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Abstract. Motivated by recent work of Connes and Marcolli, based on the Connes–
Kreimer approach to renormalization, we augment the latter by a combinatorial, Lie al-
gebraic point of view. Our results rely both on the properties of the Dynkin idempotent,
one of the fundamental Lie idempotents in the theory of free Lie algebras, and on the fine
properties of Hopf algebras and their associated descent algebras. Besides leading very
directly to proofs of the main combinatorial properties of the renormalization procedures,
the new techniques do not depend on the geometry underlying the particular case of dimen-
sional regularization and the Riemann–Hilbert correspondence. This is illustrated with a
discussion of the BPHZ renormalization scheme.
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1. Introduction

From its inception, renormalization theory in perturbative quantum field theory (pQFT)
had a combinatorial flavour, as well as an analytic one. The former manifests itself in the
self-similarity of Feynman graphs, the building blocks of pQFT. The intricate combinatorics
of extracting and combining subgraphs, required in the renormalization process, is encoded
in the Bogoliubov recursion, respectively its solution via Zimmermann’s forest formula [11,
13, 38, 49, 50].

Kreimer’s discovery of a Hopf algebra structure underlying Bogoliubov and Zimmer-
mann’s formulae and illuminating their internal structure [33] was the starting point of a new
approach in the field. Then Connes–Kreimer’s decomposition à la Birkhoff–Wiener–Hopf
(BWH) of Feynman rules captured abstractly the process of renormalization in pQFT [16].
Further work by Connes, Kreimer and others has since then established various links be-
tween the BWH decomposition of characters in renormalizable quantum field theories and
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relevant mathematical topics, culminating recently in work by Connes and Marcolli on mo-
tivic Galois theory [18, 20] and by Bloch, Esnault and Kreimer on the motivic nature of
primitive Feynman graphs [4].

In the present work, largely motivated by [18], we return to the origin of Connes–Kreimer’s
theory and concentrate on algebraic features of renormalization relevant to pQFT, trying
to unravel further fundamental properties of renormalization schemes by methods inspired
on the classical theory of free Lie algebras (FLAs).

It has been known since the mid-nineties that many properties of FLAs, as exposed e.g.
in [7, 44], can be lifted to general graded Lie algebras and their enveloping algebras. In other
terms —particularly emphasized in reference [41]— Lie theory is relevant to the study of
arbitrary graded connected cocommutative or commutative Hopf algebras. The observation
applies to the Hopf algebras of renormalization, yet it has not received the attention it
deserves. Here we develop it systematically, and show that some of the deepest combinatorial
properties of renormalization schemes (dimensional regularization, but also other schemes)
are codified in the composition with the Dynkin idempotent of Lie theory, and in its inverse
map. We derive in particular from their study the properties of characters under locality
assumptions for counterterms in renormalization and, in the process, establish that the data
relevant to their computation are contained in the ‘beta function’. The phenomenon is well
known in pQFT; the Lie theoretic approach, however, provides a remarkably efficient way
to deduce it from the locality assumptions. Our proofs should be compared both with
the classical approaches and with Connes–Kreimer’s more geometrically-oriented study of
characters.

The article is organized as follows. We consider abstract renormalization Hopf algebras H
and commutative target algebras A of quantum amplitudes. After settling some notation in
the next section, we ponder in Section 3 the convolution algebra of linear maps Lin(H,A).
It cannot be made into a Hopf algebra in general; but a suitable algebra of characteristic
functions can. This is our playground; it encodes, at the Hopf algebra level, the properties
of the group of A-valued characters of H. Section 4 is the heart of the paper: starting from
a short survey on the Dynkin idempotent for cocommutative Hopf algebras, we establish the
formal properties of its sibling in the commutative case, then introduce and exhaustively
study the inverse Dynkin map. In particular, we show that the latter bijectively sends
infinitesimal characters into characters of commutative connected Hopf algebras —applying
in particular to the Hopf algebras of Feynman diagrams and rooted trees of renormalization
theory and the corresponding Feynman rules. In Section 5 we recall the BWH decomposition
of characters, choosing once again to obtain it algebraically from Rota–Baxter operator
theory and the ‘Baker–Campbell–Hausdorff (BCH) recursion’. After that, our Lie theoretic
machine is fully operational.

In the rest of the paper, we show the relevance of that machine to pQFT. In Section 6
we briefly review some standard lore of renormalization and remind the reader of the dic-
tionary between it and the Connes–Kreimer paradigm. Next we study in Section 7 the
locality properties for dimensional regularization (DR) schemes by exploiting the proper-
ties of the Dynkin pair of maps, together with the BWH decomposition. The main results
concerning Connes–Kreimer’s beta function and the renormalization group (RG) in DR are
rederived from direct computations in the algebra of characteristic functions; hopefully, the
role of that beta function is thereby illuminated. Sections 8 and 9 are essays on the same
question in other renormalization frameworks; in the second we invoke the BPHZ scheme
of renormalization and exemplify with the (Ginzburg–Landau–Wilson) ϕ4

4 scalar model in
Euclidean field theory.

To finish, in Section 10 we go back to the mathematical setting, trying to place our results
in the ‘great scheme of things’ of combinatorial Hopf algebra theory. We show there how
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the Connes–Marcolli “motivic Galois group” of renormalization relates with FLAs as well as
the theory of descent algebras and noncommutative symmetric functions. Together with the
links between the same group and Connes–Moscovici’s index theorem in noncommutative
geometry, these new connections give further evidence for Connes’ and Kreimer’s —already
much documented— claim that the divergences of pQFT do reveal the presence of deep
mathematical structures.

2. Notational conventions

Let H =
⊕∞

n=0Hn be a graded connected commutative Hopf algebra (of finite type) over
a field k of characteristic zero; this is necessarily free as a commutative algebra [41]. We
write ǫ for the augmentation from H to H0 = k ⊂ H and H+ for the augmentation ideal
⊕∞

n=1Hn of H. The identity map of H is denoted I. The product in H is written π or
simply by concatenation. The coproduct is written δ; we use Sweedler’s notation and write

h(1) ⊗ h(2) for δ(h), h ∈ Hn; or
∑n

i=0 h
(1)
i ⊗ h

(2)
n−i when the grading has to be taken into

account. The usual restrictions apply, that is, h(1) ⊗ h(2) stands for a sum
∑

j∈J h
(1)
j ⊗ h

(2)
j

and should not be interpreted as the tensor product of two elements of H. The same
convention applies in forthcoming notation such as h(1) ⊗ g(1) ⊗ h(2) ⊗ g(2), that should be

understood as
∑

j∈J

∑

k∈K h
(1)
j ⊗ g

(1)
k ⊗ h

(2)
j ⊗ g

(2)
k , where δ(g) =

∑

k∈K g
(1)
k ⊗ g

(2)
k .

Graduation phenomena are essential for all our forthcoming computations, since in the
examples of physical interest they incorporate information such as the number of loops (or
vertices) in Feynman graphs, and the subdivergence structure, relevant for the RG. They
are expressed by the action of the grading operator Y : H → H, given by:

Y (h) =
∑

n∈N

nhn for h =
∑

n∈N

hn ∈
⊕

n∈N

Hn.

We write |hn| := n. Notice that Y is usually denoted by D in the FLA literature. In the
present article we stick to the notation most often used in the context of the Hopf algebra
approach to renormalization [15, 16, 17, 18, 23, 28] and reserve D for the Dynkin operator.

3. The Hopf algebra of characteristic functions

A character is a linear map γ of unital algebras from H to the base field k:

γ(hh′) = γ(h)γ(h′).

It should be clear that the product on the right hand side is the one in k. We write γn for
the restriction of γ to a map from Hn to k.

Let A be a commutative k-algebra, with unit 1A = ηA(1), ηA : k → A and with prod-
uct πA, which we sometimes denote by a dot: πA(u⊗v) =: u ·v. The main examples we have
in mind are A = C, A = C[[ε, ε−1] and A = H. We extend now the definition of characters
and call an (A-valued) character of H any algebra map from H to A. In particular H-valued
characters are simply algebra endomorphisms of H.

An infinitesimal character is a linear map α from H to k such that:

α(hh′) = α(h)ǫ(h′) + ǫ(h)α(h′).

As for characters, we write α(h) =
∑

n∈N
αn(hn). The same notational convention will

be used in the sequel without further notice: fn stands for the restriction of an arbitrary
map f on H to Hn. We remark that by the very definition of characters and infinitesimal
characters γ0(1H) = 1, that is γ0 = ǫ, whereas α0(1H) = 0.

We extend as well in the obvious way the notion of infinitesimal characters to maps
from H to a commutative k-algebra A. We have now:

α(hh′) = α(h) · e(h′) + e(h) · α(h′),
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where e := ηA ◦ ǫ. They can be alternatively defined as k-linear maps from H to A with
α0 = 0 that vanish on the square of the augmentation ideal of H. In particular, if α is an
infinitesimal character, the linear map α|n, the restriction of which is 0 on all the graded

components of H excepted Hn, and α
|n
n = αn, is also an infinitesimal character. Thus

α decomposes as a sum of infinitesimal characters α =
∑

n>0 α
|n. The vector space of

infinitesimal characters, written ΞH(A), or just Ξ(A), decomposes accordingly as the direct
product of its graded components: Ξ(A) =

∏

n∈N∗ Ξn(A), where Ξn(A) is the linear span

of the α|n. Thus we regard Ξ(A) as the natural ‘topological’ completion of the graded
vector space ⊕n∈N∗Ξn(A). In more detail, we consider the subspaces ⊕i≥n∈N∗Ξi(A) and
the associated quotients and onto homomorphisms, and we take the inverse limit, whose
elements are infinite series. This property we agree to abbreviate from now on to “Ξ(A) is
a graded vector space”; the sundry objects defined below are graded in that sense —that is,
they are actually completions of graded vector spaces, completions of graded Lie algebras,
and so on.

The space Lin(H,A) of k-linear maps from H to A, Lin(H,A) :=
∏

n∈N
Lin(Hn, A), is

naturally endowed with an algebra structure by the convolution product :

f ∗ g := πA ◦ (f ⊗ g) ◦ δ : H
δ−→ H ⊗H

f⊗g−−→ A⊗A
πA−−→ A.

The unit for the convolution product is precisely e : H → A. Especially when A = H,
the convolution product provides various tools to deal with properties of characters, such
as the logarithm of the identity, which is a projector on H with kernel the square of the
augmentation ideal. As a corollary, A-valued infinitesimal characters can be characterized
as those maps α from H to A such that αn ◦ I∗k(hn) = k αn(hn), for any k, n ∈ N. We refer
the reader interested in a systematic study of these phenomena and of their connections to
the classical structure theorems for Hopf algebras such as the Cartier-Milnor-Moore theorem
to [40, 41].

The set GH(A) of characters, or just G(A), is a group for the convolution product. The
inverse is given explicitly by the formula:

γ−1 =
(

e+
∑

n∈N∗

γn

)−1
= e+

∑

k∈N∗

(−1)k

(

∑

n∈N∗

γn

)∗k

.

The last sum is well-defined as a power series, since only a finite number of terms appear
in each degree. We denote as usual by S the convolution inverse of the identity map I
in End(H) := Lin(H,H). Then γ−1 = γ ◦ S ∈ G(A); the reader unfamiliar with this
identity can deduce it easily from the next lemma and other notions introduced soon.

Now, Lin(H,A) is not naturally provided with a Hopf algebra structure over the ground
field k, except under particular assumptions on the target space A. For example, it is (up to
the completion phenomena) a Hopf algebra if A = k. This follows from the usual argument
to construct a Hopf algebra structure on the graded dual of a graded connected Hopf algebra
of finite type. It is not when A = k[[ε, ε−1], that is when the coefficient algebra A is the
field of Laurent series —an example relevant to renormalization. However, as will be shown
below, a Hopf algebra structure can always be defined on certain remarkable spaces naturally
related to Lin(H,A) and, most importantly in view of applications to pQFT, to the group
of characters G(A).

Lemma 3.1. Assume that, for given φ, ψ ∈ Lin(H,A), there exist elements φ(1) ⊗ φ(2),

respectively ψ(1) ⊗ ψ(2), in Lin(H,A) ⊗ Lin(H,A) such that, for any h, h′ ∈ H:

φ(1)(h) · φ(2)(h′) = φ(hh′) and ψ(1)(h) · ψ(2)(h′) = ψ(hh′);
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then

φ ∗ ψ(hh′) =
(

φ(1) ∗ ψ(1)(h)
)

·
(

φ(2) ∗ ψ(2)(h′)
)

.

Moreover, when ψ ∈ End(H) and φ ∈ Lin(H,A), with the same hypothesis and ψ(1), ψ(2)

now in End(H):

φ ◦ ψ(hh′) =
(

φ(1) ◦ ψ(1)(h)
)

·
(

φ(2) ◦ ψ(2)(h′)
)

.

The last identity in particular holds when A = H, that is, in End(H).

Proof. Indeed, we have:

φ ∗ ψ(hh′) = φ(h(1)h′
(1)

) · ψ(h(2)h′
(2)

)

= φ(1)(h(1)) · φ(2)(h′
(1)

) · ψ(1)(h(2)) · ψ(2)(h′
(2)

)

= φ(1)(h(1)) · ψ(1)(h(2)) · φ(2)(h′
(1)

) · ψ(2)(h′
(2)

)

=
(

φ(1) ∗ ψ(1)(h)
)

·
(

φ(2) ∗ ψ(2)(h′)
)

,

an identity that we also write, for later use,

(φ ∗ ψ)(1) ⊗ (φ ∗ ψ)(2) = (φ(1) ⊗ φ(2)) ∗ (ψ(1) ⊗ ψ(2)).

We also clearly have:

φ ◦ ψ(hh′) = φ(ψ(1)(h) ψ(2)(h′)) =
(

φ(1) ◦ ψ(1)(h)
)

·
(

φ(2) ◦ ψ(2)(h′)
)

. �

Corollary 3.1. The graded vector space of infinitesimal characters Ξ(A) is a graded Lie
subalgebra of Lin(H,A) for the Lie bracket induced on the latter by the convolution product.

Proof. Indeed, infinitesimal characters are precisely the elements α of Lin(H,A) such that:

α(1) ⊗ α(2) = α⊗ e+ e⊗ α satisfy, for any h, h′ ∈ H: α(1)(h) · α(2)(h′) = α(hh′).

According to the foregoing lemma, for α and β two graded infinitesimal characters, we
obtain:

[α, β](hh′) := (α ∗ β − β ∗ α)(hh′)

= πA[(α⊗ e+ e⊗ α) ∗ (β ⊗ e+ e⊗ β)

−(β ⊗ e+ e⊗ β) ∗ (α⊗ e+ e⊗ α)](h⊗ h′)

= [α, β](h) · e(h′) + e(h) · [α, β](h′),

hence the corollary follows. �

Proposition 3.1. The enveloping algebra U(Ξ(A)) of the Lie algebra Ξ(A) maps naturally
to the convolution subalgebra of Lin(H,A) generated by Ξ(A).

The existence of that natural algebra map from U(Ξ(A)) to Lin(H,A) follows from the
previous lemma and from the universal property of enveloping algebras.

Notice that U(Ξ(A)) is also, as the enveloping algebra of a graded Lie algebra, a graded
connected cocommutative Hopf algebra, which we call the Hopf algebra CharH(A), or
just Char(A), of characteristic functions on H (with values in A). We write ∗ for the
product on Char(A) and use ∆ for its coproduct. Thus by definition of Char(A) the primi-
tive elements are the infinitesimal A-valued characters of H. Besides providing Hopf algebra
tools for the study of Feynman rules, the Hopf algebra of characteristic functions —and the
associated pro-unipotent group— will play a crucial role in Section 10, when relating the
FLA approach to renormalization to the Connes–Marcolli motivic Galois group.

Notice that ∆ is not defined in general on Lin(H,A), and neither on the image of Char(A)
in Lin(H,A), see [31] and [42] for a discussion on the subject in the particular case A = H.
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Proposition 3.2. We have, for any φ ∈ Char(A) and any h, h′ ∈ H, the reciprocity law:

φ(hh′) = φ(1)(h) · φ(2)(h′),

where we use the Sweedler notation for ∆(φ), and where the action of φ on H is induced by
the natural map from Char(A) to Lin(H,A).

Proof. This is true when φ is an infinitesimal character. According to the previous propo-
sition, for φ, φ′ in Char(A), we have: φ ∗ φ′(hh′) = φ ∗ φ′(hh′). Due to the Lemma 3.1, it
follows that the identity holds for φ ∗ φ′ if it holds for φ and φ′. Since Char(A) is generated
as an associative algebra by infinitesimal characters, the proposition follows. �

We remark that the reciprocity law can be rewritten:

φ ◦ π = πA ◦ ∆(φ).

In the cocommutative case, the identity playing a similar role (mutatis mutandis) is [42]:

δ ◦ φ = ∆(φ) ◦ δ.

As a consequence of Proposition 3.2, the set G′(A) of group-like elements in Char(A)
maps to characters, that is elements of G(A) —since the identity ∆(φ) = φ⊗ φ in Char(A)
translates into the identity φ(hh′) = φ(h)φ(h′) in H. We show now that, as usual, the
convolution exponential and logarithm maps are inverse bijections from Ξ(A) onto G(A)
and from Ξ(A) onto G′(A). Indeed, for any α ∈ Ξ(A), we have in Char(A):

∆
(

exp(α)
)

= exp
(

∆(α)
)

= exp(α⊗ e+ e⊗ α) = exp(α⊗ e) ∗ exp(e⊗ α)

=
(

exp(α) ⊗ e
)

∗
(

e⊗ exp(α)
)

= exp(α) ⊗ exp(α),

which also implies that we have exp(α) ∈ G(A) in Lin(H,A). We have used first that α is
a graded infinitesimal character, then that α⊗ e and e⊗α commute. The other way round,
if γ is a character:

log(γ)(hh′) = πA

(

log(γ ⊗ γ)(h⊗ h′)
)

= πA

(

(log(γ ⊗ e) + log(e⊗ γ))(h⊗ h′)
)

= πA

(

(log(γ) ⊗ e+ e⊗ log(γ))(h⊗ h′)
)

= log(γ)(h) · e(h′) + e(h) · log(γ)(h′),

whereas if γ ∈ G′(A):

∆(log γ) = log(∆γ) = log(γ ⊗ γ)

= log((γ ⊗ e) ∗ (e⊗ γ))

= log γ ⊗ e+ e⊗ log γ.

Corollary 3.2. The natural algebra map from Char(A) to Lin(H,A) induces a bijection
between the group G′(A) of group-like elements in Char(A) and G(A), the group of A-valued
characters on H.

We identify G(A) with G′(A) henceforth. In particular, both the identity map I and the
antipode S can be viewed as elements of Char(H), and we won’t distinguish between I, S
and their respective preimages in Char(H).
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4. Logarithmic derivatives and the Dynkin operator

Although the logarithm is the simplest bijection from group-like elements to primitive
elements in a graded connected cocommutative Hopf algebra, the most relevant bijection in
view of applications to renormalization is a bit subtler. It is a kind of logarithmic derivative,
closely related to a Lie idempotent known as the Dynkin idempotent. Presently we survey
the properties of the Dynkin operator (the composition of the Dynkin idempotent with the
grading map Y ) pertinent to our forthcoming computations, and also obtain new results on
the operator, such as the existence of the advertised bijection between G(A) and Ξ(A). The
results generalize the fine properties of Hopf algebras encapsulated in the notion of descent
algebra of a Hopf algebra [41]. They rely as well on the Hopf algebraic treatment of the
Dynkin operator given in [42], and on more classical Lie theoretic properties of the operator.
We give in particular closed formulas for the inverse map to Dynkin’s operator, i.e., from
Ξ(A) to G(A).

The classical Dynkin operator is defined as follows. Let X = {x1, . . . , xn, . . .} be an
alphabet. The tensor algebra T (X) :=

⊕

n≥0 Tn(X) over X is a cocommutative graded Hopf
algebra with the set of words xi1 . . . xil as a linear basis in degree l. It is also, canonically,
the enveloping algebra of the FLA Lie(X) over X. The product in T (X) is induced by
concatenation of words, whereas the coproduct is fully characterized by the property that
elements of X are primitive in T (X). The Dynkin operator D : T (X) → Lie(X) is given
by:

D(xi1 . . . xin) = [. . . [[xi1 , xi2 ], xi3 ], . . . , xin ];

with DT0(X) = 0 and DT1(X) = idX . According to an idea essentially due to von Waldenfels,
this iterated bracketing operator can be represented in a more abstract way as the con-
volution product of the antipode S of T (X) with the grading operator Y , acting as the
multiplication by n on Tn(X):

D = S ∗ Y ; equivalently I ∗D = Y.

The most famous property of D is the Dynkin–Specht–Wever theorem, stating that an
element v in Tn(X) —a linear combination of words of length n— is in Lie(X) if and only
if D(v) = nv. In effect, such a v is in the primitive part of the tensor algebra, and:

nv = Y v = π(I ⊗D)(1 ⊗ v + v ⊗ 1) = D(v).

The converse is also well known. These definitions and properties have been generalized to
bialgebras in [42], that we follow mainly here. However, for our purposes we have to give
a somewhat detailed account. Indeed, that reference as well as the classical theory of the
Dynkin operator do focus on the study of graded connected cocommutative Hopf algebras,
whereas we are mainly interested here in commutative Hopf algebras. The interested reader
will find further historical and technical information about the Dynkin operator and its
relevance to Lie computations in references [29] and [44].

So let H be graded, connected and commutative. Since I ∈ Char(H), so its graded com-
ponents In ∈ Char(H). Notice, for further use, that the subalgebra of Char(H) generated by
the In maps to the descent algebra of H —the convolution subalgebra of End(H) generated
by the In, see [41]. Moreover, the grading operator Y :=

∑

n∈N
nIn belongs to Char(H).

Its coproduct is given by:
∆(Y ) = Y ⊗ I + I ⊗ Y,

another way of expressing that Y is a derivation of H:

Y (hh′) = Y (h)h′ + hY (h′).

Let us adopt the notation Y f for f ◦ Y , according to the custom in distribution theory.
Under this guise the operator Y extends naturally to a derivation on Lin(H,A). We find,
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with f, g ∈ Lin(H,A) and h ∈ H:

Y (f ∗ g)(h) := f ∗ g (Y (h)) = |h|(f ∗ g)(h)
= |h|f(h(1))g(h(2))

= |h(1)|f(h(1))g(h(2)) + |h(2)|f(h(1))g(h(2))

= Y f ∗ g (h) + f ∗ Y g (h),

where we used that ∆(Y (h)) = |h|∆(h) =
(

|h(1)| + |h(2)|
)

h(1) ⊗ h(2).

Proposition 4.1. Convolution of the H-valued character S with any derivation d of H
yields an H-valued infinitesimal character.

Proof. Indeed, since d is a derivation, we have d(hh′) = d(h)h′ +hd(h′). Since, furthermore,
∆(S) = S ⊗ S, we get:

(S ∗ d)(hh′) = π ◦ [(S ⊗ S) ∗ (d⊗ I + I ⊗ d)](h⊗ h′)

= π ◦ [(S ∗ d) ⊗ (S ∗ I) + (S ∗ I) ⊗ (S ∗ d)](h⊗ h′)

= S ∗ d(h) · e(h′) + e(h) · S ∗ d(h′),
hence the proposition follows. �

Corollary 4.1. The Dynkin operator D := S ∗ Y is an H-valued infinitesimal character
of H.

Notice also that D satisfies D ◦D = D ◦ Y —in other terms, D is an idempotent up to
a scalar factor depending on the grading, that is, D is a quasi-idempotent. Equivalently,
D ◦ Y −1 is an idempotent on H+ (also known when H is the cotensor algebra T ∗(X) —see
below— as the Dynkin idempotent). Indeed, for any h ∈ H,

D ◦D(h) = D ◦ (S ∗ Y )(h) = D
(

S(h(1))Y (h(2))
)

.

However, since D is an infinitesimal character, D(hh′) = 0 if h, h′ ∈ H+ and therefore,

D ◦D(h) = D
(

S(h)Y (1H) + S(1H)Y (h)
)

= D ◦ Y (h),

since Y (1H) = 0.

Proposition 4.2. Right composition with an infinitesimal character α ∈ Ξ(H) induces a
map from G(H) to Ξ(H). This also holds for G(A) and Ξ(A), where A is an arbitrary
commutative unital algebra.

Proof. Indeed, let γ ∈ G(H) or G(A), we have:

γ ◦ α(hh′) = γ ◦ α(h) e(h′) + e(h) γ ◦ α(h′),

by virtue of Lemma 3.1, since γ ◦ e = e for any character γ. �

Corollary 4.2. Right composition with the Dynkin operator D induces a map from G(A)
to Ξ(A).

In general, for γ belonging to G(H) or G(A) and any f1, . . . , fk ∈ End(H), we have the
distributive property:

γ ◦ (f1 ∗ · · · ∗ fk) = (γ ◦ f1) ∗ · · · ∗ (γ ◦ fk).

Particularly,

γ ◦D = γ ◦ (S ∗ Y ) = γ−1 ∗ Y γ.
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Theorem 4.1. Right composition with D is a bijective map from G(H) to Ξ(H). The
inverse map is given by:

(1) Γ : α ∈ Ξ(H) 7−→
∑

n

∑

k1,...,kn∈N∗

αk1 ∗ · · · ∗ αkn

k1(k1 + k2) . . . (k1 + · · · + kn)
∈ G(H).

The theorem also holds if G(H) and Ξ(H) are replaced by G(A), respectively Ξ(A).

We show first that Γ is a left inverse to right composition with D. The following lemma
has been obtained in [29] in the setting of noncommutative symmetric functions and quasi-
determinants. We include the proof, which is elementary.

Lemma 4.1. For n ≥ 1 we have:

In =
∑

k1,...,kl∈N
∗

k1+···+kl=n

Dk1 ∗ · · · ∗Dkl

k1(k1 + k2) . . . (k1 + · · · + kl)
.

Proof. As already remarked, the definition of D implies I ∗D = I ∗S ∗Y = Y . In particular,
since D0 = 0:

Yn = nIn = (I ∗D)n =
n

∑

i=1

In−i ∗Di.

Inserting recursively the value of Ii in the right member of the identity, we obtain:

In =
Dn

n
+

n−1
∑

i=1

∑

1≤j≤n−i

In−i−j ∗Dj ∗Di

(n− i)n

=
Dn

n
+

∑

j+i=n
i,j 6=0

Dj ∗Di

j · n +
n−1
∑

i=1

∑

1≤j≤n−i−1

In−i−j ∗Dj ∗Di

(n− i)n

=
∑

k1,...,kl∈N
∗

k1+···+kl=n

Dk1 ∗ · · · ∗Dkl

k1(k1 + k2) . . . (k1 + · · · + kl)
. �

Now we compute γ = γ ◦ I, where I is expanded according to the previous lemma,
yielding:

γ = e+ γ ◦
{

∑

n∈N∗

∑

k1,...,kl∈N
∗

k1+···+kl=n

Dk1 ∗ · · · ∗Dkl

k1(k1 + k2) . . . (k1 + · · · + kl)

}

= e+
∑

n∈N∗

∑

k1,...,kl∈N
∗

k1+···+kl=n

γ ◦Dk1 ∗ · · · ∗ γ ◦Dkl

k1(k1 + k2) . . . (k1 + · · · + kl)
.

As D preserves the grading, it follows that Γ is a left inverse to the right composition
with D.

Similar calculations help to prove that Γ is character-valued, that is, is actually a map
from Ξ(H) to G(H). Indeed, let α be any infinitesimal character in Ξ(H). Then we have
in Char(H):

∆(Γ(α)) = e⊗ e+
∑

n>0

∑

k1,...,kn∈N∗

∆(αk1 ∗ · · · ∗ αkn
)

k1(k1 + k2) . . . (k1 + · · · + kn)
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= e⊗ e+
∑

n>0

∑

k1,...,kn∈N∗

∑

I⊔J={k1,...,kn}
|I|=l,|J |=p

(αi1 ∗ · · · ∗ αil) ⊗ (αj1 ∗ · · · ∗ αjp)

k1(k1 + k2) . . . (k1 + · · · + kn)
,

where I = {i1, . . . , il}, J = {j1, . . . , jp} and we have used that the αim are all infinitesimal
characters. Particularly, the assertion we intend to prove, that is ∆(Γ(α)) = Γ(α) ⊗ Γ(α),
amounts to the equality:

(

e+
∑

n>0

∑

k1,...,kn∈N∗

αk1 ∗ · · · ∗ αkn

k1(k1 + k2) . . . (k1 + · · · + kn)

)⊗2

= e⊗ e+
∑

n>0

∑

k1,...,kn∈N∗

∑

I⊔J={k1,...,kn}
|I|=l,|J |=p

(αi1 ∗ · · · ∗αil) ⊗ (αj1 ∗ · · · ∗ αjp)

k1(k1 + k2) . . . (k1 + · · · + kn)
.

This follows from the identity:
∑

I⊔J=K

1

k1(k1 + k2) . . . (k1 + · · · + kp+l)

=
∑

i1,...,il∈N
∗

j1,...,jp∈N
∗

1

i1(i1 + i2) . . . (i1 + · · · + il)
· 1

j1(j1 + j2) . . . (j1 + · · · + jp)
,(2)

where K runs over all sequences (k1, ..., kp+l) obtained by shuffling the sequences I and J .
In turn, the identity follows if the equation ∆(Γ(α)) = Γ(α) ⊗ Γ(α) (that is, Γ(α) ∈ G(H))
holds for a particular choice of H and α such that the αi form a family of algebraically
independent generators of a subalgebra of the convolution algebra End(H) —which are
therefore also algebraically independent as elements of Char(H).

So, let us consider the particular case H = T ∗(X) where H is the graded dual of the
enveloping algebra of the FLA over an infinite alphabet X and α = D is the Dynkin
operator. Then, we already know that Γ(D) = I, due to the previous lemma, so that Γ(D)
is group-like in Char(T ∗(X)). On the other hand, as is well known, the graded components of
the Dynkin operator are algebraically independent in the convolution algebra End(T ∗(X)),
and the identity follows. (For further details on the algebraic independence of the graded
components of the Dynkin operator and, more generally, of the classical Lie idempotents,
consult [29, 44].)

Although we have preferred to give a conceptual proof based on FLAs, let us mention
that identity (2) is elementary, and well known in boson Fock space theory. It also follows
e.g. from the shuffle identity for the product of two iterated integrals [45]:

∑

I⊔J=K

1
∫

0

x
kp+l−1
p+l . . .

x2
∫

0

xk1−1
1 dx1 . . . dxp+l

=

1
∫

0

xil−1
l . . .

x2
∫

0

xi1−1
1 dx1 . . . dxl ·

1
∫

0

y
jp−1
p . . .

y2
∫

0

yj1−1
1 dy1 . . . dyp,

which generalizes the integration by parts rule.

To conclude the proof of Theorem 4.1 we show that Γ is also a right inverse to the
composition with D. We contend that, for any h in the augmentation ideal of H and
arbitrary α ∈ Ξ(H), the following relation holds:

α(h) = Γ(α)−1 ∗ Y Γ(α) (h) or, equivalently, Y Γ(α)(h) = Γ(α) ∗ α (h).
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Indeed, we have:

Y Γ(α)(h) := |h|
∑

k1,...,kl∈N
∗

k1+···+kl=|h|

αk1 ∗ · · · ∗ αkl

k1(k1 + k2) . . . (k1 + · · · + kl)
(h)

=
∑

k1,...,kl∈N
∗

k1+···+kl=|h|

αk1 ∗ · · · ∗ αkl−1

k1(k1 + k2) . . . (k1 + · · · + kl−1)
∗ αkl

(h)

= Γ(α) ∗ α (h).

This together with the fact that Γ(α) ∈ G(H) for α ∈ Ξ(H) implies:

Γ(α) ◦D = Γ(α)−1 ∗ Y Γ(α) = α.

Our task is over. �

WhenH is both commutative and cocommutative the convolution product is commutative
and γ ◦ D = Y log γ := log(γ) ◦ Y . In particular in this case D = Y log I. This was put
to good use in [5]. Thus clearly D, in the general case, is a noncommutative logarithmic
derivative; and the inverse Dynkin operator Γ a extremely powerful tool. We finally remark
that Y ∗S, corresponding, in the free cocommutative case and as an operator from the tensor
algebra to the FLA, to the right-to-left iteration of bracketings, is another possible form for
the noncommutative logarithmic derivative, leading in particular to γ ◦ (Y ∗S) = Y γ ∗ γ−1.
More generally, any interpolation of the form Sa ∗ Y ∗ Sb, with a+ b = 1, yields a notion of
noncommutative logarithmic derivative.

5. Algebraic BWH decomposition of characters

In this section we summarize previous research on Rota–Baxter operators, relevant for
our purpose. Let H be still graded, connected and commutative and let again A stand for a
commutative unital algebra. Assume the algebra A to split directly, A = A+ ⊕A−, into the
subalgebras A+, A− with 1A ∈ A+. We denote the projectors to A± by R±, respectively.
The pair (A,R−) is a special case of a (weight one) Rota–Baxter algebra [21] since R−, and
similarly R+, satisfies the relation:

(3) R−(x) ·R−(y) +R−(x · y) = R−

(

R−(x) · y + x ·R−(y)
)

, x, y ∈ A.

The reader may verify that integration by parts rule is just the weight zero Rota–Baxter
identity, that is, the second term on left hand side of (3) is absent. One easily shows that
Lin(H,A) with the idempotent operator R− defined by R−(f) = R− ◦f , for f ∈ Lin(H,A),
is a (in general not commutative) unital Rota–Baxter algebra [21].

The subspace L(1) of Lin(H,A) made of linear maps that send the Hopf algebra unit to

zero forms a Lie algebra with Ξ(A) ⊂ L(1) as a Lie subalgebra. To L(1) does correspond

the group G0 = e + L(1) = exp(L(1)) of linear maps sending the Hopf algebra unit to the
algebra unit. It contains the group of characters G(A) as the subgroup exp(Ξ(A)). Due
to the characterization of infinitesimal characters as maps that vanish on the square of the
augmentation ideal of H, both R+(Ξ(A)) and R−(Ξ(A)) embed into Ξ(A). In particular,
both are Lie subalgebras of Ξ(A).

The Lie algebra decomposition, Ξ(A) = R+(Ξ(A)) ⊕ R−(Ξ(A)) lifts to the group of
characters G(A) as follows. Recall the Baker–Campbell–Hausdorff (BCH) formula [44] for
the product of two exponentials, that we write:

exp(x) exp(y) = exp
(

x+ y + BCH(x, y)
)

.

In [21, 22] the following non-linear map was defined, whose properties where further explored

in [25]. See also [39]. For f ∈ L(1), define χR−(f) = limn→∞ χ
R−

n (f) where χ
R−

n (f) is given
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by what we call the BCH recursion:

χ
R−

0 (f) = f, χ
R−

1 (f) = f − BCH
(

R−(f),R+(f)
)

, . . . ,

χ
R−

n+1(f) = f − BCH
(

R−

(

χR−

n (f)
)

,R+

(

χR−

n (f)
)

)

.

Then the fixed-point map χR− : L(1) → L(1) satisfies:

(4) χR−(f) = f − BCH
(

R−

(

χR−(f)
)

,R+

(

χR−(f)
)

)

.

The superscript R− is justified by the dependency of the limit on the Rota–Baxter operator,
and the following result.

Lemma 5.1. The map χR− in (4) solves the simpler recursion:

χR−(f) = f + BCH
(

−R−

(

χR−(f)
)

, f
)

, f ∈ L(1).

Following [25], the following factorization theorem holds.

Theorem 5.1. For any f ∈ L(1), we have the unique factorization:

exp(f) = exp
(

R−

(

χR−(f)
)

)

∗ exp
(

R+

(

χR−(f)
)

)

.

Uniqueness of the factorization follows from R− being idempotent. In the particular case
that f ∈ Ξ(A), the BCH recursion (4) takes place inside the Lie algebra Ξ(A), and the
decomposition of exp(f) holds therefore inside the group of characters G(A). In particular,
it follows ultimately from Theorem 5.1 that G(A) decomposes as a product

G(A) = G−(A) ∗G+(A), where G−(A) = exp(R−(Ξ(A))), G+(A) = exp(R+(Ξ(A))).

Corollary 5.1. For any γ = exp(α) ∈ G(A), with α ∈ Ξ(A), we have unique α± :=
R±(χR−(α)) ∈ R±(Ξ(A)), and unique characters γ± := exp(±α±) ∈ G±(A) such that:

(5) γ = γ−1
− ∗ γ+.

Using again the Rota–Baxter relation (3) the BWH decomposition of Connes and Kreimer,
originally found by a more geometrical method [16], is recovered [21, 24, 25]:

Lemma 5.2. For any γ = exp(α) the unique characters γ± := exp(±α±) ∈ G±(A) in the
previous corollary solve the equations:

(6) γ± = e±R±(γ− ∗ (γ − e)).

Proof. There is a sharpened version [22] of Atkinson’s theorem [1], stating that the characters
γ, γ± of (5) verify γ− = e−R−(γ− ∗ (γ − e)) and γ+ = e−R+(γ+ ∗ (γ−1 − e)). Now:

γ+ ∗ (γ−1 − e) = γ− ∗ γ ∗ (γ−1 − e) = γ− ∗ (e− γ)

gives (6). �

6. On renormalization procedures

Prima facie in pQFT, to a Feynman graph F does correspond by the Feynman rules a
multiple D-dimensional momentum space integral. Each independent loop in a diagram
yields one integration:

(7) F 7→ JF (p) =

[
∫ |F |

∏

l=1

dDkl

]

IF (p, k).

Here |F | is the number of loops, k = (k1, . . . , k|F |) are the |F | independent internal (loop)

momenta and p = (p1, . . . , pN ), with
∑N

k=1 pk = 0, denote the N external momenta. In
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the most relevant kind (D = 4, renormalizable with dimensionless couplings) of field the-
ories, these integrals suffer from ultraviolet (UV) divergencies. Concretely, under a scale
transformation, the integrand behaves as

[ |F |
∏

l=1

dD(λkl)

]

IF (λp, λk) ∼ λd(F ),

with d(F ) the superficial UV degree of divergence of the graph F . Power-counting renormal-
izable theories are such that all interaction terms in the Lagrangian are of dimension ≤ D;
then d(F ) is bounded by a number independent of the order of the graph. For instance in
the ϕ4

4 model the superficial UV degree of divergence of a graph with N external legs is:

d(F ) = 4 −N.

The Weinberg–Zimmermann theorem says: “provided all free propagators have nonzero
masses, the integral associated to the Feynman graph F is absolutely convergent if its
superficial UV degree of divergence and that of each of its one-particle irreducible (1PI)
subgraphs is strictly negative”. The BPHZ momentum space subtraction method is rooted
in this assertion: the idea is to redefine the integrand IF (p, k) of a divergent integral by
subtracting from it the first terms of its Taylor expansion in the external momenta p,
after these subtractions have been performed on the integrands corresponding to the 1PI
subgraphs of F that are renormalization parts; in such a way the UV degrees of the integral
and its subintegrals are lowered until they become all negative. The combinatorics of those
subgraph subtractions leads to Bogoliubov’s recursive R̄-operation and Zimmermann’s forest
formula; we assume the reader acquainted with the former at least [11, 13, 46, 49].

Less straightforward conceptually, but way more practical, is the DR method. This
belongs to the class of regularization prescriptions, which parameterize the divergencies
appearing in JF upon introducing non-physical parameters, thereby rendering them formally
finite. In DR [48] one introduces a complex parameter ε ∈ C by changing the integral
measure, that is, the space-time dimension, to D ∈ C:

dDk
dim reg−−−−→ µε dDk,

where ε = (D − D). Henceforth always D = 4. The arbitrary parameter µ 6= 0 (’t Hooft’s
‘unit-mass’ parameter) is introduced for dimensional reasons. Take the ϕ4

4 model: in DR,
if we wrote the interaction term simply in the form gϕ4/4!, then the (naive) dimension
of g would be [g] = µε. The redefinition g̃µεϕ4/4! of the original vertex in the Lagrangian
includes the mass parameter µ, introduced to make g̃ dimensionless. Now, in any given
theory there is a rigid relation between the numbers of loops and vertices, for each given N -
point function. For instance in the ϕ4

4 model, for graphs associated to the 2-point function
the number of vertices is just equal to the number of loops. For graphs associated to the 4-
point function the number of vertices is equal to the number of loops plus one, and so an extra
g̃µε factor comes in; but, because we are correcting the vertex, this extra factor becomes the
coupling constant, and is not expanded in powers of the regularization parameter ε; only
the expression multiplying it contributes to the renormalization constant Zg —with a pole
term independent of the mass scale µ. The outcome is that in practice one computes as
many µε factors as loops:

(8) F −→ J
(ε,µ)
F (p) = µ|F |ε

[
∫ |F |

∏

l=1

dDkl

]

IF (p, k).
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See the discussion in [16, 17] and [32, Sections 7 and 8] as well. The point is important from
the algebraic viewpoint, since it makes the grading of Feynman graphs by the number of
loops immediately relevant to the renormalization process.

The next step in DR consists of a specific subtraction rule of those ε-parameterized
expressions which allows to take the limit ε ↓ 0. Now, Connes and Kreimer’s BWH de-
composition of Feynman rules [16] is extraordinarily well adapted to DR in pQFT. In the
Connes–Kreimer paradigm, any renormalizable quantum field theory gives rise to a Hopf
algebra H of Feynman graphs, polynomially generated by 1PI Feynman graphs and graded
by graph loop number. The coproduct operation of H mirrors the combinatorics of the sub-
graphs. Looking back to (7), the unrenormalized Feynman integral does define a character
because:

IF1∪F2(p1, p2, k1, k2) = IF1(p1, k1)IF2(p2, k2)

for disjoint graphs F1, F2. On the Hopf algebra H the Feynman rules single out a dis-
tinguished character γ with values in a suitable target algebra of regularized amplitudes.
Precisely, Connes and Kreimer establish the above decomposition G(A) = G−(A) ∗G+(A),
for A the algebra of amplitude-valued Laurent series in the dimension defect ε, using the
minimal subtraction (MS) scheme in DR on momentum space. The characters γ± in the
decomposition (5) solve Bogoliubov’s renormalization formulae —see Corollary 6.1 below—
and may be called the renormalized and counterterm character, respectively. The sought

after result is given by the ‘positive’ part in (5). To wit, γ
(ε,µ)
+ = γ

(ε,µ)
− ∗ γ(ε,µ), and the limit

γ
(ε↓0,µ)
+ exists, giving the renormalized Feynman amplitude. In waht follows, when dealing

with dimensionally regularized characters we drop the superscript ε. We also forget about
the other involved variables, that do not enter our considerations, and just write C[[ε, ε−1]
for A. Thus R− will be the projection onto the subalgebra A− := ε−1

C[ε−1]. In summary, A
encodes the Feynman rules within the chosen regularization procedure, whereas the splitting
of A, hence the projector R−, reflects a renormalization scheme within that choice.

Corollary 6.1. The map γ̄ := γ− ∗ (γ − e) = γ+ − γ− in (6) gives Bogoliubov’s preparation
map R̄.

Indeed with Connes–Kreimer’s definition of the Hopf algebra of Feynman graphs, equa-
tions (6) coincide with Bogoliubov’s recursive formulas for the counterterm and renormalized
parts.

7. Locality and Connes–Kreimer’s beta function

The results in Sections 3 to 5 apply to any graded connected commutative bialgebra H
and any commutative unital algebra A with a direct splitting. In this section we restrict our
consideration to the class of Hopf algebra characters possessing a locality property, withH as
before. This will correspond to the example given by the Feynman rules for a renormalizable
pQFT in DR, using the framework of the MS and the MS [13, Section 5.11.2] schemes. There
locality comes from the dependency of DR on the arbitrary ‘mass parameter’ µ. It is handy
to provisionally fix the value of µ at some convenient reference point µ0. The difference
between both schemes boils down to:

(9) µ0 = µ0

eγE/2

2
√
π
,

with µ0, µ0 respectively the MS, MS values and γE the Euler–Mascheroni constant. Our
aim is to recover by our methods the results in [17, 18]; the latter constitute a stronger,
algebraic version of a famous theorem by ’t Hooft [48]. Place of pride corresponds to Connes–
Kreimer’s abstract beta function. This is a conceptually very powerful beast, giving rise to
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the ordinary beta function through the (tangent morphism to) the morphism (of unipotent
groups) from G(C) to the group of transformations of the coupling constants [17].

Any f ∈ Lin(H,A) is now of the form:

f(h) =
∞

∑

k=−U

f:k(h)ε
k =: f(h; ε)

for h ∈ H. Here every f:k ∈ Lin(H,C), the dual of H; and the last notation is used when we
want to emphasize the dependency on the DR parameter ε. If h is a |h|-loop 1PI Feynman
graph, a general theorem [46] in DR says that U = |h| at non-exceptional momenta.

We define on the group of A-valued characters G(A) a one-parameter action of C
∗ ∋ t

given for h homogeneous in H by:

(10) ψt(h; ε) := tε|h|ψ(h; ε).

Physically this amounts to neatly replacing the µ
ε|h|
0 factor present in each dimensionally

regularized Feynman diagram (8) by (µ0t)
ε|h|; that is, the mass scale is changed from µ0

to tµ0 —or from µ0 to tµ0, as the case might be. As ε is a complex variable, there is no
harm in taking t complex, too. When dealing with dimensionally regularized characters we
often omit the ε in our notation.

It is clear that ψt in (10) is still a character, and that (ψ1 ∗ ψ2)
t = ψt

1 ∗ ψt
2. This last

property also holds if ψ1, ψ2 in (10) belong more generally to Lin(H,A). Besides, for future
use we store :

(11) t
∂

∂t
ψt = ε|h|ψt(h; ε) = ε Y ψt such that t

∂

∂t

∣

∣

∣

t=1
ψt = ε Y ψ.

For any t and any homogeneous h ∈ H we have tε|h| ∈ R+(A) = A+ := C[[ε]], so that the
one-parameter action on G(A) restricts to a one-parameter action on the group G+(A) :

ψ ∈ G+(A) 7→ ψt ∈ G+(A).

We now have for the regularized, but unrenormalized character γt ∈ G(A) a BWH decom-
position:

γt = (γt)
−1
− ∗ (γt)+.

Notice that we write instead (γ−)t and (γ+)t for the image of γ− and γ+ under the one-
parameter group action. The locality property simply states that for the counterterm the
following holds.

Theorem 7.1. Let γ be a dimensionally regularized Feynman rule character. The coun-
terterm character in the BWH decomposition γt = (γt)−1

− ∗ (γt)+ satisfies:

(12) t
∂(γt)−
∂t

= 0 or (γt)− is equal to γ−, i.e. independent of t.

We say the A-valued characters γ ∈ G(A) with this property are local characters.

The physical reason for this is that the counterterms can be taken mass-independent; this
goes back at least to [12]. For this fact, and more details on the physical significance of the
locality property in pQFT, we refer the reader to [2, 13, 16, 18].

In the sequel, albeit mustering Dynkin technology, we partly follow the plan in refer-
ence [39]. Denote by Gloc(A) the subset of local elements of G(A) and Gloc

− (A) the subset

of elements in Gloc(A) for which ψ(h) ∈ A− when h has no scalar part.

Proposition 7.1. The set Gloc(A) decomposes into the product Gloc
− (A) ∗G+(A).
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Proof. Notice first that G+(A) embeds in Gloc(A), since ψt ∈ G+(A) for any ψ ∈ G+(A).
Next, if φ is local and ρ ∈ G+(A), then φ ∗ ρ is local. Indeed, we have:

φt ∗ ρt = (φt)
−1
− ∗ (φt)+ ∗ ρt,

with polar part the one of φt, which is constant since φ is local. Let φ still be local. Then
φ ∗φ−1

+ = φ−1
− , and the proposition follows if we can show φ−1

− ∈ Gloc
− (A). Now, if φ is local,

we have:

(φ−1
− )t ∗ (φ+)t = φt = (φt)

−1
− ∗ (φt)+;

so that the BWH decomposition of (φ−1
− )t is given by:

(13) (φ−1
− )t = (φt)

−1
− ∗ (φt)+ ∗ ((φ+)t)−1,

with polar part (φt)−, the one of φ, constant and equal to φ−. �

Now we wish to complete the study of locality by understanding how the decomposition
of Gloc(A), which is a refinement of the decomposition G(A) = G−(A) ∗G+(A), is reflected
at the Lie algebra level. More precisely, we would like to know if there is a subspace
of R−(Ξ(A)) naturally associated to Gloc

− (A). The answer (quite surprising at first sight)
is simple and well known to physicists: beta functions are enough. An excellent tool to
understand this is the Dynkin operator pair —as shown below. Let now β ∈ Ξ(C) be
a scalar -valued infinitesimal character. Notice that β/ε can be regarded as an element
of R−(Ξ(A)).

Proposition 7.2. With Γ as defined in Eq. (1) of Theorem 4.1, we find:

ψβ := Γ(β/ε) ∈ Gloc
− (A).

Proof. From Eq. (1) it is clear that :

(14) ψβ = Γ(β/ε) =
∑

n

(

∑

k1,...,kn∈N∗

βk1 ∗ · · · ∗ βkn

k1(k1 + k2) . . . (k1 + · · · + kn)

)

1

εn

implying ψβ ∈ G−(A). Next we observe ψt
β = Γ(βt/ε), which follows simply from (14) and,

on use of (11):

(ψt
β)−1 ∗ t ∂

∂t
ψt

β = ε(ψt
β)

−1 ∗ Y ψt
β = εψt

β ◦D = εΓ(βt/ε) ◦D = βt.

Now, the BWH decomposition ψt
β = (ψt

β)−1
− ∗ (ψt

β)+ is such that :

(ψt
β)−1 ∗ t ∂

∂t
ψt

β = (ψt
β)−1 ∗ t ∂

∂t
(ψt

β)
−1

−
∗ (ψt

β)
+

+ (ψt
β)−1 ∗ (ψt

β)
−1

−
∗ t ∂
∂t

(ψt
β)

+

= (ψt
β)

−1

+
∗ (ψt

β)
−
∗ t ∂
∂t

(ψt
β)

−1

−
∗ (ψt

β)
+

+ (ψt
β)

−1

+
∗ t ∂
∂t

(ψt
β)

+
;

hence we find:

(ψt
β)

+
∗ βt ∗ (ψt

β)
−1

+
= (ψt

β)
−
∗ t ∂
∂t

(ψt
β)

−1

−
+ t

∂

∂t
(ψt

β)
+
∗ (ψt

β)
−1

+
.

Using ψβ ∈ G−(A) and that βt takes values in A+, we find by applying the projector R−

on both sides of the last equation :

R−

(

(ψt
β)+ ∗ βt ∗ (ψt

β)−1
+

)

= 0 = (ψt
β)− ∗ t ∂

∂t
(ψt

β)−1
− = −t ∂

∂t
(ψt

β)− ∗ (ψt
β)−1

−

implying that (ψt
β)

−
is independent of t; thus Γ(β/ε) is a local character. �
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The last proposition is suggestive of the fact that local A-valued characters are essentially
determined by ordinary (scalar-valued) infinitesimal characters (beta functions). This is
indeed the case. Before proving the main result of this section, we remark that, for any
φ ∈ Gloc(A), we can write :

(15) φt = φ−1
− ∗ (φt)+ = φ ∗ ht

φ,

where ht
φ := (φ+)−1 ∗ (φt)+ ∈ G+(A). Also, for φ ∈ Gloc

− (A) we denote φ:−1 by Resφ.

Theorem 7.2. The map φ 7→ ε(φ ◦ D), with D the Dynkin operator, sends Gloc(A) to
Ξ(A+) and Gloc

− (A) to Ξ(C); explicitly, in the second case:

Gloc
− (A) ∋ φ 7→ ε(φ ◦D) = Y Resφ ∈ Ξ(C).

Proof. First, recall from Corollary 4.2 thatD sends characters to infinitesimal characters and
that by Proposition 7.1 any local φ ∈ Gloc(A) decomposes as φa ∗φb with φa ∈ Gloc

− (A), φb ∈
G+(A). Therefore, we see that:

φ ◦D = φ−1 ∗ Y φ = (φb)−1 ∗ (φa)−1 ∗ Y φa ∗ φb + (φb)−1 ∗ Y φb;

since (φb)−1 and Y φb belong to Lin(H,A+), the theorem follows if we can prove that:

ǫ(φ ◦D) = ǫ(φ−1 ∗ Y φ) ∈ Ξ(C)

when φ ∈ Gloc
− (A). Assume the latter is the case and recall the decomposition φt = φ ∗ ht

φ

in (15), with now simply ht
φ = (φt)+. So that on the one hand (11) implies :

t
∂

∂t

∣

∣

∣

t=1
ht

φ = φ−1 ∗ t ∂
∂t

∣

∣

∣

t=1
φt = φ−1 ∗ ε Y φ = ε(φ ◦D).

On the other hand, observe that by using the Bogoliubov formula (6) one finds:

t
∂

∂t

∣

∣

∣

t=1
ht

φ = t
∂

∂t

∣

∣

∣

t=1
(φt)+ = t

∂

∂t

∣

∣

∣

t=1
R+

(

φ− ∗ (φt − e)
)

(16)

= t
∂

∂t

∣

∣

∣

t=1
R+

(

φ−1 ∗ φt − φ−1
)

= t
∂

∂t

∣

∣

∣

t=1
R+

(

φ−1 ∗ tε|·|φ
)

= R+

(

ε Y φ) = Y Resφ.(17)

In the step before the last we took into account that Y (1H) = 0 and that φ− ∈ Gloc
− (A)

which implies for h ∈ H+:

φ−1 ∗ tε|·|φ(h) = φ−1(h) + tε|h|φ(h) + φ−1(h
(1)

)tε|h
(2)

|φ(h
(2)

),

where h(1) ⊗h(2) = h⊗ 1+1⊗h+h
(1) ⊗h(2)

. Here φ−1(h) ∈ A− and φ−1(h
(1)

)tε|h
(2)

|φ(h
(2)

)

are both mapped to zero by t ∂
∂t

∣

∣

∣

t=1
R+. �

A glance back to Theorem 4.1 and Proposition 7.2 allows us to conclude that for φ ∈
Gloc

− (A) one has:

(18) Γ

(

Y Resφ

ε

)

= φ,

so indeed the polar part of a local character φ can be retrieved from its beta function,
β(φ) := Y Resφ ∈ Ξ(C), by the universal formula (1).

Equation (18) is equivalent to the ‘scattering type formula’ of [17]; we can refer to [39]
for this. Now it is an easy task to recover the other results of [17, 18]. We ought to remark
that, for γ a general local character, one defines Res γ = −Res γ− —see in this respect
formulae [17, Equation (11)] or [18, Equation (2.111)].
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Theorem 7.3. For the renormalized character γren(t) := (γt)+(ε = 0) it holds:

(19) t
∂

∂t
γren(t) = (Y Res γ) ∗ γren(t),

the abstract RG equation.

Proof. First, in the proof of Theorem 7.2 we saw already that D verifies a cocycle condi-
tion [26]: for φ, ψ ∈ G(A):

(φ ∗ ψ) ◦D = ψ−1 ∗ (φ ◦D) ∗ ψ + ψ ◦D.
This together with Theorem 7.2 implies for φ ∈ Gloc

− (A) that Resφ = −Resφ−1. Indeed,
this follows by taking the residue Res on both sides of the equation:

0 = (φ−1 ∗ φ) ◦D = φ−1 ∗ (φ−1 ◦D) ∗ φ+ φ ◦D = φ−1 ∗ Resφ−1

ε
∗ φ+

Resφ

ε
.

Now, let γ ∈ Gloc(A) with BWH decomposition γt = γ−1
− ∗ (γt)+. Recall that (γt)+ =

R+

(

γ− ∗ tε|·|γ
)

maps H+ into A+ ⊗ C[[log(t)]] such that:

t
∂(γt)+
∂t

(0) = t
∂

∂t
γren.

As γ− ∈ Gloc
− (A), we then find:

t
∂(γt)+
∂t

= γ− ∗ t ∂
∂t
γt = γ− ∗ εY γt = γ− ∗ εY (γ−1

− ∗ (γt)+)

= γ− ∗ εY (γ−1
− ) ∗ (γt)+ + εY (γt)+ = ε(γ−1

− ◦D) ∗ (γt)+ + εY (γt)+

= (Y Res γ−1
− ) ∗ (γt)+ + εY (γt)+ = −(Y Res γ−) ∗ (γt)+ + εY (γt)+

= (Y Res γ) ∗ (γt)+ + εY (γt)+.

Therefore both sides have a limit as ε ↓ 0, yielding the sought after RG equation (19). �

Equation (19) is solved using the beta function β(γ) := Y Res γ ∈ Ξ(C):

γren(t) = exp(ln(t)β(γ)) ∗ γren(1).

The last statement and equation (13) tell us that:

lim
ε→0

γ− ∗ (γ−1
− )t = lim

ε→0
(γt)+ ∗ ((γ+)t)−1 = γren(t) ∗ γ−1

ren(1) = exp(ln(t)β(γ)).

The scalar-valued characters

Ωt(γ) := exp(ln(t)β(γ)) ∈ G(C)

obviously form a one-parameter subgroup in G(A): Ωt1(γ) ∗ Ωt2(γ) = Ωt1t2(γ), generated
by the beta function and controlling the flow of the renormalized Feynman rule character
with respect to the mass scale.

8. Through the prism of other renormalization schemes I

We plan now to prospect the usefulness of our approach in other schemes of renormaliza-
tion. Doubtless DR provides the cleanest formulation of locality in the BWH decomposition
for renormalization. However, it is physically clear that in any scheme one has still to pa-
rameterize the arbitrariness in separating divergent from finite parts; and that the physical
irrelevance of the choices made still gives rise to the RG equation. On the mathematical
side, it is worth to recall that the algebraic BWH decomposition of Section 5 is not neces-
sarily linked to loops on the Riemann sphere. It is thus legitimate to ponder the question in
schemes other than those based on DR. We plan to exemplify with the BPHZ scheme in the
next section, but, before dwelling on that, let us briefly indicate other pieces of evidence.
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A first one on concerns old research. In the early seventies, Callan set out to prove that
broken scale invariance [8] is all that renormalization was about. He was eventually able to
give a treatment of the RG, and proofs of renormalizability of field theories based on the
former, by relying entirely in the BPHZ formalism. To derive the beta function, he just set
up RG equations by studying the dependency of the N -point functions on the renormalized
mass. See in this respect [3, 9]. In a renormalization method without regularization, infor-
mation about the RG must be stored somehow in the renormalized quantities. Concretely,
as hinted at by our last theorem, one finds it in the scaling properties of the renormalized
integral. This was noted in the context of Epstein–Glaser renormalization in [30]. In DR
this shows in the RG equation (19).

A second piece of evidence is furnished by more recent work by Kreimer and collabora-
tors [2, 6, 35, 37]. Indeed, Kreimer has long argued that locality (and renormalizability) is
determined by the Hochschild cohomology of renormalization Hopf algebras. This cohomol-
ogy is trivial in degree greater than one. The coproduct on H can be written recursively in
terms of closed Hochschild 1-cochains. Those are grafting maps indexed by primitive 1PI
diagrams, that govern the structure of Feynman graphs and give rise through the Feynman
rules to integral Dyson–Schwinger equations. Here is not the place for details and we refer
the reader to [2, 6, 34, 35, 37], and especially Kreimer’s recent review [36].

In the indicated references the Dynkin operator D (and its close cousins S ∗Y n) appears,
again defining the residue, in renormalization schemes without regularization. There Green’s
functions, Σ = Σ(g, p), are defined in terms of their (combinatorial) Dyson–Schwinger equa-
tions using the Hochschild 1-cocycles; g, p denote the coupling constant and external mo-
menta, respectively. Those Green’s functions are expanded as power series in g:

Σ = 1 +
∑

k>0

φ(ck)g
k,

for Feynman rules φ ∈ G(C) and with order by order divergent Feynman amplitudes φ(ck)
as coefficients. Here the ck’s are particular linear combinations of graphs of loop order k
in H [34]. Renormalization of Σ is achieved by using a renormalized character φren ∈ G(C)
defined by subtraction at a specific point p2 = λ2 —corresponding to Taylor expansion up
to zeroth order. Here λ plays the role of the mass-parameter µ. Locality is automatically
fulfilled in this approach. The renormalized Green’s functions Σren = Σren(g, p, λ) can be
developed in terms of the parameter L := log(p2/λ2), hence Σren = 1+

∑

k>0 αk(g)L
k, with

α1(g) ∈ Ξ(C) [37]. Following the above references and adapting partially to our notation,
the residue is found to be:

Ξ(C) ∋ σ1 :=
∂

∂L
(φren ◦D)

∣

∣

∣

∣

L=0

= α1(g).

In [37] Kreimer and Yeats outline how to derive αk(g), k > 1 recursively from α1(g). This
confirms that, in a deeper sense, the beta function is composition with the Dynkin operator.
The interaction between the Hopf algebra of characteristic functions of H of this paper and
the Hochschild 1-cocycles on H is a promising field of interest.

9. Through the prism of other renormalization schemes II

Let us now explore the classical BPHZ scheme in the context of the former sections.
With IF the integrand of (7) corresponding to the graph F , let us write for the Taylor
subtraction employed in BPHZ renormalization:

IF (p, k) 7→ IF (p, k) − td(F )
p IF (p, k) := IF (p, k) −

∑

|α|≤d(F )

pα

α!
∂αIF (0, k).
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We borrowed here the standard multi-index notation

α = {α1, . . . , αn} ∈ N
n, |α| :=

n
∑

i=1

αi, α! =
n

∏

i=1

αi! ;

each αi takes values between 0 and 3, say. We are assuming that only massive particles are
present, otherwise the subtraction at zero momentum gives rise to infrared divergences; the

expression of t
d(F )
p IF in practice simplifies because of Lorentz invariance.

Notice that the integral JF (p) in (7) does originally have a meaning: it is a well de-
fined functional on the linear subspace Sd(F )(R

4N ) of Schwartz functions φ on the external

momenta, whose first moments
∫

pαφ(p) d4Np up to order |α| ≤ d(F ) happen to vanish.
The “divergent” loop integrals inside JF (p) become harmless when coupled exclusively with
Schwartz functions of this type. The Taylor ‘jet’ projector map tlp subtracts polynomials,
that are functionals of the same type, in such a way that the result (eventually) becomes
moreover a tempered distribution.

The first question is whether we have a Rota–Baxter algebra in the BPHZ framework.
Actually, we do have the Rota–Baxter property for tlp. Indeed, the following is obtained by
a simple calculation from the definitions.

Proposition 9.1. Let IFi
, i = 1, 2 have associated degrees of divergence li, i = 1, 2. Then

tl1p1

(

IF1

)

tl2p2

(

IF2

)

= tl1+l2
p1,p2

(

IF1 t
l2
p2

(IF2)
)

+ tl1+l2
p1,p2

(

tl1p1
(IF1) IF2

)

− tl1+l2
p1,p2

(

IF1IF2

)

.

We leave the verification of this to the care of the reader. In general, if U is a multiplicative
semigroup, a family of linear operators Ru, u ∈ U on the algebra A is called a Rota–Baxter
family if for any u, v ∈ U and a, b ∈ A, we have

Ru(a)Rv(b) = Ruv(aRv(b)) +Ruv(Ru(a)b) −Ruv(ab), for all a, b ∈ A.

Thus the l-jets define a Rota–Baxter family. Now, a Rota–Baxter family is almost the same
thing as a Rota–Baxter operator.

Proposition 9.2. Let A = A[U ] be the semigroup algebra associated to A. Let Ru : A →
A, u ∈ U be a Rota–Baxter family. Define

R : A → A, by R
(

∑

u

auu
)

:=
∑

u

Ru(au)u.

Then R is a Rota–Baxter operator on A such that R(au) = a′u with a′ in A. Conversely, if
R : A → A is a Rota–Baxter operator such that R(au) = a′u with a′ in A, then we obtain a
Rota–Baxter family Ru, u ∈ U , by defining Ru(a) = a′ where R(a u) = a′ u.

The proof is immediate1. On the strength of the previous result, we may refer to a Rota–
Baxter family as a Rota–Baxter operator. Now, pQFT in practice furnishes an even more
radical answer to the question of whether one has here the Rota–Baxter framework. For this
is obviously the case when one deals only with logarithmic divergences; and indeed most
often only the latter is required. In general, differentiation of an amplitude with respect
to an external momentum lowers the overall degree of divergence of a diagram. In DR,
the Caswell–Kennedy theorem [11] states that the pole part of any diagram, besides being
independent of the scale, is a polynomial in the external momentum. This follows easily
from that derivation and the projector R− commute in DR. But even in the BPHZ scheme
∂pt

l = tl−1∂p, and this is enough for the differentiation trick to work.

1We thank L. Guo for suggesting the notion of Rota–Baxter family.
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Let us then consider the JF (p) ∈ S ′
d(F )(R

4N ) of (7). Suppose moreover the multi-loop di-

vergent graph F has all its 1PI subgraphs γ made convergent by application of Bogoliubov’s

preparation map R̄. Then the renormalized integral J ren,BPHZ
F (p) can be defined as

(20) J ren,BPHZ
F (p) =

[
∫ |F |

∏

l=1

d4kl

]

(

IF (p, k) − td(F )
p R̄IF (p, k)

)

=:

[
∫ |F |

∏

l=1

d4kl

]

RF (p, k).

This recipe is however not unique. We can write as well

(21) J ren,BPHZ
F (p) = P d(F )(p) +

[
∫ |F |

∏

l=1

d4kl

]

RF (p, k),

with P d(F ) a polynomial of order d(F ) in the external momenta. This effects a ‘finite
renormalization’, in principle undetermined, that might be put to use to fulfil renormal-
ization prescriptions (again, the form of that polynomial is severely restricted by Lorentz
invariance).

We now come to the key point. The coefficients of P d(F ) in (21) exhibit the ambiguity
of renormalization in the context of the BPHZ scheme. On the face of it, the ‘pole terms’

t
d(F )
p IF (p, k) do not depend at all on the mentioned coefficients, and thus locality of the

BWH decomposition is guaranteed, in a trivial sense. On the other hand, the Galois group
approach to renormalization theory [18, 19] stems originally from the idea that ambiguities
should be, insofar as possible, handled from a group-theoretic point of view, much as clas-
sical Galois theory handles the multiple solutions of polynomial equations. Here however
the mentioned form of the ambiguity does not apparently lend itself to RG analysis. We
contend, however, that the ambiguity is expressed essentially in the same form as before.
The Caswell–Kennedy theorem is suggestive of a direct link between the DR and BPHZ
formalisms, and next we endeavour to prove the pertinence of the RG to BPHZ renormal-
ization by the most direct possible route: introducing a mass scale in the latter formalism
in direct analogy with the former. Although a direct and full generalization to the other
schemes of the FLA methods developed to handle DR seems still out of reach, the following
results, together with the previous section and the existence of a Rota–Baxter structure in
the BPHZ framework, pave the way for the development of the general algebraic approach
to renormalization schemes.

It would be useful to have the ambiguity implicit in the P d(F ) in (21) expressed in terms
of a mass scale, like in DR. This can be done, in a simple-minded but powerful way, by
means of the modified BPHZ scheme proposed in [27]. For instance, it is well known that

the famous graph (‘fish’ graph) giving the first nontrivial contribution to the vertex

correction in the ϕ4
4 model in the Euclidean yields the amplitude

JDR
fish (p) = g̃2µ2ε

∫

dDk

(2π)4
1

k2 +m2

1

(p+ k)2 +m2
,

where p = p1 + p2, say, and that, by use of Feynman’s parametrization (see below) and
relation (9) one obtains

JDR
fish (p) = g

g̃

(4π)2

[

2

ε
+

∫ 1

0
dz log

µ2

p2z(1 − z) +m2
+O(ε)

]

.

Now, the natural ‘zero point’ for the mass scale in this problem is clearly m, and we note

R+

(

JDR
fish (p = 0;µ = m)

)

= 0,

as ε ↓ 0. This, together with the mentioned Caswell–Kennedy theorem, feeds the suspicion

that the last expression is just the J ren,BPHZ
fish (p) of (20). The suspicion is correct. The
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computation required for the renormalized fish graph in the BPHZ scheme is

(22) g2

∫

d4k

(2π)4
(1 − t0p)

(

1

k2 +m2

1

(p+ k)2 +m2

)

.

Introduce the Feynman trick, prior to the Taylor subtraction,

g2

∫ 1

0
dz

∫

d4k

(2π)4
(1 − t0p)

1
[

((p+ k)2 +m2)z + (1 − z)(k2 +m2)
]2

= g2

∫ 1

0
dz

∫

d4k

(2π)4
(1 − t0p)

1

[k2 + p2z(1 − z) +m2]2
.(23)

The translation k → k− zp, depending on the Feynman parameter, has been made in order
to obtain here the same denominator as in DR calculations. With Ω4 the area of the unit
sphere in R

4, the integral (23) now becomes

Ω4 g
2

(2π)4

∫ 1

0
dz

∫ ∞

0
dk

[

k3

[k2 + p2z(1 − z) +m2]2
− k3

[k2 +m2]2

]

=
g2

16π2

∫ 1

0
dz log

m2

m2 + p2z(1 − z)
.

The last step is to convert the p-independent part in the argument of the logarithm into a
mass scale: m→ µ. With this, we recover on the nose the DR result, in the MS scheme as
it turns out.

Incidentally, as remarked in [43], this procedure allows us to give the exact value of the

BPHZ integral (22): the expression
∫ 1
0 dz log

(

1 + p2

m2 z(1 − z)
)

is actually well known in
statistical physics, and leads by elementary manipulations involving the golden ratio to

J ren,BPHZ
fish (p) = − g2

16π2

(

√

1 +
4m2

p2
log

√

4m2/p2 + 1
√

4m2/p2 − 1
− 2

)

.

Thus, what we have done above amounts to identify the constant term —recall P d(F )(p)
in (21). We have the right to add to the previous expression the term g2/16π2 times

log
(

µ2/m2
)

. We note also that one can recover the residue g2/8π2 here from J ren,BPHZ
fish , as

the coefficient of the term logarithmic in the scaling factor,

J ren,BPHZ
fish (λp) ∼ J ren,BPHZ

fish (p) − g2

8π2
log λ,

as λ ↑ ∞.
Recapitulating, the steps of the modified BPHZ procedure are: (i) Introduction of the

Feynman parametrization in JBPHZ
F (k, p). (ii) Exchange of the integrations. (iii) Translation

of the integration variables by λp, with λ dependent on the Feynman parameter. (iv) Taylor
subtraction. (v) Integration over loops and replacement of the mass m in the p-constant part
of the resulting logarithm by a mass scale. There is nothing to forbid the same operations to
be performed on any primitive logarithmically divergent graph of any field theory and then
we are optimistic that, by use of skeletal expansions and the integral equations, we would be
led to a procedure largely parallel to DR, and so to a brute-force proof that the coefficients
of the higher powers of the scaling logarithms in BPHZ renormalization are determined by
the residues. To verify this with full particulars, however, would take us too far afield.

10. On Connes–Marcolli’s motivic Galois theory

In the Connes-Kreimer picture of renormalization, group theory and the scheme-theoretic
equivalent theory of commutative Hopf algebras have become a fundamental tool of pQFT.
Connes and Marcolli identified recently [18] a new level at which Hopf algebra structures
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enter pQFT. Namely, they constructed an affine group scheme U∗, universal with respect to
physical theories, and pointed out its connections with number theory, e.g. to the motivic
Galois group of the scheme of 4-cyclotomic integers Z[i][12 ].

In their work the initial physical problem attacked through the Connes–Kreimer para-
digm translates into the classification of equisingular G-valued flat connections on the total
space of a principal bundle over an infinitesimal punctured disk (with G the group scheme
represented by H). From the representation theoretic point of view, the classification is pro-
vided by representations U∗ −→ G∗, where U∗ is the semi-direct product with the grading
of the pro-unipotent group U , the Lie algebra of which is the free graded Lie algebra with
one generator en in each degree n > 0, and similarly for G∗. Returning to the geometrical
side of the correspondence and featuring the DR setting that leads to the Riemann–Hilbert
picture of renormalization, Connes and Marcolli construct a universal singular frame on
principal U -bundles over B. A formal expression for it is given by:

γ(ε, v) =
∑

n≥0

∑

kj

e(k1) . . . e(kn)

k1(k1 + k2) . . . (k1 + · · · + kn)
v
P

kjε−n.

It is interesting that the coefficients of the frame are essentially those appearing in the index
formula of Connes–Moscovici [14], hinting at the rooting of noncommutative geometry in
quantum field theory, which has been Connes’ contention for a long while.

As we have already shown, other Hopf algebra structures (or, from the scheme-theoretic
point of view, pro-unipotent groups) do appear naturally in pQFT, namely the Hopf algebras
Char(A) of characteristic functions associated to commutative target algebras, e.g., although
not exclusively, of quantum amplitudes. These Hopf algebra structures arise naturally from
algebraic-combinatorial constructions on Hopf algebras, and therefore do not immediately
seem related to the geometrical-arithmetical constructions underlying the definition of the
motivic Galois group in [18]. Nevertheless, the formula rendering the universal singular
frame in the motivic understanding of renormalization also essentially coincides with our
map Γ —the inverse of the Dynkin map. This indicates that the practical consequences for
renormalization of the Riemann-Hilbert and/or motivic point of view can be lifted to the
setting of FLA theory —which, besides being more familiar to many, is independent of the
geometry embedded in the DR scheme. In the remainder of the present section, we would
like to explain how both viewpoints explicitly connect —although the reasons behind this
connection certainly have to be deepened.

As it turns out, the pro-unipotent group/Hopf algebra of characteristic functions Char(A)
is related naturally to the group U . We recall a few facts from the general theory of Hopf
algebras (see [41] for details). The projections associated to the grading In : H −→ Hn,
with H as usual graded, connected and commutative, generate a convolution subalgebra of
End(H), the convolution algebra of linear endomorphisms ofH, that we may call the descent
algebra of H. Since I is group-like, the In form a sequence of divided powers (∆(In) =
∑

i+j=n Ii ⊗ Ij) in Char(H), and the descent algebra of H lifts to a Hopf subalgebra of

Char(H). A universal Hopf algebra D
op underlies these constructions and maps surjectively

to this Hopf subalgebra as a Hopf algebra, and to the descent algebra of H as an algebra.
The opposite algebra D is, for historical reasons, more familiar, and is the one classically
known as the descent algebra. In the current understanding, D is the fundamental tool
of FLA theory, as emphasized in the reference book by Reutenauer on the subject [44].
It is isomorphic to the Hopf algebra of noncommutative symmetric functions and dual
to the Hopf algebra of quasi-symmetric functions, the two most natural generalizations,
respectively cocommutative and commutative, of the algebra of symmetric functions, see
e.g. [10, 29].
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We recall the construction of D —consult [29, 41, 42, 44] for details on the Hopf algebra
structure. Let X be a countably infinite alphabet and T (X), as in Section 4, the tensor
algebra over X. Define D to be the convolution subalgebra of End(T (X)) generated by the
graded projections In : T (X) → Tn(X). The same process as the one used to construct
a Hopf algebra structure on Char(H) allows to define a Hopf algebra structure on D; this
amounts, once again, to require the In to form a sequence of divided powers. One should be
aware, however, that D incorporates a lot of deep algebraic and combinatorial structures that
go much beyond the pro-unipotent group/Hopf algebraic features. From this latter point
of view D is a free associative graded algebra generated by the In, which are algebraically
independent in End(T (X)). Equivalently, D is freely generated by a sequence of primitive
elements e1, . . . , en, . . . , where ei is of degree i —for which one usually chooses the graded
components of the logarithm of the identity log(I), but the graded components of other Lie
idempotents such as Dynkin’s would do the job as well. This latter property, already alluded
to in the article, was put to use in the proof of the Theorem 4.1. As the enveloping algebra of
the free Lie algebra over the ei, the descent algebra D is also cofree (the dual of a free graded
commutative algebra). In other terms, the graded dual of D (and of the opposite algebra
D

op, which is also a free associative algebra) identifies with the ring of coordinates of the
group U . Let us mention that the graded components of D are provided by the composition
product in End(T (X)) with another algebra structure, first introduced by Solomon in order
to understand the geometry and representation properties of the classical groups and the
associated Coxeter groups. Consult [47].

We hope that the appearance of the descent algebra (or equivalently of the Hopf algebras
of noncommutative symmetric functions and quasi-symmetric functions), beyond broadening
the scope of the mathematical theory of renormalization, will result into new developments
in the field, possibly complementary with the arithmetic ones.
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