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Abstract

We describe a geometric theory classified by Connes-Consani’s epicylic
topos and two related theories respectively classified by the cyclic topos
and by the topos [N*, Set].
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1 Introduction

This paper was motivated by the recent research course “Le site épicyclique”
held by A. Connes at the Collége de France. The epicyclic topos was introduced,
amongst other things, in the course as a natural setting, refining that provided
by the cyclic topos, for studying the local factors of L-functions attached to
arithmetic varieties through cohomology and non-commutative geometry. The
content of Connes’ lectures, which were based on joint work with C. Consani,
should be shortly publicly available in written form (private communication);
previous papers by Connes and Consani in connection with this research pro-
gramme are [5], [6], [8] and [9].

In this paper, we study the cyclic and epicyclic toposes from a logical point
of view, by using the techniques developed in [3]. More specifically, we describe
a geometric theory classified by the epicylic topos and two related theories
respectively classified by the cyclic topos and by the topos [N*, Set], where
N is the multiplicative monoid of non-zero natural numbers, also considered by
Connes and Consani (cf. for instance [9]). Realizing these toposes as classifying
toposes for logical theories is a potentially rich source of applications, which we
plan to explore in a forthcoming article.

The signature over which our theory Tg classified by the epicyclic topos will
be axiomatized is essentially the one suggested by Connes during his course,
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namely that of oriented groupoids with the addition of a non-triviality predicate.
In fact, one of the main results presented in the course was the characterization
of the points of the epicyclic topos in terms of projective geometry over a semi-
field of characteristic 1, using this language for describing the objects of the
cyclic as well as of the epicyclic category. This characterization was obtained
by means of a geometric but lengthy technical detour exploiting in particular the
relationships between the epicyclic topos and the topos [N*, Set]. The approach
undertaken in this paper is instead of logical nature, and directly leads to explicit
characterizations of the points of the toposes in question. This is achieved by
identifying geometric theories which are classified by these toposes, and relies
on the general framework of theories of presheaf type comprehensively studied
[3].

The plan of the paper is as follows.

In section 2, we describe a theory Tg classified by the epicyclic topos over
the signature of oriented groupoids with non-triviality predicate. In section 3,
we describe a theory T¢ classified by the cyclic topos over a related signature,
obtained from the former by adding a function symbol for formalizing the exis-
tence of unitary loops on the objects of the groupoid. In section 4, we describe
a theory classified by the topos [N*, Set]. As it turns out, this theory provides
an axiomatization for the (non-trivial) ordered groups which are isomorphic to
ordered subgroups of (Q,Q"), already shown in [9] to correspond to the points
of the topos [N*, Set].

2 The epicyclic theory

In this section we describe a theory classified by the epicyclic topos.
The two crucial facts on which we will build our analysis are the following:

1. The epicyclic category, originally introduced by Goodwillie in [11], can
be realized as a category of oriented groupoids (i.e., groupoids with a
notion of positivity on arrows which is preserved by composition and
satisfied by all the identity arrows, cf. Definition 2.1 below) and order-
preserving groupoid homomorphisms between them which are injective on
loops (Connes-Consani, 2014, cf. Definition 2.5 below);

2. Theorem 6.29 in [3] states that for any theory T of presheaf type (i.e.,
classified by a presheaf topos) and any full subcategory A of its category
f.p.T-mod(Set) of finitely presentable models, there exists a unique quo-
tient T4 of T classified by the subtopos [A, Set| of the classifying topos
Er = [f.p.T-mod(Set), Set] of T.

Fact 1 allows to identify the epicyclic category as a full subcategory of the
theory of partially oriented groupoids with non-triviality predicate introduced
below in Definition 2.1. Since this theory is of presheaf type (by Lemma 2.3),
Fact 2 ensures the existence of a quotient of this theory classified by the epicyclic
topos. The general results of [3], specifically the main characterization theo-
rem coupled with Theorems 5.3 and 5.7, or Theorem 6.32, provide explicit but
generic axiomatizations for it. Our aim in this section will be that of finding a
most economical list of non-redundant axioms for this theory, by exploiting the
specific combinatorics of the objects in question.



Definition 2.1. (a) Let Gy and G; be two sorts (corresponding to objects and

(b)

(c)

(d)

arrows respectively). The language of oriented groupoids Lg is obtained by
adding to the usual two-sorted signature of categories (G, G1;dom, cod, 1, C)
a unary function symbol inv : G; — G expressing the inversion of arrows,
commonly written as f~! instead of inv(f), and a unary predicate P for
“positivity”, expressing the notion of orientation for arrows.

The geometric theory of oriented groupoids G is obtained by adding to the
(cartesian) theory C of categories the following axioms:

(1) T ke f f = Leoa(s)

(i) T Fron f Lof= Ldom(f)

(i) T Fue0 P(14)

(iv) P(AYNP )N =f"o fFpppr PO7).

(V) P(AYAP(FH) by f = Laom(y)

(vi) Thy P(f)VvP(f™)

We call an oriented groupoid partial if only axioms (i)-(v) are satisfied. We
denote this theory by the symbol G.

The language of oriented groupoids with non-triviality predicate T', denoted
Lg,, is obtained by adding to L a predicate T on arrows, whose intended
interpretation is the assertion that the given arrow is a non-identical endo-
morphism.

The theory Gr of oriented groupoids with (non-triviality) predicate T is
obtained by adding to G the following axioms for 7"

(f) Fy dom(f) = cod(f)

(1s) Fa

(f) }—f T(f”) for alln € Z\ {0}
(frof)brp T(fof)

(xi) dom(f) = cod(f) by (f = laom(s)) V T(f)

The theory obtained from Gr by omitting axioms (vi) and (xi) is called the
theory of partially oriented groupoids with (non-triviality) predicate T, and
denoted by Gr.

(vii

)T
(viii) T
(ix) T
) T(f
i)

(x

Remarks 2.2. (a) In the above sequents involving compositions of arrows we

have deliberately omitted the formula requiring the domains and codomains
to match for the composition to be defined in order to lighten the notation.
This of course is not a problem since f o f’ is defined if and only if the
ternary predicate C(f, f’, f o f') is satisfied.

Very often we will adhere to the common intuitive notation of writing f :
a — b as a shorthand for the formula dom(f) = a A cod(f) = b in three
variables (f¢1,a%0,bC0).

From the form of the above axiomatization one may note in passing the

following



Lemma 2.3. The theory G of partially oriented groupoids (with predicate T')
is of presheaf type.

Proof. Note that except for axiom (viii), all the other axioms of G are carte-
sian. Using the well known fact that cartesian theories are of presheaf type,
as well as Theorem 6.28 in [3], stating that the property of a theory to be of
presheaf type is stable under adding geometric axioms of the form ¢ -z 1, the
result follows immediately. O

Further, note that every oriented groupoid can be seen as a model of G
in the obvious way. Homomorphisms between oriented groupoids, regarded as
models of G, however correspond precisely to those functors between them
which preserve the orientation and which are injective on endomorphisms (due
to the preservation of T).

Example 2.4. Let H be an (ordered) group acting on a set X viaav: H x X —
X. One can associate to it an (oriented) groupoid H x X, by defining its objects
to be the elements of X, and its arrows 2 — 2’ to be precisely those h € H for
which a(h,z) = h . = 2/. This means Hom(z,2') = {h € H | h . z = 2'}.
In particular composition (if defined) is obtained by composition in H: (k' .
2')o(h.xz) = (Wh) .z Notice that H x X adopts the orientation from the
order of H and the orientation is total if and only if the order of H is.

As we will see shortly, this example is generic for our case. In fact the
epicyclic category A will be viewed as a full subcategory of f.p.Gr-mod(Set),
that is as a full subcategory of partially oriented groupoids with predicate T
Notice the importance of the fullness condition, explaining the need for the
predicate T. The fullness allows us to apply Theorem 6.29 [3] in order to show
the existence of an extension of Gy classified by the epicyclic topos [A, Set];
then, by applying techniques from the same paper, we shall explicitly axiomatize
it. This will be achieved by requiring the extension to be total and the existence
of a specific factorization system for arrows.

The following alternative definition of Goodwillie’s epicyclic category is due
to Connes and Consani.

Definition 2.5. (a) The epicyclic category A is the full subcategory of the
category Gpr-mod(Set) consisting of the oriented groupoids of the form
Z x X for transitive Z-actions on finite sets X.

(b) The epicyclic topos is the category [A, Set] of set-valued functors on the
category A.

Remarks 2.6. (a) Notice that every oriented groupoid X, in A inherits in fact
a total orientation from Z. In particular all the morphisms in A are injective
on endomorphisms (in fact on hom-sets, as can be seen from remark (iii)
below).

(b) In what follows we shall frequently use the following canonical representation
for objects X,, in A. Pick any of its n objects and call it xo. The transitivity
of the Z-action, ensures, 1 being the free generator of Z, that the following

sequence

1.10 l.ml 1.93'”72 1~$n—1
o > 1 — ... — Tp-1 — Xo



orders all the objects in X,,, and generates every arrow in X,,. Clearly every
positive integer is obtained by successive applications of 1. From now on
we shall refer to this generating n-loop by £ = (1. zg,...,1. Zp_1).

In fact every arrow x; — x; in X,,, corresponding to m . x; say, will admit

the following wunique factorization in terms of E Let us suppose without
loss of generality that ¢ < j, and let I; be the unique minimal positive loop
based at x;, that is [; =1 . x;_10...01 . x;41 01 . z;. Then there is a
unique number b > 0, namely m = (j — i) + b - n, such that

m.a}i:l.l‘j_10~--01-$io(li)b

While this may look obvious, the existence of factorization systems of this
form will play a crucial role in what follows.

Before venturing on the undertaking of constructing a geometric theory Tg

in the language L, of oriented groupoids with predicate 7" which is classified by
the epicyclic topos (hence the subscript E), let us first introduce some convenient
notation for simplicity, exclusively remaining in the language Lg for the rest of
the section.

Notations 2.7. Here 7,3 and Z denote strings of n, m and k variables respec-
tively, all of sort G (arrows).

N denotes the set of natural numbers, including 0.

1. Let ®,, and &,, denote addition modulo n in {0,1,...,n—1}. If n is clear
from the context we will usually omit the subscript, and sometimes even
write 4+ or — instead.

2. Let P(Z) denote the extension of the positivity predicate to strings of

variables, that is
n

P(%): /\ P(z:)

=1

3. Let L, (%) denote the predicate expressing that Z is an n-loop

Ly(X) : cod(z1) = dom(za) A - - - A cod(x,,) = dom(xq)

4. Let I(Z) be the term defined for loops L, (Z) and expressing the successive

application of the elements of &
I(X)=xz,0...020027 .

More generally, for any loop L, (Z) and any ¢ € {1,...,n}, we denote by
[;(Z) the n-loop based at domz;:

11()2) = Tig(n-1)° " 0T .

5. Let @, (&) denote the following formula:

®4(X) : Ln(@) A P(@) AT(U())

We call such a & a positive non-trivial n-loop, or simply n-loop for short.
Notice that due to axiom (viii) in Definition 2.1, T'(I(Z)) ensures the va-
lidity of T'(1;(&)) for all i. As it will be seen shortly, the objects X,, € A
are finitely presented by the formulae ®,, as models of Gr.



6. Let k-Gen(Z, Z) denote the proposition, defined for & and Z positive loops,
expressing that 7' is a k-loop generating the loop & by successive applica-
tions ... z;4+102; ..., such that two successive arrows z; and x;41 are also
generated successively, i.e. if #; = 25,07, 0 ... 25, and Tip1 = 25, @ryyy ©
<. Zsp then s;11 = s; @ 7y (modulo k) and dom(z;) = dom(z1). This
gives:

k-Gen(%,Z) : Bx(2) A \V ( N
P1,---,Pn EN ie{l,...,n}
I=o < <o <k

(xl = Za;11—10 Za; O lall))

where modular addition has been omitted, but of course the «;’s and their
arithmetic lie in Z/kZ.

7. Let k-Gen(Z,y,Z) denote the proposition, defined for positive loops Z,
and Z expressing that 2’ is a k-loop generating both the loops ¥ and ¥
successively (in the sense of the previous point) with dom(z;) = dom(z1).
We denote by C,, the group of cyclic permutations on n letters, and for
7 € Oy let 7(%) = (T(1), .-+, T7(n))- This gives:

k-Gen(X,¥,7) : k-Gen(Z,2) A \/ k-Gen((i)), 2)
7€CH

Example 2.8. The simple picture to keep in mind for these generating loops,
are the generators & of X,,. For example consider As in A:

Ys

The two loops & = (21, z2,23) and ¥ = (y1,¥2,¥ys, y4) are clearly generated
by &, namely

(3,22, 21) = (§5,84 0 &3 062, &1) and
(y47y37y27y1) = (62 O§I7§5a§47f3) .

Notice the successive generation in terms of .

Recall that a T-model M is presented by the formula {Z . ¢} if and only if
the model homomorphisms M — N stand in bijective correspondence with the
interpretations [Z . ¢]n of the formula ¢(Z) in the model N, naturally in N.
Applied to our situation of the theory G of partially oriented groupoids one
readily obtains the following result:



Lemma 2.9. The oriented groupoid X,, as a model of Gr is finitely presented
by the formula

~ —

{(f17~-~afn) : (I)n(f)} .

Proof. Given a Gp-model homomorphism H : X,, — G, the string of images
H(&;) under H of the generators & = (1. xz;-1) : ;-1 — x; of X, satisfies the
formula ®,, as H, being a Gpr-model homomorphism, preserves P, L, and T'.
Conversely, suppose that we are given an element f of the interpretation of
the formula ®,, in a model G of Gr. Recalling the axioms for G, in particular
axioms (iv), (ix) and (x), we see that arbitrary compositions of f;’s preserve
P, that T(I(f)) implies T(1;(f)) for all i, and that arbitrary non-zero powers

of loops I;( f) satisfy T. Now, since every positive arrow in X,, is obtained by
successive applications from 5 and every non-trivial endomorphism is obtained
by non-zero powers of the primitive loops /;(£) (see Remarks 2.6 (b) and (c)),
the fact that the assignment H(;) := f; defines a Gp-model homomorphism
follows immediately.

Clearly, these correspondences are inverse to each other and natural in G,

as required. O

Notice that all the hitherto established results have put us in a position to ex-
ploit the techniques developed in [3] in order to show the existence, and describe
an axiomatization, of a theory T g classified by the epicyclic topos. Indeed, from
Lemma 2.3 we know that the theory G is of presheaf type; in particular its
classifying topos can be represented as &g, ~ [f.p.Gr-mod(Set), Set]. Also, by
definition 2.5, A is a full subcategory of Gp-mod(Set), hence by Lemma 2.9 in
particular of f.p.Gr-mod(Set). It readily follows from Theorem 6.29 in [3] that
the full theory Ty of all geometric sequents, expressed in the language Lg,.,
which are valid in all models X, € 1~X, is classified by the epicyclic topos.

In order to find an economical axiomatization of Tg, all one needs to do
now is to find geometric sequents in Lg, which are satisfied in every X,, € A
and which entail the validity of the five (schemes of) sequents in Theorem 6.32
([3]). For the reader’s convenience, we report the statement of the part of
Theorem 6.32 which is relevant for our purposes. Note that, as it is clear from
its proof, the terms referred to in the statement of the theorem are exclusively
used for representing elements of the models in &, so they could be replaced by
more general T-provably functional predicates if the latter are what is needed
to represent such elements in terms of the generators of the model in question.
In fact, in our case, the terms used are actually only ‘partially defined’ terms
(since the composition law in a groupoid is only partially defined).

Theorem 2.10 (cf. Theorem 6.32 [3]). Let T be a theory of presheaf type over
a signature 3 and K a full subcategory of the category of set-based T-models
such that every T-model in K is both finitely presented and finitely generated
(with respect to the same generators). Then the following sequents, added to the
azioms of T, yield an aziomatization of the theory Tx (where we denote by P
the set of geometric formulae over 3 which present a T-model in K):

(i) The sequent
(Try \ @0)¢(@));



(ii) For any formulae ¢(Z) and (7) in P, where T = (zi,...,22%) and
7= (yr*,...,yBm), the sequent

(@)NP(Y) a9 V EHE A N (@ =t Ay = s5())),

2)eP 1 (2),... A (2 i€{l,....n},
x( )831(;) ( iBm(E) ) je{1,....m}
1 1% m

where the disjunction is taken over all the formulae x(2) in P and all the
sequences of terms ti1(2), ...t (2) and sP1(2), ..., sBm (2) whose output
sorts are respectively Ay, ..., Ay, By, ..., By and such that, denoting by 5
the set of generators of the model Mz .,y finitely presented by the formula

X(Z), ()t (©)) € (17 - llreyy and (5T (6,55 (€) € (17 -

wHM{sAX} ;

(iii) Fog any formulae ¢(Z) and 1/)(3]1)4 in P,iuhere Z= gxfl, o An) and i =
(-, yBm), and any terms t1 (), s7 (%), - . ., tan (), san (i) whose out-
put sorts are respectively A1, ..., A,, the sequent

(N G@) =) At /1, tafzn) ASls1/@r, s 8n/T0) AD(T)

i€{l,...,n}

Py V @A N =u(2)),

x(2)eP,ull(2),... . ubm () Je{l,...,m}

where the disjunction is taken over all the formulae x(2) in P and all the

sequences of terms ufl (2),...,uBm(2) whose output sorts are respectively

By, ..., B, and such that, denoting by & the set of generators of the model
Mz finitely presented by the formula x(Z), (WP (&), ..., ubm () e [[7.

M]M{s.x} and ti(ul(g), . 7um(g)) = si(ul(g), . ,um(ﬁ)) in Mz for all
1e{l,...,n};

(iv) For any sort A over X, the sequent

(The V  EE Az=t(2),

X(2)eP,t4(Z)

where the the disjunction is taken over all the formulae x(2) in P and all
the terms t*(Z) whose output sort is A;

(v) For any sort A over X, any formulae ¢(Z) and ¢ (y) in P, where & =
(). ) and § = (yP, .. yBm), and any terms tA(E) and s7(7),

the sequent

((Z) ANY(Y) ANH(T) = s(Y) Fzg (32) (X (2)A
X(DEP P (2),...pin (2)

B — —
ay Y (2),..a5m(2)

AN @=pi(E) Ay = q5(2),
i€{1,...,n},
je{1,....m}



where the disjunction is taken over all the formulae x(2) in P and all the
sequences of terms pt(2),...,p and ¢ (2),..., B (2) whose output
sorts are respectively Ay, ..., An, B1,..., By and such that, denoting by 5
the set of generators of the model Mz, finitely presented by the formula

X(2), 1), .-, (©) € 17 - Dlluy-y, and (¢ (£),- ... qEm(€)) € [ -

— — —

wHM{s.X} and t(p1(§), - - -, pn(§)) = s(q1(§),-- -, qm(g)) in Mz

It may be illuminating to note that these five schemes of sequents are ac-
tually just syntactic reformulations of the first two flatness and isomorphism
conditions of Theorem 5.1 ([3]). Specifically, sequents (i),(ii) and (iii) corre-
spond to syntactic formulations of the conditions of Theorem 5.3, and sequents
(iv) and (v) to syntactic formulations of those of Theorem 5.7.

Theorem 2.11. The geometric theory T classified by the epicyclic topos [[\, Set)]
is obtained by adding to the theory G of oriented groupoids the following az-
10ms:

(i) T Fo (EIaGO)(a =a)

(ii) P(f)Ffer (39)(P(9) AT(g0 f))
(iii) For all m,n € N:
D0 (Z) A @ (Y) Fa,g Vi<nym (32) (k-Gen(Z, 7, 2))
(i) For all k > 2 and distinct i,j € {1,...,k}:
®y(2) A (dom(z;) = dom(z)) bz () (Pr—1 (@) A (k — 1)-Gen(Z, 7))
We call Ty the ‘epicyclic theory’.

Remark 2.12. The important point in this axiomatization is that it entails the
existence of a generator in which every domain occurs only once. With axiom
(iii) alone this would clearly not be the case. Reconsidering the two loops Z and
y of Example 2.8

x3
T2
ap ai ag as Qg4
Y1 Y2
Ya
Ys

we see that for example the loop Z = (&1,&2, 1a,,&3,84,&5) is also a generator
for ¥ and ¥, where just an identity has been added: z3 = 1,,. This becomes a
problem because now dom(z3) = dom(z4) - a formula which does not hold for the
generators { To avoid this, the axiom-scheme (iv) allows to reduce the length
of Z accordingly. Still, there are equivalent ways to axiomatize this property.
An alternative to (iii) and (iv) can be obtained by observing that the generator



Z must have precisely as many domains (arrows) as there are different domains
in the list (Z, 7). For example, let us denote by k' — domeq(Z) the assertion that
k' domains of arrows with different indexes in the list 2= (z1, ..., ;) are equal.
The precise formula for this statement is

Vo (A(V dom)=doms)).

A C{1,...,k} €A jE({1,....,k}\i)

where A/ is any subset of cardinality k&’. Then, axioms (iii) and (iv) could
be replaced by the following axiom scheme: for all m,n € N and for all ¥’ €
{1,...,m+n}

D, (Z) A By, (§) A K'-domeq(, ) Fz.g IZ((m +n — k')-Gen(Z, 7, 2)) .

Indeed, choosing k' maximal in a given model does make the generator 2 mini-
mal: every domain from (&, %) must occur at least once in Z' by the requirement
of a generator, and at the same time at most once by the maximal choice of k’.

Proof. As already remarked above, in order to prove that the theory Tpg is
classified by the epicyclic topos, we shall first verify that all its axioms are
satisfied in every X,, € A, and subsequently show that their validity in any
Gr-model entails the validity of sequents (i)-(v) of Theorem 6.32 in [3].

By the way, take note that “validity” here means validity in any model in
an arbitrary topos &, and not just Set. One could formulate the entire proof
in the proof system for geometric logic by only manipulating sequents, but
for the sake of readability and understanding, we will conduct most of the
proof semantically in the standard Kripke-Joyal semantics for toposes. Due to
completeness this is equivalent. So for example if we sometimes abusively speak
of an “object a”, with regard to a model M in Tg-mod(£), what we really mean
is a generalized element of M (Gy), and analogously for arrows or more general
terms and formulae.

By definition, the underlying sets of the X, are non-empty sets. Hence axiom
(i) is always verified. Also, as already observed in Remarks 2.6, given any two
objects, successive applications of 1 will eventually yield positive arrows from
one to the other whose composites are non-trivial loops, due to the transitivity
of the action and the fact that Z is freely generated by 1. This shows the validity
of axiom (ii) in every X,.

To show the validity of axiom (iii) in every X,, suppose that two loops #
and ¢ in X,, are given as in the premises of axiom (iii). Take Z to be the unique
loop such that [(Z) = n . dom(z1). In light of Remark 2.6 (c), all the positive
arrows in X,, are generated by Z; in particular & and ¢ are generated by 2, as
desired.

The validity of axiom (iv) in X,, can be shown as follows. Consider the
minimal n-loop @ in X, starting at the object dom(z); then, by Remark 2.6
(c), all the domains of the arrows z; are equal to one of the domains dom(u;).
Now, take ¥’ to be the loop obtained from by successively removing any object
dom(u;) which is not of the form dom(z;) for some i, replacing at each step
the arrows u;_; and u; by their composite u; o u;_;. Clearly, this loop is still
generating for Z’ (cf. Remark 2.6 (c)) and its length is < k — 1; if it is strictly
smaller than k — 1 insert identities in this loop at arbitrary places to as to
increase its size to exactly k — 1. The result will be a (k — 1)-loop W satisfying
the right-hand-side of axiom (iv).

10



Now all that remains to be shown is that the axiomatization of Tg en-
sures the validity of the five (schemes of) sequents of Theorem 6.32 [3]. We
shall undertake this task point by point, after having introduced a number of
preparatory lemmas.

—\

Lemma 2.13. Given a loop ®,,(Z) and a generator k-Gen (&, 2) with z; = u;(Z)
for all 7 in a given Tg-model,

—

Xk ): i)'rL(ul(f)a N ’Un(f));
where 5 are the generators for Xj.

Proof. All that this lemma says is that when applying the decomposition terms
u;(Z) to the generator €in X}, one still obtains a positive non-trivial loop.
Since the terms u; are just compositions, the positivity is clear. The fact that
the compositions are successive ensures that (u1(€), ..., un(£)) is aloop. Indeed,
the terms u,(Z) are well defined for any loop Ly(Z), because if u;(Z) = zj0---
ends with z;, then u;11(2) = --- 0 z;41 starts with z;;1 by the form of the u;.
Non-triviality of I(uy (), ..., un(£)) easily follows from the fact that, the
exponents p; in the definition of k-Gen being positive or zero, the successive
generation of ¥ from Z ensures that the term in Z' defining the composite {(Z) =

Up(Z) o+ owuq(2) is a non-trivial positive power of [(Z). O (Lemma)

Lemma 2.14. Given any two loops ®,,(Z) and ®,,(7) in a model of T, the
axioms for Tg ensure the existence of a minimal generator k-Gen(Z,¥,?) in
which every domain occurs only once, i.e. dom(z;) = dom(z;) iff i = j.

Proof. The existence of a k-generator is ensured by (iii). Axiom (iv) allows to
inductively reduce its size to to arrive at a generator for 2, and hence for ¥ and
Y, of minimal size. O (Lemma)

—

Lemma 2.15. Given a loop ®,,(Z) and a minimal generator k-Gen(Z, Z) as in
the previous Lemma, then the decompositions
XTj = Zj4s0+-250 l](g)p

are unique, i.e. 1 < 7,8 < k and p are uniquely determined by x;. More
generally, every arrow f obtained by successive applications from z'

f g Zj'-‘rs’ (ORI Zj/ (] l]/(g)p
determines a unique set of parameters 1 < 5/, s’ < k and p’ € Z.

Proof. 1t is clear that j and j + s is uniquely determined by the domain and
codomain of z;, since each of them occurs precisely once in dom(Z) by our

—

assumption on Z. Further, suppose that z;s0---z;00;(2)P = zj4s- - 2z;00;(2)7 .
Then, due to existence of inverses, 1 = [;(2)®=?"). But

T(l(2)) by definition of k-Gen

= T(;(2)) by axiom (x) in Definition 2.1 of Gp

= T(3(2)) for all ¢ # 0 by axiom (ix) in Definition 2.1 of G

= (p—p)=0 by axiom (v) in Definition 2.1 of Gp
Hence also p is uniquely determined by ;. O (Lemma)
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Lemma 2.16. Suppose that 2'is a minimal generator in the sense of Lemma

2.14,

and let t'(2) = zj4p 0--- 02, 0[;(2)P and t"(Z) = zj4s0--- 02z 01;(2)? be

two terms successive in Z. Then

(a) (2)~1 is successive in Z, and

(b) t"(Z) o t/(2) is successive in Z, if defined.

Proof. (a)

()P =1(2) oz o0 Zi_+17-
:(zi_lo~~ozi__11)pozi_1o~-~ozi_+1r
e B -1 Y
=% 9024, 0 (Zi+r+1 00 ZiJrr)
— -1 —1\p+1
= 22100 Zitpt1 0 (23041 0 0 23,)0

=2;—10**0Zitry] O (li+r+1(5))_p_1

(b) Notice that the composition is defined if and only if j =i+ 7+ 1 (mod k).

t"(2) ot'(Z) = zjps0---02j0li(2)90 zi4p 0 02;01;(2)P

O (Lemma)

Let us now come back to the sequents of Theorem 6.32 one by one:

(i)

(i)

(iii)

By axiom (i) there exists an object a, and by axiom (ii) there exists a

non-trivial loop f at a. In particular, ®;(f), which ensures the validity of
the sequent.

Given two loops @n(f) A @m(gj'), axiom (iii) ensures the existence of a loop
O (%) generating the former two. Lemma 2.13 thus allows us to conclude
our thesis.

Given a loop ®,, (%), for every term (%) of sort G* one has dom(t(7)) =
dom(y;) for some j, and similarly for cod. Indeed, ¢(7) is at most a com-
position of identities, y;’s and their inverses.

So assume that we are given terms ¢;(7) = s;(¢) (1 < i < n) satisfying
D, (t1(Y), - - -, tn(¥)) and Py, (s1(Y), - - ., sn(¥)) respectively. Let Z be a min-
imal generator k-Gen(t(¥), ¥, Z) in the sense of Lemma 2.14. By Lemma

2.13 the decomposition terms of the y; = u;(Z) are compatible with the 3
in Xy, that is X E @, (u1(§),. .., um(§)).

By Lemma 2.16, the terms ¢;(¢) and s;(%) are successive in Z whence
by Lemma 2.15 their decompositions in terms of Z are unique. This
implies that ¢;(u1(2),...,um(2)) = si(u1(2),...,um(Z)) and hence that

ti(ur (&), .. sum(§)) = si(ur(€),. .., um(€)), which is what we needed to
ensure for the validity of sequent (iii).

Suppose that we are given an arrow f : a — b. By totality of the order,
either P(f) or P(f~!). Without loss of generality we assume the former.
Then axiom (ii) ensures the existence of a positive arrow g : b — a such
that T'(g o f). In particular, &)Q(f, g). This implies the validity of sequent

(iv).

12



—

(v) Suppose that we are given two loops &, (&) and ®,,(7) and two terms
t(Z) = s(y). Let z be a minimal generator k-Gen(Z,7,Z) in the sense
of Lemma 2.14. By Lemma 2.13, the decompositions of x; = p;(Z) and

y; = ¢;(%) are compatible with €in Xy, that is Xj, = ®n(p1(€),. .., pn(S))

and X, = @ (q1(6), ..., qm(€)). So all that is left to show is the validity
of

— — — —

tp1(&); - Pu(€)) = s(a1(§); - -, gm(€))
in Xk.

Suppose first that ¢(Z) and s(%) are of sort G;. These terms are obtained
by successive applications from Z by Lemma 2.16, whence Lemma 2.15
ensures the equality between them, as desired.

If t and s are of sort Gy then the result follows immediately from the
previous case by using the identification between objects and identical
arrows on them.

O

3 The cyclic theory

Our aim in this section is to construct a theory T¢ classified by Connes’ cyclic
topos. Recall that this topos is defined as the category [A, Set| of set-valued
functors on the cyclic category A originally defined in [4].

Several results about the cyclic topos are already known. In an unpublished
note ([14]) I. Moerdijk suggests a theory of “abstract circles” classified by the
cyclic topos; for a complete, fully constructive, proof the reader may refer to
section 8.1.1 of [3]. In [6] an equivalence of categories between a category 2tc
of archimedian sets and that of Set-valued abstract circles is constructed and
used to describe the points of the cyclic topos in terms of archimedian sets.

Amongst these different characterizations of the cyclic category, we shall
use Connes-Consani’s description of the epicyclic category in terms of oriented
groupoids (cf. Definition 2.5) to describe A as well in these terms. As we
shall see shortly however, the existence of distinguished cycles in A will simplify
things dramatically.

Definition 3.1. (a) The language Lg. of cyclically oriented groupoids, or ori-
ented groupoids with cycles, is obtained from the language of oriented groupo-
ids Lg (cf. Definition 2.1) by adding a function symbol C' : Gy — G1, whose
intended interpretation is the assignment to an object of the generator of
the cyclic group of endomorphisms on it. Again of course, the orientation
on arrows will be expressed through the unary predicate P.

(b) The theory of cyclically oriented groupoids G is obtained by adding to the
geometric theory G of Definition 2.1 the following geometric sequents:

(i) T F,e0 dom(Cy) = cod(C,) = a

(i) T Fgeo P(Cy)

(iil) Cp =14 k460 L

(iv) gof = Caom(s) Fr.g f 09 = Caom(y)

13



As in the epicyclic case, if axiom (vi) is omitted, one obtains the theory of
partially oriented groupoids with cycles, denoted by G¢.

Similarly to the epicyclic case, we have the following

Lemma 3.2. The theory G¢ of partially oriented groupoids with cycles is of
presheaf type.

Proof. Apart from sequent (ix), the axioms of G¢ are cartesian. The thesis thus
follows from Theorem 6.28 [3]. O

As in the spirit of Connes-Consani’s description of the epicyclic category,
one obtains the following natural characterization of the cyclic category A in
terms of the theory G¢ of partially oriented groupoids with cycles.

Let X, denote the groupoid Zx {0,...,n—1}, as in the previous section (see
Example 2.4 and Remarks 2.6). Its orientation is again given by the natural
condition ‘P(m . ;) if and only if m > 0’. X,, can be canonically made into a
model of G¢ (or even G¢ of course), by interpreting the elementary cycle C,,
as the minimal loop n . z;. This explains the name “elementary cycle”. Now,
every endomorphism e : x; — z; is of the form e = C’;i for a unique k. More
generally, every arrow f : z; — x; is of the form f = (|j —i|) . z; 0 Cﬁi for a
unique k.

For the rest of this section, X, will denote the just described groupoid,
considered as a model of the theory Gg¢.

Definition 3.3. (a) The cyclic category A is the full subcategory of the cate-
gory G¢-mod(Set) consisting of partially oriented groupoids with cycles of
the form X,, (for n > 1).

(b) The cyclic topos is the category [A, Set] of set-valued functors on A.

Remark 3.4. The categories A and A have the same objects. Clearly, every X,,
as a model of G can be seen as a model of G and vice versa. The difference
between these categories lies in their hom-sets. Whilst homomorphisms of G
must preserve 7', which means sending non-trivial loops to non-trivial loops, the
homomorphisms of G¢ must send elementary cycles to elementary cycles. Since
by the above description of the elementary cycles in X,, every non-trivial loop
is a power of the elementary cycle, every Go-model homomorphism X,, — X,/
is also a Gy-model homomorphism, i.e. A C A.

Before proceeding further, we introduce two convenient notational abbrevi-
ations, in addition to the ones already defined in 2.7.

Notations 3.5. 1. Let \i’n(f) denote the proposition asserting that Z is an
elementary cycle

U (%) : Ly (@) A P(@) AN(T) = Caoman) -

It is important to note that due to axiom (x) of G, (%) = Caom(a)
entails the validity of /;(Z) = Cqom(q,) for all i. We will see shortly that

the Ge-models X,, € A are finitely presented by the formulae ¥,,.

14



2. Given an arrow f : a — b, let PMin(f) be the proposition asserting that
f is the minimal positive arrow from a to b, i.e.

PMin(f) : P(f)A(3g:b—a)(P(g)ANgo f=C,)

In other words, PMin(f) says that f is an arrow “contained” in the ele-
mentary cycle C,.

Just as in the epicyclic case (see Lemma 2.9), the set P of formulas which
finitely present a Go-model X, € A is of a very simple form:

Lemma 3.6. The objects X,, of A, viewed as models in G¢-mod(Set), are
finitely presented by the formulae

{(frro o fn) - W)

Proof. Just as in Lemma 2.9, one has to establish a natural bijection between
the model homomorphisms H : X,, — G in Go-mod(Set) and the elements of
the interpretation [ . ¥, ] of the formula ¥, (Z) in the model G.

Given such a homomorphism H, the image of the generating loop E of X,
clearly belongs to the interpretation of the formula U, (%) in the model G, by
the very definition of Gg-model homomorphisms.

Conversely, suppose that f: (f1,..., fn) is a loop in G satisfying T,. We
want to show that the assignment H : & — f; defines a Gg-model homomor-
phism. First, it is readily seen that this assignment extends to all of X,, by
making it compatible with composition H (41 0&;) 1= H(&+1) o H(&) and
inverses, since every arrow in X, is obtained by repeatedly applying these oper-
ations to the generators E From L, ( f) it follows that H is compatible with dom

—

and cod. Since composition preserves P (axiom (iv)) and P(f), H preserves P.

=

Lastly, H preserves C' because [(f) = Cgom(f,) and by axiom (x) this implies

lz(f) = Cdom(fi)-
By construction, these correspondence is inverse to each other and natural
in G, as required. O

Similarly to the epicyclic case, Theorem 6.29 [3] ensures that the cyclic
topos classifies the full theory T¢ of all geometric sequents over the signature
Lg, which are valid in every X,, € A, while Theorem 6.32 [3] provides a generic
axiomatization for this theory.

A more explicit axiomatization for T¢ is provided by the following

Theorem 3.7. The theory Tc classified by the cyclic topos can be aziomatized
in the language Lg. by adding to the theory G¢c of oriented groupoids with cycles
the following axioms:

(i) mon-triviality for objects:

T l_[] (HGGO)(G = G,)

(i) non-triviality for hom-sets :

Thap 3f :a—=0)(P(f))

15



(iii) factorization through cycles and minimal positive arrows:

P(f) Fras \/ Ga:a— b)(PMin(a) A f = a0 (Ca)™)
neN

We call the theory T¢ the ‘cyclic theory’.

Proof. The structure of the proof will be exactly the same as for Theorem 2.11.
First we show the validity of the axioms in every X,,. Then we proceed to check
the flatness and isomorphism conditions for the functors Hp; : A°® — & of
Theorem 5.1 [3] by using their syntactic reformulations as provided by Theorem
6.32 [3].

It is immediately clear from their definition that the objects X,, = Z x
{0,...,n — 1} satisfy the non-triviality of objects and hom-sets conditions (cf.
Definition 2.5 and Remarks 2.6). Also, the validity of the remaining axiom
expressing the existence of a factorization system through cycles follows at once
from Remark 2.6 (c).

To show the entailment of the five sequents of Theorem 6.32 ([3]) from the
above axiomatization, we will proceed one by one. Note again that here, just as
in the epicyclic case, validity means valid in models in arbitrary Grothendieck
toposes, and not just in Set. So in particular care must be taken in the proof
when we occasionally abuse notation and speak of an object a, when we really
mean a generalized element of the object M (Gy) for a model M in Te-mod(E),
and similarly for arrows or more general terms or formulae. In fact, all our
arguments should be interpreted in the standard Kripke-Joyal semantics for
toposes.

(i) From axioms (i) of Theorem 3.7 and (viii) of G¢, one deduces T + Ja(P(Cy)).
This implies, in light of axiom (vii) of G¢, the validity of sequent

TH\/ (EE(T.(2))) -

neN

Before proceeding further, it will be useful to note a series of lemmas:

Lemma 3.8. Given two objects a and b in a model M of T¢, there exists a
minimal positive arrow my, p, : a — b satisfying PMin(mq p).

Proof. From axiom (ii) we know that there exists a positive arrow f : a — b.
From axiom (iii) of Theorem 3.7 it thus follows that (3o : @ — b)(PMin(«)). O

Lemma 3.9. The minimal positive arrows m, of the previous lemma are
either unique, or @ = b in which case m,; can be the identity 1, or the cycle
C,. Concretely, To entails

(a,a : a — b) APMin(a) APMin(o) Fa,aamss (@ =a') V (a =b) .
In particular, the decomposition of axiom (iii) of Theorem 3.7 is unique.

Proof. Suppose that we are given two objects a and b, and positive arrows
a,o :a — b, 8,8 :b— asuch that foa = o0a’ =C,. Then o/ ca™! =
BloB=p"1oC,0at = (Cy" for some n € Z.
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Now, a~t-o/ = (C,)" implies a1 = (C,)" "1 -o’. If n > 0 the arrow on the
right hand side of this latter equality is positive and hence n =1 and a = 1,; in
particular, @ = b. Similarly if n < 0. If instead n = 0 then a = o’. This proves
our thesis. O

Lemma 3.10. In a model for T, given an elementary cycle # satisfying U,, (%)
and an object ¢, there exists an integer 1 < ¢ < n and positive arrows «, § such
that 2; = 8o a and dom(3) = c. In particular W, 1 ((...,zi_1,a, 3, Tiy1,...))
is verified.

In other words, the following sequent is entailed by the axioms of T¢:

() Fae 3o, B(P@) APB) A \/ (@i = Boandom(B) =c))

1<i<n

Proof. If ¢ = dom(z;) for some 4, then setting a = 1, and S = x; clearly does
the job. Otherwise, by applying Lemma 3.9 we see that there exists an arrow
f : dom(z1) — c satisfying PMin(f), whence a positive arrow ¢ : ¢ — dom(z1)
such that g o f = Caom(a,)- Notice that, since ¢ # dom(z1), f # ldom(z,) and
g # 1d0m(11)' Then

gof=wno0--0u

= g:xno...oxlofflh
Now take 1 < ¢ < n such that

T, 0---0 a:;l og=wxi_j10---oxyoft is still positive, but
x;ll o--cox t-g=1x;90---0oxy0f! is not positive anymore.
Note that, since f # 1 # g, such an ¢ must exist. Define a=! = z;_g0---oxjof~!
to be the negative arrow of the last line, and S = 2;_;0---ox; 0o f~! to be the
arrow in the second last line.

We see that both o and /3 are positive, that dom(3) = dom(f~!) = cod(f) =

¢, and lastly foa = x;_1. O

Lemma 3.11. In a model for T¢, given two elementary cycles U, (%) and
U, (), there exists a Z satisfying Uy (Z) and containing the former two. That
is, the x; and y; are obtained from Z through successive applications:

Ty = Zg; ,—10° "0 Zg,

Titl = Zs;42—10 "0 %44

where the same holds for the y;’s, and of course the indices s; and their arith-
metic are understood in Z/kZ as usual.

Moreover, without loss of generality, this 2’ may be assumed not to contain
identities; in particular, domz; = domz; implies ¢ = j, so that, in light of Lemma
3.9, decompositions in terms of Z’ are unique.
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Proof. We shall deduce the existence of an elementary cycle Z containing # and
y from Lemma 3.10 by recursion, as follows.

Set 200 = 7.

Given 27), apply Lemma 3.10 to it and dom(y;1) in order to obtain Z/+1).
Stop after m steps and set 2 = Z(™),

It is clear that all the z;’s and y;’s are obtained by successive applications
from Z; also, by construction and Lemma 3.10, Wy (Z).

Concerning the last part of the proposition, it is obvious that one can remove
all identical arrows from Z without affecting the satisfaction of the desired prop-
erty. Suppose that this is done, and assume that domz; = domz; =: b (without
loss of generality ¢ < j). Then (zj_10---02;) : b — b, so it can be either the
identity or (Cp)™ (for some n > 0). Since we have removed all the identities
from Z and each of its arrows is positive, the former cannot be the case, so
(zj—10-+02z) = (Cp)". Then z;_10---0z; = (Cp) "+, and by positivity of
the left hand side n < 1. So n = 1. But then 2,1 0---02; = lgom(z,), Which
implies, since 2z does not contain identities, that i = j.

In light of these lemmas, particularly 3.11, the remainder of the proof is easy.
Let us turn towards the remaining sequents of Theorem 6.32:

(ii) With the help of Lemma 3.11, the validity of sequent (i) is almost im-
mediate, as it ensures the existence of an elementary cycle Z’ containing
Z and ¢. In particular, ¥ and ¥ are obtained uniquely through successive
applications from Zz:

Ty = Zgy -1 Zs;, = ti(Z)

Ti41 = Zsi+2—1 e Zsi+1 = tl+1(z)

= =

What remains to be shown is that W,, (¢, (€), ..., t,(£)) in X}, and similarly
for 4.
Now, since

—

dom(ti11(&)) = dom(&s,..,) = cod(&s,,,—1) = cod(#i(€))

(t:(£)) satisfies L,. Moreover, (t;(£)) satisfies also P, since the & are
positive and positivity is stable under composition. It remains to show
that

— —

tn( )o...otl( ) dom(t1(5))
But we know that

th(Z)o...0t1(2) =20 021 =xp0--- 021 = Cyom(a)

1(z)» ()

whence ()P = Cyom(z,). From axiom (iii) of theory G¢ and axiom (iii) of
theory T¢, it thus follows that p = 1. But this is exactly what we wanted,
as now

— —

ta(€) o 0t1(E) = UE) = Cuome) -
(ii)-

This shows the validity of sequent
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(iii) Suppose that we are given a cycle ¢/ satisfying T, (¥), and terms t; (%), si(¥/)
(1 < i < n) such that U, (t1(9), ..., tn(¥))s Yn(s1(¥),-..,s.(¥)) and
ti(:lj) = 81(37) for all i.

Let Z be an elementary generating cycle without identities provided by
Lemma 3.11 for the two cycles ¢ and (¢1(%), - . ., tn (7)) = (s1(9), - - -, sn.(7))-
In particular, 7 is obtained via successive applications from 2. It is imme-
diate to see, by using arguments similar to those in the proof of Lemma

2.13, that (u1(€),. .., um(£)) satisfies W,, in Xy, where y; = u;(Z).

By the analogue of Lemma 2.16 in the cyclic setting, for each i the terms
ti(ui(2),...,um(?)) and s;(ui(2),...,un(2)) are successive in z. Lemma

3.9 thus yields that ¢;(u1(§),...,um(§)) = si(u1(&),. .., un(&)) for all 4,
which is precisely what we needed to show.

(iv) Given an arrow f :a — b, axiom (iii) ensures that f = ao (Cy)" for some
a satisfying PMin(a), whence there exists a positive arrow 3 : b — a such
that 5o a = C,. Then Uy(a, f) is satisfied and f = ao (8o )™

(v) Suppose that we are given two elementary cycles # and ¢, and two terms
t and s of sort G; satisfying ¢(Z) = s(¥). Let Z be an elementary gener-
ating cycle without identities provided by Lemma 3.11 for the two cycles
Z and . So ¥ and ¥ are obtained wuniquely by successive applications
from Z, say x; = p;(Z) and y; = ¢;(). This ensures, by using arguments

—

similar to those in the proof of Lemma 2.13, that (pi(£),...,pn(£)) and

(@1 (5), e Qm (5)) satisfy U,, and U,,, respectively in Xj.

Lastly, to show that ¢(p1 (), ..., pn(€)) = s(q1(E), ..., gm(€)) holds in Xp,
one argues as in point (iii) above.

The case of terms of sort G follows at once from that of terms of sort G
just considered, by using the identification between objects and identical
arrows on them.

O

4 The topos [N*, Set]

As realized by A. Connes and C. Consani, the category N*, viewgg as a multi-
plicative monoid, and its associated topos of set-valued functors N* = [N* Set)]
takes a special role in the general framework A < A < A. Details and proofs
of the following introductory paragraphs will be shortly available in a paper by
them (“The cyclic and epicyclic sites” - work in progress).

The monoid N* acts via “barycentric subdivision” functors Sdx : A — A
on the simplicial category A and its opposite Sdj, : A°? — A°P. In fact these
actions extend to an action ¥y : A — A on the cyclic category A, by means of
which an alternative characterization of the epicyclic category as A~ A x N*
can be obtained.

Now, as mentioned above, one can view A as a full subcategory of the cate-
gory 2te of archimedian sets introduced in [6], thereby characterizing A as a full
subcategory of Arex N* with objects of the form n = (Z, 0) where 6(z) = z+n+1.
The category 2vc x N* in turn is a full and faithful subcategory of the category
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Gr-mod(Set) of oriented groupoids with non-triviality predicate 7' defined in
section 2.

Indeed, consider the functor Mod : A — N* which sends objects X, to
* € N* and arrows H : X,, = X,,, to the integer k£ > 1 defined by the condition
that the elementary cycle 1(5(”>) of X,, gets mapped to the k-th power of the
elementary cycle in X,,: (€)% = H(I(£()). Note that k # 0 because H
preserves T', and k ¢ 0 because H preserves P. This functor Mod is part of
a geometric morphism, and hence one obtains a natural “section” 2 : N* = A
which allows to lift descriptions of points of N* to those of A. This strategy has
been pursued by Connes and Consani and resulted in interesting connections to
Tits’ ideas of characteristic one (cf. their above-mentioned forthcoming paper
“The cyclic and epicyclic sites”, [7] and [15]).

In fact, the category of points of N* is shown in [9] to correspond to that of
non-trivial ordered subgroups (H, H™) of the ordered group (Q, Q") and non-
trivial order-preserving group homomorphisms between them (note that these
are precisely the homomorphisms between such groups viewed as models of
the injectivization of the theory of (totally) ordered groups, as defined below).
These points were in turn equivalently characterized as the algebraic extensions
of the tropical integers F = Zmax C H C F = Qmax.

Again, our aim is to directly describe not only the category of points, but
also a theory whose classifying topos is N*.

Definition 4.1. The geometric theory of partially ordered groups O is obtained
by adding to the (algebraic) theory of groups (where the constant 1 denotes
the neutral element of the group) a predicate P for positivity and the following
axioms:

(i) TF P(1)
P(a)AP
P(a) Fge P(c7ta-c)
P(a) AP

The theory totally ordered groups, denoted by O, is obtained by adding the
axiom

(ii (0) Fap Pla-b)

(iii

)
)
)
(iv)

(aHhksa=1

(v) Thq Pla)V P(a™?)

One can axiomatize the injectivization of Q by enriching the language with
a binary relation symbol #, expressing non-equality, and adding the following
axioms:

(Vi) z£ab, L
(vil) Thyy (z#y)V(z=1y)

We will denote this theory by @ Its partial counterpart is obtained by omitting
axioms (v) and (vii) and will be denoted by O.

Once more, we have a series of lemmas enabling us to apply Theorem 6.29

[3I:
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Lemma 4.2. The theory O of partially ordered groups is of presheaf-type.

Proof. Axioms (i)-(iv) are cartesian, and theories of presheaf-type are stable
under the addition of geometric axioms of the form ¢ Fz L. O

Lemma 4.3. The ordered group Z is finitely presented, as a model of the theory
O, by the formula

{z. Px)no#1}.

Proof. 7 being the free group of one generator, it is clear that any homomor-
phism H : Z — G is uniquely determined by its value at 1. Since 1 is positive,
its image must be positive too, and since H is injective, it must also be non-
Z€ro. O

Lemma 4.4. The category N* is a full subcategory of the category O-mod(Set)
of partially ordered groups with injective homomorphisms, and in particular also
of its full subcategory f.p.Ox-mod(Set) of finitely presentable models.

Proof. Group homomorphisms Z — Z correspond precisely to integers n, namely
x — nx. The requirement of preserving the order P gives n > 0, and the in-
jectivity condition of preserving # excludes the case n = 0. Hence O-model
homomorphisms of Z correspond set-wise to N*, and since m(nz) = (mn)x this
correspondence is functorial.

The second part is also immediate in light of Lemma 4.3. O

The following theorem describes an axiomatization of the theory Ty clas-
sified by the subtopos N* of the classifying topos for @, whose existence is
ensured by the two previous lemmas and Theorem 6.29 ([3]).

Theorem 4.5. The geometric theory Ty classified by the topos N* is obtained
by adding to the injective theory of ordered groups QO+ the following azioms:

(i) TE3x(x#£1)

(i) P(x) APY) Fay Vo meny 32(P(2) A (@ = 2) Ay = 2™))

Proof. Remember that the category N* has been identified with the full sub-
category of O-mod(Set) on the model Z in the proof of lemma 4.4. It is clear
that the natural order is total, so Z is a model of O. It also clearly satisfies
the above axioms.

To show that the axioms are also sufficient for the full (geometric) theory
Th(Z) in the language of O, we proceed once more checking the validity of
sequents (i)-(v) of Theorem 6.32 [3].

Note that, as observed in Remarks 5.4 (b) and 5.8 (a) in [3], the validity
of sequents (iii) and (v) will follow automatically from that of (ii) due to the
fact that all the model homomorphisms are monic. Nonetheless, we shall prove
them explicitly below, for the sake of clarity and completeness. To this end, we
note the following
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Lemma 4.6. The theory Ty entails the validity of the following sequent:

(@#D)AP@) b \ b #1.

keN

In other words, Ty-groups (that is, the groups in Ty-mod(Set)) are torsion-
free.

Proof. If P(x) then P(«*) for all k € N and if  # 1 none of the powers z* can
be the inverse to . In fact this already holds for O, which just corresponds to
the well-known fact that totally ordered groups are torsion-free. O

(i) Axiom (i) ensures the existence of an (z # 1); if P(z) we are done, other-
wise P(z~!) and we are done too.

(ii) Given two positive x # 1 # y, axiom (ii) ensures the existence of a positive
z such that x = 2™ and y = 2™. Clearly z cannot be the identity, and n
and m cannot be 0. Therefore it holds in Z that m -1 > 0 < n -1, which
shows validity of sequent (ii).

(iii) Given a positive y # 1 and two terms ¢(y) and s(y) which are equal and
strictly positive too, the latter must be positive powers of y of the same
exponent by Lemma 4.6, which proves the validity of sequent (iii).

(iv) Given any z, if # = 1 then by applying axiom (i) we obtain the existence
of a non-zero y, without loss of generality positive by the totality of the
order, whence x =1 = 1(y). If z > 0 then we are done immediately, and if
2 < 0then 27! > 0 and x = (z=1)~!. This proves the validity of sequent

(iv).

(v) Lastly, suppose given two positive z,y # 1 and terms t(x) = s(y). By
an easy induction over terms it is readily seen that this means xP = g
with p, ¢ € Z. Now, axiom (ii) ensures the existence of a positive z # 1 for
which = 2™ and y = 2™; therefore zPt" = 297™ and hence p+n = g+m
because of non-torsion (cf. Lemma 4.6). So (p+n)-1=(¢+m)-1in Z,
which is all we needed.

O

Applying this result to what is already known about the points of Igl\*, we
see that the T-groups are precisely the ordered groups which are isomorphic
to non-trivial subgroups of Q. Indeed, in [9] the following result was obtained:

Theorem 4.7. The category of points of N* is equivalent to the category of
ordered groups which are isomorphic to mon-trivial subgroups of the additive
group (Q,Q4) and non-trivial (injective) homomorphisms between them.

In fact, the correspondence between the T y-groups and the ordered groups
which are isomorphic to non-trivial subgroups of the additive group (Q, Q4) can
also be proved directly, as follows.
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Theorem 4.8. An ordered group G is a T n-group if and only if it is isomorphic
to a non-trivial ordered subgroup of Q.

Proof. From the fact that the theory Ty is classified by the topos N* we know
that every Ty-group G is a filtered colimit colim(D) of a diagram D : 7 —
N* < Tx-mod(Set), where 7 is a filtered category, since every flat set-valued
functor is a filtered colimit of representables. Note that the factorization through
N* implies that these diagrams simply consist of certain arrows n : Z — Z in
T n-mod(Set), where n is the homomorphism 1 +— n (n being a non-zero natural
number).

So to show that G embeds as an ordered subgroup of Q in Tx-mod(Set),
it suffices to construct a cocone (\; : D(i) — Q);cz, due to the universality of
G = colim(D) and since every Txn-model homomorphism is monic. Recalling
that D(i) = Z, it is important to note that T y-model homomorphisms Z — Q
correspond precisely to multiplication by a strictly positive fraction g 17— Q,
1 B,

Now, to construct such a cocone, fix any object ig € Z, which must exist by
definition of filtered category. We define the arrow A;, : D(i) = Z — Q to be the
canonical embedding of Z in Q. Given any j € Z, to define a homomorphism
Aj @ D(j) = Z — Q satisfying the required cocone commutation relations we
argue as follows. Using the joint embedding property of Z, there exists an

object k € Z and arrows ig ENy A j. Weset Ay : D(k) = Z — Q equal
to the unique arrow Ay such that A\;;, = Ax o D(g). This is indeed possible
because D(g) : Z — 7 is given by multiplication by a non-zero integer n, say,
whence \; : Z — Q can be taken (and this is the unique possible choice) to
be multiplication by the element % We then set A\; = Ay o D(f); concretely,
this function is given by multiplication by the element ™, where D(f) : Z — Z,
1—m.

This construction is independent of the chosen f and g, because any two
parallel g,¢" : 7 — k are weakly coequalized by some h : k — k' in Z, which
implies D(g) = D(¢’) in Tn-mod(Set) since all morphisms are monic. Finally,
it is an easy exercise, using the concrete descriptions of arrows in terms of
fractions of natural numbers, to show that this is independent of the chosen k,
and that the obtained (\; : D(i) — Q);¢cz is indeed a cocone.

Conversely, let us show that any subgroup (H, H) < (Q, Q") satisfies axiom

(ii). Given two elements x,y € H™T, write them as reduced fractions of positive
I/

integers » = - and y = %, ie. ged(z',a) = 1 = ged(y',b). Using Bézout’s
identity this yields ma + na’ = 1, for some integers m and n, and similarly for
y; hence also 1,1 € HY.

We are done if 2 := % € H'. Indeed, setting g := ged(a,b), we have
that if @ = rg and b = sg for positive integers r and s then rz = % and sz = é,
whence z = (2's)z and y = (y't)=.

Now, using again Bézout’s identity, we obtain the existence of integers p and
q such that g := gcd(a,b) = pa + gb. Then 1 + 2 = % — > is in H", which is
what we needed to show. O

Remark 4.9. Note the similarities between the notion of Ty-group and that
of archimedean group. A totally ordered group G is called archimedean if for
any positive z,y € G there exists a natural number n € N such that x < ny
(cf. [10]). Just as the notion of Txy-group, the concept of archimedean group
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is formalizable within geometric logic. It follows immediately from axiom (ii)
that every T y-group satisfies the archimedean property. In fact, O. Holder has
shown that an ordered group G is archimedean if and only if it is isomorphic to
an ordered subgroup of (R, +) (cf. [10]).

Acknolwedgements: We warmly thank Alain Connes for useful discussions

on the subject matter of this paper.
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