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Abstract

We show that conditional expectations, optimal hypotheses, disintegrations, and
adjoints of unital completely positive maps, are all instances of Bayesian inverses. We
study the existence of the latter by means of the Tomita–Takesaki modular group and we
provide extensions of a theorem of Takesaki as well as a theorem of Accardi and Cecchini
to the setting of not necessarily faithful states on finite-dimensional C∗-algebras.
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1 Introduction

There have been many recent advancements in the categorical approach towards probability

theory and statistics. For example, the Kolmogorov zero-one law, Basu’s theorem, Fisher–

Neymann factorization, and de Finetti’s theorem have all been proved synthetically using

the framework of Markov categories [20, 22, 21]. An immediate question is whether or not

such techniques could be used to derive new results in quantum probability. To answer this,

the second author constructed generalizations of Markov categories to allow both classical

and quantum probabilistic concepts [40]. Among the many additional axioms possible for

Markov categories, some of them, such as positivity, causality, and a.e. modularity, were

proved for quantum operations in [40]. Other, more subtle, axioms such as the existence

of disintegrations, the existence of Bayesian inverses, or the existence of conditionals were

studied in [43], [44], and [41], respectively, the first two of which were accomplished by the

second and fourth authors of the present paper, and the third of which was done by the

second.

The categorical approach towards quantum probability parallels the algebraic approach

towards quantum probability, but a closer inspection comparing and contrasting the two

approaches has not yet been carried out in detail other than the preliminary results in [40].

In this article, we bring many such connections, most importantly including Tomita–Takesaki

modular theory [55]. For example, we prove an equivalence between the existence of Bayesian

inverses of unital completely positive maps and an intertwining condition between the modular

groups due to Accardi–Cecchini [1] and Anantharaman-Delaroche [4]. The usage of modular

theory in recent years in quantum information theory [11, 29, 30, 15, 54, 38] and quantum

field theory [61, 16, 32, 31, 13] indicates its importance. In addition, the Bayesian inverses, in

the special case of faithful states given by the vacuum state, have been recently used as a

notion of inversion for generalized global gauge symmetries of subfactors and local quantum

field theories [6, 7, 8] in the algebraic setting [26].

Besides contributing to the dictionary between the categorical and algebraic approaches

towards quantum probability, we also develop several new results and applications to quantum

information theory and quantum probability. For example, we work with not necessarily

faithful states, where the modular group no longer exists but is replaced with a semigroup.

Although one naively might think that any statement said about faithful states can be

immediately extended to non-faithful ones by looking at the support algebras, we show

that this is not always the case. For example, although we prove that disintegrations for

non-faithful states exist if and only if they exist on the underlying support algebras, this is

not the case for Bayesian inverses. Since non-faithful states and their evolution along (noisy)

quantum channels are of relevance to quantum information theory, these results are important
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for the reversibility of quantum operations involving non-faithful states (such as pure states).

Finally, we illustrate how the non-commutative Bayes’ theorem of [44] generalizes a recent

result of Carlen and Vershynina [11], which itself is a partial generalization of a result of

Nakamura, Takesaki, and Umegaki [37].

The paper is organized as follows. In Section 2, we recall the basic definitions of conditional

expectation, state-preserving unital completely positive map, and disintegration in the context

of C∗-algebras. A unital ∗-homomorphism is interpreted as a deterministic quantum channel,

while an honest unital completely positive map is interpreted as a stochastic one. We also

review the Tomita–Takesaki modular operators and the modular automorphism group in

the special case of finite-dimensional C∗-algebras, also called multi-matrix algebras, that

we shall mainly deal with in this work. We prove the equivalence between state-preserving

conditional expectations and disintegrations on matrix algebras and multi-matrix algebras,

both with respect to faithful and non-faithful states. In Section 3, we recall the definition of

Bayesian inverse of a state-preserving unital completely positive map and we compare it with

the notion of adjoint due to Accardi and Cecchini in the context of operator algebras and

quantum probability and with the notion of Petz recovery map in quantum information theory.

In the case of faithful states, we characterize the existence of Bayesian inverses on matrix

algebras and multi-matrix algebras by means of the modular group. For arbitrary states

on multi-matrix algebras, we show that Bayesian inverses generalize disintegrations in the

same way as Accardi–Cecchini adjoints generalize state-preserving conditional expectations.

In Section 4, we generalize Takesaki’s theorem [56], which characterizes the existence of

state-preserving conditional expectations by means of the modular group, to non-faithful

states on matrix algebras and multi-matrix algebras. In particular, we find an additional

necessary condition for the existence of such state-preserving conditional expectations, which

is also sufficient together with the usual modular group condition on the support algebras. In

Section 5, as a further generalization of Takesaki’s theorem, we study the existence of Bayesian

inverses with respect to non-faithful states on matrix algebras. Appendix A provides a review

of Carlson’s theorem from complex analysis. Appendix B provides an explicit characterization

(without the aid of modular theory) of the states on multi-matrix algebras (expressed by

means of density matrices and classical probability distributions on the centers) that admit a

state-preserving conditional expectation onto a given subalgebra.

2 Conditional expectations, disintegrations, and the modular

group

2.1 A brief review of definitions

Notation 2.1. In this work, all C∗-algebras will be unital, and all C∗-subalgebras of a

(unital) C∗-algebra will be assumed to have the same unit as the larger C∗-algebra unless

specified otherwise. The notation B ⊆ A will be used to express that a C∗-algebra B is such a

C∗-subalgebra of a C∗-algebra A. A linear map from a C∗-algebra B to a C∗-algebra A will

be written as B //A, while a ∗-homomorphism will be written as B → A. The letters U, C,

and P will be used to abbreviate unital, completely, and positive. For example, a UCP map is

a unital completely positive map. If A ∈ A, then Ad(A) will denote the CP map that sends

A′ ∈ A to AA′A∗. In calculations, this map may also be written as AdA. Inner products

will be denoted with angular brackets as 〈 · , · 〉 and will be linear in the right variable and

conjugate linear in the left variable. See [45] for background.
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Definition 2.2. Let A and B be C∗-algebras. A linear map F : B //A is ∗-preserving iff

F (b∗) = F (b)∗ for all b ∈ B.

On occasion, we will need to restrict domains and codomains of functions to particular

subsets in order to slightly redefine functions and make rigorous sense of certain compositions.

As such, we include the following notation.

Notation 2.3. Let F : B //A be a linear map of C∗-algebras. Let S and T be subsets of A
and B, respectively. The notation F�S : S //A will be used to denote the restriction of F

to the subset S. If the image F (B) of F is contained in T , then the notation T �F : B // T will

be used to denote the corestriction of F , i.e., the unique function such that the composite

B
T �F

T ↪→ A equals F . The notation T �F�S : S // T is used to combine restriction and

corestriction.

Definition 2.4. Let A and B be C∗-algebras, with B ⊆ A. A conditional expectation is

a linear map E : A //A such that

1. E is a projection onto B, i.e., E(b) = b for all b ∈ B,

2. E is left B-modular, i.e., E(ba) = bE(a) for all b ∈ B, a ∈ A, and

3. E is positive.

If ω : A //C is a state on A, i.e., a positive unital functional, an ω-preserving

conditional expectation is a conditional expectation E as above such that ω ◦ E = ω.

Remark 2.5. Since a conditional expectation E is positive, it is ∗-preserving. As such,

left B-modularity of E implies right B-modularity. Indeed, if E is left N -modular, then

E(ab) = E(b∗a∗)∗ = (b∗E(a∗))∗ = E(a)b for all a ∈ A and b ∈ B. Hence, E is B-bimodular

in the sense that E(b1ab2) = b1E(a)b2 for all b1, b2 ∈ B, a ∈ A. Since the unit of A belongs

also to B by our standing assumption on B ⊆ A, the map E is unital and it has operator

norm equal to 1.

Theorem 2.6 (Tomiyama [57]). Let A and B be C∗-algebras with B ⊆ A. Every projection

of norm 1 from A to B is a conditional expectation and vice versa.

Proof. See also [52, Section 9.1].

Remark 2.7. A conditional expectation is automatically completely positive by a theorem of

Nakamura, Takesaki, and Umegaki [37]. In particular, it is a unital Schwarz map, meaning

that E(a∗a) ≥ E(a)∗E(a) for all a ∈ A. We will discuss generalizations of this result for

finite-dimensional C∗-algebras later in this manuscript.

Another concept that appears in this work is that of a disintegration. To define it, we

first recall the notion of a.e. equivalence and a.e. determinism [40].

Definition 2.8. Let A and B be C∗-algebras, let ω : A //C be a state on A, and let

F,G : B //A be ∗-preserving maps. Then F is said to be ω-a.e. equivalent to G iff any

of the following equivalent conditions hold. 1

i. ω(AF (B)) = ω(AG(B)) for all A ∈ A and B ∈ B.

1The equivalence between these two conditions is proved in [40, Theorem 5.12].
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ii. F (B)−G(B) ∈ Nω, where

Nω :=
{
A ∈ A : ω(A∗A) = 0

}
denotes the nullspace of ω.

In this case, the notation F =
ω
G will be used.

Definition 2.9. A non-commutative/quantum probability space2 is a pair (A, ω) con-

sisting of a C∗-algebra A and a state ω : A //C. The state ω is said to be faithful whenever

its nullspace Nω consists of just the zero vector. Otherwise, ω is said to be non-faithful. The

quantum probability space (A, ω) is called non-degenerate (resp., degenerate) whenever

ω is faithful (resp., not faithful).

Definition 2.10. Let (A, ω) and (B, ξ) be quantum probability spaces. Let F : B //A be

a UCP state-preserving map, i.e., ω ◦ F = ξ.

A disintegration3 of (F, ω) is a UCP map G : A // B such that G is state-preserving,

i.e., ξ ◦G = ω, and G ◦ F =
ξ

idB.

Remark 2.11. Using the notation of Definition 2.9, if G is state-preserving and satisfies the

stronger condition G ◦ F = idB, then G is called an optimal hypothesis (e.g., [5, 42]).

When dealing with degenerate quantum probability spaces, it will be absolutely necessary

to generalize the notion of a ∗-homomorphism to allow for an almost everywhere version of it.

This is called a.e. determinism and is defined explicitly for C∗-algebras in the following [40,

Section 6].

Definition 2.12. Let (A, ω) be a quantum probability space, let B be a C∗-algebra, and let

F : B A be a positive unital map. Then F is said to be ω-a.e. deterministic iff

F (B1B2)− F (B1)F (B2) ∈ Nω ∀ B1, B2 ∈ B.

If F is ω-a.e. deterministic, it is not necessarily the case that it is ω-a.e. equivalent to a

∗-homomorphism [40, Example 6.5]. Nevertheless, for von Neumann algebras A and B, it is

equivalent to the condition F (B1B2)Pω = F (B1)F (B2)Pω for all B1, B2 ∈ B, where Pω is the

support projection of ω [40, Example 6.4].

Lastly, we review the Tomita–Takesaki modular operator and the modular automorphism

group for normal faithful states [55]. Other standard references include [10, Ch. 2.5] and

[18, Sections 9.1 and 9.2]. For shorter reviews, we recommend [53] and [61, Section III.A.].

However, we simplify the following presentation by specializing to the finite-dimensional

setting.

Lemma 2.13. Let H be a finite-dimensional Hilbert space. Let M ⊆ B(H) be a unital

∗-subalgebra and assume that there exists a cyclic and separating vector Ω ∈ H for M, i.e.,

H =MΩ and AΩ = 0 for any A ∈M implies A = 0. Then the assignment

H SΩ−−→ H
AΩ 7→ A∗Ω

(2.14)

is a conjugate-linear operator.
2In this case “non-commutative” should be read as “not necessarily commutative.” Furthermore, “quantum”

could also be hybrid quantum/classical.
3The motivation for the terminology is discussed in [43, Appendix A] and [40, Example 7.5].
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Proof. The cyclic and separating condition guarantees well-definedness of SΩ. The map is

manifestly conjugate-linear.

Definition 2.15. Let SΩ = JΩ∆
1/2
Ω be the polar decomposition of (2.14), where ∆Ω is

positive definite and JΩ is an antiunitary involution.4 The maps ∆Ω = S∗ΩSΩ and JΩ are

called respectively the modular operator and modular conjugation of (M,Ω).

Lemma 2.16. Let H,M, and Ω be as in Lemma 2.13. Then

∆ΩΩ = Ω, J2
Ω = idH, and JΩMJΩ =M′,

where M′ ⊆ B(H) is the commutant of M inside B(H). Furthermore, ∆it
Ω is unitary for all

t ∈ R and the assignment

R 3 t 7→ mt
(M,Ω) := Ad(∆it

Ω)

is a one-parameter group of ∗-automorphisms of M. Finally, the induced state

M3 m ω7−→ 〈Ω,mΩ〉
‖Ω‖2

is a faithful state on M satisfying

ω ◦mt
(M,Ω) = ω ∀ t ∈ R.

Proof. See [10, Thm. 2.5.14].

Definition 2.17. The one-parameter automorphism group constructed in Lemma 2.16 is

called the modular automorphism group of (M,Ω) inside B(H). More generally, letM be

a unital finite-dimensional C∗-algebra and let ω be a normal faithful state onM. The modular

automorphism group of (M, ω) is the modular automorphism group of (M,Ω), where Ω is

any pure state representing ω (such as from the GNS representation). Since it only depends

on M and ω, this automorphism group will be denoted by R 3 t 7→ mt
(M,ω) ∈ Aut(M).

In what follows, we illustrate what the modular automorphism group looks like for faithful

states on matrix and multi-matrix algebras over C. In the terminology of [25, Ch. 2], a multi-

matrix algebra is a finite direct sum of matrix algebras, i.e., an arbitrary finite-dimensional

C∗-algebra up to ∗-isomorphism.

Notation 2.18. For the matrix algebra Mm(C), we denote by tr the unnormalized trace (so

that tr(1m) = m, where 1m is the identity matrix). When multiple matrix algebras appear in

the same formula, the size m of the trace tr will be clear by the matrices it is evaluated on.

Lemma 2.19. Let ρ be an invertible density matrix on M := Mm(C) with associated faithful

state ω := tr(ρ · ). Then log(ρ) is a strictly negative operator, i.e., all its eigenvalues are

strictly below 0, and the modular automorphism group of (M, ω) is given by

R 3 t 7→ mt
(M,ω) = Ad(ρit) = Ad(eit log(ρ)).

Proof. See [10, Example 2.5.16].

4This follows from the fact that SΩ is involutive, namely S2
Ω = idH. Note that the adjoint S∗Ω of the

conjugate-linear map SΩ is defined by the equation 〈S∗Ωx, y〉 = 〈x, SΩy〉 ≡ 〈SΩy, x〉 for all x, y ∈ H.

6



Lemma 2.20. Let ω =
∑

x∈X px tr(ρx · ) be a faithful state on A :=
⊕

x∈X Mmx(C) ≡⊕
x∈X Ax, where X is a finite set, mx ∈ N, (px)x∈X defines a nowhere vanishing probability

measure on X, and each ρx ∈ Mmx(C) is an invertible density matrix. Then the modular

group of (A, ω) is given by

R 3 t 7→ mt
(A,ω) =

⊕
x∈X

Ad(ρitx ) ≡
⊕
x∈X

Ad
(
eit log(ρx)

)
.

Proof. It follows as in the matrix case [10, Example 2.5.16] by checking that the KMS

condition with respect to ω is fulfilled by R 3 t 7→
⊕

x∈X Ad(ρitx ).

Remark 2.21. Note that, in the multi-matrix case, the states ω corresponding to different

choices of px > 0,
∑

x∈X px = 1 give the same modular automorphism group of A.

For future reference, we also state and prove some lemmas that will be needed later.

First, we recall a general representation formula for conditional expectations between type

I factors [58, Prop. 2.4]. Given two von Neumann algebras A and B realized on the same

Hilbert space, we denote by A ∨ B the von Neumann algebra generated by A and B, i.e.,

the smallest von Neumann algebra inside the von Neumann algebra of bounded operators

containing both A and B.

Lemma 2.22. Let N ⊆M be a type I subfactor. Namely, N ∼= Mn(C), M∼= Mm(C) and

1k ⊗Mn(C) ∼= N ⊆M ∼= Mk(C)⊗Mn(C), with m = nk, for some n,m, k ∈ N or n,m =∞.

Every normal (not necessarily faithful) conditional expectation E :M //M onto N can be

represented as a partial trace. Namely, there is a (not necessarily invertible) density matrix

τ ∈Mk(C) such that E = tr(τ · )⊗ idn, where idn : Mn(C)→Mn(C) is the identity map.

Proof. For type I subfactors, M = (N ′ ∩M) ∨ N ∼= (N ′ ∩M)⊗N and N ′ ∩M is a type

I factor. The restriction E� : N ′ ∩M //N ′ ∩ N ∼= C1m is a normal state on the relative

commutant. Thus E� is represented by a unique positive, not necessarily invertible, trace one

operator τ ∈ N ′ ∩M by the formula

E(A⊗ 1n) = tr(τA)1m

where A ∈ N ′ ∩M and tr is the trace on N ′ ∩M ∼= Mk(C). The representation formula has

a unique extension to simple tensors in M by N -bimodularity, namely

E(A⊗B) = E((A⊗ 1n)(1k ⊗B)) = tr(τA)1k ⊗B

for A ∈ N ′ ∩M, B ∈ N , thus to M.

2.2 Disintegrations on matrix algebras

In the first proposition below, we prove several equivalent conditions for disintegrations to

exist on matrix algebras equipped with faithful states. We prove this directly using only

methods of linear algebra and complex analysis (as opposed to the full power of Takesaki’s

theorem and modular theory [56]) because the techniques used here will also be used later in

this work.

Proposition 2.23. Let F : Mn(C)→Mnk(C) ∼= Mk(C)⊗Mn(C) be given by F (A) := 1k⊗A
and let ω ≡ tr(ρ · ) be a faithful state on Mnk(C) that pulls back to ξ = tr(σ · ) along F . Let

mt
(Mnk(C),ω), t ∈ R, denote the modular group associated to (Mnk(C), ω). Then, the following

conditions are equivalent.
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i. The pair (F, ω) admits a disintegration.

ii. There exists an ω-preserving conditional expectation E : Mnk(C) //Mnk(C) onto the

subalgebra 1k ⊗Mn(C).

iii. There exists an invertible density matrix τ ∈Mk(C) such that ρ = τ ⊗ σ.

iv. The modular group mt
(Mnk(C),ω) leaves the subalgebra F (Mn(C)) = 1k ⊗Mn(C) ⊆Mnk(C)

invariant for every t ∈ R.

Proof. Throughout this proof, set A := Mnk(C) and B := Mn(C).

(i ⇒ ii) Let G : B //A be a disintegration of F . Then G ◦ F = idB by faithfulness of ω

and the fact that F is injective. Hence, E := F ◦G is a UCP map such that E2 = E and is

therefore a conditional expectation onto the C∗-subalgebra F (Mn(C)) by Tomiyama’s theorem

(Theorem 2.6).5 The state-preserving condition follows from ω ◦E = ω ◦ F ◦G = ξ ◦G = ω

because G is a disintegration.

(i⇐ ii) Given such a conditional expectation E, set

G :=

(
A 1k⊗B�E

1k ⊗ B
(1k⊗B�F )−1

−−−−−−−→ B
)
.

Then it immediately follows that G is a disintegration of (F, ω).

(i ⇔ iii) This follows from [43, Theorem 4.3] and the fact that ρ is invertible implies τ is

invertible.

(iii⇒ iv) Suppose there exists a (necessarily invertible) density matrix τ ∈Mk(C) such that

ρ = τ ⊗ σ. In what follows, we will first prove ρz = τ z ⊗ σz for all z ∈ C using Carlson’s

theorem (Theorem A.4). Afterwards, we will express the modular group in terms of this

result and prove it fixes the subalgebra N := 1k ⊗Mn(C). Fix arbitrary vectors v, w ∈ Cnk
and define f : C→ C by

C 3 z 7→ f(z) := 〈v, ρzw〉 − 〈v, τ z ⊗ σzw〉.

Then f is entire since ρz = ez log(ρ), and similarly for τ and σ, which are all well-defined by

the faithfulness assumption. For any z ∈ C,

|f(z)| ≤
(
‖ρz‖+ ‖τ z‖‖σz‖

)
‖v‖‖w‖ by Cauchy–Schwarz

≤
(∥∥ez log(ρ)

∥∥+
∥∥ez log(τ)

∥∥∥∥ez log(σ)
∥∥)‖v‖‖w‖

=
(
e|z|‖log(ρ)‖ + e|z|‖log(τ)‖e|z|‖log(σ)‖

)
‖v‖‖w‖ since

∥∥eB∥∥ ≤ e‖B‖
≤ 2‖v‖‖w‖e− log(ρ0)|z|, (2.24)

where ρ0 is the smallest eigenvalue of ρ (and equals the product of the smallest eigenvalues of

τ and σ). Secondly, since ρ is self-adjoint, ρit = eit log(ρ) is unitary for all t ∈ R and similarly

for τ and σ. Hence, ‖ρit‖ = ‖τ it‖ = ‖σit‖ = 1 for all t ∈ R and

|f(it)| ≤ 2‖v‖‖w‖ ∀ t ∈ R
5The norm of a UCP map H is always 1 since it equals ‖H(1)‖ = ‖1‖ = 1.
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by the first line in (2.24). Thirdly, for any l ∈ N,

ρl = τ l ⊗ σl =⇒ f(l) = 0.

Hence by Carlson’s theorem (setting C := 2‖v‖‖w‖, γ := − log(ρ0), and γ′ := 0), f ≡ 0. Since

this calculation was independent of v, w ∈ Cnk, we have ρz = τ z ⊗ σz for all z ∈ C. Therefore,

by Lemma 2.19,

mt
(Mnk(C),ω)(1k ⊗A) = Adρit(1k ⊗A) = (τ it ⊗ σit)(1k ⊗A)(τ−it ⊗ σ−it) = 1k ⊗Adσit(A)

for every A ∈Mn(C), which proves the first implication.

(iv ⇒ iii) Suppose the modular group R 3 t 7→ mt
(Mnk(C),ω) = Ad(ρit) leaves the subalgebra

F (Mn(C)) invariant. Since ρit = eit log(ρ) and ρ is a strictly positive matrix, the functional

calculus guarantees ρz exists for all z ∈ C. By assumption,[
Adρit

(
1k ⊗Mn(C)

)
,Mn(C)⊗ 1k

]
= 0 ∀ t ∈ R. (2.25)

To see that this identity extends to all complex t as well, let v, w ∈ Cnk, A ∈ Mn(C), and

A′ ∈Mk(C) and define

C 3 z 7→ f(z) :=
〈
v,
[
ρz(1k ⊗A)ρ−z, A′ ⊗ 1n

]
w
〉
.

Then f is holomorphic for all z ∈ C. By assumption (2.25), f equals zero on the imaginary

axis and therefore is identically zero by the identity theorem (Theorem A.1). Since this holds

for all v, w ∈ Cnk, A ∈Mn(C), and A′ ∈Mk(C), this proves

ρz
(
1k ⊗Mn(C)

)
ρ−z ⊆ 1k ⊗Mn(C) ∀ z ∈ C.

Setting z = 1, for each A ∈Mn(C), there exists a B ∈Mn(C) such that

ρ(1k ⊗A) = (1k ⊗B)ρ.

If we write ρ as ρ =
∑

i,j Eij ⊗ ρij , where Eij are the matrix units in Mk(C), then this

condition is equivalent to

ρijA = Bρij ∀ i, j.

Since ρ is strictly positive, each of the blocks ρjj are strictly positive because 〈v, ρv〉 > 0

for all non-zero vectors v ∈ Cnk. Hence, ρjj is invertible for all j. In particular, we obtain

ρ11Aρ
−1
11 = B. Upon plugging this into the arbitrary ij equations we obtain

ρijA = Bρij = ρ11Aρ
−1
11 ρij ⇐⇒ ρ−1

11 ρijA = Aρ−1
11 ρij ∀ A ∈Mn(C).

In other words, ρ−1
11 ρij is in the commutant of Mn(C), which is just C1n. Thus, there exists a

λij ∈ C such that ρ−1
11 ρij = λij1n, i.e.,

ρij = λijρ11.

Therefore, ρ can be expressed as the tensor product

ρ =

tr(ρ11)
∑
i,j

λijEij

⊗ ( ρ11

tr(ρ11)

)
=: τ ′ ⊗ σ′

9



of two density matrices. The fact that the left factor τ ′ is positive is simply because ρ and

ρ11 are positive while the fact that it is a density matrix follows from the computation

1 = tr(ρ) =
∑
j

tr(ρjj) =
∑
j

tr(λjjρ11) =
∑
j

λjj tr(ρ11) = tr

tr(ρ11)
∑
i,j

λijEij

 .

It immediately follows from this that σ′ = σ by the condition ω ◦ F = ξ, which holds if and

only if trMk(C)(ρ) = σ.

Remark 2.26. The equivalence (i⇔ ii), under the present faithfulness assumption on ω, holds

more generally and with the same proof for unital injective ∗-homomorphisms F between

von Neumann algebras, cf. [35, Lemma 7.2]. Under the faithfulness assumption on ω, the

equivalence (ii⇔ iv) is Takesaki’s theorem [56], which we reproved above for completeness

(passing through iii) in the finite-dimensional matrix algebra context. We shall further discuss

and generalize it in Section 4.

A generalization of Proposition 2.23 to the case of non-faithful states (e.g., pure states on

matrix algebras) is not entirely trivial. This is mainly because items iii and iv are problematic

when ω is non-faithful—one cannot simply work with the truncated modular group, see

Remark 2.29 below. Nevertheless, items i and ii above are still equivalent, and a modified

version of item iii holds, as the following proposition shows.

Proposition 2.27. Given the same assumptions as in Proposition 2.23 with the exception

that the state ω = tr(ρ · ) need not be faithful, the following conditions are equivalent.

i. The pair (F, ω) admits a disintegration.

ii. There exists an ω-preserving conditional expectation E : Mnk(C) //Mnk(C) onto the

subalgebra 1k ⊗Mn(C).

iii. There exists a density matrix τ ∈Mk(C) such that ρ = τ ⊗ σ.

Proof. It is easy to see that item ii implies i. As for the converse, if G is a disintegration, so

that it satisfies G ◦ F =
ξ

idMn(C), it follows that G actually satisfies G ◦ F = idMn(C) by [43,

Theorem 4.3] (which itself relies on an important result on a.e. equivalence [43, Theorem 2.48]

and on the factoriality of Mn(C)), so that i implies ii as well.

The implication (iii⇒ ii) is also easy to see, while for the explicit implication (ii⇒ iii),

with τ a (not necessarily invertible) density matrix, follows from Lemma 2.22. In more detail,

for finite type I subfactors, every (normal) faithful conditional expectation E : Mm(C) ∼=
Mk(C)⊗Mn(C) // F (Mn(C)) = 1k ⊗Mn(C), with m = nk, by Lemma 2.22 is represented

as a partial trace with respect to a density matrix τ ∈Mk(C). Thus, the condition of E being

ω-preserving, i.e., ω = ω ◦ E, reads

tr(ρ(A⊗B)) = tr(ρ(1k ⊗ tr(τA)B))

= tr(τA) tr(ρ(1k ⊗B))

= tr(τA) tr(σB).

Since the tensor product of the traces on Mk(C) and Mn(C) is the trace on Mm(C), we get

tr((ρ−τ⊗σ)(A⊗B)) = 0 for all A,B. Therefore, by the faithfulness of the trace, we conclude

ρ = τ ⊗ σ.
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Remark 2.28. One can also directly show the equivalence (i⇔ iii) holds by different arguments

cf. [43, Theorem 5.1].

Remark 2.29. The least trivial condition to generalize to the non-faithful setting is item iv

in Proposition 2.23. One naive replacement for the non-faithful setting would be to work

with the Hilbert space Hω := PωCnk and the C∗-algebra PωMnk(C)Pω, where Pω is the

support projection of ω. On this subalgebra, ρ defines an invertible element, denoted ρ�, and

ω� := tr(ρ� · ) is faithful with associated modular group mt
(PωMnk(C)Pω ,ω�)

. However, even

after one makes sense of a condition analogous to invariance under the modular group, this

condition alone does not guarantee the existence of a state-preserving conditional expectation.

More on this will be discussed in Section 4, where we generalize Takesaki’s theorem [56] and

we find the extra condition needed to guarantee the existence of a state-preserving conditional

expectation.

2.3 Disintegrations on multi-matrix algebras

After being exposed to the simpler matrix algebra case, we extend Proposition 2.23 and

Proposition 2.27 to the finite-dimensional C∗-algebra case in this section. In particular, we

show the equivalence between disintegrations and state-preserving conditional expectations on

finite-dimensional C∗-algebras with not necessarily faithful states. The next general lemma

will be used throughout.

Lemma 2.30. Let F : (B, ξ) // (A, ω) be a state-preserving UCP map between quantum

probability spaces. Then the nullspaces satisfy F (Nξ) ⊆ Nω. Furthermore, if A and B are

finite-dimensional (or more generally, W ∗-algebras), then F (P⊥ξ ) ≤ P⊥ω and F (Pξ) ≥ Pω. In

particular, PωF (Pξ)Pω = Pω.

Proof. To see F (Nξ) ⊆ Nω, let B ∈ B satisfy ξ(B∗B) = 0. Then

0 ≤ ω
(
F (B)∗F (B)

)
≤ ω

(
F (B∗B)

)
= ξ(B∗B) = 0,

where the Kadison–Schwarz inequality for F was used in the second inequality. From this,

it immediately follows that F (P⊥ξ ) ∈ Nω = AP⊥ω . Since F is ∗-preserving (because it is

positive), F (P⊥ξ ) is self-adjoint and therefore F (P⊥ξ ) ∈ P⊥ω AP⊥ω . Furthermore, since F

is order-preserving and unital, F (P⊥ξ ) ≤ 1A. But the largest element in P⊥ω AP⊥ω that is

bounded from above by 1A is precisely P⊥ω . Hence, F (P⊥ξ ) ≤ P⊥ω . The claim F (Pξ) ≥ Pω

follows immediately from this and the definition of ⊥. Finally, since Pω ≤ F (Pξ) ≤ 1A,

applying the CP (and hence order-preserving) map AdPω to this pair of inequalities gives

Pω ≤ PωF (Pξ)Pω ≤ Pω, which proves the last claim PωF (Pξ)Pω = Pω.

Notation 2.31. The following notation will be used throughout this section. Set A =⊕s
i=1 Mmi(C), B =

⊕t
j=1 Mnj (C). A ∗-homomorphism F : B → A is determined by its

multiplicities {cij ∈ N ∪ {0}} in the following sense. First, mi =
∑t

j=1 cijnj for every i. As a

result, every element Ai ∈Mmi(C) can be expressed as a t× t matrix

Ai ≡

Ai;11 · · · Ai;1t
...

...

Ai;t1 · · · Ai;tt

 ,
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where the kl-th subblock, Ai;kl, is a (ciknk)× (cilnl) matrix. A block diagonal matrix, i.e.,

Ai;kl = 0 for all k 6= l will often be denoted by diag(Ai;11, . . . , Ai;tt) or �t
j=1Ai;jj . Second, up

to unitary conjugation on the codomain, F has the form F (
⊕

j Bj) =
⊕

i�j(1cij ⊗Bj) ≡⊕
i diag(1ci1 ⊗ B1, . . . ,1cit ⊗ Bt). For convenience, set X := {1, . . . , s} and Y := {1, . . . , t}.

A state ω on A will often be decomposed as ω =
∑

x∈X px tr(ρx · ), with ρx ∈ Mmx(C) a

density matrix and p a probability distribution on X. Similarly, write ξ =
∑

y∈Y qy tr(σy · )
for a state on B.

Theorem 2.32. Let F : B → A be a (unital) ∗-homomorphism of finite-dimensional C∗-

algebras, let ω be a not necessarily faithful state on A and let ξ := ω ◦ F be the corresponding

state on B. Set N := F (B). Then, the following conditions are equivalent.

i. The pair (F, ω) admits a disintegration.

ii. An ω-preserving conditional expectation E : A //A onto N exists.

iii. For each i ∈ X and j ∈ Y , there exist non-negative matrices τij ∈Mcij (C) such that

tr

(
s∑
i=1

τij

)
= 1 ∀ j ∈ Y \Nq

and

piρi =

t

�
j=1

(qjτij ⊗ σj) ≡ diag(q1τi1 ⊗ σ1, . . . , qtτit ⊗ σt) ∀ i ∈ X.

If, in addition, ω is faithful, then these conditions are equivalent to

iv. The modular group mt
(A,ω) leaves the subalgebra N ⊆ A invariant for every t ∈ R.

Proof. Let NF :=
{
j ∈ Y : cij = 0 ∀ i ∈ X

}
. Note that NF ⊆ Nq, where Nq is the nullspace

of the uniquely determined probability measure q associated to ξ ≡
∑

y∈Y qy tr(σy · ). This

last fact follows from Lemma 2.30 since F (Nξ) ⊆ Nω and that if F (B) ∈ Nω, then 0 =

ω(F (B)∗F (B)) = ω(F (B∗B)) = ξ(B∗B), which shows that B ∈ Nξ. In particular, if F (B) =

0, then B ∈ Nξ. Also note that F restricts to a ∗-isomorphism F� :
⊕

y∈Y \NF Mnj (C)
∼=−→ N .

(i⇔ iii) This equivalence was proved in [43, Theorem 5.108]. In the original proof, one sees

that it is still possible to choose τji such that
∑

i τji is a density matrix for all j ∈ Y \NF .

Since NF ⊆ Nq, this allows one to obtain a disintegration of the form

Gji(Ai) =

{
trMcij (C)

(
(τij ⊗ 1nj )Ai;jj

)
if j ∈ Y \NF

1
smi

tr(Ai)1nj if j ∈ NF

, (2.33)

which is ξ-a.e. equivalent to the formula provided in [43].

(i ⇐ ii) Suppose E is an ω-preserving conditional expectation onto N . Then, since every

linear map G : A // B is determined by the values on different factors, set G to be the map

uniquely determined by the two composites

A
E� N

F−1
�−−→

⊕
j∈Y \NF

Mnj (C)
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and ⊕
j∈NF

tr( · )√
dim(A)

1nj : A //
⊕
j∈NF

Mnj (C).

Then G is a disintegration of (F, ω).

(i⇒ ii) Suppose (F, ω) admits a disintegration G. Then, Equation (2.33) provides one such

disintegration. Using this formula, one sees that F ◦G defines an ω-preserving conditional

expectation onto N . Indeed,

(F ◦G)(A) =
⊕
i′∈X

∑
i∈X

 �
j∈Y \NF

1ci′j ⊗ trMcij (C)

(
(τij ⊗ 1nj )Ai;jj

) .

Note that the second expression in Equation (2.33) vanishes because F (B) = 0 for all

B ∈ Mnj (C) with j ∈ NF . Therefore, the fact that F ◦ G fixes N follows immediately

from this calculation upon taking A to be in N , which means it must be of the form⊕
i∈X�j∈Y (1cij ⊗Aj), with Aj ∈Mnj (C).

(iii ⇔ iv) If ω is faithful, this equivalence follows from a proof analogous to the one in

Proposition 2.23 when combined with Lemma 2.20.

Remark 2.34. One can also directly prove (ii⇔ iii) in Theorem 2.32 by the classification of

not necessarily faithful state-preserving conditional expectations on direct sums of matrix

algebras. This is different from the proof of (i⇔ iii) in [43, Theorem 5.108], which uses Kraus

operators and facts about C∗-modules. The proof using conditional expectations provides

useful techniques and is given in Appendix B.

Remark 2.35. An analogue of the end of Remark 2.29 applies here as well regarding the

modular group for non-faithful states. We will come back to this in Section 5.

3 On a theorem of Bayes, Accardi, Cecchini, and Petz

3.1 Bayesian inverses

Recent work in categorical probability theory has allowed a potentially powerful and completely

diagrammatic formulation of a version of Bayes’ theorem involving the idea of a Bayesian

inverse [20, 12, 40].6 We begin with a definition followed by a partially historical account of

the appearance of this concept, though under different names, in the literature on operator

algebras. We will use interchangeably the notation A G B for G : A // B, and A G−→ B for

G : A → B (cf. Notation 2.1).

Definition 3.1. Let B F A be a UCP map between finite-dimensional C∗-algebras, let

A ω C be a state, and set ξ := ω ◦ F . A Bayesian inverse of (F, ω) is a UCP map

A G B such that ξ
(
G(A)B

)
= ω

(
AF (B)

)
for all A ∈ A and B ∈ B. The notation F will

also be used to denote a Bayesian inverse of (F, ω).

6See also [41, Section 3] for a concise review and a subtle distinction between two versions of Bayes’
theorem. The present work only deals with the Bayesian inversion form.
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The equation ξ
(
G(A)B

)
= ω

(
AF (B)

)
, in the form presented above, seemed to have first

appeared in the work of Accardi and Cecchini in 1982 [1], though they did not explicitly

mention any connection to Bayes’ theorem. Indeed, they were mainly concerned with

faithful states ω and ξ, modular theory, and generalizing Takesaki’s theorem. In the case

of faithful states, they showed that a Bayesian inverse is a generalization of the notion of

a state-preserving conditional expectation by extending a theorem of Takesaki [56], where

Takesaki’s theorem was the special case where F is a unital injective ∗-homomorphism

(which corresponds to a subalgebra of A). In fact, they introduced a more general notion of

conditional expectation (called the ϕ-conditional expectation in [1]), which always exists in

the not necessarily commutative setting, even when a state-preserving conditional expectation

does not.

In follow-up work, Accardi and Cecchini [2] and Frigerio [19] continued investigations with

this generalized conditional expectation, providing further examples and properties. Accardi

and Cecchini proved that the generalized conditional expectation also specializes to the usual

notion of classical conditional expectation for commutative algebras (see also [11], where a

lucid exposition is given in the finite-dimensional setting). In 1984, Petz generalized this

further to allow for UCP maps (not necessarily subalgebra inclusions), and provided many

properties of the generalized conditional expectation [47], which was eventually called the

transpose channel [38]. This map is known as the Petz recovery map due to all the work

by Petz that followed in subsequent decades [48, 49]. The Petz recovery map has taken

precedence in the quantum information community, particularly in recent years due to the

intimate connection between the existence of recovery maps and saturation of certain measure

distances (like relative entropies, f -divergences, and data-processing inequalities) between

quantum states [49, 15, 29, 30, 60, 54, 28].

Both Bayesian inverses and Petz recovery maps agree a.e. in the case of commutative

algebras, so that both can technically be viewed as generalizations of Bayesian inversion to

the non-commutative setting. However, they are in general different (not even a.e. equivalent)

on non-commutative algebras when the corresponding states are not faithful. For some

illustrative examples exemplifying the difference in Bayesian inference in quantum systems,

see [41]. In this paper, we will mainly focus on the Bayesian inverse, which we feel deserves

further study. But before getting there, we will extend some of the results of [44] regarding

the existence of Bayesian inverses.

3.2 Bayesian inversion and the modular group

Proposition 3.2. Let B := Mn(C) F Mm(C) =: A be a UCP map and let A ω=tr(ρ · ) C
be a faithful state on A, with pullback ξ := ω ◦ F =: tr(σ · ) that is also faithful. Then the

following are equivalent.

i. A UCP Bayesian inverse of (F, ω) exists (and is necessarily unique).

ii. F (σB)ρ = ρF (Bσ) for all B ∈ B.

iii. F acts as an intertwiner for the modular groups of ω and ξ, i.e., F ◦mt
(B,ξ) = mt

(A,ω) ◦ F
for all t ∈ R.

We will call the intertwining condition in item iii of Proposition 3.2 the Accardi–Cecchini

(AC) condition.
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Proof. The equivalence between items i and ii is covered by the results in [44, Section 5].

The equivalence between i and iii is proved in [1, Proposition 6.1] (see also [4, Lemma 2.5]).

Nevertheless, we feel it is instructive to see a direct proof of the equivalence between ii and

iii. We first prove iii implies ii. Since

mt
(A,ω) = Ad

(
ρit
)

and mt
(B,ξ) = Ad

(
σit
)

for all t ∈ C, item iii reads

F (σitBσ−it) = ρitF (B)ρ−it

for all t ∈ R and B ∈ B. By finite-dimensionality, this equation also holds for all t ∈ C by the

identity theorem (Theorem A.1). Hence, setting t = −i gives F (σBσ−1) = ρF (B)ρ−1 for all

B ∈ B. In particular, choosing B of the form Bσ gives F (σB) = ρF (Bσ)ρ−1. Multiplying by

ρ on the right gives condition ii. The direction ii implies iii is a bit more involved. First,

note that F (σB)ρ = ρF (Bσ) for all B ∈ B implies

F (σkB)ρk = ρF (σk−1Bσ)ρk−1 = · · · = ρkF (Bσk)

for all B ∈ B and for all k ∈ N. Note that this is also true when k = 0. Fixing B and vectors

v, w ∈ Cn, define

C 3 z 7→ Φ(z) := 〈w|F (σzBσ−z)− ρzF (B)ρ−z|v〉.

Then Φ satisfies the conditions of Carlson’s theorem (Theorem A.4) with constants

γ := 2max{‖log σ‖, ‖log ρ‖}, C := 2‖F‖‖B‖‖v‖‖w‖, γ′ := 0

and noting that the map B 3 B 7→ σzBσ−z has norm bounded by e2|z|‖log σ‖ (the rest of the

argument follows the same ideas those from the proof of Proposition 2.23). Since v, w, and B

were arbitrary, this proves iii.

The previous result also generalizes to finite-dimensional C∗-algebras.

Proposition 3.3. Let B :=
⊕

y∈Y Mny(C) F ⊕
x∈X Mmx(C) =: A be a UCP map of

finite-dimensional C∗-algebras and let A
ω=

∑
x∈X px tr(ρx · ) C be a faithful state on A, with

pullback ξ := ω ◦F =:
∑

y∈Y qy tr(σy · ) that is also faithful. Write Fxy : Mny(C) //Mmx(C)

for the map Mmx (C)�F�Mny (C) (cf. Notation 2.3). Then the following are equivalent.

i. A UCP Bayesian inverse of (F, ω) exists (and is necessarily unique).

ii. Fxy(σyBy)ρx = ρxFxy(Byσy) for all By ∈Mny and for all x ∈ X, y ∈ Y .

iii. F acts as an intertwiner for the modular groups of ω and ξ, i.e., F ◦mt
(B,ξ) = mt

(A,ω) ◦ F
for all t ∈ R.

Proof. The equivalence between i and ii is covered by [44, Section 6]. Therefore, we prove ii

is equivalent to iii. By Lemma 2.20, the modular groups associated to ω and ξ are given by

mt
(A,ω) =

⊕
x∈X

Ad
(
ρitx
)

and mt
(B,ξ) =

⊕
y∈Y

Ad
(
σity
)
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for all t ∈ R, though these automorphisms are well-defined even for t ∈ C, provided that one

uses the inverse operator rather than the adjoint (the automorphism is not a ∗-isomorphism

in general). A quick calculation shows that iii holds if and only if

Fxy(σ
it
y Byσ

−it
y ) = ρitxFxy(By)ρ

−it
x

for all By ∈Mny , for all t ∈ R, and for all x ∈ X and y ∈ Y . Thus, the same techniques from

the proof of Proposition 3.2 apply here.

These two results show that the condition F (σB)ρ = ρF (Bσ) for matrix algebras (and

the more general equation for direct sums) is equivalent to the Accardi–Cecchini condition

for the modular group.

Remark 3.4. Note that the condition F (σB)ρ = ρF (Bσ) is computationally easier to check

than the modular group condition for two reasons: (1) a single time suffices and (2) there is

no need of taking exponentials of density matrices. In fact, for B = Mn(C), one needs to only

check at most n2 equations since the condition F (σB)ρ = ρF (Bσ) is linear in B, so that one

can plug in matrix units B = E
(n)
ij (or any basis) to check this condition.

More still needs to be said in the non-faithful setting, where an equation such as F (σB)ρ =

ρF (Bσ) still makes sense, while the modular group condition does not. This will be elaborated

upon in the remaining subsections.

3.3 Bayesian inverses and disintegrations

Bayesian inverses are generalizations of disintegrations just as the adjoints of Accardi–Cecchini

are generalizations of state-preserving conditional expectations. This section will explain this

in more detail as well as provide some of the functorial properties of Bayesian inverses [20, 40].

Proposition 3.5. Under the same assumptions as in Proposition 2.23, all conditions are

equivalent to

v. The pair (F, ω) admits a Bayesian inverse (or any of the equivalent conditions in Propo-

sition 3.2).

Rather than proving this, we state a much more general result that is valid for not

necessarily faithful states.

Theorem 3.6. Let (B, ξ) F (A, ω) be a state-preserving UCP map between two finite-

dimensional non-commutative probability spaces with A =
⊕s

i=1 Mmi(C) and B =
⊕t

j=1 Mnj (C)

for some finite sets X and Y . Then the following conditions are equivalent.

i. The pair (F, ω) admits a Bayesian inverse and F is ω-a.e. deterministic in the sense of

Definition 2.12.

ii. The pair (F, ω) admits a disintegration.

Proof. This follows from [40, Corollary 8.6].

Remark 3.7. If ω and ξ are faithful, the conditions in Theorem 3.6 are equivalent to any of the

conditions in Proposition 3.3 and therefore also to the conditions in Theorem 2.32 because the

existence of a state-preserving UCP left-inverse between non-degenerate quantum probability

spaces guarantees that F is an injective ∗-homomorphism, see e.g. [36, Theorem 5].
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However, if the states are not faithful, then N := F (B) need not be a subalgebra of A even

if the disintegration condition holds, and so it is not even possible to formulate conditions ii,

iii, and iv of Theorem 2.32 as stated. In this way, the notion of disintegration generalizes

that of conditional expectation since it requires fewer assumptions and uses less structure

explicit in its definition.

It is well-known that conditional expectations obey functoriality/compositionality. The

same can be said of disintegrations and Bayesian inverses. Since we will need these statements

in some theorems later, we provide them now.

Proposition 3.8 (Compositional properties of Bayesian inverses). In what follows, let

(C, ζ), (B, ξ), and (A, ω) be finite-dimensional quantum probability spaces.

i. The identity map idA is a Bayesian inverse of (idA, ω).

ii. Let (C, ζ) G (B, ξ) F (A, ω) be a pair of composable state-preserving UCP maps that

admit Bayesian inverses (A, ω) F (B, ξ) G (C, ζ). Then G ◦ F is a Bayesian inverse

of (G ◦ F, ω).

iii. Let (B, ξ) F (A, ω) be an invertible UCP map, whose inverse F−1 is UCP. Then F−1

is a Bayesian inverse of (F, ω).

Remark 3.9. We have been careful about the statements of Proposition 3.8 when the states

are not faithful. The following comments justify this caution.

i. If idA is a Bayesian inverse of (A, ω), then idA =
ω

idA. In other words, the two maps need

not be equal on the nose when ω is not faithful. However, if A is a matrix algebra, then

idA = idA, though this is a non-trivial fact [43, Theorem 2.48].

ii. If F ◦G denotes a Bayesian inverse of (F ◦G,ω), then F ◦G =
ω
G◦F . In other words, the

composite of Bayesian inverses need not equal an arbitrary Bayesian inverse of (F ◦G,ω),

but they are a.e. equal.

iii. Note that F and F−1 being UCP automatically implies F and F−1 are ∗-isomorphisms

(for a string-diagrammatic proof, see [40, Corollary 4.15]).

4 Takesaki’s theorem for non-faithful states

If ω is a state on a finite-dimensional C∗-algebra A with support projection Pω that is strictly

less than 1A, then the modular automorphism group as in Definition 2.17 does not exist.

Instead, one can either define the modular automorphism group on the support algebra PωAPω,

where the state ω restricts to a faithful state, or one can define a modular automorphism

semigroup on A. If now B F−→ A is a unital injective ∗-homomorphism and ξ := ω ◦ F is the

induced state, invariance of the subalgebra F (B) under the modular group is not enough to

guarantee the existence of a state-preserving conditional expectation. In fact, it need not be

the case that the induced map PξBPξ // PωAPω is even a ∗-homomorphism, so asking for

the invariance of a subalgebra on the supported algebras under the modular group does not

even make sense. The purpose of this section is to address this and generalize Takesaki’s

theorem [56], which relates the existence of state-preserving conditional expectations to

the modular group, to the setting of (not necessarily faithful) states on finite-dimensional

C∗-algebras.
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4.1 Matrix algebra case

Definition 4.1. LetM ϕ C be a state on a finite-dimensional C∗-algebraM, let Pϕ be the

projection of ϕ, and set MPϕ := PϕMPϕ to be the support algebra associated to (M, ϕ)

(this is also called the corner algebra in the literature). Also, let CPϕ :M //MPϕ be the

corestriction MPϕ� AdPϕ map, which is UCP.

It is immediate from this definition that the diagram

M

MPϕ

C CPϕ

��

ϕ

tt

ϕ�MPϕ

jj (4.2)

commutes, where ϕ� := ϕ ◦ ιPϕ is the induced faithful state from the (non-unital) inclusion

MPϕ

ιPϕ
↪−−→M.

Although the modular group is not defined for ϕ, one can still define a closely related

object with many similar properties since the modular automorphism group associated to ϕ�

is well-defined. Indeed, set

R 3 t 7→ mt
(M,ϕ) := ιPϕ ◦mt

(PϕMPϕ,ϕ�)
◦ CPϕ .

Although not an automorphism group, this provides a family of partial isometries on M that

agrees with the modular group when restricted to PϕMPϕ and sends the remaining vector

subspaces PϕMP⊥ϕ , P⊥ϕMPϕ, and P⊥ϕMP⊥ϕ to zero.

As such, this family of maps will be called the modular automorphism semigroup

associated to the state.

In summary, the modular automorphism group on the support algebra and the modular

automorphism semigroup on the original algebra are related by the commutative diagrams

MPϕ MPϕ

M M

?�

OO

CPϕ
��

mt
(M,ϕ)

oo

mt
(MPϕ

,ϕ�)

oo

and

MPϕ MPϕ

M M
CPϕ
�� ?�

OO

mt
(M,ϕ)

oo

mt
(MPϕ

,ϕ�)

oo

for all t ∈ R.

Notation 4.3. It will be helpful to set up the following notation for the next few subsections.

Let (B, ξ) F (A, ω) be a state-preserving UCP map. Let R := Pω and Q := Pξ be the

support projections. Let B
CQ BQ and A CR AR be the projections onto the support

algebras. Finally, let BQ
FQR AR be the induced map given by FQR := CR ◦ F ◦ jQ, where

BQ
jQ
↪−→ B is the non-unital inclusion.

Lemma 4.4. In terms of Notation 4.3, the map FQR is UCP and the diagram

AR BQ

A B

CCR

��

CQ

��

Foo

ω
&&

ξ
xx

ω�

88

ξ�

ff

FQR

oo
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commutes.

Proof. Lemma 2.30 implies FQR (Q) = RF (Q)R ≥ R. However, since FQR is the composite of a

sub-unital map, the non-unital inclusion BQ ↪→ B, followed by two unital maps, F and CR,

it follows that FQR is sub-unital, i.e., FQR (Q) ≤ R. Hence FQR (Q) = R so that FQR is unital.

Since FQR is the composite of CP maps, FQR is UCP. Finally, the diagram commutes because

RF (B)R = RF
(
QBQ+QBQ⊥ +Q⊥BQ+Q⊥BQ⊥

)
R

= RF (QBQ)R+RF (QBQ⊥)︸ ︷︷ ︸
∈AR⊥

R+RF (Q⊥BQ)︸ ︷︷ ︸
∈R⊥A

R+RF (Q⊥BQ⊥)︸ ︷︷ ︸
∈R⊥AR⊥

R

= RF (QBQ)R

= FQR (QBQ).

Lemma 4.5. In terms Notation 4.3, the Accardi–Cecchini (AC) condition on the support

algebra is equivalent to

AdPω ◦F ◦mt
ξ = mt

ω ◦ F ◦AdPξ ∀ t ∈ R. (4.6)

Proof. Indeed, temporarily let i : APω ↪→ A and j : BPξ ↪→ B denote the non-unital inclusions.

If the AC condition holds on the support algebras, then

AdPω ◦F ◦mt
ξ = j ◦ CPω ◦ F ◦ i ◦mt

ξ�
◦ CPξ

= j ◦ FPξPω ◦m
t
ξ�
◦ CPξ

= j ◦mt
ω�
◦ FPξPω ◦ CPξ

= j ◦mt
ω�
◦ CPω ◦ F ◦AdPξ

= mt
ω ◦ F ◦AdPξ .

Conversely, if (4.6) holds, then

F
Pξ
Pω
◦mt

ξ�
= CPω ◦ F ◦ j ◦ CPξ︸ ︷︷ ︸

=AdPξ

◦mt
ξ ◦ j

= CPω ◦AdPω ◦F ◦mt
ξ ◦ j

= CPω ◦mt
ω ◦ F ◦AdPξ ◦j︸ ︷︷ ︸

=j

= CPω ◦ i︸ ︷︷ ︸
=idAPω

◦mt
ω�
◦ CPω ◦ F ◦ j

= mt
ω�
◦ FPξPω .

Definition 4.7. Both conditions from Lemma 4.5 will be referred to as the Accardi–

Cecchini (AC) condition.

Although the AC condition is a consequence of the Bayes condition, which reads ω(AF (B)) =

ξ(G(A)B) for all A ∈ A and B ∈ B, it is not equivalent to the Bayes condition. In fact, even

if F is an injective ∗-homomorphism (and hence describes a unital subalgebra inclusion), then
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the invariance of the subalgebra F (B) under the modular automorphism semigroup (which

is equivalent to the AC condition) is not sufficient for the existence of a state-preserving

conditional expectation, when the states in question are not faithful. We will soon show that

demanding FQR to be a ∗-homomorphism is a necessary condition, and combined with the AC

condition it is also sufficient.

Before analyzing the general case, we first consider the more explicit case of (unital)

inclusions of matrix algebras. In terms of Notation 4.3, let A = Mkn(C) and B = Mn(C),

with k ∈ N, and F (B) = 1k ⊗B for all B ∈ B. Represent the states ω and ξ, respectively on

Mkn(C) and Mn(C), by density matrices as ω = tr(ρ · ) and ξ = tr(σ · ). In this case, FQR is

given by

FQR : Mn(C)Q //Mkn(C)R

QBQ 7→ R(1k ⊗QBQ)R.
(4.8)

Theorem 4.9 (Non-faithful state generalization of Takesaki’s theorem on matrix algebras).

Given the data set up in the previous paragraph, the following are equivalent.

i. There exists a unique ω-preserving conditional expectation Mkn(C)
E //Mkn(C) onto the

subalgebra 1k ⊗Mn(C) ∼= Mn(C), i.e., (F, ω) admits a disintegration.

ii. The pair (FQR , ω�) has a disintegration.

iii. The map FQR defined in (4.8) is a unital ∗-homomorphism and satisfies the Accardi–

Cecchini condition, i.e.,

mt
(Mkn(C)R,ω�)

◦ FQR = FQR ◦m
t
(Mn(C)Q,ξ�)

∀ t ∈ R. (4.10)

Proof. The proof of item i implies item ii will be provided in much greater generality in

Theorem 4.14. The equivalence between items ii and iii proceeds as follows. First, note

that the Bayes condition is equivalent to the AC condition by Proposition 3.5. Therefore,

Theorem 3.6 shows items ii and iii are equivalent since the state ω� is faithful.

The only thing left to prove is therefore the implication (iii ⇒ i), which proceeds as

follows. We will freely use the equivalence between items ii and iii. Since 1k ⊗Q ≥ R by the

state-preserving condition on the inclusion F , the non-unital inclusion Mkn(C)R ↪→Mkn(C)

factors through Mk(C)⊗Mn(C)Q. Therefore, the composite FQR followed by this non-unital

inclusion gives a non-unital ∗-homomorphism Mn(C)Q → Mk(C) ⊗Mn(C)Q. Hence, there

exists a projection S ∈Mk(C) and a unitary R(Ck ⊗ Cn)
U−→ (S ⊗Q)(Ck ⊗ Cn) such that(

AdU ◦FQR
)

(QBQ) = S ⊗QBQ ∀ QBQ ∈Mn(C)Q. (4.11)

Since 1k ⊗Q ≥ R, the vector spaces R(Ck ⊗ Cn) and (S ⊗Q)(Ck ⊗ Cn) are both subspaces

of (1k ⊗ Q)(Ck ⊗ Cn). Hence, there exists a unitary extension (1k ⊗ Q)(Ck ⊗ Cn)
V−→

(1k ⊗Q)(Ck ⊗ Cn) acting as U on the subspace R(Ck ⊗ Cn). Thus, V can be viewed as an

element of Mk(C)⊗Mn(C)Q. Then L := V R ∈Mk(C)⊗Mn(C)Q is a partial isometry such that

�(S⊗Q)(Ck⊗Cn)L�R(Ck⊗Cn) = U as a linear operator. In particular, L(1k⊗QBQ)L∗ = S⊗QBQ
for all QBQ ∈Mn(C)Q by (4.11).

In the next step of the argument, we will show AdL = AdW⊗Q, when restricted to

1k ⊗ Mn(C)Q, for some partial isometry W ∈ Mk(C) such that WW ∗ = S. Write L =
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∑
αWα ⊗ Vα as a generic tensor product, where the sum is over a finite index set and where

Wα ∈ Mk(C) and Vα ∈ Mn(C)Q for all α. By assumption,
∑

α,βWαW
∗
β ⊗ VαY V ∗β = S ⊗ Y

for all Y ∈ Mn(C)Q. Let {e(Q)
i } be an orthonormal basis of QCn with corresponding basis

{E(Q)
ij = |e(Q)

i 〉〈e
(Q)
j |} of Mn(C)Q so that i, j ∈ {1, . . . , rank(Q)}. Then the previous equation

is equivalent to
∑

α,βWαW
∗
β ⊗VαE

(Q)
ij V ∗β = S⊗E(Q)

ij for all i, j. Let (Vγ)
(Q)
ij := 〈e(Q)

i |Vγ |e
(Q)
j 〉

be the corresponding matrix entries of Vγ with γ ∈ {α, β}. Therefore, expanding the left-hand

gives

S ⊗ E(Q)
ij =

∑
α,β

WαW
∗
β ⊗ VαE

(Q)
ij V ∗β =

∑
α,β

∑
i′,j′

(Vα)
(Q)
i′i (Vβ)

(Q)
j′j WαW

∗
β ⊗ E

(Q)
i′j′ ∀ i, j.

By linear independence of the matrix units,∑
α,β

(Vα)
(Q)
i′i (Vβ)

(Q)
j′j WαW

∗
β =

∑
α,β

(Vα)
(Q)
ii (Vβ)

(Q)
jj δii′δjj′WαW

∗
β ∀ i, j, i′, j′.

Setting

W :=
∑
α

tr(Vα)Wα ≡
∑
α

∑
i

(Vα)
(Q)
ii Wα,

we conclude

AdW⊗Q(1k ⊗ Y ) = AdL(1k ⊗ Y ) ∀ Y ∈Mn(C)Q.

Note that W is a partial isometry since WW ∗ = S. Hence, there exists a unitary extension

W̃ ∈Mk(C) such that7

Ad
W̃⊗Q(FQR (Y )) = AdW⊗Q(FQR (Y )) = S ⊗ Y

for all Y ∈Mn(C)Q. Now, since W̃ is unitary, the inverse of Ad
W̃⊗Q is given by

Ad−1

W̃⊗Q
= Ad

W̃ ∗⊗Q

as ∗-isomorphisms from the algebra Mk(C)⊗Mn(C)Q to itself and satisfying Ad−1

W̃⊗Q
(S⊗Y ) =

R(1k ⊗ Y )R for all Y ∈Mn(C)Q, i.e.,

FQR (Y ) = W̃ ∗SW̃ ⊗ Y

for all Y ∈Mn(C)Q. In particular, taking Y = Q gives

R = T ⊗Q, where T := W̃ ∗SW̃ .

Therefore, Mkn(C)R = Mk(C)T ⊗Mn(C)Q and FQR (Y ) = T ⊗ Y for all Y ∈Mn(C)Q.

Now, by iii, [1, Proposition 6.1] (see also [4, Lemma 2.5]) implies the existence of a

Bayesian inverse Mkn(C)R
G Mn(C)Q of (FQR , ϕ�). Hence, G is a disintegration by [40,

Proposition 7.31] (see also Theorem 3.6). Proposition 2.23 then implies ρ = τ ⊗ σ for some

invertible density matrix τ ∈Mk(C)T . Viewing this equation in Mkn(C) shows that ρ = τ ⊗σ
and the map Mkn(C) E Mn(C) defined by E := trMk(C)(τ ⊗1n · ) is a disintegration, which

defines a state-preserving conditional expectation. Uniqueness of this expectation follows

from [43, Theorem 4.3], for example.

7Warning: It need not be the case that AdW̃⊗Q(1k ⊗ Y ) = AdW⊗Q(1k ⊗ Y ) for all Y ∈ Mn(C)Q unless
W was already unitary to begin with. It is only true that AdW̃⊗Q and AdW⊗Q are equal when acting on the
subalgebra Mkn(C)R.
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In order to show the necessity of both the Accardi–Cecchini (AC) condition and FQR
being a ∗-homomorphism in Theorem 4.9, we provide two counterexamples where only one of

the two conditions holds, showing that there does not exist a state-preserving conditional

expectation.

Example 4.12 (AC does not hold, but FQR is a ∗-homomorphism). It is enough to take a faithful

state on Mkn(C) in such a way that the Takesaki condition is not satisfied (i.e., the density

matrix is not a pure tensor) and then FQR is just the injection, which is a ∗-homomorphism of

course.

Example 4.13 (AC holds, but FQR is not a ∗-homomorphism). This example is illustrated in [43,

Theorem 4.3] and it is about the EPR state. Let M2(C)
ι
↪−→M4(C) be the inclusion and set

ρ := 1
2

[
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

]
, which is the projection onto the subspace generated by 1√

2
(e1⊗e2−e2⊗e1).

Set ϕ := tr(ρ · ). The density matrix associated to the state ψ := ϕ ◦ ι is σ = 1
212. Hence,

the support algebra of M4(C) becomes isomorphic to C because the support of ρ is one

dimensional, while the support algebra of M2(C) is itself, since the state ψ is faithful on it.

Moreover since C is commutative, and since ψ is tracial, we have that the AC condition is

satisfied (the modular groups both act as the identity), but FQR cannot be a ∗-homomorphism,

since it is a map from a higher dimensional simple algebra to a lower dimensional one. In this

case a direct proof of the non disintegrability of the system is given in [43].

4.2 Multi-matrix algebra case

We now generalize Theorem 4.9 to the setting of arbitrary finite-dimensional C∗-algebras.

Since the relationships between conditional expectations, disintegrations, Bayesian inverses,

and the AC condition have already been established, we state the result in its greatest

generality.

Theorem 4.14 (Non-faithful state generalization of Takesaki’s theorem on finite-dimensional

C∗-algebras). In terms of Notation 4.3 with A,B arbitrary finite-dimensional C∗-algebras and

ω, ξ states, as well as assuming F is a unital ∗-homomorphism, the following are equivalent.

i. The pair (F, ω) admits a disintegration, i.e., there exists a ω-preserving conditional

expectation from A to itself onto the subalgebra F (B).

ii. The pair (FQR , ω�) admits a disintegration. In particular, FQR is a unital injective ∗-
homomorphism.

Remark 4.15. In contrast to Theorem 4.9, The conditional expectation in item i of Theo-

rem 4.14 need not be unique. Indeed, let m,n ∈ N, with n > 1, and consider the unital

inclusion Mm(C)⊕ C ↪→Mm(C)⊕Mn(C). Let ω be the state on Mm(C)⊕Mn(C) uniquely

determined by sending A ⊕ B to ω(A ⊕ B) := tr(ρA) for some density matrix ρ ∈ Mm(C).

Then idm⊕ϕ : Mm(C) ⊕Mn(C) //Mm(C) ⊕Mn(C) defines an ω-preserving conditional

expectation onto the subalgebra Mm(C)⊕ C for any state ϕ on Mn(C).

Proof. you found me!

(i ⇒ ii) Let F be a disintegration of (F, ω). Set G := CQ ◦ F ◦ jR. We claim that G is

a disintegration of (FQR , ω�). We will prove this in three steps by first showing G preserves

states, then showing G is unital, and finally showing that G is a left-inverse of FQR .
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Step 1. G preserves states because

ξ�
(
G(A)

)
= ξ�

(
QF (RAR)Q

)
by definition of G

= ξ
(
F (RAR)

)
by (4.2) for ξ

= ω(RAR) since F is state-preserving

= ω�(A) by (4.2) for ω

for all A = RAR ∈ AR.

Step 2. Unitality of G, meaning G(R) = Q, then follows from G(R) = QF (R)Q = Q, where

the second equality holds by Lemma 2.30 since F is UCP and state-preserving.

Step 3. The condition G ◦ FQR = idBQ for G to be a disintegration8

is equivalent to QF
(
RF (B)R

)
Q = QBQ for all B = QBQ ∈ BQ. Since every B can

be written as a linear combination of at most four positive elements, it suffices to

prove QF
(
RF (B∗B)R

)
Q = QB∗BQ for all positive B∗B ∈ BQ. For this, we first

prove that QF
(
RF (B∗B)R

)
Q ≥ QB∗BQ (and afterwards, we will prove the reverse

inequality). This follows from

QF
(
RF (B∗B)R

)
Q ≥ QF

(
RF (B)∗F (B)R

)
Q by Kadison–Schwarz for F

= QF
((
F (B)R

)∗(
F (B)R

))
Q

≥ QF
(
F (B)R

)∗
F
(
F (B)R

)
Q by Kadison–Schwarz for F

=
(
F
(
F (B)R

)
Q
)∗(

F
(
F (B)R

)
Q
)

=
(
BF (R)Q

)∗(
BF (R)Q

)
by right ξ-a.e. modularity9 of F

= QF (R)B∗BF (R)Q

= QF (R)QB∗BQF (R)Q since B∗B = QB∗BQ

= QB∗BQ since QF (R)Q = Q by Lemma 2.30.

Using this, we can prove the other inequality as follows:

0 ≤ ξ�
(
QF
(
RF (B∗B)R

)
Q−QB∗BQ

)
since QF

(
RF (B∗B)R

)
Q ≥ QB∗BQ

= ω�
(
RF (B∗B)R

)
− ξ�(QB∗BQ) since ξ ◦ F = ω

= ω�
(
FQR (QB∗BQ)

)
− ξ�(QB∗BQ) since R ≤ F (R) by Lemma 2.30

= 0 since ω� ◦ FQR = ξ�.

Since ξ� is faithful and the above argument is positive, this provesQF
(
RF (B∗B)R

)
Q =

QB∗BQ for all B ∈ B. As stated above, since every element of BQ can be written as

a linear combination of positive elements, this proves G ◦ FQR = idBQ and completes

the proof that G is a disintegration of (FQR , ω�).

8This is an equality because the states are faithful on the support algebras.
9Assuming the states to be faithful and F to be a unital injective ∗-homomorphism, this property (a.e.

modularity) is also called left-inverse property in [14, Def. 3.2]. Under the same assumptions, it is known to be
essentially equivalent to the conditional expectation property, see [35, Lemma 7.2].
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(i ⇐ ii) We will follow Notation 2.31 closely with some minor differences to avoid clutter.

Since ∗-isomorphisms are automatically disintegrable, it suffices to assume⊕
x∈X

Mmx(C) =: A F←− B :=
⊕
y∈Y

Mny(C)

is given in standard form as

F

⊕
y∈Y

By

 :=
⊕
x∈X
�
y∈Y

(1cxy ⊗By).

The states ω and ξ have support projections R =
⊕

x∈X Rx and Q =
⊕

y∈Y Qy, respectively.

By Lemma 2.30, Rx ≤�y∈Y (1cxy ⊗Qy) for all x ∈ X. In a similar way, if

A G←− C :=
⊕
x,y

Mcxy(C)

is the map

G

(⊕
x,y

Cxy

)
:=
⊕
x∈X
�
y∈Y

(Cxy ⊗ 1ny)

associated to the commutant of F (B), then we also conclude Rx ≤�y∈Y (S′xy ⊗ 1ny), where

S′xy is the support projection of the induced state ω ◦G restricted to Mcxy(C). Since these

commute with each other, we arrive at

Rx ≤�
y∈Y

(S′xy ⊗Qy)

for every x ∈ X. In particular, there exist projections Rxy ∈ Mcyx(C) ⊗Mny(C) such that

Rx = �y∈Y Rxy for all x ∈ X. Because of this decomposition,

RxCmx =
⊕
y∈Y

Rxy(Ccxy ⊗ Cny)

for all x ∈ X.

Now, using the assumption that FQR is a unital ∗-homomorphism, there exists a collection

of projections Sxy ∈Mcxy(C) and a collection of unitaries

RxCmx
Ux−−→

⊕
y∈Y

(Sxy ⊗Qy)(Ccxy ⊗ Cny)

such that

BQ 3 B 7→
(

AdU ◦FQR
)⊕

y∈Y
By

 =
⊕
x∈X
�
y∈Y

(Sxy ⊗By),

where U :=
⊕

x∈X Ux. Hence, by the decomposition of Rx into �y∈Y Rxy and the fact that

UxRxyU
∗
x = Sxy ⊗ Qy for all x, y, we conclude that Ux itself breaks up as a direct sum of

unitaries10 Ux =
⊕

y∈Y Uxy with each unitary acting as

Rxy(Ccxy ⊗ Cny)
Uxy−−→ (Sxy ⊗Qy)(Ccxy ⊗ Cny).

10Recall, if V ⊆ W is a subspace of a finite-dimensional Hilbert space with corresponding orthogonal
projection PV , and if U :W → H is a unitary map, then U(V) has orthogonal projection UPVU

∗.
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Hence, there exist unitary extensions

(1cxy ⊗Qy)(Ccxy ⊗ Cny)
Vxy−−→ (1cxy ⊗Qy)(Ccxy ⊗ Cny)

of the Uxy and which can be viewed as elements of Mcxy(C)⊗Mny(C)Qy . Thus, Vx :=
⊕

y∈Y Vxy
is a unitary extension of Ux for each x ∈ X. Set Lxy := VxyRxy and Lx := VxRx. At this point,

we can follow a similar analysis that was done in the case of factors to show the existence

of a partial isometry Wxy ∈ Mcxy(C) such that WxyW
∗
xy = Sxy and AdLxy = AdWxy⊗Qy as

CP maps on Mcxy(C)⊗Mny(C). Hence, there exist unitary extensions W̃xy ∈Mcxy(C) of the

Wxy such that

Ad
W̃xy⊗Qy

(
Rxy(1cxy ⊗By)Rxy

)
= Sxy ⊗By

for all By ∈Mny(C)Qy . Setting Txy := W̃ ∗xySxyW̃xy, we conclude that Rxy := Txy ⊗Qy. This

automatically implies that

FQR

⊕
y∈Y

By

 =
⊕
x∈X
�
y∈Y

(Txy ⊗By)

for all B =
⊕

y By ∈
⊕

yMny(C)Qy .

Finally, since FQR is disintegrable by assumption, there exist invertible positive matrices

τxy ∈Mcxy(C)Txy such that

ρx =�
y∈Y

(τxy ⊗ σy)

for all x ∈ X, which is a relation that also therefore holds in Ax = Mmx(C) for each

x ∈ X. Note that in this expression, the probabilities were included inside the definitions

of ρx and σy to avoid clutter. Hence, ρx and σy are not necessarily density matrices but

are the associated positive operators on their respective components. By Theorem 2.32, a

disintegration F : A → B of (F, ω) exists.

Remark 4.16. Note that the proof of (i⇒ ii) in Theorem 4.14 did not use the fact that F

is a ∗-homomorphism nor did it use the finite-dimensionality of the algebras A and B. All

that was needed was that F is a state-preserving UCP map between von Neumann algebras

equipped with normal states.

5 Non-commutative Bayesian inversion on matrix algebras

Similar to the case of disintegrations and state-preserving conditional expectations, consider

now the more general case of a state-preserving UCP map (B, ξ) F (A, ω) between C∗-

algebras equipped with states. The following theorem is an enhancement of the quantum

Bayes’ theorem for matrix algebras from [44] combined with the results of the present paper. If

A is a matrix, we use the notation Â to indicate its Moore–Penrose inverse (pseudoinverse) [46],

i.e., the unique matrix such that

AÂA = A, ÂAÂ = Â, (AÂ)∗ = AÂ, and (ÂA)∗ = ÂA.

It follows from this definition that AÂ and ÂA are orthogonal projections onto the range of

A and A∗, respectively.
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Theorem 5.1 (Non-commutative Bayesian inversion on matrix algebras). Let B F A be a

UCP map between matrix algebras A := Mm(C) and B := Mn(C), let A ω=tr(ρ · ) C be a state,

and set ξ := ω ◦F ≡ tr(σ · ). Let Pω and Pξ be the support projections of ω and ξ, respectively.

Let GL, GR : A // B be any two unital linear maps satisfying PξG
L(A) = σ̂F ∗(ρA) and

GR(A)Pξ = F ∗(Aρ)σ̂ for all A ∈ A (such unital linear maps are called left and right Bayes

maps, respectively11). Finally, set12

A :=

√
dim(A)∑
i,j=1

E
(m)
ij ⊗ σ̂F

∗(ρE
(m)
ij )Pξ and B :=

√
dim(A)∑
i,j=1

E
(m)
ij ⊗ σ̂F

∗(ρE
(m)
ij )P⊥ξ

Then the following conditions are equivalent.

i. The map AdPξ ◦GR (or AdPξ ◦GL) is ∗-preserving.

ii. AdPξ ◦GL = AdPξ ◦GR.

iii. A∗ = A.

iv. PξF
∗(ρA)σ = σF ∗(Aρ)Pξ for all A ∈Mm(C).

v. F (σB)ρ = ρF (Bσ) for all B ∈ PξBPξ.

vi. σ̂F ∗(ρE
(m)
ij P⊥ω )Pξ = 0 for all i, j and the map FQR is an intertwiner for the modular

groups associated to the states on the support algebras, i.e., FQR ◦mt
ξ�

= mt
ω�
◦ FQR for all

t ∈ R.

vii. The map AdPξ ◦GR (or AdPξ ◦GL) is UCP.

When one, and hence all, of these conditions hold, a formula for G := AdPξ ◦GL ≡ AdPξ ◦GR
is given by

G = Ad√σ̂ ◦ F
∗ ◦Ad√ρ.

Moreover, if any (and hence all) of the above conditions hold, then the following additional

conditions are equivalent.

(a) A Bayesian inverse of (F, ω) exists.

(b) trA

(
B∗ÂB

)
≤ P⊥ξ .

In other words, the AC condition on the support algebras is not enough to guarantee the

existence of a Bayesian inverse when the states are not faithful. Two additional constraints

are needed, namely

σ̂F ∗(ρE
(m)
ij P⊥ω )Pξ = 0 ∀ i, j and trA

(
B∗ÂB

)
≤ P⊥ξ .

This is to be contrasted with the previous theorems on disintegrations.

11The left Bayes map satisfies the Bayes condition ω(AF (B)) = ξ(GL(A)B) for all inputs, while the right
Bayes map satisfies the reversed Bayes condition ω(F (B)A) = ξ(BGR(A)) for all inputs [41].

12Notice that A is the the Choi matrix associated to AdPξ ◦G
L and A∗ is the Choi matrix associated to

AdPξ ◦G
R.
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Proof. The theorem contains two sets of claims. The equivalence between items i, iv, v,

and vii together with the resulting formula for G was proved in [44, Proposition 5.12].13

Furthermore, the equivalence between these items and items ii and iii can be easily deduced

from this. Hence, the first set of equivalent conditions will be established by proving that

item vi is equivalent to any of the other conditions. We prove item vi is equivalent to item iv.

We first note that

ρE
(m)
ij = ρ(Pω + P⊥ω )E

(m)
ij = ρPωE

(m)
ij = ρPωE

(m)
ij Pω + ρPωE

(m)
ij P⊥ω .

Hence, if we take A = PωE
(m)
ij P⊥ω , item iv implies σ̂F ∗(ρE

(m)
ij P⊥ω )Pξ = 0. Moreover, the

reverse implication holds if matrices in item iv are of the form AP⊥ω . Since F is ∗-preserving,

the same is true for matrices of the form P⊥ω A. In the remaining case, for matrices of the form

A = PωAPω, Proposition 3.2 completes the proof, since on the support algebra PωMm(C)Pω
the state ω is faithful and Bayesian invertibility there (which is equivalent to item iv) is

equivalent to the Accardi–Cecchini condition.

Finally, the equivalence between conditions (a) and (b), provided that the stated assump-

tions hold, were established in [44, Theorem 5.62].

Remark 5.2. The theorem suggests that the AC condition does not suffice to guarantee the

existence of a Bayesian inverse F to (F, ω). This turns out to indeed be the case. Even if

items i through vii hold, it is not automatic that the condition trA

(
B∗ÂB

)
≤ P⊥ξ holds. A

simple explicit counter-example is provided in [44, Example 5.85]. In particular, we cannot

simply extend G arbitrarily to a UCP map of the form

G̃(A) := G(A) + P⊥ξ ζ(A)

for some state B ζ C as is often done for Petz recovery maps in the literature [29, 30]. The

reason is because such a G̃ need not satisfy the Bayes condition (which is stronger than the

AC condition). This should be compared with Theorems 4.9 and 4.14, where disintegrability

on the support algebras sufficed for disintegrability on the original algebras.

Remark 5.3. Although every UCP map B F A between finite-dimensional C∗-algebras has

a Stinespring representation of the form

B A

C

F //

G

??

π
��

with π a unital ∗-homomorphism and G a pure14 UCP map, it is not necessarily the case that

13Technically, GL was used in the statement and proof of [44, Proposition 5.12], but the proof is completely
analogous with GR. We have used GR in this paper to more easily connect to other works in the literature,
such as Carlen and Vershynina’s recent theorem [11], which we will explain in Remark 5.4 is a special case of
our Bayes’ theorem.

14Pure maps/processes as defined in [51, Definition 2.32] between multi-matrix algebras are characterized
in [51, Proposition B.2]. If A =

⊕
x∈X Mmx(C) and B =

⊕
y∈Y Mny (C), then Stinespring’s construction applied

to the x component Fx : B // A → Mmx(C) provides a Hilbert space Hx, a representation B πx−−→ B(Hx),

and an isometry Cmx Vx−−→ Hx such that Fx = AdVx ◦πx (see [39, Section 5] for details). Each AdVx is a pure
map. Hence, C can be taken to be the direct sum C =

⊕
x∈X B(Hx), the map B π−→ C sends B to

⊕
x∈X πx(B),

and the pure map C G A can be taken to be the direct sum G :=
⊕

x∈X AdVx .
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such a decomposition can be used to determine if a state-preserving UCP map (B, ξ) F (A, ω)

has a Bayesian inverse.

More precisely, given such a Stinespring representation, let ζ := ω ◦ G be the induced

state on C. Then all maps in the Stinespring representation are state-preserving. Further-

more, (C, ζ) G (A, ω) is always Bayesian invertible (without any conditions) assuming the

Stinespring construction from footnote 14 is used (cf., [44, Proposition 5.38]). Therefore,

one might guess that a Bayesian inverse of (F, ω) exists if and only if a Bayesian inverse

(disintegration) of (B, ξ) π−→ (C, ζ) exists. Although it is true that if π has a Bayesian inverse,

then F has a Bayesian inverse, which we know can be taken as the composite F := π ◦ G
of Bayesian inverses (by Proposition 3.8), there exist situations where (F, ω) has a Bayesian

inverse without (π, ζ) having one.

To illustrate this, if we takeA,B, C to be matrix algebras, π to be the usual ∗-homomorphism

in standard form, and G = AdV for some coisometry V , the claim is: If ξ is faithful and a

Bayesian inverse π of (π, ζ) exists, then (F, ω) admits a disintegration (in particular, F is a

∗-homomorphism).15 Indeed, set Q := V ∗V and let G be any Bayesian inverse, such as

A 3 A 7→ G(A) := V ∗AV + ν(A)Q,

where ν is any state on A. Then

(π ◦G ◦ F )(B) = (π ◦G ◦G ◦ π)(B) = π
(
Qπ(B)Q+ ν(V π(B)V ∗)Q⊥

)
for all B ∈ B. By [44, Lemma 5.4], Q⊥ ≤ P⊥ζ , where Pζ is the support projection of ζ. Hence,

by Lemma 2.30,

(π ◦G ◦ F )(B) = π (Qπ(B)Q)

since Nξ = 0. Similarly, since π is ∗-preserving,

π (π(B)) = π (Qπ(B)Q)

for all B ∈ B. But since π is a disintegration of (π, ζ), this proves π ◦G is a disintegration of

(F, ω).

Remark 5.4. The implication (i⇒ vii) from Theorem 5.1 holds in full generality for finite-

dimensional C∗-algebras, as it is shown in [44, Lemma 6.19]. It generalizes a recent result of

Carlen and Vershynina [11, Theorem 3.1], which restricted itself to the case of faithful states

and injective ∗-homomorphisms.16 Let us explain this result and its generalization in some

detail.

First, let 〈 · , · 〉ω denote the GNS bilinear form on A with respect to a state ω on A, and

similarly for 〈 · , · 〉ξ on B with ξ a state on B. Assume ξ is faithful so that 〈 · , · 〉ξ is an

inner product. Let (B, ξ) F−→ (A, ω) be a state-preserving ∗-homomorphism. Let A G B be

the right Bayes map17 of (F, ω). Then G automatically satisfies Equation (1.17) in [11] since

that equation reads

〈F (B), A〉ω = 〈B,G(A)〉ξ ∀ A ∈ A, B ∈ B,
15And since we know there are examples of (F, ω) that are Bayesian invertible but not disintegrable, this

tells us that Bayesian inverses cannot just be computed using Stinespring dilations and the disintegration
theorem.

16Generalizing their result to the case of UCP maps is not just a straightforward application of Stinespring’s
theorem, as explained in Remark 5.3.

17If A and B are matrix algebras, the formula for G := GR was given in Theorem 5.1. More generally, if
A =

⊕
x∈X Mmx(C), B =

⊕
y∈Y Mny (C), ω =

∑
x px tr(ρx · ), and ξ =

∑
y qy tr(σy · ) as in the statement
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which in terms of the definition of the GNS bilinear forms becomes

ω
(
F (B)∗A

)
= ξ
(
B∗G(A)

)
∀ A ∈ A, B ∈ B.

The agrees exactly with the Bayes condition written in reverse order because F is ∗-preserving

and ∗ is an involution. In other words, it is equivalent to

ω
(
F (B)A

)
= ξ
(
BG(A)

)
∀ A ∈ A, B ∈ B. (5.5)

Note that G is uniquely determined in this case, even though ω is not necessarily faithful.

Furthermore, it follows from this formula, and the fact that F is a ∗-homomorphism, that

E := F ◦ G is automatically a projection (meaning E2 = E) onto F (B) (the fact that it

is orthogonal in the sense of [11] is precisely the GNS inner product condition), but is not

necessarily ∗-preserving, nor CP. In fact, G ◦ F = idB. To see this, first note that

ξ
(
BG

(
F (B′)

))
= ω

(
F (B)F (B′)

)
by (5.5)

= (ω ◦ F )
(
BB′

)
since F is deterministic

= ξ
(
BB′

)
since F is state-preserving

for all B,B′ ∈ B. In other words, G ◦F =
ξ

idB. But since ξ is faithful, this means G ◦F = idB.

When F is therefore replaced with a UCP map, as in Theorem 5.1, it no longer makes sense

to ask for a projection onto some subalgebra of A. For one, F (B) is only an operator system

inside A. Secondly, if we replaced the projection condition with some left-inverse condition,

such as G ◦F =
ξ

idB, then we know that this necessarily implies that F is ω-a.e. deterministic.

Nevertheless, one always has the right Bayes map (which reduces to the orthogonal projection

of [11] when F is an injective ∗-homomorphism). Thus, Theorem 5.1 item i (G is ∗-preserving)

implies item vii (G is CP) is a generalization of [11, Theorem 3.1].

6 Discussion and outlook

In this article, we showed how the Tomita–Takesaki modular automorphism group (or

semigroup) is related to disintegrations and Bayesian inverses, concepts that arise naturally in

the setting of synthetic probability [12, 20, 40]. This brings the categorical approach towards

probability closer to the algebraic approach pioneered by Segal [50], Umegaki [59], and

others. We reviewed how the Accardi–Cecchini (AC) condition generalizes the modular group

invariance of a subalgebra to the case of UCP maps, rather than injective ∗-homomorphisms.

We then demonstrated how the Bayes condition generalizes the AC condition to allow for

non-faithful states. Indeed, in the case of non-faithful states, we saw that the AC condition is

not enough to guarantee the existence of a state-preserving conditional expectation, or more

generally a Bayesian inverse. The remaining condition for the existence of Bayesian inverses

was discovered in [44] and enhanced in the present paper (Theorem 5.1). Furthermore, a

simplified condition, in terms of disintegrations, was presented for the first time in this paper

for the existence of state-preserving conditional expectations (Theorem 4.14).

of Proposition 3.3, then a formula for the yx component Mmx(C)
Gyx Mny (C) is given by Gyx(Ax) =

px
qy
F ∗xy(Axρx)σ−1

y for all Ax ∈ Mmx(C) (cf., [44, Lemma 6.19]). Here, Mny (C)
Fxy Mmx(C) is the xy

component of F .
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In the quantum information theory literature, the Petz recovery map and its swiveled/rotated

variant have played an important role in terms of information recovery [29, 30]. However, for

non-faithful states, the Petz recovery map does not specify the action off the support algebra.

On the other hand, the Bayesian inverse does not always exist, unlike the Petz recovery map.

As such, it is important to study approximate versions of Bayesian inverses. From this, one

might suspect the existence of some interpolation between these two approaches towards

quantum Bayesian inference. Furthermore, just like perfect error-correction is related to

disintegrations [40], which has its approximate versions [33], one might guess that approximate

versions of Bayesian inverses could be used in an alternative approach towards approximate

error-correction.

Finally, the Petz recovery map and its swiveled/rotated variants do not generally work in

generalizing the strengthened data-processing inequality to the quantum setting. Classically,

this inequality states that if p is a probability measure on a finite set X, and X
f
Y is a

stochastic map to a finite set Y , then there exists a recovery map, i.e., a probability-preserving

stochastic map (Y, f ◦ p) g
(X, p) such that

S(q ‖ p)− S(f ◦ q ‖ f ◦ p) ≥ S(q ‖ g ◦ f ◦ q)

for all probability measures q on X. Here, S(q ‖ p) denotes the relative entropy of q

given p and f ◦ p denotes the push-forward of the probability p along f . It is known that in

full generality, no such recovery map exists (see the discussion at the beginning of Section 5

in [17] and the end of Section 5 in [34]). Therefore, it would be convenient to find sufficient

and/or necessary conditions for a quantum analogue of this inequality to hold.

A Carlson’s theorem

We recall some facts from complex analysis [3].

Theorem A.1 (The identity theorem). Let f : D → C be a holomorphic function on a domain

(an open and connected subset) D ⊆ C and let S ⊆ D be a subset with an accumulation point

in S. If f(z) = 0 for all z ∈ S, then f ≡ 0 on all of D.

Proof. See [3, Chapter 4 Section 3.2 page 127].

Definition A.2. An entire function is a C-valued holomorphic function whose domain is

all of C.

Theorem A.3 (Liouville’s theorem). If f is a bounded entire function, then f is a constant.

Proof. See [3, Chapter 4 Section 2.3 page 122].

As a corollary to Liouville’s theorem, the set of bounded entire functions is the one-

dimensional vector subspace of constant functions inside the infinite-dimensional vector space

of all entire functions. Therefore, one often distinguishes the different classes of non-bounded

entire functions by their asymptotic growth rates. Such a situation occurs in the following

theorem, which is used multiple times in this work.

Theorem A.4 (Carlson’s theorem). Let f be an entire function satisfying the following

conditions:
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i. there exist constants C, γ, γ′ ∈ R with γ′ < π such that

|f(z)| ≤ Ceγ|z| ∀ z ∈ C and |f(it)| ≤ Ceγ′|t| ∀ t ∈ R

ii. f(n) = 0 for all n ∈ N.

Then f ≡ 0.

Proof. This follows from [9, Theorem 9.2.1]. We include the argument for completeness. First,

define

h(θ) := lim sup
r→∞

log |f(reiθ)|
|r|

.

By the assumptions in [9, Theorem 9.2.1], f is regular and of exponential type, which implies

the constants C, γ, γ′ exist. Then

h(±π/2) = lim sup
r→∞

log |f(±ir)|
|r|

≤ lim sup
r→∞

log |Ceγ′|r||
|r|

= lim sup
r→∞

(
log |C|
|r|

+ γ′
)

= γ′.

Hence, h(π/2) + h(−π/2) ≤ 2γ′, which shows that γ′ < π.

B State-preserving conditional expectations

As in Section 2.3, let A F←− B be a unital ∗-homomorphism of finite-dimensional C∗-algebras

(multi-matrix algebras). Set N := F (B) and M := A so that N ⊆M.

In this section, we characterize explicitly the states ω on M (not necessarily faithful) that

admit a state-preserving conditional expectation E :M //M onto N , namely such that

ω = ω ◦ E.

Before proving the proposition, we need to recall some notation. Let Pi, i = 1, . . . , s, and

Qj , j = 1, . . . , t, be the minimal projects in the center of M and N respectively, in some

ordering. As in Section 2.3, set X := {1, . . . , s} and Y := {1, . . . , t}. Let Mi := PiMPi =

PiM and Ni := QjNQj = QjN . ThenMi
∼= Mmi(C) and Nj ∼= Mnj (C) for some mi, nj ∈ N,

and

M =
⊕
i∈X
Mi
∼=
⊕
i∈X

Mmi(C), N =
⊕
j∈Y
Nj ∼=

⊕
j∈Y

Mnj (C).

Let also Mij := PiQjMPiQj = PiQjMQj and Nij := PiQjNPiQj = PiQjN . Observe

that PiQj = QjPi and assume PiQj 6= 0. Then Nij ∼= Nj , as Pi ∈ Nj ′ and Nj is a factor,

thus x ∈ Nj 7→ Pix ∈ Nij is a ∗-isomorphism. Moreover, Nij ⊆ Mij is a type In subfactor.

Explicitly,

Nij ∼= Mnj (C)⊗ 1cij ⊆Mnj (C)⊗Mcij (C) ∼=Mij

where cij ∈ N are some multiplicities describing the type In subfactors, i.e., (cij)i,j is the

Bratteli inclusion matrix of N ⊆M, extended to all pairs (i, j) by setting cij := 0 if PiQj = 0.

Note that mi =
∑

j cijnj because N ⊆M is unital.

Lastly, as
∑

i Pi = 1 =
∑

j Qj , every A ∈ M can be written as A =
∑

i,u,v QuPiAPiQv
where i runs in X and u, v run in Y . We write for short Ai := PiAPi = PiA ∈ Mi and

Ai;uv := QuPiAQv. Thus A =
∑

iAi, but also A =
∑

i,u,v Ai;uv, and Ai;uv ∈Mij if u = v = j.

Note that Mij = 0 = Nij whenever PiQj = 0.
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The following two lemmas are a consequence of the condition
∑

i Pi = 1 =
∑

j Qj and

they hold for arbitrary von Neumann algebras with finite-dimensional centers. The proof of

the first is immediate, for the second we refer to [27, Sec. 2], [24, Sec. 2], [23].

Lemma B.1. Every state ω on M, not necessarily faithful, can be written as follows. Let

A ∈M, then

ω(A) =
∑
i

piωi(Ai)

where pi ≥ 0,
∑

i pi = 1 are defined by pi := ω(Pi), and ωi is the state on Mi defined by

ωi(Ai) := p−1
i ω(Ai) if pi 6= 0, or the zero functional on Mi otherwise.

Lemma B.2. Every conditional expectation E :M //M onto N , not necessarily faithful,

nor state-preserving, can be written as follows. Let A ∈M, then

E(A) =
∑
i,j

λijQij(Eij(Ai;jj))

where λij ≥ 0 are defined by λijQj := E(PiQj), Eij : Mij
//Mij are the conditional

expectations onto Nij defined by Eij(Ai;jj) := λ−1
ij PiQjE(Ai;jj) = λ−1

ij PiQjE(PiA) if λij 6= 0,

or the zero map on Mij otherwise, and Qij : Nij → Nj is the inverse of the ∗-isomorphism

A 7→ PiA if PiQj 6= 0, or the zero map on Nij otherwise.

Now we state and prove the main result of this section.

Proposition B.3. Let N ⊆M be a unital inclusion of multi-matrix algebras. A state ω on

M∼=
⊕

i∈X Mmi(C), not necessarily faithful, admits a conditional expectation E :M //M
onto N ∼=

⊕
j∈Y Mnj (C) such that ω = ω ◦ E if and only if it is of the form

ω( · ) =
∑
i

pi tr(ρi · )

where ρi is the density matrix associated with the restriction of ω to Mi
∼= Mmi(C), i ∈ X,

or zero, and it holds for every j, u, v ∈ Y with u 6= v

PiuρiPiv = 0, PijρiPij = µijσj ⊗ τij

where Pij is the projection in Mmi(C) corresponding to PiQj ∈ Mi, µij ≥ 0 are some

proportionality coefficients, σj is the density matrix in Mnj (C) associated with the restriction

of ω to Nj ∼= Mnj (C) or zero, and τij is the density matrix in Mcij (C) associated with the

partial trace Eij :Mij
∼= Mnj (C)⊗Mcij (C)→ Nij ∼= Mnj (C)⊗ 1cij or zero.

Proof. By Lemma B.1, for every state ω on M we have

ω(A) =
∑
i

piωi(Ai).

Similarly, for the restriction ξ := ω�N we have

ξ(B) =
∑
j

qjξj(Bj)

Bj := QjBQj = QjB ∈ Nj , qj := ξ(Qj) fulfill qj ≥ 0,
∑

j qj = 1, and ξj(Bj) := q−1
j ξ(Bj) if

qj 6= 0, or the zero functional on Nj otherwise.
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By Lemma B.2, for every conditional expectation E :M //M onto N we have

E(A) =
∑
i,j

λijQij(Eij(Ai;jj)).

Assume ω = ω ◦ E, then the two sides of the equality

ω(A) = ω(E(A))

read

ω(A) =
∑
i,u,v

piωi(Ai;uv)

and

ω(E(A)) =
∑
i,j

λijω(Qij(Eij(Ai;jj)))

=
∑
i,j

λijqjξj(Qij(Eij(Ai;jj))).

In our case at hand, Mij
∼= Mnj (C)⊗Mcij (C), Nij ∼= Mnj (C)⊗ 1cij and Nj ∼= Mnj (C).

So by Lemma 2.22, Eij can be viewed as the partial trace defined on simple tensors Bj ⊗ Cij
in Mnj (C)⊗Mcij (C) by

Eij(Bj ⊗ Cij) = tr(τijCij)Bj ⊗ 1cij

for some density matrix τij ∈ Mcij (C), or the zero map, and Qij can be viewed as the

∗-isomorphism Bj ⊗ 1cij 7→ Bj . Note that PiQj = 0 if and only if cij = 0. In view of

the identifications Mi
∼= Mmi(C) and Nj ∼= Mnj (C), if ωj and ξj are not zero, we have

ωi(Ai) = tr(ρiAi), Ai ∈ Mi, and ξj(Bj) = tr(σjAj), Bj ∈ Nj , for some density matrices

ρi ∈Mmi(C) and σj ∈Mnj (C).

Choose A = Ai;jj ∈ Mij ⊆ Mi, for i, j fixed. Then QuAi;jjPiQv = Ai;jj if u = v = j,

zero otherwise. More particularly, choose A = Ai;jj to be identified with a simple tensor

Bj ⊗ Cij in Mnj (C)⊗Mcij (C). Then ω(A) = ω(E(A)) implies

pi trMmi (C)((PijρiPij)Bj ⊗ Cij) = λijqj tr(σjBj) tr(τijCij)

where Pij is the projection in Mmi(C) corresponding to PiQj ∈Mi. In particular,
∑

j Pij =

1mi . By taking linear combinations of simple tensors, we get

PijρiPij =
λijqj
pi

σj ⊗ τij

if pi 6= 0 and Pij 6= 0. In order to determine ρi completely, we need to determine also PiuρiPiv
with u 6= v and we can assume Piu 6= 0, Piv 6= 0. Choose A = Ai;uv ∈ Mi with u 6= v, and

denote again by Ai;uv its corresponding element in Mmi(C). Then ω(A) = ω(E(A)) implies

piωi(Ai;uv) = 0, because QjAi;uvPiQj = 0 if u 6= v, hence

0 = pi tr(ρiAi;uv) = pi tr(ρi(PiuAi;uvPiv)) = pi tr((PivρiPiu)Ai;uv)

which, if pi 6= 0, yields PivρiPiu = 0, concluding the proof.
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