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Introduction

In a very important recent paper [1], F. Brown solved long standing conjec-
tures about multiple zeta values (here abbreviated as MZV). In particular,
he showed that any such series

ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1

kn1
1 . . . knr

r

(1)

(with integers n1 ≥ 1, . . . , nr−1 ≥ 1, nr ≥ 2) can be expressed as a linear
combination with rational coefficients of special values ζ(m1, . . . ,ms) where
each mi is 2 or 3. The uniqueness of such a linear combination is beyond
reach for the moment, but F. Brown [1], after A.B. Goncharov [2] has pro-
moted the MZV’s to motivic multizeta values ζm(n1, . . . , nr), and shown that
the ζm(m1, . . . ,ms)’s with mi in {2, 3} form a rational basis of the space of
the motivic MZV’s.

In the course of his proof, he needs an identity of the form

H(a, b) =
k∑

i=1

αa,b
i ζ(2i+ 1)H(k − i) (2)

with k = a+ b+ 1 and1

H(m) := ζ(2, . . . , 2︸ ︷︷ ︸
m

) , H(a, b) := ζ(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

) . (3)

1We use the convention H(0) = 1.
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F. Brown was not able to give an explicit formula for the rational coefficients
αa,b

i , but this was supplied by D. Zagier [5], thus completing the proof by
F. Brown. It is known since Euler that, for a given integer m ≥ 1, the
numbers H(m)/π2m, ζ(2m)/π2m and ζ(2)m/π2m are all rational, and ζ(0) =
−1

2
. So in the statement of formula (2), one could replace H(k − i) by

ζ(2k − 2i) or by ζ(2)k−i, without loosing the rationality of the coefficients
αa,b

i .

Let us remind the definition of the weight

w = n1 + . . .+ nr

of the MZV ζ(n1, . . . , nr). In particular ζ(n) is of weight n. From his result,
D. Zagier deduces that, for a given odd weight w = 2k + 1 (with k ≥ 1), the
following two families of k real numbers

(B1) H(a, b) for a ≥ 0, b ≥ 0 , a+ b = k − 1

(B2) ζ(2k + 1) , ζ(2i+ 1) ζ(2k − 2i) for 1 ≤ i ≤ k − 1

generate the same vector subspace Dw of R over the rational numbers. D. Za-
gier has announced that the same space is generated by another family of k
numbers, namely

(B3) ζ(2k + 1) , ζ(2i, 2k − 2i+ 1) for 1 ≤ i ≤ k − 1 .

In this paper, we shall first prove a slightly weaker statement namely
that, modulo the simple zetas ζ(n), the products of two simple zetas and the
double zetas generate the same vector space over Q in R. On the one hand,
the following formula

ζ(m) ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m+ n) (4)

(a particular case of the so-called “stuffle formula”) enables us to express the
product of two simple zetas in terms of double zetas. We shall prove the
converse formula

ζ(m,n) =
1

2
(1 + (−1)n) ζ(m) ζ(n)

+
1

2

[
(−1)n

(
m+ n
m

)
− 1

]
ζ(m+ n)

− (−1)n

(m+n−3)/2∑
i=1

[(
m+ n− 2i− 1

m− 1

)
+

(
m+ n− 2i− 1

n− 1

)]
ζ(2i) ζ(m+ n− 2i) (5)
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for m ≥ 1, n ≥ 1 and m + n odd. Once this is proved, a simple arithmetic
proof, used already by F. Brown and D. Zagier, enables to conclude that the
families (B2) and (B3) generate the same vector space over Q.

Our proof is purely algebraic and rests on the use of the stuffle formula
(4), the shuffle formula (59) and Hoffman’s derivation formula (62), in con-
jonction with the manipulation of suitable generating series. It is generally
expected that the three families (B1), (B2) and (B3) of k real numbers are
linearly independent over the field Q of rational numbers. That is, the vec-
tor space D2k+1 is of dimension k over Q. For the time being, using results
of A.B. Goncharov [2] and F. Brown [1], one can promote the double zetas
ζ(m,n) to motivic ones ζm(m,n) and show that the motivic families (Bm

1 ),
(Bm

2 ) and (Bm
3 ) form three basis of the motivic space Dm

2k+1. Since our proof
rests on the regularized double shuffle relations only, and since the motivic
versions of these formulas are known (see I. Soudères [4]), our proof of formula
(5) extends litterally to the motivic case.

1 Review of the stuffle relation

Let us repeat this relation

ζ(m) ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m+ n) (for m ≥ 2, n ≥ 2) , (6)

and the definitions of the numbers occuring in it

ζ(m) =
∑
k>0

1

km
, ζ(m,n) =

∑
0<k<`

1

km `n
. (7)

The standard proof is simple: write ζ(m) ζ(n) as a double series
∑
k>0
`>0

1
km `n

extended over the domain of pairs of integers k > 0, ` > 0. Then split this
summation as the sum of three subsummations∑

k>0, `>0

=
∑

0<k<`

+
∑

0<`<k

+
∑

0<k=`

(8)

and (6) follows immediately.
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We give another proof which is based on an integral representation for
the simple and double zetas. For ζ(m) with m ≥ 2, here is the calculation

ζ(m) =
∑
k≥1

1

km
=
∑
k≥1

[∫ 1

0

xk−1 dx

]m

=
∑
k≥1

∫
Cm

(x1 . . . xm)k−1 dx1 . . . dxm

=

∫
Cm

∑
k≥1

(x1 . . . xm)k−1 dx1 . . . dxm

=

∫
Cm

dx1 . . . dxm

1− x1 . . . xm

.

Hence

ζ(m) =

∫
Cm

dx1 . . . dxm

1− x1 . . . xm

, (9)

where Cm is the unit cube defined by 0 ≤ x1 ≤ 1, . . . , 0 ≤ xm ≤ 1 in Rm. A
similar calculation yields

ζ(m,n) =

∫
Cm+n

y2

(1− y1 y2)(1− y2)
dx1 . . . dxm+n (10)

with y1 = x1 . . . xm and y2 = xm+1 . . . xm+n. All terms in formula (6) are
integrals over the cube Cm+n of rational functions of x1, . . . , xm+n and the
proof follows from the following identity for the integrands

1

(1− y1)(1− y2)
=

y2

(1− y1 y2)(1− y2)
+

y1

(1− y1 y2)(1− y1)

+
1

1− y1 y2

, (11)

that is
1− y1 y2 = y2(1− y1) + y1(1− y2) + (1− y1)(1− y2) . (12)

We shall now reformulate the stuffle relation using generating series. It
is convenient to introduce a symbol ζ(1) to be interpreted as 0. Hence we
define

Z[u] =
∑
m≥1

ζ(m)um−1 (13)
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and from ζ(1) = 0, one deduces that Z[0] = 0 and the summation can be
restricted to m ≥ 2. Similarly, let us remark that ζ(m,n) is defined for m ≥ 1
and n ≥ 2. We extend this definition to the case n = 1 by the conventions

ζ(1, 1) = 0 , (14)

ζ(m, 1) = −ζ(m+ 1)− ζ(1,m) (for m ≥ 2) . (15)

With this convention, the stuffle formula (6) is valid for m ≥ 1, n ≥ 1 and
m+ n ≥ 3. But for m = n = 1, one obtains

ζ(1) ζ(1) = 2 ζ(1, 1) (16)

without the term ζ(2). This being understood, we define the generating
series

Z[u, v] =
∑

m≥1, n≥1

ζ(m,n)um−1 vn−1 . (17)

The stuffle formula can be reformulated as

Z[u]Z[v] = Z[u, v] + Z[v, u] + L[u, v] (18)

with
L[u, v] :=

∑
k≥3

∑
m+n=k

ζ(m+ n)um−1 vn−1 . (19)

Notice that, with our conventions, one has Z[0] = Z[0, 0] = 0. To be valid,
identity (18) requires L[0, 0] = 0, hence the special form of the summation
for L[u, v], restricted to m ≥ 1, n ≥ 1, m+ n ≥ 3.

The relation∑
m+n=k

um−1 vn−1 =
uk−1 − vk−1

u− v
(for k ≥ 2) (20)

enables one to conclude

L[u, v] =
Z[u]− Z[v]

u− v
− ζ(2) . (21)

For later purposes, we need to split the series Z[u] and Z[u, v] into even
and odd parts, as follows:

Z[u] = Z+[u] + Z−[u] where Z±[−u] = ±Z±[u] ,
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Z[u, v] = Z+[u, v] + Z−[u, v] where Z±[−u,−v] = ±Z±[u, v] .

We are interested in Z−[u, v] which is the generating series for the double
zetas whose weight w = m + n is odd. From (18) and (21), one obtains the
final result:Z+[u]Z−[v] + Z+[v]Z−[u] = Z−[u, v] + Z−[v, u] + L−[u, v]

L−[u, v] =
Z+[u]− Z+[v]

u− v
,

(22)

where the annoying constant −ζ(2) in (21) has disappeared.

2 Some integration formulas: the simple ze-

tas

Let us define the functions

Sk(u) =
∑
m≥2

k−m um−1 (23)

for k ≥ 1. One derives immediately the following expressions

Sk(u) =
u

k(k − u)
, (24)

Sk(u) =
1

k − u
− 1

k
, (25)

Sk(u) =

∫ 1

0

(x−u − 1)xk−1 dx . (26)

Since ζ(m) is equal to
∑
k≥1

k−m for m ≥ 2, and since by convention ζ(1) = 0,

we can rewrite Z[u] =
∑

m≥2

ζ(m)um−1 as
∑
k≥1

Sk(u); the series is absolutely

convergent (for any complex number u distinct from any integer k ≥ 1)
since (24) gives the estimate Sk(u) = O

(
1
k2

)
for fixed u. Hence Z[u] is a

meromorphic function of u, with single poles of residue − 1 for u equal to
1, 2, 3, . . . From (25) and (26) we derive two important representations of
Z[u], namely

Z[u] =
∑
k≥1

(
1

k − u
− 1

k

)
, (27)
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Z[u] =

∫ 1

0

x−u − 1

1− x
dx . (28)

From this integral formula, one derives immediately

Z[u+ 1] = Z[u]− 1

w
. (29)

Introducing the classical psi function

ψ(s) =
d

ds
log Γ(s) , (30)

one can translate the relation (27) as2

Z[u] = ψ(1)− ψ(1− u) . (31)

Thus the formulas (28) and (29) correspond to well-known properties of the
psi function.

The integral (28) is convergent in the neighborhood of x = 0 when the
real part Re(u) of u satisfies Re(u) < 1. By well-known properties of Mellin
transforms, Z[u] is holomorphic in the half-plane Reu < 1 and extends as
a meromorphic function to the complex plane C. The correction −1 to x−u

ensures that the integral is convergent in the neighborhood of x = 1. We
shall meet similar, but more complicated, phenomena for the double integrals
representing the double zetas, which are regularized Mellin transforms. In
a later study of multiple zeta values, we shall have to develop systematic
regularization procedures which are inspired by the well-known methods in
quantum field theories.

3 Some integration formulas: the double ze-

tas

We shall give another proof of the stuffle formula in the form (18). For this
purpose, we need suitable double Mellin transforms, namely

L[u, v] =

∫ 1

0

∫ 1

0

x−u y−v − 1

1− xy
dx dy (32)

Z[u, v] =

∫ 1

0

∫ 1

0

y
x−u y−v − x−u − y−u + 1

(1− y)(1− xy)
dx dy − L[u, 0] . (33)

2Let us recall that −ψ(1) is the Euler constant γE .
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(A) Proof of formula (32):

Recall that the constant term of L[u, v], as defined by formula (19), is 0.
We modify this by putting L[u, v] = L[u, v] + ζ(2), that is

L[u, v] =
∑
m≥1
n≥1

ζ(m+ n)um−1 vn−1 . (34)

Since ζ(2) is equal to
∫ 1

0

∫ 1

0
dx dy
1−xy

as we saw in Section 1, formula (9), we have
to prove the following relation

L[u, v] =

∫ 1

0

∫ 1

0

x−u y−v

1− xy
dx dy . (35)

Using the definition of ζ(m+ n) as
∑
k≥1

k−m · k−n, inserting this in (34), and

rearranging the triple series, we obtain

L[u, v] =
∑
k≥1

1

k − u
· 1

k − v
. (36)

On the other hand, in the integral (35) develop 1
1−xy

as a geometric series∑
k≥1

xk−1 yk−1 and integrate term by term. We obtain the same series as in

(36). Q.E.D.

An immediate corollary of (32) is the following:

L[u, v]− L[u, 0]− L[0, v] =

∫ 1

0

∫ 1

0

(x−u − 1)(y−v − 1)

1− xy
dx dy . (37)

Let us give now two new proofs of formula (21), that is

L[u, v] =
Z[u]− Z[v]

u− v
. (38)

The first one uses series, that is (36) for L[u, v] and (27) for Z[u]. Then our
relation reduces to the obvious relation

1

k − u
· 1

k − v
=

1

u− v
·
[(

1

k − u
− 1

k

)
−
(

1

k − v
− 1

k

)]
. (39)

8



For the second proof, use the integral representation (35) for L[u, v] and the
general integration formula∫ 1

0

∫ 1

0

f(x, y) dx dy =

∫ 1

0

dz

∫ 1

z

f
(
x,
z

x

) dx
x
, (40)

to get

L[u, v] =

∫ 1

0

z−v dz

1− z

∫ 1

z

xv−u−1 dx

=

∫ 1

0

z−v dz

1− z
· 1− zv−u

v − u

=

∫ 1

0

z−v − z−u

(1− z)(v − u)
dz

=
1

v − u

∫ 1

0

z−v − 1

1− z
dz − 1

v − u

∫ 1

0

z−u − 1

1− z
dz

and we conclude by (28).

(B) Proof of formula (33):

Using the definition (17) of Z[u, v] and the convention ζ(1, 1) = 0, we
split the summation into two subseries, that is Z[u, v] = A+B with

A =
∑

m≥1, n≥2

ζ(m,n)um−1 vn−1 , (41)

B =
∑
m≥2

ζ(m, 1)um−1 . (42)

To compute A, replace ζ(m,n) by its definition
∑

0<k<`

k−m `−n, interchange

the summations
∑
m,n

with
∑
k,`

and perform the easy summations over m and

n. We get therefore

A =
∑

0<k<`

1

k − u

[
1

`− v
− 1

`

]
. (43)

We introduce now the integral representations

1

k − u
=

∫ 1

0

x−u xk−1 dx , (44)

9



1

`− v
− 1

`
=

∫ 1

0

(y−v − 1) y`−1 dy (45)

and interchange integration and summation. Using the series expansion∑
0<k<`

xk−1 y`−1 =
y

(1− y)(1− xy)
, (46)

we conclude

A =

∫ 1

0

∫ 1

0

y
x−u(y−v − 1)

(1− y)(1− xy)
dx dy . (47)

To evaluate B, let us go back to the definition

ζ(m, 1) = −ζ(m+ 1)− ζ(1,m) . (48)

By definition, the series −
∑

m≥2

ζ(m+1)um−1 is equal to −L[u, 0] (see formula

(19)). It remains to sum the series

C =
∑
m≥2

ζ(1,m)um−1 . (49)

Returning to the definition ζ(1,m) =
∑

0<k<`

k−1 `−m, a simple manipulation

of series yields C =
∑

0<k<`

k−1 S`(u). By using the integral representations

k−1 =

∫ 1

0

xk−1 dx , S`(u) =

∫ 1

0

(y−u − 1) y`−1 dy , (50)

and interchanging integration and summation, we end up with

C =

∫ 1

0

∫ 1

0

y
y−u − 1

(1− y)(1− xy)
dx dy . (51)

We have therefore

Z[u, v] = A+B = A− C − L[u, 0]

and we conclude by using formulas (47) and (51). Q.E.D.
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(C) Proof of the stuffle formula:

Putting
Z[u, v] := Z[u, v] + L[u, 0] , (52)

the stuffle formula amounts to

Z[u, v] + Z[v, u] = Z[u]Z[v]− L[u, v] + L[u, 0] + L[0, v] . (53)

Using (28) and (37), we evaluate the right-hand side of this relation as the
integral

B(u, v) =

∫ 1

0

∫ 1

0

(x−u − 1)(y−v − 1)

[
1

(1− x)(1− y)
− 1

1− xy

]
dx dy . (54)

On the other hand, while symmetrizing Z[u, v] + Z[v, u] we can replace in
the integral (33) the term −y−u by −y−v, hence Z[u, v] + Z[v, u] is the sum
of the two integrals A[u, v] and A[v, u], where

A[u, v] :=

∫ 1

0

∫ 1

0

(x−u − 1)(y−v − 1)
y

(1− y)(1− xy)
dx dy . (55)

We calculate A[v, u] by exchanging the integration variables x, y, hence

A[v, u] =

∫ 1

0

∫ 1

0

(x−u − 1)(y−v − 1)
x

(1− x)(1− xy)
dx dy . (56)

From all these relations, it follows that the stuffle formula (53) is equivalent
to A[u, v] + A[v, u] = B[u, v]. This follows immediately from the relation

1

(1− x)(1− y)
=

1

1− xy
+

y

(1− y)(1− xy)
+

x

(1− x)(1− xy)
. (57)

This is an identity among rational functions that we met already in Section 1,
formula (11). Q.E.D.

Remarks. a) In this section, u and v are complex variables. If we assume
|u| < 1, |v| < 1, all series are absolutely convergent. Exchanging summation
and integration rests on the general principle∫

T

∑
i

fi(t) dt =
∑

i

∫
T

fi(t) dt (58)
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which is guaranteed by the assumption∑
i

∫
T

|fi(t)| dt < +∞ .

Then we can proceed through analytic continuation for general values of u
and v. Notice that Z[u, v] is a meromorphic function with poles located at
u = k or v = k for k = 1, 2, . . ..

b) Using geometric series, the right-hand side R(x, y) of formula (57) can
be written as

R(x, y) =
∑

0≤k=`

xk y` +
∑

0≤k<`

xk y` +
∑

0≤`<k

xk y` .

Using once again the splitting principle for double series, we get

R(x, y) =
∑

k≥0, `≥0

xk y` =
1

1− x
· 1

1− y
.

This is formula (57)!

4 Review of the shuffle formula

We shall use the following special case of the shuffle formula

ζ(m) ζ(n) =
n∑

i=1

(
m+ n− i− 1

m− 1

)
ζ(i,m+ n− i)

+
m∑

i=1

(
m+ n− i− 1

n− 1

)
ζ(i,m+ n− i) . (59)

When m ≥ 2 and n ≥ 2, all zeta values occuring there are defined by conver-
gent series and integrals3, and our proof shall be via integral representations.
We want to extend the validity of formula (59) to the exceptional cases where
m or n is equal to 1. For instance, for m = 1, we obtain the specialization

0 = 2 ζ(1, n) +
n−1∑
i=2

ζ(i, n+ 1− i) + ζ(n, 1) (60)

3We call them convergent zeta values!
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for n ≥ 2, according to our convention ζ(1) = 0. Recall that ζ(n, 1) is defined
in terms of convergent zeta values by the relation

ζ(n, 1) = −ζ(1, n)− ζ(n+ 1) . (61)

Hence (60) reduces to

ζ(n+ 1) =
n−1∑
i=1

ζ(i, n+ 1− i) (for n ≥ 2) . (62)

This is a special case of Hoffman’s relation [3].

(A) Proof of the shuffle formula:

We introduce the abbreviation

Ym(x) =
xm−1

(m− 1)!
. (63)

To calculate the integral

Im :=

∫ ∞
0

Ym(x)
dx

ex − 1
, (64)

use the series expansion
1

ex − 1
=
∑
k≥1

e−kx , (65)

integrate term by term using the well-known relation∫ ∞
0

Ym(x) e−kx dx = k−m , (66)

hence Im =
∑
k≥1

k−m = ζ(m). We conclude4

∫ ∞
0

Ym(x)
dx

ex − 1
= ζ(m) . (67)

A similar calculation yields∫ ∞
0

∫ ∞
0

Ym(x)Yn(y)
dx dy

(ex+y − 1)(ey − 1)
= ζ(m,n) . (68)

4This is a special case of the well-known integral representation of Riemann’s zeta
function!
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For m ≥ 2, Ym(x) is divisible by x, and since x
ex−1

is continuous up to
x = 0, the integral (67) converges up to x = 0 (the convergence for x = ∞
is guaranteed since the integrand is O(e−x/2)). Similarly, the integral (68)
converges for m ≥ 1 and n ≥ 2.

We need a general integration formula. In the plane with coordinates u, v
let us consider the domain D defined by u > 0, v > 0. Up to a set of measure
0, it splits as D = D1 ∪D2 where

D1 = {0 < u < v} , D2 = {0 < v < u} .

The changes of coordinates u = y, v = x+ y for D1 and u = x+ y, v = y for
D2 reduce these inequalities to x > 0, y > 0, hence the relation∫ ∞

0

∫ ∞
0

f(x, y) dx dy =

∫ ∞
0

∫ ∞
0

f(y, x+ y) dx dy

+

∫ ∞
0

∫ ∞
0

f(x+ y, y) dx dy . (69)

From (67), we obtain by multiplication

ζ(m) ζ(n) =

∫ ∞
0

∫ ∞
0

Ym(x)Yn(y)
dx dy

(ex − 1)(ey − 1)
(70)

for m ≥ 2, n ≥ 2. Using the integration formula (69), this transforms as
ζ(m) ζ(n) = Im,n + In,m where

Im,n :=

∫ ∞
0

∫ ∞
0

Ym(y)Yn(x+ y)
dx dy

(ex+y − 1)(ey − 1)
. (71)

A simple calculation using the binomial formula yields the following algebraic
identity

Ym(y)Yn(x+ y) =
n∑

i=1

(
m+ n− i− 1

m− 1

)
Yi(x)Ym+n−i(y) . (72)

Inserting this into the integral (71) and using (68) gives the result

Im,n =
n∑

i=1

(
m+ n− i− 1

m− 1

)
ζ(i,m+ n− i) . (73)
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We conclude the proof of formula (59) using ζ(m) ζ(n) = Im,n +In,m. Q.E.D.

(B) Proof of Hoffman’s relation:

We have to show that the sum

Sn :=
n−1∑
i=1

ζ(i, n+ 1− i) = ζ(1, n) + ζ(2, n− 1) + . . .+ ζ(n− 1, 2) (74)

is equal to ζ(n + 1) for n ≥ 2. An equivalent form of the binomial theorem
is the formula

Yn(x+ y) =
n∑

i=1

Yi(x)Yn+1−i(y) , (75)

hence by subtraction

n−1∑
i=1

Yi(x)Yn+1−i(y) = Yn(x+ y)− Yn(x) . (76)

Using formula (68), we obtain

ζ(i, n+ 1− i) =

∫ ∞
0

∫ ∞
0

Yi(x)Yn+1−i(y)
dx dy

(ex+y − 1)(ey − 1)
. (77)

Summing and using (76), we conclude

Sn =

∫ ∞
0

∫ ∞
0

[Yn(x+ y)− Yn(x)] · dx dy

(ex+y − 1)(ey − 1)
. (78)

Here is a slight difficulty: we cannot split this integral as a difference of two
integrals since the integral

∫ A

0
dy

ey−1
diverges like

∫ A

0
dy
y

. We put a regulariza-

tion factor5 by replacing dy by yεdy for a small ε > 0.

Let us introduce therefore

Sn,ε :=

∫ ∞
0

∫ ∞
0

[Yn(x+ y)− Yn(x)]
yε dx dy

(ex+y − 1)(ey − 1)
. (79)

It is now legitimate to split this integral as a difference of two integrals. The
first one is ∫ ∞

0

∫ ∞
0

Yn(x+ y)

ex+y − 1
· yε

ey − 1
dx dy

5All known proofs of Hoffman’s relation seem to need some kind of limiting process!
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which is transformed, according to (69) into6∫ ∞
0

∫ ∞
0

Yn(x)

ex − 1
· yε

ey − 1
dx dy −

∫ ∞
0

∫ ∞
0

Yn(x)

ex − 1
· (x+ y)ε

ex+y − 1
dx dy .

Inserting this into (79) yields

Sn,ε =

∫ ∞
0

∫ ∞
0

Yn(x)Fε(x, y) dx dy , (80)

with the definition

Fε(x, y) =
yε

(ex − 1)(ey − 1)
− (x+ y)ε

(ex+y − 1)(ex − 1)
− yε

(ex+y − 1)(ey − 1)
. (81)

It is now legitimate to go to the limit ε → 0. According to (78) and (79),
one has Sn = lim

ε→0
Sn,ε, hence

Sn =

∫ ∞
0

∫ ∞
0

Yn(x)F (x, y) dx dy (82)

where F (x, y) is the limit of Fε(x, y) for ε→ 0. From (81) one observes that
F (x, y) is of the form H(ex, ey) with

H(a, b) :=
1

(a− 1)(b− 1)
− 1

(ab− 1)(a− 1)
− 1

(ab− 1)(b− 1)
. (83)

We are back to our old friend expressed in formulas (11) and (57). It is
immediate that H(a, b) is equal to 1

ab−1
, hence by (82), we obtain

Sn =

∫ ∞
0

∫ ∞
0

Yn(x)
dx dy

ex+y − 1
. (84)

This last integral is easy to evaluate: develop 1
ex+y−1

as
∑
k≥1

e−kx ·e−ky accord-

ing to (65), then use formula (66) to derive

6Since in general, one has
∫∫

g(x, y) dx dy =
∫∫

g(y, x) dx dy, we can rewrite∫∞
0

∫∞
0
f(y, x+ y) dx dy as

∫∞
0

∫∞
0
f(x, x+ y) dx dy in formula (69).
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Sn =
∑
k≥1

k−n · k−1 = ζ(n+ 1) . (85)

Q.E.D.

(C) Generating series:

We remind the reader of the definitions

Z[u] =
∑
m≥2

ζ(m)um−1

L[u, v] =
∑

m≥1, n≥1
m+n≥3

ζ(m+ n)um−1 vn−1

Z[u, v] =
∑

m≥1, n≥1

ζ(m,n)um−1 vn−1

and of the convention ζ(1, 1) = 0. One has

Z[u, u+ v] =
∑

m≥1, n≥1

ζ(m,n)um−1(u+ v)n−1 , (86)

hence expanding via the binomial theorem, one obtains

Z[u, u+ v] =
∑

m≥1, n≥1

um−1 vn−1

m∑
i=1

(
m+ n− i− 1

n− 1

)
ζ(i,m+ n− i) . (87)

Treating Z[v, u + v] in a similar way, we conclude that the shuffle relation
(59) is therefore equivalent to

Z[u]Z[v] = Z[u, u+ v] + Z[v, u+ v] . (88)

Hoffman’s relation (62) takes the equivalent form7

Z[u, u] = Z[u, 0] + L[u, 0] . (89)

We leave it as an exercise to the reader to prove these two relations using
the integral representations for these generating series (see formulas (32) and
(33)).

7This relation obtains immediately by putting v = 0 in the relations (18) and (88).
Hence it is not a new relation.
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5 The main formulas

Using generating series, and keeping only the odd part, we reformulate the
stuffle and the shuffle relations respectively as

Z−[u, v] + Z−[v, u] = A[u, v] (90)

Z−[u, u+ v] + Z−[v, u+ v] = B[u, v] (91)

using the definitions

A[u, v] := Z+[u]Z−[v] + Z+[v]Z−[u]− Z+[u]− Z+[v]

u− v
(92)

B[u, v] := Z+[u]Z−[v] + Z+[v]Z−[u] . (93)

We introduce two other functions

C[u, v] := A[u, v] + A[u− v, u]− A[v − u, v] (94)

D[u, v] := B[−u, v] +B[v − u, u]−B[u− v, v] . (95)

Using the stuffle relation (90), we calculate

C[u, v] = Z−[u, v] + Z−[v, u] + Z−[u− v, u]− Z−[v − u, v]

− Z−[v, v − u] + Z−[u, u− v] . (96)

Similarly, using the shuffle relation, we obtain

D[u, v] = Z−[u, v]− Z−[v, u]− Z−[u− v, u] + Z−[v − u, v]

+ Z−[v, v − u] + Z−[−u, v − u] . (97)

By adding, this yields

C[u, v] +D[u, v] = 2Z−[u, v] + Z−[u, u− v] + Z−[−u, v − u] . (98)

Since the function Z−[u, v] is odd, the last two terms cancel, and therefore

2Z−[u, v] = C[u, v] +D[u, v] . (99)

We can refer to the definitions (92) to (95) of the functions A[u, v] to
D[u, v] to derive an explicit form for Z−[u, v]. Here is the final result:

Z−[u, v] = Z+[u]Z−[v] + Z+[u− v]Z−[u]− Z+[u− v]Z−[v] (100)

+
1

2

[
−Z+[u]− Z+[v]

u− v
+
Z+[u− v]− Z+[u]

v
− Z+[v − u]− Z+[v]

u

]
.
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Another proof is as follows: check that the function Z−[u, v] defined by this
formula is odd (which is obvious) and verify that it satisfies the stuffle equa-
tion (90) as well as the shuffle equation (91). The reasoning leading to
equation (99) shows that there exists a unique function satisfying these con-
ditions.

Let us introduce now the antisymmetric double zetas

η(m,n) := ζ(m,n)− ζ(n,m) (101)

and their generating series8

H[u, v] = Z[u, v]− Z[v, u] . (102)

We split it into an even part H+[u, v] and an odd part H−[u, v]. From formula
(100), one derives

H−[u, v] = Z−[u, v]− Z−[v, u]

= Z+[u]Z−[v]− Z+[v]Z−[u]

+ 2Z+[u− v] (Z−[u]− Z−[v])

+
Z+[u− v]− Z+[u]

v
− Z+[v − u]− Z+[v]

u
. (103)

It is more convenient to slightly modify this generating series by introducing
the new series

H−[−u, v] = −H−[u,−v] =
∑
m≥1
n≥1

(−1)n η(m,n)um−1 vn−1 . (104)

We have the following variant of formula (100)

H−[−u, v] = Z+[u]Z−[v] + Z+[v]Z−[u]

− 2Z+[u+ v] (Z−[u] + Z−[v])

+
(u+ v)Z+[u+ v]− uZ+[u]− v Z+[v]

uv
. (105)

Noticing that the first term Z+[u]Z−[v] +Z+[v]Z−[u] is simply the odd part
of the product

Z[u]Z[v] =
∑
m≥1
n≥1

ζ(m) ζ(n)um−1 vn−1

8Read H[u, v] as “eta” and Z[u, v] as “zeta” using the upper case greek letters!

19



and that uZ+[u] is equal to
∑
k≥1

ζ(2k + 1)u2k+1, we transform the relation

(105) into9

(−1)n η(m,n) = ζ(m) ζ(n) +

(
m+ n
m

)
ζ(m+ n)

− 2

bn/2c∑
i=1

(
m+ n− 2i− 1

m− 1

)
ζ(2i) ζ(m+ n− 2i)

− 2

bm/2c∑
i=1

(
m+ n− 2i− 1

n− 1

)
ζ(2i) ζ(m+ n− 2i) (106)

in the case of a odd weight m+ n = 2k + 1 with k ≥ 1.

From the stuffle relation (6) and definition (101) of η(m,n), one derives

ζ(m,n) =
1

2
[η(m,n) + ζ(m) ζ(n)− ζ(m+ n)] . (107)

This proves the final formula announced as (5) in the introduction

ζ(m,n) =
1

2
(1 + (−1)n) ζ(m) ζ(n)

+
1

2

[
(−1)n

(
m+ n
m

)
− 1

]
ζ(m+ n)

− (−1)n

(m+n−3)/2∑
i=1

[(
m+ n− 2i− 1

m− 1

)
+

(
m+ n− 2i− 1

n− 1

)]
ζ(2i) ζ(m+ n− 2i) (108)

in the case of an odd weight m+ n = 2k + 1.

We urge the reader to check the formula (106) against the numerical data
given in tables I and II.

9As usual we denote by bxc the integer part of a number x, that is x = bxc + θ with
0 ≤ θ < 1.
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Appendix A. Examples and Tables

Weight 3:

With our convention ζ(1) = 0, the stuffle formula takes the form

0 = ζ(1) ζ(2) = ζ(1, 2) + ζ(2, 1) + ζ(3) (109)

while the shuffle formula takes the form

0 = ζ(1) ζ(2) = 2 ζ(1, 2) + ζ(2, 1) . (110)

One derives {
ζ(1, 2) = ζ(3)
ζ(2, 1) = − 2 ζ(3) .

(111)

The formula ζ(1, 2) = ζ(3), that is explicitely∑
k≥1
j≥1

1

k(k + j)2
=
∑
k≥1

1

k3
(112)

is a famous result of Euler. For the antisymmetric double zetas η(m,n) =
ζ(m,n)− ζ(n,m), one derives{

η(1, 2) = + 3 ζ(3)
η(2, 1) = − 3 ζ(3) .

(113)

Weight 5:

Stuffle relations:

ζ(1) ζ(4) = ζ(1, 4) + ζ(4, 1) + ζ(5) = 0

ζ(2) ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5) .

Shuffle relations:

ζ(1) ζ(4) = 2 ζ(1, 4) + ζ(2, 3) + ζ(3, 2) + ζ(4, 1) = 0

ζ(2) ζ(3) = 3 ζ(1, 4) + 2 ζ(2, 3) + ζ(3, 2)

+ 3 ζ(1, 4) + ζ(2, 3)

= 6 ζ(1, 4) + 3 ζ(2, 3) + ζ(3, 2) .
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We have 4 linear relations for 4 unknown quantities ζ(1, 4), ζ(2, 3), ζ(3, 2),
ζ(4, 1). Here is the solution

ζ(1, 4) = 2 ζ(5)− ζ(2) ζ(3)

ζ(2, 3) = −11

2
ζ(5) + 3 ζ(2) ζ(3)

ζ(3, 2) =
9

2
ζ(5)− 2 ζ(2) ζ(3)

ζ(4, 1) = − 3 ζ(5) + ζ(2) ζ(3) .

In matrix form, this is written as

ζ(5) ζ(2) ζ(3)
ζ(1, 4) 2 − 1
ζ(2, 3) − 11/2 3
ζ(3, 2) 9/2 − 2
ζ(4, 1) − 3 1

From this we derive

η(1, 4) = − η(4, 1) = 5 ζ(5)− 2 ζ(2) ζ(3)

η(2, 3) = − η(3, 2) = − 10 ζ(5) + 5 ζ(2) ζ(3) .

The case of weight 7 can be treated similarly. In table I, I give in matrix
form the results for the weights 3, 5, 7. To make use of this table, recall the
relations

ζ(m,n) =
1

2
[η(m,n) + ζ(m) ζ(n)− ζ(m+ n)] (114)

for m ≥ 1 , n ≥ 1

η(1, 2k) = (2k + 1) ζ(2k + 1)− 2
k−1∑
i=1

ζ(2i) ζ(2k − 2i+ 1) (115)

hence

ζ(1, 2k) = k ζ(2k + 1)−
k−1∑
i=1

ζ(2i) ζ(2k − 2i+ 1) . (116)

If we solve the linear stuffle and shuffle relations without imposing ζ(1) = 0,
we get an extra term−ζ(2k) ζ(1) in η(1, 2k), hence a correction− 1

2
ζ(2k) ζ(1)

for ζ(1, 2k) and ζ(2k, 1). This explains the last column in our tables.
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Table I

Antisymmetric double zetas in weight 3, 5, 710

Weight 3
ζ(3) ζ(2) ζ(1)

η(1, 2) 3 − 1
η(2, 1) −3 1

Weight 5

ζ(5) ζ(2) ζ(3) ζ(4) ζ(1)
η(1, 4) 5 − 2 − 1
η(2, 3) − 10 5 0
η(3, 2) 10 − 5 0
η(4, 1) − 5 2 1

Weight 7

ζ(7) ζ(2) ζ(5) ζ(4) ζ(3) ζ(6) ζ(1)
η(1, 6) 7 − 2 − 2 − 1
η(2, 5) − 21 9 4 0
η(3, 4) 35 − 20 − 1 0
η(4, 3) − 35 20 1 0
η(5, 2) 21 − 9 − 4 0
η(6, 1) − 7 2 2 1

10Calculated directly by the author.
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Table II

Antisymmetric double zetas in weight 9, 1111

Weight 9

ζ(9) ζ(2) ζ(7) ζ(4) ζ(5) ζ(6) ζ(3) ζ(8) ζ(1)
η(1, 8) 9 − 2 − 2 − 2 − 1
η(2, 7) − 36 13 8 4 0
η(3, 6) 84 − 42 − 12 − 1 0
η(4, 5) − 126 70 9 0 0
η(5, 4) 126 − 70 − 9 0 0
η(6, 3) − 84 42 12 1 0
η(7, 2) 36 − 13 − 8 − 4 0
η(8, 1) − 9 2 2 2 1

Weight 11

ζ(11) ζ(2) ζ(9) ζ(4) ζ(7) ζ(6) ζ(5) ζ(8) ζ(3) ζ(10) ζ(1)
η(1, 10) 11 − 2 − 2 − 2 − 2 − 1
η(2, 9) − 55 17 12 8 4 0
η(3, 8) 165 − 72 − 30 − 12 − 1 0
η(4, 7) − 330 168 41 8 0 0
η(5, 6) 462 − 252 − 42 − 1 0 0
η(6, 5) − 462 252 42 1 0 0
η(7, 4) 330 − 168 − 41 − 8 0 0
η(8, 3) − 165 72 30 12 1 0
η(9, 2) 55 − 17 − 12 − 8 − 4 0
η(10, 1) − 11 2 2 2 2 1

11Calculated by the author using tables of Minh et al.
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Appendix B. A compendium of useful formulas

B.1. Simple zetas

ζ(m) =
∑
k≥1

k−m

=

∫ ∞
0

xm−1

(m− 1)!

dx

ex − 1

=

∫
Cm

dx1 . . . dxm

1− x1 . . . xm

.

Here m ≥ 2, and Cm is the unit cube in the space Rm, defined by the
inequalities 0 ≤ x1 ≤ 1, . . . , 0 ≤ xm ≤ 1. To be supplemented by ζ(1) = 0.

B.2. Generating series for simple zetas

Z[u] =
∑
m≥1

ζ(m)um−1 (notice ζ(1) = 0)

=
∑
k≥1

[
1

k − u
− 1

k

]
=

∫ 1

0

x−u − 1

1− x
dx

=

∫ ∞
0

eux − 1

ex − 1
dx

L[u] =
∑
m≥2

ζ(m+ 1)um−1

=
∑
k≥1

u

k2(k − u)

=

∫ 1

0

∫ 1

0

x−u − 1

1− xy
dx dy

=

∫ ∞
0

∫ ∞
0

eux − 1

ex+y − 1
dx dy

Z[u] = u(L[u] + ζ(2)) .
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B.3. Double zetas

ζ(m,n) =
∑

0<k<`

k−m `−n

=

∫ ∞
0

∫ ∞
0

xm−1

(m− 1)!

yn−1

(n− 1)!

dx dy

(ex+y − 1)(ey − 1)

=

∫
Cm+n

xm+1 . . . xm+n dx1 . . . dxm+n

(1− x1 . . . xm+n)(1− xm+1 . . . xm+n)
.

Here m ≥ 1 and n ≥ 2. To be supplemented by

ζ(1, 1) = 0 , ζ(m, 1) = −ζ(m+ 1)− ζ(1,m) for m ≥ 2 .

B.4. Generating series for double zetas

Z[u, v] =
∑

m≥1, n≥1

ζ(m,n)um−1 vn−1

=
∑

0<k<`

(
1

k − u
· 1

`− v
− 1

k − u
· 1

`
− 1

k
· 1

`− u
+

1

k`

)
− L[u]

=

∫ 1

0

∫ 1

0

y
x−u y−v − x−u − y−u + 1

(1− xy)(1− y)
dx dy − L[u]

=

∫ ∞
0

∫ ∞
0

(eux+vy − eux − euy + 1)

(ex+y − 1)(ey − 1)
dx dy − L[u] .

B.5. Rational functions

∑
0<k=`

xk−1 y`−1 =
1

1− xy∑
0<k<`

xk−1 y`−1 =
y

(1− y)(1− xy)∑
0<`<k

xk−1 y`−1 =
x

(1− x)(1− xy)
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1

1− x
· 1

1− y
=

1

1− xy
+

y

(1− y)(1− xy)
+

x

(1− x)(1− xy)
.

B.6. Stuffle relation

ζ(m) ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m+ n)

for m ≥ 1, n ≥ 1, except m = n = 1 Z[u]Z[v] = Z[u, v] + Z[v, u] + L[u, v]

L[u, v] =
Z[u]− Z[v]

u− v
− ζ(2) .

B.7. Other expressions for L[u, v]

L[u, v] =
∑

m≥1, n≥1
m+n≥3

ζ(m+ n)um−1 vn−1

=
∑
k≥1

(
1

k − u
· 1

k − v
− 1

k2

)
=

∫ 1

0

∫ 1

0

x−u y−v − 1

1− xy
dx dy

=

∫ ∞
0

∫ ∞
0

eux+vy − 1

ex+y − 1
dx dy

L[u] = L[u, 0] = L[0, u]

L[u, v]− L[u]− L[v] =

∫ 1

0

∫ 1

0

(x−u − 1)(y−v − 1)

1− xy
dx dy

=

∫ ∞
0

∫ ∞
0

(eux − 1)(evy − 1)

ex+y − 1
dx dy .
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B.8. Shuffle formula and Hoffman’s relation

ζ(m) ζ(n) =
n∑

i=1

(
m+ n− i− 1

m− 1

)
ζ(i,m+ n− i)

+
m∑

i=1

(
m+ n− i− 1

n− 1

)
ζ(i,m+ n− i)

ζ(n+ 1) =
n−1∑
i=1

ζ(i, n+ 1− i)

Z[u]Z[v] = Z[u, u+ v] + Z[v, u+ v]

L[u] = Z[u, u]− Z[u, 0] .

B.9. Structure of double zetas

ζ(m,n) + ζ(n,m) = ζ(m) ζ(n)− ζ(m+ n)

ζ(m,n)− ζ(n,m) = η(m,n)

ζ(m,n) =
1

2
(η(m,n) + ζ(m) ζ(n)− ζ(m+ n))

ζ(1, 2k) = k ζ(2k + 1)−
k−1∑
i=2

ζ(2i) ζ(2k − 2i+ 1)

ζ(2k, 1) = −(k + 1) ζ(2k + 1) +
k−1∑
i=1

ζ(2i) ζ(2k − 2i+ 1) + ζ(2k) ζ(1)

η(1, 2k) = −η(2k, 1) = (2k + 1) ζ(2k + 1)

−2
k−1∑
i=1

ζ(2i) ζ(2k − 2i+ 1)− ζ(2k) ζ(1) .

Notice that ζ(1) = 0 according to our conventions! In all these formulas
m ≥ 1, n ≥ 1 and k ≥ 1. The case m = n = 1 is to be omitted.
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B.10. The main formulas

(−1)n η(m,n) = ζ(m) ζ(n) +

(
m+ n
m

)
ζ(m+ n)

− 2

bn/2c∑
i=1

(
m+ n− 2i− 1

m− 1

)
ζ(2i) ζ(m+ n− 2i)

− 2

bm/2c∑
i=1

(
m+ n− 2i− 1

n− 1

)
ζ(2i) ζ(m+ n− 2i)

ζ(m,n) =
1

2
(1 + (−1)n) ζ(m) ζ(n)

+
1

2

[
(−1)n

(
m+ n
m

)
− 1

]
ζ(m+ n)

− (−1)n

(m+n−3)/2∑
i=1

[(
m+ n− 2i− 1

m− 1

)
+

(
m+ n− 2i− 1

n− 1

)]
ζ(2i) ζ(m+ n− 2i)

In these formulas m ≥ 1, n ≥ 1 and m+ n is odd, m+ n ≥ 3.

B.11. Generating series

Z−[u, v] = Z+[u]Z−[v] + Z+[u− v]Z−[u]− Z+[u− v]Z−[v]

+
1

2

[
−Z+[u]− Z+[v]

u− v
+
Z+[u− v]− Z+[u]

v
− Z+[v − u]− Z+[v]

u

]
.

H[u, v] = Z[u, v]− Z[v, u] .

H−[u, v] = Z−[u, v]− Z−[v, u]

= Z+[u]Z−[v]− Z+[v]Z−[u]

+ 2Z+[u− v] (Z−[u]− Z−[v])

+
Z+[u− v]− Z+[u]

v
− Z+[v − u]− Z+[v]

u
.
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H−[−u, v] = Z+[u]Z−[v] + Z+[v]Z−[u]

− 2Z+[u+ v] (Z−[u] + Z−[v])

+
(u+ v)Z+[u+ v]− uZ+[u] + v Z+[v]

uv
.
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zetas. On the other hand, F. Brown supplied the tables which enabled me
to calculate table II above, and suggested to use the antisymmetric form

η(m,n) = ζ(m,n)− ζ(n,m) .

From our tables and by similarity with D. Zagier’s tables, it was easy to guess
the patterns and to discover the formulas with binomial coefficients.

Added in proof (April 2011). I just received the final version of Zagier’s
paper [5]. Our main formula (5) is stated there, and its proof is very similar
to our proof. The fact that the families (B2) and (B3) generate the same
vector space over Q is also proved, and the proof rests on the arithmetical
method of Brown and Zagier mentioned in the introduction. What is not in
Zagier’s paper are the antisymmetric double zetas, the motivic version and
the integral formulas for the generating series.
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