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We compute the genus zero prepotential of the topological string on a two dimensonal
sphere CP! with the twisted mass corresponding to the rotation isometry of the sphere.
Our derivation is a head-on summation over the tree diagrams arising in the localization
approach of M. Kontsevich. Our result generalizes the theory of the limit shape of a
random Young diagram, which are known to describe the prepotentials of the low energy
effective actions of the four dimensional N' = 2 theories, as well as the stationary sector of
the Gromov-Witten theory on CP!. We extend the limit shape to the full phase space of
the CP! string as well as its the equivariant generalization and conjecture the relation to

the geometry of a D4 brane suspended between two NS5 branes in IIA string theory.
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1. Introduction.

Topological strings have recently been related to various statistical mechanical prob-
lems [1],[2],[3]. This is done by mapping the partition function of a topological string
on (a typically) toric manifold to a sum over two or three dimensional partitions. Two
and three dimensional partitions can be viewed as the configurations of a statistical me-
chanical system. The existence of these representations of the partition functions of the
topological strings is a reflection of the non-trivial strong/weak coupling string dualities
[4], or gauge/string dualities [5], adapted to the context of the topological string and gauge
theories. The relation to the two dimensional partitions goes via the interpretation of the
four dimensional gauge instanton counting [6], which becomes a sum over random two
dimensional partitions upon the use of the localization technique. The four dimensional
gauge theory can be engineered using a decoupling (large radius) limit of a type ITA string
compactification [7]. In this interpretation the prepotential of the four dimensional ' = 2
supersymmetric gauge theory is mapped to the prepotential of the topological string on
some local Calabi-Yau manifold.

One formulation of the problem views the boxes which form the diagram of the par-
tition as the individual particles of the many-body system, and define the energy to be
the sum of the pair-wise interaction terms for the boundary boxes, as if the boxes where
dipoles.

For example, in two dimensions it is natural to define the Boltzman weight of the
partition A to be proportional to the square of the dimension of the representation (which

we shall also denote by A) of the symmetric group S,,, where n is the total number of

s — <dim>\>2 1)

In the three dimensional case the simplest reasonable Boltzmann weight is just a constant.

boxes:

In the problem where the number of boxes is not fixed, one sums over n with a fugacity q.

In this way one gets the partition functions:
Zy(q) =Y _ myq?,  Zs(q) =) ¢! (1.2)
A T

A typical problem is to study the limit shape, a partition which dominates the partition

sum (1.2) in the appropriately defined thermodynamic limit: in two dimensions it is the
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limit ¢ — o0, in three dimensions it is the limit ¢ — 1. The two dimensional problem dates
back to the late seventies [8], while the three dimensional problem was solved recently [9].

The statistical models (1.2) and their generalizations which we discuss below arise in
applications of localization techniques to gauge theories in four and six dimensions. The
partitions then correspond to the fixed points of the action of various symmetry groups
on the moduli space of supersymmetric field configurations, e.g. instantons. The integral
over the moduli space of instantons to which reduces the gauge theory correlation function
becomes the sum over the fixed points.

The partitions A can be viewed as the infinite-dimensional matrices X, with the eigen-
values \; — i + %, t=1,2,3,.... The random partition model is therefore an analogue of
the large N matrix model, with two major differences: the integral over the matrices is
replaced by the sum over the eigenvalues taken out of the discrete set, with some charac-
teristic spacing h, and the size of the matrix is already infinite. The large N expansion is
replaced by the h-expansion.

It has been shown in [1] that the partition function of the topological string on CP!, in
the so-called stationary sector whose definition we recall below, is equivalent to a random

partition model:
Z = Z myg*e V) (1.3)
A

where V), is a suitably regularized “singe-trace”symmetric function of the eigenvalues \; —
1+ %, a potential. On the other hand, in [10] a matrix model describing the full topological
string on CP! was proposed.

The CP' topological string as well as the any other string model whose target space
has isometries, has an equivariant generalization. For CP' the isometry group is SU (2)
and its maximal torus is just a copy of U(1) acting on CP! by rotation. We shall study
the U(1)-equivariant theory. If the topological string is defined by twisting the N' = (2, 2)
supersymmetric sigma model, the equivariant generalization corresponds to turning on a
twisted mass. The CP'-model can be studied with the help of a gauged linear sigma
model, with the gauge group U(1) and two charged chiral multiplets, of charge +1. This
theory has a global U(2) symmetry, of which the center U(1) is gauged. The twisted
mass corresponds to the element e of the Cartan subalgebra of the remaining global group
SU(2).

The calculations in the theory with the twisted mass can be localized onto the integrals

over the fixed loci of the global symmetry action on the moduli space of the supersymmetric
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field configurations. In the context of the topological string this moduli space is the space
of stable maps M, (X, 3) of degree 8 € Hy(X,Z), genus g, with n marked points. As
explained in [11] the fixed loci on the moduli spaces of stable maps correspond to certain
graphs, whose contribution to the topological string free energy can be interpreted as a
Feynmann graph contribution in some quantum field theory. Moreover, in [11] the vertices
and propagators of this theory, at the tree level, were defined. In [12] the vertices at every
loop level were defined in terms of the Hodge integrals over Hg,n. In this paper we shall
only discuss the genus zero story and we shall not need these higher loop corrections.
Thus our problem, as in [11] , is to evaluate a certain sum over trees, which reduces
to the calculation of a critical value of a certain functional. In section 2 we present this
critical value problem for CP' model. We manage to bring the functional to the form,
which is quadratic in an infinite number of variables and non-linear in two variables only
(these variables correspond to the small phase space of the CP' model). Note that [11]
also performs a map to the quasi-quadratic form. Our transformation has the same origin
(it relies on the property of the genus zero free energy of pure topological gravity) yet it is
somewhat simpler, ultimately leading us to the explicit solution of the problem. In section
3 we solve the extremization problem using a version of Krichever-Whitham integrable
system. In particular, we demonstrate explicitly that the prepotential is given by the
quasi-classical tau-function of 2-Toda hierarchy. We find the spectral curve for this solution
to be a nontrivial generalization of the Seiberg-Witten spectral curve for the U(1) gauge
theory in four dimensions. Of course the emergence of 2-Toda is all but natural given the
results of [13]. The new result here is the explicit (quasi-classical) characterization of the
point in Sato Grassmanian corresponding to the equivariant CP! tau-function. In section
4 we explore the non-equivariant limit of our solution. Our expression for the prepotential
generalizes the one found in [14] for the stationary sector. In our approach, at finite value
of the equivariant parameter €, all the logarithms entering the differential dS are naturally
regularized in variance with [14]. Our expression for the free energy satisfies the semi-
classical Virasoro constraints. In section 5 we discuss various gauge theory aspects of our
problem. First of all we present a two dimensional gauge theory which is conjectured to
reproduce the equivariant string expansion to all orders in the string coupling constant.
Motivated by this conjecture we relate our extremization problem to that of the limit
shape of random partitions. We also discuss possible implications of our results for the

four dimensional N' = 2 gauge theory and its realization in ITA string theory using branes.
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In this approach the extremization problem is related to the relaxation problem of the
M-theory fivebrane subject to certain boundary conditions.

In the appendix A we present the critical value problem for CPY model with arbitrary
N without explicit solution. In the appendix B we give some technical details and prove

the consistency of our expressions for non-equivariant model with one given by [15].
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2. Equivariant Gromov-Witten theory

The equivariant Gromov-Witten theory [16] is the mathematical name for the topo-
logical string on a manifold with symmetries in the background with the twisted masses
corresponding to these symmetries turned on. In particular for X = CP?! one can use the
C*-action on X.

It is perhaps useful to remind the Lagrangian formalism of the topological sigma model
in the presence of the twisted mass terms. Consider the general Kahler target space X,
with the holomorphic coordinates x?. Let p; be the bosonic dimension (1,0) field, ¢* a
fermionic scalar and ; the fermionic (1,0) form on the worldsheet C. Let X™ = (z¢,z%)
denote collectively the coordinates on X. In a similar fashion let U™ = (¢, WT) denote the
scalar fermions. The nilpotent scalar supercharge Q of the topological sigma model acts

on these fields via §o® = {Q, ®|:

SoX™ =T™, §oU™ =0
507Ti = D; (5071'{ = p; (21)
dop; = 0 dop; =0

Let G be a compact Lie group acting on X isometrically. Let G¢ denote its complexifi-
cation. It acts on X by holomorphic diffeomorphisms. Let V(e)0; = eAVjai denote the
holomorphic vector field on X generating the action of the element € = et 4 of the Lie

algebra of G¢. In our conventions

+Vi(e) 5(; (2.2)

0
oxm

0

V(e) =V () —

= V()

generates the action of G. The topological sigma model on X can be coupled to the twisted
super-Yang-Mills theory on C with the gauge group G. The parameter € of the infinitesimal
G-transformations gets promoted to the scalar field of the vector multiplet. In addition, the
twisted multiplet contains the gauge field A, the fermion one-form Y, a pair of fermionic
scalars x and 7, another scalar €, and an auxiliary scalar boson H. For the theory coupled

to the two dimensional gravity it is convenient to view € and n as two-forms. The presence
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of the background field ¢ modifies the supersymmetry transformations: dg — de:

S X =T 5™ = V()
0eT; = Di 6epi = =iV (e)T;
demz = p7, dep; = —%V;(G)WJ—.

(2.3)
A=Y, §.Y =Dye

de€=mn, 0=,
56X - H7 5€H — [67 X]

The Lagrangian of the topological sigma model in the presence of the vector multiplet can

be written as follows:
L =9, / (mgxi + ﬂgﬁxz + gmn ¥V (€)+
c

+9"7 (X) (m (p; - Ff:ﬂm/ﬁ) — 77 (pi — Ffjﬂk%/)j)) + (2.4)
+ tr (Y AxD€) + tr (n]e, €])
+trx (Fa + m(X) voly))

Here m : X — Lie*( is the moment map.

Finally, the topological string is obtained from the topological sigma model by coupling
the latter to the topological gravity. There are two ingredients in the latter. First, one
promotes the worldsheet derivatives 0 and 0, which are defined with respect to some fixed
complex structure on C to 8" = 9 — 10 and O* = 9 — 10, i.e. one makes the choice of a
complex structure on C, represented e.g. by a Beltrami differential y = 20, dw, and its
complex conjugate i = BZ0zdw, a dynamical variable. To preserve supersymmetry one
also introduces a fermionic partner v = v29,,dw, and its complex conjugate T. Secondly,
to preserve the number of degrees of freedom, one couples the enlarged space of fields
X, U, A, Y, p,v,11,U to the Diff (C)-equivariant cohomology multiplet. By analogy with
the gauge multiplet, it contains a bosonic vector field v = v*d,, + v”d% (the analogue
of €), a bosonic one-form v = T,,dw + zdw (the analogue of €), its fermionic partner
v = Vydw + vgdw. The supersymmetry transformation . changes again d. — 0.,. We
shall not describe it here in detail. We also shall not describe here the coupling to the
dynamical gauge multiplet, it can be found in [17]. It is well-known that one can turn on the
background vector multiplet without breaking the supersymmetry by having (covariantly)

constant €, Dge = 0, vanishing fermions, flat connection A, Fy = 0, and € commuting
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with e. For our purposes we need to know the transformation properties of the fermions

v, v: B
Oe U™ =00, X" + 0”05 X" + V" (e€)
(2.5)
56,1}“ =Lyp

2.1. The moduli space

The path integral in the topological string on X in the background with non-vanishing

€ localizes onto the field configurations obeying:
05X’ — 1120, X" =0
V0, X" + 005 X" +V"(e) =0 (2.6)
Lyp =0, Lyp =0

The solutions to (2.6) which differ by a worldsheet diffeomorphism are identified. The
solutions to the equations (2.6) are the instantons in the sigma model on X . The instantons
carry a charge, a degree 3 of the map ¢ : C' — X, = [¢(C)] € Hy(X,Z). In addition, we
have am additional topological invariant of the problem, the genus g of the worldsheet C'.

In this way we get a moduli space M4(X, ) of holomorphic maps C' — X, of degree
B € Hy(X,Z), of the genus g complex curves.

For example, when C' = CP?, the deformations of its complex structure are all trivial,
i.e. are related by some diffeomorphisms. Moreover, there are diffeomorphisms which
preserve a given complex structure, the group PG Ly(C) of them, generated by the vector
fields Oy, WOy, W20y, O, WO, W2 0.

In the problem of main interest for this paper the target space is also a two-sphere,
X = CP!, and the degree § is just a non-negative integer. A typical holomorphic map

CP! — X is just a rational function of degree j3:

a0+a1w—|—...—l—a5wﬂ
— 2.7
#(w) bo + byw + ... + bgw? (2.7)

The moduli space My(CP*, ) is the space of coefficients
(ap:ay:...:ag:by:by:...:bg) € CPP#PTL

considered up to a common multiple, subject to certain restriction, divided by the action

of the group PG L2 (C):

Aw+ B

d(w) ~ ¢ <m> AD — BC # 0 (2.8)
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The restriction is that the numerator and the denominator in (2.7) have no common roots
in CP!. The moduli space is, therefore, complex 28 — 2 dimensional (28 4 1 coefficients
ai,b; up to a common multiple minus 3 complex dimensions of A, B,C, D in (2.8) up to
the irrelevant common multiple). Because of the restriction on the absence of common
roots, the moduli space MO(CPl, f) is non-compact in general. The exception is the case

[ =1 where the moduli space consists of just one point.

1

Fig.1 A stable map
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0

Fig.2 An example of a C*-invariant stable map
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Fig.3 A connected component of the moduli space of C*-invariant stable maps

2.2. Observables

The observables of the equivariant Gromov-Witten theory are the descendents of the

equivariant cohomology classes of the target space X, i.e. the cohomology of the operator
D=d+ Ly(e) - (2.9)

In the case of our main interest, the group G acts on X with isolated fixed points. The
equivariant cohomology of X is generated by the Poincare duals of the fixed points. In-
deed, a top degree delta-form 0 € QImX (X)) supported at some fixed point f € X is
annihilated both by d (dimension count) and ¢y (the fixed point condition). Moreover,

a Duistermaat-Heckman formula:

(0) 2.10
/ Tl wﬁ (2.10)

fexe
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expressing the integral of the equivariantly closed form «(e) (which is an inhomogeneous
differential form on X, annihilated by D) in terms of the local data near the fixed points
X shows that essentially (modulo H*(BG)-torsion) everything comes from these fixed
points.

In the case of X = CP', G = U(1) acting by rotations, we have two such points
0, and co. The Poincare duals dg, 0o (which are represented by the delta two-forms on
CPI) of the two fixed points 0, oo in CP! are our basic observables. The conventional
cohomology classes 1 € H*(CP') and w € H?(CP") (the Kihler form, normalized so that

[x w =1) are expressed through 0 and oo via:
1
1=- ((50 — (500) 5 W = (50 (211)
€

In addition, the gravitational dressing makes two infinite sequences of observables out of

these two equvariant cohomology classes:
Tk((S()) ; Tk(5oo) k :0,1,2,... (2.12)

We shall not describe the Lagrangian formalism of the dressing here. The mathematical
definition of the descendents 7 is well-known [18], [11], [19]. The marked point on the
worldsheet reduces the group of diffeomorphisms to the one which preserves this point. In
this way a puncture comes with the operator d(v*)d(v¥) of dimension (1, 1), which can
be viewed as a topological descendent of the operator ¢ of dimension zero. By taking the
product of the observables coming from the cohomology classes a of the target space and

the powers of ¢ one gets the gravitational descendents 73, (a) ~ ¢* - .

2.3. String partition function

The string partition function is the function of 3 + 2 x oo variables:

Z (e, h,q; x, x3) = exp Z h29_27:g (e,q; Tk, x},) (2.13)
g=0

The calculation of the prepotential using localization onto the fixed points [11] of the

C*-action on the moduli space My ,, (CPl, d) of stable maps can be recast in the form of

11
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calculating the critical value of the following action functional:

00 d|2 82 d
8 (pa ¢ 6,675 %,x7) = Y (-1)"9ad <;> +

d=1

= [/j (t—T()%dt + /0 (t - T*(t))zdt]

+ “unstable® contributions :

1 &< did (2.14)
3 2 G Pada+ 65 05,)
dy,da=1
oo oo k
#6030 (<5) (nda+ (1) aigy)
k=0d=1
red o (ba—93)
d=1
where we denote by
T()—6X()+¢>() T*(t) = —ex™(t) + ¢*(t)
(2.15)

Fig.4 Tree diagram corresponding to the C*-fixed locus
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In deriving (2.14) we had to use the following expression for the free energy of the

pure topological gravity in genus zero:

1 €
Fo(to, t1,...) = Critgi/ (s —t(s))” ds (2.16)
0
where:
t(s) = ZtkH (2.17)
k=0
and
o0 1 N
Ploti)=> v 3 [l [ ok acnuky (2.18)
N=3 " ki,. kn>0i=1 Mo,n

(the elementary derivation of (2.16) is presented in the appendix)

2.4. Unstable contributions

By unstable contributions in (2.14) (the last three lines) we mean the contribution of
the components of the worldsheet which would have been unstable were not there a non-
trivial holomorphic map attached to them. The ¢4, ¢4, structure, for example, corresponds
to the double point, mapped to a point 0 in the target, which connects two spheres, which
are in turn mapped non-trivially with degrees d; and ds. o

The structure zg¢q

The structure éqﬁd....

o

The last three lines in (2.14) can be written in the integral form:

1
2¢e

VO {(t CT() — (t - 6x(t))2} dt + /000 {(t ) (- 6x*(t))2} dt] (2.19)

— 00

Thus, the interaction part of (2.14) simplifies to:

2 | J_o

gn — 1 [/g (£ =) - (¢ - ex(t))?) dt

[ (-0 - G e 0)) ] (2:20

s

+1
2¢e

s

/5 (t —ex(t))* dt + /0 (t + ex*(t))” dt]

13
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2.5. Prepotential

We are after the prepotential:

F(x,x*,¢) = Critg = g, 62 S (ép, SN x*)

(2.21)

Variation of & with respect to ¢, ¢ gives the equations:

(1" = % <p§):p>2/_; (t =T (t)) exp <t?p> dt
(—1)PHig, = @ < PP )2/+oo (LT (1)) exp (-%) iy (2.22)

e \plepP .
p=1,2,3,...
§=7(), &="1"(¢) (2.23)

and evaluate (2.14) on the solution to (2.22). We are interested in the solutions perturbative

in q.

2.6. Derivatives of the prepotential

In what follows we shall need the expressions for the derivatives of the prepotential
with respect to the times xy,x;. Since the variation of a critical value of a functional is

the value of the variation of the functional at the critical point, we have:

¢ k £ tk
oF _ _/ dt (t—ex() =+ | o) at
al'k 0 k' k'
* * (2.24)
0F _ gdtt *ttk 5 *ttkdt
8:67:,__/0 et [ o0y

2.7. Mirror map

The couplings x, 27, of the topological string are not the most convenient parameters
to describe the solution. This is the well-known phenomenon of the mirror map where the
naive couplings, the “times” T),,T), to be defined below, which are convenient to describe
the B model side of the story, are not the canonical coupling constants of the A model.

Let T = xp — dg1e" Y, Tf = xf + 016~ " denote the “dilaton-shifted” couplings.

Following [13] we introduce the set of times T, T)¥, where n = 1,2,... (the zero time(s)

n’

14
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should be discussed separately), which are related by the transformation (conjectured by
E. Getzler [20])

n

= z
T, =S & Coeff isr 2.25
I;)$k Oetlaht (1+e2)(24¢€z)...(n+e2) (2.25)
The converse relation is:
> Ewt =) 0T, (e+w)(e+2w) ... (e + (n— w) (2.26)
k=0 n=1
Similarly:
oo Zn
Ty =% xj Coeff jx+1
" kz_%xk Ot (1—e2)(2—¢€2)...(n—e2)
Lo (2.27)
Zf}’;wk = Z nTy (—e + w)(—e +2w)...(—e+ (n — 1)w)
k=0 n=1
We shall also need the relation between z(t) and T5,’s:
ex(t) —t = Z ne" 1T, P! (t/¢) (2.28)
where Getzler-Okounkov-Pandharipande (GOP) polynomials P, (t) are given by:
P,(t) =
1
Tf{ e du (e + w)(e + 20) . .. (e + (n — V)w) =
T Jw=o0
n—1
1 €
=[]+ o) =
n LT (2.29)
n—1
(m=D" )y i ne
= h, € t"
— (n—1)! !
1
Pi(t)=t, Py(t)= §t2+5t,...
where hg)_l are the generalized harmonic numbers:
1
R —
b Z kiko ...k
1<ks <k <...<k <k
(2.30)

ﬁ (14—%) :ghg)xl

m=1

15
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The GOP polynomials P, (t) have the following nice property. Define the generating func-

tion -
Y(zt)=z—t—Y Pu(t)z" (2.31)
k=1
Then,
Yexp(—Y) =zexp(—z+1)
(2.32)
We also need to compute:
1 pn
Rap)=p [ Pilp(t =) +logu)du =" (233)
0 n

The proof of the last equality is given in Appendix B.

16
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3. The solution

In this section the solution to the problem of calculating the genus zero prepotential
of the CP! model is presented. It uses the formalism of Krichever-Whitham hierarchies.
We describe a family of analytic (non-algebraic) curves, and meromorphic differentials on

them, whose periods capture the free energy of the topological string.

3.1. The curve

Introduce the following analytic curve:

posn (~2) =mw e (< (4w L) 40,))
pon(?) -4 (23 (e2) o)

We can think of (3.1) as of a curve C, a sitting in a three dimensional complex manifold

(3.1)

Chpp CCxCxC*

with the coordinates (p,p,w). The coordinate p is not the complex conjugate of p. The
parameters €, A, vy are fixed.

The curve (3.1) has some similarity with the curves one

3.2. The differentials

On the curve (3.1) we define functions Q, Q5, £k =1,2,3,.. ., as follows. Near w = oo

choose the following branch of p:
p=Av+vy+ Z w P (A, vy) (3.2)
k=1

where Py, are the polynomials in vy to be defined below. Define (2 as a polynomial in w:

Q. = (p*), (3.3)

In other words, €2 is a meromorphic function on the curve which has no singularities

everwhere except for w = oo where it has the asymptotics p¥ + O(1). Similarly, QF is a

polynomial in w1,

Q= (") (3.4)
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with the branch of p near w = 0 given by:

p=Aw"t oo+ wPr(Avo) (3.5)
k=1

Define the functions S, S* by:

k=1

o0 (3.6)
S*=> T
k=1

Thus S is non-singular near w = 0, while S* is non-singular near w = oco. Finally, define

the meromorphic one-form:

A =dS — ds* (3.7)
3.3. The solution for ¢, ¢*
Then*: ] opV (1)
t
d)(t) = 2 p3 A
T t
on (3.8)
st = = ¢ 2210,
2 ot

p=1
o -1 A » (3.9)
oV = -1 Y(A(w+i)+v_—t
70 = e Y- 2 (< Furt el
p=1
In terms of the components ¢, ¢;:
—1 Ap L
by = P A L f e E(A(wrd)+os)
pleP 2mi (3.10)
—1 P 1 N
— _ui %w—lﬂeg(/\(wﬁ-;)%—v_) b\
P pl (—e)P 2mi
Note that D™ () DM (1)
1 Pt 1 p(t
t)—t=——— ds = —— A 3.11
e (t) ori | ot o f{ ot (8.11)

* We put == § @ = 1food—“’zl

27w JO w 27i w

18
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where p”(t) denotes the branch

PMt)y=p—t—e) P (t/e)p* (3.12)

of the function €Y (p/e, t/e) defined by (2.31). p”(t) and pY(t) are two different branches

of the same one-parametric family of curves, which is ¢-deformation of the curve (3.1):

O

(3.13)
Analogously there are p”(t) and 5" () defined by the equation
ﬁeg = A et (Awt) v —t) (3.14)
w
Only two of three parameters A and vy are independent:
+ el < A > (3.15)
vy =v telog| — .
Vi
They are defined from the equations
ds
bl — 3.16
T lws (3.16)
where w4 are solutions of the equation 3—5} = 0, which is equivalent (for almost all values
of t) to quadratic one:
Awi —ewy —A =0 (3.17)
3.4. The solution for &, ¢*
Parameters £ and £* are given by
EZU+—t0, é.* =v_+1p (318)
where
th=¢ <log<%> - f_> (3.19)
and

4A2
fe=\1+ 5 £1 (3.20)

Among all representatives of the families (3.13) and (3.14) curves with ¢ equal to £ and &*

correspondingly are very special. An important property of these representatives is that
they correspond to singular curves. But we use another property, namely:

p"(€) = p"(€)

3.21
pE) =7V (€ 2

The proof of the first equality is given in the Appendix B. Proof of the second one is
absolutely analogous.
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3.5. Baker-Akhiezer functions

Let us now show that § = S — 5*,§* = §* — S = —S§ defined by (3.6) are the
quasiclassical Baker-Akhiezer (BA) functions, in the sense of [21]:

10F
T, pn
5= Z r — 0 0T,"

(3.22)

*—n, 1 0F ——n
ZT a 8T;p

where the expansions (3.22) are understood near the points w = co and w = 0 respectively.

Indeed, the formulae (3.22) are equivalent to the residue formulae:

o0F 1

— = — p"dS

oT, 27 Jy—oo

i : (3.23)
= —— prdS*

oTx 2w o
Using (2.24) and (2.28) we can write:

'3
igf _ /O(t—e:c())P’ dt+/ H(#)PL (1)t

3
op" dp" .,
= —P —P
=5 [ / " ( dt+/_oo 5 ' (t )dt]

Now the idea is to change the integration variable from ¢ to p = Y (p, ) in a smart way so

(3.24)

that to employ the integration formula (2.33). Indeed, if p = Y (p,t), then:

t=p—p+log(p/p)=p(l—e"*)—s (3.25)

where we define s via: p = e *p. As s changes from 0 to 400, p changes from p to 0,
while ¢t goes from 0 to &, with p following the p” branch, then ¢ goes through the point
t = & where p”(t) joins pY(t) (see above), and then ¢ goes from ¢ all the way to —oo, with
p following the pV(¢) branch. Therefore the expression in the square brackets in (3.24) is

equal to p"/n.
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3.6. Prepotential

Prepotential (2.21) can be represented in Whitham type form [22] :

F=y <% 7?00 S,dS — %7{)5&5 ) - f(s+s Ld(S— S (3.26)

where + in first and second integrals are with respect to coordinates p and p respectively.

It first derivatives

oOF 1 k oF 1 i
— = — ds = — ds 3.27
oT, _ 2mi 7{ oty 2mi ) (3.27)
and second derivatives
0*F 1 k 0°F 1 —=
—_— = — de, A ame — & - _dem
OTedT,, 2mi ) " oryoT:,  2mi ) " (3.2
O*F 1 - 1 '
_— = — A = — ¢ P*dQm,
oT 0Ty, 2mi ) " omi f{ P
come explicit quadratic dependence on times. In particular:
0% F 9 0*F 9
3—@2) = A + v4 €, 85[;—32 = A — V_€ (329)
0*F
= —A? (3.30)

3$03$8
3.7. The proof

Let us now prove that formulas (3.8), (3.18)actually solve equations of motion (2.22),

(2.23). First of all, from (3.8)and (3.11)it follows that an equation for £ is equivalent to
op(t
PP s~ s (3.31)

jq{ 3pgt(t) (5 =50 = f 2

t In difference with values of functions pV(¢) and p"(t) their differentials w.r.t. ¢ at t = &

an equation

do not coincide. Both of them can be represented as

op(t)|  _ w? dp(§)
ow lt=¢  Aw?2—ew—A Ow (3-32)

but decomposition rules for the fraction in r.h.s. are different and as formal powers in w
expressions do not coincide. This non-coincidence is compensated by differential d(S — S*)
which, by definition of A and v (3.16), is proportional to denominator in (3.32). Thus

integrals in (3.31)are equal to each other.

21



rreuminary versior. Lontact tie autvllorsS 10r tile up-to-date versioll or typos.

To prove an equation (2.22)let us represent r.h.s. of it with help of (3.8) and (3.11):

/5 =1 0) exp () -
€ <p' sp> / omi % ( p(;t(t)> dS exp (%) dt = (3.33)
2;‘ (/_Oo exp (?) (dp"(t) — dp” (t))) ds

Then, similar to (3.24), we change integration variable. Since p”(t) and pY(t) goes to oo

and 0 respectively when £ — oo, one has:

/; o (1) (A" (1) = dp” (1)) =
(ﬁemm +v+> < / o dp)

Then (2.22) follows from this and relation between vy and A (3.15).

(3.34)

3.8. The first times and small phase space

Let us describe the solution in more detail for only first few times switched on, i.e.

when zj, = 2}, = 0 for £ > 1. In this case:

T2:“T21 T, = xo — €11
= (3.35)
Ty = 21 T = xy +ex]
To find an expression for free energy one needs explicit formulas for p and p:
Vi€ 1 fvp\2\ €
poen s (S0 L (513 (5))
p=Aw—+vy+ A + <A2 + 5 \ A w2—i— .
N 1203 —9ev? + 6(e? — A%)vy 4+ 6A%€ ¢ L0 1 '
6 A3 w3 w
A _ 1 jv_\2
p=— o+ (-So N wt (-1 (50) ) ew?
w A A2 2\ A (3.37)
1—202 —9ev? — 6(e? — A*)v_ +6A% 4 .
+ 6 e ew” 4+ O (w )
and polynomials €2:
Ql = Aw, Qz = AZ’U)2 + 2’U+A’U)
A A2 20 _A (338)
w w w
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Then differential dS is:

~ ~ o 1 AT
dS = A <x1Aw + 0+ (vy — )Ty + (x5 + (v= +€)z7]) e + wi’l) dw (3.39)

To satisfy (3.16) this differential should have the following decomposition:

ds a b c
= (Aw? —ew — A) <E gt E) (3.40)

From this equation one can get expressions for a,b and ¢

(71 + 77)A2

a=21A,b=— , c=—IA (3.41)
€
as well as
+ $*)2 zo .T*
A2 B W o1 AZ| = 0 3.42
P (1 —exq)(1 +exy) TP T €T 1 + ez (342)
and
exo + (z1 + %) A2
U= 1—ex
! ) (3.43)
Y _exy — (w1 +2))A
B 1 +ex]
An explicit expression for free energy is as follows
P g’ (1—exy)?(1+ ewi)2f q(z1 + 21)? e:sulfi;
BN \l—exy 1+exi (x1 + x7)? (1 —ex1)(1 +exy)
(3.44)
where
o0 Lk—3 X
fla)=>" o (3.45)
k=1
Expressions for ¢(¢) and ¢*(t) can be represented as follows:
1 [opV(t) 1 [0pV(t) (TIN  (T1+7Z0)A%
t) = — dS = — —HAw | =
o) = 5 7{ ot i 0w \w e e
— 5= P () (7] — (o1 + @])Aw) — (3.46)
1 [_ ~ (42N dw
() = — Vit RSl Ll Vil ek
00 = g f 770 (a7 DR @
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On the small phase space previous formulas simplifies to:

00 = 5 O

w
00 =5 7O
AZﬂexp$0;$8 , v:w
e (zd + x?)

F = + qexp(zo + 7))

3!
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4. Non-equivariant limit

The prepotential of the non-equivariant theory can be obtained in the limit ¢ — 0

from the formulas of the previous section. Times of the non-equivariant theory are given

by
1 1 * 1 1
= —8ti ) T; —t‘{’ — _gti

In the non-equivariant limit both p and p goes to the same expression:

1
p0:A<w+—>—|—v
w

It can be shown that limit of (3.26) is regular, namely

1 1

™

oo

v Z

Ap* are logarithmic corrections coming from e decomposition of (3.1)
wT!
st (7))
Po +

Cp =

k=1

2. cpth
' p07vC_ C(pO):Z Z'npgavw

n=1

and

x| =

harmonic numbers. Prepotential (4.3) can be represented as

1
Fo = SdR,
8mi
where
oo w 0 1
Ak (37— 8" 30)

k=0
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and
dR = dS, — dS_ +dQ (4.10)

with
dQ = vid(Ap~ + ApT + 2logw) (4.11)

These formulas generalize expressions for stable sector found in [14]. Derivatives of the

prepotential are

1 n+1
i’))ﬁ] 4mri (p:— 1)'dR

s A (4.12)
0F, 1

8t1 = 4—7” n' (Ap_ — Ap+ — QCn) dR

Furthermore in this section we omit subscript 0 for non-equivariant Lax p and prepotential

F. For example, from (3.44) it follows that

tw

w (4112 w (4113 _ 1\4 w\2 6 toty
R ey = B #@) (1t f<(q(t1> el_tgu_tbz) @.13)

201 —¢th) 31 —t})2 (t4)? 1—t1)2

with function f(z) defined by (3.45). In Appendix B we show that our expression (4.8) is
compatible with one given by B, Dubrovin and Y. Zhang [15].

4.1. Virasoro constraints

As usual [22] , Virasoro constraints for the prepotential (4.3) follow from the invariance

of the integral with respect to change of variables

p— p+epttt (4.14)
namely
1
0=0F = f (6S)dR + S(5dR) (4.15)

Function p is symmetric under transformation w — i, hence ddR is antisymmetric with
respect to this transformation.

At w — o0
dR = dv,, — 2dv. + (Ap~ — ApT)dv + 2 1 dv —22 : (4.16)
== w C p p 1 p 1 8tw n+1 .
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It can be shown that F satisfy quasiclassical Virasoro constraints (cf. [23] , [15] )

o0
oF
ZtgatT + it =

k=1 k—1
- OF OF ., OF
1 w 1 1\2 __
>k (tkf)—t,{; + tkA%) + 22%@ +(t)?=0
=t =l (4.17)
- OF  OF - 0n+%ﬂ!<1 OF OF )
k=1 atk—l Om—k—1 ,; (k' - 1)' k3t71n+k: k 1tm+k+1
+ ZZam(k‘)t}ctwa}—_ , m>1
k=0 m—+k—1
where
(m+ k) SR L

k>0 (4.18)

4.2. Random partitions and limit shape

The prepotential in the non-equivariant stationary sector is also a critical value of a

quadratic-looking functional:
F(t“;a) = CrityS [f(7); t“(x); a] (4.19)

where we minimize w.r.t to a function f : R — R, obeying the following restrictions:

f is Lipschitz : |f(x) — f(y)| < |z — y]

(4.20)
f(x) = |z — a for |z — al sufficiently large

and

SU@xW@x@:%//ﬁmyﬂ@ﬁ%wK@—w+§/ﬁxﬂ@n%m (4.21)

with

© L k+l
t¥ = T; 4.22
()= T (1.22)
k=0
where o0F
= —. 4.23
“= T (4.23)
The critical point f,(x) obeys:
|4y Ko = )72 () + () = const , & € supps! (4.24)
R
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where const is the Lagrange multiplier for the condition:

/R () da = 2 (4.25)

Note that
/ zf)(z)de =2a . (4.26)
R
Let us define the Baker-Akhiezer function:
.1 0F
T )\E + ——log(\ — = \7k 4.27
Zk + o log()) - > om; (4.27)
We have:
0.0 =3 [ @ @) [wos) - >0 T
R — k(k+1)

= A(logh — 1) + (4.28)

$[ o @) =0 tog (A=) 1)
By differentiating (4.24) w.r.t  we can reformulate the e.o.m. as the conditions on O(\):

define ¥(\) = —A (logh — 1) + O(A), then:

Y (z + i0) ZTkaj +/ dy f"(y) K'(x —y) =

> Tiat + § / dy f"(y) (y — =) (loglz — y| + iArg(z £ i0 — y) — 1)
k

(4.29)
for

K(s) = —ZZ (log(s) _ §> (4.30)

Note that the non-equivariant limit of the OP change of times in the stationary sector is :
= (k4 )Thpy = t¥ Ztk o (4.31)

In equivariant setup one has two functions ¢(¢) and ¢*(¢) and both of them are
generalizations of limit shape of stationary sector . We conjecture that after passage
(4.1)to non-equivariant times and turning off non-stationary coupling constants except for

t} in the limit € — 0 one gets

fu(t) t—w
7T T oA
fe)  t—w

A R TS

(4.32)
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We checked this conjecture for ¢f and % with k = 0..2 swithed on.
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Appendix A. Equivariant Gromov-Witten theory of CPY

In this section we present an expression for the action functional whose critical values
give the equivariant genus zero GW prepotential of CPY. We also discuss the J-function,
the quantum differential equation, and its solution in the case of N = 1, expressed in terms

of our data: the curve and the differential.

A.1. The CP" functional

The prepotenial is a functional on the positive part of the loop space H.}(CPN)(@C[Z],

where

H’I‘(CPN) = Clp, pi1,- - -, in+1]/Q () (A.1)

is the equivariant cohomology of CPY. Here the degree N + 1 polynomial @ is given in
terms of the twisted masses of the SU(N + 1) action on CP™:

N+1
Q)= ] (& — ) (A.2)

i=1
Our conventions are: let x(z) = > o=, xkzk—’j, where x;, € H&(CPY). The latter coho-
mology group is generated by the equivariant Chern classes p — p; of the line bundles L;,
i=1,...,N + 1. From the results of [11], [12] we know that the genus zero prepotential
is given by the sum over the trees. The vertices are labelled by the fixed points of the T
action on CPY, while the edges are labelled by the integers d > 1. Each edge comes with
the factor:

qd N+1 1
Edge;; 4 = l H [ (e b”]—’“)] (A.3)
k=1 a=0 d & 1 (a,k)#(0,5), (di)
where
Hij = Wy Hi,
while the vertex is:
n1 1 n2
Vertex, = /_ H 4 xi(m)(lbm) (A4)
Mo vai(v) [=1 1- Ki(v)j(v) djl m=1

—

Thus the prepotential, F(x;q, A), is the critical point of the following functional:

—

S[x, ¢] = Sa[x, ¢] + Sins[x, 4]
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where

1<i<j<N+1d=1 q ki, dlfjj ) !
N1y
Sint[X, 9] = —F [e;x;(2) + ¢i(2)] + unstable contributions
€
=1
oo d d B
6=, ¢i(x) =& > —dijacti
i#i j#i d=1""
(A.5)
where F[t(z)] is the prepotential of the pure topological gravity:
¢ 2
F[t(2)] = Crite 1 / (2 — t(2))2 d2 (A.6)
0
and the unstable contributions are given by:
0 N+1 d—1
1 d'(d— d')
unstable = qu Z €; - Z Z ¢ij,d’¢ik,d—d’
d=1  i=1 2. ki d'pi + (d = d') i
() [ i\ "
+Y " dua Yox¢ (-E2) (A7)
i k=0
+3 iy L
— 17, 61, d
J#i
Finally,
Flx] = Crit; S[x, §| (A.8)
Critical point equations. At the critical point we have:
b (i
¢jPji,a x d! ( ) H Vi ( )
. (A.9)
51 _d ¢
= T o () [ at = eoxte) = st 75
k#i,g
(note in the left hand side the product is over k # i only), where
Yo (8) = (Spuge) 16— 1=00ir = / ds (shi+e)° (A.10)
0
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A.2. Quantum cohomology of CPY and the J-function

The J-function is a solution to

hVJ =pxJ (A.11)
where
V= d (A.12)
where p is the generator of the quantum cohomology ring. In this ring there is a polynomial
relation:
Q) =4 (A.13)
Expand:
N+1
J = Z Si(p) Jz (A14)
i=1
where (=)
x T — [bj
gi(x) = A.15
(@) (2 — pi) Q' (i) 31_[751 i — L (4.15)
Note that:
N+1
D ei(r) =1 (A.16)
i=1
in the ring C|z] of polynomials,
q
p*ei(p) = pigi(p) = A7
() = peilr) = g (A1)
in the quantum cohomology algebra. The equation (A.11) reads:
N+l
WV = pidi+q Y =~ (A.18)
= Q'(r)
and can be solved via:
Ji == Q/(ul)El(hV)\If 5 (Alg)
where U is any solution to
Q(hV)U = q¥ (A.20)
Note that (A.19) implies
N+l g
U = .
; Q' (14)
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Now, the N + 1 independent solution Wq,...,Un11 to (A.20) are found as:

00 d
y 1
=> qt? —————  modQ(y
20" W ggemm e
(A.21)
N+1 .
Uy) =Y eily) v
i=1
Explicitly:
y+d 1
Ji 7 7, d
(y) = Q' (mi)e +Zy—|—hd 11; HQy—f—hm) mod(Q)(y)
The fundamental matrix of the solutions to (A.11) is given by:
JF = Q' (11:)0F + i qu 11 H (A.22)
= R (hd + —1'3# ,uk—uj+hm
In terms of polynomials:
Q(z) — Q(hV)
J 14 A.23
(2, y) pa— (v) (A.23)
A.3. Quantum cohomology of CP!
For X = CP" we have:
Q(z) = (z — po)(x — p1) (A.24)
and
" oo +‘;i_0 d—1 1
J) = eTO + q
’ ; ridl 2 Ho — p+ hm
- (A.25)
1 = qd+“ﬁ_0 - 1
Jr =
° dz::l AN d —1)! ngl fro — po + o

with J{ = J (o < p1), JY = J}(po < p1). According to [16], another fundamental
solution to the quantum differential equation (A.11) is given by the set of the two-point

functions:
Pp

h—c

S

R™

8+ (bar ) (A.26)
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For CP' we have, on the large phase space:

n

oy _N~_ 1
<¢0’h_> th+18$08$k Zh"’“% Z%ZWH m+6Z>

o \ 1 f{ f{ p"
(oo, h — c> N Z pR+L 8$*8$k Z B+l ZEH2 T L (m+ €2)

with second solution given by the same formulas with p substituted by p. To compare two

(A.27)

matrices one should properly identify parameters. Namely, we put po = 0, u1 = —e and

get:
00 d d—1

d=1 =
d— £ d
q" 1
Jy =
0 ; A (d —1)! 1__[1 hm — €
- "= (A.28)
a1 hdb oy hm — e
00 d d
q 1
=)
; R Hd — 1) 22 hmte
In the two point functions one should put ¢ = 1 and then t} = 0, t& = log(q), so that
= /7 and vy =0, v_ = —elog(g). Explicit check shows that at least up to O(75):
Jg =S8, J) =52, J =8, Jy = S§° (A.29)
with 79 =€, ,n®®° = —¢

34



rreuminary versior. Lontact tie autvllorsS 10r tile up-to-date versioll or typos.

Appendix B. Technical details
B.0.1. Proof of (2.33)
Write:
Zt” o nﬁ} 1)!).%’)1 (B-1)

and

R,.(p) = p/ooo dse *Pl(p(1—e"%) —s) =

v [ RIS o o]

a=0 b=0

Using the identity:
C'Z ( ) )P(b+1)¢ = Coeff ce?(1 —e¥)* =0 , 0<c<a-1 (B.3)

we can set the upper limit in the sum over [ in (B.2) to n — 1 instead of n — a — 1, since
the error term will be proportional to (B.3) with ¢ = a+1—n < a — 1. Then it suffices to
note that

n—1 n—1

Z(—l)lhg)_l(b—l— n'=1] <1 — b%) (B.4)

1=0 k=1
which vanishes for 0 < b < n — 2. Thus the sum over b in (B.2) only gets contribution
from b = n — 1, which implies that a = n — 1. Thus (B.4) is equal to (—1)""!, and (B.2)
is equal to
Ra(p) = & (B.5)

as promised.

B.0.2. Proof of (3.21)

Let us show that series (3.9) for p(€) is of the form (3.12), that is it does not contain

positive powers of w except for linear one Aw:

R oo pp—l Aw —A(w+ o0 _ _J_%(w 1)2 P
pr(§) =¢ A Z w =

p:l :

(B.6)
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where ;
_  ef_w
= B.
w A (B.7)
and .
p—1+4+ ~
a=3 T (@e—W) (B.8)
p=1 P

Now all terms except the first one in the last summation in (B.6) do not contain positive

o = (iﬁ)kw (B.9)

powers of w. ag = w and

1—wow

~ k ~ k
It is straightforward to show that all negative powers of w — 1 in ((wZI)Q) ( “’NiN) w

w 1—w Ow
are canceled and result does not contain positive powers of w. Easy check shows that & is

the only expression which satisfy this property.

B.0.3. Consistency with Dubrovin-Zhang

In [15] B. Dubrovin and Y. Zhang give explicit expression for prepotential, namely

9) oF k 1 89a(z) 89,8 (J;) 00, (Z) 805(37)
"= e B.1
k%;o ool z+w < v du | ou  ov P (B.10)
where
zz Nz
27'("1, k w
(B.ll)
2—m'

and in our notations A = e*/2 and Ly = (Ap~ — Apt —2¢;). Then derivatives with respect

to v and u are given by
Lt R
o=t =g e (v )
8€5£z) _ kg@%”,lz’“ Zz 27”7{%%_1%”
8081152) :g:ggugzk =13 i 2mf{ PRl (“”F%) %w

36

(B.12)




rreuminary versior. Lontact tie autvllorsS 10r tile up-to-date versioll or typos.

An expression (B.10) for o = 8 = w follows from an equality

> m k+1 m-+1 k
3 1 7{ pra Pt R e (0(2) 98u(x) | 06u(2) 08u(x)
2mi [ \m!(E+ D! (m+ 1)1 K o Ou du o

k,m=0
(B.13)

To prove it one can note that

dpft! kd b dp — (pkdp)- kd
P (dp)y _ (Phdp — (plidp)) _ (plidp Lt e dw ) (B.14)
(k+1)! k! k! k! w2 Wk Ty Wk

Then
R O N S i WS B O W A
2mi m! (k+ 1) (m+1)! k! 2mi m! (k+1)!  m! k!

L™ fdw )y dw ) ) ) () o)
S m(Am9wyk+39wyk =000, + 08 0l

(B.15)
For a = w, f =1 one should prove that r.h.s. of (B.10) times = + z is equal to
m—1 k+1

= 1 P plj— P Py k k1 j{ Pﬁ-
SR O (VA S iy S m SR O L
> gﬂz'f{(m! R T o ) " +kz::1$ omi | 00T

m=1,k=0

(B.16)
For m > 1
m m—1
p p
d—UL,, = ——L,;y_1d B.17
m! (m — 1)! Lap ( )
and thus, using (B.14)

1 pm plj_ pm—l p’i-i-l 1 pm—l dw ) dw
— —Lypd— 4+ ——1L,;,_1d =— ¢ ——L,u_ 1| A—0 —
27 (m! k! * (m —1)! ! (k+1)! 2mi | (m —1)! L > wk T "
= 00308 + 0100

(B.18)
For £ >0
1 1 1 1 dw
5o P Lodpl = —o— ¢ phdA ‘:——f BiApT = s ¢ pF— = k10", (B.1
271 04P+ 211 j{er P 271 P p 21 p w w,k (B.19)

Substituting this and (B.18) into (B.16) and using 0%) = 0‘(;’7()) =1, 0% = 0 one finally

gets

S (000060, + 0000) amak 43 kel -
k=1

mobE (B.20)
= Y (05, o0l 2t 1
m=0,k=0
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Appendix C. Low instanton charges

Let us assume that zg, z; = 0 for k > 1, and 23 = 233 = 0. Then, the contribution of

the instantons of the charges 0 and 1 to the prepotential is given by:

Fo= .7:(%0) + qf(gl) + O(¢?; z3; 233)

*3 3 *4 % 4 *D %2 5,.2
FO _ € (28w e (ap'es wpen) e (wiryt wgr
0o - ~ ~*3 ~3 ~*5 ~5

3\ T 4\ 77 Ty 40 \ 73 z3
F = 25,7 exp (—t) x
2 * * *2
[1 T E (1 & T 26%2) o (1 - 26297*2)
1 1 1 1 1 1 (C.1)
1 [(aytes? wial
+§5<5%‘+56 +
1 1

2xoxk ToLp t2 ToLp 2
el B R A Bl e
T1T] 2e“x1 7] 2 2ex 177
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