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Abstract. The main theme of this paper is to study for a symplectomorphism of a
compact surface, the asymptotic invariant which is defined to be the growth rate of the
sequence of the total dimensions of symplectic Floer homologies of the iterates of the
symplectomorphism. We prove that the asymptotic invariant coincides with asymptotic
Nielsen number and with asymptotic absolute Lefschetz number. We also show that the
asymptotic invariant coincides with the largest dilatation of the pseudo-Anosov compo-
nents of the symplectomorphism and its logarithm coincides with the topological entropy.
This implies that symplectic zeta function has a positive radius of convergence.
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1. Introduction

The main theme of this paper is to study for a symplectomorphism φ : M → M in
given mapping class g of a compact surface M , a asymptotic invariant F∞(g), introduced
in [9], which is defined to be the growth rate of the sequence dimHF∗(φ

n) of the total
dimensions of symplectic Floer homologies of the iterates of φ. We prove a conjecture
from [9] which suggests that the asymptotic invariant coincides with asymptotic Nielsen
number and with the largest dilatation of the pseudo-Anosov components of g and its
logarithm coincides with topological entropy. The asymptotic invariant also provides the
radius of convergence of the symplectic zeta function

Fg(t) = Fφ(t) = exp

(
∞∑
n=1

dimHF∗(φ
n)

n
tn

)
. We show that the symplectic zeta function has a positive radius of convergence which
admits exact algebraic estimation via Reidemeister trace formula.

1



2 ALEXANDER FEL’SHTYN

Our main results are the following

Theorem 1.1. If φ is any symplectomorphism with nondegenerate fixed points in given
pseudo-Anosov mapping class g with dilatation λ > 1 of surfase M of genus ≥ 2. Then

F∞(g) := Growth(dimHF∗(φ
n)) = λ = exp(h(ψ)) = L∞(ψ) = N∞(ψ)

where ψ is a canonical singular pseudo-Anosov representative of g, h(ψ) is the topological
entropy and L∞(ψ) and N∞(ψ) are asymptotic(absolute) Lefshetz number and asymptotic
Nielsen number.

Theorem 1.2. Let φ̄ be a perturbed standard form map φ in a reducible mapping class
g of compact surface of genus ≥ 2 and λ is the largest dilatation of the pseudo-Anosov
components( λ = 1 if there is no pseudo-Anosov components). Then

F∞(g) := Growth(dimHF∗((φ̄)n)) = λ = exp(h(ψ)) = L∞(ψ) = N∞(ψ)

where ψ is canonical representative of mapping class g.

Remark 1.3. The genus one case follows from [9] and Pozniak’s thesis[24].

Theorem 1.4. Let φ̄ be a perturbed standard form map φ in a reducible mapping class
g of compact surface of genus ≥ 2 and λ is the largest dilatation of the pseudo-Anosov
components( λ = 1 if there is no pseudo-Anosov components). Then the symplectic zeta
function Fg(t) = Fφ̄(t) has positive radius of convergence R = 1

λ
, where λ is the largest

dilatation of the pseudo-Anosov components( λ = 1 if there is no pseudo-Anosov compo-
nents).

Although the exact evaluation of the asymptotic invariant would be desirable, in gen-
eral, its estimation is a more realistic goal and as we shall show, one that is sufficient for
some applications.

We suggested in [9] that the asymptotic invariant potentially may be important for the
applications. Recent paper of Ivan Smith [28] gives application of the asymptotic invariant
to the important question of faithfulness of a representation of extended mapping class
group via considerations motivated by Homological Mirror Symmetry.

Acknowledgments. I would like to thank Andrew Cotton-Clay, Yasha Eliashberg,
Sam Lewallen and Ivan Smith for helpful discussions. I am very grateful to the Mathe-
matical Science Research Institute, Berkeley, Stanford University, Max-Planck-Institute
for Mathematics, Bonn and Institute des Hautes Etudes Scientifiques, Bures-sur-Yvette
for their kind hospitality and support during the preparation of this paper.

2. Preliminaries

2.1. Symplectic Floer homology.

2.1.1. Review of monotonicity and weak monotonicity. In this section we discuss the no-
tion of monotonicity and weak monotonicity as defined in [25, 15, 2]. Monotonicity plays
important role for Floer homology in two dimensions. Throughout this article, M denotes
a compact connected and oriented 2-manifold of genus ≥ 2. Pick an everywhere positive
two-form ω on M .
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Let φ ∈ Symp(M,ω), the group of symplectic automorphisms of the two-dimensional
symplectic manifold (M,ω) (when M has boundary we consider the group of orientation-
preserving diffeomorphisms of M with no fixed points on the boundary). The mapping
torus of φ, Tφ = R×M/(t+1, x) ∼ (t, φ(x)), is a 3-manifold fibered over S1 = R/Z. There
are two natural second cohomology classes on Tφ, denoted by [ωφ] and cφ. The first one is
represented by the closed two-form ωφ which is induced from the pullback of ω to R×M .
The second is the Euler class of the vector bundle Vφ = R× TM/(t+ 1, ξx) ∼ (t, dφxξx),
which is of rank 2 and inherits an orientation from TM .

Symplectomorphism φ ∈ Symp(M,ω) is called monotone, if [ωφ] = (areaω(M)/χ(M))·
cφ in H2(Tφ; R); throughout this article Sympm(M,ω) denotes the set of monotone sym-
plectomorphisms.

Now H2(Tφ; R) fits into the following short exact sequence [25, 15]

(1) 0 −→ H1(M ; R)

im(id−φ∗)
d−→ H2(Tφ; R)

r∗−→ H2(M ; R),−→ 0.

where the map r∗ is restriction to the fiber. The map d is defined as follows. Let ρ : I → R
be a smooth function which vanishes near 0 and 1 and satisfies

∫ 1

0
ρ dt = 1. If θ is a closed

1-form on M , then ρ · θ ∧ dt defines a closed 2-form on Tφ; indeed d[θ] = [ρ · θ ∧ dt]. The
map r : M ↪→ Tφ assigns to each x ∈ M the equivalence class of (1/2, x). Note, that
r∗ωφ = ω and r∗cφ is the Euler class of TM . Hence, by (1), there exists a unique class
m(φ) ∈ H1(M ; R)/ im(id−φ∗) satisfying dm(φ) = [ωφ] − (areaω(M)/χ(M)) · cφ, where
χ(M) denotes the Euler characteristic of M . Therefore, φ is monotone if and only if
m(φ) = 0.

Because cφ controls the index, or expected dimension, of moduli spaces of holomorphic
curves under change of homology class and ωφ controls their energy under change of
homology class, the monotonicity condition ensures that the energy is constant on the
index one components of the moduli space, which implies compactness and, as a corollary,
finite count in a differential of the Floer complex.

We recall the fundamental properties of Sympm(M,ω) from [25, 15]. Let Diff+(M)
denotes the group of orientation preserving diffeomorphisms of M .

(Identity) idM ∈ Sympm(M,ω).

(Naturality) If φ ∈ Sympm(M,ω), ψ ∈ Diff+(M), then ψ−1φψ ∈ Sympm(M,ψ∗ω).

(Isotopy) Let (ψt)t∈I be an isotopy in Symp(M,ω), i.e. a smooth path with ψ0 = id.
Then m(φ ◦ψ1) = m(φ) + [Flux(ψt)t∈I ] in H1(M ; R)/ im(id−φ∗); see [25, Lemma 6]. For
the definition of the flux homomorphism see [22].

(Inclusion) The inclusion Sympm(M,ω) ↪→ Diff+(M) is a homotopy equivalence. In
particular Sympm(M,ω) is path connected.

(Floer homology) To every φ ∈ Sympm(M,ω) symplectic Floer homology theory assigns a
Z2-graded vector space HF∗(φ) over Z2, with an additional multiplicative structure, called
the quantum cap product, H∗(M ; Z2)⊗HF∗(φ) −→ HF∗(φ). For φ = idM the symplectic
Floer homology HF∗(idM) are canonically isomorphic to ordinary homology H∗(M ; Z2)
and quantum cap product agrees with the ordinary cap product. Each ψ ∈ Diff+(M)
induces an isomorphism HF∗(φ) ∼= HF∗(ψ

−1φψ) of H∗(M ; Z2)-modules.

(Invariance) If φ, φ′ ∈ Sympm(M,ω) are isotopic, then HF∗(φ) and HF∗(φ
′) are naturally

isomorphic as H∗(M ; Z2)-modules. This is proven in [25, Page 7]. Note that every
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Hamiltonian perturbation of φ (see [4]) is also in Sympm(M,ω).

Now let g be a mapping class of M , i.e. an isotopy class of Diff+(M). Pick an area form
ω and a representative φ ∈ Sympm(M,ω) of g. HF∗(φ) is an invariant as φ is deformed
through monotone symplectomorphisms. These imply that we have a symplectic Floer
homology invariant HF∗(g) canonically assigned to each mapping class g given by HF∗(φ)
for any monotone symplectomorphism φ. Note that HF∗(g) is independent of the choice
of an area form ω by Moser’s isotopy theorem [21] and naturality of Floer homology.

We give now, following A. Cotton-Clay [2], a notion of weak monotonicity such that
HF∗(φ) is well-defined for and invariant among weakly monotone simplectomorphisms.
Monotonicity implies weak monotonicity, and so HF∗(g) = HF∗(φ) for any weakly mono-
tone φ in mapping class g. The properties of weak monotone symplectomorphism of
surface play a crucial role in the computation of Floer homology for pseudo-Anosov and
reducible mapping classes(see [2]).

A symplectomorphism φ : M →M is weakly monotone if [ωφ] vanishes on
ker(cφ|T (Tφ)), where T (Tφ) ⊂ H2(Mφ; R) is generated by tori T such that π|T : T → S1 is
a fibration with fiber S1, where the map π : Tφ → S1 is the projection. Throughout this
article Sympwm(M,ω) denotes the set of weakly monotone symplectomorphisms.

2.1.2. Floer homology. Let φ ∈ Symp(M,ω).There are two ways of constructing Floer
homology detecting its fixed points, Fix(φ). Firstly, the graph of φ is a Lagrangian
submanifold of M×M, (−ω)×ω) and its fixed points correspond to the intersection points
of graph(φ) with the diagonal ∆ = {(x, x) ∈M ×M}. Thus we have the Floer homology
of the Lagrangian intersection HF∗(M×M,∆, graph(φ)). This intersection is transversal
if the fixed points of φ are nondegenerate, i.e. if 1 is not an eigenvalue of dφ(x), for x ∈
Fix(φ). The second approach was mentioned by Floer in [13] and presented with details
by Dostoglou and Salamon in [4].We follow here Seidel’s approach [25] which, comparable
with [4], uses a larger class of perturbations, but such that the perturbed action form is
still cohomologous to the unperturbed. As a consequence, the usual invariance of Floer
homology under Hamiltonian isotopies is extended to the stronger property stated above.
Let now φ is monotone or weakly monotone. Firstly, we give the definition of HF∗(φ) in
the special case where all the fixed points of φ are non-degenerate, i.e. for all y ∈ Fix(φ),
det(id−dφy) 6= 0, and then following Seidels approach [25] we consider general case when
φ has degenerate fixed points. Let Ωφ = {y ∈ C∞(R,M) | y(t) = φ(y(t + 1))} be the
twisted free loop space, which is also the space of sections of Tφ → S1. The action form
is the closed one-form αφ on Ωφ defined by

αφ(y)Y =

∫ 1

0

ω(dy/dt, Y (t)) dt.

where y ∈ Ωφ and Y ∈ TyΩφ, i.e. Y (t) ∈ Ty(t)M and Y (t) = dφy(t+1)Y (t+ 1) for all t ∈ R.
The tangent bundle of any symplectic manifold admits an almost complex structure

J : TM −→ TM which is compatible with ω in sense that (v, w) = ω(v, Jw) defines a
Riemannian metric. Let J = (Jt)t∈R be a smooth path of ω-compatible almost complex

structures on M such that Jt+1 = φ∗Jt. If Y, Y ′ ∈ TyΩφ, then
∫ 1

0
ω(Y ′(t), JtY (t))dt defines

a metric on the loop space Ωφ. So the critical points of αω are the constant paths in Ωφ

and hence the fixed points of φ. The negative gradient lines of αω with respect to the
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metric above are solutions of the partial differential equations with boundary conditions

(2)

 u(s, t) = φ(u(s, t+ 1)),
∂su+ Jt(u)∂tu = 0,
lims→±∞ u(s, t) ∈ Fix(φ)

These are exactly Gromov’s pseudoholomorphic curves [16].
For y± ∈ Fix(φ), let M(y−, y+; J, φ) denote the space of smooth maps u : R2 → M

which satisfy the equations (2). Now to every u ∈M(y−, y+; J, φ) we associate a Fredholm
operator Du which linearizes (2) in suitable Sobolev spaces. The index of this operator is
given by the so called Maslov index µ(u), which satisfies µ(u) = deg(y+)−deg(y−) mod 2,
where (−1)deg y = sign(det(id−dφy)). We have no bubbling, since for surface π2(M) = 0.
For a generic J , every u ∈ M(y−, y+; J, φ) is regular, meaning that Du is onto. Hence,
by the implicit function theorem, Mk(y

−, y+; J, φ) is a smooth k-dimensional manifold
and is the subset of those u ∈ M(y−, y+; J, φ) with µ(u) = k ∈ Z. Translation of the
s-variable defines a free R-action on 1-dimensional manifold M1(y−, y+; J, φ) and hence
the quotient is a discrete set of points. The energy of a map u : R2 → M is given by
E(u) =

∫
R

∫ 1

0
ω
(
∂tu(s, t), Jt∂tu(s, t)

)
dtds for all y ∈ Fix(φ). P.Seidel and A. Cotton-

Clay have proved in [25] and [2] that if φ is monotone or weakly monotone, then the
energy is constant on eachMk(y

−, y+; J, φ). Since all fixed points of φ are nondegenerate

the set Fix(φ) is a finite set and the Z2-vector space CF∗(φ) := Z# Fix(φ)
2 admits a Z2-

grading with (−1)deg y = sign(det(id−dφy)), for all y ∈ Fix(φ). The boundedness of
the energy E(u) for monotone or weakly monotone φ implies that the 0-dimensional
quotients M1(y−, y+, J, φ)/R are actually finite sets. Denoting by n(y−, y+) the number
of points mod 2 in each of them, one defines a differential ∂J : CF∗(φ) → CF∗+1(φ) by
∂Jy− =

∑
y+
n(y−, y+)y+. Due to gluing theorem this Floer boundary operator satisfies

∂J ◦ ∂J = 0. For gluing theorem to hold one needs again the boundedness of the energy
E(u) . It follows that (CF∗(φ), ∂J) is a chain complex and its homology is by definition
the Floer homology of φ denoted HF∗(φ). It is independent of J and is an invariant of φ.

If φ has degenerate fixed points one needs to perturb equations (2) in order to define the
Floer homology. Equivalently, one could say that the action form needs to be perturbed.
The necessary analysis is given in [25], it is essentially the same as in the slightly different
situations considered in [4]. But Seidel’s approach also differs from the usual one in [4].
He uses a larger class of perturbations, but such that the perturbed action form is still
cohomologous to the unperturbed.

2.2. Nielsen classes and Reidemeister trace. Before discussing the results of the
paper, we briefly describe the few basic notions of Nielsen fixed point theory which will
be used. We assume X to be a connected, compact polyhedron and f : X → X to
be a continuous map. Let p : X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a
lifting of f , i.e. p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a
γ ∈ Γ ∼= π1(X) such that f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix(f) is called the

fixed point class of f determined by the lifting class [f̃ ].Two fixed points x0 and x1 of f
belong to the same fixed point class iff there is a path c from x0 to x1 such that c ∼= f ◦ c
(homotopy relative endpoints). This fact can be considered as an equivalent definition of
a non-empty fixed point class. Every map f has only finitely many non-empty fixed point
classes, each a compact subset of X. A fixed point class is called essential if its index
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is nonzero. The number of essential fixed point classes is called the Nielsen number of
f , denoted by N(f).The Nielsen number is always finite. R(f) and N(f) are homotopy
invariants. In the category of compact, connected polyhedra, the Nielsen number of a
map is, apart from certain exceptional cases, equal to the least number of fixed points of
maps with the same homotopy type as f .

Let f : X → X be given, and let a specific lifting f̃ : X̃ → X̃ be chosen as reference.
Let Γ be the group of covering translations of X̃ over X. Then every lifting of f can be
written uniquely as α ◦ f̃ , with α ∈ Γ. So elements of Γ serve as coordinates of liftings
with respect to the reference f̃ . Now for every α ∈ Γ the composition f̃ ◦ α is a lifting
of f so there is a unique α′ ∈ Γ such that α′ ◦ f̃ = f̃ ◦ α. This correspondence α → α′

is determined by the reference f̃ , and is obviously a homomorphism. The endomorphism
f̃∗ : Γ → Γ determined by the lifting f̃ of f is defined by f̃∗(α) ◦ f̃ = f̃ ◦ α. It is well
known that Γ ∼= π1(X). We shall identify π = π1(X, x0) and Γ in the usual way.

We have seen that α ∈ π can be considered as the coordinate of the lifting α ◦ f̃ . We
can tell the conjugacy of two liftings from their coordinates: [α ◦ f̃ ] = [α′ ◦ f̃ ] iff there is

γ ∈ π such that α′ = γαf̃∗(γ
−1).

So we have the Reidemeister bijection: Lifting classes of f are in 1-1 correspondence
with f̃∗-conjugacy classes in group π, the lifting class [α◦f̃ ] corresponds to the f̃∗-cojugacy
class of α.

By an abuse of language, we say that the fixed point class p(Fixα ◦ f̃), which is labeled

with the lifting class [α ◦ f̃ ],corresponds to the f̃∗-conjugacy class of α. Thus the f̃∗-
conjugacy classes in π serve as coordinates for the fixed point classes of f , once a reference
lifting f̃ is chosen.

2.2.1. Reidemeister trace. The results of this section are well known(see [19],[8, 12]).We
shall use this results later in section 3 to estimate the asymptotic invariant and the radius
of convergence of the symplectic zeta function. The fundamental group π = π1(X, x0)

splits into f̃∗-conjugacy classes.Let πf denote the set of f̃∗-conjugacy classes,and Zπf
denote the Abelian group freely generated by πf .We will use the bracket notation a→ [a]
for both projections π → πf and Zπ → Zπf . Let x be a fixed point of f .Take a path

c from x0 to x.The f̃∗-conjugacy class in π of the loop c · (f ◦ c)−1,which is evidently
independent of the choice of c, is called the coordinate of x.Two fixed points are in the
same fixed point class F iff they have the same coordinates.This f̃∗-conjugacy class is
thus called the coordinate of the fixed point class F and denoted cdπ(F, f) (compare with
description in section 2). The generalized Lefschetz number or the Reidemeister trace [19]
is defined as

(3) Lπ(f) :=
∑
F

ind(F, f) · cdπ(F, f) ∈ Zπf ,

the summation being over all essential fixed point classes Fof f .The Nielsen number N(f)
is the number of non-zero terms in Lπ(f),and the indices of the essential fixed point classes
appear as the coefficients in Lπ(f).This invariant used to be called the Reidemeister trace
because it can be computed as an alternating sum of traces on the chain level as follows
[19] . Assume that X is a finite cell complex and f : X → X is a cellular map. A cellular
decomposition edj of X lifts to a π-invariant cellular structure on the universal covering

X̃.Choose an arbitrary lift ẽdj for each edj . They constitute a free Zπ-basis for the cellular
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chain complex of X̃. The lift f̃ of f is also a cellular map.In every dimension d, the cellular
chain map f̃ gives rise to a Zπ-matrix F̃d with respect to the above basis,i.e F̃d = (aij) if

f̃(ẽdi ) =
∑

j aij ẽ
d
j ,where aij ∈ Zπ.Then we have the Reidemeister trace formula

(4) Lπ(f) =
∑
d

(−1)d[Tr F̃d] ∈ Zπf .

Now we describe alternative approach to the Reidemeister trace formula proposed by
Jiang [19]. This approach is useful when we study the periodic points of f ,i.e. the fixed
points of the iterates of f .

The mapping torus Tf of f : X → X is the space obtained from X × [o,∞) by
identifying (x, s+1) with (f(x), s) for all x ∈ X, s ∈ [0,∞).On Tf there is a natural semi-
flow φ : Tf × [0,∞) → Tf , φt(x, s) = (x, s + t) for all t ≥ 0.Then the map f : X → X is
the return map of the semi-flow φ.A point x ∈ X and a positive number τ > 0 determine
the orbit curve φ(x,τ) := φt(x)0≤t≤τ in Tf . Take the base point x0 of X as the base point of
Tf .It is known that the fundamental group H := π1(Tf , x0) is obtained from π by adding

a new generator z and adding the relations z−1gz = f̃∗(g) for all g ∈ π = π1(X, x0).Let
Hc denote the set of conjugacy classes in H. Let ZH be the integral group ring of H,
and let ZHc be the free Abelian group with basis Hc.We again use the bracket notation
a → [a] for both projections H → Hc and ZH → ZHc. If F n is a fixed point class of
fn, then f(F n) is also fixed point class of fn and ind(f(F n), fn) = ind(F n, fn). Thus f
acts as an index-preserving permutation among fixed point classes of fn.By definition, an
n-orbit class On of f to be the union of elements of an orbit of this action.In other words,
two points x, x′ ∈ Fix(fn) are said to be in the same n-orbit class of f if and only if some
f i(x) and some f j(x′) are in the same fixed point class of fn.The set Fix(fn) splits into a
disjoint union of n-orbits classes.Point x is a fixed point of fn or a periodic point of period
n if and only if orbit curve φ(x,n) is a closed curve. The free homotopy class of the closed
curve φ(x,n) will be called the H -coordinate of point x,written cdH(x, n) = [φ(x,n)] ∈ Hc.It
follows that periodic points x of period n and x′ of period n′ have the same H-coordinate
if and only if n = n′ and x,x′ belong to the same n-orbits class of f . Thus it is possible
equivalently define x, x′ ∈ Fix(fn) to be in the same n-orbit class if and only if they have
the same H−coordinate. Jiang [19] has considered generalized Lefschetz number with
respect to H

(5) LH(fn) :=
∑
On

ind(On, fn) · cdH(On) ∈ ZHc,

and proved following trace formula:

(6) LH(fn) =
∑
d

(−1)d[Tr(zF̃d)
n] ∈ ZHc,

where F̃d be Zπ-matrices defined in (16) and zF̃d is regarded as a ZH-matrix.

2.2.2. Twisted Lefschetz numbers and twisted Lefschetz zeta function. Let R be a com-
mutative ring with unity. Let GLn(R) be the group of invertible n×n matrices in R, and
Mn×n(R) be the algebra of n×n matrices in R. Suppose a representation ρ : H → GLn(R)
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is given. It extends to a representation ρ : ZH →Mn×n(R). Following Jiang [19] we define
ρ-twisted Lefschetz number

(7) Lρ(f
n) := Tr(LH(fn))ρ =

∑
On

ind(On, fn) · Tr(cdH(On))ρ ∈ R,

where hρ is ρ-image of h ∈ ZH. It has the trace formula(see [19])

(8) Lρ(f
n) =

∑
d

(−1)d Tr((zF̃d)
ρ)n ∈ R,

where for a ZH-matrix A, its ρ-image Aρ means the block matrix obtained from A by
replacing each element aij with n × n R-matrix aρij. Twisted Lefschetz zeta function is
defined as formal power series

Lfρ(t) := exp

(
∞∑
n=1

Lρ(f
n)

n
tn

)
.

It is in the multiplicative subgroup 1 + tR[[t]] of the formal power series ring R[[t]]. The
trace formula for the twisted Lefschetz numbers implies that Lfρ(t) is a rational function
in R given by the formula

(9) Lfρ(t) =
∏
d

det
(
E − t(zF̃d)ρ)(−1)d+1 ∈ R(t),

where E stands for suitable identity matrices. Twisted Lefschetz zeta function enjoys the
same invariance properties as that of LH(fn).

2.3. Computation of symplectic Floer homology. In this section we describe known
results from [2], [15], [9, 10] about computation of symplectic Floer homology for different
mapping classes.

2.3.1. Thurston classification theorem and standard form maps. We recall firstly Thurston
classification theorem for homeomorphisms of surfase M of genus ≥ 2.

Theorem 2.1. [29] Every homeomorphism φ : M →M is isotopic to a homeomorphism
f such that either
(1) f is a periodic map; or
(2) f is a pseudo-Anosov map, i.e. there is a number λ > 1, the dilation of f , and a pair
of transverse measured foliations (F s, µs) and (F u, µu) such that f(F s, µs) = (F s, 1

λ
µs)

and f(F u, µu) = (F u, λµu); or
(3)f is reducible map, i.e. there is a system of disjoint simple closed curves
γ = {γ1, ......, γk} in intM such that γ is invariant by f (but γi may be permuted) and γ
has a f -invariant tubular neighborhood U such that each component of M \U has negative
Euler characteristic and on each(not necessarily connected) f -component of M \ U , f
satisfies (1) or (2).

The map f above is called a Thurston canonical representative of φ. In (3) it can be
chosen so that some iterate fm is a generalised Dehn twist on U . A key observation is
that if f is canonical representative, so are all iterates of f .

Thurston classification theorem for homeomorphisms of surfase implies that every map-
ping class of M is precisely one of the following: periodic, pseudo-Anosov or reducible.
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In this section we review standard form maps as discussed in [15] and [2]. These are
special representative of mapping classes adopted to the symplectic geometry. For the
identity mapping class, a standard form map is a small perturbation of the identity map by
the Hamiltonian flow associated to a Morse function for which the boundary components
are locally minima and maxima. Every fixed point is in the same Nielsen class. This
Nielsen class has index given by the Euler characteristic of the surface. For non-identity
periodic mapping classes, a standard form map is an isometry with respect to a hyperbolic
structure on the surface with geodesic boundary. Every fixed point is in a separate Nielsen
class and each of the Nielsen classes for which there is a fixed point has index one. For a
pseudo-Anosov mapping classes, a standard form map is a symplectic smoothing(see [2])
of the singularities and boundary components of the canonical singular representative.
Each singularity has a number p ≥ 3 of prongs and each boundary component has a
number p ≥ 1 of prongs. If a singularity or boundary component is (setwise) fixed, it has
some fractional rotation number modulo p(see [2]). There is a separate Nielsen class for
every smooth fixed point, which is of index one or minus one; for every fixed singularity,
which when symplectically smoothed gives p − 1 fixed points all of index minus one if
the rotation number is zero modulo p or one fixed point of index one otherwise; and
for every fixed boundary component with rotation number zero modulo p, which when
symplectically smoothed gives p fixed points all of index minus one [2].

From this discussion, we see that for non-identity periodic and pseudo-Anosov mapping
classes, the standard form map is such that all fixed points are nondegenerate of index
+1 or -1 and, for every Nielsen class F , the number of fixed points in F is | ind(F )|. We
now turn to reducible maps and the identity map.

By Thurston’s classification (see [29] and [5]; also [15, Definition 8] and [2, Definition
4.6]), in a reducible mapping class g, there is a (not necessarily smooth) map φ which
satisfies the following:

Definition 2.2. A reducible map φ is in standard form if there is a φ-and-φ−1-invariant
finite union of disjoint noncontractible (closed) annuli U ⊂M such that:

(1) For N a component of Uand ` the smallest positive integer such that φ` maps N
to itself, the map φ`|N is either a twist map or a flip-twist map. That is, with
respect to coordinates (q, p) ∈ [0, 1]× S1, we have one of

(q, p) 7→ (q, p− f(q)) (twist map)

(q, p) 7→ (1− q,−p+ f(q)) (flip-twist map),

where f : [0, 1] → R is a strictly monotonic smooth map. We call the (flip-)twist
map positive or negative if f is increasing or decreasing, respectively. Note that
these maps are area-preserving.

(2) Let N and ` be as in (1). If ` = 1 and φ|U is a twist map, then Im(f) ⊂ [0, 1]. That
is, φ|int(N) has no fixed points. (If we want to twist multiple times, we separate
the twisting region into parallel annuli separated by regions on which the map is
the identity.) We further require that parallel twisting regions twist in the same
direction.

(3) For S a component of M\N and ` the smallest integer such that φ` maps S to
itself, the map φ`|S is area-preserving and is either isotopic to the identity, periodic,
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or pseudo-Anosov. In these cases, we require the map to be in standard form as
above.

Thurston classification theorem for homeomorphisms of surfase implies that every map-
ping class of M is precisely one of the following: periodic, pseudo-Anosov or reducible.

2.3.2. Periodic mapping classes.

Theorem 2.3. [15], [10] If φ is a non-trivial, orientation preserving, standard form peri-
odic diffeomorphism of a compact connected surface M of Euler characteristic χ(M) ≤ 0,
then φ is monotone symplectomorphism with respect to some φ-invariant area form and

dimHF∗(φ) = L(φ) = N(φ)

where L(φ), N(φ) denote the Lefschetz and the Nielsen number of φ correspondingly.

2.3.3. Algebraically finite mapping classes. A mapping class of M is called algebraically
finite if it does not have any pseudo-Anosov components in the sense of Thurston’s theory
of surface diffeomorphism.The term algebraically finite goes back to J. Nielsen
In [15] the diffeomorphisms of finite type were defined . These are reducible map in
standard form which are special representatives of algebraically finite mapping classes
adopted to the symplectic geometry.

By Mid we denote the union of the components of M \ int(U), where φ restricts to the
identity.

The monotonicity of diffeomorphisms of finite type was investigated in details in [15].
Let φ be a diffeomorphism of finite type and ` be as in (1). Then φ` is the product of
(multiple) Dehn twists along U . Moreover, two parallel Dehn twists have the same sign.
We say that φ has uniform twists, if φ` is the product of only positive, or only negative
Dehn twists.

Furthermore, we denote by ` the smallest positive integer such that φ` restricts to the
identity on M \ U .

If ω′ is an area form on M which is the standard form dq ∧ dp with respect to the
(q, p)-coordinates on U , then ω :=

∑`
i=1(φi)∗ω′ is standard on U and φ-invariant, i.e.

φ ∈ Symp(M,ω). To prove that ω can be chosen such that φ ∈ Sympm(M,ω), Gautschi
distinguishes two cases: uniform and non-uniform twists. In the first case he proves the
following stronger statement.

Lemma 2.4. [15] If φ has uniform twists and ω is a φ-invariant area form, then φ ∈
Sympm(M,ω).

In the non-uniform case, monotonicity does not hold for arbitrary φ-invariant area
forms.

Lemma 2.5. [15] If φ does not have uniform twists, there exists a φ-invariant area form
ω such that φ ∈ Sympm(M,ω). Moreover, ω can be chosen such that it is the standard
form dq ∧ dp on U .

Theorem 2.6. [15] Let φ be a diffeomorphism of finite type, then φ is monotone with
respect to some φ-invariant area form and

dimHF∗(φ) = dimH∗(Mid, ∂Mid
; Z2) + L(φ|M \Mid).

Here, L denotes the Lefschetz number.
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2.3.4. Pseudo-Anosov mapping classes. For a pseudo-Anosov mapping classes, a standard
form map is a symplectic smoothing of the singularities and boundary components of the
canonical singular representative. Full description of the symplectic smoothing is given by
A. Cotton-Clay in [2]. Each singularity has a number p ≥ 3 of prongs and each boundary
component has a number p ≥ 1 of prongs. If a singularity or boundary component is
(setwise) fixed, it has some fractional rotation number modulo p. There is a separate
Nielsen class for every smooth fixed point, which is of index one or minus one; for every
fixed singularity, which when symplectically smoothed gives p−1 fixed points all of index
minus one if the rotation number is zero modulo p or one fixed point of index one otherwise;
and there is a separate Nielsen class for every fixed boundary component with rotation
number zero modulo p, which when symplectically smoothed gives p fixed points all of
index minus one.

Theorem 2.7. ( [2], see also [10]) If φ is any symplectomorphism with nondegenerate
fixed points in given pseudo-Anosov mapping class g, then φ is weakly monotone, HF∗(φ)
is well defined and

dimHF∗(φ) = dimHF∗(g) =
∑

x∈Fix(ψ)

| Ind(x)|,

where ψ is the singular canonical pseudo-Anosov representative of g.

2.3.5. Reducible mapping classes. Recently, A. Cotton-Clay [2] calculated Seidel’s sym-
plectic Floer homology for reducible mapping classes. This result completing all previous
computations.

In the case of reducible mapping classes a energy estimate forbids holomorphic discs
from crossing reducing curves except when a pseudo-Anosov component meets an identity
component ( with no twisting). Let us introduce some notation following [2]. Recall the
notation of Mid for the collection of fixed components as well as the tree types of bound-
ary: 1) ∂+Mid, ∂−Mid denote the collection of components of ∂Mid on which we’ve joined
up with a positive(resp. negative) twist; 2) the collection of components of ∂Mid which
meet a pseudo-Anosov component will be denoted ∂pMid. Additionally let M1 be the col-
lection of periodic components and let M2 be the collection of pseudo-Anosov components
with punctures( i.e. before any perturbation) instead of boundary components wherever
there is a boundary component that meets a fixed component. We further subdivide Mid.
Let Ma be the collection of fixed components which don’t meet any pseudo-Anosov com-
ponents. Let Mb,p be the collection of fixed components which meet one pseudo-Anosov
component at a boundary with p prongs. In this case, we assign the boundary components
to ∂+Mid (this is an arbitrary choice). Let M o

b,p be the collection of the Mb,p with each
component punctured once. Let Mc,q be the collection of fixed components which meets
at least two pseudo-Anosov components such that the total number of prongs over all the
boundaries is q. In this case, we assign at least one boundary component to ∂+Mid and
at least one to ∂−Mid (and beyond that, it does not matter).

Theorem 2.8. [2] If φ̄ is a perturbed standard form map φ in a reducible mapping class
g with choices of the signs of components of ∂pMid.Then φ̄ is weakly monotone, HF∗(φ̄)
is well-defined and

dimHF∗(g) = dimHF∗(φ̄) = dimH∗(Ma, ∂+Mid; Z2)+



12 ALEXANDER FEL’SHTYN

+
∑
p

(dimH∗(M
0
b,p, ∂+Mb,p; Z2) + (p− 1)|π0(Mb,p)|)+

+
∑
q

(dimH∗(Mc,q, ∂+Mc,q; Z2) + q|π0(Mc,q))|)+

+L(φ̄|M1) + dimHF∗(φ̄|M2),

where L(φ̄|M1) is the Lefschetz number of φ̄|M1, the L(φ̄|M1) summand is all in even
degree, the other two summands(with p − 1 and q are all in odd degree, and HF∗(φ̄|M2)
denotes the Floer homology for φ̄ on the pseudo-Anosov components M2

Remark 2.9. The first summand and the L(φ̄|M1) are as in R. Gautschi’s Theorem 2.6
[15]. The last summand comes from the pseudo-Anosov components and is calculated via
the Theorem 2.7. The sums over p and q arise in the same manner as the first summand.

Corollary 2.10. As an application, A. Cotton-Clay gave recently [3] a sharp lower bound
on the number of fixed points of area-preserving map in any prescribed mapping class(rel
boundary), generalising the Poincare-Birkhoff fixed point theorem.

3. The growth rate of symplectic Floer homology

3.1. Topological entropy and Nielsen numbers. The most widely used measure for
the complexity of a dynamical system is the topological entropy. For the convenience of
the reader, we include its definition. Let f : X → X be a self-map of a compact metric
space. For given ε > 0 and n ∈ N, a subset E ⊂ X is said to be (n, ε)-separated under
f if for each pair x 6= y in E there is 0 ≤ i < n such that d(f i(x), f i(y)) > ε. Let
sn(ε, f) denote the largest cardinality of any (n, ε)-separated subset E under f . Thus
sn(ε, f) is the greatest number of orbit segments x, f(x), ..., fn−1(x) of length n that can
be distinguished one from another provided we can only distinguish between points of X
that are at least ε apart. Now let

h(f, ε) := lim sup
n

1

n
· log sn(ε, f)

h(f) := lim sup
ε→0

h(f, ε).

The number 0 ≤ h(f) ≤ ∞, which to be independent of the metric d used, is called the
topological entropy of f . If h(f, ε) > 0 then, up to resolution ε > 0, the number sn(ε, f) of
distinguishable orbit segments of length n grows exponentially with n. So h(f) measures
the growth rate in n of the number of orbit segments of length n with arbitrarily fine
resolution.

A basic relation between topological entropy h(f) and Nielsen numbers was found by N.
Ivanov [18]. We present here a very short proof by Boju Jiang of the Ivanov’s inequality.

Lemma 3.1. [18]

h(f) ≥ lim sup
n

1

n
· logN(fn)

Proof. Let δ be such that every loop in X of diameter < 2δ is contractible. Let ε > 0 be a
smaller number such that d(f(x), f(y)) < δ whenever d(x, y) < 2ε. Let En ⊂ X be a set
consisting of one point from each essential fixed point class of fn. Thus | En |= N(fn).
By the definition of h(f), it suffices to show that En is (n, ε)-separated. Suppose it is not
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so. Then there would be two points x 6= y ∈ En such that d(f i(x), f i(y)) ≤ ε for o ≤ i < n
hence for all i ≥ 0. Pick a path ci from f i(x) to f i(y) of diameter < 2ε for o ≤ i < n and
let cn = c0. By the choice of δ and ε , f ◦ ci ' ci+1 for all i, so fn ◦ c0 ' cn = c0. This
means x, y in the same fixed point class of fn, contradicting the construction of En.

�

This inequality is remarkable in that it does not require smoothness of the map and
provides a common lower bound for the topological entropy of all maps in a homotopy
class.

3.2. Asymptotic invariant. Let Γ = π0(Diff+(M)) be the mapping class group of
a closed connected oriented surface M of genus ≥ 2. Pick an everywhere positive two-
form ω on M . A isotopy theorem of Moser [21] says that each mapping class of g ∈ Γ,
i.e. an isotopy class of Diff+(M), admits representatives which preserve ω. Due to
Seidel[25] and Cotton-Clay [2] we can pick a monotone(weakly monotone) representative
φ ∈ Sympm(M,ω)( or φ ∈ Sympwm(M,ω) of g such that HF∗(φ) is an invariant as φ is
deformed through monotone(weakly monotone) symplectomorphisms. These imply that
we have a symplectic Floer homology invariant HF∗(g) canonically assigned to each map-
ping class g given by HF∗(φ) for any monotone(weakly monotone) symplectomorphism
φ.

Note that HF∗(g) is independent of the choice of an area form ω by Moser’s theorem
and naturality of Floer homology.

Taking a dynamical point of view, we consider now the iterates of monotone(weakly
monotone) symplectomorphism φ. Symplectomorphisms φn are also monotone(weakly
monotone) for all n > 0 [15, 2].

The growth rate of a sequence an of complex numbers is defined by

Growth(an) := max{1, lim sup
n→∞

|an|1/n}

which could be infinity. Note that Growth(an) ≥ 1 even if all an = 0. When
Growth(an) > 1, we say that the sequence an grows exponentially.

In [9] we have introduced the asymptotic invariant F∞(g) assigned to mapping class
g ∈ ModM = π0(Diff+(M)) via the growth rate of the sequence {an = dimHF∗(φ

n)}
for a monotone( or weakly monotone) representative φ ∈ Sympm(M,ω) of g:

F∞(g) := Growth(dimHF∗(φ
n))

Example 3.2. If φ is a non-trivial orientation preserving standard form periodic diffeo-
morphism of a compact connected surface M of Euler characteristic χ(M) < 0 , then the
periodicity of the sequence dimHF∗(φ

n) implies that for the corresponding mapping class
g the asymptotic invariant

F∞(g) := Growth(dimHF∗(φ
n)) = 1

Example 3.3. Let φ be a monotone diffeomorphism of finite type of a compact connected
surface M of Euler characteristic χ(M) < 0 and g a corresponding algebraically finite
mapping class. Then the total dimension ofHF∗(φ

n) grows at most linearly (see [2, 28, 10].
Taking the growth rate in n, we get that the asymptotic invariant

F∞(g) := Growth(dimHF∗(φ
n)) = 1
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.

For any set S let ZS denote the free Abelian group with the specified basis S.The norm
in ZS is defined by

(10) ‖
∑
i

kisi‖ :=
∑
i

| ki |∈ Z,

when the si in S are all different.
For a ZH-matrix A = (aij),define its norm by ‖A‖ :=

∑
i,j ‖aij‖.Then we have inequal-

ities ‖AB‖ ≤ ‖A | · ‖B‖ when A,B can be multiplied, and ‖ trA‖ ≤ ‖A‖ when A is
a square matrix.For a matrix A = (aij) in ZS, its matrix of norms is defined to be the
matrix Anorm := (‖aij‖) which is a matrix of non-negative integers.In what follows, the set

S wiill be π, H or Hc.We denote by s(A) the spectral radius of A, s(A) = limn
n
√
‖An‖|

which coincide with the largest modul of an eigenvalue of A.

Remark 3.4. The norm ‖LH(fn)‖ is the sum of absolute values of the indices of all the
n-orbits classes On . It equals ‖Lπ(fn)‖, the sum of absolute values of the indices of all
the fixed point classes of fn, because any two fixed point classes of fn contained in the
same n-orbit class On must have the same index. The norm ‖Lπ(fn)‖ is homotopy type
invariant.

We define the asymptotic absolute Lefschetz number [19] to be the growth rate

L∞(f) = Growth(‖Lπ(fn)‖)

We also define the asymptotic Nielsen number[18] to be the growth rate

N∞(f) = Growth(N(fn))

All these asymptotic numbers are homotopy type invariants.

Lemma 3.5. If φ is any symplectomorphism with nondegenerate fixed points in given
pseudo-Anosov mapping class g, then

dimHF∗(φ) = dimHF∗(g) = ‖Lπ(ψ)‖,

where ψ is a singular canonical pseudo-Anosov representative of g.

Proof. It is known that for pseudo-Anosov map ψ fixed points are topologically sepa-
rated, i.e. each essential fixed point class of ψ consists of a single fixed point(see [29, 18, 8]).
Then the generalized Lefschetz number or the Reidemeister trace [19] is

(11) Lπ(ψ) :=
∑
F

ind(F, ψ) · cdπ(F, ψ) =
∑

x∈Fix(ψ)

ind(x) · cdπ(x, ψ) ∈ Zπψ,

where the summation being over all essential fixed point classes F of ψ i.e over all fixed
points of ψ. So, the result follows from the theorem 2.7 and the definition of the norm
‖Lπ(ψ)‖.

Remark 3.6. Lemma 3.5 provides via Reidemeister trace formula a new combinatorial
formula to compute dimHF∗(g) comparable to the train-track combinatorial formula of
A. Cotton-Clay in [2].
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Theorem 3.7. [5, 18, 19] Let f be a pseudo-Anosov homeomorphism with dilatation λ > 1
of surfase M of genus ≥ 2. Then

h(f) = log(λ) = logN∞(f) = logL∞(f)

Theorem 3.8. [19] Suppose f is canonical representative of a homeomorphism of surfase
M of genus ≥ 2 and λ is the largest dilatation of the pseudo-Anosov components( λ = 1
if there is no pseudo-Anosov components). Then

h(f) = log(λ) = logN∞(f) = logL∞(f)

Theorem 3.9. If φ is any symplectomorphism with nondegenerate fixed points in given
pseudo-Anosov mapping class g with dilatation λ > 1 of surfase M of genus ≥ 2. Then

F∞(g) := Growth(dimHF∗(φ
n)) = λ = exp(h(ψ)) = L∞(ψ) = N∞(ψ)

where ψ is a canonical singular pseudo-Anosov representative of g.

Proof. By lemma 3.5 we have that dimHF∗(φ
n) = ‖Lπ(ψn)‖ for every n. So, the result

follows from theorem 3.7.

Theorem 3.10. Let φ̄ be a perturbed standard form map φ in a reducible mapping class
g of compact surface of genus ≥ 2 and λ is the largest dilatation of the pseudo-Anosov
components( λ = 1 if there is no pseudo-Anosov components). Then
F∞(g) := Growth(dimHF∗((φ̄)n)) = λ = exp(h(ψ)) = L∞(ψ) = N∞(ψ) where ψ is

canonical representative of mapping class g.

Proof. It follows from the theorem 2.8 that for every n

dimHF∗(g
n) = dimHF∗((φ̄)n) = dimH∗(Ma, ∂+Mid; Z2)+

+
∑
p

(dimH∗(M
0
b,p, ∂+Mb,p; Z2) + (p− 1)|π0(Mb,p)|)+

+
∑
q

(dimH∗(Mc,q, ∂+Mc,q; Z2) + q|π0(Mc,q))|)+

+L((φ̄)n|M1) + dimHF∗((φ̄)n|M2).

We need to investigate only the growth of the last summand in this formula because
the rest part in the formula grows at most linearly [2, 28]. We have dimHF∗((φ̄)n|M2) =∑

j dimHF∗((φ̄j)
n|M2), where the sum is taken over different pseudo-Anosov components

of φn|M2. It follows from the theorem 3.9 that dimHF∗((φ̄j)
n|M2) grows as λnj , where λj

is the dilatation of the pseudo-Anosov component φ̄j|M2.
Taking growth rate in n, we get F∞(g) := Growth(dimHF∗((φ̄)n)) = maxj λj = λ =

exp(h(ψ)).

Corollary 3.11. The asymptotic invariant F∞(g) > 1 if and only if ψ has a pseudo-
Anosov component.

Although the exact evaluation of the asymptotic invariant F∞(g) would be desirable,
its estimation is a more realistic goal. We carry out such estimation using notations and
results from sections 2.2.1 and 2.2.2.
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Proposition 3.12. Suppose ρ : H → U(n) is a unitary representation and ψ is canonical
representative of reducible mapping class g of compact surface of genus ≥ 2. Let w be a
zero or a pole of the rational function Lψρ (t) ∈ C(t) . Then

1

| w |
≤ F∞(g) ≤ max

d
‖zF̃d‖

Proof. We know from complex analysis and definition of the twisted Lefschetz zeta
function that Growth(Lρ(ψ

n)) is the reciprocal of the radius of convergence of the function
log(Lψρ (t), hence Growth(Lρ(ψ

n)) ≥ 1
|w| .

On other hand, according to section 2.2.1, H-coordinates of n-orbit classes are in the
form [zn]g with g ∈ π. So we can assume LH(ψn) =

∑
i ki[z

ngi], where the [zngi] are
different conjugacy classes in H. Since the trace of a unitary matrix is bounded by its
dimension, we get that Lρ(ψ

n) ∈ C are bounded by

| Lρ(ψn) |=|
∑
i

ki tr(z
ngi)

ρ |≤
∑
i

| ki || tr(zngi)ρ |≤
∑
i

| ki |= ‖LH(ψn)‖.

Hence Growth(Lρ(ψ
n)) ≤ L∞(ψ). From theorem 3.10 it follows that F∞(g) = L∞(ψ). So

we get the estimation from below 1
|w| ≤ F∞(g). The initial data of our lower estimation

is the knowledge of the ZH-matrices F̃d provided by a cellular map, which enables us
to compute the twisted Lefschetz zeta function. There is also a way to derive an upper
bound from the same data. We have

dimHF∗(g
n) = ‖Lπ(ψn)‖=‖LH(ψn)‖=‖

∑
d

(−1)d[tr(zF̃d)
n]‖≤

∑
d

‖[tr(zF̃d)n]‖

≤
∑
d

|| tr(zF̃d)n|| ≤
∑
d

tr((zF̃d)
n)norm ≤

∑
d

tr((zF̃d)
norm)n

≤
∑
d

tr((F̃d)
norm)n.

Hence

F∞(g) = Growth(‖Lπ(ψn)‖) = Growth(‖LH(ψn)‖) ≤ Growth(
∑
d

tr((F̃d)
norm)n)

= maxd(Growth(tr((F̃d)
norm)n)) = maxd(s(F̃d)

norm).

Remark 3.13. A practical difficulty in the use of Lρ(ψ
n)) and twisted Lefschetz zeta

function Lψρ (t) for estimation is to find a useful representation ρ. Following approach of
Boju Jiang in [19], section 1.7 we can weaken the assumption on ρ in proposition 3.12.
There are many examples in [19], chapter 4 which illustrate method of estimation above
for surface homeomorphisms.

3.3. Radius of convergence of the symplectic zeta function. In [9] we have intro-
duced a symplectic zeta function

Fg(t) = Fφ(t) = exp

(
∞∑
n=1

dimHF∗(φ
n)

n
tn

)
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assigned to mapping class g via zeta function Fφ(t) of a monotone( or weakly monotone)
representative φ ∈ Sympm(M,ω) of g. Symplectomorphisms φn are also monotone(weakly
monotone) for all n > 0 [15, 2] so, symplectic zeta function Fφ(t) is an invariant as φ is
deformed through monotone(or weakly monotone) symplectomorphisms in g. These imply
that we have a symplectic Floer homology invariant Fg(t) canonically assigned to each
mapping class g. A motivation for the definition of this zeta function was a connection
[9, 15] between Nielsen numbers and Floer homology and nice analytic properties of
Nielsen zeta function [23, 6, 9, 7, 8, 11, 12]

We denote by R the radius of convergence of the symplectic zeta function Fg(t) = Fφ(t).
In this section we give exact algebraic lower estimation for the radius R using Reide-

meister trace formula for generalized Lefschetz numbers from section 2.2.1

Theorem 3.14. If φ is any symplectomorphism with nondegenerate fixed points in given
pseudo-Anosov mapping class g with dilatation λ > 1 of compact surface M of genus ≥ 2,
then the symplectic zeta function Fg(t) has positive radius of convergence R = 1

λ
. Radius

of convergence R admits following estimations

(12) R ≥ 1

maxd ‖zF̃d‖
> 0

and

(13) R ≥ 1

maxd s(F̃ norm
d )

> 0

Proof. It follows from lemma 3.5 that dimHF∗(φ
n) = ‖Lπ(ψn)‖. By the homotopy

type invariance of the right hand side we can estimate it. We can suppose that ψ is a
cell map of a finite cell complex.The norm ‖LH(ψn)‖ is the sum of absolute values of the
indices of all the n-orbits classes On . It equals ‖Lπ(ψn)‖, the sum of absolute values of
the indices of all the fixed point classes of ψn, because any two fixed point classes of ψn

contained in the same n-orbit class On must have the same index. From this we have
dimHF∗(φ

n) = ‖Lπ(ψn)‖ = ‖LH(ψn)‖ = ‖
∑

d(−1)d[tr(zF̃d)
n]‖ ≤

∑
d ‖[tr(zF̃d)n]‖ ≤∑

d ‖ tr(zF̃d)
n‖ ≤

∑
d ‖(zF̃d)n‖ ≤

∑
d ‖(zF̃d)‖n. The radius of convergence R is given by

Caushy-Adamar formula:

1

R
= lim sup

n

n

√
dimHF∗(φn)

n
= lim sup

n

n
√

dimHF∗(φn) = λ.

Therefore we have:

R =
1

lim supn
n
√

dimHF∗(φn)
≥ 1

maxd ‖zF̃d‖
> 0.

Inequalities:

dimHF∗(φ
n) = ‖Lπ(ψn)‖=‖LH(ψn)‖=‖

∑
d

(−1)d[tr(zF̃d)
n]‖≤

∑
d

‖[tr(zF̃d)n]‖

≤
∑
d

|| tr(zF̃d)n|| ≤
∑
d

tr((zF̃d)
n)norm ≤

∑
d

tr((zF̃d)
norm)n

≤
∑
d

tr((F̃d)
norm)n



18 ALEXANDER FEL’SHTYN

and the definition of spectral radius give estimation:

R =
1

lim supn
n
√

dimHF∗(φn)
≥ 1

maxd s(F̃ norm
d )

> 0.

Theorem 3.15. Let φ̄ be a perturbed standard form map φ in a reducible mapping class
g of compact surface of genus ≥ 2 and λ is the largest dilatation of the pseudo-Anosov
components( λ = 1 if there is no pseudo-Anosov components). Then the symplectic zeta
function Fg(t) = Fφ̄(t) has positive radius of convergence R = 1

λ
, where λ is the largest

dilatation of the pseudo-Anosov components( λ = 1 if there is no pseudo-Anosov compo-
nents).

Proof. The radius of convergence R is given by Caushy-Adamar formula:

1

R
= lim sup

n

n

√
dimHF∗(φn)

n
= lim sup

n

n
√

dimHF∗(φn).

By Theorem 3.10 we have

lim sup
n

n
√

dimHF∗(φn) = Growth(dimHF∗(φ
n)) = λ

Example 3.16. Let X be surface with boundary, and f : X → X be a map.Fadell
and Husseini(see [19]) devised a method of computing the matrices of the lifted chain
map for surface maps.Suppose {a1, ...., ar} is a free basis for π1(X). Then X has the
homotopy type of a bouquet B of r circles which can be decomposed into one 0-cell
and r 1-cells corresponding to the ai,and f has the homotopy type of a cellular map
g : B → B. By the homotopy type invariance of the invariants,we can replace f with g in
computations.The homomorphism f̃∗ : π1(X)→ π1(X) induced by f and g is determined

by the images bi = f̃∗(ai), i = 1, .., r.The fundamental group π1(Tf ) has a presentation
π1(Tf ) =< a1, ..., ar, z|aiz = zbi, i = 1, .., r >.Let

D = (
∂bi
∂aj

)

be the Jacobian in Fox calculus(see [19]).Then,as pointed out in [19], the matrices of the
lifted chain map g̃ are

F̃0 = (1), F̃1 = D = (
∂bi
∂aj

).

Now, we can find estimations for the radius R as above.

Let µ(d), d ∈ N, be the Möbius function.

Theorem 3.17. [9] Let φ be a non-trivial orientation preserving standard form periodic
diffeomorphism of least period m of a compact connected surface M of Euler characteristic
χ(M) < 0 . Then the symplectic zeta function Fg(t) = Fφ(t) is a radical of a rational
function and

Fg(t) = Fφ(t) =
∏
d|m

d

√
(1− td)−P (d),

where the product is taken over all divisors d of the period m, and P (d) is the integer
P (d) =

∑
d1|d µ(d1) dimHF∗(φ

d/d1).
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We denote by Lφ(t) the Weil zeta function

Lφ(t) := exp

(
∞∑
n=1

L(φn)

n
tn

)
,

where L(φn) is the Lefschetz number of of φn.

Theorem 3.18. [9] If φ is a hyperbolic diffeomorphism of a 2-dimensional torus T 2, then
the symplectic zeta function Fg(t) = Fφ(t) is a rational function and Fg(t) = Fφ(t) =

(Lφ(σ · t))(−1)r , where r is equal to the number of λi ∈ Spec(φ̃) such that | λi |> 1, p is

equal to the number of µi ∈ Spec(φ̃) such that µi < −1 and σ = (−1)p, here φ̃ is a lifting
of φ to the universal cover.

3.4. Concluding remarks and questions.

Remark 3.19. For a symplectic manifold X the (conjugation-invariant) Floer-type en-
tropy of g ∈ Symp(X)/Ham(X), a mapping class of φ, is defined in [28] as

hF (g) = lim sup
1

n
log rk HF (φn) = logF∞(g)

This is a kind of robust version of the periodic entropy, robust in the sense that it depends
on a symplectic diffeomorphism only through its mapping class; by contrast topological
and periodic entropy are typically very sensitive to perturbation. As we proved above,
for area-preserving diffeomorphisms of a surface M , the Floer-type entropy coincides with
the topological entropy of the canonical representative in corresponding mapping class;
moreover, hF (g) > 0 if and only if g has a pseudo-Anosov component.

Question 3.20. (Entropy conjecture for symplectomorphisms)
Is it always true that for symplectomorphisms of compact symplectic manifolds

h(φ) ≥ logF∞(g) = log Growth(dimHF∗(φ
n)) = hF (g)?

Question 3.21. (A weak version of the Entropy conjecture for symplectomorphisms)
Is it always true that for symplectomorphisms of compact symplectic manifolds

h(φ) ≥ log Growth(| χ(HF∗(φ
n)) |)?

Here χ(HF∗(φ
n)) is the Euler characteristic of symplectic Floer homology of φn. If

for every n all the fixed points of φn are non-degenerate, i.e. for all x ∈ Fix(φn),
det(id−dφn(x)) 6= 0, then

χ(HF∗(φ
n)) =

∑
x=φn(x)

sign(det(id−dφn(x))) = L(φn).

This implies that the question above is a version of the question of Shub [27].

Question 3.22. Is it true that for a symplectomorphism φ of an aspherical compact
symplectic manifold

F∞(g) := Growth(dimHF∗(φ
n)) = L∞(φ) = N∞(φ)?
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Inspired by the Hasse-Weil zeta function of an algebraic variety over a finite field, Artin
and Mazur [1] defined the zeta function for an arbitrary map f : X → X of a topological
space X:

AMf (t) := exp

(
∞∑
n=1

# Fix(fn)

n
tn

)
,

where # Fix(fn) is the number of isolated fixed points of fn. Artin and Mazur showed
that for a dense set of the space of smooth maps of a compact smooth manifold into
itself the number of periodic points # Fix(fn) grows at most exponentially and the Artin-
Mazur zeta function AMf (t) has a positive radius of convergence [1]. Later Manning
[20] proved the rationality of the Artin - Mazur zeta function for diffeomorphisms of a
smooth compact manifold satisfying Smale axiom A. On the other hand there exist maps
for which Artin-Mazur zeta function is transcendental . The symplectic zeta function
Fφ(t) can be considered as some analog of the Artin-Mazur zeta function AMf (t) because
periodic points of φn provide the generators of symplectic Floer homologies HF∗(φ

n).
This motivate following

Conjecture 3.23. For any compact symplectic manifold M and symplectomorphism φ :
M → M with well defined Floer homology groups HF∗(φ

n), n ∈ N the symplectic zeta
function Fg(t) = Fφ(t) has a positive radius of convergence.

Question 3.24. Is the symplectic zeta function Fg(t) = Fφ(t) an algebraic function of z?

Remark 3.25. Given a symplectomorphism φ of surface M , one can form the symplec-
tic mapping torus M4

φ = T 3
φ o S1, where T 3

φ is usual mapping torus . Ionel and Parker
[17] have computed the degree zero Gromov invariants [17](these are built from the in-
variants of Ruan and Tian) of M4

φ and of fiber sums of the M4
φ with other symplectic

manifolds. This is done by expressing the Gromov invariants in terms of the Lefschetz
zeta function Lφ(z) [17]. The result is a large set of interesting non-Kahler symplectic
manifolds with computational ways of distinguishing them. In dimension four this gives
a symplectic construction of the exotic elliptic surfaces of Fintushel and Stern [14]. This
construction arises from knots. Associated to each fibered knot K in S3 is a Riemann
surface M and a monodromy diffeomorphism fK of M . Taking φ = fK gives symplec-
tic 4-manifolds M4

φ(K) with Gromov invariant Gr(M4
φ(K)) = AK(t)/(1 − t)2 = Lφ(t),

where AK(t) is the Alexander polynomial of knot K. Next, let E4(n) be the simply-
connected minimal elliptic surface with fiber F and canonicla divisor k = (n − 2)F .
Forming the fiber sum E4(n,K) = E4(n)#(F=T 2)M

4
φ(K) we obtain a symplectic mani-

fold homeomorphic to E4(n). Then for n ≥ 2 the Gromov and Seiberg-Witten invariants
of E4(K) are Gr(E4(n,K)) = SW (E4(n,K)) = AK(t)(1 − t)n−2 [14, 17]. Thus fibered
knots with distinct Alexander polynomials give rise to symplectic manifolds E4(n,K)
which are homeomorphic but not diffeomorphic. In particular, there are infinitely many
distinct symplectic 4-manifolds homeomorphic to E4(n) [14] .

In higher dimensions it gives many examples of manifolds which are diffeomorphic
but not equivalent as symplectic manifolds. Theorem 13 in [9] implies that the Gromov
invariants of M4

φ are related to symplectic Floer homology of φ via Lefschetz zeta function
Lφ(t). We hope that the symplectic zeta function Fφ(t) give rise to a new invariant of
symplectic 4-manifolds.
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