On the double zeta values

Pierre CARTIER

Introduction

In a very important recent paper [1], F. Brown solved long standing conjec-
tures about multiple zeta values (here abbreviated as MZV). In particular,
he showed that any such series

1
C(ny,...,n.) = T o (1)
kT
0<k1<...<ky
(with integers ny > 1,...,n,_7 > 1,n, > 2) can be expressed as a linear
combination with rational coefficients of special values {(my, ..., ms) where

each m; is 2 or 3. The uniqueness of such a linear combination is beyond
reach for the moment, but F. Brown [1], after A.B. Goncharov [2] has pro-
moted the MZV’s to motivic multizeta values (™(ny, . .., n,), and shown that
the (™(my,...,ms)’s with m; in {2,3} form a rational basis of the space of
the motivic MZV’s.

In the course of his proof, he needs an identity of the form
k
H(a,b) =Y o’ ¢(2i+ 1) H(k — i) (2)
i=1

with k =a+ b+ 1 and?

H(m):=¢(2,...,2), H(a,b):=C((2,...,2,3,2,...,2). (3)

m a b

'We use the convention H(0) = 1.



F. Brown was not able to give an explicit formula for the rational coefficients
a?b, but this was supplied by D. Zagier [5], thus completing the proof by
F. Brown. It is known since Euler that, for a given integer m > 1, the
numbers H(m)/7?™, ((2m)/7*™ and ((2)™/7®™ are all rational, and ((0) =
—3. So in the statement of formula (2), one could replace H(k — i) by
C(2k — 2i) or by ((2)*~¢, without loosing the rationality of the coefficients

a; .

Let us remind the definition of the weight
w="n,+...+n,

of the MZV ((n4,...,n,). In particular {(n) is of weight n. From his result,
D. Zagier deduces that, for a given odd weight w = 2k + 1 (with k£ > 1), the
following two families of k£ real numbers

(B1) H(a,b) for a>0, b>0, a+b=k—-1

(B,) C(2k+1), C(2i+1)¢(2k—2i) for 1<i<k—1

generate the same vector subspace D,, of R over the rational numbers. D. Za-
gier has announced that the same space is generated by another family of k&
numbers, namely

(Bs) C(2k+1), C(20,2k—2i+1) for 1<i<k—1.

In this paper, we shall first prove a slightly weaker statement namely
that, modulo the simple zetas ((n), the products of two simple zetas and the
double zetas generate the same vector space over Q in R. On the one hand,
the following formula

¢(m) ((n) = ¢(m,n) + ((n,m) + ((m +n) (4)
(a particular case of the so-called “stuffle formula”) enables us to express the

product of two simple zetas in terms of double zetas. We shall prove the
converse formula

Chomm) = £ (14 (~1)") C(m) ()
T [(—D" (m; ”) - 1} ((m+n)
o ) )
¢(2i) c(miln — 2i) (5)



form > 1, n > 1 and m + n odd. Once this is proved, a simple arithmetic
proof, used already by F. Brown and D. Zagier, enables to conclude that the
families (Bs) and (Bs) generate the same vector space over Q.

Our proof is purely algebraic and rests on the use of the stuffie formula
(4), the shuffle formula (59) and Hoffman’s derivation formula (62), in con-
jonction with the manipulation of suitable generating series. It is generally
expected that the three families (Bj), (Bs2) and (Bs) of k real numbers are
linearly independent over the field Q@ of rational numbers. That is, the vec-
tor space Dogyq is of dimension k over Q. For the time being, using results
of A.B. Goncharov [2] and F. Brown [1], one can promote the double zetas
¢(m,n) to motivic ones (™(m,n) and show that the motivic families (B}"),
(B3') and (B§') form three basis of the motivic space D), . Since our proof
rests on the regularized double shuffle relations only, and since the motivic
versions of these formulas are known (see 1. Souderes [4]), our proof of formula
(5) extends litterally to the motivic case.

1 Review of the stuffle relation
Let us repeat this relation
¢(m)¢(n) = ¢(m,n) +((n,m) +((m+n) (form=>2n=2), (6)

and the definitions of the numbers occuring in it

Cm =Y o = Y (7

k>0 0<k</t

The standard proof is simple: write ((m) ((n) as a double series > =iz

k>0
£>0

extended over the domain of pairs of integers k£ > 0, £ > 0. Then split this
summation as the sum of three subsummations

PP LD IR ®)

k>0,¢>0 0<k<t O<t<k 0O<k=¢

and (6) follows immediately.



We give another proof which is based on an integral representation for
the simple and double zetas. For {(m) with m > 2, here is the calculation

(m) = Zkimzz[/olx’f-ldxr

k>1 k>1
= E / (z1...2p) " tday ... dey,
E>1 Y Cm
= / E (z1...2p)tdoy ... dey,
COm k>1

B / dry...dx,,
o, L=z x|

C(m):/c dry...dz,, 7 (9)

Hence

1—21...2,

where (), is the unit cube defined by 0 < x; <1,...,0<z,, <1in R™ A
similar calculation yields

o Y2
C(m,n) = /cm+n == dzry . ..dT,n (10)

with y; = z1...2, and Yo = i1 .. - Tipan. All terms in formula (6) are
integrals over the cube C),., of rational functions of zy,..., x4, and the
proof follows from the following identity for the integrands

1 Y2 Y1

-  O-wnwd—w C-nwl—uw
1
I - y27 <11>
that is
L—yiyo =12l —y) +yi(l—w2) + (L —21)(1 —92) . (12)

We shall now reformulate the stuffle relation using generating series. It
is convenient to introduce a symbol ((1) to be interpreted as 0. Hence we

define
Zlu) =) ¢(m)um! (13)

m>1



and from ((1) = 0, one deduces that Z[0] = 0 and the summation can be
restricted to m > 2. Similarly, let us remark that {(m,n) is defined for m > 1
and n > 2. We extend this definition to the case n = 1 by the conventions

¢(1,1)=0, (14)

¢(m,1) = —=C(m+1)—¢(1,m) (for m > 2). (15)

With this convention, the stuffle formula (6) is valid for m > 1, n > 1 and
m +n > 3. But for m =n = 1, one obtains

¢(1)¢(1) =2¢(1,1) (16)

without the term ((2). This being understood, we define the generating
series

Zlu,v| = Z C(m,n)u™ ot (17)

m>1,n>1

The stuffle formula can be reformulated as
Zu) Z[v] = Z[u,v] + Z[v, u] + L{u, v] (18)

with

Liu,v] = Z Z C(m+n)u™ "t (19)

k>3 m4+n=k

Notice that, with our conventions, one has Z[0] = Z[0,0] = 0. To be valid,
identity (18) requires L[0,0] = 0, hence the special form of the summation
for L[u,v], restricted tom > 1, n>1, m+n > 3.

The relation

k-1 k-1
m—1 _n—1 _ U —v
E utTT = (for k > 2) (20)
m+n=k
enables one to conclude
Zlul — Zlv
Llu,v] = % —¢(2). (21)

For later purposes, we need to split the series Z[u| and Z[u,v] into even
and odd parts, as follows:

Zu] = Zyju) + Z_[u] where Zi[—u|==+Zi[u|,



Zu,v| = Zy|u,v] + Z_[u,v] where Zi[—u,—v] =+ Zi]u,v].

We are interested in Z_[u,v] which is the generating series for the double
zetas whose weight w = m + n is odd. From (18) and (21), one obtains the
final result:

Zo W Z )+ Zy v Z [u] = Z_ lu,v]+ Z_[v,u] + L_[u,]
L) = Zeli=Zifi] @)

where the annoying constant —((2) in (21) has disappeared.

2 Some integration formulas: the simple ze-
tas

Let us define the functions
Sp(u) =Y kT um! (23)
m>2

for £ > 1. One derives immediately the following expressions

u

Se(u) = T— (24)

Sk(u) = & (25)

Se(u) = /0 (z" — 1) 2* . (26)

Since ((m) is equal to > k=™ for m > 2, and since by convention (1) = 0,
k>1

we can rewrite Z[u] = Y ((m)u™! as > Si(u); the series is absolutely
m>2 k>1

convergent (for any complex number u distinct from any integer & > 1)
since (24) gives the estimate Sy(u) = O(3%) for fixed u. Hence Z[u] is a
meromorphic function of u, with single poles of residue — 1 for u equal to

1,2,3,... From (25) and (26) we derive two important representations of
Z[u], namely
1 1
Z[u] = -
=3 (2 -1) (27)
k>1



Z[u] = /O ik Ny (28)

1—=x
From this integral formula, one derives immediately
1

Z[u+1]:Z[u]—E. (29)
Introducing the classical psi function
d
U(s) = 2 logI(s), (30)
one can translate the relation (27) as?
Zul =¢1) = vl —u). (31)

Thus the formulas (28) and (29) correspond to well-known properties of the
psi function.

The integral (28) is convergent in the neighborhood of z = 0 when the
real part Re(u) of u satisfies Re(u) < 1. By well-known properties of Mellin
transforms, Z[u| is holomorphic in the half-plane Reu < 1 and extends as
a meromorphic function to the complex plane C. The correction —1 to ™"
ensures that the integral is convergent in the neighborhood of z = 1. We
shall meet similar, but more complicated, phenomena for the double integrals
representing the double zetas, which are regularized Mellin transforms. In
a later study of multiple zeta values, we shall have to develop systematic
regularization procedures which are inspired by the well-known methods in
quantum field theories.

3 Some integration formulas: the double ze-
tas

We shall give another proof of the stuffle formula in the form (18). For this
purpose, we need suitable double Mellin transforms, namely

1 rl U y—v -1
L = ——— dx d 32
wi = [ [ s (32)
Zlu,v| = / / dx dy — L|u, 0] . 33
;0] - 0,0]. (33
2Let us recall that — (1) is the Euler constant vg.

7



(A) Proof of formula (32):
Recall that the constant term of Llu, v], as defined by formula (19), is 0.
We modify this by putting L{u,v] = L[u,v] 4+ {(2), that is

Llu,v) =Y ¢(m+n)u™ "o (34)

Since ((2) is equal to fol ' drdy o we saw in Section 1, formula (9), we have

0 1—x
to prove the following relationy
1 1, . —u,—v
Liu,v :/ / dx dy . 35
wol= [ [ (3)
Using the definition of {(m 4+ n) as Y k=™ - k™", inserting this in (34), and
k>1
rearranging the triple series, we obtain
— 1 1
L = . . 36
il =3 (36)

On the other hand, in the integral (35) develop 1_—1@ as a geometric series

S 2 tyk~l and integrate term by term. We obtain the same series as in
k>1

(36). Q.ED

An immediate corollary of (32) is the following:

L[u,v]—L[u,O]—L[O,v]:/O/O (xu_ll_)%yv_l)dxdy. (37)

Let us give now two new proofs of formula (21), that is

Lu,v] = ———. (38)

u—v

The first one uses series, that is (36) for L[u,v] and (27) for Z[u]. Then our
relation reduces to the obvious relation

kiu'kiv:uiv' Kkiu_%)‘(kiv—%ﬂ . (39)




For the second proof, use the integral representation (35) for L{u,v] and the
general integration formula

/Ol/olf(x,y)dmdy:/Oldz/:f(x,§>d?x, (40)

1 - 1
— vd
Tiu,0] = /i z/ 21 gy
0 — % Jz
B /12_”dz 11—z
Sy 1=z v—u
1 —v —u
27V —z
= dz
/0(1—2)(U—U)
1 Lyv—1 1 |
= /Z dz — /Z dz
v—ujy 1—=z2 v—uj, 11—z

and we conclude by (28).

to get

(B) Proof of formula (33):
Using the definition (17) of Z[u,v] and the convention ((1,1) = 0, we
split the summation into two subseries, that is Z[u,v] = A + B with

A = Z C(m,n)u™ o™t (41)
m>1,n>2

B = ) ((m1)um". (42)
m>2

To compute A, replace ((m,n) by its definition »_ k=™ ¢~" interchange
0<k<t
the summations Y with )  and perform the easy summations over m and
m,n k.l

n. We get therefore

A= kiu{éiv_ﬂ' (43)

0<k</t

We introduce now the integral representations

1 1
P /0 e " dr (44)

9



1 1 ! —v -1
i—u 7 O(y -1y dy (45)

and interchange integration and summation. Using the series expansion

Z oF1 yz—1 _ = Yy (46)

et y)(1 = zy)

we conclude

B 1 1 x—u(y—v _ 1) .
A‘/O/oyu—y)u—xy)d W- 47)

To evaluate B, let us go back to the definition

By definition, the series — Y ((m—+1)u™ ! is equal to —L[u, 0] (see formula
m>2

(19)). It remains to sum the series

C=>¢(Lmumt. (49)

m>2

Returning to the definition ((1,m) = > k~'¢~™ a simple manipulation
0<k<t
of series yields C = > k7! S,(u). By using the integral representations
0<k<t

1 1
K= / e, Si(u) = / (y ™" —1)y""dy, (50)
0 0

and interchanging integration and summation, we end up with

B 1 1 g —1 )
S AT ==l oy

We have therefore
Zu,v]=A+B=A—-C— Lu,0]

and we conclude by using formulas (47) and (51). Q.E.D.

10



(C) Proof of the stuffie formula:
Putting

Zu,v] := Zu,v] + L[u, 0], (52)
the stuffle formula amounts to
Zu,v] + Z[v,u] = Z[u] Z[v] — L[u,v] + L[u, 0] + L[0,v] . (53)

Using (28) and (37), we evaluate the right-hand side of this relation as the
integral

B(u,v):/o /O(x_“—l)(y_”—l) {(1—.7:)1(1—11)_1—1:@ dody. (54)

On the other hand, while symmetrizing Z[u,v] + Z[v,u] we can replace in
the integral (33) the term —y~* by —y~", hence Z[u,v] + Z[v, u| is the sum
of the two integrals Afu,v] and Afv, u|, where

o 1;5—“_ L y i
Alu, ] ._/0 /0< DO ) ey e 69

We calculate A[v,u| by exchanging the integration variables x,y, hence

Alv,u] = /0 /0 (7 =1)(y " —1) 1= =) drdy. (56)

From all these relations, it follows that the stuffle formula (53) is equivalent
to Alu,v] + A[v,u] = Blu,v]. This follows immediately from the relation

1 B 1 n Y n x
l1-—2)1-y) l1-azy (Q-yl-ay QA—z)1—ay)

This is an identity among rational functions that we met already in Section 1,
formula (11). Q.E.D.

(57)

Remarks. a) In this section, u and v are complex variables. If we assume
lu| <1, |[v| < 1, all series are absolutely convergent. Exchanging summation
and integration rests on the general principle

/T Z fi(t) dt:Z /T fi(t) dt (58)

11



which is guaranteed by the assumption

Z/T\fi(t)]dt<+oo.

Then we can proceed through analytic continuation for general values of u
and v. Notice that Z[u,v] is a meromorphic function with poles located at
u=korv==kfork=1,2,...

b) Using geometric series, the right-hand side R(z,y) of formula (57) can

be written as
R(z,y) = Z byt + Z T Z z* gyt

0<k=t 0<k<t 0<t<k
Using once again the splitting principle for double series, we get

1 1
R(z,y) = Y a*y =

k>0, 6>0

-z 1—y°

This is formula (57)!

4 Review of the shuffle formula

We shall use the following special case of the shuffle formula

e = S (" i

— m—1
+ Z<m+:__f_1> Cliym+n—i). (59)
=1

When m > 2 and n > 2, all zeta values occuring there are defined by conver-
gent series and integrals®, and our proof shall be via integral representations.
We want to extend the validity of formula (59) to the exceptional cases where
m or n is equal to 1. For instance, for m = 1, we obtain the specialization

n—1

0=2¢(L,n)+> ((in+1—i)+((n 1) (60)

1=2

3We call them convergent zeta values!

12



for n > 2, according to our convention (1) = 0. Recall that ((n, 1) is defined

in terms of convergent zeta values by the relation

C(TL, 1) = _C(la n) - C(n + 1) :
Hence (60) reduces to

n—1

C(n—l—l):ZC(i,n—i—l—i) (forn > 2).

i=1
This is a special case of Hoffman’s relation [3].

(A) Proof of the shuffle formula:
We introduce the abbreviation

xm—l
Yo(r)= —.
(@) (m —1)!
To calculate the integral
o d
I, = / Vi () —2
0 er —1

use the series expansion

1 —kx
ex—lzze "

k>1

integrate term by term using the well-known relation
/ Y (z)e *de = k™™,
0

hence I,,, = > k™™ = ((m). We conclude*

k>1

et —1

| ¥lo) 25 = com).

A similar calculation yields

/000 /000 Yo () Ya(y) (extv iml;i(yey ) =((m,n).

(61)

(62)

(63)

(64)

(65)

(67)

(68)

4This is a special case of the well-known integral representation of Riemann’s zeta

function!

13



For m > 2, Y,,(x) is divisible by z, and since %5 is continuous up to

x = 0, the integral (67) converges up to z = 0 (the convergence for x = oo
is guaranteed since the integrand is O(e~%/2)). Similarly, the integral (68)
converges for m > 1 and n > 2.

We need a general integration formula. In the plane with coordinates u, v
let us consider the domain D defined by u > 0, v > 0. Up to a set of measure
0, it splits as D = Dy U Dy where

D, ={0<u<wv}, Dy ={0<v <u}.

The changes of coordinates u =y, v =x+y for D; and u =z +y, v =y for
Dy reduce these inequalities to x > 0, y > 0, hence the relation

/Om/ooof(:c,y)dxdy = /OOO/OOOf(Z/,&?nLy)da:dy

+ /Ow/ooof(x+y,y)dﬂfdy- (69)

From (67), we obtain by multiplication

¢(m)¢(n) = /OOO /OOO Yon() Ya(y) o _dlg;éz Y (70)

for m > 2, n > 2. Using the integration formula (69), this transforms as
¢(m)¢(n) = Ly + Inm where

Lpn = /0 N /0 T Yinly) Yl + v) = fﬁféy_ 5 (71)

A simple calculation using the binomial formula yields the following algebraic
identity

n

V) Vil +0) =3

i=1

m+n—1—1
m—1

) Yi@) Vigns(y). (72)

Inserting this into the integral (71) and using (68) gives the result

Im,nzz(m+”_i_1)g(z’,m+n—z‘). (73)

m—1

14



We conclude the proof of formula (59) using ((m) ((n) = Ly n+ Lnm. Q.E.D.

(B) Proof of Hoffman’s relation:
We have to show that the sum

[y

Sy = ; Ci,n+1—i)=C¢(1,n)+<¢2,n—1)+...+((n—1,2) (74

=1

is equal to ((n + 1) for n > 2. An equivalent form of the binomial theorem
is the formula

Yo(r +y) = ZY Yori-i(y), (75)

hence by subtraction

n—1

S Yile) Yasaily) = Yalo +9) = Yale) (76)

=1

Using formula (68), we obtain

int1=i= [ [ V@Yoo =y ()

ety —1)(ev — 1)

Summing and using (76), we conclude

dx dy
Sy = / / (x+y)— Y, (x)]- G e D) (78)

Here is a slight difficulty: we Cannot split this mte/%ral as a difference of two
integrals since the integral fo diverges like C;y We put a regulariza-

P}
tion factor® by replacing dy by y°dy for a small ¢ > 0.

Let us introduce therefore

Spe = / / W+ y) = Y (x)] (ez+yyicix)éi 5 (79)

It is now legitimate to split this integral as a difference of two integrals. The

first one is .
:): + y Y
/ / ex+y —1 ev—1 de dy

5 All known proofs of Hoffman’s relation seem to need some kind of limiting process!
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which is transformed, according to (69) into®

[y, o Y, (z
/ / n@) |y dxdy / / e ty)© d:cdy.
o Jo et—1 e¥— = 1 erty —

Inserting this into (79) yields

Sne / / F.(v,y)dx dy, (80)

y 3 (x+y)° B y
(er =1)(ev = 1) (etv—1)(e* = 1) (etv—1)(ev—1)°

with the definition

F.(x,y) =

(81)

It is now legitimate to go to the limit ¢ — 0. According to (78) and (79),
one has S, = hH(l] Sh.e, hence

&:Aw[ﬂq@ﬂ@wmw (82)

where F'(z,y) is the limit of F.(x,y) for £ — 0. From (81) one observes that
F(z,y) is of the form H(e”,eY) with

1 B 1 B 1
a—Db-1 (@-D@a-1) (@-1bH-1)"

H(a,b) := (83)

We are back to our old friend expressed in formulas (11) and (57). It is
immediate that H(a,b) is equal to ——, hence by (82), we obtain

BT
dx dy
um [ [ v 2o o1
This last integral is easy to evaluate: develop ez++—1 as > e " .M accord-
>1
ing to (65), then use formula (66) to derive
6Since in general, one has [[g(z,y)dzdy = [[g(y,x)dxdy, we can rewrite

fooo f0°° fly,z+y)dzdy as fooo fooo f(z,z +y) dz dy in formula (69).

16



Sp=) k" kTt =((n+1). (85)

k>1
Q.E.D.
(C) Generating series:
We remind the reader of the definitions
2] = Y Clm)u-
m>2
Llu,v] = Z C(m+n)um™ oyt
M
Zlu,v] = Z C(m,n)u™ ot
m>1,n>1
and of the convention ((1,1) = 0. One has
Zu,u+v] = Z Cim,n)u™ Hu+v)" (86)

m>1,n>1
hence expanding via the binomial theorem, one obtains
Zlu,u+v] = Z ™t ”12 mtn—i=1 C(i,m+n—1i). (87)
>1,n>1 =1 n—1 ’

Treating Z[v,u + v] in a similar way, we conclude that the shuffle relation
(59) is therefore equivalent to

Zu] Zv| = Zu,u+v] + Z[v,u+v]. (88)
Hoffman'’s relation (62) takes the equivalent form”
Zu,u] = Z[u,0] + L[u, 0] . (89)

We leave it as an exercise to the reader to prove these two relations using
the integral representations for these generating series (see formulas (32) and

(33)).

"This relation obtains immediately by putting v = 0 in the relations (18) and (88).
Hence it is not a new relation.
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5 The main formulas

Using generating series, and keeping only the odd part, we reformulate the
stuffle and the shuffle relations respectively as

Z_[u,v] + Z_[v,u] = Alu, v] (90)
Z_[u,u+ v+ Z_[v,u+ v] = Blu,v] (91)
using the definitions
Al 0] = Z, [u] Z_[0] + ZoJo] Z_[u] — w (92)
Blu,o] i= Zy[u] Z_[o] + Z4[o] Z_[u]. (93)
We introduce two other functions
Clu,v] := Au,v] + Alu — v, u] — Alv — u, v (94)
Dlu,v] := B[—u,v] + Blv — u,u] — Blu —v,v]. (95)
Using the stuffle relation (90), we calculate
Clu,v] = Z_[u,v]|+ Z_[v,ul + Z_[u—v,u] — Z_[v — u,v]
Z_[v,v —u|l+ Z_[u,u—]. (96)
Similarly, using the shuffle relation, we obtain
Dlu,v] = Z_[u,v] —Z_ [v,u] — Z_[u—v,ul + Z_[v — u, ]
+ Z_[v,v—u|+ Z_[-u,v—u]. (97)
By adding, this yields
Clu,v] + Du,v] =2 Z_[u,v] + Z_[u,u — v] + Z_[—u,v — ul. (98)

Since the function Z_[u,v] is odd, the last two terms cancel, and therefore
27 _[u,v] = Clu,v] + Dlu,v]. (99)

We can refer to the definitions (92) to (95) of the functions Afu,v] to
Dlu,v] to derive an explicit form for Z_[u, v]. Here is the final result:

Z_uv| =Ziul Z_[v] + Ziju—v] Z_[u] — Zy[u—v] Z_[v]  (100)
_Z+[U] — Zy[v] I Zylu—v] — Zy[u] _ Zyv—u] — Zy[v]

n 1
2 U — v ) U

18



Another proof is as follows: check that the function Z_[u,v]| defined by this
formula is odd (which is obvious) and verify that it satisfies the stuffle equa-
tion (90) as well as the shuffle equation (91). The reasoning leading to
equation (99) shows that there exists a unique function satisfying these con-
ditions.

Let us introduce now the antisymmetric double zetas

n(m,n) := ((m,n) = ¢(n,m) (101)

and their generating series®

Hlu,v] = Zu,v] — Z[v,u]. (102)

We split it into an even part H, [u, v] and an odd part H_[u, v]. From formula
(100), one derives

H [u,v] = Z_[u,v] —Z_[v,u]
= Zylul Z-[v] = Z ] Z-[u]
+ 224 fu—=v](Z-[u] = Z_[v])
Zylu—vl = Ziul  Zy[v—u] = Z4[v]

- . 103
+ ; ” (103)

It is more convenient to slightly modify this generating series by introducing
the new series

H_[—u,v] = —H_[u,—v] = Z(—l)”n(m, n)u™ to" Tt (104)

m>1
n>1

We have the following variant of formula (100)

H [—u,v] = Z |[u]Z_[v]+ Z,[v] Z_[u]
22 [u+ ] (Z-[u] + Z_[v])
(u+v) Zyju+v] —uZyju) — v Z,[v]

Noticing that the first term Z, [u] Z_[v] + Z [v] Z_[u] is simply the odd part
of the product

. (105)

Zu] Z[] = Y ((m) ¢(n)u™ " "

8Read H[u,v] as “eta” and Z[u,v] as “zeta” using the upper case greek letters!
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and that u Z, [u] is equal to Y ((2k + 1) u***1 we transform the relation
k>1

(105) into”
1t = g+ (")

_ me (”””_1 1> ¢(20) C(m +n — 2i)

Lm/2J
— 2 Z (m tn— 1) C(28) C(m +n — 2i) (106)

n—l

in the case of a odd weight m +n = 2k + 1 with £ > 1.
From the stuffle relation (6) and definition (101) of n(m,n), one derives

Clm,m) = 5 [n(m, m) + C(m) C(n) — C(m + ). (107)
This proves the final formula announced as (5) in the introduction
Clmom) = 5 (14 (1)) Cm) ()
() famen
(m+n—3)/2 , ,
I ; Km—ir:l:le—l) N (m+z:§z— 1)}
¢(24) ((m +n — 2i) (108)

in the case of an odd weight m +n = 2k + 1.

We urge the reader to check the formula (106) against the numerical data
given in tables I and II.

9As usual we denote by |z] the integer part of a number z, that is = |z| + 6 with
0<o<1
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Appendix A. Examples and Tables

Weight 3:
With our convention (1) = 0, the stuffle formula takes the form
0=¢(1)¢(2) =¢(1,2) +¢(2,1) +<(3) (109)
while the shuffle formula takes the form
0=¢(1)¢(2) =2¢(1,2) +¢(2,1). (110)
One derives N 5
R Y )
The formula ((1,2) = ((3), that is explicitely
; m = ]; % (112)

jz1

is a famous result of Euler. For the antisymmetric double zetas n(m,n) =
¢(m,n) — ¢(n,m), one derives

+3¢(3)
—-3¢(3).

(113)

Weight 5:
Stuffle relations:

Shuffle relations:

¢(1)¢) =
¢(2)¢(3)

1,4)+¢(2,3) +¢(3,2) +¢(4,1) =0
1,4)4+2¢(2,3) +((3,2)
1,4)+((2,3)

1,4) +3¢(2,3) +((3,2).

)

2¢(
= 3((
+ 3((
= 6¢(1,
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We have 4 linear relations for 4 unknown quantities ((1,4), ¢(2,3), ¢((3,2),
¢(4,1). Here is the solution

C(1,4) = 2¢65) - (2)¢3)
C23) =~ ((5)+3¢2) )

(32) = 54 -2¢2) )
Ca1) = =3¢6)+¢(2)¢E).

In matrix form, this is written as

¢(5) ¢(2)¢(3)
(1,4 2 —1
¢(2,3) ~11/2 3
¢(3,2) 9/2 —2
¢(4,1) -3 1

n(1,4) = —n(4,1) =5¢(5) —2¢(2)¢(3)
n(2,3) = —n(3,2) =—-10¢(5) +5¢(2)C(3).
The case of weight 7 can be treated similarly. In table I, I give in matrix

form the results for the weights 3, 5, 7. To make use of this table, recall the
relations

Clm,m) = 5 [n(m, m) + C(m) ¢(n) — C(m + ) (114)
for m>1,n>1
n(1,2k) = (2k + 1) C(2k + 1) — 2 i C(20) C(2k — 2i + 1) (115)
hence k—l_
C(1,2k) = kC(2k+1) = > C(20) C(2k — 2i + 1) . (116)

1

(]

If we solve the linear stuffle and shuffle relations without imposing ((1) = 0,
we get an extra term —((2k) ¢(1) in (1, 2k), hence a correction —  ¢(2k) ¢(1)
for ¢(1,2k) and ((2k,1). This explains the last column in our tables.
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Table 1

Antisymmetric double zetas in weight 3, 5, 7'

Weight 3
¢(3) ¢(2)¢(1)
n(1,2) 3 -1
n(2,1) -3 1
Weight 5
¢(5) ¢(2)¢3)  ¢(4)¢(1)
n(1,4) 5 —2 —1
n(2,3) —10 5 0
n(3,2) 10 -5 0
n(4,1) -5 2 1
Weight 7
¢(7) ¢(2)¢(5)  ¢(4)c@3)  ¢(6)¢(1)
n(1,6) 7 —2 —2 —1
n(2,5) —21 9 1 0
n(3,4) 35 —20 -1 0
n(4,3) —35 20 1 0
n(5,2) 21 —9 —4 0
n(6,1) -7 2 2 1

10Calculated directly by the author.
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Table 11

Antisymmetric double zetas in weight 9, 11!

Weight 9
¢(9) ¢2)¢(m)  ¢@)cB)  ¢6)C(3)
n(1,8) 9 -2 -2 —2
n(2,7) — 36 13 8 4
n(3,6) 84 —42 —12 -1
n(4,5) — 126 70 9 0
n(5,4) 126 —70 -9 0
n(6,3) — 84 42 12 1
n(7,2) 36 —13 -8 —4
n(8,1) -9 2 2 2
Weight 11
¢(11)  <C(2)¢(9) ¢(4)¢(7) ¢(6)¢(5) ¢(8)¢(3)
n(1,10) 11 -2 -2 -2 -2
n(2,9) —55 17 12 8 4
n(3,8) 165 -T2 —30 —12 -1
n(4,7) — 330 168 41 8 0
n(5,6) 462 — 252 —42 -1 0
n(6,5) — 462 252 42 1 0
n(7,4) 330 — 168 —41 -8 0
n(8,3) — 165 72 30 12 1
n(9,2) 55 — 17 —12 -8 —4
n(10,1) —11 2 2 2 2

HCalculated by the author using tables of Minh et al.

24

_ O O O O oo oo



Appendix B. A compendium of useful formulas

B.1. Simple zetas

S

k>1

dz

o0 xm—l
- /0 (m—1)!e"—1

dry...dz,,

n /le—xl.

. T

Here m > 2, and C,, is the unit cube in the space R™, defined by the
inequalities 0 < zy < 1,...,0 < z,, < 1. To be supplemented by ((1) = 0.

B.2. Generating series for simple zetas

Zu]

mZ>1<<m> un!

k>1

m>2
U

= k2(k — u)
1opl—u g
//x dx dy
o Jo 1—uwy

00 00 evr — 1

dx d

\/0 /(; €x+y_1 ray
u(L[u] +((2)).
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B.3. Double zetas

¢(m,n) = Z k=™

0<k<t

N / / nii) | (e ihi;iiyey—w

B / me e T dxy . ATy
Comin (1 — X1 ... xm+n)(1 — Tyl - - xm+n)

Here m > 1 and n > 2. To be supplemented by

¢(1,1)=0, ({(m,1)=—-C(m+1)—{(1,m) for m >2.

B.4. Generating series for double zetas

Zlu,v] = Z C(m,n)u™ Loyt
m>1,n>1
1 1 1 1 1 1 1
= . - . i R
Z (kj—u t—v k—u ¢ k E—u+k€> g
o<k<e

Fr ”ZL_J(yiyﬁ”dwdy—w-

B.5. Rational functions

1
Z Pyt =
1—ay

0<k={
k-1, 6—1 Yy
> Ay =
o (1—y)(1 —=zy)
k=1 6—1 T
¥y =
O;k (1 —2)(1—=xy)
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1 1 n Y + T
l—z 1-y l-zy (I-y(l-2y) (1-2)1-ay)

B.6. Stuffle relation

¢(m)¢(n) = ¢(m,n) + ((n,m) +¢(m +n)

form>1,n>1, except m=n=1

{ Zu] Zv] = Zlu,v] + Z[v,u] + Lu,v)
Zu] — Z[v]
L = — —((2).
u.0] = EdC)
B.7. Other expressions for L[u,v]
Lu,v] = Z C(m+n)u™ ot
Tinss
-y (L
B k—u k—v k2
k>1
1 1, . —u,—v _
_ //lexdy
0o Jo 1=y
oo Ooeu:(;+vy_1
= /0 /O pre— dx dy
Liu] = L[u,0] = L[0,u]
T
Llu,v| — Llu| — Ljv| = // dx dy
o] L - L] = [ [P
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B.8. Shuffle formula and Hoffman’s relation

) = 3 (" T ) cmean -

m—1
+ ;(m+§:f_1>g(i,m+n—i)
n—1
C(n+1) = > (lin+1-10)
=1

Zu| Zv] = Zu,u+v]+ Zv,u+ v]
Liu] = Zlu,u] — Z[u,0].

Cm,m) 4 Cln,m) = C(m) G(n) — C(m 4 )

C(ma n) - C(n7 m) = (m7 n)

Clm,m) = 3 (n(m, m) + ¢(m) C(n) — G+ m)
COL2K) = hC(2h+1) — S ¢(20) C(2k — 20 + 1)

C(2k,1) = —(k + 1) C(2k + 1) + i C(2i) C(2k — 20 + 1) + C(2k) ¢(1)
(1, 2k) = —n(2k, 1) = (2k + 1) g(_2k +1)

k—1
-2 Z C(26) C(2k — 20 + 1) — ¢(2k) ¢(1) .

Notice that ((1) = 0 according to our conventions! In all these formulas
m>1,n>1and k> 1. The case m = n =1 is to be omitted.
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B.10. The main formulas

1t = g+ (") o
- 2%(””” 1>((2z‘)<(m+n—2z’)
_ QL%J ("”Z_l 1) C(2) C(m +n — 2i)
Clomom) = 5 (1 (—1)") ¢m) C(n)
+ % [(—1)" " ”) - 1} ((m +n)

R i — 21— 1 m-+n—2—1
e () ()
¢(2¢) ¢(m +n — 29)
In these formulas m > 1, n > 1 and m + n is odd, m +n > 3.
B.11. Generating series
[w, 0] = Zy[u] Z_[o] + Z ¢ [u—v] Z_[u] = ZyJu — v] Z_[v]

Z_
1 Zyifu] — Z,[v] T Zylu—v]—ZyJu]  ZiJo—u]— 2] .
2 U—v v u

+

Hlu,v] = Zu,v] — Z[v,u].

Z_[u,v] — Z_[v,u]

2ol 7o) — 2,16 Z_[u]

27 Ju—v](Z-[u] = Z_[v])

Zuu o]~ ZJu) Zilo—u] ~ Z,1]

+ + 1
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H [~uv] = ZyJu] Z-[v] + Z, o] Z_[u]
— 2Z Ju+v|(Z_[u] + Z_[v])
(u+v) Zyju+v] —uZiju) +v Zy v

uv

Acknowledgements. This paper grew out of a collaboration with D. Zagier
and F. Brown. D. Zagier informed us about the progress of his work on double
zetas. On the other hand, F. Brown supplied the tables which enabled me
to calculate table II above, and suggested to use the antisymmetric form

n(m,n) = ¢(m,n) —((n,m).

From our tables and by similarity with D. Zagier’s tables, it was easy to guess
the patterns and to discover the formulas with binomial coefficients.

Added in proof (April 2011). I just received the final version of Zagier’s
paper [5]. Our main formula (5) is stated there, and its proof is very similar
to our proof. The fact that the families (Bs) and (Bj) generate the same
vector space over Q is also proved, and the proof rests on the arithmetical
method of Brown and Zagier mentioned in the introduction. What is not in
Zagier’s paper are the antisymmetric double zetas, the motivic version and
the integral formulas for the generating series.
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