SOME ASPECTS OF DYNAMICAL TOPOLOGY:
DYNAMICAL COMPACTNESS AND SLOVAK SPACES
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ABSTRACT. The area of dynamical systems where one investigates dynamical
properties that can be described in topological terms is ” Topological Dynam-
ics”. Investigating the topological properties of spaces and maps that can be
described in dynamical terms is in a sense the opposite idea. This area is re-
cently called as ” Dynamical Topology”. For (discrete) dynamical systems given
by compact metric spaces and continuous (surjective) self-maps we (mostly)
survey some results on two new notions: ”Slovak Space” and ”Dynamical
Compactness”. Slovak space is a dynamical analogue of the rigid space: a
nontrivial compact metric space whose homeomorphism group is cyclic and
generated by a minimal homeomorphism. Dynamical compactness is a new
concept of chaotic dynamics. The omega-limit set of a point is a basic notion
in theory of dynamical systems and means the collection of states which ”at-
tract” this point while going forward in time. It is always nonempty when the
phase space is compact. By changing the time we introduced the notion of the
omega-limit set of a point with respect to a Furstenberg family. A dynamical
system is called dynamically compact (with respect to a Furstenberg family)
if for any point of the phase space this omega-limit set is nonempty. A nice
property of dynamical compactness: all dynamical systems are dynamically
compact with respect to a Furstenberg family if and only if this family has the
finite intersection property.

By a (topological) dynamical system (X,T) we mean a compact metric space
X with a metric d and a continuous self-surjection T" of X. We say it trivial
if the space is a singleton. Throughout this paper, we are only interested in a
nontrivial (topologically transitive) dynamical system, where the state space is a
compact metric space without isolated points.

When mathematicians are considering various classes of functions with a natural
topology, often one of the first questions that comes to their mind is about the
topological properties of those spaces. While those questions have been answered
long ago in Mathematical Analysis and Topology, and also in Ergodic Theory there
is a series of papers where topological properties of the group of measure preserving
bijections or homeomorphisms are investigated, see e.g. [24], [30], [13], [10], [40], [41],
it seems that they even have not been asked before in Dynamical Systems. There
are very few papers on topological properties of spaces of maps that have some
specific dynamical properties. Perhaps, the only exception is the paper of Farrell
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and Gogolev [14] about the spaces of Anosov diffeomorphisms, that was being
written at the same time as [31] (and completely independently of it).

The area of Dynamical Systems where one investigates dynamical properties
that can be described in topological terms is Topological Dynamics. Investigating
topological properties of spaces of maps that can be described in dynamical terms
is in a sense the opposite idea. Therefore in [31] was proposed to call this area
Dynamical Topology.

Let X be a compact metric space and let T : X — X be continuous. The
dynamical system (X,T) is called topologically transitive (or just transitive) if for
every pair of nonempty open sets U and V in X there is a nonnegative integer n
such that T"(U)NV # (. If the space X has no isolated points, this is equivalent to
the existence of a point € X whose orbit {z,T(z),...,T"(x),...} is dense in X.
Consequently, a topologically transitive dynamical system cannot be decomposed
into two disjoint sets with nonempty interiors which do not interact under the
transformation. In particular, transitivity is an ingredient of several definitions of
chaos. For more information on topological transitivity see, e.g., [1], [36], [38] and
references there.

In fact we survey some recent results in the following areas of Dynamical Topol-
ogy:

(1) Topological properties of the space of all transitive maps of a compact
interval to itself and its subspaces (very briefly).

(2) Dynamical compactness, especially transitive and sensitive compactnesses
as new concepts of chaoticity of a dynamical system.

(3) Slovak spaces - compact metric spaces whose homeomorphism group is
cyclic and generated by a minimal homeomorphism (very briefly).
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1. SPACES OF TOPOLOGICALLY TRANSITIVE INTERVAL MAPS

This section is based on the papers [31], [32]. The space T of all transitive maps
on the interval I — I, with uniform metric has the following nice properties: is
separable; is locally infinite dimensional; is not complete; is not locally compact; is
nowhere dense in the space of all continuous maps I — I; is a Baire space; and is
arcwise connected and is locally arcwise connected. Our main aim is to investigate
loops in subspaces of 7.

By a map we mean a continuous map. A lap of an interval map is a maximal
interval on which this map is monotone. The modality of a piecewise monotone
map is the number of laps minus 1. A turning point is a point that belongs to
two distinct laps. When we say “piecewise”, we mean that there are finitely many
pieces. By “slope” we mean the absolute value of the derivative. A full n-horseshoe
is a piecewise monotone map with constant slope and n laps, each of which is
mapped to the whole domain of the map.

We will use the following notation.

) I= [07 1]?

) T — (continuous !) transitive maps I — T

) TpMm — piecewise monotone transitive maps I — I;

) Tp1L — piecewise linear transitive maps I — I;

) T»n — elements of Tpy of modality n;

) T, — elements of T,, increasing on the first lap;

) 7,7 — elements of 7,, decreasing on the first lap;

) CS,, — piecewise linear maps I — I, with constant slope and of modality n;
(9) TCS,, — transitive maps from CS,,.

All those spaces are considered with the C°-metric d:

d(f,9) =sw|f(@) = g@)l.

By an interval we mean a nondegenerate interval. If not stated otherwise, it is
assumed to be closed. For an interval J we will denote its length by |J|. When
we speak about symmetry, we mean conjugacy via the symmetry map of I, that is
r—1—ua.

1.1. Connectedness properties of spaces of transitive maps.
Theorem 1.1. The spaces T, Tpm and Tp1, are contractible (hence arcwise con-
nected) and locally arcwise connected.

Idea of the proof of contractibility of T

Given a closed interval K C I, we consider box map:
a;

a

a i
b m K

Figure 1. Box map.

It depends continuously (jointly) on 5 parameters:



(1) a; and a, — the values at the left and right endpoint of K,

(2) ap and a; — the bottom and the top of the box,

(3) as — the slope multiplier

(slope is as - 4t here as = 20)
Given f € T, we put

(1) gr0=1;

(2) to define gy, for 0 <t <1, we partition [0, 1] into intervals Iy, I, ..., I of
lengths ¢ (the rightmost one can be shorter). Over each I; we construct a
box:

Figure 2. Boxes I; x I;.

In each box we choose a box map which coincides with f at the endpoints
of I; and has a; = 20. The obtained map I — I is g¢ ;.
Vertical sides of the boxes can be chosen such that:
(1) gy, is transitive;
(2) gy,+ depends continuously on f and ¢ (jointly).
= 1 then we have just one box and so the maps g are box maps with
[0,1], ay =0, a; = 1 and as = 20. They depend only on a; = f(0) € [0,1] and

= f(1) € [0,1]. Hence the set Z = {gs,1 : f € T}, being homeomorphic to the
square is contractible.

[
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Our family gy, can be treated as a homotopy joining (1) the identity idy : 7 —
T,f— f=gsoand (2) themap T — Z C T, f — gy1. Since Z is contractible,
also 7T is contractible.

Theorem 1.2. Fach space T,, has two connected components, 7,7 and T, , and
they are arcwise connected. The distance between T, and T~ is positive. While
the distance between T,;" and T, is zero for all n > 2.

1.2. How to recognize that a piecewise linear map with constant slope is
transitive. We use a coding of maps f € CS,:

(1) code of f = (f(0), f(1st turning pt), ..., f(nth turning pt), f(1)).
(2) When we consider a union of spaces CS,, with different n’s, we use the
common (largest) length of codes, say

code of tent map = (0,1,0) = (0,0,1,0) = (0,1,0,0) =

(3) code (ag, .. .,ant1) = slope = Z;LLI la; —a;j_1,]
€ U, CS; depends continuously on the parameters ag,ai,. .., a1
4 » ,CS; depend ti 1 th t +
(jointly).

Lemma 1.2.1. A map f € CS; is transitive if and only if it has the code
(1) (a,1,0) where a € [0,2 — /2], or
(2) (1,0,¢) where c € [V2 —1,1].

Lemma 1.2.2. Let f € CSy be transitive. Then it has one of the four codes:



(a7 17O7d) (a7071’d) (1707 C7 d) (a’ b)170)

In the case (a,1,0,d), if  is the fixed point in the second lap, transitivity is
equivalent to a < x or d > x:

Lemma 1.2.3. f € CS3 with a code (a,1,0,d) is transitive <
d<a—142 l—a<(—d)—d4+—2

a— - or —a —d) — —_.

< p; = 1-d

In the case (a,0, 1, d), transitivity is equivalent to the slope being larger than 2:

Lemma 1.2.4. f € CSy with a code (a,0,1,d) is transitive <= a > d.

In the case (1,0, ¢, d), if the fixed point in the first lap is x, then transitivity is
equivalent to ¢ > x:

Lemma 1.2.5. f € CSy with a code (1,0, ¢,d) is transitive <=
1
d<242c—-—.
c

In the case (a,b, 1,0), if the fixed point in the third lap is x, then transitivity is
equivalent to b < x:

Lemma 1.2.6. f € CSy with a code (a,b,1,0) is transitive <=

1
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Figure 3. The space TCS1 U TCSa.

We have described the spaces TCS; and 7CS,. What about TCS,, for n > 37

Lemma 1.2.7. f € CS,,, slope A > 2, image of every lap (except perhaps the
leftmost and the rightmost ones) is the whole I = f is transitive.

Lemma 1.2.8. f € CS,,, slope A\ > 3, image of every lap (except perhaps one or
two leftmost or one or two rightmost ones) is the whole I = [ is transitive.

Put E(f) := {turning points of f} U {endpoints of the interval I}.

Lemma 1.2.9. f € (S, slope A >3, f({0,1}) C {0,1}, out of any four consecu-
tive points of E(f) at least one is mapped to 0 and at least one is mapped to 1 —>
f is transitive.

1.3. Loops of transitive interval maps. In what follows: loops of transitive
maps with constant slopes (transitivity always follows from previous lemmas).

Theorem 1.3. For everyn > 1 there is a loop in T,UT,11, which is not contractible
mn 7:1 U 7;L+1 .

In fact, we have found such a loop in TCS,, UTCS,,+1. We call it the basic loop of
order n and denote it L,,.



Figure 4. Basic loop L2 (it consists of four arcs).

In particular: Ly € TCS2UTCS3 ... not contractible in 7CS2 UTCS3 (even not
in 72 U T3, by Theorem 3.1)

We show that it is contractible in 7CSs U TCS3 U TCS4. First we find the
auxiliary loop of order 2 homotopic to Lo in the space TCS2 UTCS3UTCSy. And
then one can show similarly that the auxiliary loop is contractible in TCSo UTCSy.

The basic loop Ly consists of four arcs, so we need to show how to deform these
four arcs, to obtain the auxiliary loop.

— =

Y

Figure 5. Deformation of the 1st arc of the basic loop La.
In codes: (0,1,0,1,1 —s,1 — s+ st), s varies from O (left end) to 1 (right end), ¢ varies from 0
(for basic loop) to 1 (for auxiliary loop).
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Figure 6. Deformation of the 2nd arc of the basic loop La.
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Figure 7. Deformation of the 3rd arc of the basic loop La.
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Figure 8. Deformation of the 4th arc of the basic loop La.

SIS

The basic loop Ls consisting of four arcs has been deformed to the auxiliary loop
consisting of two arcs (four arcs, but the second and the third are constant, so we
can ignore them):

7 DA
I
WAl (Y

The situation seems to be similar as for the following model, although we do not
know how far we can go with this analogy. Think about the sequence of spaces R™,
n=0,1,2,..., where each space is a subset of the next one. Set R,, = R"\ R"~!
for n =1,2,3,.... Then the fundamental group of the space

R,UR, ;1 =R"™\R"! = (R?\ {0}) x R"!
is nontrivial, while the fundamental group of the space
RyUR, 1 URy o =R\ R = (R®\ {0}) x R*™!
is trivial.

Additionally, we described the topology (and, in a sense, geometry) of the space
TCS1 UTCSs.
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2. DYNAMICAL COMPACTNESS

This section is based on the papers [27] and [28]. Let Z; be the set of all
nonnegative integers and N the set of all positive integers. Before going on, let us
recall the notion of a Furstenberg family from [1]. Denote by P = P(Z.) the set
of all subsets of Z,. A subset F C P is a (Furstenberg) family, if it is hereditary
upward, that is, F} C Fy and F; € F imply F» € F. Any subset A of P clearly
generates a family {F € P : F D A for some A € A}. Denote by B the family of
all infinite subsets of Z, and by Py the family of all nonempty subsets of Z . For
a family F, the dual family of F, denoted by kJF, is defined as

{FeP:FNF #g for any F' € F}.

A family F is proper if it is a proper subset of P, that is, Z; € F and @ ¢ F. By
a filter F we mean a proper family closed under intersection, that is, Fi, Fo € F
implies Fy N Fy € F. A filter is free if the intersection of all its elements is empty.
We extend this concept, a family F is called free if the intersection of all elements
of F is empty.

For any F' € P, every point x € X and each subset G C X, we define the orbit
TPz = {T'x : i € F}, and the visiting times ny(z,G) = {n € Z; : T"x € G}.
The w-limit set of x with respect to F (see [1]), or shortly the wx-limit set of x,
denoted by wz(x), is defined as

ﬂ TFz={z€ X : np(x,G) € kF for every neighborhood G of z}.
FeF

Let us note that not always wz(z) is a subset of the w-limit set wp(z), which is
defined as

ﬂ {Tkz : k>n} ={z € X :nr(z,G) € B for every neighborhood G of z}.
n=1

For instance, if each element of F contains 0 then any point € wr(z). Neverthe-
less, if a family F is free, then wr(x) C wp(z) for any point € X and if (X,T)
has a nonrecurrent point!, then the converse is true.

A dynamical system (X, T) is called compact with respect to F, or shortly dy-
namically compact, if the wz-limit set wr(z) is nonempty for all x € X.

H. Furstenberg started a systematic study of transitive systems in his paper on
disjointness in topological dynamics and ergodic theory [16], and the theory was
further developed in [18] and [17]. Recall that the system (X, T) is (topologically)
transitive if Np(U1,Us) ={n €Z; :U1NT "Us # @} (={n€Zy : T"U; NV, #
@}) € Py for any opene? subsets Uy, Uy C X, equivalently, N (U, Us) € B for any
opene subsets Uy, U; C X.

Transitive compactness — one of possible dynamical compactnesses. Let Ny
be the set of all subsets of Z; containing some Np(U,V'), where U,V are opene
subsets of X. A dynamical system (X,T) is called transitive compact, if for any
point € X the wp,.-limit set waz. () is nonempty, in other words, for any point
x € X there exists a point z € X such that

nT(x, G) N ]VT((]7 V) + O

LA point z € X is called recurrent if z € wp(z).
2Because we so often have to refer to open, nonempty subsets, we will call such subsets opene.
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for any neighborhood G of z and any opene subsets U,V of X.

Let (X,T) and (Y, S) be two dynamical systems and k € N. The product system
(X xY,T x S) is defined naturally, and denote by (X%, T®*)) the product system
of k copies of the system (X,T). Recall that the system (X,T) is minimal if it
does not admit a nonempty, closed, proper subset K of X with TK C K, and is
weakly mizing if the product system (X2, T(z)) is transitive. Any transitive compact
system is obviously topologically transitive, and observe that each weakly mixing
system is transitive compact ([3]).

Sensitive compactness — another possible dynamical compactness. The no-
tion of sensitivity was first used by Ruelle [43]. It captures the idea that in a
chaotic system a small change in the initial condition can cause a big change in
the trajectory. According to the works by Guckenheimer [23], Auslander and Yorke
[7] a dynamical system (X, T) is called sensitive if there exists § > 0 such that for
every x € X and every neighborhood U, of z, there exist y € U, and n € N with
d(T™z, T™y) > §. Such a ¢ is called a sensitive constant of (X,T). Recently in
[39] Moothathu initiated a way to measure the sensitivity of a dynamical system,
by checking how large is the set of nonnegative integers for which the sensitivity
occurs. For a positive § and a subset U C X define

St(U,8) = {n € Z4 : there are x1,x2 € U such that d(T"z1,T"x2) > §}.

Let St := Sr(9) be the set of all subsets of Z; containing some St(U, §), where U
is an opene subset of X. A dynamical system (X,T) is called sensitive compact, if
for any point x € X the ws,-limit set ws, (x) is nonempty, in other words, for any
point z € X there exists a point z € X such that

’I’LT(I',G) n ST(U, 5) + O

for any neighborhood G of z and any opene subset U in X.

A dynamical system (X,T) is called multi-sensitive if there exists 6 > 0 such
that ﬂle St (Ui, 6) # @ for any finite collection of opene Uy, ..., Uy C X. Such a
0 is called a constant of multi-sensitivity of (X, T).

Recall that a collection A of subsets of a set Y has the finite intersection property
(FIP) if the intersection of all sets in any finite subcollection of A is nonempty. It
is well known that the FIP is useful in formulating an alternative definition of
compactness of a topological space: a topological space is compact if and only if
every collection of closed subsets satisfying the FIP has a nonempty intersection
itself.

We recall that if (X, T') is weakly mixing then it is well known that the family N
is a filter (see [16], [1]), and hence has FIP. If (X, T) is a multi-sensitive system with
a constant of multi-sensitivity 6 > 0 then obviously the family S(d) has FIP. Since
all of these families are also free, actually they have the strong finite intersection
property (SFIP).

In fact we can say more — the FIP is useful in characterizing the dynamical
compactness.

Theorem FIP ([27]). All dynamical systems are dynamically compact with respect
to F if and only if the family F has the finite intersection property.

Proof. Sufficiency. Suppose that F has FIP. Take arbitrary dynamical system
(X,T) and let z € X. Obviously the family {TFxz : F' € F} also has FIP, and then
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by compactness of X the family {TFz : F' € F} has a nonempty intersection itself,
ie, wr(z) # @. Thus (X, T) is dynamically compact with respect to F.

Necessity. Suppose that the family F has no FIP, and then there is a collection
{Fy,...,Fx} C F with ﬂle F; = @. Let A= {ay,...,a;} be an alphabet and let
(X,T) := (X,0) be the full (one-sided) A-shift. We are going to define a point
x € X with wr(z) = @. Let 9 = a;. For any n > 1 there is ¢ with n ¢ Fj, else
the intersection of Fi, ..., F; would be nonempty. Then define z, := a;. Finally,
let * = xox1x2ox3 ... and the construction is finished.

Assume the contrary that we can take z € wr(z), and that z begins with a; € A.
Take G, = Cla;]. As z € wr(x) we have np(x,G,)NF; # @. But if n € np(z,G,),
then x, = a; and so n ¢ F; by the construction, a contradiction. O

2.1. Dynamical compactness with respect to an arbitrary family. As we
have mentioned, any filter has FIP; if (X, T) is weakly mixing then the family AN
is a filter; if A a weakly mixing subset of (X, T') then the family Nr(A) has FIP;
and if (X,T) is a multi-sensitive system with a constant of multi-sensitivity § > 0
then the family S (d) also has FIP.

A collection H C F will be called a base for F if for any F' € F there is H € H
with H C F. We are interested in those families which have a countable base, that
is, there exists a base H which is countable.

Note that not every Furstenberg family F has a countable base, for example, the
family B. Assume the contrary that B admits a countable base {F;, : n € N}. We
take k1 € Fi, and once k,,, € F,,,m € N is defined we choose ky,+1 € Fy,4+1 with
kmy1 > km+m+1. Set E={k,:neN}and F=7Z,\ E. Then ENF,, # & for
all n € N, and F D {k,, + m : m € N} and hence F € B, in particular, there exists
no n € N with F,, C F, a contradiction.

It is not hard to show even the existence of a family with FIP, but without
a countable base. Nevertheless the families N7 and Sr(d§) have countable bases.
Indeed, we can consider a countable base U of open sets for the space X. Note that
Uy c U, Vi €V implies Np(Uy, Vi) € Np(U,V) and Sp(Uy,6) C Sr(U,d). Then
{Nr(U,V): UV €U} and {Sr(U,d) : U € U} are countable bases for N and
S7(9), respectively.

The following is a general result that will be especially useful for families with
countable bases.

Proposition 2.1. Let (X,T) be a dynamical system and let F be a family such
that there exists x € Tranz(X,T). Then orbp(z) C Trang(X,T).

Proposition 2.2. Assume that F admits a countable base H. Then Trangrx(X,T)
is a G subset of X. Moreover, the following are equivalent:

(1) The system (X, T) is kF-transitive,

(2) Trangz(X,T) is a dense G5 subset of X,

(3) Trangz(X,T) # 2.

2.2. Transitive sensitivity and sensitive compactness. A dynamical system
(X, T) is transitively sensitive if there exists § > 0 such that S (W,0)NNr(U, V) #
@ for any opene subsets U, V., W of X, and recall is sensitive compact if there exists
d > 0 such that for any point x € X the set ws,.(5)(x) is nonempty. Sometimes in
that cases we will say also (X, T) is transitively sensitive with a sensitive constant
0 and (X, T) is sensitive compact with a sensitive constant 6. Then
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Theorem 2.3. Let (X,T) be a minimal system. Then the following conditions are
equivalent:

(1) (X,T) is multi-sensitive.

(2) (X,T) is sensitive compact.

(3) There exists § > 0 such that ws, s5)(x) = X for each x € X.

(4) There exist § > 0 and x € X with ws, (5 (z) = X.

(5) (X,T) is transitively sensitive.

Before proceeding, we need:

Lemma 2.2.1. Letd >0 andz € X. If T : X — X is almost open, then the family
St(9) is negatively invariant, and the subset ws, (s)(x) is positively T-invariant.

The following result gives a characterization of transitive sensitivity for a general
dynamical system in terms of dynamical compactness.

Proposition 2.4. Let (X,T) be a dynamical system. Then the family St(§) is
positively invariant for any § > 0. Furthermore, the following conditions are equiv-
alent:
(1) (X,T) is transitively sensitive.
(2) There exist a § > 0 and a dense G5 subset Xo C X such that ws,(5)(z) = X
for each x € Xj.
(3) There exist a 6 > 0 and a point x € X with wg, s5)(z) = X.

Recall that by [20, Corollary 1.7] the sensitivity of a dynamical system can be
lifted up from a factor to an extension by an almost open factor map between
transitive systems. The following result shows that the transitive sensitivity can
be lifted up to an extension from a factor by an almost one-to-one factor map and
that the transitive sensitivity is projected from an extension to the sensitivity of a
factor by a weakly almost one-to-one factor map.

Lemma 2.2.2. Letw: (X,T) — (Z, R) be a factor map between dynamical systems.

(1) Assume that 7 is almost one-to-one. If (Z, R) is transitively sensitive with
a sensitive constant 6 > 0 then (X, T) is also transitively sensitive.

(2) Assume that there exists z € Z whose fiber is a singleton. If (X,T) is
transitively sensitive then (Z, R) is sensitive, in particular, Eq(Z, R) = &.

Now let us give the proof of Theorem 2.3 from [28].

Proof of Theorem 2.3. (1) = (2) follows directly from the definitions. As the sys-
tem (X,T) is minimal, the map T : X — X is almost open. Observing that
ws(5) () is a closed subset of X for each » € X, the implication of (2) = (3) follows
from Lemma 2.2.1 and the minimality of (X, T"). The implication of (3) = (4) = (5)
follows from Proposition 2.4. Since a minimal system is either multi-sensitive or a
weakly almost one-to-one extension of its maximal equicontinuous factor by [29],
then (5) = (1) follows from Lemma 2.2.2. This finishes the proof. O

Clearly each multi-sensitive system is sensitive compact. Observe that from each
non-proximal, transitive compact system is multi-sensitive by [27, Theorem 4.7] we

Proposition 2.5. Each non-prozimal, transitive compact system (X, T) is multi-
sensitive.
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In particular, each minimal transitive compact system is multi-sensitive, as each
minimal proximal system is trivial by [3] and all dynamical systems considered are
assumed to be nontrivial. Nevertheless, there are many minimal, non transitive
compact, multi-sensitive systems. For example, consider the classical dynamical
system (X, T) given by X = R?/Z? and T : (z,y) — (v +a,z +y) with a ¢ Q (see
[17, Chapter 1]). As commented in [27, Page 1816], (X, T) is an invertible minimal
multi-sensitive system; note that (X, T') is not weakly mixing, since (X,T) admits
an irrational rotation as its nontrivial equicontinuous factor and any equicontinuous
factor of a weakly mixing system is trivial. Recall that by [27, Corollary 3.10] for a
minimal system the system is transitive compact if and only if it is weakly mixing,
and then the constructed system (X, T) is not transitive compact.

Proposition 2.6. Fach nontrivial weakly mizing system (X, T) is transitively sen-
sitive.

We give a sufficient condition for a dynamical system being transitively sensitive
(by Proposition 2.4) as the last result of this section.

Lemma 2.2.3. Assume wg,()(z) = X for some x € X and ¢ > 0. Then there
is § > 0 such that for any opene subset U of X and each neighbourhood U, of x
there are y € U, and n € np(z,U) with d(T"x,T™y) > §. If in addition, the map
T: X — X is almost one-to-one, then the converse holds.

2.3. Transitive compact (non weakly mixing) systems. Recall that the sys-
tem (X,T) is totally transitive if (X, T*) is transitive for each k € N; and is topo-
logically mizing if Np(U,V) € Feor for any opene subsets U,V in X. Note that
(X, T) is weakly mixing if and only if Np(U, V) € Finick for any opene sets U, V' in
X by [16, 42], and so any weakly mixing system is totally transitive. It is direct
to check that each weakly mixing system is transitive compact. We extend it as
follows:

Theorem 2.7. There are non-totally transitive, transitive compact systems and
totally transitive, transitive compact systems which are not weakly mixing.

The following result is proved independently in [9] and [45].

Lemma 2.3.1. Any w-limit set wp(z) can not be decomposed into o disjoint closed,
nonempty, positively T-invariant subsets, where 2 < a < V.

Before proceeding, we need the following example, for which we fail to find a
reference and hence provide a detailed construction, as it is crucial in our arguments.

Proposition 2.8. For any given compact metric space Z, there exists a topolog-
ically mizing system (X,T) such that, Z can be realized as the set of all of its
minimal points, furthermore, its each minimal point is a fived point.

The following result shows that in general there is no topological structure similar
to Lemma 2.3.1 for the was.-limit sets.

Theorem 2.9. For any given compact metric space Z, there exists a mon totally
transitive, transitive compact system (X, T) such that, Z can be realized as the set of
all its minimal points with its each minimal point being a fixed point, furthermore,
Z is realized as wpr.(x) for some x € X.
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Note that a dynamical system is proximal if and only if it contains the unique
fixed point, which is the only minimal point of the system [3]. Thus, as a direct
corollary of Lemma 2.3.1 and Theorem 2.9, we have:

Corollary 1. There exists a non-proximal, non totally transitive, transitive com-
pact system (X, T) and a point xg € X such that war, (xo) # wr(x) for all x € X.

Nevertheless is still open the following

Question. Let (X,T) be a weakly mizing system. Is there a point x € X and
2 < o < Vg such that wp. (x) can be decomposed into o disjoint closed, nonempty,
positively T-invariant subsets?

At the end of this section let us mention one more chaotic property of transitive
compact systems in additional to already known.

A pair of points z,y € X is prozimal (asymptotic) if liminf,, ., d(T™z, T™y) =
0 (liminf, o d(T™z, T™y) = 0, respectively). Denote by Proxr(X) and by
Asymy(X) the set of all proximal pairs and asymptotic pairs of points, respectively.
Any pair (z,y) € Proxp(X)\ Asymp(X) is called a Li- Yorke pair. Recall that a dy-
namical system (X, T) is Li- Yorke chaotic if there exists an uncountable set S C X
with (S x S)\ Az(X) C Proxr(X) \ Asymy(X), where Aq(X) = {(x,2) : x € X}.

Proposition 2.10. Fach transitive compact system (X, T) is Li-Yorke chaotic.

Observe that in [33] we initiated another way to measure the sensitivity of a
system, that is, gave quantitative measures of the sensitivity of a dynamical system
by introducing the Lyapunov numbers:

L, = sup{d: for every z € X and every open neighborhood U, of x there

exist y € U, and a nonnegative integer n with
d(T"z, T™y) > 6};

L, = sup{d: for every z € X and every open neighborhood U, of = there
exists y € U, with limsupd(T"z,T"y) > 6};
n—oo
L; = sup{d: in any opene U C X there exist x,y € U and a nonnegative
integer n with d(T"z, T"y) > §};
Ly = sup{d: in any opene U C X there exist x,y € U with
limsupd(T"z, T"y) > §}.

n—roo

Here we set sup@ = 0 by convention. Various definitions of sensitivity, formally

give us different Lyapunov numbers. Nevertheless, as was shown in [33], for minimal

topologically weakly mixing systems all these Lyapunov numbers are the same.
The motivation of [33] comes from the following proposition according to [3]:

Proposition 2.11. The following conditions are equivalent:
1. (X,T) is sensitive.
2. There exists § > 0 such that for every x € X and every neighborhood U, of
x, there exists y € U, with limsup,,_, . d(T"z, T™y) > 6.
3. There exists 6 > 0 such that in any opene U in X there are x,y € U and a
nonnegative integer n with d(T"x, T™y) > 0.
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4. There exists 0 > 0 such that in any opene U C X there are x,y € U with
limsup,,_, . d(T"x, T™y) > 6.

The following Figure 9 is a concluding remark for results presented in this Section
2 and presents a comparison between stronger forms of sensitivity for transitive
systems. It includes also some new elements on the diagram, which did not present
in [27] and [28].

[ Topologically Mixing J
=

Transitive Sensitivity Transitive-Sensitive P
(FIP) Compactness \

Weak Mixing Transitive Compactness Transitive Compactnéss:
(N7 — Filter) (ng — Filter) Non-proximal | Proxilﬁ'nal

A
T
e Jau i
P case S
o S /

|© Do Sensitivelcf' v
Compactnéss
y
Transitive Li-Yorke L, = L,
Sensitivity Sensitivity > 0

Sensitivity

T
i [

Multi-Sensitivity
(Sr(6) - FIP)

Figure 9. “Topologically transitive systems”.

Some remarks. First of all recall some definitions which we did not mention
before. Recall that a pair of points (z,y) is prozimal if lim inf,, o d(T"x, T™y) = 0.
A dynamical system (X,T) is called proximal if for any z,y € X the pair (z,y)
is proximal. Note, it is known that (X,T) is proximal iff it has a unique minimal
point which is fixed (see [3]).

(X,T) is called Li-Yorke sensitive if there exists > 0 such that for every z € X
and every neighborhood U, of z, there exist y € U, such that (z,y) is a proximal
pair while limsup,, , ., d(T"x, T"y) > 6.

Let (X,T) be a dynamical system which is compact regarding to a (dynamical)
Furstenberg family F. Say, F is N7 or Sr. Then not so hard to show that in that
case for any point € X there exist a minimal subset M, of X and a point z € M,
such that

np(z,G,)NF # o

for any neighborhood G of z in X and any F' € F. If A is a set in X, by B.[4]
we will denote the union of all open balls of radius € > 0 whose centers run over
A. Similarly as in the proof of [27, Lemma 3.12] one can show that for any z € X
and any B.[M,] the set nyp(z, B:.[M,]) is thikly syndetic. Let ny be the set of all
subsets of Z, containing some nr(x, B:[M;]), where z is a point of X, € > 0 and
M, C wr(x) is a minimal subset of X.
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Figure 9 also presents an open question. Are all transitive compact systems
sensitive compact? More precisely - does there exist a proximal, transitive compact
system which is not sensitive compact?

3. SLOVAK SPACES

This section is based on the papers [34], and [12]. One of the main topics
of our research is to study relations between some properties (structure) of the
topological semigroup S(X), group H(X) and possible values of the topological
entropy (and/or some other chaotic properties) of its elements (continuous maps
and homeomorphisms, respectively).

In [34] mostly we have considered the following two questions: 1) when does
a compact metric space admit a continuous map (homeomorphism) with positive
topological entropy? 2) when does the existence of a positive-entropy continuous
map on a compact metric space imply the existence of a +oo-entropy continuous
map? Also there we have proved the following

Theorem 3.1. Let X be a compact metric space. If S(X) is compact, then for
any f € S(X) topological entropy of (X, f) and topological entropy the functional
envelope (S(X), Fy) is zero. If H(X) is compact, then for any f € H(X) topological
entropy of (X, f) is also zero.

Now it is not so much known about the topological structure of compact semi-
group S(X) and group H(X). The compactness of the S(X) and H(X) is not a
very strict condition and takes place sometimes, because both of them may be “very
small”. Recall that a topological space X is said to be rigid, if the full topological
homeomorphism group H(X) is the identity. De Groot and Wille (in [21] showed
the existence of rigid spaces even as locally connected one-dimensional continua
(Peano curves) of the plane. The main idea of the construction of such a space
is similar to the Sierpinski carpet — a square with interiors of a dense family of
subsquares removed.

Figure 10. The first 6 steps in the construction of the Sierpinski carpet

The Sierpinski carpet, also known as the Sierpinski universal curve, is a one-
dimensional planar Peano continuum.

De Groot - Wille rigid plane locally connected one-dimensional continua is a
disc with interiors of a dense family of propellers (with different numbers of blades)
removed.
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Consider a disc D in the plane. Let {a;} be a countable dense subset of the
interior of D. We define a sequence of "propellers” in D. The first is bounded
by a two-bladed curve having a; as its centre, which avoids the boundary of D.
Moreover, we take care that the diameters of the propellers tend to zero. The
space P is the disc D with the interiors of all the propellers removed. Then P is
a continuum as the intersection of a countable, decreasing sequence of continua.
Routine procedure shows the local connectedness of P. P has dimension one, since
it does not contain a subset, open in the plane. Since the total area of the interiors
of the propellers can be chosen as small as we want it to be, P can also have positive
measure.

Figure 11. The first 3 steps in the construction of the De Groot - Wille rigid plane continua.

In fact, it must look like the following Julia set (a picture of Volodymyr Nekra-
shevych)

Figure 12. A Julia set.

In fact, by using such kind of ideas, de Groot [22] proved the following

Theorem 3.2. Let G be an arbitrary group. Then there exists a connected, locally
connected,complete metric space X (or alternatively compact, Hausdorff) for which
the group of all autohomeomorphisms H(X) is isomorphic to G.
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However, such a space need not exist in the class of compact metric spaces,
because a compact metric space has cardinality at most ¢, while there are groups
of arbitrary cardinalities. Nevertheless, as De Groot and Wille proved, if G is
countable then X can be chosen to be a Peano continuum of any positive dimension.

Howard Cook (in [8]) constructed two metric continua:

(1) the space S(X) consists only of the constant maps (sending all points from
X to a fixed point of X) and the identity on X;
(2) the space H(Y) is topologically equivalent to the Cantor set.

But it is still an open problem what can we say about the topological structure
of the compact full topological homeomorphism group H(X) and of the compact
full topological homeomorphism group S(X) (see the conjecture below).

Recall that a topological group is called profinite group if it is Hausdorff, com-
pact, and totally disconnected. Gartside and Glyn ([19]) have established that every
metric profinite group is the full homeomorphism group of a continuum. Recently
Hofmann and Morris in [25] proved that a compact full homeomorphism group of
a Tychonoff space is a profinite topological group. But the following conjecture is
still open (see [26] for details):

Conjecture. Let G be a compact group. Then the following conditions are equiv-
alent:

(1) There is a compact connected space X such that G = H(X).
(2) There is a compact space X such that G = H(X).
(3) G is profinite.

A dynamical system (X,T') gives rise to several “hyper-systems”. For example,
T acts naturally on 2%, the space of all compact subsets of X equipped with the
Hausdorff metric. The induced map here is the continuous map T : 2% — 2% given
by T(A) = T(A) for each A € 2.

In the same spirit (although now the domains are not necessarily compact),
jointly with J. Auslander and L. Snoha in [6], we introduced and started to study
the “hyper-system” (S(X), Fr), where the transformation

Fr:S8(X)w— S(X) is defined by Fro =T o ¢ for any ¢ € S(X).
We called the system as the “Functional Envelope” of (X,T). Why “functional
envelope”? Because the system (S(X), F) contains (properly, if card X > 2) an
isomorphic copy of (X, f). The map ¢ : X — S(X) sending a point a € X to
the constant map con,, is an isometry (regardless of whether the uniform or the
Hausdorff metric is used in S(X)) and also a topological conjugacy, i.e., to f = Fou.

The functional envelopes may differ in some dynamical properties which depend
on the metric (for example the topological entropy in non-compact systems does).
On the other hand, the essential dynamical properties of the functional envelopes
do not depend on the metric applied on X.

Now suppose additionally that the map T : X — X is a homeomorphism. Then
the space H(X) is invariant under Fr and (H(X), Fr) becomes another kind of
“functional envelope”

Fr: H(X)w~— H(X) is defined by Fro =T o for any p € H(X).

3.1. Topological entropy: Bowen and Dinaburg definition. Topological en-
tropy measures the evolution of distinct (distinguishable) orbits over time, thereby
providing an idea of how complex the orbit structure of a system is. Recall the
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Bowen-Dinaburg definition of topological entropy (see [47]). Let (Z, 0) be a metric
space and f : Z — Z be uniformly continuous. For any integer n > 1 the function

on(@,y) = max o(f'w, fy)

defines a metric on Z equivalent with o.

Fix an integer n > 0 and € > 0 and let K be a compact set in Z. A subset E C K
is called (n, f,€)-separated, if for any two distinct points x,y € E, o, (z,y) > . We
say that a subset F' C Z (n, f,e)-spans the set K, if for every point € K there
exists a point y € F such that g,(x,y) < e. Note that since K is compact, E is
finite and F' may be infinite, but a finite subset that still spans K exists.

Denote by sep(n, f,e; K) the maximal cardinality of a (n, f,e)-separated set in
K, and by span(n, f,; K) the minimal cardinality of a set which (n, f,e)-spans K.

For every € > 0 and n > 0 it holds

span(n, f,e; K) <sep(n, f,e; K) < span(n, f,e/2; K) .
The topological entropy h(f, K) on a compact set K C Z, is defined by

1 1
h(f, K) := lim limsup — log sep(n, f,&; K) = lim lim sup — log span(n, f,¢; K).
n n

e=0 oo e=0 pooo

Then the topological entropy h(f) of a map f: Z — Z is defined by
ho(f) = h(f) :=sup{n(f,K): K C Z and K is compact} .

If span(n, f,e; K) denotes the minimal cardinality of subsets of the com-
pact set K which (n,f,e)-span K then span®(n, f,e;K) < sep(n, f,e;K) <
span’(n, f,e/2; K) and h(f, K) = lim._,olimsup,,_, ., L logspan® (n, f,&; K) (see
47)).

For uniformly equivalent metrics g1 and g2 we have h,, (X, f) = h,, (X, f), and
if p1 is stronger than g9, then h,, (X, f) > ho, (X, f).

We know that if X is compact, then the map F : ¢ — f o ¢ is uniformly con-
tinuous on both the spaces Sy (X) and Sp(X), and so we can study its topological
entropy. Recall that dy(¢1, p2) > du(p1, @2) for all p1, s € S(X) and that these
two metrics are equivalent on S(X), hence uniformly equivalent on compact subsets
of S(X).

Some basic properties of topological entropy:

(1) R(T) > h(S) if (Y, S) is a "topological factor” of (X,T) ,i.e., poT = Soy,
where ¢ : X — Y is a continuous surjection.
2) W(T) > h(T|y) if Y is a nonempty closed invariant subset of X.
3) h(T™) =n-h(T) for n > 0.
4) h(T x S) = h(T) + h(S).
5) h(ToS)=h(SoT).

Let us gather some basic known facts and open problems concerning the entropy
of the functional envelopes:

(1) The entropy of (S(X), Fr) is always not smaller than that of (X,T); to
see this it suffices to consider the subsemigroup of constant self-maps, which is
conjugate to (X, T).

(2) On the other hand, it was not known whether the same inequality holds for
(H(X), Fr).
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(3) Our with Semikina conjecture says that the functional envelope (S(X), Fr)
has entropy either zero or infinity. In [34] we proved that the conjecture holds true
for all Peano continua and for all compact spaces with continuum many connected
components. Otherwise the conjecture was open. The same problem can be posed
for the functional envelope (H(X), Fr) in case T is a homeomorphism.

Recently, Downarowicz, Snoha and Tywoniuk [12] gave a positive answer for the
question (2) for homogeneous spaces and extended the knowledge on the question
(3). Namely,

Theorem 3.3. Let T : X — X be a homeomorphism of a homogeneous compact
space. Then the entropy of the functional envelope (H(X), Fr) is at least as large
as that of (X, T).

Theorem 3.4. Let T : X — X be a self-homeomorphism of a compact zero-
dimensional space. Then the entropies of (S(X), Fr) and (H(X), Fr) are either
both zero or both infinite. They are equal to zero if and only if T is equicontinuous.

Nevertheless, they also showed that there exists a positive (even infinite) entropy
homeomorphism T of a compact space X such that (H(X), Fr) has entropy zero
(see [12] and below). This proves that the general question (2) (the inequality
between topological entopies of (X,T') and its functional envelope (H(X), Fr)) has
a negative answer.

It was solved using a new class of spaces, which they have called Slovak spaces,
defined by the combination of two properties: the existence of a (minimal) home-
omorphism, say 7', and nonexistence of homeomorphisms other than the powers of
T.

For such spaces obviously that the functional envelope (H(X), Fr) always has
entropy zero.

3.2. Existence of uniquely minimal spaces and applications. Recall that a
map T : X — X is called minimal if the orbit {x, Tz, T?x,...,T"z,...} of any
point z € X is dense in X.

For a compact metric space X there are two possibilities:

(1) X does not admit any minimal homeomorphism (e.g., interval, disk, ... ,
any space with the fixed point property);

(2) X admits a minimal homeomorphism (Cantor set, circle, torus, ... ). In this
case, if X is infinite then in known examples usually X admits uncountably
many homeomorphisms and even uncountably many of them are minimal).

Is there a third possibility? That is, does there exist an infinite compact metric
space X such that it admits, but only “a few”, minimal homeomorphisms?

An infinite compact metric space X is called Slovak if it is uniquely minimal in
the following sense: X admits a minimal homeomorphism 7T and H(X) = {T" :
n € 7Z}.

The assumption that X is infinite eliminates two trivial examples: the one-point
space and the two-point space. If X is Slovak then card X = ¢, X has no isolated
point and all iterates T", n € Z are different, i.e. H(X) ~ Z. Moreover, all iterates
T™, except identity, are minimal.

Theorem 3.5. There exist Slovak spaces in the class of metric continua. More-
over, the topological entropies of generating homeomorphisms T exhaust the interval

[0, o0].
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3.3. Idea of a construction of uniquely minimal spaces. Every Slovak space
is a non-degenerate continuum.

Step 1. Let h: C' — C be a minimal homeomorphism on the Cantor set C' (with
arbitrary entropy).

Step 2. Define a generalized solenoid induced by (C, h) as following
SOL :=C x [0,1]/~,

where (z,1) ~ (hz,0).

Recall that solenoids are among the simplest examples of indecomposable homo-
geneous continua. They are neither arcwise connected nor locally connected.

On the pictures below: a solid torus S' x D wrapped twice around inside another
solid torus in R3. And each solenoid may be constructed as the intersection of a
nested system of embedded solid tori in R3.

Figure 13. The first 5 steps in the construction of the Smale-Williams attractor.

Take the suspension flow over h (with ceiling function = 1) ®;,t € R defined on
SOL by the formula

P, (y’ 8) = (h[tJrS]ya {t + S}),

where [ - | and {-} denote the integer and fractional parts of a real number, respec-
tively.
Step 3. It is well known that there exists 3 € R such that the map

T := time to-map of flow ®

is a minimal homeomorphism on SOL (see also [15]).

Step 4. It is the main technical step. The Slovak space (which were constructed
n [12]) will be a subset of the cylinder SOL x [0,1]. The main element of this
construction is a topologist’s sine curve. For instance, a topologist’s sine curve
is a subset of the plane that is the union of the graph of the function f(xz) =
sin(1/x),0 < = < 1 with the segment —1 < y <1 of the y-axis.

1. The continuum SOL has uncountably many composants (orbits of the flow
®); choose a composant v and a point xo € . The composant of a point p
in a continuum A is the union of all proper subcontinua of A that contain
p. If a continuum is indecomposable, then its composants are pairwise
disjoint. The composants of a continuum are dense in that continuum.

2. On a closed arc around z( (minus the point xg itself) and lying in ~, we
define a function which looks like a one-sided topologist’s sine curve (values
in [0, 1], wiggles of height 1 in any left neighbourhood of zg, constant value
0 to the right of ). It is continuous and not defined at xg.

Extend it to a continuous function f : SOL\ {z¢} — [0,1].

Let F'=3_ cya,foT", where the coefficients a, are all strictly positive,
> nez @n = 1 and satisfying some technical assumptions (F is defined on
SOL minus the T-orbit of xg).

Ll
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5. Then one can show that both, the mapping (x, F(x)) — (T, F(Tz)) and
its inverse are uniformly continuous homeomorphisms of the graph of F.
Therefore, the map (z, F(x)) — (Tz, F(Tz)) extends to a homeomorphism
T of ' (=the closure of the graph of F).

6. FF C SOL x [0,1] is our Slovak space, looks as follows:

The composant 5 of F' “above” v has basicly this shape:

u

The other composants of F are continuous bijective images of the
real line.

3.4. Some generalizations. The question when a system (X, f) can be embedded
as a subsystem of some (Y, g) so that X = wy(y) for some y € ¥ was answered
by Dowker and Friedlander [9] for homeomorphisms and by Sharkovsky [44] in
general (see also [46]). Recall that a system (X, f) is f-connected if, for any proper,
nonempty, closed subset U C X, the intersection f(U)N X \ U is nonempty. They
show that (X, f) can be embedded as the omega limit set in some larger system if
and only if it is f-connected.

In [4] Akin and Rautio have considered the related problem of when a space
X admits a homeomorphism f so that (X, f) is the omega limit set in a larger
system. As we will see, their results are somewhat different from the map case.
They reinterpreted the problem by using some other notion. Given € > 0, a finite
or infinite sequence {z,, € X} with at least two terms is an e-chain for (X, f) if
d(fxg, xp+1) < € for all terms xy, of the sequence (except the last one). The system
(X, f) is called chain transitive when every pair of points of X can be connected by
some finite e-chain for every positive €. A subset A C X is called a chain transitive
subset when it is closed and f-invariant (i.e., f(A) = A) and the subsystem (4, f)
is chain transitive.

It is well known that chain transitivity and f-connectedness are equivalent con-
cepts (see also [4] for details). Akin and Rautio generalized several know results
(in particular, regarding rigid spaces). They proved the existence of the following
compact metric spaces:

(1) Suppose that G is a finitely generated (and hence countable) group. Then
there exist a space X such that the homeomorphism group H(X) is iso-
morphic to G and every f € H(X) is chain transitive.

(2) There exist a space X such that the homeomorphism group H(X) contains a
nontrivial path-connected subgroup and every f € H(X) is chain transitive.

(3) There exist a space X such that the homeomorphism group H(X) is isomor-
phic to the homeomorphism group of the Cantor set and every f € H(X)
is chain transitive.

Akin and Rautio in [4] also have extended the result of Downarowicz, Snoha and
Tywoniuk on rigid spaces by showing the existence of spaces (Slovakian spaces in
their terminology) which admit just a topologically transitive homeomorphism and
its iterations.



24

4. APPENDIX

4.1. Basic concepts in topological dynamics. Recall that z € X is a fized
point if Tx = x, and an F-transitive point of (X,T) [37] if Np(z,U) € F for any
opene subset U of X. It is a trivial observation that if a family F admits an F-
transitive dynamical system (X,7T) without isolated points, then F is free. Since
k(kF) = F, it is easy to see that € X is an F-transitive point of (X, T) if and only
if wir(x) = X. Denote by Tranz(X,T) the set of all F-transitive points of (X, T).
The system (X, T) is F-point transitive if Trany(X,T) # @, and is F-transitive if
Nr(U,V) € F for any opene subsets U,V of X. Write Tran(X,T) = Tranp, (X,T)
for short, and we also call the point x transitive if x € Tran(X,T), equivalently, its
orbit orbr(x) = {T"x : © = 0,1,2,...} is dense in X. Since T is surjective, the
system (X, T) is transitive if and only if Tran(X,T) is a dense G subset of X.

In general, a subset A of X is T-invariant if TA = A, and positively T-invariant
if TA C A. If Ais a closed, nonempty, T-invariant subset then (A,T|4) is called
the associated subsystem. A minimal subset of X is a closed, nonempty, T-invariant
subset such that the associated subsystem is minimal. Clearly, (X, T) is minimal if
and only if Tran(X,T) = X, if and only if it admits no a proper, closed, nonempty,
positively T-invariant subset. A point z € X is called minimal if it lies in some
minimal subset. In this case, in order to emphasize the underlying system (X,T)
we also say that x € X is a minimal point of (X,T). Zorn’s Lemma implies that
every closed, nonempty, positively T-invariant set contains a minimal set.

A pair of points z,y € X is called prozimal if iminf,, ., d(T"z,T"y) = 0. In
this case each of points from the pair is said to be prorimal to another. Denote
by Proxp(X) the set of all proximal pairs of points. For each x € X, denote by
Proxr(z), called the proximal cell of x, the set of all points which are proximal to
x. Recall that a dynamical system (X, T) is called prozimal if Proxr(X) = X x X.
The system (X,T) is proximal if and only if (X,T) has the unique fixed point,
which is the only minimal point of (X, T) (e.g. see [3]).

The opposition to the notion of sensitivity is the concept of equicontinuity. Recall
that € X is an equicontinuity point of (X, T) if for every € > 0 there exists a
d > 0 such that d(z,2') <  implies d(T"z,T"2’) < ¢ for any n € Z,. Denote
by Eq(X,T) the set of all equicontinuity points of (X,T). The system (X,T) is
called equicontinuous if Eq(X,T) = X. Each dynamical system admits a maximal
equicontinuous factor. Recall that by a factor map © : (X,T) — (Y,S) between
dynamical systems (X,T) and (Y,S), we mean that 7 : X — Y is a continuous
surjection with 7o T = Sow. In this case, we call 7 : (X, T) — (Y, S) an extension;
and (X, T) an extension of (Y,5), (Y,5) a factor of (X, T).

4.2. Basic concepts of Furstenberg families. In this subsection we recall from
[1] basic concepts about Furstenberg families.

Let FF € P. Recall that a subset F' is thick if it contains arbitrarily long runs
of positive integers. Denote by Fipnick the set of all thick subsets of Z, and define
Feyn = kFinick. Each element of Fgyy is said to be syndetic, equivalently, F' is
syndetic if and only if there is N € N such that {i,i +1,...,i + N} N F # & for
every i € Z4. We say that F is thickly syndetic if for every N € N the positions
where length N runs begin form a syndetic set. Denote by F.or the set of all
cofinite subsets of Z,. Note that by the classic result of Gottschalk a point x € X
is minimal if and only if ny(z,U) = {n € Zy : T"x € U} is syndetic for any
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neighborhood U of x. Hence, for any minimal system (X, T), the subset Np(U, V)
is syndetic for any opene subsets U,V of X.

Recall that a family F is proper if it is a proper subset of P, that is, Z, € F
and @ ¢ F. By a filter 7 we mean a proper family closed under intersection, that
is, F1, Fo € F implies F; N Fy € F. For families F; and F3, we define the family
Fir-Fo:={FiNFy: Fy € F1,F, € Fp} and call it the interaction of F1 and Fo.
Thus we have F; U Fy C Fp - Fa; and it is easy to check that F is a filter if and
only if F = F - F, and Fi - F2 is proper if and only if 7o C kF;.

For each i € Z,, we define ¢' : Z, — Z,,j — i+ j. Let F be a family.
Recall that F is positively invariant if for every i € Z,, F € F implies ¢*(F) €
F; negatively invariant if for every i € Z,, F € F implies g~ *(F) € F, where
g F)=(¢")"YF)={j—i:j € F,j>i}; and translation invariant if it is both
positively and negatively invariant, equivalently, for every ¢ € Z,, F € F if and
only if g74(F) € F.

As g7(g*A) = A and ¢'(g*A) C A for any i € Z,, it is easy to obtain that the
family F is positively (negatively, translation, respectively) invariant if and only if
kF is negatively (positively, translation, respectively) invariant (see for example [1,
Proposition 2.5.b]). And then we have:

Proposition 4.1. Let x € X. Then Twr(z) C wr(Tz). Additionally, if F is
negatively (positively, translation, respectively) invariant then wr(Tx) C (D, =,
respectively) wr(x).

Proposition 4.2. Let (X,T) be a dynamical system and let F be a family.
(i) If F is free, then wr(x) C wr(x) for any x € X. Moreover, if (X,T) has a
nonrecurrent point, then the converse implication is true.

(ii) If F is free and has FIP then it has SFIP.

4.3. The concept of an almost one-to-one map. Let ¢ : X — Y be a con-
tinuous surjective map from a compact metric space X onto a compact Hausdorff
space Y. Recall that ¢ is almost open if ¢(U) has a nonempty interior in Y for any
opene U C X. Note that each factor map between minimal systems is almost open
[5, Theorem 1.15], in particular, for a minimal system (X,T) the map T : X — X
is almost open [35]. Denote by Yy C Y the set of all points y € Y whose fiber is a
singleton. Then Yj is a G5 subset of Y, because

1
Yo ={y €Y :¢p *(y) is a singleton} = ﬂ {y €Y :diam(p(y)) < }
n
neN
and the map y +— diam(p~!(y)) is upper semi-continuous. Here, we denote by
diam(A) the diameter of a subset A C X. Recall that the function f:Y — Ry is
upper semi-continuous if limsup f(y) < f(yo) for each yo € Y. Denote by Xo C X

Y—Yo

the set of all points € X such that the pre-image of ¢(x) is a singleton. Then
Xo =7"Yp) is a G5 subset of X.

We call ¢ weakly almost one-to-one if Yy is dense in Y, and almost one-to-one>
if Xg is dense in X. It is not hard to show that: if ¢ is weakly almost one-to-one,
then for any 6 > 0 and any opene subset U of Y there exists opene V' C U with
diam(¢~!V) < §; and if ¢ is almost one-to-one, then for any opene subset U* of X

3Here we use the concept of almost one-to-one following [2], and the concept of almost one-
to-one used in [11, 29, 35] is in fact our weakly almost one-to-one.
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there exists an opene subset V* of Y with ¢~ !V* C U*. Clearly almost one-to-one
is much stronger than weakly almost one-to-one. For example, let X be the closed
unit interval, define Tz = 2z for € [0,3] and Tz = 1 for z € [,1], and then
T : X — X is clearly not almost one-to-one but weakly almost one-to-one.

For each minimal system (X,T), the map T : X — X is weakly almost one-
to-one [35, Theorem 2.7], and in fact almost one-to-one [29, Proposition 2.3]. The
following result characterizes the relationship between weakly almost one-to-one

and almost one-to-one, which extends [29, Proposition 2.3].

Proposition 4.3. Let ¢ : X — Y be a continuous surjective map from a compact
metric space X onto a compact Hausdorff space Y. Then ¢ is almost one-to-one if
and only if it is almost open and weakly almost one-to-one.

As a direct corollary, we have:

Corollary 2. Let ¢ : X — Y and 7 : Y — Z be continuous surjective maps
between compact metric spaces. Then the composition map woy : X — Z is almost
one-to-one if and only if both p and w are almost one-to-one.

Let w : (X,T) — (Y,5) be a factor map between dynamical systems. If the
map 7 : X — Y is almost one-to-one (weakly almost one-to-one, respectively),
then we also call (X,T) an almost one-to-one extension (a weakly almost one-
to-one extension, respectively) of (Y,S). The main result of [29] states that a
minimal system is either multi-sensitive or a weakly almost one-to-one extension of
its maximal equicontinuous factor. This is an analog of the well-known Auslander-
Yorke dichotomy theorem: a minimal system is either sensitive or equicontinuous.
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