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Abstract

Resultants are defined in the toric (or sparse) context in order to exploit the structure of the
polynomials as expressed by their Newton polytopes. Since determinantal formulae are not always
possible, the most efficient general method for computing resultants is by rational formulae. This
is made possible by Macaulay’s seminal result [Mac02] in the dense homogeneous case, extended
by D’Andrea [D’A02] to the toric case. However, the latter requires a lifting of the Newton poly-
topes, defined recursively on the dimension. Our main contribution is a single lifting function
of the Newton polytopes, which avoids recursion, and yields a simpler method for computing
Macaulay-type formulae of toric resultants, in the case of generalized unmixed systems, where all
Newton polytopes are scaled copies of each other. In the mixed subdivision used to construct the
matrices, our algorithm defines significantly fewer cells than D’Andrea’s, though the formulae are
same in both cases. We give an asymptotic complexity analysis and apply our Maple implementa-
tion to fully study a bivariate example. We sketch how our approach extends to mixed systems of
up to 4 polynomials, and those whose Newton polytopes have a sufficiently different face structure.

Keywords Toric resultant, Macaulay formula, Minkowski sum, mixed subdivision, generalized
unmixed system

MSC classification Primary: 68W30, Secondary: 13P15, 14M25, 52B20.

1 Introduction

There are two main families of exact (rational) algebraic methods for algebraic variable elimination:
Gröbner bases, based on operations between the given polynomials, which lead to a more structured
set of polynomials generating the given ideal, and resultants, to be defined below. Both have ex-
ponential complexity in the number of variables, which is expected since the problem is NP-hard;
but the latter are preferable in certain situations because they eliminate many variables at one step
and can handle symbolic coefficients. Resultants also seem more efficient for solving certain classes
of 0-dimensional algebraic systems. In particular, they reduce system solving to linear algebra, via
matrix formulae, or to solving univariate polynomials, via the rational univariate representation of all
common roots. The resultant generalizes the determinant of the coefficient matrix in the linear case.
For an overconstrained system, it belongs to its lexicographic Gröbner basis. For more information,
see [CLO05, DE05, Stu02].

The toric (or sparse) resultant captures the structure of the polynomials by combinatorial means
and constitutes the cornerstone of toric elimination theory [GKZ94, Stu02], [CLO05, chap.7], [DE05,
chap.7]. More recently, they appear in tropical geometry, e.g. [IMS09, Stu02] which, in some sense,
generalizes toric elimination. It is an important tool in deriving new, tighter complexity bounds
for system solving, Hilbert’s Nullstellensatz, and related problems. These bounds depend on the
polynomials’ Newton polytopes and their mixed volumes, instead of total degree, which is the only
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parameter in classical elimination theory. In particular, if d bounds the total degree of each polyno-
mial, the projective resultant has complexity roughly dO(n), whereas the toric resultant is computed
in time roughly proportional to the volume of the Minkowski sum of the Newton polytopes.

The resultant is defined for an overconstrained system of n + 1 polynomials in n variables over
some coefficient ring K. It is the unique, up to sign, integer polynomial over K which vanishes
precisely when the system has a root in some variety X. There are two main cases:

• The projective, or classical, resultant expresses solvability of a system of dense polynomials
fi ∈ K[x1, . . . , xn] in the projective space X = Pn over the algebraic closure K of K.

• The toric (or sparse) resultant expresses solvability of a system of Laurent polynomials fi ∈
K[x±1

1 , . . . , x±1
n ] over the toric projective variety X defined by the supports of fi, in which the

torus (K)n is a dense subset.

A resultant is most efficiently expressed by a matrix formula: this is a generically nonsingular
matrix, whose determinant is a multiple of the resultant with degree wrt the coefficients of one
polynomial equal to the corresponding degree of the resultant. For n = 1 there are matrix formu-
lae named after Sylvester and Bézout, whose determinant equals the resultant; we refer to them
as detererminantal formulae. Unfortunately, such determinantal formulae do not generally exist for
n > 1, except for specific cases, e.g. [DD01, DE03b, EM09, Khe03, KSG04, SZ94]. Macaulay’s
seminal result [Mac02] expresses the extraneous factor as a minor of the matrix formula, for projec-
tive resultants of (dense) homogeneous systems, thus yielding the most efficient general method for
computing such resultants.

Matrix formulae for the toric resultant were first constructed in [CE93]. The construction relies
on a lifting of the given polynomial supports, which defines a mixed subdivision of their Minkowski
sum into mixed and non-mixed cells, then applies a perturbation δ so as to define the integer points
that index the matrix. The algorithm was extended in [CE00, CP93, Stu94]. In the case of dense
systems, the matrix coincides with Macaulay’s numerator matrix. As a corollary of this construction,
one obtains a limited version of a toric effective Nullstellensatz [CE00, sec.8].

Extending the Macaulay formula to toric resultants had been conjectured in [CE00, CLO05,
Emi94, GKZ94, Stu94]; it was a major open problem in elimination theory. We cite [Stu94, p.219],
where Pω,δ is the extraneous factor, and ω denotes the lifting: “It is an important open problem to find
a more explicit formula for Pω,δ in the general toric case. Does there exist such a formula in terms of
some smaller resultants? This problem is closely related to the following empirical observation. For
suitable choice of δ and ω, the matrix Mδ,ω seems to have a block structure which allows to extract
the resultant from a proper submatrix. This leads to faster algorithms for computing the sparse mixed
resultant.”

D’Andrea’s fundamental result [D’A02] answers the conjecture by a recursive definition of a
Macaulay-type formula, cf sec. 3. But this approach does not offer a global lifting, in order to
address the stronger original conj. 1. Let M be a matrix formula, also known as Newton matrix,
and M (nm) its submatrix indexed by points in non-mixed cells of the mixed subdivision.

Conjecture 1. [Emi94, Conj.3.1.19] [CE00, Conj.13.1] There exist perturbation vector δ and n + 1
lifting functions for which the determinant of matrix M (nm) divides exactly the determinant of
Newton matrix M and, hence, the toric resultant of the given polynomial system is detM/det M (nm).

Our main contribution is to give an affirmative answer to this stronger conjecture by presenting
a single lifting which constructs Macaulay-type formulae for generalized unmixed systems, i.e. when
all Newton polytopes are scaled copies of each other. We state our main result, to be proven in sec.
4:

Theorem 2. The global lifting of sec. 2 produces a Macaulay-type formula for the toric resultant of
a system of polynomials with scaled Newton polytopes.
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Our method is generalized, in sec. 7, to certain mixed systems: those with n ≤ 3, and reduced
systems, defined in [Zha98] to possess sufficiently different Newton polytopes. Most of these cases
have been studied: reduced systems were settled in [D’A01], and bivariate systems (n = 2) in
[DE03a], by directly establishing the extraneous factor. Our approach would eventually make the
single-lifting algorithm applicable to the fully general case.

Using a unique lifting function essentially means that we consider a deformed system, defined
by adding a new variable t so that each input monomial xa gets multiplied by tb, where b ∈ Z

is the lifting value of a ∈ Zn. Such deformations capture the system’s behavior at toric infinity,
hence lie at the heart of most theorems in toric elimination (e.g. sparse homotopies, toric resultants,
the toric Nullstellensatz [Ber75, CE00, CLO05, GKZ94, HS95, Stu94]). Perhaps having a unique
deformed system in defining the Macaulay-type formula may allow for further applications of this
formula. Such combinatorial methods consitute one of the two main approaches for studying toric
resultants, e.g. [CE00, CLO05, DD01, Min03, Stu94], the other relying on Koszul complexes and
their generalizations, e.g. [DE03b, EM09, Khe03].

D’Andrea’s [D’A02] recursive construction requires one to associate integer points with cells of
every dimension from n to 1. Our method constructs the matrix formula directly, without recursion,
by examining only n-dimensional cells. These are more numerous than the n-dimensional cells
in [D’A02] but our algorithm defines significantly fewer cells totally, and is conceptually simpler.
The disadvantage of our method is to consider extra points besides the input supports. Existing
public-domain Maple implementations cover only the original Canny-Emiris method [CE00], either
standalone1 or as part of library Multires2. We have a preliminary implementation of this paper’s
algorithm in Maple.

The rest of the paper is structured as follows. The next section introduces some necessary notions,
and defines the single lifting that produces Macaulay-type formulae. Sec. 3 recalls the recursive
algorithm of [D’A02], and sec. 4 proves the equivalence of the two constructions. Sec. 5 analyzes the
complexity of both methods. Sec. 6 offers a full example, and sec. 7 sketches the extension of our
algorithm to mixed systems.

2 Single lifting construction

This section defines our approach to defining Macaulay-formulae. For any polytopes or point sets
A,B, let 〈A〉 denote the affine span (or hull) of A over R and 〈A,B〉 the affine span of A∪B over R.

Let the polynomials’ supports be A0, . . . , An ⊂ Zn with Newton polytopes

Q0, . . . , Qn ⊂ Rn, Qi = CH(Ai),

where CH(·) denotes convex hull. As matrix construction methods typically do, we define a regular
and fine (or tight) mixed subdivision of the Minkowski sum

∑n
i=0 Qi [CLO05, GKZ94]. Regularity

implies the subdivision is in bijective correspondence with the face structure of the upper (or lower)
hull of the Minkowski sum of Q0, . . . , Qn after they are lifted to Rn+1. Each cell in Rn is written
uniquely as the Minkowski sum of faces Fi of the Qi. A fine subdivision is characterized by an
equality between cell dimension and the sum of the faces’ dimensions. We focus on cells of maximal
dimension n, and call them maximal or, simply, cells. We distinguish them as mixed and non-mixed:
the former are the Minkowski sum of n edges and a vertex. Mixed cells are i-mixed if this vertex lies
in Ai. The type of a cell is either i-mixed or non-mixed.

The Minkowski sum
∑n

i=0 Qi is perturbed by a sufficiently small and in sufficiently generic po-
sition vector δ ∈ Qn. Let Z be the integer lattice generated by

∑n
i=0 Ai. The lattice points in

E = Z ∩ (
∑n

i=0 Qi + δ) are associated to a unique maximal cell of the subdivision, and this allows us
to construct a matrix formula M whose rows and columns are indexed by these points.

1http://www.di.uoa.gr/∼emiris/soft alg.html
2http://www-sop.inria.fr/galaad/logiciels/multires.html
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Definition 3. Let p ∈ E lie in a cell F0 + · · ·+ Fn + δ of the perturbed mixed subdivision, where Fi

is a face of Qi. The row content (RC) of p is (i, j), if i ∈ {0, . . . , n} is the largest integer such that
Fi equals a vertex aij ∈ Ai.

The main idea of both our and D’Andrea’s methods is that one point, say b01 ∈ Q0, is lifted
significantly higher. Then, the 0-th summand of all maximal cells is either b01 or a face not containing
it. In D’Andrea’s case, facets not containing b01 correspond to different subsystems where the
algorithm recurses (each time on the integer lattice specified by that subsystem). In designing a
unique lifting, the issue is that points appearing in two of these subsystems may be lifted differently
in different recursions. To overcome this, we introduce several points cil, for different l, very close
(wrt Z) to every bij , which is lifted very high at recursion i by D’Andrea’s method. This captures
the different roles bij may assume.

Algorithm B. Our algorithm uses E to index the rows (and columns) of the numerator matrix of
our Macaulay-type formula. In particular, polynomial xp−aijfi fills in the row indexed by the lattice
point p in def. 3. We now focus on generalized unmixed systems, where

Qi = kiQ ⊂ Rn,

for some n-dimensional lattice polytope Q and ki ∈ N∗, i = 0, . . . , n. Then, the denominator shall be
indexed by points lying in non-mixed cells.

Definition 4. For i = 0, . . . , n−1, and any (n− i)-dimensional face kiFij ⊂ Qi, where j ranges over
all such faces, let δij ∈ Qn denote a perturbation vector s.t.:

1. it lies in the relative interior of kiFij ,

2. it is sufficiently small compared to lattice Z, and ‖δij‖ ≪ ‖δ‖, where ‖ · ‖ is Euclidean norm,
and

3. it is sufficiently generic to avoid all edges in the mixed subdivision of
∑n

i=0 Qi .

Let bij, for some valid j > 1, be vertex of Qi. We shall use the perturbation vectors of def. 4 to
define additional points not contained in the input supports.

Definition 5. Alg. B defines points cij ∈ Qi ∩ Qn. First, c01 := b01 + δ01. For i = 0, . . . , n − 2 and
any Fij as in def. 4, choose facets F(i+1)h ⊂ Fij s.t.:

1. kiF(i+1)h does not contain bij , and

2. ki+1F(i+1)h does not contain any of the already defined c(i+1)l’s.

For each such facet set: c(i+1)h := b(i+1)h + δ(i+1)h.

The previous definition implies a many-to-one mapping from the set of cij ’s to that of bij ’s: It
reduces to a bijection when restricted to a fixed face Fij ⊂ Qi containing bij. Condition 1 of def. 4
implies that cij does not lie on a face of dimension < n−i and lies in the interior of (n−i)-dimensional
Fi. We can reduce the number of the cij ’s in alg. B, but this would complicate the subsequent proofs.

For an application of def. 5 when n = 2, see fig. 1a, where we define points cij also on edges.

Definition 6. Let h0 ≫ h1 ≫ . . . ≫ hn−1 ≫ 1. Alg. B uses sufficiently random linear functions
Hi, i = 0, . . . , n, s.t.

1 ≫ Hi(aij) > 0, and Hi ≫ Ht, i < t,

where aij ∈ Ai and i, t = 0, . . . , n, j = 1, . . . , |Ai|. Alg. B defines global lifting β as follows:

1. cij 7→ hn−i
i , cij ∈ kiFij ⊂ Qi, i = 0, . . . , n − 1; this is called primary lifting.
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2. aij 7→ Hi(aij), aij ∈ Ai, i = 0, . . . , n.

Let F β denote face F lifted under β. Now cβ
tj , for all valid j, is much higher, resp. lower, than

any cβ
ij , i > t, resp. i < t. The β-induced subdivision contains edges with one or two vertices among

the cij , and edges from the Qi. The vertex set of the upper hull of Qβ
i contains some or all of the cβ

ij

and the lifted vertices of Qi.
When all Qi are simplices, as in the classical dense case, it suffices to apply a primary lifting to

one point per Qi. Thus our scheme generalizes the approach by Macaulay [Mac02].
The matrix formula constructed by alg. B is indexed by all lattice points in E . To decide the

content of each row, every point is associated to a unique (maximal) cell of the mixed subdivision
according to def. 3. The t-mixed cells contain lattice points as follows:

p ∈ k0E0 + · · · + kt−1Et−1 + ctj + kt+1Et+1 + · · · + knEn ∩ Z,

for edges Ei ⊂ Q spanning Rn. This gives optimal writing

p = p0 + · · · + pt−1 + (btj + δtj) + pt+1 + · · · + pn, pi ∈ Ai ∩ Ei.

Hence, the row indexed by p, as with matrix constructions in [CE00, D’A02], contains a multiple of
ft(x):

xp0+···+pt−1+pt+1+···+pnft(x),

and the diagonal element is the coefficient of btj in ft(x). Similarly, for the rows corresponding to
lattice points in non-mixed cells.

3 Recursive construction

This section discusses D’Andrea’s recursive construction of a Macaulay-type formula [D’A02]. There
are certain free parameters in the algorithm which we specify so as to obtain a version very similar
to our approach.

At the input of the 0-step the algorithm may use an additional polytope mQ, for any m ∈ R,
which we omit.We describe the t-th recursive step, for t = 0, 1, . . . , n − 1.

Algorithm A. The input are polytopes

l0P
(t), . . . , lt−1P

(t), ktP
(t), . . . , knP (t) ⊂ Rn−t, li ∈ [0, ki] ∩ Q,

the integer lattice L(t) spanned by
∑n

i=t Ai ∩ kiP
(t), and perturbation vector δt ∈ Qn−t. Here,

kiP
(t), i ≥ t, is an (n− t)-dimensional face of kiQ, thus P (0) = Q. Also, P (t) is a facet of P (t−1), and

liP
(t), i < t, is homothetic to kiP

(t). These constructions shall be defined at the Recursion Phase.
Also, L(0) = Z and δ0 = δ.

Construction Phase: Vertex btj ∈ ktP
(t) ∩ At, is lifted to 1. We require that btj = ctj − δtj . All

other vertices of all input polytopes are lifted to 0. This is the primary lifting which partitions the
Minkowski sum of the input polytopes into a primary cell

l0P
(t) + · · · + lt−1P

(t) + btj + kt+1P
(t) + · · · + knP (t) + δt, (1)

of dimension n − t, and several secondary cells. Each secondary cell is defined by an inner normal
v ∈ Qn−t to a facet of ktP

(t) not containing btj .
Polytopes

∑t−1
i=0 liP

(t), kt+1P
(t), . . . , knP (t) are lifted by applying the restriction of β on them.

We consider β fixed throughout the algorithm. The upper hull of the Minkowski sum of the lifted
polytopes induces a mixed subdivision of

∑t−1
i=0 P (t) +kt+1P

(t) + · · ·+knP (t), which is then perturbed
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by δt. The lattice points p of L(t) contained in the perturbed subdivision, are assigned RC by def. 3.
This also assigns RC to points p + btj contained in the intersection of (1) with L(t). Let us take care
of the cij . If point p lies in

(F + Ft+1 + · · · + Fn + δt) ∩ L(t), (2)

where Fi ⊂ kiQi, i > t, F ⊂
∑t−1

i=0 liP
(t), having RC(p) = (h, j), where Fh = chj = bhj + δhj , then

the corresponding matrix row is filled in by xp−bhjfh.
Face F ⊂

∑t−1
i=0 P (t) in (2), can be analyzed as F = l0F0 + · · · + lt−1Ft−1, where Fi ⊂ P (t) for

i < t. Moreover, every cell in (1) is the Minkowski sum of btj and the cell in (2).
Mixed cells of type 0 are defined here as in sec. 2. A t-mixed cell wrt alg. A, for t > 0, shall

have n− t linear summands from polytopes kt+1P
(t), . . . , knP (t) and a 0-dimensional summand from

polytope
∑t−1

i=0 liP
(t). This summand can be analyzed as l0p0 + · · · + lt−1pt−1, where pi ∈ P (t), for

i = 0, . . . , t − 1 and lipi stands for a scalar multiple of pi, seen as a vector. This leads to:

Lemma 7. The maximal cells at step t of alg. A are, for some j and li ∈ [0, ki], of the form:

l0F0 + · · · + lt−1Ft−1 + btj + kt+1Ft+1 + · · · + knFn + δt, (3)

where Fi is the projection of a face of the upper hull of P (t) lifted by β, and dim(〈F0, . . . , Ft−1,
Ft+1, Fn〉) = n − t. Specifically, the t-mixed cells in alg. A are:

l0p0 + · · · + lt−1pt−1 + btj + kt+1Et+1 + · · · + knEn + δt, (4)

where Et+1, . . . , En, are projections of edges on the upper hull of P (t) lifted by β, dim(〈Et+1, . . . , En〉) =
n − t, and points pi ∈ P (t), for i = 0, . . . , t − 1 .

Recursion Phase: When t = n − 1, the algorithm terminates, since it has reached the Sylvester
case. Otherwise, it recurses: let P (t+1) be the facet of P (t) supported by v. The (perturbed) secondary
cell corresponding to v is

Fv = l0P
(t+1) + · · · + lt−1P

(t+1) + CH(btj , ktP
(t+1)) + kt+1P

(t+1) + · · · + knP (t+1) + δt. (5)

Its associated diameter is
dv = btj · v − min

p∈CH(btj ,ktF )
{p · v} ∈ N∗,

where · stands for inner product. We define two sublattices of L(t): L
(t)
+ is spanned by

∑n
i=t+1 Ai ∩

kiP
(t+1) and L

(t)
v is the sublattice orthogonal to v. They have the same dimension, so we define the

(finite) index indv = [L
(t)
v : L

(t)
+ ], equal to the quotient of the volumes of their base cells. Let q range

over the indv coset representatives for L
(t)
+ in L

(t)
v .

Let lt ∈ [0, kt] take dv distinct values corresponding to different values of p · v for all p ∈
(CH(btj , ktP

(t+1)) + δt) ∩ L(t). Note that ltP
(t+1) is homothetic to ktP

(t+1). Let δ′t ∈ Qn−t be a
translation vector such that ltP

(t+1) + δ′t contains at least one point in (CH(btj , ktP
(t+1))+ δt)∩L(t).

In particular, ltP
(t+1) + δ′t equals ktP

(t+1) iff lt = kt, and vertex btj iff lt = 0, otherwise it
equals (CH(btj , ktP

(t+1)) + δt) ∩ H, where H is a hyperplane parallel to a supporting hyperplane of
ktP

(t+1);cf [D’A02, lem.3.3]. By abuse of notation, in the rest of this paper we shall denote H, and
the supporting hyperplanes of faces ktP

(t+1) and btj of the previous convex hull, as 〈ltP
(t+1)〉.

Points in (Fv + δt)∩L(t) are partitioned into dv subsets (one per value of lt), called slices, of the
form

l0P
(t+1) + · · · + lt−1P

(t+1) + (ltP
(t+1) + δ′t) + kt+1P

(t+1) + · · · + knP (t+1) + δt ∩ L(t), (6)

which can be rearranged as

l0P
(t+1) + · · · + ltP

(t+1) + kt+1P
(t+1) + · · · + knP (t+1) + δλ ∩ L(t), (7)
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where δλ = δt + δ′t. Moreover, δλ can be decomposed as δv
λ + δλv , where δv

λ ∈ Qv and δλv ∈ L
(t)
+ ⊗ Q.

Now, every point in (7) corresponds to a point in

l0P
(t+1) + · · · + ltP

(t+1) + kt+1P
(t+1) + · · · + knP (t+1) + δλv ∩ (q + L

(t)
+ ),

for some coset representative q. Set δt+1 := δλv − q, L(t+1) := L
(t)
+ , and observe that point p belongs

in (7) iff point
p′ := p − δv

λ − q (8)

belongs in

l0P
(t+1) + · · · + ltP

(t+1) + kt+1P
(t+1) + · · · + knP (t+1) + δt+1 ∩ L(t+1). (9)

We call this set a piece; δt+1 carries the information to define the piece from the input polytopes and
L(t+1). The algorithm recurses on each of the indv such pieces. The set

l0P
(t+1), . . . , ltP

(t+1), kt+1P
(t+1), . . . , knP (t+1), δt+1

over L(t+1) is exactly like the original input, only one dimension lower. This completes the algorithm.

Remark 8. Since every point p′ in a piece corresponds bijectively to a point p in a slice via the
monomial bijection (8), we shall often consider a piece as a subset of a slice and omit the translation.

At the end of the recursion, RC is defined on E . Alg. A defines a partition of E in the form of a
collection of mixed subdivisions of primary cells (of decreasing dimension). The 1-summands from
Qi in the cells are defined by any point in Ai or among the cij , for all valid j, and may be multiplied
by a rational number in (0, ki].

4 Equivalence of constructions

This section demonstrates that both approaches define the same Macaulay-formula. Intuitively, the
single-lifting algorithm, denoted alg. B, has an overall effect very similar to that of alg. A, since
they both use β. The former partitions E into sets of points in n-dimensional cells and assigns RC,
whereas, as we show in the next lemmas, alg. A partitions E into subsets which, at step t, lie on
the intersection of a (n − t)-dimensional hyperplane with an n-dimensional cell of β. Note that
the intersection itself, as a subset of Rn−t does not coincide with the cell of alg. A. However, their
set difference is of infinitesimal volume. Although both algorithms use β to subdivide their input
polytopes, they do so in a different fashion; alg. B applies β to every Qi, whereas alg. A does so
recursively to a different set of polytopes at every step.

In the rest of the paper, for simplicity, we shall omit the translation vectors δt. Moreover, unless
otherwise stated, we shall treat every slice and piece as a polytope and not as the set of points in the
intersection of this polytope with an appropriate lattice. In particular, we shall be interested only
on the form a slice\piece as a Minkowski sum of polytopes. The existence of a translation vector, so
as this polytope contains integer points in the lattice under consideration, shall be implied.

We now establish the correspondence between the two algorithms for t = 0, then generalize to
arbitrary t. At step 0 of alg. A, b01 is lifted to 1 while every other vertex of all input polytopes to 0;
this creates primary cell

pr.cell
(A)
0 := b01 + k1Q + · · · + knQ,

and several secondary cells of the form

sec.cell
(A)
0 := CH(b01, k0P

(1)) + k1P
(1) + · · · + knP (1),

each corresponding to a facet P (1) of Q not containing b01. In alg. B, c01 plays the role of b01 and
this leads to a group of cells covering the corresponding primary cell

pr.cell
(B)
0 := c01 + k1Q + · · · + knQ,
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and several groups of cells, each group covering

sec.cell
(B)
0 := CH(c01, k0P

(1)) + k1P
(1) + · · · + knP (1),

which is a typical n-dimensional secondary cell wrt alg. B.

Remark 9. All cells within pr.cell
(A)
0 and pr.cell

(B)
0 differ only at their first summand; the former are

of the form b01 + F1 + · · · + Fn, whereas the latter are c01 + F1 + · · · + Fn, where Fi is a face of Qi,
since β is used by both algorithms to subdivide Q1 + · · · + Qn, and c01 = b01 + δ01.

Lemma 10. pr.cell
(A)
0 ∩ E = pr.cell

(B)
0 ∩ E, and points in this set are assigned the same RC under

both algorithms.

Proof. Recall that δ0 = δ and consider the subdivision of
∑n

i=0 Qi induced by β and compare

pr.cell
(A)
0 + δ and c01 + Q1 + · · ·+ Qn + δ = b01 + δ01 + Q1 + · · ·+ Qn + δ. These polytopes differ by

δ01, which is very small. Moreover, by the choice of δ, the boundary of pr.cell
(A)
0 + δ has no points

in Z. Since, by def. 4, ‖δ‖ ≫ ‖δ01‖, the two polytopes contain the same Z-points. This settles the
first claim. The second claim follows from rem. 9 and the fact that the two subdivisions may only
differ in cells having vertex b01 instead of c01. Since c01 − b01 = δ01 is very small compared to Z,
even these cells contain the same Z-points.

Each sec.cell
(A)
0 is divided by alg. A into slices

l0P
(1) + k1P

(1) + · · · + knP (1),

one for each value of l0 ∈ [0, k0]. Each slice is partitioned into pieces on which alg. A recurses
producing (n − 1)-dimensional primary cell

pr.cell
(A)
1 := l0P

(1) + b1j + k2P
(1) + · · · + knP (1), (10)

and secondary cells

sec.cell
(A)
1 := l0P

(2) + CH(b1j, k1P
(2)) + k2P

(2) + · · · + knP (2). (11)

Every piece of a given slice lies on lattice L(1) and can be thought of as the intersection of a translation
of that slice, regarded as a polytope, with L(1). Recall that, by rem. 8, we shall consider a piece as
subset of a slice.

Similarly to alg. A, we can partition the corresponding sec.cell
(B)
0 into slices:

l′0P
(1) + k1P

(1) + · · · + knP (1),

by intersecting CH(c01, k0P
(1)) with a hyperplane parallel to (a supporting hyperplane of) k0P

(1).
Recall that we denote this hyperplane as 〈l′0P

(1)〉.

Remark 11. Observe that each slice of sec.cell
(B)
0 (resp. sec.cell

(A)
0 ) parameterized by l′0 (resp. l0), is

homothetic to a facet of this secondary cell, supported by 〈k′
0P

(1)〉 (resp. 〈k0P
(1)〉). Moreover, this

homothecy is defined by a homothecy only on the first summand k0P
(1) of this facet.

Hyperplanes 〈l′0P
(1)〉 and 〈l0P

(1)〉 are identical; they differ only on the homothecy on k0P
(1)

expressed by l′0 and l0 respectively. Obviously, l′0 ≈ l0 because c01 ≈ b01. Note that we omit the

translation vector so that the slice lies in sec.cell
(B)
0 . Thus, corresponding slices contain the same

points in the lattice L(0) = Z. This, moreover, leads to the following extension of lem. 10.

Lemma 12. Every maximal cell of the subdivision induced by β on pr.cell
(A)
1 corresponds to the

intersection of hyperplane 〈l′0P
(1)〉, for some l′0, with a unique maximal cell in sec.cell

(B)
0 , of the

same type. The cells contain the same points in L(1), with the same image under RC.
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Proof. Any maximal cell in pr.cell
(A)
1 has the form l0F0 + b1j + k2F2 + · · · + knFn, where faces Fi ⊂

P (1), i = 0, 2, . . . , n, have dimensions adding up to n−1. Recall pr.cell
(A)
1 lies on a slice of sec.cell

(A)
0

parameterized by the value of l0 hence, when β is employed, it gives rise to the same subdivision
in every such primary cell. By construction, subspace 〈b01, F0〉 is orthogonal and complementary to
〈P (1)〉.

In k1P
(1), point c1j is lifted sufficiently higher than any other, so there exist maximal cells in

sec.cell
(B)
0 that has it as summand. The other summands are induced by β on CH(c01, k0P

(1)),
k2P

(1), . . . , knP (1). These n-dimensional cells of alg. B correspond (when intersected with 〈l′0P
(1)〉)

to (n − 1)-dimensional cells in pr.cell
(A)
1 . It is straightforward to show that, for l′0 ∈ [0, k0] and any

β-induced cell in this Minkowski sum, its intersection with 〈l′0P
(1)〉 is a β-induced cell in l′0P

(1) +
k2P

(1) + · · · + knP (1)

There exists l′0 ≈ l0 that establishes the lemma, because β is applied to (n − 1)-dimensional
Minkowski sums which are almost identical, and the effect of b1j and c1j is the same in what concerns
the lattice points in corresponding cells, following the proof of lem. 10.

In each sec.cell
(B)
0 we distinguish 2 types of cells: cells in

pr.cell
(B)
1 := CH(c01, k0P

(1)) + c1j + k2P
(1) + · · · + knP (1), (12)

which, by lem. 12, contains exactly the integer points in all primary cells of alg. A of the form (10)
(for each slice/coset), and for each facet P (2) of P (1), cells in

sec.cell
(B)
1 := CH(c01, k0P

(2)) + CH(c1j , k1P
(2)) + k2P

(2) + · · · + knP (2). (13)

Note that both pr.cell
(B)
1 and sec.cell

(B)
1 are n-dimensional, whereas pr.cell

(A)
1 and sec.cell

(A)
1 are

(n − 1)-dimensional.

Remark 13. Every maximal cell in sec.cell
(B)
1 must have summands F0 = CH(c01, G0), F1 = CH(c1j , G1),

for some G0 ⊂ k0P
(2) and G1 ⊂ k1P

(2).

A similar argument as in lem. 12, implies that (13) contains exactly the integer points in the
union of all secondary cells (11) defined over the various values of l0 ∈ [0, k0], for a given j. The
recursion steps of alg. A, for t ≥ 2 are defined over a chain of facets P (2) ⊃ P (3) ⊃ · · · ⊃ P (n−1).

Hence, every pr.cell
(A)
t , for t > 1, contains integer points in sec.cell

(B)
1 ∩Z. Therefore, we generalize

the correspondence between the two algorithms by focusing on sec.cell
(B)
1 .

Lemma 14. (Main) Every maximal cell of the subdivision induced by β on pr.cell
(A)
t , for t ≥ 2,

corresponds to the intersection of hyperplane 〈l′t−1P
(t)〉, for some l′t−1 ≈ lt−1 ∈ [0, kt−1] ∩ Q, with a

unique maximal cell in sec.cell
(B)
1 , of the same type. The cells contain the same points in lattice L(t)

with the same image under RC.

Proof. Primary cells of step t lie on (n−t)-dimensional slices of the (n−t+1)-dimensional sec.cell
(A)
t−1,

parameterized by the value of lt−1 ∈ [0, kt−1]:

l0P
(t) + · · · + lt−1P

(t) + ktP
(t) + · · · + knP (t). (14)

Similarly to rem. 11, let l0, . . . , lt−1, li ∈ [0, ki] ∩ Q, define the homothecies on the first t summands

of (14) and the corresponding hyperplanes 〈l0P
(t)〉, . . . , 〈lt−1P

(t)〉. Note, that pr.cell
(A)
t is a subset

of (14) and is subdivided by β into maximal cells of the form (3).

Intersecting sec.cell
(B)
1 with the above hyperplanes, yields a (n − t)-dimensional subset:

l′0P
(t) + · · · + l′t−1P

(t) + ktP
(t) + · · · + knP (t). (15)
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This subset can also be obtained by directly intersecting sec.cell
(B)
1 with 〈lt−1P

(t)〉. Now, l′i ≈ li, for
i = 0, 1, . . . , t− 1 because cij ≈ bij. For i = 0, . . . , t− 1, each l′i defines a hyperplane 〈l′iP

(t)〉 identical
to 〈liP

(t)〉, except on the homothecy on the i-th summand. Hence, (15) is very similar to (14) in the
sense that they contain the same integer points in L(t) and their volumes differ infinitesimally.

By def. 5 there exist n-dimensional cells in sec.cell
(B)
1 which have ctj as a summand. The inter-

section of each of these cells with (15) shall also have ctj as a summand, because this is the only
point lifted highest in P (t). These cells correspond to the primary cell wrt alg. A of the slice (14).
Moreover, this intersection is a β-induced cell in (15):

l′0F0 + · · · + l′t−1Ft−1 + ctj + kt+1Ft+1 + · · · + knFn, (16)

which contains the same integer points as (3). Since β is applied on (n − t)-dimensional polytopes
which are almost identical, both (3) and (16) are of the same type.

Corollary 15. Using the notation of lem. 7, in particular for t-mixed cells of alg. A in the form
of (4) and t, j, a t-mixed cell of alg. B is of the form:

k0E0 + · · · + kt−1Et−1 + ctj + kt+1Et+1 + · · · + knEn + δt ∩ L,

where Ei is the projection of an edge of Qβ,

(a) 〈E0, . . . , Et−1〉 is a t-dimensional space complementary to 〈P (t)〉, and for i < t, kiEi =
(cij , kipi), where pi ∈ P (i) in lem. 7, and

(b) edges Et+1, . . . , En are the same as in lem. 7,(4).

Proof. For t = 0, the corollary follows from rem. 9.
All 1-mixed cells wrt alg. B lie in (12), since every maximal cell in it has c1j as a summand. By

lem. 12, edges k2E2, . . . , knEn span the (n − 1)-dimensional space 〈P (1)〉. Hence, edge k0E0 has to
be of the form (c01, k0p0), where p0 ∈ P (1), by lem. 12, is as in lem. 7,(4).

Similarly, lem. 14 implies that for t > 1, the last (n − t) edges of any t-mixed cell wrt alg. B
span the (n − t)-dimensional space 〈P (t)〉, because β induces the same subdivision on the last n − t
summands of (14) and (15). For the cell to be maximal, 〈k0E0, . . . , kt−1Et−1〉 must be a t-dimensional
space complementary to 〈P (t)〉. By construction (see proof of lem. 14), each kiEi, for i < t, is an
edge in CH(cij , kiP

(t)) of the form (cij , kipi), where pi ∈ P (t) is as in lem. 7,(4).

Wen now consider non-mixed cells, by extending cor. 15:

Corollary 16. Consider any non-mixed cell of alg. A, which has the form of (3) in lem. 7. It
corresponds to cell:

CH(c01, k0F0) + · · · + CH(c(t−1)j , kt−1Ft−1) + ctj + kt+1Ft+1 + · · · + knFn,

which is a non-mixed cell defined by β, where

(a) the F0, . . . , Ft−1 are projections of faces in Qβ, for i < t, and

〈CH(c01, k0F0), . . . ,CH(c(t−1)j , kt−1Ft−1)〉

is a t-dimensional space complementary to 〈Ft+1, . . . , Fn〉,

(b) F0, . . . , Ft−1, Ft+1, . . . , Fn are the same in both cells.

We have shown that each row of the constructed matrices, indexed by points of E lying in a mixed
or non-mixed cell, is identical for both algorithms, where E is the same pointset for both algorithms.

Theorem 17. The Macaulay-type formula for the toric resultant of generalized unmixed systems,
constructed by the global lifting of sec. 2, and that constructed by D’Andrea’s approach [D’A02] are
identical.

As a consequence of thm. 17 and [D’A02, thm. 3.8], follows thm. 2.
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5 Asymptotic complexity

We analyze the worst-case asymptotic bit complexity of our method and of D’Andrea’s, when they
construct matrix formulae in sparse representation. We believe these bounds are not optimal and
further work may tighten them.

Alg. B, implemented by the direct approach of [CE00], comprises of two main steps. First, the
computation of the vertices of each Qi is typically dominated. Second, we need RC for all p ∈ E ,
in order to construct the Macaulay-type formula. Both steps can be reduced to linear programming
with C constraints in V variables, and coefficient bitsize B. If we use a poly-time algorithm such
as Karmarkar’s [Kar84], the bit complexity is C5.5V 2B2, where B depends on the bitsize of the
input coordinates and of δ, δij . It is related to the probability that the chosen perturbations are not
sufficiently generic; see [CE00] for the full analysis.

Let m be the maximum number of vertices of the Qi, r the total number of cij ’s, and let O∗(·)
indicate that we ignore polylog factors. The linear programs have complexity O∗(r2B2) = O∗(mnB2)
because r is bounded by the total number O(m⌊n/2⌋) of faces in Q. In an output sensitive manner,
r = O(|E|), because the addition of every cij is made in order to handle at least one distinct point in
E . Hence, the complexity of constructing the Macaulay-type formula is O∗(|E|mnB2), or O∗(|E|3B2).
These bounds hold also for matrices in dense representation. For generalized unmixed systems, one
can use |E| = O(knenD) from [CE00, thm.3.10], where k = maxi{ki}, D is the total degree of the
toric resultant as a polynomial in the input coefficients, and e the basis of natural logarithms.

A better implementation finds RC for one point in a maximal cell, then enumerates all points
in this cell in time proportional to their cardinality multiplied by a polynomial in m,n,B [Emi02,
thm.16]. The neighbours of these points which lie outside the cell will yield new cells, so as to
explore the entire Minkowski sum; detecting new cells does not increase the overall complexity. If
S ≤ |E| is the number of maximal cells containing at least one lattice point, alg. B has complexity
O∗(SmnB2 + |E|), where typically, S ≪ |E|.

For alg. A, complexity is dominated by O(|E|n) linear programs, since every p ∈ E may require
O(n) of them for its image under RC to be determined. Each linear program has bit complexity
O(n7.5m2B2). This process essentially decides in which slice of which secondary cell lies p. Although
this subdivision contains much more cells than alg. B, the asymptotic analysis indicates that the
latter may be slower. The optimal implementation for constructing the Macaulay-type formula
should combine ideas from both algorithms.

6 A bivariate example

b01

c01
c12

c14

c15

(a)

v1

v2

v3

(b)

v1

v2

v3

(c)

Figure 1: Input polygons and their subdivisions wrt alg. B (fig:1a), 0-step recursion of Alg. A (fig:1b)
and the mixed subdivision induced by alg. B (fig:1c).

This section details an example. Let n = 2, A0 = A2 = {(1, 0), (0, 1), (0, 2), (1, 2), (3, 0)}, and
A1 = {(2, 0), (0, 2), (0, 4), (2, 4), (6, 0)}, so the lattice generated is Z2. k0 = k2 = 1, k1 = 2. Now
v1 = (−1, 0), v2 = (0,−1), v3 = (−1,−1). Let δ = (−1/30,−1/30), (fig. 1a).
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Alg. B: We fix vertices of the input polygons in order to define the additional points required by
def. 6. Let b01 := (1, 0) ∈ Q0, b12 := (0, 2), b14 := (2, 4), b15 := (6, 0) ∈ Q1, δ01 = (1/1000, 1/1500),
δ12 = (0, 1/2000), δ14 = (−1/3000, 0), δ15 = (−1/2000, 1/2000). Consider integer points and their
cells (fig. 1c):

point cell in secondary cell wrt v2 type

(1, 7), (2, 7) (c01, (0, 2)) + ((0, 4), c14) + (0, 2) + δ 2

(3, 7) (c01, (0, 2)) + c14 + ((0, 2), (1, 2)) + δ 1

where the summands come from Q0, Q1, Q2 resp. The two cells together with cell σ = CH(c01, (0, 2), (1, 2))+
c14 + (1, 2) + δ, and some infinitesimal cells which do not contain any integer points, belong to the
secondary cell wrt to v2 of alg. A, which contains the same integer points. Points (1, 7), (2, 7), (3, 7)
correspond (via an appropriate translation) to points of a piece of the secondary cell on which alg. A
recurses. Cell σ does not contain any integer points because of the choice of δij , δ.

Consider points corresponding to a piece of the secondary cell wrt to v3, of alg. A, and their cells
by β:

point cell in secondary cell wrt v3 type

(4, 7), (5, 6), (6, 5), (7, 4) (c01, (1, 2)) + (c15, c14) + (1, 2) + δ 2

(8, 3), (9, 2) (c01, (1, 2)) + c15 + ((3, 0), (1, 2)) + δ 1

(10, 1), (11, 0) CH(c01, (3, 0), (1, 2)) + c15 + (3, 0) + δ non

Consider a piece of the secondary cell wrt to v1, of alg. A. Points in it lie in the following cells of
alg. B:

point cell in secondary cell wrt v1 type

(0, 4) (c01, (0, 1)) + c12 + ((0, 1), (0, 2)) + δ 1

(0, 5) CH(c01, (0, 1), (0, 2)) + c12 + (0, 2) + δ non

(0, 6), (0, 7) (c01, (0, 3)) + (c12, (0, 4)) + (0, 2) + δ 2

Alg. A: b01 is lifted to 1, all other vertices of all polygons are lifted to 0. This partitions Q0+Q1+Q2

into a primary cell b01 + Q1 + Q2 and 3 secondary cells corresponding to v1, v2, v3, normals to the
facets of Q0 not containing b01. The Q1, Q2 are lifted using β, which subdivides the primary cell
(fig. 1b). This subdivision “coincides” with the restriction in c01 + Q1 + Q2 of the subdivision by β,
except that the latter uses c01 whereas the former uses b01, i.e. the integer points in both subdivisions
are the same and are assigned the same RC.

• We study the Recursion Phase on secondary cell:

Fv1
= CH(b01, k0Fv1

) + k1Fv1
+ k2Fv1

,

defined by facet Fv1
= ((0, 1), (0, 2)) ⊂ Q supported by v1. Now, A1v1

= {(0, 2), (0, 4)}, A2v1
=

{(0, 1), (0, 2)}, the lattice generated by A1v1
+ A2v1

is L+ := 〈(0, 3), (0, 4)〉 ∼= Lv1
∼= Z. The index

of L+ in Lv1
is indv1

= 1 and the coset representative for L+ in Lv1
is q0 = (0, 0). The v1-lattice

diameter is dv1
= 1. Hence there is one slice corresponding to one piece.

We describe the recursion step on this piece. It contains points corresponding to (0, 4), (0, 5),
(0, 6), (0, 7) lying on the slice of Fv1

+ δ of the form

(λ̃k0Fv1
+ δ′) + k1Fv1

+ k2Fv1
+ λFv1

+ δ.

To define the piece, following notation in [D’A02], the scalar multiple of Fv1
is λ̃Fv1

= 29
30Fv1

and
the translation vector is δ′ := ( 1

30 , 0). Since we do not use an initial additional polytope, λ = 0 and

λv1
:= λ + λ̃ = 29

30 .
Let δλ := δ + δ′ = (0,− 1

30 ), and δλ = δv1

λ + δλv1
, where δv1

λ = (0, 0) ∈ Qv1 and δλv1
= (0,− 1

30 ) ∈
L+ ⊗ Q, hence δ0v1

:= δλv1
− q0 = (0,− 1

30 ). So, the slice of Fv1
+ δ is

k1Fv1
+ k2Fv1

+ λv1
k0Fv1

+ δλ, (17)
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and the corresponding piece in L+ is

k1Fv1
+ k2Fv1

+ λv1
k0Fv1

+ δ0v1
. (18)

The bijection between points in (17) and (18) is

p = p̄ + δv1

λ + q0 = p̄,

where p ∈ (17) and p̄ ∈ (18). After re-indexing, the input of the recursion step is:
- the polygons Q0 := k1Fv1

, Q1 := k2Fv1
, and Q2 := 29

30k0Fv1
which is the additional polytope,

- the lattice L+ := 〈(0, 3), (0, 4)〉 and
- the perturbation vector δ0 := δ0v1

= (0,− 1
30 ).

In order to be compatible with β, we choose b01 = b12 = (0, 2) and apply the primary lifting.
This partitions Q0 + Q1 + Q2 + δ0 into a primary b01 + Q1 + Q2 + δ0 and a secondary cell Q0 +
(0, 2)+ 29

30 (0, 2)+ δ0. Lifting β induces a mixed subdivision on the primary cell consisting of the cells
b01 +(0, 1)+Q2 + δ0 and b01 +Q1 + 29

30(0, 1)+ δ0 . The former is non-mixed and contains point (0, 5),
corresponding to the same point on the slice, which is also non-mixed under alg. B. The latter cell
is 0-mixed, hence 1-mixed and contains point (0, 4), corresponding to the same point on the slice,
which is also 1-mixed under alg. B. The secondary cell Q0 + (0, 2) + 29

30(0, 2) + δ0 is 1-mixed, hence
2-mixed and contains the integer points (0, 6), (0, 7) corresponding to the same points on the slice.
They are also 2-mixed under alg. B.

• We apply recursion on secondary cell:

Fv2
= CH(b01, k0Fv2

) + k1Fv2
+ k2Fv2

,

defined by the facet Fv2
= ((0, 2), (1, 2)) of Q supported by v2. Now, A1v2

= {(0, 4), (2, 4)}, A2v2
=

{(0, 2), (1, 2)} and the lattice generated by A1v2
+ A2v2

is L+ := 〈(0, 6), (1, 6)〉 ∼= Lv2
∼= Z. The index

of L+ in Lv2
is indv2

= 1 and the coset representative for L+ in Lv2
is q0 = (0, 0). The v2-lattice

diameter is dv2
:= b01 · v2 −minp∈CH(b01k0Fv2

) p · v2 = 2. Hence, there are two slices, each containing

one piece, and the algorithm recurses on each such piece.
We analyze the recursion step on the piece of the shifted secondary cell Fv2

+δ, which contains the
integer points corresponding to the points (1, 7), (2, 7), (3, 7) lying on a slice of the shifted secondary
cell Fv2

+ δ of the form
(λ̃k0Fv2

+ δ′) + k1Fv2
+ k2Fv2

+ λFv2
+ δ.

To define this piece we have that Fv2
is λ̃Fv2

= 31
60Fv2

and the translation vector δ′ := (29
60 , 0).

Now λ = 0 and hence λv2
:= λ + λ̃ = 31

60 . Let δλ := δ + δ′ = ( 9
29 ,− 1

30 ). Then, δλ can be
written as δλ = δv2

λ + δλv2
, where δv2

λ = (0, 1) ∈ Qv2 and δλv2
= ( 9

20 ,−31
30) ∈ L+ ⊗ Q, hence

δ0v2
:= δλv2

− q0 = ( 9
20 ,−31

30 ).
So, the slice of Fv2

+ δ is
k1Fv2

+ k2Fv2
+ λv2

k0Fv2
+ δλ, (19)

and the corresponding piece in L+ is

k1Fv2
+ k2Fv2

+ λv2
k0Fv2

+ δ0v2
. (20)

The bijection between points in (19) and points in (20) is

p = p̄ + δv2

λ + q = p̄ + (0, 1),

where p ∈ (19) and p̄ ∈ (20).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv2
, Q1 := k2Fv2

, and Q2 := 31
60k0Fv2

which is the additional polytope,
- the lattice L+ := 〈(0, 6), (1, 6)〉 and
- the perturbation vector δ̄ := δ0v2

= ( 9
20 ,−31

30).
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Table 1: Illustration of cor. 15 and cor. 16
Cell wrt alg. A Corresponding cell wrt alg.B Type of cell

λ̃(1, 2) + (6, 0) + ((3, 0), (1, 2)) + δ0v3 (c01, (1, 2)) + c15 + ((3, 0), (1, 2)) + δ 1-mixed

λ̃((3, 0), (1, 2)) + (6, 0) + (3, 0) + δ0v3 CH(c01, (1, 2), (3, 0)) + c15 + (3, 0) + δ non-mixed

λ̃(1, 2) + (6, 0) + ((3, 0), (1, 2)) + δ1v3 (c01, (1, 2)) + c15 + ((3, 0), (1, 2)) + δ 1-mixed

λ̃((3, 0), (1, 2)) + (6, 0) + (3, 0) + δ1v3 CH(c01, (1, 2), (3, 0)) + c15 + (3, 0) + δ non-mixed

λ̃(0, 2) + (2, 4) + ((0, 2), (1, 2)) + δ0v2 (c01, (0, 2)) + c14 + ((0, 2), (1, 2)) + δ 1-mixed

λ̃((0, 2), (1, 2)) + (2, 4) + (1, 2) + δ0v2 CH(c01, (1, 2), (0, 2)) + c14 + (1, 2) + δ non-mixed

To be compatible with β, we choose b01 = b14 = (2, 4) and apply the primary lifting; this
partitions the Minkowski sum Q0 + Q1 + Q2 + δ̄ into a primary b01 + Q1 + Q2 + δ̄ and a secondary
cell Q0 + (0, 2) + 31

60 (0, 2) + δ̄ . Lifting β induces a mixed subdivision of the primary cell consisting
of the cells b01 + (1, 2) + Q2 + δ̄ and b01 + Q1 + 31

60 (0, 2) + δ̄. The latter is 0-mixed, hence 1-mixed
and contains the integer point (3, 6) corresponding to point (3, 7) on the slice which is also 1-mixed
under alg. B. The former is non-mixed and does not contain any integer points.

The secondary cell Q0 + (0, 2) + 31
60 (0, 2) + δ̄ is 1-mixed, hence 2-mixed and contains the integer

points (1, 6), (2, 6) corresponding to the points (1, 7), (2, 7) of the slice respectively; they are also
2-mixed under alg. B.

• The last secondary cell is

Fv3
= CH(b01, Fv3

) + k1Fv3
+ k2Fv3

,

defined by the facet Fv3
= ((3, 0), (1, 2)) of Q supported by v3 = (−1,−1). Now, A1v3

= {(6, 0), (2, 4)}, A2v3
=

{(3, 0), (1, 2)}, the lattice generated by A1v3
+ A2v3

is L+ := 〈(9, 0), (7, 2)〉 ∼= 2Z and Lv3
∼= Z. The

index of L+ in Lv3
is indv3

= 2 and the cosets representatives for L+ in Lv3
are q0 = (0, 0) and

q1 = (−1, 1). The v3-lattice diameter is dv3
:= b01 · v3 −minp∈CH(b01k0Fv3

) p · v3 = 2. Hence there are

two slices, each corresponding to two pieces, and the algorithm recurses on each such piece.
We analyze the recursion step on the two pieces that contain integer points corresponding to

points (11, 0), (10, 1), (9, 2), (8, 3), (7, 4), (6, 5), (5, 6), (4, 7) lying on a slice of the shifted secondary
cell Fv3

+ δ of the form
(λ̃k0Fv3

+ δ′) + k1Fv3
+ k2Fv3

+ λFv3
+ δ.

To define these pieces, we have that the scalar multiple of Fv3
is λ̃Fv3

= 32
60Fv3

and the translation

vector is δ′ := ( 7
15 , 0). Now, λ = 0 and hence λv3

:= λ + λ̃ = 32
60 ; Let δλ := δ + δ′ = (13

30 ,− 1
30).

Then, δλ can be written as δλ = δv3

λ + δλv3
, where δv3

λ = (1, 1) ∈ Qv3 and δλv3
= (−17

30 ,−31
30) ∈

L+ ⊗ Q, hence δ0v3
:= δλv3

− q0 = (−17
30 ,−31

30) and δ1v3
:= δλv3

− q1 = (13
30 ,−61

30).
So, the slice of Fv3

+ δ is
k1Fv3

+ k2Fv3
+ λv3

k0Fv3
+ δλ, (21)

and the corresponding pieces in L+ are

k1Fv3
+ k2Fv3

+ λv3
k0Fv3

+ δ0v3
, (22)

k1Fv3
+ k2Fv3

+ λv3
k0Fv3

+ δ1v3
, (23)

The correspondences between points in the slice and points in the pieces are

p = p̄ + δv3

λ + q0 = p̄ + (1, 1),

where p ∈ (21) and p̄ ∈ (22), and

p = p̄ + δv3

λ + q1 = p̄ + (0, 2),

where p ∈ (21) and p̄ ∈ (23).
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After re-indexing, the input of the recursion step is:
- the polygons Q0 := k1Fv3

, Q1 := k2Fv3
, and Q2 := 32

60k0Fv3
which is the additional polytope,

- the lattice L+ := 〈(9, 0), (7, 2)〉 and
- the perturbation vectors δ0 := δ0v3

= (−17
30 ,−31

30 ) and δ1 := δ1v3
= (13

60 ,−61
30 ).

As β indicates, we choose b01 = b15 = (6, 0) and apply the primary lifting.
For the first piece, the lifting partitions the Minkowski sum Q0 + Q1 + Q2 + δ0 into a primary

b01+Q1+Q2+δ0 and a secondary cell Q0+(1, 2)+ 32
60(1, 2)+δ0. Lifting β induces a mixed subdivision

on the primary cell consisting of the cells b01 + (3, 0) + Q2 + δ0 and b01 + Q1 + 32
60 (1, 2) + δ0. The

former is non-mixed and contains point (9, 0), which corresponds to (10, 1) on the slice which is
also non-mixed under alg. B. The latter is 0-mixed, hence 1-mixed and contains the point (7, 2)
corresponding to the point (8, 3) in the slice which is also 1-mixed under alg. B.

The secondary cell Q0 + (1, 2) + 32
60(1, 2) + δ0 is 1-mixed, hence 2-mixed and contains the integer

points (3, 6), (5, 4) corresponding to the points (4, 7), (6, 5) of the slice respectively which are also
2-mixed under alg. B.

For the second piece, the lifting partitions the Minkowski sum Q0 + Q1 + Q2 + δ1 into a primary
b01+Q1+Q2+δ1 and a secondary cell Q0+(1, 2)+ 32

60(1, 2)+δ1. Lifting β induces a mixed subdivision
on the primary cell consisting of the cells b01 + (3, 0) + Q2 + δ1 and b01 + Q1 + 32

60 (1, 2) + δ1. The
former is non-mixed and contains point (11,−2) corresponding to (11, 0) on the slice which is also
non-mixed under alg. B, whereas the latter cell is 0-mixed, hence 1-mixed and contains the integer
point (9, 0) corresponding to point (9, 2) on the slice which is also 1-mixed under alg. B.

The secondary cell Q0 + (1, 2) + 32
60(1, 2) + δ1 is 1-mixed, hence 2-mixed and contains the integer

points (7, 2), (5, 4) corresponding to the points (7, 4), (5, 6) of the slice respectively. These are also
2-mixed under alg. B. Table 6 illustrates cor. 15 and 16, where the summands come from Q0, Q1 and
Q2 respectively. Recall that c01 := (1, 0) + δ10, c14 := (2, 4) + δ14 and c15 := (6, 0) + δ15.

7 Further work

Let us conclude with algebraic systems whose supports are arbitrary sets. In studying systems with
different Newton polytopes, we need the following:

Definition 18. The set of polytopes Q1, . . . , Qh ⊂ Rn, s.t. dim(〈Q1, . . . , Qh〉) = h − 1, is essential
if every subset of cardinality j, 1 ≤ j < h spans a space of dimension ≥ j.

The toric resultant is well defined only for essential sets of Newton polytopes. An essential set
defines a Minkowski sum of dimension h − 1 but the converse is not always true.

Alg. A admits one main modification in the mixed case: At the Recursion Phase, the faces Fi ⊂ Qi

supported by vector v are not always the same. Let us describe the 0-th iteration for simplicity. We
assume there is no additional polytope. Consider the n-dimensional secondary cell:

CH(b01, F0) + F1 + · · · + Fn ⊂ Rn,

where Fi ⊂ Rn−1. Wlog, let {F1, . . . , Fk} be an essential subset and let L+(k) be the integer lattice
it defines. The algorithm recurses on lattice L+(k) and polytope set (representing a piece)

CH(b01, F0) ∩ Λ+(k), F1, . . . , Fk,

Fk+1 ∩ Λ+(k), . . . , Fn ∩ Λ+(k),
(24)

where Λ+(k) ranges over all possible homothetic copies of L+(k) defined by the different cosets of
L+(k) in its saturation, and the different slices that can be defined as intersections with CH(b01, F0).
Alg. A distinguishes two cases, according to whether there is one or more essential subsets of
{F1, . . . , Fn}. In the former case, v and the corresponding secondary cell are called admissible.
For non-admissible cells, all integer points are considered as non-mixed, i.e. treated as if they lied
in non-mixed cells. For admissible cells, integer dFv is defined [D’A02, sec.4] (cf [Min03]), and dFv
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pieces of the form (24) are (arbitrarily) selected. Lattice points labeled as mixed in these pieces by
the recursive application of alg. A are labeled as mixed overall, the rest are non-mixed.

Reduced systems are such that, for any vector v ∈ Rn, there is some i ∈ {1, . . . , n} so that the
face supported by v in Qi is a vertex. For us, it suffices that this holds for fewer v [D’A01]. For such
systems, as well as for arbitrary systems of 3 bivariate polynomials (n = 2), any sufficiently generic
global lifting that lifts one vertex b01 ∈ Q0 sufficiently high, thus β too, produces a Macaulay-type
formula. The proof is subsumed by that for n = 3 below; cf also [D’A01, DE03a].

Alg. B is modified so that def. 5 applies up to i = n − 1. We sketch a proof that it produces
the same matrix as alg. A, by extending the correlation between maximal cells, established in the
unmixed case. Our proof could be extended to n > 3, but seems complicated; we expect that a more
elegant approach is possible.

In non-admissible secondary cells of alg. A, for any n, we show both algorithms behave the same
way, namely the corresponding lattice points lie in non-mixed cells of alg. B. We demonstrate the
contrapositive by focusing on a mixed cell of alg. B and a corresponding secondary cell of alg. A,
following lem. 14.

Lemma 19. Every t-mixed cell by alg. B, when intersected with a (n− t)-dimensional hyperplane as
in lem 14, is contained in an admissible secondary cell of step t − 1 of alg. A.

Proof. Any t-mixed cell of alg. B is E0 + · · ·+ Et−1 + atj+ Et+1 + · · · + En, where atj is either a
vertex of Qi or some ctj in the interior of an (n − t)-dimensional face, and edges Et+1, . . . , En span
an (n − t)-dimensional space. This cell is intersected by a (n − t)-dimensional hyperplane, similarly
to lem. 14. The intersection is contained in a t-primary cell of alg. A with t-summand btj ; it lies in
a piece of (t − 1)-secondary cell

F0 + · · · + Ft−2 + CH(b(t−1)h, Ft−1) + Ft + · · · + Fn,

where the Fi are faces of the Qi, i = 1, . . . , n, supported by the same vector, with dimFi ≤ n− t. We
claim {Ft, . . . , Fn} contains a unique essential set, with cardinality r + 1, spanning an r-dimensional
space, which is defined as follows: Ft and r ≤ n − t faces, denoted wlog Ft+1, . . . , Ft+r, where r is
minimal so that dim H = r, for H = 〈Ft, . . . , Ft+r〉.

By hypothesis, dim〈Ft+1, . . . , Fn〉 = n − t, since a subspace is spanned by the Ei and has same
dimension. So subsets indexed in {t + 1, . . . , n} span a space of dimension at least equal to their
cardinality. In addition, none of the Fi, i > t + r is contained in H. So every subset indexed in
{t, . . . , n} containing {t} ∪ J , for J ⊂ {t + r + 1, . . . , n}, will be of cardinality ≤ r + |J | and span a
space of dimension r + |J |. Hence there are no other essential subsets.

For n = 3, all admissible secondary cells have dFv pieces, since there is no extra artificial polytope
in the input of alg. A. We distinguish cases on the dimension k − 1 of the space generated by the
essential set {F1, . . . , Fk}, 1 ≤ k ≤ 3, on which the recursion of alg. A occurs:
(1) If k−1 is 0 or 1, the recursion is either trivial (occurs on a vertex), or corresponds to the Sylvester
case.
(2) If k − 1 = 2 and dimFi = 1, i = 1, 2, 3, the two algorithms behave similarly, since def. 5 defines
points c2j in the edges of Q2 and the main lemma applies. Notice that dimQ2 ≥ 1; otherwise the
Qi’s would not form an essential set.
(3) If k − 1 = 2, dim Fi ∈ {1, 2} for i = 1, 2, 3 and at least one face is 2-dimensional. If dimF1 = 2,
then lem. 14 applies. Otherwise, dimF1 = 1 and dimF2 ≥ 1. Irrespective of dim F2, the c2j play the
role of distinguished points and lem. 14 applies again.

Acknowledgments. Both authors are partially supported by the General Secretariat of Research & Tech-
nology, Greece, through PENED’03 program, contract 70/03/8473, co-funded by the European social fund
(75%) and national resources (25%). The first author completed this work while visiting IHÉS.
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