ € Bg. Since every B can
be written as a linear combination of at most four positive elements, it suffices to
prove QF(RF(B*B)R)Q = QB*BQ for all positive B*B € Bg. For this, we first
prove that QF(RF (B*B)R)Q > QB*BQ (and afterwards, we will prove the reverse
inequality). This follows from

QF(RF(B*B)R)Q > QF (RF(B)*F(B)R)Q by Kadison-Schwarz for F

= QF((F(B)R)" (F(B)R))Q

> QF(F(B)R)"F(F(B)R)Q by Kadison-Schwarz for I’

= (F(FB)R)Q ’ F(F(B)R)Q)

= (BF(R)Q)*(BF(R)Q) by right &-a.e. modularity” of F

= QF(R)B*BF(R)Q

= QF(R)QB*BQF(R)Q since B*B = QB*BQ

=QB*BQ since QF(R)Q = Q by Lemma 2.30.

Using this, we can prove the other inequality as follows:
0< Q(QF(RF(B*B)R)Q . QB*BQ) since QF(RF(B*B)R)Q > QB*BQ
=w(RF(B*B)R) — {(QB*BQ) since o F = w
= w (FR(QB*BQ)) - £(QB*BQ)  since R < F(R) by Lemma 2.30
=0 since w; o FY = ¢|.

Since & is faithful and the above argument is positive, this proves QF(RF (B*B )R) Q=
QB*BQ for all B € B. As stated above, since every element of By can be written as
a linear combination of positive elements, this proves G o F Q idp, and completes

the proof that G is a disintegration of (Fg, wp).

8This is an equality because the states are faithful on the support algebras.

9 Assuming the states to be faithful and F' to be a unital injective *-homomorphism, this property (a.e.
modularity) is also called left-inverse property in [14, Def. 3.2]. Under the same assumptions, it is known to be
essentially equivalent to the conditional expectation property, see [35, Lemma 7.2].
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(i < ii) We will follow Notation 2.31 closely with some minor differences to avoid clutter.
Since *-isomorphisms are automatically disintegrable, it suffices to assume

P Min, (C) =: A& B := (DM, (C)
zeX yey

is given in standard form as

Fl&B, | =P H(., ©B,).

yey zeX yey

The states w and £ have support projections R = @_ .y R, and Q = @yey Qy, respectively.
By Lemma 2.30, Ry < H ey (Le,, ® Qy) for all z € X. In a similar way, if

AL ¢=PM., (C)

T,y
is the map
¢ (EB C‘“’) =@ HC,21.,)
T,y rzeX yeY

associated to the commutant of F'(B), then we also conclude R, < Hi, ¢y (57, ® 1n, ), where
S, is the support projection of the induced state w o G restricted to M, (C). Since these
commute with each other, we arrive at

R, < HH(S., ® Q)

yeYy

for every x € X. In particular, there exist projections R;, € M., (C) ® M, (C) such that
R, = EElyey R, for all z € X. Because of this decomposition,

R,C™ = ) Ruy(C™v @ C™)
yey

for all z € X.
Now, using the assumption that Fg is a unital *-homomorphism, there exists a collection
of projections Sz, € M,,,(C) and a collection of unitaries

R,C™ 25 (Sry @ Qy)(Cv @ C™)
yey
such that
Bo> B (AduoFf) | @B, | = D HH(Se® By,
yey zeX yey

where U := @xe x Uz. Hence, by the decomposition of R, into EE|er R;, and the fact that
UpRpyU; = Szy ® Qy for all x,y, we conclude that U, itself breaks up as a direct sum of
unitaries'® U, = @er Uy with each unitary acting as

Rggy(cmy ® Cny> M (Smy ® Qy)((cczy ® C"y>-

0Recall, if ¥V C W is a subspace of a finite-dimensional Hilbert space with corresponding orthogonal
projection Py, and if U : W — H is a unitary map, then U(V) has orthogonal projection UP,U™.
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Hence, there exist unitary extensions

(Ley, ® Q) (C™ ® C™) 7% (L, ®Q,)(C © C™)

of the Uy, and which can be viewed as elements of M, (C)®M,, (C)q,. Thus, Vy := @B, cy Vay
is a unitary extension of U, for each x € X. Set L,y := V,y Ry, and L, := V,R,. At this point,
we can follow a similar analysis that was done in the case of factors to show the existence
of a partial isometry Wy, € M, (C) such that W, W7 = S,y and Ad,, = Adw,,cq, as
CP maps on M, (C) ® M, (C). Hence, there exist unitary extensions ny € Me,, (C) of the
Wy such that

Ady; oo, (Ray(Le,, @ By)Ruy) = Say @ By

for all B, € M, (C)q,. Setting Ty, := W;yswyﬁfwy, we conclude that Ry := Ty ® Q. This
automatically implies that

Fg @By :@HH(Txy(@By)

yey zeX yeYy

for all B =P, By € B, My, (C)q,-

Finally, since Fg is disintegrable by assumption, there exist invertible positive matrices
Toy € Mg, (C)1,, such that

Pz = Hﬂ(Twy ® oy)
yey

for all z € X, which is a relation that also therefore holds in A, = M,,, (C) for each
x € X. Note that in this expression, the probabilities were included inside the definitions
of p, and oy to avoid clutter. Hence, p, and o, are not necessarily density matrices but

are the associated positive operators on their respective components. By Theorem 2.32, a
disintegration F' : A — B of (F,w) exists. O

Remark 4.16. Note that the proof of (i = i) in Theorem 4.14 did not use the fact that F
is a x-homomorphism nor did it use the finite-dimensionality of the algebras A and B. All
that was needed was that F' is a state-preserving UCP map between von Neumann algebras
equipped with normal states.

5 Non-commutative Bayesian inversion on matrix algebras

Similar to the case of disintegrations and state-preserving conditional expectations, consider
now the more general case of a state-preserving UCP map (B, €) ~%+ (A, w) between C*-
algebras equipped with states. The following theorem is an enhancement of the quantum
Bayes’ theorem for matrix algebras from [44] combined with the results of the present paper. If
A is a matrix, we use the notation A to indicate its Moore-Penrose inverse (pseudoinverse) [46],
i.e., the unique matrix such that

AAA=A, AAA=A, (AA)*=AA, and (AA)*=AA.

It follows from this definition that AA and AA are orthogonal projections onto the range of
A and A*, respectively.
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Theorem 5.1 (Non-commutative Bayesian inversion on matrix algebras). Let B Lo Abea

UCP map between matriz algebras A := M, (C) and B := M,,(C), let A L2 Chea state,
and set { :=woF =tr(o - ). Let P,, and P¢ be the support projections of w and &, respectively.
Let GE,GR : A~ B be any two unital linear maps satisfying P-GF(A) = GF*(pA) and
GER(A)P; = F*(Ap)a for all A € A (such unital linear maps are called left and right Bayes

maps, respectively'! ). Finally, set'?
dim(A) dim(A)
— (M) o =~ (m) — (m) o ~ g (m)y pL
A= Y  EV@F(pE;")P:  and B:= Y  EV@6F(pE;")P;
ij=1 ij=1

Then the following conditions are equivalent.

i. The map Adp, oGR (or Adp, oG ) is *-preserving.
ii. Adp, oG" = Adp, oG".
iz, A* = 2.
w. PeF*(pA)o = oF*(Ap)Pe for all A € M,,(C).
v. F(6B)p = pF(Bo) for all B € P¢BPFr.
vl EF*(pEgn)Pj)Pg = 0 for all i,j and the map Fg is an intertwiner for the modular

groups associated to the states on the support algebras, i.e., Fg ) mé[ = mfu[ o Fg for all
teR.

vii. The map Adp, oG® (or Adp, oG*) is UCP.

When one, and hence all, of these conditions hold, a formula for G := Adp, oGl = Adp, oGE
s given by

G:Ad\/?OF*OAd\/ﬁ

Moreover, if any (and hence all) of the above conditions hold, then the following additional
conditions are equivalent.

(a) A Bayesian inverse of (F,w) exists.
*¢)| 1
(b) tra (% ms) < Pt

In other words, the AC condition on the support algebras is not enough to guarantee the
existence of a Bayesian inverse when the states are not faithful. Two additional constraints
are needed, namely

GF*(pES"PH)Pe=0 Vij and tra (%*QL%) < P-.

This is to be contrasted with the previous theorems on disintegrations.

" The left Bayes map satisfies the Bayes condition w(AF(B)) = &(G*(A)B) for all inputs, while the right
Bayes map satisfies the reversed Bayes condition w(F(B)A) = £(BG(A)) for all inputs [41].

2Notice that 2 is the the Choi matrix associated to Ad Pe oG* and 2* is the Choi matrix associated to
Ad Pe oGE.
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Proof. The theorem contains two sets of claims. The equivalence between items i, v, v,
and vii together with the resulting formula for G was proved in [44, Proposition 5.12].13
Furthermore, the equivalence between these items and items 47 and ¢ can be easily deduced
from this. Hence, the first set of equivalent conditions will be established by proving that
item v7 is equivalent to any of the other conditions. We prove item vi is equivalent to item 7v.
We first note that

pE"Y = p(Py + PHEYY = pPES" = pPLELV P, + pPLEJY PE.

Hence, if we take A = P, E(m)PJ-, item 4v implies UF*(pE(m)PJ‘)P = 0. Moreover, the
reverse implication holds if matrices in item v are of the form AP}. Since F is *-preserving,
the same is true for matrices of the form P A. In the remaining case, for matrices of the form
A = P,AP,, Proposition 3.2 completes the proof, since on the support algebra P,M,,(C)P,
the state w is faithful and Bayesian invertibility there (which is equivalent to item iv) is
equivalent to the Accardi—Cecchini condition.

Finally, the equivalence between conditions (a) and (b), provided that the stated assump-
tions hold, were established in [44, Theorem 5.62]. O

Remark 5.2. The theorem suggests that the AC condition does not suffice to guarantee the
existence of a Bayesian inverse F to (F,w). This turns out to indeed be the case. Even if

items 4 through vii hold, it is not automatic that the condition tr4 (%*ﬁl%) < ng- holds. A

simple explicit counter-example is provided in [44, Example 5.85]. In particular, we cannot
simply extend G arbitrarily to a UCP map of the form

G(A) = G(A) + P¢(A)

for some state B ~>» C as is often done for Petz recovery maps in the literature [29, 30]. The
reason is because such a G need not satisfy the Bayes condition (which is stronger than the
AC condition). This should be compared with Theorems 4.9 and 4.14, where disintegrability
on the support algebras sufficed for disintegrability on the original algebras.

Remark 5.3. Although every UCP map B L+ A between finite-dimensional C*-algebras has
a Stinespring representation of the form

Bty A
N e
c

with 7 a unital *-homomorphism and G a pure'* UCP map, it is not necessarily the case that

BTechnically, G was used in the statement and proof of [44, Proposition 5.12], but the proof is completely
analogous with GT. We have used GF in this paper to more easily connect to other works in the literature,
such as Carlen and Vershynina’s recent theorem [11], which we will explain in Remark 5.4 is a special case of
our Bayes’ theorem.

Pure maps/processes as defined in [51, Definition 2.32] between multi-matrix algebras are characterized
in [51, Proposition B.2]. If A = P, x M, (C) and B = @, .y Mn, (C), then Stinespring’s construction applied

to the z component F : B ~~+ A — M,,_ (C) provides a Hilbert space H., a representation B =% B(H.),

and an isometry C™* Ya, H. such that F, = Ady, om, (see [39, Section 5] for details). Each Ady, is a pure
map. Hence, C can be taken to be the direct sum C = € B(H), the map B = C sends B to @ 7z (B),

and the pure map C %5 A can be taken to be the direct sum G := &b Ady, .

zeX zeX

zeX
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such a decomposition can be used to determine if a state-preserving UCP map (B, &) L (A, w)
has a Bayesian inverse.

More precisely, given such a Stinespring representation, let ¢ := w o G be the induced
state on C. Then all maps in the Stinespring representation are state-preserving. Further-

more, (C,() SO (A,w) is always Bayesian invertible (without any conditions) assuming the
Stinespring construction from footnote 14 is used (cf., [44, Proposition 5.38]). Therefore,
one might guess that a Bayesian inverse of (F,w) exists if and only if a Bayesian inverse
(disintegration) of (B,&) = (C,(¢) exists. Although it is true that if 7 has a Bayesian inverse,
then F has a Bayesian inverse, which we know can be taken as the composite F := 7o G
of Bayesian inverses (by Proposition 3.8), there exist situations where (F,w) has a Bayesian
inverse without (7, () having one.

To illustrate this, if we take A, B, C to be matrix algebras, 7 to be the usual x-homomorphism
in standard form, and G = Ady for some coisometry V, the claim is: If £ is faithful and a
Bayesian inverse T of (m,() exists, then (F,w) admits a disintegration (in particular, F is a
x-homomorphism).'> Indeed, set @ := V*V and let G be any Bayesian inverse, such as

AS A G(A) = V*AV +v(A)Q,
where v is any state on A. Then
(FoGoF)B)=(ToGoGon)(B) =7 (Qw(B)Q + y<v7r(B)v*)Ql)

for all B € B. By [44, Lemma 5.4], Q+ < P:, where P is the support projection of ¢. Hence,
by Lemma 2.30,
(ToGoF)(B) =7 (Qm(B)Q)

since N¢g = 0. Similarly, since 7 is *-preserving,

7 (7(B)) =7 (Qm(B)Q)

for all B € B. But since 7 is a disintegration of (7, (), this proves 7 o G is a disintegration of
(F,w).
Remark 5.4. The implication (i = vii) from Theorem 5.1 holds in full generality for finite-
dimensional C*-algebras, as it is shown in [44, Lemma 6.19]. It generalizes a recent result of
Carlen and Vershynina [11, Theorem 3.1], which restricted itself to the case of faithful states
and injective *-homomorphisms.'® Let us explain this result and its generalization in some
detail.

First, let ( -, - ), denote the GNS bilinear form on .4 with respect to a state w on A, and
similarly for ( -, - )¢ on B with & a state on B. Assume ¢ is faithful so that (-, - )¢ is an

inner product. Let (B,€) EiR (A,w) be a state-preserving x-homomorphism. Let A s Bbe
the right Bayes map!” of (F,w). Then G automatically satisfies Equation (1.17) in [11] since
that equation reads

(F(B),A), = (B,G(A))y VAcA BeB,

15 And since we know there are examples of (F,w) that are Bayesian invertible but not disintegrable, this
tells us that Bayesian inverses cannot just be computed using Stinespring dilations and the disintegration
theorem.

18 Generalizing their result to the case of UCP maps is not just a straightforward application of Stinespring’s
theorem, as explained in Remark 5.3.

171f A and B are matrix algebras, the formula for G := G was given in Theorem 5.1. More generally, if
A=@D,cxMn,(C), B=@,cy Mn,(C), w=73, patr(ps - ), and £ = 3° gqytr(oy - ) as in the statement
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which in terms of the definition of the GNS bilinear forms becomes
w(F(B)*A) =¢(B*G(4)) VAeA, BeB.

The agrees exactly with the Bayes condition written in reverse order because F' is x-preserving
and * is an involution. In other words, it is equivalent to

w(F(B)A) = £(BG(A)) VAecA BeB. (5.5)

Note that G is uniquely determined in this case, even though w is not necessarily faithful.
Furthermore, it follows from this formula, and the fact that F' is a x-homomorphism, that
E := F o G is automatically a projection (meaning E? = E) onto F(B) (the fact that it
is orthogonal in the sense of [11] is precisely the GNS inner product condition), but is not
necessarily x-preserving, nor CP. In fact, G o F = idg. To see this, first note that

f(BG(F(B’))) - w(F(B)F(B')) by (5.5)
= (wo F)(BB') since F' is deterministic
= é(BB') since F' is state-preserving

for all B, B’ € B. In other words, Go F' ? idg. But since £ is faithful, this means G o F' = idg.

When F' is therefore replaced with a UCP map, as in Theorem 5.1, it no longer makes sense
to ask for a projection onto some subalgebra of A. For one, F'(B) is only an operator system
inside A. Secondly, if we replaced the projection condition with some left-inverse condition,
such as Go F ? idp, then we know that this necessarily implies that F' is w-a.e. deterministic.

Nevertheless, one always has the right Bayes map (which reduces to the orthogonal projection
of [11] when F' is an injective *-homomorphism). Thus, Theorem 5.1 item ¢ (G is *-preserving)
implies item vii (G is CP) is a generalization of [11, Theorem 3.1].

6 Discussion and outlook

In this article, we showed how the Tomita—Takesaki modular automorphism group (or
semigroup) is related to disintegrations and Bayesian inverses, concepts that arise naturally in
the setting of synthetic probability [12, 20, 40]. This brings the categorical approach towards
probability closer to the algebraic approach pioneered by Segal [50], Umegaki [59], and
others. We reviewed how the Accardi-Cecchini (AC) condition generalizes the modular group
invariance of a subalgebra to the case of UCP maps, rather than injective *-homomorphisms.
We then demonstrated how the Bayes condition generalizes the AC condition to allow for
non-faithful states. Indeed, in the case of non-faithful states, we saw that the AC condition is
not enough to guarantee the existence of a state-preserving conditional expectation, or more
generally a Bayesian inverse. The remaining condition for the existence of Bayesian inverses
was discovered in [44] and enhanced in the present paper (Theorem 5.1). Furthermore, a
simplified condition, in terms of disintegrations, was presented for the first time in this paper
for the existence of state-preserving conditional expectations (Theorem 4.14).

Gyax
of Proposition 3.3, then a formula for the yz component M, (C) ~~ M, (C) is given by Gy.(As) =

%F;y(Ampm)agl for all A, € My, (C) (cf., [44, Lemma 6.19]). Here, M, (C) BN M., (C) is the zy
component of F'.
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In the quantum information theory literature, the Petz recovery map and its swiveled /rotated
variant have played an important role in terms of information recovery [29, 30]. However, for
non-faithful states, the Petz recovery map does not specify the action off the support algebra.
On the other hand, the Bayesian inverse does not always exist, unlike the Petz recovery map.
As such, it is important to study approximate versions of Bayesian inverses. From this, one
might suspect the existence of some interpolation between these two approaches towards
quantum Bayesian inference. Furthermore, just like perfect error-correction is related to
disintegrations [40], which has its approximate versions [33], one might guess that approximate
versions of Bayesian inverses could be used in an alternative approach towards approximate
error-correction.

Finally, the Petz recovery map and its swiveled /rotated variants do not generally work in
generalizing the strengthened data-processing inequality to the quantum setting. Classically,

this inequality states that if p is a probability measure on a finite set X, and X N Yisa
stochastic map to a finite set Y, then there exists a recovery map, i.e., a probability-preserving

stochastic map (Y, f o p) BN (X, p) such that

Slgllp)=S(feql fop)=S(gllgefoq)

for all probability measures ¢ on X. Here, S(q || p) denotes the relative entropy of ¢
given p and f o p denotes the push-forward of the probability p along f. It is known that in
full generality, no such recovery map exists (see the discussion at the beginning of Section 5
in [17] and the end of Section 5 in [34]). Therefore, it would be convenient to find sufficient
and/or necessary conditions for a quantum analogue of this inequality to hold.

A Carlson’s theorem

We recall some facts from complex analysis [3].

Theorem A.1 (The identity theorem). Let f : D — C be a holomorphic function on a domain
(an open and connected subset) D C C and let S C D be a subset with an accumulation point
inS. If f(2) =0 for all z € S, then f =0 on all of D.

Proof. See [3, Chapter 4 Section 3.2 page 127]. O

Definition A.2. An entire function is a C-valued holomorphic function whose domain is
all of C.

Theorem A.3 (Liouville’s theorem). If f is a bounded entire function, then f is a constant.
Proof. See [3, Chapter 4 Section 2.3 page 122]. O

As a corollary to Liouville’s theorem, the set of bounded entire functions is the one-
dimensional vector subspace of constant functions inside the infinite-dimensional vector space
of all entire functions. Therefore, one often distinguishes the different classes of non-bounded
entire functions by their asymptotic growth rates. Such a situation occurs in the following
theorem, which is used multiple times in this work.

Theorem A.4 (Carlson’s theorem). Let f be an entire function satisfying the following
conditions:
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i. there exist constants C,~,y € R with v' < w such that

If(z)| <Ce? VzeC and |f(it) <Ce’ vVieR

ii. f(n) =0 for alln € N.
Then f =0.
Proof. This follows from [9, Theorem 9.2.1]. We include the argument for completeness. First,
define A
h(6) := lim sup M.

r—00 ’T|

By the assumptions in [9, Theorem 9.2.1], f is regular and of exponential type, which implies
the constants C,~,v’ exist. Then

i dul
h(£m/2) = limsup log |/ (i) < limsupM = lim sup <10g €] —|—fy'> =4

r—00 ’T" 7—00 ’T| r—00 ‘T’

Hence, h(n/2) + h(—7/2) < 24/, which shows that 7' < 7. O

B State-preserving conditional expectations

As in Section 2.3, let A & B be a unital x-homomorphism of finite-dimensional C'*-algebras
(multi-matrix algebras). Set N := F(B) and M := A so that N’ C M.

In this section, we characterize explicitly the states w on M (not necessarily faithful) that
admit a state-preserving conditional expectation E : M ~~ M onto N, namely such that

w=wok.
Before proving the proposition, we need to recall some notation. Let P;, i =1,...,s, and
Qj, j = 1,...,t, be the minimal projects in the center of M and N respectively, in some

ordering. As in Section 2.3, set X :={1,...,s} and Y := {1,...,t}. Let M, := PbMP;, =
PiM and N := Q;NQ; = Q;N. Then M; = M,,,(C) and N; = M, (C) for some m;,n; € N,

and
M=PM; =PMn,(C), N=EPN;=PM,, (O
i€X i€X jey jey
Let also Mz'j = PlQ]MPlQ] = PZQJMQ] and Mj = PZQJNPzQJ = PZQJN Observe
that P,Q; = Q,;P; and assume P,Q; # 0. Then N;; 2 Nj, as P, € N}’ and Nj is a factor,
thus € Nj — Pz € Nj; is a #-isomorphism. Moreover, N;; C M;; is a type I,, subfactor.
Explicitly,

Nij & My, (€) ® Loy, € My, (C) ® Mo, (C) = M,

CZJ
where ¢;; € N are some multiplicities describing the type I, subfactors, i.e., (¢;ij)i; is the
Bratteli inclusion matrix of N' C M, extended to all pairs (4, j) by setting ¢;; := 0 if P,Q; = 0.
Note that m; = 3, cijn; because N'C M is unital.

Lastly, as ), P, =1 = Zj Qj, every A € M can be written as A = Ezuv Q.P,APQ,
where ¢ runs in X and u,v run in Y. We write for short A; := P,AP, = P,A € M; and
Ajyy = QuPAQ,. Thus A=, Aj,but also A=Y, . Ajup, and Ajyy € My ifu=v=7j.
Note that M;; = 0 = N;; whenever P;Q; = 0.

1,U,V
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The following two lemmas are a consequence of the condition »; P, =1 = >, Q; and
they hold for arbitrary von Neumann algebras with finite-dimensional centers. The proof of
the first is immediate, for the second we refer to [27, Sec. 2], [24, Sec. 2], [23].

Lemma B.1. Fvery state w on M, not necessarily faithful, can be written as follows. Let
A e M, then

w(A) = piwi(4s)
where p; > 0, Y .p; = 1 are defined by p; == w(P;), and w; is the state on M; defined by
wi(4;) == pflw(Ai) if pi # 0, or the zero functional on M; otherwise.

Lemma B.2. Every conditional expectation E : M ~~ M onto N, not necessarily faithful,
nor state-preserving, can be written as follows. Let A € M, then

E(A) = Z Aij Qij (Eij(Aisjj))

where \j; > 0 are defined by \i;Q; = E(P;Qj), Eij : Mij ~~M;j are the conditional
expectations onto Nij; defined by Ej;j(Ai ;) = )\i_ijinE(A,;;jj) = )\i_ij,;QjE(PiA) if Xij # 0,
or the zero map on M;; otherwise, and Q;; : Njj — Njj is the inverse of the x-isomorphism
A PA if P,Qj #0, or the zero map on Njj otherwise.

Now we state and prove the main result of this section.

Proposition B.3. Let N' C M be a unital inclusion of multi-matriz algebras. A state w on
M =D, x My, (C), not necessarily faithful, admits a conditional expectation E : M ~~ M
onto N = D,y My, (C) such that w = w o E if and only if it is of the form

W)=Y pitalpi)
i
where p; is the density matriz associated with the restriction of w to M; = M,,,(C), i € X,
or zero, and it holds for every j,u,v € Y with u # v
PiupiPiw =0,  PijpiPij = 115505 @ Tij

where Pj; is the projection in My, (C) corresponding to P;Q; € M;, pi; > 0 are some
proportionality coefficients, o; is the density matriz in My,;(C) associated with the restriction
of w to Nj = M,,;(C) or zero, and 7;; is the density matriz in M, (C) associated with the
partial trace Ejj; : My; = M, (C) ® M, (C) = Nj; =M, (C) ® 1, or zero.

Proof. By Lemma B.1, for every state w on M we have
w(A) = ZprZ(Az)

i

Similarly, for the restriction £ := wnr we have

§(B) = Z q;&5(Bj)

Bj:= Q;BQj = Q;B € Nj, q; := £(Qy) fulfill ¢; >0, 3", q; = 1, and &(B;) := ¢; "&(By) if
q; # 0, or the zero functional on Nj otherwise.
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By Lemma B.2, for every conditional expectation £ : M ~~~ M onto N we have
E(A) =Y XijQij(Eij(Aj)).
i,J

Assume w = w o E, then the two sides of the equality
w(A) = w(E(A))

read
W(A) = Zpiwi(Ai;uv)

and
w(E(A)) = Z Aijw(Qij (Eij(Aijj)))

=¥ Njai&(Qis (Bij (Aijg)).
.3
In our case at hand, M;; = M, (C) ® M, (C), N = M,,;(C) ® 1.,; and N; = M, (C).
So by Lemma 2.22, FE;; can be viewed as the partial trace defined on simple tensors B; ® Cj;
in Mj,;(C) ® M, (C) by

Eij(B; © Cyj) = tr(735Ci5) Bj @ 1
for some density matrix 7;; € M,,,(C), or the zero map, and Q;; can be viewed as the
*-isomorphism B; ® 1., — Bj;. Note that P,Q); = 0 if and only if ¢;; = 0. In view of
the identifications M; = M, (C) and N; = M, (C), if w; and §; are not zero, we have
wi(A;) = tr(pid;), A; € M, and &(Bj) = tr(o;4;), Bj € Nj, for some density matrices
pi € Mmz((C) and 05 € Mnj (C)

Choose A = Ai;jj S Mz‘j C M;, for 1,7 fixed. Then QuAi;ij)in = Ai;jj ifu=v= 7,
zero otherwise. More particularly, choose A = A;.;; to be identified with a simple tensor
Bj ® Cyj in M, (C) ® M, (C). Then w(A) = w(E(A)) implies

pitim, () ((PijpiPij)Bj @ Cij) = Xijq; tr(o; B)) tr(r3;Cij)

where Pj; is the projection in M., (C) corresponding to P;Q; € M;. In particular, ) Py =
1,,,. By taking linear combinations of simple tensors, we get

)\"CI'
P@'jpiP@'j = ZJ' ]O'j & Tij

1

if p; # 0 and P;; # 0. In order to determine p; completely, we need to determine also Py, p; Py
with u # v and we can assume P, # 0, P, # 0. Choose A = A;.y € M; with u # v, and
denote again by Aj.,, its corresponding element in M,,,(C). Then w(A) = w(E(A)) implies
Piwi(Aiuww) = 0, because QA PiQ; = 0 if w # v, hence

0= Di tr(piAi;u’U) = Pi tr(pi(PiuAi;uvPiv>) =Di tr((PivpiPiu)Ai;uv)

which, if p; # 0, yields P;,p; Py, = 0, concluding the proof. O
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