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Statistical entropy was introduced by Shannon as a basic concept in information theory, measuring
the average missing information on a random source. Extended into an entropy rate, it gives
bounds in coding and compression theorems. I here present how statistical entropy and entropy
rate relate to other notions of entropy, relevant either to probability theory (entropy of a discrete
probability distribution measuring its unevenness), computer sciences (algorithmic complexity), the
ergodic theory of dynamical systems (Kolmogorov-Sinai or metric entropy), or statistical physics
(Boltzmann entropy). Their mathematical foundations and correlates (entropy concentration,
Sanov, Shannon-McMillan-Breiman, Lempel-Ziv and Pesin theorems) clarify their interpretation
and offer a rigorous basis to maximum entropy principles. Although often ignored, these
mathematical perspectives give a central position to entropy and relative entropy in statistical laws
describing generic collective behaviors. They provide insights into the notions of randomness,
typicality and disorder. The relevance of entropy outside the realm of physics, for living systems
and ecosystems, is yet to be demonstrated.
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1. Introduction

Historically, many notions of entropy have been proposed. The etymology of the word entropy
dates back to Clausius (Clausius 1865), in 1865, who dubbed this term from the greek tropos,
meaning transformation, and a prefix en- to recall the indissociable (in his work) relation to the
notion of energy (Jaynes 1980). A statistical concept of entropy was introduced by Shannon in the
theory of communication and transmission of information (Shannon 1948). It is formally similar
to Boltzmann entropy associated with the statistical description of the microscopic configurations
of many-body systems and how it accounts for their macroscopic behavior (Honerkamp 1998; Cas-
tiglione et al. 2008). Establishing the relationships between statistical entropy, statistical mechanics
and thermodynamic entropy was initiated by Jaynes (Jaynes 1957; Jaynes 1982b). In an initially
totally different perspective, a notion of entropy rate was developped in dynamical systems theory
and symbolic sequence analysis (Badii and Politi 1997; Lesne et al. 2009). The issue of compres-
sion is sometimes rooted in information theory and Shannon entropy, while in other instances it is
rooted in algorithmic complexity (Gray 1990; Cover and Thomas 2006). As a consequence of this
diversity of uses and concepts we may ask whether the use of the term entropy has any meaning.
Is there really something linking this diversity, or is the use of the same term in so many meanings
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just misleading? A short historical account of the different notions of entropy was given by Jaynes
thirty years ago (Jaynes 1980). I here propose a more detailed overview of the relationships between
the different notions of entropy, not in an historical perspective but rather as they appear today,
highlighting bridges between probability, information theory, dynamical systems theory and sta-
tistical physics. I will base my argumentation on mathematical results related to Shannon entropy,
relative entropy and entropy rate. They offer a reliable both qualitative and quantitative guide for
the proper use and interpretation of these concepts. In particular, they provide a rationale, as well
as several caveats, to the maximum entropy principle.

2. Shannon entropy
2.1.  Definitions

For a random variable X with values in a finite set X', Shannon entropy is defined as (Shannon
1948):

H(X) =~ Y p(x)log,p(z) >0 (1)

TEX

It quantifies the unevenness of the probability distribution p. In particular, the minimum H(X) =0
is reached for a constant random variable, i.e. a variable with a determined outcome, which reflects
in a fully localized probability distribution p(z¢) = 1 and p(z) = 0 for = # xo. At the opposite,
H(X) is maximal, equal to log,(|X]), for a uniform distribution. H(X) is also denoted:

|X]
S(p) =~ Y _ plw:)log, p(x;) (2)
i=1
which underlines the fact that entropy is a feature of the probability distribution p. Entropy does
not depend on the graph x — p(x), i.e, it is not a feature of the random variable itself but only
of the set of its probability values. This property reflects in a permutation invariance of H(X): let
the variable 0. X obtained by a permutation of the states, namely Prob(c.X = ;) = p(z;), then
H(X) = H(c.X). Entropy trivially increases with the number of possible states: for an unbiased
coin, H = log, 2 = 1 while for an unbiased dice, H = log, 6 > 1.

According to the folklore (Avery 2003), the term entropy has been suggested to Shannon by von
Neumann for both its fuzziness and resemblance with Boltzmann entropy . Historically, Shannon
(Shannon 1948) introduced a function H(p1,...,pn) satisfying the following three requirements.

Given a random variable X with values x1,...,x, and corresponding probabilities p1, ..., p,, with
i pi =1

(i) H is a continuous function of the p;;

(ii) if all p; are equal (to 1/n), H(1/n,...,1/n) is a monotonous increasing function of n;

(iii) if we group y1 = {21, Tk, }, Y2 = {Thyt1y oy Thythats -« s Ym = {Tn—ky,+1s -+ Tn}, SO

T Quoting (Avery 2003): when von Neumann asked him how he was getting on with his information theory, Shannon
replied that “the theory was in excellent shape, except that he needed a good name for missing information”.
“Why dont you call it entropy”, von Neumann suggested. “In the first place, a mathematical development very
much like yours already exists in Boltzmann’s statistical mechanics, and in the second place, no one understands
entropy very well, so in any discussion you will be in a position of advantage”. According to another source
(Tribus and Mclrvine 1971), quoting Shannon: “My greatest concern was what to call it. I thought of calling it
“information”, but the word was overly used, so I decided to call it “uncertainty”. When I discussed it with John
von Neumann, he had a better idea. Von Neumann told me, “You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechanics under that name, so it already has a
name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will
always have the advantage” ”.
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that ¢; = ZZEIIZ;:}U p; is the probability of the realisation y;, then

m

Pli+.. kg ki+..4+k;—1

H(phapn):H(QIaan)‘f'E %H( - ¢ 1)7"'7p1+ s )
i=1

qi qi

This yields a functional form H(pi1,...,pn) = —K > ., pilog, p;, which is unigque up to the
multiplicative constant K. Statistical entropy is thus almost uniquely defined according to the
above natural prescriptions (i — iii). It is easy to check from the definition (2) that the en-
tropy of a compound of independent events Z = X; ... X, such that pz = px, ...px, is simply
H(Z) =T]/_, H(X;). Another important property is entropy convezity. Let p = Ap® + (1 — \)p*,
then S(p) > AS(p°) + (1 — X\)S(p') or equivalently H(X) > MH(X°) + (1 — A)H(X!) where
X, X% and X! are random variables with respective distributions p, p° and p'. The difference
S(p) — AS(p®) — (1 — \)S(p') measures the uncertainty added in mixing the two distributions pg
and P1-

2.2.  Information-theoretic interpretation

Shannon initially developed information theory for quantifying the information loss in transmitting
a given message in a communication channel (Shannon 1948). A noticeable aspect of Shannon
approach is to ignore semantics and focus on the physical and statistical constraints limiting
the transmission of a message, notwithstanding its meaning. The source generating the inputs
x € X is characterized by the probability distribution p(x). Shannon introduced the quantity
I,(z) = —log, p(x) as a measure of the information brought by the observation of = knowing the
probability distribution p. In plain language, one could correctly say (Balian 2004) that I,(x) is
the surprise in observing x, given prior knowledge on the source summarized in p. Shannon entropy
S(p) thus appears as the average missing information, that is, the average information required
to specify the outcome x when the receiver knows the distribution p. It equivalently measures
the amount of uncertainty represented by a probability distribution (Jaynes 1957). In the context
of communication theory, it amounts to the minimal number of bits that should be transmitted
to specify = (we shall come back to this latter formulation in § 5.2 devoted to data compression
and coding theorems). I,,(z) is currently denoted I(x), regrettably forgetting about the essential
mention of the distribution p.

The actual message is one selected from a set of possible messages, and information is produced
when one message is chosen from the set. A priori knowledge of the set of possible messages is
essential in quantifying the information that the receiver needs in order to properly identify the
message. A classical example is the quantification of the information needed to communicate a
play by Shakespeare, whether the receiver knows in advance that he will receive one of the plays
by Shakespeare (and then transmitting only the few first words is sufficient), or not (and then
the whole text of the play has to be transmitted). What changes between the two situations is
the a priori knowledge, i.e. the set of possible messages. In the above formalization, it is described
through the a priori probability p(z) describing the source. We thus emphasize that the meaning
of information makes sense only with reference to the prior knowledge of the set X of possible
events = and their probability distribution p(x). It is not an absolute notion but rather a highly
subjective and relative notion, and for this reason it is advisable to speak of “missing information”
rather than “information”. Moreover, the precise and technical meaning of information in Shannon
theory often mixes up with the loose meaning of information in current language. Henceforth, we
shall use the term knowledge instead of information when the latter is used with its non-technical
meaning (plain language).

Shannon information and its statistical average, Shannon entropy, should not be confused with
Fisher information. The latter appears in parametric estimation, that is, estimation of a parameter
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a of a probability distribution p,(z). It is defined as Ir(a) = [01Inp/da)]? (for a one-dimensional
parameter, see e.g. (Amari and Nagaoka 2000; Cover and Thomas 2006) for the multivariate ex-
tension). Its main interest comes from Cramer-Rao bound (Kagan et al. 1973), relating Fisher
information and the variance Var(a) of the estimated value & of the parameter a according to
Var(a).Ir(a) > 1. We shall discuss further the geometric meaning of Fisher information in relation
to relative entropy in § 2.4.

2.3. Conditional entropy, relative entropy and Kullback-Leibler divergence

Shannon entropy extends to multivariate random variables (Gray 1990; Cover and Thomas 2006).
It involves their joint distribution, e.g. for two random variables X and Y taking their values in a
priori two different (discrete and finite) spaces X and ):

== > pla,y)logs p(x, y) (3)
reX yeY
From this joint entropy, one defines the conditional entropy H(X |Y) = H(X,Y) — H(Y'), which
appears to be the average (over Y) of the entropies of the conditional probability distributions
pX|Y =y):

H(X|Y)=H(X,Y) => ) |- D plaly)log, p(zly) (4)
yey X
Using a convexity argument (Honerkamp 1998), it is straightforward to show that H(X |Y) <
H(X) < H(X,Y). In particular, H(X|Y) < H(X) reflects the fact that uncertainty on X is never
increased by the knowledge of Y. In case of multiple conditioning, we have H(X|Y, Z) < H(X|Y) <
H(X).

When the random variables X and Y have the same state space X', with respective distributions
px and py, it is possible to consider the relative entropy:

Hye(X]Y) = Srer(px|py) = ZPX z)log,[px (z)/py (7)] (5)

It is easy to show (Cover and Thomas 2006) that S, (px|py) < 0. The opposite of the relative
entropy defines the Kullback-Leibler divergence (Kullback and Leibler 1951). For two probability
distributions p and ¢ on the same space X

D(pllq) = =Srer(plg) = Zp x)logy[p()/q(x)] = (6)

D(pl|q) is not a distance since it is not symmetric and does not satisfy the triangular inequality; its
sole common property with a distance is that D(p||q) > 0 and D(p||g) = 0 if and only if p = q. We
shall see (§ 2.4 and § 3.2) that it has nevertheless useful geometric properties and interpretation.

To give an illustration of the use and interpretation of these quantities, let us consider a stationary
Markov chain (X;)¢>0. Then H(X;|X,) and H(X|X;) increase with time ¢, while D(p;||pstat)
decreases to 0 (denoting p; the distribution at time ¢ and psq: the stationary distribution). We
emphasize that one should not confuse:

— the conditional entropy H(X|Y) = H(X,Y) — H(Y) of the random variables X and Y, which
could now take their values in different sets X and ); its computation requires to know the joint
distribution pxy of X and Y, defined on the product space X x ).

— the relative entropy H,;(X|Y") between the random variables X and Y, taking their values in
the same set X, or equivalently Kullback-Leibler divergence D(px||py) between their probability
distributions both defined on X’;
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The distinction between relative and conditional entropies becomes yet clearer when introducing
the mutual information:

I(X:Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|[Y) = HY) — HY|X)  (7)
of two random variables X and Y. Its definition could be reformulated as:
I(X;Y) = D(pxvy|lpxpy) (8)

where pxy is the joint distribution of (X,Y) and px, py the marginal distributions. Mutual
information I(X;Y) measures the full correlations between X and Y: it vanishes if and only if
X and Y are independent, while it equals H(X) if X = Y. The notion can be extended into a
conditional mutual information (mutual information between X and Y given Z), defined as:

IX;YZ2)=H(X|Z)+ HY|Z)-H(X,Y|Z) 9)

2.4.  Information geometry

Kullback-Leibler divergence has another geometric meaning, related to the so-called Fisher in-
formation metric (Amari and Nagaoka 2000). For a parametrized family p(z,a) of probability
distributions where a has d components, Fisher information metric writes:

_ [ 9logy p(x,a) dlog, p(z,a)

20\ _ ig ]
dp=(a) = ;giyj(a)da da’  where g;;(a) = da, oa; p(z,a)dz  (10)

hence

dp*(a) = 2D[p(., a)|lp(., a + da)] (11)
This metric endows the parametrized family with a d-dimensional Riemannian differential manifold
structure. The parameters a give the coordinates on this manifold. Working at the level of a
space of probability distributions recovers a continuous setting even if the underlying features (e.g.
state space) are discrete. This makes available the tools of differential geometry, allowing to study
statistical structures as geometrical structures.

Parameters a are currently to be estimated from data. As already mentioned above for d = 1,
a bound on the estimator is given by the Cramer-Rao theorem, stating that (Kagan et al. 1973):
V.(a) — G(a)™! is a positive semi-definite matrix, where V,(a) is the variance-covariance matrix
of the estimator & with respect to the distribution p(.,a) and G(a) is the Fisher metric at point
p(.,a). It means that the local geometry of the space of probability distributions, as described by
the Fisher information metric, expresses the sensitivity of the distributions with respect to their
parameters, which is relevant both for estimation from experimental data and control.

2.5.  Behavior of entropy upon coarse-graining and local averaging

Compositional law requirement (iii) involved in the construction of Shannon entropy, § 2.1, ex-
presses explicitly the behavior of Shannon entropy upon a coarse-graining, in which elementary
states (;)i=1,...,» are grouped into macrostates (y;);=1,...,m, with Prob(y) = > . p(z). The en-
tropy H(X) of the original variable X is equal to the entropy of the coarse-grained variable Y,
supplemented with the average entropy of a grain Y = y;, that is, the conditional entropy of X
knowing Y = y; averaged over the probability distribution of Y. This additional term is nothing
but the conditional entropy H(X |Y)), from which follows that:

H(X)=H. ,(Y)+HX|Y) (12)

H.,(Y) < H(X), with a strict inequality as soon as the coarse-graining is non trivial, i.e. m < n.
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On the other hand, Shannon in its seminal paper (Shannon 1948) already noticed that any
change toward equalization of the probabilities p1, ..., p, increases H. Such a change is in particular
achieved through a local averaging. For instance, defining p} = [p; +pi+1]/2 (with pl, = (pn+p1)/2),
one gets Hy, = S(p') > H = S(p). Local averaging should not be confused with coarse-graining.
Local averaging preserves the number of elements and H,, (€) increases with the scale € at which the
local averaging is performed (¢ = 2 in the above example). By contrast, coarse-graining amounts
to grouping elements into a reduced number of macro-elements or grains. It leads to an entropy
decrease : H.q < Hp, where the decrease gets stronger when the size € of the grains increases.

Another puzzling situation is the case where the transmission in a communication channel is
incomplete, and yields X as the outcome of an input (X,Y’). The first way to model this situation
is to describe a deterministic channel truncating the initial message. In this viewpoint, the entropy
of the output is H(X), which is lower than the entropy H(X,Y) of the source, and incomplete
transmission would be said to decrease entropy. A second way to model the situation is to describe
a noisy channel replacing Y by a fully random noise n with the same state space ) and fully
independent of X. Now the entropy of the output is H(X)+ H(n) = H(X)+log, || which is larger
than H(X)+H(Y), itself larger than the entropy H(X,Y") of the source: the truncated transmission
corresponds to an increase of entropy. Entropy is thus dramatically sensitive to the considered set
of possible events, here X or X x ) respectively. This example underlines the irrelevance to speak
of an information loss or information transfer between systems having different states spaces. We
here recover the caveat that speaking of (missing) information makes sense only with respect to
the prior knowledge of the possible states.

2.6. Continuous extension

Extension of entropy to continuous-valued random variables has already been discussed in (Shan-
non 1948) and it is today a textbook matters (Thara 1993). The entropy now expresses S(p) =
— [y p(x)logy p(z)dx where p(zx) is a density with respect to the measure dz. The difficulty in
extending entropy to a random variable taking its values in a continuous set comes from the fact
that— [ dz p(x) log, p(x) is not invariant upon a change of coordinate y = f(z), leading to replace
p(x)dx by q(y)dy with p(z) = | f'(z)|q(f(x))). Whereas the discrete entropy is an absolute quantity,
this continuous entropy is relative to a coordinate system, and defined up to an additive constant.
The difficulty disappears when considering the relative entropy or equivalently the Kullback-Leibler
divergence (Ihara 1993) since the continuous extension D(p|lq) = [, p(z)logy[p(x)/q(x)]dz is now
invariant upon a change of coordinates f. We here see an instance of the general fact that con-
tinuous probabilities are fundamentally more delicate to tackle, leading to well-known paradoxes,
like the Bertrand paradox (namely, what is the probability that a long needle drawn at random
intersects a given circle with a chord longer than a given length). The main point is to keep in
mind that the meaningful quantity, having a proper mathematical behavior e.g. under a change of
coordinates, is not p(z) but p(x)dx.

3. Concentration theorems and maximum entropy principles
3.1.  Types and entropy concentration theorems

We here consider sequences Ty € XN of N independent and identically distributed random vari-
ables with values in a finite set X. This space X is currently termed the alphabet and its elements

t Actually D(u||po) is defined for any pair of probability measures on a Polish topological space X, e.g. a closed
subset of R®, provided the probability measure u is absolutely continuous with respect to jg. Then it writes

D(plluo) = [, dulog(du/duo); otherwise D(ul|po) = +00.
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symbols, in reference to messages in communication theory. The definitions and results of this sec-
tion will equally apply to configurations of N independent and identical elements with elementary
states in X. A first essential notion is the type pz, of the sequence or configuration Zy: it is the
relative number of occurrences of each symbol in Z . In other words, it is the empirical distribu-
tion of the symbols in the sequence T . It is thus an observable quantity, derived in an observed
sequence Ty as the normalized histogram of the different symbols.

The sequence space XN can be partitioned into classes of sequences having the same type. By
extension, these classes are termed “types”. Each probability distribution p on X defines a type,
i.e. a subset of XV. The space X" can be seen as a microscopic phase space (see § 8.2); the types
then define macrostates. There are at most (1 + N)I?*! different types (Cover and Thomas 2006),
whereas the number of sequences in XV grows exponentially. In consequence, at least one type has
exponentially many elements (Csiszér 1998). Actually, we shall see now that, asymptotically, one
type contains most elements. In its simplest formulation, the entropy concentration theorem states
(Georgii 2003) (Card denotes the cardinal):

1
A}im i log, Card{Zn € XN, pzy =p} = H(p) (13)
extending into the relaxed statement, for any sequence py tending to p as N — oo:
1
A}im i log, Card{Zn € XV, pzy =N} = H(p) (14)

Denoting Prob the equiprobable distribution on the microscopic phase space XV (i.e. the normal-
ized cardinal), this statement can be rewritten:

1
lim N log, Prob[zy € XN, pzy = pn| = H(p) — log, | X| (15)

N—oo

It accommodates some fixed tolerance €, namely:
1
Jim - logy Problzy € X, [psy —pl < €] = H(p) — log, || (16)

Let p* the distribution maximizing Shannon entropy: H(p*) = log, |X'| whereas H(p)—logs | X| < 0
for any other type p # p*. It means that asymptotically, the type of p* contains almost all sequences.
More precisely, one can show:

]\;Erlerob[iN € XN |pay(z) —p*| <€ =1 (17)

Configurations with type p* form a typical set: it is exponentially large compared to any other set
containing sequences with type p with p # p*:

J\}ilnoo Probzy € XN, pzy(z) =p] =0 and ]\}Enoo Probzy € XN, |pzy(z) —p*| > €] =0 (18)

decreasing exponentially fast with N as stated above in (15). The type of p*, although typical, is

nevertheless exponentially small compared to the set of all possible configurations, which underlies
the difference between possible and probable configurations.

These statements extend to the case of a constrained subset D of probability distributions:
D = {p probability on X, (aa(X))p = Aa, a=1,...,m} (19)

The statistical average (a;(X)) computed with respect to the empirical distribution pz, is nothing
but the empirical average (1/N) Zf\il aq(x;). Tt is thus straightforward to check whether a given
observation Zy (actually a set of independent individual observations) satisfy the constraints, i.e.
whether its type belongs to D. Denoting p}, the distribution maximizing Shannon entropy in D,
the conditional probability in XV that the type of a sequence is close to p, within some fixed
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tolerance € > 0, converges to 1:
Jim Problzy € X, [ps, (#) — pp(a)] < € | pr, €D =1 (20)

Entropy concentration theorem describes quantitatively the fact that almost all configurations
satisfying empirically the constraints (that is, having empirical averages equal to A,, « =1,...,m)
have an empirical distribution asymptotically close to the mazimum entropy distribution p}. The
same statement holds with relaxed constraints, defining a larger set of probability distributions:

Ds = {p probability on X, [{aa(X))p — Aal <96, a=1,....m} (21)

and replacing pp with the distribution pp,, maximizing Shannon entropy in Ds. One can show
(Robert 1990) that p}, and pp, are unique, and that pp, weakly converges to pp, when ¢ converges
to 0.

Since uncorrelated sequences are not always a realistic model, one may wonder about a concen-
tration theorem for correlated sequences. We shall see such an extension below, § 5.1. The main
modification required to capture correlations is to replace H by an average entropy rate h.

3.2.  Relative entropy concentration and Sanov theorems

We could also be willing to make statement about the asymptotic weight of the different types,
given the distribution py of the elements. Accordingly, we now consider sequences of independent
elements whose states are identically distributed according to the distribution py on X' (sometimes
termed the reference distribution). The sequences in XY being uncorrelated, their probability
distribution is merely the product distribution pSZ’N . In this case, all the sequences with the same
type have the same probability since (Georgii 2003):

p(()@N(jN) _ 2—N[H(P5N)+D(PEN||PO)] (22)

This identity shows that the quantity controlling the asymptotic behavior is no longer the entropy
but the relative entropy, or equivalently its opposite, the Kullback-Leibler divergence (6):

o1 _
Jim = logy pi ™ [Fn € XY, pay = pl = = D(pllpo) (23)

recovering (15) when pg is uniform; indeed, if pynis is the equiprobable distribution on X, then
D(p||punis) = log, |X| — H(p). This statement accommodate some fixed tolerance e > 0, namely:

1 _
Jim - log, pi [z € X, ps,, —pl < e = =D(p]Ipo) (24)

It embeds the well-known estimation theorem stating that the empirical distribution psz, con-
verges to the actual one py. In particular, the law of large numbers ensures that almost surely
Impy oo D(pzy|lpo) = 0 (Csiszér and Korner 1981; Csiszar 1998). But the above statements go
further and allow to control the remainder, that is, large deviations, finite-size errors in the esti-
mation and the convergence rate towards the true distribution py.

A related issue is the inference of distributions satisfying linear constraints, typically the knowl-
edge of some moments, while imposing the least possible bias on the reference distribution pg.
Considering the same constrained sets Dy and D as in § 3.1, the solution is given by the closest
distributions to pg, as measured by the Kullback-Leibler divergence, that belong respectively to
Ds and D. More precisely, under the assumption that D is not empty and contains at least one
distribution having a non-vanishing relative entropy with respect to py, one can prove that (Robert
1990):

(i) there exists a unique distribution Pp, in Ds and a unique distribution p7, in D maximizing the
relative entropy with respect to the reference distribution pg, respectively in Ds and D;
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(i) pp, weakly converges to pp, when 4 converges to 0;

(iii) pp, has the concentration property in Ds: for any neighborhood Vs of pp,, in Ds (for the
narrow topology, i.e. the weak topology for bounded continuous real functions on X’), Ja > 0,
3Ny, such that VN > Ny, pSV [z € XN, pzy & Vs | pzy € Ds) < e Ne.

(iv) p% has the concentration property in D: for any neighborhood V of py, in D, 3o > 0, 3Ny,
such that VN > No, pSN [z € AN pay €V | pzy € D] < e Ne.

This is a large deviation result (Ellis 1985; Touchette 2009), stated in a way supplementing
the previous concentration theorem, § 3.1, since it allows to control the remainder. It is valid
only with Kullback-Leibler divergence: other measures of the distance between the two distribu-
tions, e.g. quadratic distance, do not satisfy a large deviation statement (Robert 1990). Note that
D(pp,llpo) < D(ppllpo) since D C Ds. Let us consider the distribution o* maximizing the relative
entropy —D(o]|po) in the complement of V in D (thus by construction D(c*||po) > D(ph]|po))-
The exponent « is roughly given by D(c*||po) — D(p’p||po). The larger is V, the more distant o*
is from p¥,, the larger is D(0*||po) hence the larger is its difference with D(p5||po), and the larger
is a. It means that the exponential decrease as N tends to infinity of the relative weight of the
configurations whose type is not in V is the faster the larger is V, i.e. the more distant these types
are from p%,. When X is discrete and po is uniform (all states in X having the same probability
1/|X|), the probability p$ coincides with the normalized cardinal and we recover the particular
theorem derived by Jaynes (Jaynes 1982a).

For independent random variables identically distributed according to the distribution pg, the
above statements extend to convex subsets C of probability distributions on X, according to the
Sanov theorem (Sanov 1957):

o1 _ :
Jim < log, p) (Tn € XY, pay € C) = = inf D(v ||, po) (25)

It is a large deviation result (Ellis 1985; Touchette 2009), that could also be seen as a projection
(Georgii 2003), see below § 3.3. Sanov theorem extends to continuous densities. The space X is
now a continuous metric space. For any convex subset C of probability densities on X:

Jim (1/N)log, gV [En € XN, ¢y (x) €C) = — inf D(fl9) (26)
where ¢ () = (1/N) vazl 0(x—x;) is the empirical distribution (continuous type) and for instance
C is defined according to

6(x) € C /X h(@)é(@)dz = a (27)

The theorem states that the major contribution to ¢g®N[zx € XN, ¢n(z) € C] comes from the
distribution that maximizes the relative entropy under the constraint of belonging to C.

3.3. Geometric interpretation

Kullback-Leibler divergence is a useful tool allowing to work in a space of probability distributions,
here the space P(X) of probability distributions on X. For instance, for any subset C C P(X) that
does not contain the reference distribution pg, we could consider:

Q(po) = argmin cp(x)D(ql|po) (28)

The distributions in C minimizing D(.||p®) could be termed the “orthogonal projections” of p° onto
C. When C is closed for the weak topology, such minimizers are ensured to exist (Georgii 2003). If
moreover C is convex, then the minimizer Q(pp) is uniquely determined (Csiszér 1975). It is called
the I-projection of p® on C and D(Q(po)||p") measures the “distance” between p° and the set C.
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For this reason, Kullback-Leibler divergence could be more natural and more efficient than true
functional distances, e.g. Ly distance ||p — g||2. Recall that the mapping p — D(p||p°) is lower
semi-continuous in this weak topology (Georgii 2003); it is also strictly convex.

Given a sample of probability distributions (px)k=1,....m, Kullback-Leibler divergence allows to
define a notion of empirical average p of the sample, according to (Georgii 2003; Balding et al.
2008)

_ : IS
P = argmingepx) — Z D(q||px) (29)
k=1

This definition of an average object is suitable when arithmetic mean of the sample does not make
any sense (Balding et al. 2008); it shows that the average can in fact be identified with a projection.

Another interesting interpretation of Kullback-Leibler divergence is related to conditional ex-
pectation. Let X be a sub-sigma algebra of the original one Xj. Let p be the original probability
density of the considered random variable X, defined on ¥g. The conditional expectation E¥p is
the Y-measurable density such that for any >-measurable function f:

/jumwaz/ﬂwE%wwx (30)

E>p corresponds to the coarse-graining of p adapted to the coarser sigma-algebra ¥, i.e. a coarse
description of the random variable X. An explicit computation, using that [ p(x)log,[E¥p(z)]dz =
[ E*p(x) log,[E*p(z)]dz according to the above definition, leads straightforwardly to the relation:

D(p||E®p) = S(E”p) — S(p) >0 (31)

Moreover, it comes D(p|lq) — D(p||E¥p) = D(E%¥p||q) for any Y-measurable density ¢, hence
(Csiszar 1975):

argminq Y —measurable D(p||q) = Ezp (32)

3.4.  Mazimum-entropy inference of a distribution

An acknowledged heuristic principle in constructing a statistical model given some prior knowl-
edge, e.g. experimental data, is to minimize the bias introduced in the reconstruction: an ob-
server with the same (in general partial) knowledge would make the same inference (Bricmont
1995). In particular, without any prior knowledge on the observed process, one should consider
equiprobable outcomes. This principle dates back to Laplace principle of indifference (or princi-
ple of insufficient reason) (Jaynes 1979; Jaynes 1982a; Jaynes 1982b). When the constraints are
linear with respect to the probability distribution, e.g. a condition on its support and/or pre-
scribed values for some of its moments, a constructive method for implementing this principle is
to maximize Shannon entropy under the constraints. Reconstruction of the probability distribu-
tion using maximum entropy principle is by no means restricted to statistical mechanics or any
other specific applications: it is a general method of inference under a priori constraints, ensuring
that no additional arbitrary assumptions, i.e. no bias, are introduced (Frank 2009). A discrepancy
between predictions and observations presumably originates from an ill-constrained maximum en-
tropy principle, and gives evidence for the need of additional constraints (or the need of relaxing
spurious constraints). Constraints amount to restrict the relevant space of probability distribu-
tions in which the statistical model is to be reconstructed. Once the constrained probability space
is given, the distribution achieving maximum entropy is unique, due to the concavity of the en-
tropy. Indeed, if p; and p5 were two distinct distributions achieving the maximum entropy value
H*, any convex combination Apf + (1 — A\)ps with 0 < A < 1 would achieve a strictly larger value
H(; + (1— \p3) > AH(p5) + (1~ \)H(p3) = H".
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More explicitly, let us consider a random variable X having n possible outcomes 1, ..., x,. We
do not know the corresponding probabilities p(x1), ..., p(z,) but only the value of some averages
(aa(X))p = >0 p(xi)aa(z;), a = 1,...,m, and we want to estimate another average (b(X))
(which is exactly exactly the issue encountered in statistical mechanics, § 8). As just explained,
the problem can be reformulated as follows: what is the distribution p(x) on the finite space
X ={x1,...,2,} maximizing Shannon entropy under the constraints:

(i) p(z) >0 for any x € X,

(i) Y pexp()de =1,
(iii) fora=1,...,m, >  crp(7)aq(z)dr = A,.
The solution writes (Jaynes 1982a; Frank 2009):

p(z;) = C exp <_ Z Aaaa(%’)) (33)

where the Lagrange multipliers )\, are determined so that the constraints (iii) are satisfied and
the multiplicative constant C' ensures the proper normalization (ii). This solution has already been
established by Shannon (Shannon 1948) for continuous distributions in some specific contexts:
the distribution on [—o0, oo[ maximizing entropy at fixed average u and fixed variance o2 is the
Gaussian distribution NV (u, 02), and the distribution on [0, co[ maximizing entropy at fixed average
p is the exponential distribution f(z) = (1/u)e=%/*.

Underlying maximum entropy principle is the view of probabilities as an expression of our igno-
rance: maximum entropy approach belongs to the subjective probability viewpoint as opposed to
the frequentist viewpoint (Gillies 2000). As discussed below in § 9.1, probability distributions rep-
resent our state of knowledge, rather than an intrinsic feature or behavior of the observed system.
There should be no confusion between maximum entropy principle and maximum entropy pro-
duction principle (if any). Entropy production represents the part of the thermodynamic entroppy
variation due to irreversible process, letting apart the contribution of matter transfer (§ 8.5), and
it has no direct statistical counterpart.

Prior knowledge on the system in the absence of constraints expresses under the form of a refer-
ence probability distribution pg, reflecting for instance symmetries and invariance properties. This
additional knowledge has to be taken into account in statistical inference of the actual probabil-
ity distribution by maximizing the relative entropy Sye;(p|po) under constraints, or equivalently
minimizing the Kullback-Leibler divergence D(p||pg) = —Srei(p|po) under constraints (Banavar et
al.. 2010). This turns the maximum entropy principle into a mazimum relative entropy principle.
Note that while maximum entropy principle applies to discrete distributions, maximum relative
entropy principle also applies to continuous distributions with no ambiguity (§ 2.6). The density
maximizing relative entropy under the constraint (h(X)) = « is given by (up to a normalization
factor) (Kagan et al. 1973):

fa(@) ~ g(z)erh) (34)
and A is such that:

/ h(2) f(2)dzx = a (35)
X

A similar statement holds with array of conditions, in which case h(z) and A are vectors, and
the product has to be replaced by a scalar product At.h(x). A justification of the maximum rel-
ative entropy principle has been given by Van Campenhout and Cover (Van Campenhout and
Cover 1981): the distribution maximizing the relative entropy can be characterized as the limit
of a sequence of conditional probabilities. Let us consider independent and identically distributed
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variables Xi,..., Xy with density pg. The conditional probability of X; under the constraint
(1/N) vazl h(X;) = « on the empirical average converges to the distribution maximizing the
relative entropy, namely:

L
I&iinoo dProb <X1 =z N ; hX;) = a) = fa(z)dx (36)

The usefulness of this theorem depends largely on the proper identification of the observable h(x).
The ideal situations is to identify a function h(z) such that hy = (1/N) ZZJ\LI h(X;) is a sufficient
statistics, summarizing all the relevant knowledge about the sample at the macroscopic scale.
In this case, given hy, the sample associated with the maximum relative entropy distribution is
maximally random and conveys no further information.

Note the transitivity of the maximum relative entropy principe. Namely, starting from a reference
distribution pg, we could first determine the maximum relative entropy distribution pj associated
with a set of constraints (p;) = a;, ¢ = 1,...,n, then starting with pj as the reference distribution,
we could determine the maximum relative entropy distribution ps associated with a set of con-
straints (p;) = a;, ¢ =n+1,...,n+m. It would be the same as determining the maximum relative
entropy distribution associated with the set of constraints (¢;) = a;, i = 1,..., n+m starting from
the reference distribution pyq.

A serious conceptual problem in the practical application of maximum entropy inference method
has been pointed out in (Haegeman and Etienne 2010): the distribution obtained by maximizing
entropy seems to depend on the chosen setting. Let us consider for instance a system composed of
M cells and N individuals, and investigate the distribution of the pattern formed by the partition
of individuals in the different cells. In a first viewpoint, the system configuration is described by
labelling the individuals and the cells and recording the cell m; in which the individual ¢ lies;
we thus obtain a N™ possible configurations m = (my,...,my). In a second viewpoint, the M
cells are labelled but individuals are now indiscernible, and the system configuration is described
by the occupancy numbers n,, of the cells; we thus obtain at most M < NM) configurations
n = (ny,...,np). Note that the later description follows from a coarse-graining of the former,
according to n,, = Zf\;l 0(m, m;). Maximum entropy principle applied to inference of the distri-
bution p(m) yields a uniform distribution, for which all configurations m are equiprobable, and the
maximal entropy is S = N log, M. By contrast, maximum entropy principle applied to inference
of the distribution p(n) yields a uniform distribution for the coarse-grained configuration n, which
obviously does not coincide with the coarse-grained distribution obtained from an equipartition
of the elementary configurations m. This discrepancy is quite puzzling. It means that accounting
or not from the identity of the individuals is an information that strongly modifies the inference;
another clue about this difference comes from the different levels of description and the fact that
entropy does not commute with coarse-graining (the entropy of a coarse-grained description be-
ing always smaller than the entropy computed at a more refined level). This leads to the open
question of the proper a priori choices in using maximum entropy inference method, since the
choice of the configuration space strongly influence the resulting distribution and the macroscopic
quantities (averages and moments) that could be computed from it. Paradoxes are solved by a
consistency argument (constraints consistent with the considered distribution) or turning back to
the mathematical foundations (types and entropy concentration theorems). Here, concentration
theorems apply only to the convergence of the empirical distribution n of the population among
the different spatial cells towards the actual spatial distribution (spatial type). By contrast, there
is no rigorous mathematical foundation for the application of maximum entropy principle neither
to the reconstruction of the distribution p(m) nor that of p(n).

We emphasize that maximum entropy principle is justified not only as the formalization of the in-
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tuitive indifference principle of Laplace but also, rigorously, by the entropy concentration theorems,
§ 3.1. These theorems state that asymptotically, i.e. for a large enough number N of independent
and identical elements with elementary states x € X, the number of configurations whose empirical
distribution (their type) is the probability distribution p on X behaves as 2V () In consequence,
an exponentially dominant set of configurations yields the distribution p* achieving the maximum
entropy. Observing experimentally a microscopic configuration yielding a different empirical dis-
tribution pops # p* has an exponentially small probability, decreasing like 27 [H @) —H (o] The
statement extends to constrained distributions: the configurations whose type satisfies a set of
linear constraints concentrate about the distribution maximizing relative entropy under the same
constraints. Accordingly, almost all microscopic configurations behave in the same way as regards
their macroscopic features. It is thus legitimate to predict that real distributions in A will almost
surely agree with the prediction of the maximum entropy principle, in the limit N — oco. A similar
statement holds when a reference distribution pg is given, replacing Shannon entropy H(p) with
the relative entropy —D(p||po). The asymptotic nature of the statement, reflecting in a condition
on the sample size N, could nevertheless be limiting in some situations. Also, it relies on the
independence of the different elements or individuals which often cannot be assumed. We shall
see below, § 5.1, an extension of concentration theorems to correlated populations or samples; it
involves an average entropy rate h instead of the entropy or relative entropy. We underline that
maximum entropy prediction applies only to the empirical distribution or type, i.e. a probability
distribution in the elementary state space X'. Its application to probability distributions describing
another feature of the system, in a different space, leads to paradoxical results, as illustrated above.

Another example used by Boltzmann (Cover and Thomas 2006) is that of N dice thrown on the
table such that the sum of the spots on their visible faces is some integer value Na. We wish to
known the most probable macrostate, where a macrostate describes the number of dice showing
k spots for each & = 1,...,6. The answer is given by maximizing entropy of the probability
distribution, namely (pg)r=1,...¢ under the constraint 22:1 kpr = « on its average (and the
normalization constraint 22:1 pr = 1). This yields pp = exp(Ao+ kA1) where \g and Ay are chosen
so as to verify the constraint of normalization and the constraint on the average. The rationale of
using here maximum entropy principle comes from the theory of types and concentration theorems,
§ 3.1: For any fixed €, we have the following asymptotic behavior for the conditional probability:

6
I\}iinooProb {xN,pa;N—p*| <e kal.N(k‘):aN} =1 (37)
k=1
where a is a sequence tending to a when N tends to infinity (and such that Najy is an integer),
and p} is the probability distribution on the elementary state space maximizing entropy at fixed
average . Prob corresponds to equiprobable configurations, namely it is given in the case of dice
by the cardinal divided by the total number 6% of configurations (uniform reference distribution).

In conclusion, maximum entropy applies safely only to the inference of the elementary distribu-
tion in a population of independent and identical individuals with discrete states. It supplements
standard estimation method of a distribution from the empirical one (normalized histogram) by
providing bounds on the convergence rate to the true distribution and controlling finite-sampling
errors. Maximum entropy arguments can also be used to justify a parametric expression of the form
(33) or (34) for a distribution. An ecological example, namely the reconstruction of species spatial
distribution as a function of bioclimatic fields, can be found in (Phillips et al. 2006; Phillips and
Dudik 2008). It extends into a maximum relative entropy principle when the issue is to update a
prior distribution (reference distribution py) with additional knowledge and constraints, basically
replacing entropy with relative entropy in the statements.

A corollary of Shannon maximum entropy principle is Burg maximum entropy theorem. It states
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that the process wich maximizes entropy subject to correlation constraints is an appropriate au-
toregressive Gaussian process (Cover and Thomas 2006). More explicitly, the stochastic process
maximizing the entropy rate given the correlations (X; X, x) = oy for £ =0,..., K is the Kth-
order Gauss-Markov process X; = — 25:1 apX;_r + Z; where Z; is an independent and uncor-
related centered Gaussian process of variance o2 and the values of (ak)k=1,...,x and o2 are chosen
so that the constraints are satisfied. A corollary is the fact that the entropy of a finite segment of
a stochastic process is bounded above by the entropy of a segment of a Gaussian process with the
same covariance structure (Cover and Thomas 2006). This theorem validates the use of autoregres-
sive models as the less biased fit of data knowing only their correlations. Nevertheless, it does not
validate an autoregressive model as an explanation of the underlying process. In the same spirit,
the fact that the least biased fit of a distribution with a given mean p and variance o2 is the normal
distribution N (u, 0?) does not prove that the distribution is indeed a Gaussian distribution. Here
dedicated hypothesis testing should be developed in order to check whether the underlying process
is indeed linear, or not.

3.5.  An dllustration: types for uncorrelated random graphes

Let us mention a possible extension of the method of types to uncorrelated random graphs, be-
longing to the recently expanding statistical mechanics of networks. A graph is fully specified by a
set of N nodes and an adjacency matrix A describing the edges between these nodes (i.e. A;; =1 if
there is an edge between the nodes ¢ and j, else A;; = 0, in particular A;; = 0). Defining the degree
k; of the node ¢ as the number of edges linked to i (explicitly, k; = Zjvzl A;j;), a degree sequence
[k](A) can be associated with the adjacency matrix A. We deduce the normalized histogram p4 (k)
of this sequence, which is nothing but the empirical degree distribution. The average degree (k),, ,
with respect to this empirical distribution p4 coicindes with the degree average Zfil k;/N, itself
equal to 2M (A)/N where M (A) is the number of edges of the graph. They are random variables
insofar as A is itself a random variable when considering statistical ensembles of random graphs.
A graph can be considered at four different hierarchical levels:

~ the adjacency matrix A € {0,1}" 2, containing the full knowledge about the graph, at the level
of the pair of nodes;

— the degree sequence [k](A) € NV at the node level, in which permutations (of the nodes) matter;
— the empirical degreee distribution p (k) € P(IN), which is invariant upon node permutations;

— the empirical average 2M (A)/N of the degrees, which coincides with the statistical average
according to the distribution p4.

At this stage, we can work with two different statistical ensembles of graphs:

— the microcanonical ensemble EN. . (My) = {A, M(A) = My} endowed with uniform probability

maicro

distribution QN, . (Mp) = 1/|EX.....(Mp)| (some tolerance M can relax the condition M(A) =
My, with no quantitative consequence at the level of entropy in the limit N — oo)

— the canonical ensemble £V endowed with the Gibbs probability distribution Q¥ (M) satisfy-
ing the maximum entropy criterion under the constraint (M) oN (M) = Mo.

Let us consider the case of an uncorrelated graph with degree distribution pg, namely the N
degrees are drawn at random, independently, according to the distribution py. The degree sequence
[k] is thus a realization of an uncorrelated and uniform sequence with distribution p°, and it is
distributed according to the product distribution p?N .The empirical degree distribution p4 can
be seen as the type ppj(a) of the degree sequence [k](A), in a way similar to the type of a random
sequence in probability theory. We denote Ny (p) the number of sequences of length N having the
type p € P(N). Csiszdr-Korner theorem then states (Csiszar and Korner 1981): for any sequence
(pn) N such that limy_ PN = po,

Jim (1/N) log Ny (pw) = H (po) (38)
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and for any convex set C C P(IN), Sanov’s large deviation theorem states that:

Jim (1/N)log p§ " {[K]. py) € €)} = — inf D(pllpo) (39)

4. Shannon entropy rate
4.1.  Definition

For a stationary stochastic process (X;);>¢ (in discrete time t) with values in a finite set X', Shannon
entropy of the array (Xi,...,X,) is termed block entropy of order n and denoted H,,. It is the
Shannon entropy of the n-word distribution p,,, namely:

Hy ==Y pu(wy)logy pu(w,) = h(ps) (40)
Wn

where the sum runs over all the possible n-words w,,. The n-block entropy captures quantitatively
correlations of range shorter than n, by contrast with the simple entropy H = H; which is only
sensitive to the frequencies of the different elementary states (also termed “symbols” henceforth).
Considering n-words and associated block-entropy should not be confused with coarse-graining nor
with local average, § 2.5. The latter take place in the state space of a single variable X while p,,
is a probability distribution in X™. For a stationary process, it follows from the definition and
properties of the conditional entropy that (Karlin and Taylor 1975):

0<HXp41|X1,.. ., Xn) <HXpt1| Xo,. ... Xpn) = HX, | X4, .., Xn21) (41)

This inequality could be rewritten 0 < H, 41 — H, < H,, — H,,_; from which follows the existence
of the Shannon entropy rate (Karlin and Taylor 1975; Cover and Thomas 2006):
h= lim Hypy — Hy = lim H(Xpi1|X1,..., Xn) = H(Xo | X) (42)

where )?: (Xi)—co<i<—1. This entropy rate h is equivalently defined as the limit (Karlin and
Taylor 1975; Cover and Thomas 2006):

h= lim 2° (43)

n—oo 1
This latter limit exists as soon as lim,,_,oc Hpt1 — H, exists, and it then takes the same value; we
shall here consider situations where the two limits exist, hence coincide. h is an asymptotic quantity,
characterizing the global statistical features of the source. In particular it captures correlations of
any range. It thus provides a quantitative measure of the overall temporal organization of the
process. Let us denote

H,
By = Hpp1 — Hy = H(X, 11| X1, ..., X)) and g = —2 (44)

n

These intermediate quantities are monotonously decreasing toward their common limit A, and thus
provide upper bounds on the entropy rate according to

hoas > b > h= lim h, = lim fp.qo (45)

n—oo n—oo

An important point in using entropy rate for data analysis (Lesne et al. 2009) is that h makes
sense for both deterministic and stochastic sources. Considering a sequence (X7, ..., X,) of length
n, it can be shown (Karlin and Taylor 1975) that random shuffle o increases entropy, namely
H,(0.X) > H,(X) except for an uncorrelated stationary process, for which H,(0.X) = H,(X) =
nH1(X). This property is exploited in surrogate methods to assess that an experimental sequence
is not produced by an uncorrelated stationary source. The argument relies on showing that its
estimated entropy rate is significantly lower than most of the entropy rates estimated from the
shuffled sequences. Entropy rate estimation from data and interpretation in practical contexts is a
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whole domain of research, deserving on its own a critical review (Kantz and Schrieber 1997; Lesne
et al. 2009), far beyond the scope of the present paper.

4.2.  Ezamples and special cases

For a sequence of independent and identically distributed random variables, h = Hy, i.e. h reaches
its upper bound (at given symbol frequencies). Temporal correlations always lower h. For a sta-
tionary Markov chain of order 1, h = Hy — Hy, while for a stationary Markov chain of order ¢,
H, = Hy+ (n—q)h as soon as n > ¢. In this case, h,, = h exactly as soon as n > ¢, whereas h, q
gives only an approximation of h, with a remaining positive term [H, — gh]/n. Accordingly, in the
general case, h,, is the entropy rate of the Markov approximation of order n of the source. Note
that the entropy rate of a first-order Markov chain with transition matrix

IL=p p
mo = (0 (46)
equals that of a Bernoulli process B with probability Prob(B = 1) = p (both entropy rates are
equal to h = —plogyp — (1 — p) logy (1 — p)). This illustrates the fact that there is no one-to-one
correspondence between entropy rates and processes. There is no way to directly infer insights on
the underlying process and its features from the value of h itself: only a differential study makes
sense. It could rely on the comparison between either two experimental systems (for classification
purposes), or a real system and a model (for quality assessment), or two models (for model selection
purposes). Only h = H; is directly meaningful, indicating the absence of temporal correlations in
the process. Even h = 0 does not lead to a clear-cut conclusion since it is observed for both a
periodic dynamics and a dynamics at the onset of chaos.

Let us also consider a less simple situation, that of a hidden Markov model Y; = X; & E; where
@ is the exclusive-or logical operation, X is a binary Markov chain with a symmetric transition
matrix (46) as above, and E is a Bernoulli noise process with parameter e. Their common entropy
rate is h(E) = H1(F) = —elogy € — (1 — €) log,(1 — €). In other words, Y; is obtained by randomly
flipping the symbol X; with a probability €, without any correlation between the successive flips.
This is the typical case of a noisy transmission, where Y is the outcome of a noisy channel fed with
an input X. It can be shown (Zuk et al. 2005) for small € that h(Y) = h(X) + ec; + O(€?) with
c1 = 2(1—2p)logy[(1 —p)/p]. It is to note that ¢; > 0 as soon as 0 < p < 1 hence h(Y) > h(X) at
least for small enough noise. Observing Y; is associated with a greater surprise than observing X,
since an additional degree of randomness, the noise Ey, sets in. Using the fact that H,(Y) > h(Y),
it follows that for § small enough and ng large enough, the inequality H,(Y) > § + H,(X) holds
for any n > ng. It is also to be underlined that H1(X) = H1(Y) = 1 (the noise does not break the
symmetry insofar as the stationary state of both processes X and Y corresponds to equiprobability
between symbols 0 and 1). Accordingly the difference between the input and output in terms of
information contents and the influence of noise on transmission cannot be appreciated using only
Shannon entropy.

4.3.  Information-theoretic interpretation

In the information-theoretic interpretation of Shannon entropy H, § 2.2, the inputs were the ele-
mentary states or symbols € X. Let us now consider the more realistic case where the message
is formed by the concatenation of symbols emitted at each time by the source. For independent
symbols, the source is still fully characterized by the entropy H of the elementary distribution. In
the general case, time correlations are present between the sucessive symbols, and one has recourse
to h to characterize the source. It is thus important to distinguish H and h: h < H < log, |X| and
h < H as soon as correlations are present. Indeed, using the stationarity of the process (Feldman
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2002):
h = Nllm H(X()|X,1,...,X1,N)
—00
= H(Xo)— lim I(Xo; Xoi,..., Xin)
= H(Xo)—I(Xo; X) (47)

from which we deduce that for a stationary source, h = H; if and only if there are no corre-
lations between X, and (} The entropy rate h captures both the unevenness of the symbol
distribution and the correlations along the sequence, in a non additive way so that it is impos-
sible to disentangle the two contributions. By contrast, H provides only quantitative character-
ization of the unevenness of the probability distribution of the symbols. Using the expression
h =1lim, e H(Xo|X_1,...,X_5), another interpretation of h is the information required to pre-
dicted Xy knowing the whole past.

From its very definition and the information-theoretic interpretation of Shannon entropy, § 2.2,
h is the average information brought by the observation of an additional symbol (Feldman 2002).
Equivalently, the average missing information to predict the value of the next symbol in X is not
log, |X| bits (1 bit for a binary sequence) but h bits. Indeed, some knowledge is brought by both
the time correlations and the unevenness of the symbols frequency distribution. It means that some
redundancy is present in a sequence of length N and, on the average, Nos = Nh/log, |X| bits are
enough to represent the sequence (N.f¢ = Nh in case of a binary sequence).

Entropy rate also plays a role in statistics, insofar as it captures time correlations of the process,
which centrally control error bars in estimation issues. For instance, for a stationary Gaussian
process X, it can be shown (Cover and Thomas 2006) that the variance o2, of the error of the
best estimate of X,, given the infinite past is related to the entropy rate h(X) of the process
according to 2mwec?, = 221(X)  More generally, in the issue of estimation from an experimental
sequence, Neyy = Nh(X)/logy | X] is the effective length of the sequence, relevant for appreciating
the importance of finite-size effects. The notions of entropy rate H(X) and effective length Ny
thus provide the foundation of estimation theorems for correlated samples, e.g. the estimation of
the underlying distribution from the observation of a time-correlated trajectory (Sokal and Thomas
1989; Sokal 1997; Lesne et al. 2009).

4.4. Derived notions

There is still a wide range of possible temporal structures for a dynamics characterized by a
given entropy rate h. This observation motivated the search for additional measures to quanti-
tatively characterize temporal structures or patterns and their statistical complexity (Feldman
and Crutchfield 1998; Feldman 2002). A first direction has been to consider a quadratic function
Q(p) = (H(p)/Hmaz)[1—H(p)/ Hmasz] where Hypop = logy | X is the maximum entropy observed for
distributions on the same space X as p. The idea is to enforce the expected behavior of a statistical
measure of complexity, namely vanishing for regular, e.g. periodic, and fully random distributions
(Shinner et al. 1999). Nevertheless, this quantity Q(p) contains almost exactly the same knowledge
about the distribution p than the entropy H(p). It describes its features almost exactly at the
same level and in the same way, as shown by the inverse formula H(p)/Hpmar = [1 + /1 —4Q)]/2.
In fact, @ contains slightly less information since H and H — H,,4, correspond to the same value
of @, meaning that an additional degeneracy is introduced in p — Q(p) compared to p — H(p).
Similarly, the quantity A(hmq, — h) is not a complexity measure since it does not bring further
insights on the structure and organization of the system compared to entropy rate h (it is not
enough that it vanishes for regular and fully random sources). A more insightful notion is the
effective measure complexity (Grassberger 1986; Gell-Mann and Lloyd 1996; Gell-Mann and Lloyd
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2003), also termed excess entropy (Feldman 2002):
E=I(X | X)=1(k; ™) (48)

For instance, h = 0 is observed in several very different cases, e.g. periodic signals and onset of
chaos. Excess entropy allows to discriminate the different situations associated with a vanishing
entrppy by capturing the way H,,/n converges to h = 0. For instance, H,, = const for a periodic
signal while H,, ~ log, n at the onset of chaos (Feldman 2002). More generally (Grassberger 1986)
H, ~ E + nh+ h.o.. Excess entropy equivalently expresses (Badii and Politi 1997):

2H, — Hap ~
E = lim (H, —nh) = lim ~—"——2" = "n(h,_1 — h,) + H — h (49)
n—oo n—oo n =1

A natural extension of the entropy rate is the mutual information rate (Gray 1990; Blanc et al.
2008)

i(X;Y) = lim (1/n)I([X1,...,Xn); [Y1,...,Y2)]) (50)

n— oo

Denoting 0.X the shifted sequence, such that (0.X); = X;1¢, it is possible to show (Blanc et
al. 2011) that the mutual information rate satisfies i(X,6.X) = h(X) and i(X,0.Y) = i(X,Y).
Shannon in its historical paper of 1948, in the section devoted to transmission in a noisy channel,
actually introduced the mutual information rate between the input signal and the output signal,
and named it the rate of actual transmission. Denoting X the input (message emitted by the source)
and Y the output (message after transmission in the channel or more generally any input-output
device), the conditional entropy rate h(X|Y) = h(X,Y) — h(Y) measures the average ambiguity of
the output signal, i.e. the entropy of the message X emitted by the source given the output Y. One
has h(X|Y) = 0 as soon as the knowledge of the output sequence (y1,...,yn) allows to determine
the input message. In other words, h(X|Y) is the amount of additional information that must be
supplied per unit time to correct the transmitted message Y and recover X, while h(Y|X) is the
part due to noise in h(Y"). These two quantities are directly related to the mutual information rate
as follows:

i(X;Y) = h(X) — M(X[Y) = h(Y) - h(Y]|X) (51)

A different extension is based on the introduction of the Rényi entropy of order o (Rached et al.
2001):

H) (p) = —— log, (Zﬁ) (52)

and Rényi divergence of order «

1 —a
D) (pllg) = —— log (Zp?qf > (53)

recovering respectively Shannon entropy and Kullback-Leibler divergence for a = 1, according to
lim, 1 H®)(p) = H(p) and lim,_; D (p|lq) = D(p||q). Similarly, one could extend the Rényi
entropy of order « into an entropy rate h(®) = lim, .. H®(p,)/n where p, is the n-word distri-
bution of the source. The rationale for considering those extended entropy rates is to give a tunable
weight to rare or frequent events, eg. rare events contribute relative more in A(® for o = 1 than in
h. Their drawback is the lack of subadditivity property except for « = 0 and a = 1. It also flaws

non extensive thermostatistics which is based on these generalized entropies (Balian 2004; Balian
2005).
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4.5.  Spatial extension

Block-entropies and entropy rate are statistical descriptors of a time series. Only technical care
is needed to extend these notions and apply them to the quantitification of a spatially extended
structure by considering spatial labels (z,y) or (z,y, z) instead of time ¢. One can obviously com-
pute the Shannon entropy of the probability distribution describing the fraction of space occupied
by the different species forming the pattern (normalized over the different species). A more refined
quantification involves Shannon entropies at different scales of observation e (local averages). Con-
sidering a partition of the space in N(e) disjoint cells of size € and denoting p;(¢) the measure of
the cell ¢ (with Zil\i(f) pi(€) = 1, normalized over the different spatial cells), a meaningful index
is the information dimension describing the e-dependence of the entropy (Badii and Politi 1997;
Castiglione et al. 2008):

N (e
D = lim Zi:(l) Di (6) 10g2 pi<€)

54
e—0 10g2 € ( )

Another promising but yet not much developed index is the multivariate extension of the entropy
rate devised for a time sequence. One has to consider increasing sequences (By,),, of multidimen-
B, |, then
check that the resulting entropy rate does not depend on the chosen sequence (i.e. if An C B, C
Api1, then h([A]) = h([B])). It would allow to evidence the existence of patterns, exactly like the
entropy rate h is exploited in time series analysis to evidence non trivial temporal organization
(Kantz and Schrieber 1997; Lesne et al. 2009). In this context, one should not confuse:

sional blocks (e.g. squares for a spatial structure in the plane) and h = lim, o, Hp, /

(i) the quantification of spatial structures by means of statistical entropy;
(ii) the investigation of thermodynamic entropy production in dissipative spatial structures.

To my knowledge, whether a relationship exists or not between the degree of spatial order of the
structure and pattern and the thermodynamic entropy production when this structure or pattern is
associated to nonequilibrium state of some process (dissipative structure) is still an open question
(Mahara and Yamaguchi 2010). Presumably there is no universal link since entropy production di-
rectly involves the dynamics of the system while the pattern statistical entropy quantifies only the
stationary outcome of the dynamics. In particular, different dynamics (with different entropy pro-
ductions) could produce the same stationary patterns hence be associated with the same statistical

entropy.
5. Asymptotic theorems and global behavior of correlated sequences
5.1.  Shannon-McMillan-Breiman theorem

An extension of concentrations theorems to the case of correlated sequences is provided by Shannon-
McMillan-Breiman theorem (already stated for Markov chains in (Shannon 1948), Theorem 3).
Under an assumption of stationarity and ergodicity of the considered stochastic process, this the-
orem states that the number of typical m-words (i.e. that have the same properties corresponding
to almost sure behavior) behaves like e™" as m — oo where the exponent h is the entropy rate of
the source (Shannon 1948; McMillan 1953; Breiman 1957; Cover and Thomas 2006) . A corollary
of this theorem is the Asymptotic equipartition property, stating that the probability p,,(w,,) of a

—mh common to all typical m-words, hence the

typical m-word w,, takes asymptotically the value e
name “equipartition”. The statement has to be made more rigorous since the limiting behavior of
the probabilities when m — oo is still a function of m. Introducing the random variables P,, (de-
pending on the whole realization Z of the symbolic sequence) such that Pm(f) = pm (0, -y Tm—1),
the asymptotic equipartition property writes:

lim (—1/m)logy P,y — h  in probability (55)

m—00
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i.e. for any 6 > 0 and € > 0 (arbitrary small), there exists a word-size threshold m*(J, €) such that:
Prob({Z, pm (20, - - -, Tm—_1) > 274DV < € and Prob({Z, pm (o, . . ., Tpm_1) < 2mP=01) < ¢
for any m > m*(d, €), or equivalently, in terms of m-word subset:
Pon({Br, P (W) > 27 RFOYY <€ and pry ({0, P (W) < 27P70Y) < e
Asymptotic equipartition property for a sequence of independent and identically distributed vari-
ables is a mere consequence of the law of large numbers, stating that (—1/N) Zil log, [p(X;)]
converges to (log,[p(X)]) = H(p) for N tending to infinity. Shannon-McMillan-Breiman theorem

extends the law to correlated sequences. Nevertheless, all available results apply to stationary
sources, which could be a strong limitation in practical situations.

Another corollary of Shannon-McMillan-Breiman theorem is to describe quantitatively how h
accounts in an effective way for the correlations present within the sequence. Namely, the effective
probability of a new symbol, knowing the sequence of length [ that precedes, is asymptotically
(i.e. for I — 00) either e™ or 0 whether the ensuing (I + 1)-word is typical or not. By contrast,
it is equal to the symbol frequency in the case when there is no correlations within the sequence.
We recover the interpretation of h as being the average information brought by the observation of
an additional symbol. A pedagogical proof is given in (Algoet and Cover 1988) and (Karlin and
Taylor 1975).

For N asymptotically large, Shannon-McMillan-Breiman theorem ensures that, up to second-
order terms, one has Hy =~ logy Ny where Ny is the number of (asymptotically equiprobable)
typical sequences. We shall see, § 8.2, that this approximate formulation of the Shannon-McMillan-
Breiman theorem parallels the definition of Boltzmann entropy in the microcanonical ensemble.
Here we can interpret Hy as the average information brought by the reception of a message (i.e.
one of these Ny messages). We emphasize that Shannon-McMillan-Breiman theorem deals with
probable sequences, by contrast with a grammar, which describes the set of possible sequences, or
equivalently the rules for generating all the possible sequences.

Two derived formulations of Shannon-McMillan-Breiman theorem can be useful. Let My (€) be
the cardinal of the smallest ensemble F of N-sequences whose total measure overwhelms 1 — e.
Then limy_ .« (1/N)logy Nn(€) = h. The second one is given as Theorem 4 in (Shannon 1948)
and states as follows. Let us order the sequences of length N at decreasing probabilities and define
n(q) as the number of sequences (starting with the most probable one) needed to accumulate a
total probability ¢ (0 < ¢ < 1 being fixed, independent of N). Then limy_..(1/N)logyn(q) = h.

5.2.  Compression of a random source

In this subsection, we address the issue of the compression of a random source. We deal here with
ensemble compression, that is, how to transmit the most economically any one message from a
given set. The question is to determine the minimal piece of knowledge that should be transmitted
to faithfully discriminate one message from all the other possible ones. The reference to a specific
ensemble of messages, or more generally of events, is essential. It is currently specified through a
probability distribution. A special case is a source generating successive symbols, for which we deal
with the compression of an ensemble of sequences. An essentially different issue is the compression
of a single sequence, that will be addressed in § 6.2.

In the most general case, the optimal encoding for source compression has been introduced by
Shannon and is known today as the Shannon-Fano code. Given a finite set X of elements x and
their distribution of probability p(z), a binary code is a correspondence x — w(x) where w(zx) is a
binary word, i.e. a finite string of 0 and 1 representing . We denote W the finite set of codewords
representing the elements of X and [,, the length of the codeword w. The code is univoquely and
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locally decodable if the following condition, known as the Kraft’s inequality, is satisfied:

D)= Y 27 <1 (56)
weWw
The code is said to be compact if the inequality is replaced by an equality. Compact codes corre-
spond to optimal codes insofar as their codewords have a minimal length. Otherwise, it is possible
to compress the coding of the elements of X while preserving the univoquely and locally decodable
character of the code: indeed, if I}, > 1, for any word w, then X(I') < ¥(I). Given the probability
p(w) = plr(w)], minimization of the average length >y lwpyw at fixed X(I) = 1 yields

Ly = logy(1/Pw) (57)

equal to the missing information required to specify x(w). The average codeword length is then:

I==Y plw—logyp(w) == p(x)log, p(x) = I(p) (58)
weW TEX
Shannon entropy thus gives the average codeword length for an optimal binary code, achieving the
optimal compression of the information needed to represent events x knowing only their probability
of occurrence p(x) in the event set X.

Kullback-Leibler divergence D(p||q), § 2.3, measures the extra average length of the codewords
when one uses an ill-adapted Shannon-Fano binary code, namely a code adapted to the probability
distribution ¢ whereas the actual probability is p (think for instance of a Morse code optimized for
English used to transmit a french text). Indeed, the prescription of a Shannon-Fano code adapted
to the probability distribution g is to use a codeword of length [, = —log, ¢, to represent an event
x € X of probability g,. If the actual probability is p, the average length is (I) = —>___» Pz 1085 ¢»
while the optimal average length is (I)opt = — D, c v Pz 1083 Pz, yielding (1) — ([)ope = D(plq)-

In the case of a sequence-generating source, the source X emits with the probability p(Zy) a
message Ty of length N written in the alphabet X (i.e. the set of elementary events, usually
termed “symbols”). For transmission or storage purposes, one encodes the message into a binary
sequence w, aiming moreover at minimizing the length of the coded message. A complete absence
of knowledge at time t on the next symbol x4 generated by the source X is achieved in case of
a sequence of independent and equiprobable symbols (uncorrelated and fully random source), in
which case h(X) = H; = log, |X|. Accordingly, Shannon defined the redundancy of a source X
as 1 — h(X)/log,[X]. Compression takes benefit of the discrepancies from such a full randomness,
originating either in an uneven distribution of the elementary events (meaning that some symbols
are observed more often), or in time correlations (meaning that observing a symbol z; at time ¢
somehow conditions the subsequent observation x;y1), or both.

Source compression is already possible for a sequence of independent and identically distributed
discrete random variables. It takes benefit of the unevenness of the frequencies of the different
symbols: in the asymptotic limit N — oo, there are only 2V#(®) typical sequences instead of the
maximal number 2V1¥! of possible sequences. More constructively, for each realization (x1,...,2N),
there exists a binary string wy(x1,...,zN), given by a one-to-one mapping, and such that for any
arbitrary small €, there exists N, for which the average length satisfies {|wy|) /N < H(p) + € for
any N > N.. It means that on the average, a realization Z of the original sequence is encoded by
N H bits for N large enough.

For a correlated sequence-generating source X, compression also takes benefit of the temporal
correlations and the compression rate is controlled by the entropy rate h(X) < H(X). After an
optimal compression of the source X, there shoud be no more redundancy in the compressed
source W. In other words, there should be no bias in the symbol distribution and no correlations
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between the successive symbols in the binary sequences w, so that knowing wy,...,w; gives no
clue on the next symbol wy41: the entropy rate of the source W is equal to 1, meaning that the
average missing information per symbol in sequences w takes its maximal value, equal to 1. Such an
optimal encoding is achieved by the above Shannon-Fano code (where events are now sequences of
length N). According to this coding procedure, the length of the binary sequence w;z, encoding the
sequence Z is [(Wz ) ~ logy(1/p(Z ). Asymptotically, limy o0 (1/N){l(wz)) = h(X), from which
follows that h(X) is the average number of bits required to optimally encode a symbol emitted
by the source. A realization of the original sequence being on the average encoded by Nh(X)
bits, the shortest binary sequences representing faithfully the original source during a duration
N will have an average length Nh(X). We see here that compression of sequences (with no loss
of information) is controlled in the asymptotic limit N — oo, where only typical sequences (in
the sense of Shannon-McMillan-Breiman theorem) are to be taken into account. In this limit, the
entropy rate h(X) gives a lower bound (per symbol of the original sequence) on the compression
that could be achieved.

6. Relation to algorithmic complexity
6.1.  Kolmogorov complexity

Algorithmic complexity, also termed Kolmogorov complezity, as been introduced independently by
Chaitin, Kolmogorov and Solomonoff (Chaitin 1966; Solomonoff 1978; Durand and Zvonkine 2007)
to characterize a single sequence. The notion of (average) missing information introduced in a
probabilistic setting is replaced in the algorithmic approach by the length of the shortest program,
with no reference to an ensemble of sequences nor an a priori probability. More explicitely, a single
sequence Ty of length N can be compressed into a binary sequence of minimal length K(Zy)
describing the shortest program able to generate Z . Any other program generating the sequence
has a length L(Zy) such that K(Zy) < L(Zn) < N, i.e. K(Zy) provides a lower bound. For arbi-
trarily long sequences, the computer-specific contribution to K (Z ) becomes relatively negligible
(Durand and Zvonkine 2007), hence algorithmic complexity is generally defined in reference to a
universal Turing machine. Since entropy is not a measure of complexity, the name of algorithmic
complexity is misleading: it is of little help to characterize the complexity of a source (Gell-Mann
and Lloyd 1996; Gell-Mann and Lloyd 2003). It should rather be termed “algorithmic information”
as recommended in (Badii and Politi 1997). The theory is of limited power for short sequences,
but now stationarity of the sequence is not mandatory. The main issue with algorithmic complex-
ity and its conditional extensions is their non computability. It leads to have recourse to lossless
compression algorithms to approximate (upper bound) algorithmic complexity, see § 6.2.

In the same way as one defines an entropy rate h, one could consider an algorithmic information
density for a given sequence Z, defined as C(Z) = lim,,—,o, K(Z,)/n where Z,, is a n-word extracted
from Z (the limit does not depend on the choice of this block) (Badii and Politi 1997). Remarkably
its has been shown (Ziv and Lempel 1978) that for a stationary and ergodic source, C(Z) coincides
up to a normalization factor with the entropy rate of the source for almost all sequences Z (typical
sequences in the sense of Shannon-McMillan-Breiman theorem), namely C(z) = h/log, |X|. It
follows that on the average,

K(3
Jim E@EN)) _ h/log, | X| (59)
The average-case growth rate of Kolmogorov complexity is thus related to Shannon entropy rate
according to (K (Zy)) ~ h/log, | X| for N large enough (Feldman and Crutchfield 1998). The notion
fruitfully extends to that of conditional Kolmogorov complexity K (x|y) of a sequence or random

object z. It describes the length of the shortest program able to generate x when making use of
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extra knowledge y, for instance K(x|A) knowing = € A (Gell-Mann and Lloyd 1996; Gell-Mann
and Lloyd 2003).

6.2.  Lempel-Ziv compression scheme and coding theorems

We already mentioned in § 5.2 that two compression issues are to be carefully distinguished:
compression of an ensemble of sequence (source compression) and compression of a single sequence.
In both case, compression is achieved by the most efficient /economical encoding, hence coding and
compression issues are thus solved jointly, and are limited by the same bounds, involving (Csiszér
and Korner 1981; Badii and Politi 1997; Falcioni et al. 2003):

— either the Shannon entropy rate for compression of a source of known probability, i.e. compression
of the set of sequences emitted by the source (§ 5.2);

— or the algorithmic complexity for a single sequence emitted by an unknown source.

We focus on the second situation. Compression of a single sequence Z is possible if K(Z) < |Z|
(accordingly, a sequence Z with K(Z) = |Z| is termed incompressible).

The difficulty for practical purposes, in which we have to consider finite-length sequences Zy, is
the incomputability of (Z ). In order to circumvent this incomputability, compression algorithms
with no loss of information can be used to obtain upper bounds, the better the more efficient the
compression is. One of the most successful is Lempel-Ziv algorithm (a variant is used today in
JPEG compression software). Its general principle is to enumerate new substrings discovered as
the sequence evolves from left to right (Badii and Politi 1997; Cover and Thomas 2006). According
to the Lempel-Ziv scheme, the sequence of length IV is parsed in N,, words. Two different parsings
have been proposed, either (Lempel and Ziv 1976):

leOe(0lel0e11l e100e 101 @ 00 @ 010 @ 11...

delineating as a new word the shortest one that has not yet been encountered, or (Ziv and Lempel
1977):

1e0e0l 101 @ 1100 e 1010 @ 001011 » ...

delineating as a new word the shortest subsequence that has not yet been encountered (Ziv and
Lempel 1977) (the fourth word in the above example is thus 101 and not the 2-sequence 10 since
the latter has already been seen). The parsing allows to encode efficiently the original sequence
with no loss of information. Indeed, each new word appearing in the parsing is uniquely specified
by the already encountered word by which it begins and the additional symbol by which it is
completed. One then computes:

No[l + logg Ny

N
providing an upper bound on the algorithmic complexity rate of the original sequence.

A remarkable result for a stationary and ergodic source is Lempel-Ziv theorem (Ziv and Lempel
1978). It states that both algorithmic complexity rate and Lempel-Ziv complexity rate are asymp-
totically equal to h (up to a constant normalization factor depending on the definitions and choice
of the logarithm base) for almost all sequences:

N—oo N N—o0 Ink ( )
It means that for N large enough, I:o (Zn) gives not only an upper bound on K(Zy)/N but also
an approximation Lo(Zy) =~ K(Zy)/N with asymptotic equality. Lempel-Ziv theorem also means
that almost all symbolic sequences have the same compressibility features, hence the computa-
tion can be equivalently performed with any typical sequence. From Shannon-McMillan-Breiman
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theorem, § 5.1, typical sequences have a full measure, hence sequences drawn at random or ob-
served experimentally are typical; only sequences generated from a specially chosen non generic
initial condition might happen to be non typical. Hence, in practice, computing the Lempel-Ziv
complexity Lo gives an estimate of the entropy rate h, up to a normalization factor and provided
a sufficient convergence (N enough large) is achieved (Lesne et al. 2009). A simpler computation
involves

i Ny log, N

with  lim L=nh (62)
N —o0

Replacing log; by log, makes the limit directly comparable to h whereas the original definition

is normalized with a common upper bound equal to 1. Several variants and improvements of the

original Lempel-Ziv algorithms have been developed, see for instance (Wyner and Ziv 1989).

6.3.  Randomness of a sequence

One of the first formalization of the randomness of a sequence is due to von Mises: a single binary
sequence is random if the limiting frequency of 1 exists and does not change when considering
an infinite subsequence chosen at random (i.e. chosing the subset of labels without involving the
actual values 0 or 1 associated to each one). Kolmogorov refined this notion into that of (N, e)-
randomness, of relevance for finite sequences of length N, with a fixed tolerance € (see (Vovk and
Shafer 2003) for a detailed historical account and original references).

Nowadays, algorithmic complexity theory gives a rigorous basis to what is randomness of a
sequence (Falcioni et al. 2003; Parisi 2003; Castiglione et al. 2008). An incompressible sequence
Z, i.e. such that K(Z) = |z|, is termed algorithmically random (Li and Vitanyi 1997; Durand and
Zvonkine 2007). This notion of randomness is stronger than statistical randomness since some
statistically random sequences (whose digits pass the statistical of being uniformly distributed,
e.g. the decimal digits of ), are not algorithmically random. It has been applied to real numbers
by Martin-Lof (Martin-Lof 1966) : introducing a dyadic representation of real numbers, he proved
that almost all binary sequences thus obtained (for the Lebesgue measure on the associated set of
real numbers) have a maximal algorithmic complexity C' = 1.

7. Relation to ergodic theory of dynamical systems
7.1.  Metric entropy

Shannon entropy for discrete-valued and discrete-time stochastic process has an exact analog in
ergodic theory of dynamical systems. It has been developed by Kolmogorov (Kolmogorov 196) and
Sinai (Sinai 1959), and there called metric entropy or Kolmogorov-Sinai entropy. Given a discrete-
time evolution z,+1 = f(x,) on a compact topological space, one considers a finite partition Py
and the refinements generated in the course of time by the map f, namely P,, = Py V f~1(Py) V
...V f7™(Py). One then computes:

Ton(Po) = — % S m(An) nm(Ay) (63)

An€Py

where m is the invariant measure under the action of f, and:
h(Po) = lim by (Po) = h(%) (64)
The metric entropy, or Kolmogorov-Sinai entropy is finally obtained as (Wehrl 1978):

his = sup h(Xp) (65)
Po
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It is actually a rate of entropy. Note that one uses In instead of log, in dynamical systems theory.
This is a purely conventional choice, motivated by practical and historical reasons since the two
quantities are related by a factor of In 2, namely hxs = h. In2 (i.e. ehrs = 2h). Metric entropy his
has been introduced to solve the “isomorphism problem”, i.e. whether there is a mapping between
two seemingly different dynamical systems, preserving the dynamical and statistical relationships
betwen the successive states. hx s being invariant under any isomorphism, two dynamical systems
with different values for hxg are non isomorphic. It also proved to be a very fruitful quantity
for quantifying the seemingly erratic and irregular behavior of chaotic dynamical systems (Kantz
and Schrieber 1997). In some cases, e.g. one-dimensional Anosov maps, there exists partitions P,
termed generating partitions, such that the continuous dynamics is exactly isomorphic to a discrete
stochastic process. It is then enough to know at each time the location of the trajectory in P (i.e.
the symbol labeling at each time the corresponding element of the partition) to uniquely specify
the initial condition in the continuous phase space, and to reconstruct the continuous trajectory
from the symbolic sequence. For a generating partition P, 71(77) reaches its maximum value hgg,
and coincides up to a factor In2 to the Shannon entropy rate of the symbolic sequence, namely
hks = h/In2. Accordingly metric entropy can be equally computed on discretized trajectories.
One could say more: according to Jewett-Krieger theorem (Krieger 1970; Krieger 1972; Falcioni et
al. 2003; Glasner 2003), a continuous-valued dynamical system in discrete time, with finite entropy
hxs > 0, is equivalent to a stochastic process with a finite number of states, and the minimal
number m of states satisfies 55 < m < 1+ %5 These results are the basis and justification of
symbolic dynamics, replacing the analysis of the dynamical system generated by a continuous map
by that of the symbolic sequences describing the evolution at the level of the generating partition

P.

For a deterministic dynamics, a positive metric entropy hxs > 0 is currently considered as
a criterion and quantitative index of chaos (Lagués and Lesne 2008; Castiglione et al. 2008). A
justification is the relationship between hxg and the sum of positive Lyapounov exponents (Pesin
1997)

hgs < Y %= (66)

1, ¥ >0

This inequality, known as Pesin inequality, turns into an equality for sufficiently chaotic systems,
e.g. Anosov systems (Ledrappier and Strelcyn 1982; Castiglione et al. 2008). It means that pro-
duction of information (i.e. gain of information about initial conditions by observing the trajectory
one step more) is provided only by unstable directions, hence hxg < Z%J“ . Negative Lyapunov
exponents v; < 0, associated with stable directions, play here no role. The relevance of metric
entropy in data analysis to globally quantify the temporal organisation of the evolution has been
recognized in numerous applications. It is now a standard tool of nonlinear time series analysis,
for both continuous-valued and discrete (symbolic) sequences (Kantz and Schrieber 1997).

One could define the so-called e-entropy by considering a partition P, of the phase space with
cells of diameter bounded above by ¢, instead of taking the supremum over all possible partitions
as in (65). The noticeable point is that e-entropy can be defined and computed for any dynamic
process, whether deterministic or stochastic. A behavior lim._o h(€) = hgg with 0 < hggs < oo is
characteristic of a deterministic chaotic system. For a truly stochastic process, h(e) diverges as €
tends to 0, and the form of its increase as a function of 1/e discriminates different kinds of stochastic
processes, with trajectories all the more irregular as the increase is steeper. For instance, it behaves
as (1/€)? for a Brownian process (Nicolis and Gaspard 1994; Falcioni et al. 2003; Castiglione et al.
2008).



Shannon entropy 27

7.2. Topological entropy

Another entropy-like quantity, topological entropy hiop, is of relevance for describing the overall
statistical behavior of a dynamical system. Denoting N (n, €) the maximal number of trajectories
e-separated over n time steps (i.e. for at least one time between 0 and n, the distance between the
trajectories is larger than ), it is defined as :

hiop = lim lim sup 1 log N'(n,€) (67)
e—=0 oo N

By contrast with metric entropy h which is relative to an invariant ergodic measure, hs,, depends
only on the distance endowing the phase space. It describes how many trajectories are required to
span the phase space with a prescribed resolution. As for h, it is defined as a rate (entropy per
unit time). When a generating partition exists and allow to investigate the statistical features of
the dynamics on a reduced symbolic version, topological entropy expresses lim, . (1/n)log N,
where N, is the number of admissible n-words. This formula shows that topological entropy is
in fact already present in Shannon’s seminal paper. It coincides with the notion of capacity of a
deterministic communication channel (Shannon 1948): C' = limy_.(1/N)logy, My where My is
the number of signals of length IV that could be transmitted in the channel.

The introduction of Rényi entropy rates, § 4.4, allows to unify metric and topological entropies
in unique framework: one indeed recovers h(a = 1) = hgg/In2 and h(ow = 0) = htop/In2. The
generalized framework of Rényi entropies is of relevance in the application of thermodynamic
formalism to dynamical systems and their multifractal analysis (Badii and Politi 1997), briefly
presented in the next subsection.

7.3.  Thermodynamic formalism

To derive in a systematic way all the relevant statistical features of a discrete-time dynamical
system, an unifying framework has been developed. It is formally reminiscent of Boltzmann-Goibbs
formalism in statistical mechanics and for this reason termed thermodynamic formalism (Ruelle
1978). The basic idea is to introduce the analog of a partition function, where the role of n-particles
configurations is played by stretches of trajectories of duration n. Within a symbolic description
of the dynamics, these stretches correspond to n-words, and the partition function writes (Badii
and Politi 1997; Lesne 1998):

Z(n,q) = [pa(wn)]? = (pn(wn)]* ) (68)
The exponent ¢ — 1 can be seen as an inverse temperature.The relevant analog of free energy is:
InZ(n,q)

(g—1) (69)

I(n7Q) ==

and its density:

I(n,q)

J(g) = nh_)rrgo J(n,q) where J(n,q) = (70)

It is straightforward to show that J(¢ = 1) coincides with the metric entropy hxs. I(n,q) is
nothin but the Rényi entropy (§ 4.4) for n-words. The graph ¢ — J(n, ¢) actually encapsulates the
fluctuations of the local entropy r(w,) = —(1/n)Inp,(wy). The average 3, #(wn)p(wy,) tends
to hxs as n — oo. Furthermore, Shannon-McMillan-Breiman theorem ensures that local entropies
k(wy,) tend to hxg almost surely (with respect to the ergodic invariant measure of relevance) as
n — oo. A large deviation formulation:

e~ N(a—1)Jq _ /G*N[qug(ﬁ)] dk (71)
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yields to the following Legendre reciprocal transformations:
(¢—=1)J, = inflgr — g(x)] (72)
g(k) = inflgr — (¢ —1)J] (73)

The large deviation function g(k) is called the entropy spectrum (Badii and Politi 1997; Lesne
1998). It provides a full characterization of the local singularities of the ergodic invariant measure.

7.4.  Typicality, compressibility and predictibility

Shannon-McMillan theorem can be re-formulated in the context of dynamical systems as the fol-
lowing asymptotic statement (Badii and Politi 1997). The probability u(e, n,zo) (with respect to
the invariant ergodic measure u) of finding an orbit remainin during n steps at a distance smaller
than e from the orbit of 2 behaves as pu(e, n, zg) ~ eP1T7&s for y-almost every zg in the limit as
n — 0.

On the other hand, Brin and Katok proved a kind of topological version of Shannon-McMillan-
Breiman theorem for any dynamical system with ergodic invariant measure p. It states that
lim._,o limsup,, .. (1/n)log u[B(z,n,€)] = h(u) where B(z,n,€) is the set of initial conditions
whose orbit remains during n steps at a distance lower than e from the orbit of  (Brin and Katok
1983). It means that the probability (with respect to the invariant measure p) that two trajectories
stay close together during n steps decays exponentially with n.

The relationship between Shannon entropy rate and metric entropy reinforces the relevance of
a probabilistic description of chaotic (deterministic) dynamical systems, i.e. the use of statistical
descriptors to quantify their apparent randomness (Nicolis and Gaspard 1994). In particular, it
gives another interpretation to their unpredictability, relating it to the incompressibility of the
source and the high algorithmic complexity of p-almost all trajectories, when encoded using a
generating partition (Castiglione et al. 2008).

Beyond the above global view considering a dynamical system as a random source, one could
also consider each trajectory isolatedly and compute the algorithmic complexity of its symbolic
description. In this context, a theorem by Brudno and White assesses that for an autonomous
ergodic dynamical system, the Kolmogorov complexity of allmost all trajectories (almost all with
respect to the invariant ergodic measure) is equal to hxs up to a constant normalization factor
(Brudno 1983; White 1993; Castiglione et al. 2008) . This theorem is nothing but the deterministic
version of Lempel-Ziv theorem (Ziv and Lempel 1978). Accordingly, for a symbolic trajectory, we
have equivalence between being unpredictable, incompressible and algorithmic complex (Falcioni
et al. 2003).

8. Relation to statistical physics
8.1.  The second principle of thermodynamics

Thermodynamic entropy has been introduced by Clausius in 1865 (Clausius 1865). He postulated
that there exists a state function Sy, defined for equilibrium states, such that AS, (AB) = Sy, (B)—
Sin(4) = ff 0Q /Tsource Where 5Q is the quantity of heat exchanged between the system and
external sources at temperature Tyource along an arbitrary transformation of the system from
the equilibrium state A and the equilibrium state B. The variation AS;,(AB) does not depend
on the transformation but only on the initial and final states since Sy, is assumed to be a state
function (Gallavotti 2006). Equality hold if and only if the transformation is reversible. For isolated
systems, more precisely thermodynamically closed systems for which 6Q) = 0, one has AS;;, > 0.
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This statement is known as the Second Principle of thermodynamics. It is an empirical principle
discriminating the phenomena that could occur from those that are thermodynamically forbidden.
It is not expected to hold at molecular scale (Castiglione et al. 2008) and actually it does not.
Recent advances describe the discrepancy to the second principle arising in small systems under
the form of fluctuations theorems (Gallavotti 1998; Cohen and Gallavotti 1999; Evans and Searles
2002).

The second principle should not been confused with the H-theorem (Cercignani 1988b). The
former is indeed a universal but empirical principle (presumed to be) valid for any thermodynam-
ically closed macroscopic system whereas the latter is an exact (i.e. rigorously proved) property
of the Boltzmann kinetic equation, whence the name of theorem (Castiglione et al. 2008). This
equation, central to the kinetic theory of dilute gases, describes the evolution of the one-particle
probability distribution function f(7,¥,t) of the gas within the framework of continuous-medium
approximation. The H-theorem then states that the quantity Hg = [ f(7,7,t)In f(F, 0, t)d*Fd®v
can only decreases in the course of time. One has to write this quantity B in a discrete form
i [ (7,05, t) log f (75, 03, ) A3FA3T where A3FA3T is the elementary volume in the one-particle
phase space to relate it to a Shannon entropy (Castiglione et al. 2008).The fact that Hp can only
increase originates in the decorrelation approximation involved in the derivation of the Boltzmann
equation (Cercignani 1988a). It amounts to replace 2-particle distributions arising in the interaction
kernel by a product of one-particle distributions. H-theorem thus only indirectly and approximately
describes a feature of the real world, insofar as the system behavior is properly accounted for by
the Boltzmann kinetic equation. It should not be confused with a property of irreversibility of the
real system.

8.2.  Boltzmann entropy and microcanonical ensemble

In classical statistical mechanics, what is termed entropy is basically Boltzmann entropy, namely,
a quantity related to the number I'y of N-particles microstates which have the same prescribed
macroscopic properties:

SB:]CBII’IFN (74)
where kp is the Boltzmann constant kg = 1.38.10723 J/K. This formula has been proposed by
Boltzmann in 1877 (Boltzmann 1877; Cercignani 1988b; Castiglione et al. 2008) and it is written
(in the form S = log W) as an epitaph on his grave. Boltzmann had a discrete viewpoint, defining
microstates as elementary volumes in the microscopic phase space (a space of dimension 6N if the
system comprises N particles).

The starting point of the statistical description is usually the microcanonical ensemble (see
(Castiglione et al. 2008) for a discussion of its relevance and validity). It corresponds to con-
sidering equiprobable microscopic configurations at fixed volume V' and fixed energy U, with a
tolerance dU. Boltzmann entropy is then proportional to the logarithm of the associated phase
space volume I'(NV,V, U, 6U). It is to note that U does not play any role in the thermodynamic
limit N — oc. Since I'(N,V,U,dU) behaves as I'(N,V,U,6U) ~ T'N6U, Boltzmann entropy is
extensive (proportional to N) and the contribution of 6U in InT' is a higher-order term in Sp
that could be neglected for large N (namely InoU is negligible compared to N InT'; for large N).
Shannon-McMillan-Breiman theorem allows to make a formal bridge between Boltzmann entropy
and Shannon entropy rate: the number of typical sequences of length N behaves as Ny ~ 2V, For
N large enough, this asymptotic relation writes i ~ (1/N)logy Ny, reminiscent of the Boltzmann
entropy per particle Sg/N = (kg/N)InTy.

Boltzmann entropy Sp, defined at the level of N-particles microscopic configurations (phase
space XV), should not be confused with the Shannon entropy of the empirical distribution (nor-
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malized histogram) of the individual states in X (the type Lz of the configuration Z, see § 3.1.
The former is an entropy in the phase space X'V, the latter is the entropy of a distribution L in
the individual state space X, namely H(Lz) = — ). (ny/N)log(n,/N) where n, is the number
of particles (among N) in the individual state x (Mugur-Schichter 1980; Georgii 2003; Cover and
Thomas 2006).

Thermodynamic entropy is derived (actually, postulated) from phenomenological considerations
based on the (observed) second principle of the thermodynamics (Clausius 1865; Gallavotti 2006).
A major achievement of Boltzmann is the identification of Boltzmann entropy with thermody-
namic entropy: Boltzman entropy of the macrostate (U, V, N) coincides at the leading order (in
the thermodynamic limit N — oo) with the thermodynamic entropy S, (U, V, N), providing a
microscopic interpretation to Clausius entropy. It is justified by comparison of the macroscopic
predictions of statistical mechanics with the empirical laws of thermodynamics, e.g. the expression
of the entropy of the ideal gas. The identification requires the multiplicative factor kp (equal to
the ideal gas constant divided by the Avogadro number) in the definition of S, compared to a
dimensionless statistical entropy. A definition of physical entropy is only possible in the framework
of quantum mechanics, exploiting its intrinsically discrete formulation. Introducing the density ma-
trix D characterizing the quantum state of the system (a positive Hermitian operator with trace
1), entropy is defined as S(D) = —kgTr(D1n D). This entropy, introduced by Von Neumann in
1927, measures our ignorance about the system, and accordingly vanishes in case of a pure state
(described by a single wave function) (Wehrl 1978; Balian 2004; Balian 2005). It is moreover a
absolute entropy which vanishes at zero temperature, in agreement with the Nernst principle. It
is another matter to assess whether it is useful a physical quantity, and how it can be measured
and related to the macroscopic (thermodynamic) entropy. Another interpretation of this entropy is
to measure the amount of information gained in a quantum measurement (yielding a pure state).
When considering an evolving system (i dDy /dt = [H, Dy), S(t) = Tr(Dy In D;) remains constant.
Any reduction to essential variables of the density operator yields a reduced operator IA),?, for which
the associated entropy S(D?) increases. We refer to (Wehrl 1978; Balian 2004; Balian 2005) for a
detailed discussion of the quantum-mechanical entropy.

8.3.  Mazimization of Boltzmann entropy and large deviations

Any macroscopic variable m appears as an additional constraint in defining the microcanonical
ensemble. A Boltzmann entropy S(m,U) can be associated to this reduced ensemble. To each
value of m corresponds a “shell” of volume e3("U)/k5 in the complete microcanonical space (for
the energy value U). The distribution of m is thus given by the large deviation formula, already
derived by Einstein in 1925 (Einstein 1910):

P(m|U) = eAS(mU)/kz (75)

where AS(m,U) = S(U,m) — S(U) < 0 is proportional to the number N of particles, i.e. to the
size of the system. In the limit as N — oo, the macrostate distribution becomes sharply peaked
around the value m* giving the maximum Boltzmann entropy. This property is essentially follows
from a concentration theorem. It reflects the fact that, in the thermodynamic limit N — oo, an
exponentially dominant fraction of microscopic configurations are associated to the macroscopic
variable m*. For N large enough, the distribution is sharply peaked and the typical behavior can
be identified with the most probable behavior. In other words, one observes the most probable
macrostate. At leading order in N, m™ is also the average value of the macrostate m. Note that
(75) is a large deviation formula, with AS(m,U)/kp as a large deviation function (Ellis 1985;
Touchette 2009): it is not restricted to values of m close to m*.

Arguments based on Boltzmann entropy explain the irreversibility of the relaxation of an isolated
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system from a prepared state towards an equilibrium state, e.g. the fact that your coffee always
cools and never gets heat from the surroundings, despite the invariance upon time reversal of the
microscopic dynamics. (Lebowitz 1993a; Castiglione et al. 2008; Schulman 2010). Liouville theorem
indeed ensures the constancy in time of the density in the microcopic phase space. The answer has
been yet given by Boltzmann (Boltzmann 1877). Basically, the origin of this irreversibility lies in
the non typicality of the initial configuration when considered in the final conditions, whereas the
final equilibrium state is typical. This asymmetry is quantified by means of Boltzmann entropy
of the two macrostates, amounting to compare the volumes of the phase space regions I'; and I'¢
associated respectively with the prepared initial state and the final equilibrium state (Lebowitz
1993a). Trajectories starting in I'; mostly evolve to I'y Time-reversed trajectories starting in I';
also mostly evolve to I'y In both cases, the odds for evolving to I'; rather than I'y is

Ly

|F | e—(sé—sjig)/ks’ (76)
!

Accordingly, the spontaneous evolution corresponds to increasing Boltzmann entropy, and the prob-
ability of the time-reversed evolution (i.e. starting in Iy and evolving to I';) is exponentially small
in the thermodynamic limit N — co. One can find in the literature statements like: “obviously,
the outcome cannot carry more information hence its entropy cannot be smaller than the initial
one”, taken as an explanation of the observed irreversibility. This argument is misleading since in-
formation is not a conserved quantity, but rather a relative and context dependent notion. Here he
information about the initial state refers to the missing information with respect to the knowledge
of the initial context and similarly, information about the final state refers to the knowledge of the
(different) final context and constraints.

8.4.  Boltzman-Gibbs entropy and the canonical ensemble

In statistical mechanics textbooks (Chandler 1987), the canonical ensemble is currently derived
by imposing a fixed average energy on otherwise equiprobable microscopic configurations. Jaynes
(Jaynes 1957) underlined yet long ago taht statistical mechanics can also be derived from the
maximum entropy principle, within a purely information-theoretic framework.. As presented in a
general setting in § 3.4, this principle allows to determine the least biased distribution satisfying a
given set of constraints on distribution moments. When applied to the velocity distribution of N
independent and identical particles at fixed thermal energy (fixed mean square velocity, vanishing
mean velocity), it yields the acknowledged Mazwelll velocity distribution:

N 3/2
pN(@N)dg'N'l_}N = gpl (ﬁz)dBﬁZ where P1 (17)d317 = eimUQ/kBT (27_[_2;11> d’Umd’UydUz (77)
(where v? is the square modulus of @, namely v2 + v; 4+ v2 in Cartesian coordinates), in agreement
with the expression defining thermal velocity :

(mv?/2) = 3kpT/2 (78)

When applied to configurations Zy and internal energy E(Zy), entropy maximization principle
yields the well-known Boltzmann-Gibbs distribution in the microscopic phase space X'V:
—BE(z

P(Zy|B) = eZ(ﬁN(ﬂN; with  Z(N,f) = /X N e PE@EN) 4z (79)
where dZx is the element of integration in the 6N-dimensional phase space (microscopic con-
figuration Ty of N particles). Note the factorization of the distributions for the velocity and
position degrees of freedom (respectively Maxwell and Boltzmann-Gibbs distributions), allowing
to decouple kinetic theory and equilibrium statistical mechanics. Compared to the microcanoni-
cal ensemble, Boltzmann-Gibbs distribution gives different weight to the microstates, defining the
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canonical ensemble gives different weight to the microstates. Nevertheless, their predictions for the
thermodynamic quantities coincide in the thermodynamic limit N — oo (Chandler 1987).

At a mesoscopic level, it is no longer relevant to describe the distribution of the microscopic
configurations. Partial integration in energy shells dE = Y xz, E(z) € [E, E + dE] involves the
microcanonical weight e%8(F:-N)/kN of each shell, and it yields the distribution:

e—BE Sp(E,N)/kn
Z(N, )

Steepest-descent approximation of the partition function in the thermodynamic limit N — oo,

p(E|N,B) =

(80)

Z(N,B) = / e PE SB(EN)/kN g B (81)

exploiting the extensivity of Sp (Touchette 2009), demonstrates that the dominant contribution
is given by the maximum E*, which also coincides with the average energy (E) = U in the limit
N — oo. Consistency with classical thermodynamics leads to identify F = —(1/8)InZ(8,N)
with the free energy, multiplier 5 with inverse temperature 1/kgT and Boltzmann entropy at the
maximum E* = U with thermodynamic entropy, according to the relation F' = U — T'Sy,.

Maximum entropy principle could also be applied to the inference of the distribution of energy
levels at fixed average energy. It yields:
—BE;
e

pi = (82)

tZ(B)
with a caveat: the energy levels have to be discrete and non degenerate. Indeed, the application
of maximum entropy principle at fixed average energy (E) to a continuous energy density p(E)dE
yields an inconsistent result: it misses the density of states. We here recover that maximum entropy
principle and more generally Shannon entropy are well-defined and can be used safely only in
discrete spaces of states (§ 3.4). As mentioned above, § 8.2, the only rigorous foundation of statistical
entropy lies at the quantum level, and other notions are derived by coarse-graining and projections

in a more or less approximated way (Wehrl 1978; Balian 2004).

Another notion of entropy is encountered in statistical mechanics, namely Gibbs entropy. It is
defined as:

Salt) = / p(Fn 1) In p(En, AN (83)

where Ty is the system position in the full microscopic phase space (configuration with 6N de-
grees of freedom, for both the positions and the velocities of the N particles of the system), and
p(Zn,t) the density describing the probability of presence of the system in this phase space. It
has nevertheless two flaws: it is defined up to an additive constant (as mentionned in § 2.6, the
continuous extension of Shannon entropy is not invariant with respect to a cooordinate change)
and Liouville theorem for the microscopic dynamics ensures that Sg(t) remains constant in time,
even in conditions where the Second Principle of the thermodynamics predicts an increase of the
thermodynamic entropy. Accordingly, Gibbs entropy in this form cannot be identified with ther-
modynamic entropy. Both flaws are cured by considering (Castiglione et al. 2008) a coarse-grained
version of Gibbs entropy, that is, Shannon entropy of a distribution describing the location in the
microscopic phase space with a finite resolution. It can be shown that this coarse-grained version
increases in time with a rate related to the metric entropy, § 7.1, of the microscopic dynamics. We
refer to (Castiglione et al. 2008) for a detailed discussion (deserving several chapters, far beyonf
the scope of the present review) of the connections between statistical mechanics and chaos theory.
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8.5. Dissipative structures and minimum entropy production principle

Prigogine (Prigogine 1967; Nicolis and Prigogine 1977) developed the notion of dissipative structure
(although examples were evidenced and studied well before his work, e.g. Bénard cell). It refers
to an organized pattern arising in open systems, in which local order appears at the expense of
energy or matter input. Thermodynamic entropy Sy, is defined only for equilibrium states. Out
of equilibrium, one could define an entropy production rate. The entropy production decomposes
according to dSy, = dSirr + dSepen Where dSeuqn is the contribution following from exchanges of
matter and energy. At steady state dS;, = 0, but it is possible to have dS;.. > 0 at the expense of
dSezen < 0, which is precisely the case of dissipative structures. dS;,., is often seen as a measure
of the irreversibility of the system. Its definition and interpretation are nevertheless restricted to
the framework of thermodynamics of irreversible processes, embedded in linear response theory.

Within this framework, Prigogine introduced a minimum entropy production principle (not to
be confused with the maximum entropy principle for statistical inference): (d/dt)[(dSen/dt)irr] =0
where (dSip /dt); is the entropy production rate due to irreversible processes (Prigogine 1967).
Nevertheless, this principle, expressing the stability of nonequilibrium steady state, is rigorously
derived only under very restrictive conditions (assumptions of local equilibrum thermodynamics
and linear response, isotropic medium, time independence of boundary conditions and linear re-
sponse coeflicients, isothermal system in mechanical and thermal equilibrium). Its general validity
and application are thus highly questionable (Kay 1984). As emphasized in (Mahara and Yam-
aguchi 2010), while entropy production could be used to discriminate different patterns, minimizing
entropy production is not a valid criterion of pattern selection.

We refer the reader to the very deep and stimulating analysis proposed by Jaynes thirty years
ago (Jaynes 1980). He pointed out that Kirchhoff laws for determining the distribution of currents
in an electric circuits are already fully determined by conservation laws, with no need of an addi-
tional entropic criterion. He asked the question of the nonequilibrium extension of Gibbs work on
the characterization of heterogeneous equilibrium (phase coexistence) using a variational principle
on thermodynamic entropy. It is to be underlined that at this point, all the derivations and justi-
fications of minimum entropy principle (by Onsager, Prigogine and followers) are based on linear
response theory, where the evolution is ruled by linear relations between fluxes and forces.

8.6.  Nonegquilibrium systems and chaotic hypothesis

A general definition of entropy and entropy production in far-from-equilibrium system, beyond
linear response theory, requires to start at the more basic level of the microscopic dynamics (Ruelle
2003; Gruber et al. 2004). Within such a dynamic view of irreversible processes, it is currently
assumed that the dynamics is well described by an hyperbolic dynamical system (Cohen and
Gallavotti 1999; Evans and Searles 2002; Gallavotti 2006). This so-called chaotic hypothesis is
the far-from-equilibrum analog of the assumption of ergodicity or molecular chaos (assumption of
microscopic decorrelation). The local rate of entropy production e(x) is then equal to the local rate
of phase space volume contraction at point x. The global rate of entropy production is obtained by
integrating e(z) over the whole phase space, according to the weight given by the nonequilibrium
steady state measure p(dz), namely [ e(z)p(dz) (Ruelle 2003).

Gaspard introduced the Shannon time-reversed entropy rate (Gaspard 2004):

RE = lim (1/n)HE (84)

n—oo

with HI* = — > p,(0)log, p,(@07), © = (w1,...,w,)and @' = (w,,...,w1). Then he shows
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that for Markov processes (at least), the entropy production rate writes:

dS/dt = h' —h  where S(t) = — Zpt(w) log, pi(w) (85)

This time-reversal symmetry breaking, reflecting in entropy production, corresponds to the fact
that the distribution of incoming and ougoing particles strongly differ. The latter is finely corre-
lated due to the interactions between the particles inside the system. Observing the time-reversed
steady-state would require to prepare the incoming flux of particles according to such intricately
correlated distribution. This formula (85) relates in a rigorous and quantitative way irreversibil-
ity and entropy production rate in the considered nonequilibrium stationary state. We underline
that the irreversibility of a system driven far-from-equilibrium by fluxes s fundamentally different
from the irreversibility observed in the relaxation of an isolated system after lifting a constraint
discussed in § 8.3.

8.7. Thermodynamic cost of computation

Beyond the formal link based on maximum entropy inference of the Boltzmann-Gibbs distribution
(Jaynes 1957), another relationship between statistical mechanics and information theory is the
paradox termed Maxwell’s demon. It was first pointed out by Szilard (Szilard 1929). N particles
are evenly distributed in two compartments of the same size but initially at different temperatures
Ty < T5. The demon stands in the hot compartment near a door between the two compartments.
He lets in particles from the cold compartment if their velocity is higher than \/3kpTs/m, and lets
out particles of the hot compartment if their velocity is higher than /3kgTi/m. In this way the
hot compartment gets hotter and the cold compartment gets colder, against the prescription of the
second principle. Brillouin (Brilllouin 1951a; Brillouin 1951b) suggested a way out Maxwell’s demon
paradox by showing, in a specific example, that work has to be performed in order to achieve a
measurement. Put in other words, the demon needs information about the particle velocity, which
has a cost (Brillouin 1956). In a simpler variant, compartments are at the same temperature.
The demon only lets particles in, so that in the final state of the system, all N particles in only
one compartment. The decrease of thermodynamic entropy by kgN In2, equal to the amount of
information required to know the position of each particle. In a measurement, entropy increases
by an amount at least equal to the information gained (Balian 2004).

Later, Landauer (Landauer 1961) proposed another solution of the puzzle, giving a lower bound
on the work required for memory erasure. Zurek then showed that algorithmic complexity sets limits
on the thermodynamic cost of computation (Zurek 1984). Recently, Sagawa and Ueda (Sagawa and
Ueda 2009) unified these different results by demonstrating a general inequality: Wineas + Weras >
kT I where W,cqs is the work cost of the measure, W, that of erasing the memory storing
the result, and I the mutual information between the measured system and the memory (i.e.,
the information gained on the system in the measurement). The work W, cqs could vanish in some
instances, in which case Landauer’s result is recovered, while the whole inequality is also consistent
with Brillouin’s result.

9. Typicality and statistical laws of collective behavior
9.1.  Probabilistic modeling and subjective probabilities

The notion of statistical entropy, being relative to a probability distribution, leads to question
the very foundations of probability theory and the epistemic status of a probabilistic description
(Mugur-Schéichter 1980). In practice, the question can be focused on the reconstruction in a given
experimental situation of the relevant probability distribution.
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A well-known alternative the reconstruction and epistemic status of a probability distribution is
the alternative between frequentist and subjective (or Bayesian) viewpoints (Jaynes 1957; Bricmont
1995). Both viewpoints yield efficient reconstruction methods. The frequentist viewpoint is the
realm of statistical estimation from independent samples, essentially based on the law of large
numbers (Samengo 2002). The Bayesian viewpoint is the realm of learning and recursive algorithms,
updating with data a prior distribution into a posterior one. A seminal paper by Cox (Cox 1946)
underlined that the frequentist definition is indissociable with the existence of an ensemble (at
least conceptually). The Bayesian viewpoint is termed there the idea of “reasonable expectation”.
It is related to the notion of “degree of rational belief” formulated by Keynes. Some Bayesian
probabilities cannot be cast in an ensemble (i.e. frequentist) viewpoint. Cox cited the inspiring
examples of the probability that there exists more than one solar system; the probability that a
physical constant lies within some bounds (today formulated as an “estimation problem”); and the
probability that some property in number theory is true when considering all integers. The non
scientist will rather think of the probabilistic proof of the existence of Santa Klaus featured by
Howard Buten (Buten 1989).

Jaynes (Jaynes 1973; Jaynes 1982b) already underlined the alternative between the frequentist
view, trying to estimate the frequencies of the various events, and the subjective view, aiming at
determining the probability distribution that describes our state of knowledge. In this regard, in-
formation theory provides a constructive criterion, the maximum entropy principle (Jaynes 1982a),
for setting up probability distributions on the basis of partial knowledge, discussed in (Jaynes 1957)
in the context of statistical physics.

The subjective view on probabilities (Cox 1946; de Finetti 1970; Gillies 2000; Balian 2005)
encapsulates a priori but incomplete knowledge, e.g. a set of possible states, but also apparent
randomness at the observation scales. In both cases, it means that our limited perception is best
represented by a probability distribution notwithstanding whether the nature of the system is
stochastic or not. The probabilistic aspect of the description is only that of our representation
of the reality, with no ambition of saying something about the nature of the real phenomenon. A
probability distribution does not aim at being an intrinsic and absolute character ruling the system
behavior (as it is in quantum mechanics), but only the most operational and faithful account of our
knowledge on the system. We refer to (Jaynes 1957; Jaynes 1973) for a detailed and substantiated
discussion of this viewpoint. Such a pragmatic view on probabilistic description is currently adopted
for chaotic dynamic systems (Nicolis and Gaspard 1994) when one gives up a description in terms
of deterministic trajectories for a stationary and global description in terms of invariant measure
(the latter is nothing but the distribution describing the probability of presence in the phase
space). In any case, probability theory can be seen as a mere operational tool, even is there is
no stochasticity involved in the problem, as in the probabilistic formulation of some properties
in number theory (Cox 1946; Ford 2007). Interpretation of entropy is thus far more natural in
the subjective viewpoint where p describes our partial knowledge (and partial ignorance) of the
outcome. Entropy then measures the uncertainty of the observers.

It is to note that in the realm of classical physics, we cannot assess whether a system is in-
trinsically probabilistic, except in starting at the quantum level (Lesne 2007). But the observed
randomness, say, of a coin tossing, is of very different nature than quantum uncertainty. Mostly, it
can be accounted for by arguing of the chaotic nature of the coin motion while flipping in the air.
The randomness thus originates in our lack of knowledge of the initial conditions and countless
minute influences experienced by the coin during its tossing. The probabilistic nature is not that of
the system but that of one of our possible descriptions. In particular, it depends essentially on the
scale of the description. An acknowledged example is diffusion for which a hierarchy of descriptions
exist, according to the scale and the level of coarse-graining, starting from a deterministic reversible
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description (molecular dynamics) to several stochastic descriptions (master equation, random walk
and Fokker-Planck equation, Langevin equation) to a deterministic irreversible description (Fick
law and the century-old diffusion equation) (Castiglione et al. 2008).

Finally, let us think to a binary event, described by a Boolean variable X . The statistical features
of this variable are fully captured by a single real number p € [0, 1] describing the probability that
X = 1. In the case of a structured population, distinguishing explicitly subpopulations a with
fraction f, (hence ) fo = 1) allows to describe some heterogeneities in the process yielding the
value of X, by considering a specific value p, in each sub-population. We are thus faced to an
alternative between a detailed description by means of an array [(pa)s and a global probabilistic
view, namely an effective description of the knowledge available at the scale of the population
involving a single number p = 3" pa fo. This effective quantity p describes the probability that an
individual chosen at random in the overall population takes the value X = 1, while p, describes
the probability that an individual chosen at random in the subpopulation « takes the value X = 1.
This abstract example illustrates the existence of nested probabilistic descriptions, preventing any
further attempt of a would-be “intrisic stochastic nature” of a system. We deal only with models,
i.e. abstractions and representations of the reality. Our statements thus refer to models, and are
pertinent to the reality only insofar as it is properly captured by the model.

9.2.  Statistical laws and collective behaviors in physics

We have just argued that probability, in the subjective viewpoint, is a privileged framework allow-
ing to account in a unified way of observation scales and the limits they set on our perceptions and
representations. It is also an unified framework to investigate collective behaviors and unravel the
mathematical structures underlying emergent properties. A central physical example is thermody-
namic behavior. It corresponds to a sharp distribution for macroscopic quantities, meaning that
almost all microscopic configurations yields the same macroscopic values. In such a case, the proba-
bility distribution of the microscopic configurations (i.e. their respective frequencies of occurrence)
has almost no macroscopic consequence, as soon as it is non singular. Accordingly, thermodynamics
relies almost uniquely on universal statistical laws, mainly the law of large numbers and the central
limit theorem. The counterpart of this universality is that macroscopic behavior is quite insensitive
to microscopic features. In particular, knowing the macroscopic behavior gives no insight on the
microscopic distribution and is useless to infer some knowledge about the microscopic elements.
The success of the maximum entropy approach evidences that thermodynamical laws originally
rely on universal statistical laws ruling the structure and features of emergent behaviors, rather
than from specific physical laws (Jaynes 1957).

More generally, statistical laws express rules of collective behavior, no matter the physical nature
of the elements and their interactions. They state a general mathematical property of any high-
dimensional system (e.g. many-body systems in physics or long messages in communication theory).
They account for instance for the ubiquitousness of Guassian distributions (resulting from the
central limit theorem). The same all-or-none law arises in different contexts and under different
names (§ 3.1, § 5.1):

— law of large numbers and Lévy all-or-none law (Lévy 1965) in probability and statistics;

— concentration theorems (Robert 1990) in probability but also in geometry and functional analysis
(Gorban 2007);

— asymptotic equipartition property (Shannon 1948; Cover and Thomas 2006) in information the-
ory;

— ergodic theorem in dynamical systems.

Close connections can be established between these different laws (Lesne 1998). They can be seen
as an universal mathematical structure of collective behaviors.
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Let us consider again Shannon-McMillan-Breiman theorem, § 5.1. The property that lim,, .. (1/n) log, P,—

h = 0 is an asymptotic property, insofar as modifying a finite number of random variables does not
change whether it is true or false; in particular it is exchangeable, meaning that it is unaffected by
any permutation of a finite number of terms. Shannon-McMillan-Breiman theorem, when restricted
to a stationary uncorrelated source, is thus an instance of the all-or-none law established by P.
Lévy (Lévy 1965), also known as the Hewitt-Savage 0-1 law. Tt states that an asymptotic property
of a sequence of independent and identically distributed random variables is true with probability
cither 0 or 1. Here lim,_.(1/n)log, P,(Z) — h = 0 is true with probability 1 whereas for any
B # h, lim, o0 (1/n)logy Py (Z) — k' = 0 has a null probability to be true.

Predictability and simplicity of macroscopic physical phenomena come from the fact that at the
macroscopic level, a wealth of behaviors result from a bottom-up integration and emergence. They
are ruled by simple statistical laws and a simple description is available. Macroscopic properties are
then almost fully defined by statistical laws and geometrical constraints. Physics is involved only
in prescribing the universality class of the emergent behavior. Basically, one has to discriminate
between systems with short-range correlations, displaying scale separation between microscopic
and macroscopic levels, and systems with long-range correlations, associated with criticality and
anomalous statistical laws (Lesne 1998; Castiglione et al. 2008). A typical example is diffusion,
passing from normal to anomalous in case of long-range correlations (self-avoiding walks), which
corresponds to the passage from the universality class of the Wiener process to that of fractal
Brownian motions. Another anomaly is observed in diffusive behavior when the variance of the
elementary steps diverge, corresponding to the passage from the central limit theorem assessing
convergence to a Gaussian distribution to generalized limit theorems assessing convergence to Lévy
stable laws (Lesne 1998; Castiglione et al. 2008). In general universality and robustness arise in
physics as soon as statistics and geometry aresufficient to determined the emergent features. A typ-
ical exemple is provided by percolation lattices (Lesne 1998; Lagués and Lesne 2008). Microscopic
details only matter insofar as they control the universality class to which the system belongs.

9.3.  Typicality

Several notions of typicality can be considered, some of which have been already encountered in
the previous paragraphs.

1) A notion based on concentration theorems, § 3.1, for a configuration or a sequence (X;); of
independent and identical elements. Reasoning on the configuration or sequence type, typical se-
quences belong to the type that is the most populated. Conversely, sequences are exceptional (non
typical) when their type is represented by a vanishing fraction (exponentially small as a function of
the number of elements in the configuration or the length of the sequence) compared to the most
populated one. The law of large numbers can be seen as a statement about the typical behavior of
the empirical average my = (1/N) va X;. Namely for any arbitrary small € > 0 and § > 0, there
exists N, s such that for NV > N, s, the probability of the realizations of the sequence satisfying
|mn —m] < e is smaller than ¢, meaning that asymptotically, almost all realizations of the sequence
are typical as regards the behavior of the empirical average.

2) A notion based on Sanov theorem, § 3.2, for sequences of independent and identical elements: a
pair of sequences (Zy,yn) is jointly typical if each individual sequence is typical, respectively with
respect to hx and hy and if | — (1/N)logy Pn(Zn,§n) —hx,y | is small. Given a joint distribution
p(z,y), the probability that a pair of independent and identically distributed sequences (Zn, )
drawn according to the product distribution ¢(x,y) = p(z)p(y) seems to be typical with respect to

the joint distribution p is asymptotically equivalent to 2~ NP (@®lla) = 2= NI(X,Y)

3) A notion based on a generalized asymptotic equipartition property, namely the fact that almost
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surely limy_,o0(1/N)logs[po(Zn)/p1(Zn)] = D(pollp1). Hence a sequence Zx of length N is said
to be relative-entropy typical if (1/N)logylpo(Zn)/p1(Zn)] is close to D(po||p1)-

4) A notion based on Shannon-McMillan theorem, § 5.1, for correlated sequences. A sequence Z
of length N generated by a source of entropy rate h is typical if | — (1/N)logy Py (Zn) — h | is
small. The realizations whose probability satisfies Shannon-McMillan-Breiman estimate form the
typical set (strictly, defined once some tolerance € is given), quite small but of probability close to
1. For correlated binary sequences of length N, one has 2V possible realizations but only about
2N typical ones.

5) The notion of typicality also arises in connection to the ergodic theorem of Birkhoff. Let us
recall that a triplet (X, f, u) composed of a transformation f on the phase space X with invariant
measure g is ergodic is any f-invariant subset is of either full or null measure. Then for any
functional ¢ from X to R, there exists a subset X of full measure (that is, (X — X, = 0) such
that for any z € Xy, limy_o0(1/N) Zf\:ol o[f"(x)] = [, ¢(x)dp(z). In this sense, the elements
of Xy are typical since their behaviors are all identical and coincide with an average quantity,
namely time averages along a typical trajectory equals ensemble averages. We have encountered
in § 6.2 another ergodic theorem (Ziv and Lempel 1978), endowing typical sequences with an
additional property: For a stationary ergodic finite-state source, almost all sequences share the
same algorithmic complexity (hence the same randomness) which coincides with the entropy rate
of the source, up to a normalization factor.

The converse of typicality is rarity. Exceptional events are non typical events. Several notions
nevertheless overlap and should be carefully distinguished. The sequence 123456789 can be termed
exceptional because it is of low complexity, namely a short program is able to generate it. It is
also intuitively atypical, or exceptional, insofar as one implicitly compare the number of sequences
(n,n+1,...,n+8) to the set of sequences that are not of this form. In other words, one compares
the types of the sequences rather than the sequences themselves. This yields two ways of being
random: either having the largest algorithmic complexity, either belonging to the type the most
represented. These two viewpoints are in fact related: only an asymptotically vanishing fraction of
sequences of length N — oo can be generated by a program shorter than the typical length Nh
equal to the length of the programs generating typical sequence. This is exactly the meaning of
algorithmic complexity. In this viewpoint, typicality coincides with (full) randomness. Note that in
all cases typicality is an asymptotic feature, well-defined only in the limit N — oo where N is the
sequence length or number of elements. Arguments of genericity and typicality are ubiquitous in
statistical physics, but we expect that they cannot be applied blindly in biology, where rare events
could play essential role, see § 9.5.

9.4.  Entropy, order and disorder

Let us discuss in what respect entropy can be seen as a measure of disorder. This current and
appealing statement is indeed flawed with some fuzziness, since it requires to first define what is
meant by disorder, beyond the plain and non technical meaning of the word. Two viewpoints can be
envisioned, recovering the alternative between the (statistical) information-theoretic approach and
the algorithmic one. A first view is that order (e.g., for a configuration of N elements) is associated
with the existence of a simple generating rule (Dessallles 2006). For instance, the sequence 123456
is ordered insofar as it is generated by the simple rule z,,+1 = 1 + z,,. The presence of a structure
or pattern (in space or time) reflects a symmetry breaking with respect to the full symmetry
of an homogeneous/stationary distribution invariant with respect to any translation. Specifying
a structure amounts to specify a lack of invariance. This corresponds to a decrease of entropy
compared to the fully random case (Leyton 2001). Another view is that speaking of order and
disorder amounts to compare sets. For instance, the sequence 123456 is ordered insofar as it is a
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representative of the set {(n,n + 1,...,n 4+ 5)}, opposed to its complement (any sequence that
is not of the form (n,n + 1,...,n + 5)). The difficulty with this view is to require a prior and
necessarily subjective delineation of an ensemble from a single observation. Order and disorder are
then relative to the mind who perceives them.

Gorban (Gorban 2007) gives the very inspiring example of a castle, a garden of stones and any
pile of stones: the castle is to be compared to any pile of stones that is not a castle, but for the
gardener, the garden of stones has also to be compared to any pile of stones that is not that garden
of stones. As such, a garden of stones is as ordered and non typical than a castle, whereas it is
less ordered when using the criterion of individual configuration complexity. A garden of stones
is seen very differently by the gardener and a foreigner. In a formalized way, the relevant entropy
is that of the coarse-graine distribution associated with a partition of the space into weighted
subsets (currently the weight is simply the cardinal). Disorder appears as a lack of specific features,
structures, patterns, so that the class of configurations looking like the given one is very large; the
given configuration is then termed disordered. Rather than a measure of disorder, entropy is a
measure of the typicality of the disorder, i.e. a measure of degeneracy: how many configurations
share the same macroscopic observables and constraints) or a measure of degeneracy.

9.5.  Beyond physics ... application to living systems ?

It is now acknowledged that the basic role of food is to provide enough energy to the organism to
free itself from the entropy produced while it is alive. In this respect, a living organism is an instance
of dissipative structure, see § 8.5. It is essential that the balance is written in terms of free energy.
Boltzmann already pointed out that life is a struggle for entropy %. His view was expanded on by
Schrodinger with the concept of negative entropy (the opposite of an entropy) (Schrédinger 1944),
of negentropy, a term dubbed by Brillouin (Brillouin 1953). The problem with such formulations is
that entropy of a driven system (open system driven far from equilibrium by fluxes) is not defined
(Ruelle 2003), and the second principle, on which Schrodinger’s statement implicitly refers to, does
not directly apply to open systems, in particular living systems. This statement has thus to be
taken as an intuitive understanding but not as a technical nor constructive theory.

Another caveat concerns the use of maximum entropy methods: they rely on a genericity ar-
gument: the empirically observed configuration is one of the typical ones, hence it is legitimate
to identify its type (empirical distribution) with p* maximizing H (p). But a genericity argument,
currently valid for physical systems, is highly questionable for living systems, whose behavior has
been fine-tuned by biological evolution into very specific regimes, involving the non generic co-
adaptation of several parameters.

Finally, universal statistical laws, § 9.2, underlying thermodynamic behavior are valid in physical
systems under the quite mild condition that correlations between elements are summable. They
fail only at critical points and are then replaced by self-similar features (Lagués and Lesne 2008;
Castiglione et al. 2008). By constrast, their validity is highly questionable in complex systems,
in particular living systems, due to top-down causation. We here mean the existence of feedback
loops by which collective behaviors and emergent features influence back not only the elementary
states, but also their rules of interaction and evolution. Such feedbacks from the macroscopic level
to underlying levels prevent the law of large numbers and central limit theorem to apply. At the
present day, information theory is only bottom-up, and is neither suited to take into account how

§ The specific quote is (Boltzmann 1877; Cercignani 1988b): The general struggle for existence of animate beings
is not a struggle for raw materials — these, for organisms, are air, water and soil, all abundantly available — nor
for energy, which exists in plenty in any body in the form of heat, but of a struggle for entropy, which becomes
available through the transition of energy from the hot sun to the cold earth.
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an emerging feature modifies the state space and rules of an element. A first direction would be to
change the level of the description and investigate relations between distribution of probabilities in
order to capture invariants and predictable facts (Lesne and Benecke 2008). Another direction is
to focus on interlevel relations and consistency, in the hope that some universality lies in the regu-
latory, schemes which is absent when restricting to a single level of organization. In any case, novel
statistical laws, centrally involving the reciprocal coupling and consistency between the different
levels of organization have to be developed.
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