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Abstract

Resultants are defined in the toric (or sparse) context in order to exploit the structure of the
polynomials as expressed by their Newton polytopes. Since determinantal formulae are not always
possible, the most efficient general method for computing resultants is by rational formulae. This
is made possible by Macaulay’s seminal result [Mac(2] in the dense homogeneous case, extended
by D’Andrea [D7A02] to the toric case. However, the latter requires a lifting of the Newton poly-
topes, defined recursively on the dimension. Our main contribution is a single lifting function
of the Newton polytopes, which avoids recursion, and yields a simpler method for computing
Macaulay-type formulae of toric resultants, in the case of generalized unmixed systems, where all
Newton polytopes are scaled copies of each other. In the mixed subdivision used to construct the
matrices, our algorithm defines significantly fewer cells than D’Andrea’s, though the formulae are
same in both cases. We give an asymptotic complexity analysis and apply our Maple implementa-
tion to fully study a bivariate example. We sketch how our approach extends to mixed systems of
up to 4 polynomials, and those whose Newton polytopes have a sufficiently different face structure.

Keywords Toric resultant, Macaulay formula, Minkowski sum, mixed subdivision, generalized
unmixed system
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1 Introduction

There are two main families of exact (rational) algebraic methods for algebraic variable elimination:
Grobner bases, based on operations between the given polynomials, which lead to a more structured
set of polynomials generating the given ideal, and resultants, to be defined below. Both have ex-
ponential complexity in the number of variables, which is expected since the problem is NP-hard;
but the latter are preferable in certain situations because they eliminate many variables at one step
and can handle symbolic coefficients. Resultants also seem more efficient for solving certain classes
of 0-dimensional algebraic systems. In particular, they reduce system solving to linear algebra, via
matrix formulae, or to solving univariate polynomials, via the rational univariate representation of all
common roots. The resultant generalizes the determinant of the coefficient matrix in the linear case.
For an overconstrained system, it belongs to its lexicographic Grébner basis. For more information,
see [CLO05, DEOS, Stu02].

The toric (or sparse) resultant captures the structure of the polynomials by combinatorial means
and constitutes the cornerstone of toric elimination theory [GKZ94, Stn02], [CLO05Y, chap.7], [DEQGS,
chap.7]. More recently, they appear in tropical geometry, e.g. [[IMS09, [Stu02] which, in some sense,
generalizes toric elimination. It is an important tool in deriving new, tighter complexity bounds
for system solving, Hilbert’s Nullstellensatz, and related problems. These bounds depend on the
polynomials’ Newton polytopes and their mixed volumes, instead of total degree, which is the only
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parameter in classical elimination theory. In particular, if d bounds the total degree of each polyno-
mial, the projective resultant has complexity roughly d°(™), whereas the toric resultant is computed
in time roughly proportional to the volume of the Minkowski sum of the Newton polytopes.

The resultant is defined for an overconstrained system of n + 1 polynomials in n variables over
some coefficient ring K. It is the unique, up to sign, integer polynomial over K which vanishes
precisely when the system has a root in some variety X. There are two main cases:

e The projective, or classical, resultant expresses solvability of a system of dense polynomials
fi € K[z1,...,xy,] in the projective space X = P" over the algebraic closure K of K.

e The toric (or sparse) resultant expresses solvability of a system of Laurent polynomials f; €
K [xfl, ..., o1 over the toric projective variety X defined by the supports of f;, in which the

torus (K)™ is a dense subset.

A resultant is most efficiently expressed by a matriz formula: this is a generically nonsingular
matrix, whose determinant is a multiple of the resultant with degree wrt the coefficients of one
polynomial equal to the corresponding degree of the resultant. For n = 1 there are matrix formu-
lae named after Sylvester and Bézout, whose determinant equals the resultant; we refer to them
as detererminantal formulae. Unfortunately, such determinantal formulae do not generally exist for
n > 1, except for specific cases, e.g. [DDOTl, [DEO3DL [EM09, Khe(3, IKSGO4, SZ94]. Macaulay’s
seminal result [Mac02] expresses the extraneous factor as a minor of the matrix formula, for projec-
tive resultants of (dense) homogeneous systems, thus yielding the most efficient general method for
computing such resultants.

Matrix formulae for the toric resultant were first constructed in [CE93]. The construction relies
on a lifting of the given polynomial supports, which defines a mixed subdivision of their Minkowski
sum into mixed and non-mixed cells, then applies a perturbation ¢ so as to define the integer points
that index the matrix. The algorithm was extended in [CEQOQ, ICP93, Stu94]. In the case of dense
systems, the matrix coincides with Macaulay’s numerator matrix. As a corollary of this construction,
one obtains a limited version of a toric effective Nullstellensatz [CEQOQ, sec.8].

Extending the Macaulay formula to toric resultants had been conjectured in [CEO0, [CLO0S,
Emidd IGKZ94), Stu94]; it was a major open problem in elimination theory. We cite [Stu94, p.219],
where F,, 5 is the extraneous factor, and w denotes the lifting: “It is an important open problem to find
a more explicit formula for P, s in the general toric case. Does there exist such a formula in terms of
some smaller resultants? This problem is closely related to the following empirical observation. For
suitable choice of 0 and w, the matriz Ms,, seems to have a block structure which allows to extract
the resultant from a proper submatrix. This leads to faster algorithms for computing the sparse mized
resultant.”

D’Andrea’s fundamental result [D’A02] answers the conjecture by a recursive definition of a
Macaulay-type formula, cf sec. Bl But this approach does not offer a global lifting, in order to
address the stronger original conj. [l Let M be a matrix formula, also known as Newton matrix,
and M (™M) its submatrix indexed by points in non-mixed cells of the mixed subdivision.

Conjecture 1. [Emi%4, Conj.3.1.19] [CEOQ, Conj.13.1] There exist perturbation vector § and n + 1
lifting functions for which the determinant of matrix M ™™ divides exactly the determinant of
Newton matrix M and, hence, the toric resultant of the given polynomial system is det M/ det M (nm)

Our main contribution is to give an affirmative answer to this stronger conjecture by presenting
a single lifting which constructs Macaulay-type formulae for generalized unmixed systems, i.e. when
all Newton polytopes are scaled copies of each other. We state our main result, to be proven in sec.
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Theorem 2. The global lifting of sec. [A produces a Macaulay-type formula for the toric resultant of
a system of polynomials with scaled Newton polytopes.



Our method is generalized, in sec. [, to certain mixed systems: those with n < 3, and reduced
systems, defined in [Zha98| to possess sufficiently different Newton polytopes. Most of these cases
have been studied: reduced systems were settled in [D’A0T], and bivariate systems (n = 2) in
IDEO3al], by directly establishing the extraneous factor. Our approach would eventually make the
single-lifting algorithm applicable to the fully general case.

Using a unique lifting function essentially means that we consider a deformed system, defined
by adding a new variable ¢ so that each input monomial 2 gets multiplied by t°, where b € Z
is the lifting value of a € Z". Such deformations capture the system’s behavior at toric infinity,
hence lie at the heart of most theorems in toric elimination (e.g. sparse homotopies, toric resultants,
the toric Nullstellensatz [Ber75l, [CEO0, I(CLO0S, [GKZ94, [HS95) Stu94]). Perhaps having a unique
deformed system in defining the Macaulay-type formula may allow for further applications of this
formula. Such combinatorial methods consitute one of the two main approaches for studying toric
resultants, e.g. [CENQ, [CLOOS, [DDOT, Min03, Stn94], the other relying on Koszul complexes and
their generalizations, e.g. [DE03D, [EM0Y, [Khe03].

D’Andrea’s [D’A02] recursive construction requires one to associate integer points with cells of
every dimension from n to 1. Our method constructs the matrix formula directly, without recursion,
by examining only m-dimensional cells. These are more numerous than the n-dimensional cells
in [D’A02] but our algorithm defines significantly fewer cells totally, and is conceptually simpler.
The disadvantage of our method is to consider extra points besides the input supports. Existing
public-domain Maple implementations cover only the original Canny-Emiris method [CEQ00], either
standaloneﬂ or as part of library Multire&g. We have a preliminary implementation of this paper’s
algorithm in Maple.

The rest of the paper is structured as follows. The next section introduces some necessary notions,
and defines the single lifting that produces Macaulay-type formulae. Sec. B recalls the recursive
algorithm of [D’A02], and sec. Bl proves the equivalence of the two constructions. Sec. H analyzes the
complexity of both methods. Sec. B offers a full example, and sec. [ sketches the extension of our
algorithm to mixed systems.

2 Single lifting construction

This section defines our approach to defining Macaulay-formulae. For any polytopes or point sets
A, B, let (A) denote the affine span (or hull) of A over R and (A, B) the affine span of AU B over R.
Let the polynomials’ supports be Ay, ..., A, C Z™ with Newton polytopes

Qo ---,Qn CR", Q; = CH(4;),

where CH(+) denotes convex hull. As matrix construction methods typically do, we define a regular
and fine (or tight) mixed subdivision of the Minkowski sum Y ;" ; Q; [CLO05, [GKZ94]. Regularity
implies the subdivision is in bijective correspondence with the face structure of the upper (or lower)
hull of the Minkowski sum of Q, ..., Q, after they are lifted to R"*!. Each cell in R" is written
uniquely as the Minkowski sum of faces F; of the ;. A fine subdivision is characterized by an
equality between cell dimension and the sum of the faces’ dimensions. We focus on cells of maximal
dimension n, and call them maximal or, simply, cells. We distinguish them as mixed and non-mixed:
the former are the Minkowski sum of n edges and a vertex. Mixed cells are i-mixed if this vertex lies
in A;. The type of a cell is either i-mixed or non-mixed.

The Minkowski sum )" ;Q; is perturbed by a sufficiently small and in sufficiently generic po-
sition vector § € Q". Let Z be the integer lattice generated by Y. jA;. The lattice points in
E=7ZN(Y 1, Qi+ 0) are associated to a unique maximal cell of the subdivision, and this allows us
to construct a matrix formula M whose rows and columns are indexed by these points.

http:/ /www.di.uoa.gr/~emiris/soft_alg.html
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Definition 3. Let p € £ lie in a cell Fy+ - -+ + F,, + ¢ of the perturbed mixed subdivision, where F;
is a face of @;. The row content (RC) of p is (i,7), if i € {0,...,n} is the largest integer such that
F; equals a vertex a;; € A;.

The main idea of both our and D’Andrea’s methods is that one point, say by; € Qp, is lifted
significantly higher. Then, the 0-th summand of all maximal cells is either bg; or a face not containing
it. In D’Andrea’s case, facets not containing bg; correspond to different subsystems where the
algorithm recurses (each time on the integer lattice specified by that subsystem). In designing a
unique lifting, the issue is that points appearing in two of these subsystems may be lifted differently
in different recursions. To overcome this, we introduce several points ¢;;, for different [, very close
(wrt Z) to every by, which is lifted very high at recursion ¢ by D’Andrea’s method. This captures
the different roles b;; may assume.

Algorithm B. Our algorithm uses £ to index the rows (and columns) of the numerator matrix of
our Macaulay-type formula. In particular, polynomial zP~%i f; fills in the row indexed by the lattice
point p in def. B We now focus on generalized unmixed systems, where

for some n-dimensional lattice polytope @ and k; € N*,¢ = 0,...,n. Then, the denominator shall be
indexed by points lying in non-mixed cells.

Definition 4. For i =0,...,n—1, and any (n —)-dimensional face k;F;; C @Q);, where j ranges over
all such faces, let d;; € Q™ denote a perturbation vector s.t.:

1. it lies in the relative interior of k; Fj;,

2. it is sufficiently small compared to lattice Z, and ||0;;]|] < [|6]|, where || - || is Euclidean norm,
and

3. it is sufficiently generic to avoid all edges in the mixed subdivision of Y " ; Q; .

Let b;;, for some valid j > 1, be vertex of @);. We shall use the perturbation vectors of def. @ to
define additional points not contained in the input supports.

Definition 5. Alg. B defines points ¢;; € @Q; N Q™. First, co1 := b1 + do1. For i =0,...,n — 2 and
any Iy as in def. Bl choose facets Fi; ), C Fij s.t.:

1. kiF(j11)n does not contain b;;, and
2. kit1F(i11)n does not contain any of the already defined c(;;1)’s.
For each such facet set: c(y1)n = birn + 0@r1)n-

The previous definition implies a many-to-one mapping from the set of ¢;;’s to that of b;;’s: It
reduces to a bijection when restricted to a fixed face F;; C @Q); containing b;;. Condition 1 of def. B
implies that ¢;; does not lie on a face of dimension < n—1 and lies in the interior of (n—1)-dimensional
F;. We can reduce the number of the ¢;;’s in alg. B, but this would complicate the subsequent proofs.

For an application of def. Bl when n = 2, see fig. [[al, where we define points ¢;; also on edges.

Definition 6. Let hg > hy > ... > h,_1 > 1. Alg. B uses sufficiently random linear functions
H;,;i=0,...,n, s.t.
1> Hi(aij) >0, and H; > Hy, 1 <,

where a;; € A; and i,t =0,...,n, j=1,...,|A;|. Alg. B defines global lifting 3 as follows:

1. ¢j+— h?ii, cij € kiF;j C Q4 i =0,...,n — 1; this is called primary lifting.
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2. a;; — Hi(as), a;j € Aj,i=0,...,n.

Let F? denote face F lifted under 5. Now cfj, for all valid j, is much higher, resp. lower, than
)
the c;;, and edges from the @);. The vertex set of the upper hull of Qf contains some or all of the ¢
and the lifted vertices of Q.

When all @Q); are simplices, as in the classical dense case, it suffices to apply a primary lifting to
one point per Q);. Thus our scheme generalizes the approach by Macaulay [Mac(2].

The matrix formula constructed by alg. B is indexed by all lattice points in £. To decide the
content of each row, every point is associated to a unique (maximal) cell of the mixed subdivision
according to def. Bl The t-mixed cells contain lattice points as follows:

i >t, resp. ¢ < t. The f-induced subdivision contains edges with one or two vertices among

b
1

any c

pE€koby+ -+ k1B 1+ + kBt kBN Z,
for edges E; C @ spanning R™. This gives optimal writing
p=po+---+pi—1+ (byj + ;) +pig1+ -+, pi € AiNE;.

Hence, the row indexed by p, as with matrix constructions in [CEO0, [D’A02], contains a multiple of

ft(.%')I

xpoJr---+pt—1+pt+1+---+pnft(x)

)

and the diagonal element is the coefficient of b;; in f;(x). Similarly, for the rows corresponding to
lattice points in non-mixed cells.

3 Recursive construction

This section discusses D’Andrea’s recursive construction of a Macaulay-type formula [D’A02]. There
are certain free parameters in the algorithm which we specify so as to obtain a version very similar
to our approach.

At the input of the 0-step the algorithm may use an additional polytope m@), for any m € R,
which we omit.We describe the ¢-th recursive step, for t =0,1,...,n — 1.

Algorithm A. The input are polytopes
1oP® 1,1 PO POk, PO R 1€ [0,k NQ,

the integer lattice L(®) spanned by S AN k;P") and perturbation vector §; € Q" *. Here,
kEP®, i >t isan (n —t)-dimensional face of k;Q, thus PO = Q. Also, P is a facet of P~V and
L;PW | i < t, is homothetic to k;P®*). These constructions shall be defined at the Recursion Phase.
Also, L) = Z and 8y = 6.

Construction Phase: Vertex b;; € kP® N A, is lifted to 1. We require that bij = ¢y — 0. All
other vertices of all input polytopes are lifted to 0. This is the primary lifting which partitions the
Minkowski sum of the input polytopes into a primary cell

IoPY + ..+ 1, P® + bej + ki1 PO 4+ ok PO 46, (1)

of dimension n — ¢, and several secondary cells. Each secondary cell is defined by an inner normal
v € Q" to a facet of k,P® not containing by;.

Polytopes Zf;é LPWY ke POk, PO are lifted by applying the restriction of 5 on them.
We consider § fixed throughout the algorithm. The upper hull of the Minkowski sum of the lifted
polytopes induces a mixed subdivision of Zg;é PO 4k PO .o 4k, PO which is then perturbed



by &;. The lattice points p of L®) contained in the perturbed subdivision, are assigned RC by def. Bl
This also assigns RC to points p + b;; contained in the intersection of () with L® . Let us take care
of the ¢;;. If point p lies in

(F+Foy+-+ F+6)n LY, (2)

where F; C k;Q;, i > t, F C zg;é 1;P®, having RC(p) = (h, j), where F}, = chj = bnj + Opj, then
the corresponding matrix row is filled in by P~ fj,.

Face F' C Zf;(l) P® in @), can be analyzed as F = lgFy + --- + l;_1F;_1, where F; ¢ P® for
i < t. Moreover, every cell in () is the Minkowski sum of b;; and the cell in (&).

Mixed cells of type 0 are defined here as in sec. Bl A ¢-mixed cell wrt alg. A, for ¢ > 0, shall

have n — t linear summands from polytopes ki1 P®), ... k, P® and a 0-dimensional summand from
polytope Zg;é ;P®. This summand can be analyzed as lopg + - - - + l_1ps—_1, where p; € P®), for
1=0,...,t—1 and I;p; stands for a scalar multiple of p;, seen as a vector. This leads to:

Lemma 7. The mazimal cells at step t of alg. A are, for some j and l; € [0,k;], of the form:
loFo+ -+ L1 F1 + by + ke Fopr + -+ kB + 6, (3)

where Fj is the projection of a face of the upper hull of P lifted by 3, and dim((Fo, ..., Fi_1,
Fii1, F)) = n —t. Specifically, the t-mized cells in alg. A are:

lopo + -+ li—1pi—1 + byj + kg1 By + - - + kn By + 0y, (4)

where Eyy1, ..., Ey, are projections of edges on the upper hull of P® lifted by 3, dim((Ejy1, ..., Ep)) =
n —t, and points p; € PW, fori=0,...,t —1.

Recursion Phase: When ¢t = n — 1, the algorithm terminates, since it has reached the Sylvester
case. Otherwise, it recurses: let P(+1) be the facet of P®) supported by v. The (perturbed) secondary
cell corresponding to v is

Fy =P o1 POY o CH(byj, ke PUYY 4 ke PCTYD o, POED L5, (5)

Its associated diameter is
dy = by - v — min {p-v} e N*,
! ! pECH(bthi‘tF)

where - stands for inner product. We define two sublattices of L("): LS? is spanned by >, AN

k; P and Lq(,t) is the sublattice orthogonal to v. They have the same dimension, so we define the

(finite) index ind, = [Lg,t) : Lg)], equal to the quotient of the volumes of their base cells. Let g range
over the ind, coset representatives for Lgf) in Lg,t).

Let I; € [0,k take d, distinct values corresponding to different values of p - v for all p €
(CH(btj,ktP(Hl)) + ) N L®. Note that ;P is homothetic to kP, TLet 5, € Q"' be a
translation vector such that I, P+1) 4§/ contains at least one point in (CH(bs;, ke PU+D) + ;) N LA,

In particular, [, P+l 4 d; equals kPO i [, = k¢, and vertex by iff [; = 0, otherwise it
equals (CH(by;, ktP(t“)) + 0;) N H, where H is a hyperplane parallel to a supporting hyperplane of
ky PHD) f [D”A02) lem.3.3]. By abuse of notation, in the rest of this paper we shall denote H, and
the supporting hyperplanes of faces kPt and by; of the previous convex hull, as (ltP(t+1)>.

Points in (F, + 6;) N L) are partitioned into d, subsets (one per value of I;), called slices, of the
form

loPUtY 4o, POAD (ltp(t+1) + 80 + kt+1P(t+1) 4o 4k POTY 45,0 LO), (6)
which can be rearranged as

LPUY 44, PUY g POD oy g, PGD 5 A IO (7)



where d) = d; + ;. Moreover, ) can be decomposed as 03 + dx,, where 6% € Qu and 0y, € lef) R Q.
Now, every point in () corresponds to a point in

IPUY o 1, PO gy POYD ok, POFD L 63 N (g + Lgf)),

for some coset representative ¢q. Set dy+1 := dxy — @, L) = LSP, and observe that point p belongs
in ([d) iff point
pi=p-03—q (8)

belongs in
LPYY) 44, PO 4 gy PO g, PGFD 5 LD, (9)

We call this set a piece; 0.1 carries the information to define the piece from the input polytopes and
L) | The algorithm recurses on each of the ind, such pieces. The set

loPUTD L PO oy PUTD e, POFD 5,

over L(t+t1) ig exactly like the original input, only one dimension lower. This completes the algorithm.

Remark 8. Since every point p’ in a piece corresponds bijectively to a point p in a slice via the
monomial bijection (§), we shall often consider a piece as a subset of a slice and omit the translation.

At the end of the recursion, RC is defined on £. Alg. A defines a partition of £ in the form of a
collection of mixed subdivisions of primary cells (of decreasing dimension). The 1-summands from
Q; in the cells are defined by any point in A; or among the ¢;;, for all valid j, and may be multiplied
by a rational number in (0, k;].

4 Equivalence of constructions

This section demonstrates that both approaches define the same Macaulay-formula. Intuitively, the
single-lifting algorithm, denoted alg. B, has an overall effect very similar to that of alg. A, since
they both use 8. The former partitions £ into sets of points in n-dimensional cells and assigns RC,
whereas, as we show in the next lemmas, alg. A partitions £ into subsets which, at step ¢, lie on
the intersection of a (n — t)-dimensional hyperplane with an n-dimensional cell of 3. Note that
the intersection itself, as a subset of R"~! does not coincide with the cell of alg. A. However, their
set difference is of infinitesimal volume. Although both algorithms use § to subdivide their input
polytopes, they do so in a different fashion; alg. B applies (8 to every @Q;, whereas alg. A does so
recursively to a different set of polytopes at every step.

In the rest of the paper, for simplicity, we shall omit the translation vectors ;. Moreover, unless
otherwise stated, we shall treat every slice and piece as a polytope and not as the set of points in the
intersection of this polytope with an appropriate lattice. In particular, we shall be interested only
on the form a slice\piece as a Minkowski sum of polytopes. The existence of a translation vector, so
as this polytope contains integer points in the lattice under consideration, shall be implied.

We now establish the correspondence between the two algorithms for ¢ = 0, then generalize to
arbitrary t. At step 0 of alg. A, by is lifted to 1 while every other vertex of all input polytopes to 0;
this creates primary cell

pr.cell(()A) =bo1 + k1Q + - + E,Q,
and several secondary cells of the form

sec.cell?) == CH(boy, koPW) + ky PO + -« + &, PO,

each corresponding to a facet P of Q not containing bo;. In alg. B, ¢o; plays the role of by; and
this leads to a group of cells covering the corresponding primary cell

prcells? == cor + b1Q + - + k,Q,



and several groups of cells, each group covering

sec.cell(()B) := CH(co1, koPM) + k1 P 4 -+« 4 |, PO,
which is a typical n-dimensional secondary cell wrt alg. B.

Remark 9. All cells within pr.cell(()A) and pr.celléB) differ only at their first summand; the former are

of the form by; + F1 + - - - + F},, whereas the latter are cg; + F} + - - - + F},, where F; is a face of @);,
since ( is used by both algorithms to subdivide Q1 + -+ - + @5, and cg1 = bg1 + do1-

Lemma 10. pr.celléA) neé= pr.cell(()B) N &, and points in this set are assigned the same RC under

both algorithms.

Proof. Recall that §y = ¢ and consider the subdivision of Y ;Q; induced by 3 and compare

pr.cell((]A) +dandcor + Q1+ +Qn+6=0bypr + 01+ Q1+ -+ @n+ 9. These polytopes differ by
do1, which is very small. Moreover, by the choice of §, the boundary of pr.celléA) + 6 has no points
in Z. Since, by def. B ||d]] > ||0p1]|, the two polytopes contain the same Z-points. This settles the
first claim. The second claim follows from rem. [l and the fact that the two subdivisions may only
differ in cells having vertex by instead of cpi. Since cgy — bg1 = dp1 is very small compared to Z,

even these cells contain the same Z-points. U

Each sec.cell(()A) is divided by alg. A into slices

loPY + ke PO 4o 4 |, PO

one for each value of Iy € [0,ky]. Each slice is partitioned into pieces on which alg. A recurses
producing (n — 1)-dimensional primary cell

pr.cellgA) = loPM + bij + ko PW + ok, PO, (10)

and secondary cells
sec.celll™ := 1yP@ + CH(byj, ky P?) + kPP + - 4 k, PP (11)

Every piece of a given slice lies on lattice L(Y) and can be thought of as the intersection of a translation
of that slice, regarded as a polytope, with L), Recall that, by rem. B, we shall consider a piece as
subset of a slice.

Similarly to alg. A, we can partition the corresponding sec.cell(()B) into slices:

l{)p(l) + ki PY + o 4 K, PO

by intersecting CH(co1, ko P™")) with a hyperplane parallel to (a supporting hyperplane of) koP(1).
Recall that we denote this hyperplane as <l’0P(1)>.

Remark 11. Observe that each slice of sec.celléB) (resp. sec.cell(()A)) parameterized by [, (resp. lp), is

homothetic to a facet of this secondary cell, supported by <k:6P(1)> (resp. (koPM)). Moreover, this
homothecy is defined by a homothecy only on the first summand kyP®) of this facet.

Hyperplanes (IjP(V) and (loP™M) are identical; they differ only on the homothecy on koP(!)
expressed by [ and Iy respectively. Obviously, [{, = ly because ¢y =~ bp;. Note that we omit the
translation vector so that the slice lies in sec.cell((]B). Thus, corresponding slices contain the same
points in the lattice L(®) = Z. This, moreover, leads to the following extension of lem.

Lemma 12. Every maximal cell of the subdivision induced by B on pr.cellgA) corresponds to the

intersection of hyperplane (Z6P(1)>, for some I, with a unique mazimal cell in sec.cell((]B), of the
same type. The cells contain the same points in LY with the same image under RC.



Proof. Any maximal cell in pr.cellgA) has the form loFy + b1j + ko Fo + - - - + ky I, where faces F; C
PWM i =0,2,...,n, have dimensions adding up to n — 1. Recall pr.cell%A) lies on a slice of sec.cell(()A)
parameterized by the value of [y hence, when 3 is employed, it gives rise to the same subdivision
in every such primary cell. By construction, subspace (bo1, Fp) is orthogonal and complementary to
(P),

In k1 PY, point cy; is lifted sufficiently higher than any other, so there exist maximal cells in
sec.celléB) that has it as summand. The other summands are induced by (8 on CH(cm,k:oP(l)),
koPW ..., k, P, These n-dimensional cells of alg. B correspond (when intersected with (I3 P(1)))
to (n — 1)-dimensional cells in pr.cellgA). It is straightforward to show that, for [, € [0, ko] and any
B-induced cell in this Minkowski sum, its intersection with (I5P(M) is a S-induced cell in 1{PM) +
ko PV + ... 4 K, PO

There exists I{, ~ ly that establishes the lemma, because (3 is applied to (n — 1)-dimensional
Minkowski sums which are almost identical, and the effect of b1; and c;; is the same in what concerns
the lattice points in corresponding cells, following the proof of lem. U

In each sec.cell(()B) we distinguish 2 types of cells: cells in

prcelll?) .= CH(cor, koPWV) + c1j + by PD + -+ 4 ki, PO, (12)

which, by lem. [[2, contains exactly the integer points in all primary cells of alg. A of the form ([I0)
(for each slice/coset), and for each facet P?) of P cells in

sec.celll®) .= CH(co1, ko P?) + CH(cyj, k1 PP) + ko P® 4+« + |, P?). (13)

Note that both pr.cellgB) and sec.cellgB) are n-dimensional, whereas pr.cell%A

(n — 1)-dimensional.

)

and sec.cellgA) are

Remark 13. Every maximal cell in sec.cellgB) must have summands Fy = CH(co1, Go), F1 = CH(c14,Gh),
for some Gy C koP® and Gy C k1 P?.

A similar argument as in lem. [2 implies that ([3]) contains exactly the integer points in the
union of all secondary cells ([[Il) defined over the various values of Iy € [0, ko], for a given j. The
recursion steps of alg. A, for ¢ > 2 are defined over a chain of facets P2 > PG 5 ... 5 pn—1),

(A) )

Hence, every pr.cell,””, for t > 1, contains integer points in sec.cellgB N Z. Therefore, we generalize

)

the correspondence between the two algorithms by focusing on sec.cellgB .

Lemma 14. (Main) Every mazimal cell of the subdivision induced by 3 on pr.cellgA), fort > 2,
corresponds to the intersection of hyperplane (I,_; PW), for some I, | ~1;_1 € [0, k1] N Q, with a
unique maximal cell in sec.cellgB), of the same type. The cells contain the same points in lattice L®
with the same image under RC.

)

Proof. Primary cells of step ¢ lie on (n—t)-dimensional slices of the (n—¢+1)-dimensional sec.cellifl,
parameterized by the value of l;_; € [0, k¢—1]:

PO 4.+ 1, PO 4 PO ok, PO (14)

Similarly to rem. [l let ly,...,l;—1, l; € [0,k;] N Q, define the homothecies on the first ¢ summands
of (@) and the corresponding hyperplanes (lgP®), ... (I,_; P®). Note, that pr.cell,gA) is a subset
of ([4) and is subdivided by ( into maximal cells of the form ().

Intersecting sec.cellgB) with the above hyperplanes, yields a (n — t)-dimensional subset:

PO+ 1 PO 4 PO o 4 |, PO, (15)



This subset can also be obtained by directly intersecting sec.cellgB) with (I;_1 P®). Now, ll =~ 1;, for

i=0,1,...,t—1 because ¢;; ~ b;j. For i =0,...,t—1, each [} defines a hyperplane (l;P(t)> identical
to (1;PM), except on the homothecy on the i-th summand. Hence, (IF) is very similar to () in the

sense that they contain the same integer points in L® and their volumes differ infinitesimally.

By def. B there exist n-dimensional cells in sec.cellgB) which have ¢;; as a summand. The inter-

section of each of these cells with (IH) shall also have ¢;; as a summand, because this is the only
point lifted highest in P®. These cells correspond to the primary cell wrt alg. A of the slice ().
Moreover, this intersection is a S-induced cell in (IH):

WEy + -+l 1 Fra 4y + ke e + - + kB, (16)

which contains the same integer points as (Bl). Since (3 is applied on (n — t)-dimensional polytopes
which are almost identical, both (Bl and (@) are of the same type. O

Corollary 15. Using the notation of lem. [1, in particular for t-mized cells of alg. A in the form
of ) and t,j, a t-mized cell of alg. B is of the form:

koEo+ -+ k1B +cj + ki1 B + - + ko By + 6 N L,
where E; is the projection of an edge of QP,
(a) (Ey,...,Ei1) is a t-dimensional space complementary to (P®), and for i < t, k;E; =
(cij, kipi), where p; € P9 in lem. [4 and
(b) edges Eiiq,...,Ey, are the same as in lem. [, {4).

Proof. For t =0, the corollary follows from rem. [

All 1-mixed cells wrt alg. B lie in (I2), since every maximal cell in it has ¢;; as a summand. By
lem. @, edges kyEs, ..., k,E, span the (n — 1)-dimensional space (P1). Hence, edge kyEy has to
be of the form (cg1, kopo), where pg € PN, by lem. [ is as in lem. [, [@).

Similarly, lem. [[4 implies that for ¢ > 1, the last (n — t) edges of any ¢t-mixed cell wrt alg. B
span the (n — t)-dimensional space (P®), because § induces the same subdivision on the last n — t
summands of () and ([[A). For the cell to be maximal, (koEy, ..., ki—1E;—1) must be a t-dimensional
space complementary to (P®). By construction (see proof of lem. [[d), each k;E;, for i < t, is an
edge in CH(c;j, k; P®) of the form (c;j, kip;), where p; € P®) is as in lem. [ @). O

Wen now consider non-mixed cells, by extending cor.

Corollary 16. Consider any non-mized cell of alg. A, which has the form of (@) in lem. [} It
corresponds to cell:

CH(co1, koFo) + -+ + CH(cp—1)j, ke—1Fy—1) + ctj + k1 Foyr + - + kn Fy,
which is a non-mized cell defined by (3, where
(a) the Fy, ..., Fi_1 are projections of faces in Q°, fori < t, and
(CH(co1, koFp), - .., CH(cq—1);, kt—1Fi-1))
is a t-dimensional space complementary to (Fyi1,...,F,),
(b) Fo,...,Fi_1,Fi11,...,F, are the same in both cells.

We have shown that each row of the constructed matrices, indexed by points of £ lying in a mixed
or non-mixed cell, is identical for both algorithms, where £ is the same pointset for both algorithms.

Theorem 17. The Macaulay-type formula for the toric resultant of generalized unmixed systems,
constructed by the global lifting of sec. [, and that constructed by D’Andrea’s approach [D’A02] are
identical.

As a consequence of thm. [[7 and [D’A02), thm. 3.8], follows thm. &

10



5 Asymptotic complexity

We analyze the worst-case asymptotic bit complexity of our method and of D’Andrea’s, when they
construct matrix formulae in sparse representation. We believe these bounds are not optimal and
further work may tighten them.

Alg. B, implemented by the direct approach of JCEQ(], comprises of two main steps. First, the
computation of the vertices of each @Q); is typically dominated. Second, we need RC for all p € &,
in order to construct the Macaulay-type formula. Both steps can be reduced to linear programming
with C constraints in V' variables, and coefficient bitsize B. If we use a poly-time algorithm such
as Karmarkar’s [Kar84], the bit complexity is C*°V?B?2 where B depends on the bitsize of the
input coordinates and of 4, d;;. It is related to the probability that the chosen perturbations are not
sufficiently generic; see [CEQO(] for the full analysis.

Let m be the maximum number of vertices of the @;, r the total number of ¢;;’s, and let O*()
indicate that we ignore polylog factors. The linear programs have complexity O*(r2B?) = O*(m"B?)
because r is bounded by the total number O(mm/ 2J) of faces in (). In an output sensitive manner,
r = O(|€]), because the addition of every c¢;; is made in order to handle at least one distinct point in
. Hence, the complexity of constructing the Macaulay-type formula is O*(|€|m"™B?), or O*(|£|3B?).
These bounds hold also for matrices in dense representation. For generalized unmixed systems, one
can use |€| = O(k"e"D) from [CEQO0, thm.3.10], where k = max;{k;}, D is the total degree of the
toric resultant as a polynomial in the input coefficients, and e the basis of natural logarithms.

A better implementation finds RC for one point in a maximal cell, then enumerates all points
in this cell in time proportional to their cardinality multiplied by a polynomial in m,n, B [Emi02,
thm.16]. The neighbours of these points which lie outside the cell will yield new cells, so as to
explore the entire Minkowski sum; detecting new cells does not increase the overall complexity. If
S < |€] is the number of maximal cells containing at least one lattice point, alg. B has complexity
O*(Sm™B? + |€]), where typically, S < |&|.

For alg. A, complexity is dominated by O(|€|n) linear programs, since every p € £ may require
O(n) of them for its image under RC to be determined. Each linear program has bit complexity
O(n"5m?2B?). This process essentially decides in which slice of which secondary cell lies p. Although
this subdivision contains much more cells than alg. B, the asymptotic analysis indicates that the
latter may be slower. The optimal implementation for constructing the Macaulay-type formula
should combine ideas from both algorithms.

6 A bivariate example

\ow @ NN

bo1
(a)

Figure 1: Input polygons and their subdivisions wrt alg. B (fig{Ial), O-step recursion of Alg. A (fig{ID)
and the mixed subdivision induced by alg. B (fig{ld).

This section details an example. Let n = 2, 49 = Ay = {(1,0),(0,1),(0,2),(1,2),(3,0)}, and

A1 = {(2,0),(0,2), (0,4),(2,4),(6,0)}, so the lattice generated is Z2. kg = ko = 1, k; = 2. Now
vy = (—1,0), va = (0,-1), v3 = (—1,—-1). Let § = (—1/30,—1/30), (fig. [Ial).
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Alg. B: We fix vertices of the input polygons in order to define the additional points required by
def. Let bgy := (1,0) € Qoq, b1o == (0, 2), b4 := (2,4), b5 = (6,0) € Q1, 6p1 = (1/1000,1/1500),
d12 = (0,1/2000), 614 = (—1/3000,0), d15 = (—1/2000,1/2000). Consider integer points and their
cells (fig. [[d):

point cell in secondary cell wrt v type
(177)7(277) (0017(072)) + ((074)7014) + (07 2) +0 |2
(3.7) (co1,(0.2)) + 1+ ((0,2), (1,2) +3 | 1

where the summands come from Q, Q1, Q2 resp. The two cells together with cell o = CH(cg1, (0, 2), (1,2))+
c14 + (1,2) + 4, and some infinitesimal cells which do not contain any integer points, belong to the
secondary cell wrt to v of alg. A, which contains the same integer points. Points (1,7),(2,7), (3,7)
correspond (via an appropriate translation) to points of a piece of the secondary cell on which alg. A
recurses. Cell o does not contain any integer points because of the choice of d;;, 9.

Consider points corresponding to a piece of the secondary cell wrt to vs, of alg. A, and their cells

by 3:

point cell in secondary cell wrt v type
(4,7),(5,6), (6,5),(7,4) | (co1,(1,2)) + (c15,c14) + (1,2) + 0 2
(8’3)’(9’ 2) (COIa(1a2)) +teos+ ((3’0)’(1’2)) +0 1
(10’ 1)’(11?0) CH(6015(350)5(152)) +ci5 + (350) + 9 | non

Consider a piece of the secondary cell wrt to vy, of alg. A. Points in it lie in the following cells of
alg. B:

point cell in secondary cell wrt vy type
(0’4) (601a(0a 1)) + c12 + ((0’1)’(0’ 2)) +9 1
(0, 5) CH(COl, (O, 1), (O, 2)) + c12 + (O, 2) + 6 | non
(0, 6), (0, 7) (001, (O, 3)) + (012, (O, 4)) + (0, 2) +6 2

Alg. A: by is lifted to 1, all other vertices of all polygons are lifted to 0. This partitions Qq+Q1+Q>
into a primary cell byp; + @1 + @2 and 3 secondary cells corresponding to v, ve, v3, normals to the
facets of (9 not containing bp;. The @1, Q9 are lifted using §, which subdivides the primary cell
(fig. [B). This subdivision “coincides” with the restriction in cg; + Q1 + Q2 of the subdivision by 3,
except that the latter uses cg; whereas the former uses b1, i.e. the integer points in both subdivisions
are the same and are assigned the same RC.

e We study the Recursion Phase on secondary cell:

fyl = CH(bm, konl) + levl + /{:QFvl,

defined by facet F,, = ((0,1),(0,2)) C Q supported by vi. Now, Ai,, = {(0,2),(0,4)}, A2y, =
{(0,1),(0,2)}, the lattice generated by Ay, + A2, is Ly = ((0,3),(0,4)) = L,, = Z. The index
of Ly in L,, is ind,, = 1 and the coset representative for L; in L,, is ¢o = (0,0). The vi-lattice
diameter is d,, = 1. Hence there is one slice corresponding to one piece.

We describe the recursion step on this piece. It contains points corresponding to (0,4), (0,5),
(0,6), (0,7) lying on the slice of F,, 4+ ¢ of the form

(AkoFy, +8') + k1 Fy, + ko Fy, + AF,, + 6.

To define the piece, following notation in [D7A02], the scalar multiple of F,, is AF,, = %Fvl and
the translation vector is §' := (%, 0). Since we do not use an initial additional polytope, A = 0 and
Aoy =A+A=2.

Let 0y :=0 + ¢ = (0, —%), and 0y = )" + dxy,, where 87 = (0,0) € Qu; and dy,, = (0,—%) €
L ®Q, hence gy, := drey — q0 = (0, —%). So, the slice of F,,, + 0 is

lev1 + k2FU1 + )‘Ul kOFvl + 5)\, (17)
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and the corresponding piece in Ly is
ki1Fy, + koFy, + Ay koFy, + 60w, - (18)
The bijection between points in () and () is
p=p+0 +q =p,

where p € () and p € ([F). After re-indexing, the 1nput of the recursion step is:

- the polygons Qg := k1 F,,, Q1 := kaF,,, and Qy := 30 9 ko F,, which is the additional polytope,
- the lattice Ly = ((0,3), (0,4)) and

- the perturbation vector &y := 0oy, = (0, —35)-

In order to be compatible with 3, we choose by; = b2 = (0,2) and apply the primary lifting.
This partitions Qo+ Q1 + Q2 + & into a primary by + Q1 + Q2 + dp and a secondary cell Qg +
0,2)+ (0 2) + do. Lifting (3 1nduces a mixed subdivision on the primary cell consisting of the cells
bo1 + (0, 1) + Q2+ 6o and bo1 + Q1+ 23(0,1) + &y. The former is non-mixed and contains point (0,5),
corresponding to the same point on the slice, which is also non-mixed under alg. B. The latter cell
is 0-mixed, hence 1-mixed and contains point (0,4), corresponding to the same point on the slice,
which is also 1-mixed under alg. B. The secondary cell Qg + (0,2) + %(0, 2) + &g is T-mixed, hence
2-mixed and contains the integer points (0,6), (0,7) corresponding to the same points on the slice.
They are also 2-mixed under alg. B.

e We apply recursion on secondary cell:

fUQ = CH(bOl, k‘oFUQ) + lew + ]CQFUQ,

defined by the facet F,, = ((0,2),(1,2)) of @ supported by vy. Now, Ay, = {(0,4),(2,4)}, Agy, =
{(0,2),(1,2)} and the lattice generated by A1, + A2y, is L4+ = ((0,6), (1,6)) = L,, = Z. The index
of Ly in L,, is ind,, = 1 and the coset representative for L, in L,, is qo = (0,0). The vo-lattice
diameter is dy, := bo1 - V2 — minpeCH(b01 koFuy) P V2 = 2. Hence, there are two slices, each containing
one piece, and the algorithm recurses on each such piece.

We analyze the recursion step on the piece of the shifted secondary cell F,, + 9, which contains the
integer points corresponding to the points (1,7),(2,7),(3,7) lying on a slice of the shifted secondary
cell Fy, + ¢ of the form

(AkoFyy + 0') 4 k1 Fyy + ko Fyy + AFy, + 0.

To define this piece we have that F,, is 5\Fv2 = %F and the translation vector § := (28,0)

Now A = 0 and hence Ay, = A+ X = B Let 6y == 6+ 0 = (5,—5). Then, &) can be
written as 0y = 0y> + Oy, Where 63> = (0,1) € Quz and dyry, = (55, — %) € Ly ® Q, hence
S0vs 1= 6xuy — G0 = (55, —3%).
So, the slice of F, + 9 is
le’Ug + kQFvg + )\ngOFvg + 5)\7 (19)

and the corresponding piece in Ly is
ki1Fy, + koFyy + A koFuy + S0, - (20)
The bijection between points in ([[d) and points in 0) is
p=p+0+q=p+(0,1),

where p € ([d) and p € 20).
After re-indexing, the input of the recursion step is:
- the polygons Qg := k1 F,,, Q1 := kaF,,, and Q := %k‘on2 which is the additional polytope,
- the lattice L4 := ((0,6),(1,6)) and
- the perturbation vector § := &gy, = (%, —355)-
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Table 1: Illustration of cor. and cor.

Cell wrt alg. A Corresponding cell wrt alg.B Type of cell
%(1, 2) 4+ (6,0) + ((3,0),(1,2)) 4+ dows | (co1,(1,2)) + c15 + ((3,0),(1,2)) + 6 1-mixed
A((3,0),(1,2)) +(6,0) + (3,0) + dovs | CH(cor, (1,2),(3,0)) + c15 + (3,0) + 6 | non-mixed
A(1,2) + (6,0) + ((3,0), (1,2)) + 6105 | (cor, (1,2)) + 15 + ((3,0), (1,2) +6 | 1-mixed
A((3,0),(1,2)) 4+ (6,0) + (3,0) + d1v3 | CH(co1,(1,2),(3,0)) + c15 + (3,0) + | non-mixed
X(0,2) + (2,4) + ((0,2), (1,2)) + 00w | (c01,(0,2)) + 11 + ((0,2), (1,2) +6 | L-mixed
2((0,2),(1,2)) + (2,4) + (1,2) + dov2 | CH(co1,(1,2),(0,2)) + c14 + (1,2) + 6 | non-mixed

To be compatible with 3, we choose by; = by = (2,4) and apply the primary lifting; this
partitions the Minkowski sum Qg + Q1 + Q2 + 6 into a primary by, + Q1 + Q2 + 6 and a secondary
cell Qg + (0,2) + 2(1] (0,2) + 6 . Lifting 8 induces a mixed subdivision of the primary cell consisting
of the cells byy + (1,2) + Q2 + 6 and bo1 + Q1 + 25(0,2) + 6. The latter is O-mixed, hence 1-mixed
and contains the integer point (3,6) corresponding to point (3,7) on the slice which is also 1-mixed
under alg. B. The former is non-mixed and does not contain any integer points.

The secondary cell Qo + (0,2) + %(07 2) + § is T-mixed, hence 2-mixed and contains the integer
points (1,6),(2,6) corresponding to the points (1,7),(2,7) of the slice respectively; they are also
2-mixed under alg. B.

e The last secondary cell is

fv;g - CH(b()laFv;g) + levg + kQFvga

defined by the facet F,,, = ((3,0), (1,2)) of @ supported by v3 = (—1,—1). Now, A1, = {(6,0),(2,4)}, A2y, =
{(3,0),(1,2)}, the lattice generated by Ai,, + Aoy, is Ly := ((9,0),(7,2)) = 2Z and L,, = Z. The

index of Ly in L,, is ind,, = 2 and the cosets representatives for Ly in L,, are go = (0,0) and

q1 = (—1,1). The vs-lattice diameter is dy, := bo1 - v3 — minpeCH(bkaF%) p-vg = 2. Hence there are

two slices, each corresponding to two pieces, and the algorithm recurses on each such piece.

We analyze the recursion step on the two pieces that contain integer points corresponding to
points (11,0), (10,1),(9,2), (8,3),(7,4), (6,5),(5,6), (4,7) lying on a slice of the shifted secondary
cell F,, + ¢ of the form

(N Foy + ') 4 k1 Fyy + ko Foy + AFyy + 0.

To define these pieces, we have that the scalar multiple of F, is AF,; = 2F and the translation
vector is 0 := (;&,0). Now, A = 0 and hence Ay, := X + A = 22; Let y := 5+5' = (8, - %%)

Then, ¢y can be written as dy = 63° + dxy,, where 63° = (1 1) € Quz and 0y, = (— %,—%) €
L+ ® @, hence 501}3 = 5)\1)3 —qo = (_%7 _%) and 511}3 = 5)\1)3 —q1 = (%7 _%)

So, the slice of F,,, + 9 is

levg + k2Fv3 + )‘ngOFvg + 5)\, (21)

and the corresponding pieces in L are
levg + k2Fv3 + AvgkOFvg + 501)37 (22)

levg + k2Fv3 + AvgkOFvg + 511}3, (23)

The correspondences between points in the slice and points in the pieces are
p=p+06 +q=p+ (1),

where p € [Zl) and p € ), and
p=p+06"+a=p+(0,2),

where p € ([Z21]) and p € [23).
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After re-indexing, the input of the recursion step is:

- the polygons Qo := k1 F,;, Q1 := koF,,, and Qg := %kong which is the additional polytope,
- the lattice Ly := ((9,0),(7,2)) and
- the perturbation vectors &y := = dovy = (— ég, ——) and 81 := 01y = (%, —%)

As 3 indicates, we choose by; = b5 = (6,0) and apply the primary lifting.

For the first piece, the lifting partitions the Mlnkowskl sum Qo + Q1 + Q2 + g into a primary
bo1 +Q1+Q2+6 and a secondary cell Q-+ (1,2) +2(1, 2)+c +dp. Lifting 3 induces a mixed subdivision
on the primary cell consisting of the cells by + (3 0) + Q2 + 6 and by + Q1 + 32(1 2) + &p. The
former is non-mixed and contains point (9,0), which corresponds to (10,1) on the slice which is
also non-mixed under alg. B. The latter is O-mixed, hence 1-mixed and contains the point (7,2)
corresponding to the point (8,3) in the slice which is also 1-mixed under alg. B.

The secondary cell Qo + (1,2) + %(1, 2) + 8y is I-mixed, hence 2-mixed and contains the integer
points (3,6),(5,4) corresponding to the points (4,7),(6,5) of the slice respectively which are also
2-mixed under alg. B.

For the second piece, the lifting partitions the Minkowski sum Qo + Q1 + Q2 + 91 into a primary
bo1 +Q1+Q2+06; and a secondary cell Qo+ (1,2)+22(1, 2)+c 46, . Lifting 3 induces a mixed subdivision
on the primary cell consisting of the cells by + (3 0) + Qo + 61 and bg1 + Q1 + 32(1 2) + 6;. The
former is non-mixed and contains point (11, —2) corresponding to (11,0) on the slice which is also
non-mixed under alg. B, whereas the latter cell is 0-mixed, hence 1-mixed and contains the integer
point (9,0) corresponding to point (9,2) on the slice which is also 1-mixed under alg. B.

The secondary cell Qg + (1,2) + %(1, 2) + 01 is I-mixed, hence 2-mixed and contains the integer
points (7,2), (5,4) corresponding to the points (7,4), (5,6) of the slice respectively. These are also
2-mixed under alg. B. Table Bl illustrates cor. [[H and [[8, where the summands come from (g, Q1 and
Q2 respectively. Recall that cg; := (1,0) 4 619, c14 := (2,4) + 14 and ¢15 := (6,0) + I15.

7 Further work

Let us conclude with algebraic systems whose supports are arbitrary sets. In studying systems with
different Newton polytopes, we need the following:

Definition 18. The set of polytopes Q1,...,Qn C R", s.t. dim((Q1,...,Qr)) = h — 1, is essential
if every subset of cardinality j,1 < j < h spans a space of dimension > j.

The toric resultant is well defined only for essential sets of Newton polytopes. An essential set
defines a Minkowski sum of dimension A — 1 but the converse is not always true.

Alg. A admits one main modification in the mixed case: At the Recursion Phase, the faces F; C Q;
supported by vector v are not always the same. Let us describe the 0-th iteration for simplicity. We
assume there is no additional polytope. Consider the n-dimensional secondary cell:

CH(bm,FQ) +FF 4+ +F,C Rn,

where F; C R"~!. Wlog, let {F},..., F}} be an essential subset and let L (k) be the integer lattice
it defines. The algorithm recurses on lattice Ly (k) and polytope set (representing a piece)

CH(b017FO) mA+(k)7F17' .. 7Fk7

24
Fopi NAL (k). Fo N AL (R), 29

where Ay (k) ranges over all possible homothetic copies of L (k) defined by the different cosets of
L (k) in its saturation, and the different slices that can be defined as intersections with CH(bg1, Fp).
Alg. A distinguishes two cases, according to whether there is one or more essential subsets of
{F1,...,F,}. In the former case, v and the corresponding secondary cell are called admissible.
For non-admissible cells, all integer points are considered as non-mixed, i.e. treated as if they lied
in non-mixed cells. For admissible cells, integer dp, is defined [D”A02) sec.4] (cf [Min03]), and dp,
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pieces of the form (Z4]) are (arbitrarily) selected. Lattice points labeled as mixed in these pieces by
the recursive application of alg. A are labeled as mixed overall, the rest are non-mixed.

Reduced systems are such that, for any vector v € R™, there is some i € {1,...,n} so that the
face supported by v in @Q; is a vertex. For us, it suffices that this holds for fewer v [D’A01]. For such
systems, as well as for arbitrary systems of 3 bivariate polynomials (n = 2), any sufficiently generic
global lifting that lifts one vertex bg; € Qg sufficiently high, thus § too, produces a Macaulay-type
formula. The proof is subsumed by that for n = 3 below; cf also [D”A01] [DEO3a].

Alg. B is modified so that def. H applies up to ¢ = n — 1. We sketch a proof that it produces
the same matrix as alg. A, by extending the correlation between maximal cells, established in the
unmixed case. Our proof could be extended to n > 3, but seems complicated; we expect that a more
elegant approach is possible.

In non-admissible secondary cells of alg. A, for any n, we show both algorithms behave the same
way, namely the corresponding lattice points lie in non-mixed cells of alg. B. We demonstrate the
contrapositive by focusing on a mixed cell of alg. B and a corresponding secondary cell of alg. A,
following lem. [[4l

Lemma 19. Every t-mized cell by alg. B, when intersected with a (n —t)-dimensional hyperplane as
in lem[I4) is contained in an admissible secondary cell of step t — 1 of alg. A.

Proof. Any t-mixed cell of alg. B is Eg + -+ E;_1 + ayj+ Eyp1 + -+ + E,, where ay; is either a
vertex of ); or some ¢; in the interior of an (n — t)-dimensional face, and edges Ey,1, ..., E, span
an (n — t)-dimensional space. This cell is intersected by a (n — t)-dimensional hyperplane, similarly
to lem. [[d The intersection is contained in a ¢-primary cell of alg. A with t-summand by;; it lies in
a piece of (t — 1)-secondary cell

Fo+ -+ Fyo + CH(by—1yn, Fr—1) + Fy + -+ + Fh,

where the F; are faces of the Q);, ¢ = 1,...,n, supported by the same vector, with dim F; < n—t. We
claim {F}, ..., F,,} contains a unique essential set, with cardinality r 4+ 1, spanning an r-dimensional
space, which is defined as follows: F; and r < n — t faces, denoted wlog Fiiq,..., Fiyr, where r is
minimal so that dim H = r, for H = (F}, ..., Fi4,).

By hypothesis, dim(F;;1,...,F,) = n — t, since a subspace is spanned by the F; and has same
dimension. So subsets indexed in {t + 1,...,n} span a space of dimension at least equal to their
cardinality. In addition, none of the F;,¢ > t + r is contained in H. So every subset indexed in
{t,...,n} containing {t} U J, for J C {t +r+1,...,n}, will be of cardinality < r + |J| and span a
space of dimension r + |J|. Hence there are no other essential subsets. O

For n = 3, all admissible secondary cells have df, pieces, since there is no extra artificial polytope
in the input of alg. A. We distinguish cases on the dimension k — 1 of the space generated by the
essential set {F,..., Fr},1 <k < 3, on which the recursion of alg. A occurs:

(1) If k—11is 0 or 1, the recursion is either trivial (occurs on a vertex), or corresponds to the Sylvester
case.

(2) If k—1=2and dimF; = 1,7 = 1,2, 3, the two algorithms behave similarly, since def. [l defines
points cg; in the edges of (2 and the main lemma applies. Notice that dim Q2 > 1; otherwise the
Q;’s would not form an essential set.

B)Ifk—1=2,dimF; € {1,2} for i = 1,2,3 and at least one face is 2-dimensional. If dim F} = 2,
then lem. [4] applies. Otherwise, dim F; = 1 and dim F5 > 1. Irrespective of dim Fy, the co; play the
role of distinguished points and lem. [ applies again.
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