DIFFERENTIAL SYMMETRY BREAKING OPERATORS.
I. GENERAL THEORY AND F-METHOD.

TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

ABSTRACT. We prove a one-to-one correspondence between differential symmetry
breaking operators for equivariant vector bundles over two homogeneous spaces
and certain homomorphisms for representations of two Lie algebras, in connection
with branching problems of the restriction of representations.

We develop a new method (F-method) based on the algebraic Fourier transform
for generalized Verma modules, which characterizes differential symmetry breaking
operators by means of certain systems of partial differential equations.

In contrast to the setting of real flag varieties, continuous symmetry breaking
operators of Hermitian symmetric spaces are proved to be differential operators in
the holomorphic setting. In this case symmetry breaking operators are character-
ized by differential equations of second order via the F-method.
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1. INTRODUCTION

Let W - Y and V - X be two vector bundles with a smooth map p:Y - X.
Then we can define “differential operators” D : C*(X,V) - C>~(Y,W) between the
spaces of smooth sections (Definition [2.1).
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Suppose that G’ c¢ G is a pair of Lie groups acting equivariantly on WW — Y
and V — X, respectively, and that p is G’-equivariant. The object of the present
work is the study of G'-intertwining differential operators (differential symmetry
breaking operators). If W is isomorphic to the pull-back p*V, then the restriction
map [ ~ fly is obviously a G’-intertwining operator (and a differential operator
of order zero). In the general setting where there is no morphism from p*V to W,
non-zero G’-intertwining differential operators may and may not exist.

Suppose that G acts transitively on X and G’ acts transitively on Y. We write
X =G/H and Y = G’/H' as homogeneous spaces. The first main result is a duality
theorem that gives a one-to-one correspondence between G'-intertwining differential
operators and (g’, H')-homomorphisms for induced representations of Lie algebras
(see Corollary for the precise notation):

Theorem A. Suppose H' ¢ H. Then there is a natural bijection:
(11) Dx_,y : Hom(g/,H/)(indg:(WV), 1nd§(VV)) AN DiffG/ (Vx, Wy) .

This generalizes a well-known result in the case where G and G’ are the same
reductive group and where X and Y are the same flag variety ([Kos74, [HJ82]).

By a branching problem we wish to understand how a given representation of a
group G behaves when restricted to a subgroup G’. For a unitary representation
of GG, branching problems concern a decomposition of 7 into the direct integral of
irreducible unitary representations of G’ (branching law).

More generally, for non-unitary representations m and 7 of G and G’, respectively,
we may consider the space Homer (7|gr, 7) of continuous G’-homomorphisms. The
right-hand side of concerns branching problems with respect to the restric-
tion from G to G’, whereas the left-hand side of concerns branching laws of
“generalized Verma modules”.

If Diffg: (Vx, Wy ) in is one-dimensional, we may regard its generator as
canonical up to a scalar and be tempted to find an explicit description for such a
natural differential symmetry breaking operator. It should be noted that seeking ex-
plicit formulee of intertwining operators is much more involved than finding abstract
branching laws, as we may observe with the celebrated Rankin—Cohen brackets which
appear as symmetry breaking operators in the decomposition of the tensor product
of two holomorphic discrete series representations of SL(2,R) (see [DP07, [KP14-2]
for a detailed discussion).

The condition dim Differ (Vx,Wy) < 1 is often fulfilled when b is a parabolic
subalgebra of g with abelian nilradical, (see [K14, Theorem 2.7]). Moreover, finding
all bundles Wy for which such nontrivial intertwining operators exist is a part of the
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initial problem, which reduces to abstract branching problems (see [KP14-2 Fact
13).

We propose a new method to find explicit expressions for differential symmetry
breaking operators appearing in this geometric setting. We call it the F-method,
where F stands for the Fourier transform. More precisely, we consider an “algebraic
Fourier transform” of generalized Verma modules, and characterize symmetry break-
ing operators by means of certain systems of partial differential equations. If b is a
parabolic subalgebra with abelian nilradical, then the system is of second order al-
though the resulting differential symmetry breaking operators may be of any higher
order. The characterization is performed by applying an algebraic Fourier transform
(see Definition 3.1). A detailed recipe of the F-method is described in Section
relying on Theorem and Proposition [3.11}

In general, the symmetry breaking operators between two principal series represen-
tations of real reductive Lie groups G’ c GG are given by integro-differential operators
in geometric models. Among them, equivariant differential operators are very special
(e.g. [KnSt7l] for G’ = G and [KS14] for G’ ¢ G). However, in the case where X
is a Hermitian symmetric space, Y a subsymmetric space, G’ ¢ G are the groups
of biholomorphic transformations of Y < X respectively, we prove the following
localness and extension theorem:

Theorem B. Any continuous G’-homomorphism from O(X,V) to O(Y, W) is given
by a holomorphic differential operator, which extends to the whole flag variety.

See Theorem for the precise statement. Theorem [B] includes the case of the
tensor product of two holomorphic discrete series representations corresponding to
the setting where G ~ G’ x G" and X Y x Y as a special case.

In the second part of the work [KP14-2] we apply the F-method to Hermitian sym-
metric spaces to find explicit formulee of differential symmetry breaking operators
in the six parabolic geometries arising from symmetric pairs of split rank one.

The authors are grateful to the referee for his/her enlightening remarks and for
suggesting to divide the original manuscript into two parts and to write more detailed
proofs and explanations for the first part not only for specialists but also for broader
audience. Special thanks are also due to Dr. T. Kubo who read very carefully the
revised manuscript and made constructive suggestions on its readability.

Notation: N ={0,1,2,--}.

2. DIFFERENTIAL INTERTWINING OPERATORS

In this section we discuss equivariant differential operators between sections of
homogeneous vector bundles in a more general setting than the usual. Namely,
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we consider vector bundles admitting a morphism between their base spaces. In
this generality, we establish a natural bijection between such differential operators
(differential symmetry breaking operators) and certain homomorphisms arising from
the branching problems for infinite-dimensional representations of Lie algebras, see

Theorem [2.9| (duality theorem).

2.1. Differential operators between two manifolds. We understand the notion
of differential operators between two vector bundles in the usual sense when the
bundles are defined over the same base space. We extend this terminology in a more
general setting, where there exists a morphism between base spaces. Let V — X
be a vector bundle over a smooth manifold X. We write C*(X,V) for the space of
smooth sections, which is endowed with the Fréchet topology of uniform convergence
of sections and their derivatives of finite order on compact sets. Let W — Y be
another vector bundle, and p: Y — X a smooth map between the base spaces.

Definition 2.1. We say that a continuous linear map 7": C*°(X,V) - C>=(Y, W) is
a differential operator if T satisfies

(2.1) p(SuppT'f)cSuppf  forany f e C=(X,V).

We write Diff (Vx, Wy ) for the vector space of differential operators from C*~(X,V)
to C=(Y,W).

The condition ([2.1) shows that 7" is a local operator in the sense that for any open
subset U of X, T" induces a continuous linear map:

Ty : C*(UV|y) — C= (p7(U), W) -

Remark 2.2. If X =Y and p is the identity map, then the condition ([2.1)) is equivalent
to T being a differential operator in the usual sense owing to Peetre’s celebrated
theorem [Pee59]. Our proof of Lemma in this special case gives an account of
this classical theorem by using the theory of distributions due to L. Schwartz [S66].

Let Qx = | A" TV(X)| be the bundle of densities. For a vector bundle ¥V - X, we
set V= [I,.x VY where VY := Hom¢(V,, C), and denote by V* the dualizing bundle
VW ® Qx. In what follows D'(X,V*) (respectively, £'(X,V*)) denotes the space of
V*-valued distributions (respectively, those with compact support). We shall regard
distributions as generalized functions a la Gelfand rather than continuous linear
forms on C'°(X) or C*(X). In particular, we sometimes write as

(2.2) E'(X,Qx)—C, w»[w,
X
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to denote the natural pairing (w,1x) of w with the constant function 1y on X.
Composing ([2.2) with the contraction on the fiber, we get a natural bilinear map

(2.3) (X, V) x E'(X,V*) - C, (f,w)»—><f7w)=[xfw.

Let V*® W denote the tensor product bundle over X x Y of the two vector bundles
V* - X and W — Y. Then for any continuous linear map 7' : C=(X,V) —» C=(Y, W)
there exists a unique distribution K € D'(X x Y, V* ®8 W) such that the projection
on the second factor pry: X x Y — Y is proper on the support of Kt and such that

(Tf)(y) = (Kzr(y), f()) forany f e C=(X, V),

by the Schwartz kernel theorem.
Given a map p:Y — X, we set

A(Y)={(p(y),y) :yeY}c X xY.

The following lemma characterizes differential operators by means of the distribution
kernels K.

Lemma 2.3. Letp:Y — X be a smooth map. A continuous operatorT : C=(X,V) —»
C>(Y,W) s a differential operator in the sense of Definition if and only if
Supp K1 c A(Y).

Proof. Suppose Supp K1 ¢ A(Y). Let (x,,9,) € A(Y) and take a neighborhood U
of z, = p(yo) in X and a neighborhood U’ of y, in Y such that U’ c p~1(U). We
trivialize the bundles locally as V| ~ UxV and W|yr ~ U'xW. Let (21, x,,) be the
coordinates in U. According to the structural theory of distributions supported on a
submanifold AY ¢ X xY [S66, Chapter III, Théoreme XXXVII]|, there exists a unique
family h,(y) € D'(U’") @ W for a finite number of multi-indices o = (o, -+, i, ) € N™
such that (K, f) € D'(U") ® Hom¢(V, W) is locally given as a finite sum
lof
(2.4 > he) 5L (0 (0).

«

for every f e C(X,V). Hence (Kr, f)|pr = 0 if f|y = 0. Thus T is a differential
operator in the sense of Definition 2.1}

Conversely, take any (z,,9,) € Supp Kr. By the definition of the distribution
kernel K7, for any neighborhood S of z, in X there exists f € C*(X,V) such that
Suppf c S and (z,,9,) € Supp f x SuppT'f. If T is a differential operator then by

(2.1)

p(SuppT'f) c Supp f c S.

Since S is an arbitrary neighborhood of z,, p(y,) must coincide with z,. Hence

Supp K1 c A(Y). O
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By (2.4), the terminology “differential operators” in Definition [2.1] is justified as
follows:

Example 2.4. (1) Let p : Y - X be a submersion. Choose an atlas of local
coordinates {(x;,z;)} on Y in such a way that {z;} form an atlas on X.
Then, every T € Diff(Vx, Wy) is locally of the form

lof
Y ha(z, z)% (finite sum),

aeNdim X
where ho(x,z) are Hom(V, W)-valued smooth functions on Y.
(2) Leti:Y < X be an immersion. Choose an atlas of local coordinates {(y;,z;)}
on X in such a way that {y;} form an atlas onY. Then, every T € Diff (Vx, Wy')
18 locally of the form

Z W) Olal+18l (finit )
o —_— nite sum),
(o Dy 0P

where o 5(y) are Hom(V, W)-valued smooth functions on'Y .

Next, suppose that the two vector bundles V — X and W — Y are equivariant
with respect to a given Lie group G. Then we have natural actions of G on the Fréchet
spaces C* (X, V) and C* (Y, W) by translations. Denote by Homg(C*=(X,V),C>=(Y,W))
the space of continuous GG-homomorphisms. We set

(2.5)  Diff(Vx, Wy) := Diff (Vx, Wy ) n Homg (C* (X, V), C=(Y, W)).

Example 2.5. Suppose X and Y are both Fuclidean vector spaces with an injec-
tive linear map p 'Y < X. If G contains the subgroup of all translations of Y
then Diff ¢ (Vx, Wy) is a subspace of the space of differential operators with constant
coefficients.

An analogous notion can be defined in the holomorphic setting. Let V — X and
W — Y be two holomorphic vector bundles with a holomorphic map p: Y - X
between the complex base manifolds X and Y. We say a differential operator T :
C>(X,V) > C~(Y,W) is holomorphic if

Ty (O(UVIv)) < O(p™ (U), W)

for any open subset U of X. We denote by Diff"™(Vx,Wy) the vector space of
holomorphic differential operators. When a Lie group G acts biholomorphically on
the two holomorphic vector bundles V - X and W — Y, we set

Dift! (Vx, Wy ) := Diff™ (Vx, Wy) n Homg(C< (X, V), C*= (Y, W)).



F-METHOD 7

2.2. Induced modules. Let g be a Lie algebra over C, and U(g) its universal
enveloping algebra. Let b be a Lie subalgebra of g.

Definition 2.6. For an h-module V', we define the induced U(g)-module ind{ (V') as
mdg(V) = U(g) ®U(b) V.

If b is a Borel subalgebra and dim V' = 1, then the g-module ind§(V') is the Verma
module.

For later purposes we formulate the following statement in terms of the contragre-
dient representation VV. Let h’ be another Lie subalgebra of g.

Proposition 2.7. For a finite-dimensional b’-module W we have:
(1) Homg(indg, (W), indg(V¥)) = Homy (WY, indg (VV)).
(2) If b' ¢ b, then Homy (WY, indy(VV)) = {0}.

Proof. The first statement is due to the functoriality of the tensor product.

For the second statement it suffices to treat the case where §’ is one-dimensional.
Then the assumption b’ ¢ b implies that h’ nh = {0}, and therefore there is a direct
sum decomposition of vector spaces:

g=h"+q+b,
for some subspace ¢ in g. We fix a basis Xy, -, X, of q, and define a subspace of
U(g) by
U'(q) := C-span { X" X" : (g, -+, ) € N}
Then, by the Poincaré-Birkhoff-Witt theorem we have an isomorphism of h’-modules:
indg(V\’) ~U(h)ecU'(q) ®c V.

In particular, indg(VV) is a free U(h’)-module. Hence there does not exist a non-zero
finite-dimensional h’-submodule in the g-module indg (V). O

Remark 2.8. We shall see in Theorem [2.9| that dimc Homg/(indg:(WV),indg(VV)) is
equal to the dimension of the space of difterential symmetry breaking operators from
C=(X,V) to C=(Y,W) when H' is connected. In [KPI14-2, Section 2], we give a
family of sextuples (g, g’,bh,b’,V, W) such that this dimension is one.

2.3. Duality theorem for differential operators between two homogeneous
spaces. Let G be a real Lie group, and g(R) := Lie(G). We denote by U(g) the uni-
versal enveloping algebra of the complexified Lie algebra g := g(R) ®g C. Analogous
notations will be applied to other Lie groups.

Let H be a closed subgroup of G. Given a finite-dimensional representation A :
H — GL¢c(V) we define the homogeneous vector bundle Vx =V := G xg V over
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X :=G/H. As a G-module, the space C*(X,V) of smooth sections is identified with
the following subspace of C*(G,V) ~C>(G)® V:
C=(G, V) ={feC>(G,V): f(gh) = A(h) ' f(g)forany g € G,h € H}
~{FeC*(G)®V :\h)F(gh)=F(g) forany geG, he H}.

In dealing with a representation V' of a disconnected subgroup H (e.g. H is a
parabolic subgroup of a real reductive Lie group ), we notice that the diagonal
H-action on U(g) ®c V" defines a representation of H on indy(V") = U(g) ®, V" and
thus indj (V") is endowed with a (g, H)-module structure.

Theorem 2.9 (Duality theorem). Let H' ¢ H be (possibly disconnected) closed sub-
groups of a Lie group G with Lie algebras b’ c by, respectively. Suppose V- and W are
finite-dimensional representations of H and H', respectively. Let G' be any subgroup
of G containing H', and Vx = G xg V and Wy := G' xg: W be the corresponding
homogeneous vector bundles. Then, there is a natural linear isomorphism:

(26) DXQY : HOIHHI(WV, 1ndg(VV)) SN DiHG/ (Vx, Wy) s
or equivalently,
DX—»Y : Hom(g/,H/)(indgi(WV), 1ndg(VV)) = DiffG/ (VX, Wy) .
For ¢ € Hompy(WY,indf(VV)) and F' € C=(X,V) =~ C=(G,V)#, Dx_.y(p)F ¢
Ce(Y,W) =~ C=(G",W)H" is given by the following formula:
(2.7) (Dxoy (@) F,w”) = Y (dR(u;)F, v} )ar  for w” e WY,

J

where p(w") = ¥ ujvy €indg(VV) (u; e U(g), vj € V).

When H' is connected, we can write the left-hand side of (2.6)) by means of Lie
algebras.

Corollary 2.10. Suppose we are in the setting of Theorem[2.9. Assume that H' is
connected. Then there is a natural linear isomorphism:

(2.8) Dx_y : Homy (WY, indf (V")) — Diff e (Vx, Wy),
or equivalently,
-3)’ Dx_y : Homg (ind$, (W"),ind3(V")) = Diffe/(Vx, Wy).

The construction of Dx_y and the fact that the formula (2.7) is well-defined will
be explained in Section [2.4]

Remark 2.11. (1) Corollary is known when X =Y, i.e. G'=G and H' = H,
especially in the setting of complex flag varieties, see e.g. [Kos74, [HIS82].
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(2) When g’ is a reductive subalgebra and b’ is a parabolic subalgebra, the exis-
tence of an h’-module W for which the left-hand side of is non-zero, is
closely related to the “discretely decomposability” of the g-module indg(VV)
when restricted to the subalgebra g’ ([K98, Part I11], [K12]). This relationship
will be used in Section [5|in proving that any continuous symmetry breaking
operator in a holomorphic setting is given by a differential operator (localness
theorem).

(3) Owing to Proposition the left-hand side of ’ is non-zero only when
b’ c h. Conversely, if H' ¢ H n G’, then there is a natural morphism Y =
G'|H' - X = G/H and therefore “differential operators” (in the sense of
Definition from C~(X,V) to C>(Y, W) are defined.

(4) We shall consider the case where H' = H n G’ in later applications, however,
Theorem [2.9| also covers the cases where the natural morphism Y — X is not
injective, ¢.e. where H' ¢ Hn G'.

An analogous result to Theorem holds in the holomorphic setting as well.
To be precise, let G¢ be a complex Lie group, G, Hc and H{ be closed complex
subgroups such that H{. ¢ Hc n Gi. We write g, b, ... for the Lie algebras of the
complex Lie groups G¢, Hg, ..., respectively. Given finite-dimensional holomorphic
representations V' of Hc and W of H{,, we form holomorphic vector bundles V :=
G xp. V over X¢ = Ge/He and W = G, <, W over Ye = Gr/H¢.

For simplicity, we assume that H{. is connected. (This is always the case if G
is a connected complex reductive Lie group and H{. is a parabolic subgroup of Gf..)
Then we have:

Theorem 2.12 (Duality theorem in the holomorphic setting). There is a canonical
linear isomorphism:

Dx_y : Homy (indg,(WV), indg(m) > Diffg! (Ve Whe).

Suppose furthermore that G, G’, H and H’ are real forms of the complex Lie groups
Gc, G, He and H{,, respectively. We regard V and W as H- and H’-modules by the
restriction, and form vector bundles V = G xyg V over X = G/H and W = G' xp0 W
over Y =G'[H'.

We ask whether or not all symmetry breaking operators have holomorphic exten-
sions. Here is a simple sufficient condition:

Corollary 2.13. If H' is contained in the connected complexification HJ., then we
have a natural bijection:

Diffe (Ve Wye) = Diffar (Vx, Wy ).
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Proof. Comparing Theorem [2.9] with Theorem [2.12] the proof of Corollary re-
duces to the surjectivity of the inclusion

(2.9)  Homg g (indf,(W"),ind{ (V")) = Homg (ind, (W), ind¢ (V¥)).

We note that Hom(g/’H(C)(indg:(I/Vv)7 ind§ (V")) is a subspace of the left-hand side of
(2.9) because H' c H(., whereas it coincides with the right-hand side of (2.9)) if H{.
is connected. Hence (2.9) is surjective. Thus Corollary is proved. O

The rest of this section is devoted to the proof of Theorem [2.9] For Theorem [2.12]
since the argument is parallel to that of Theorem [2.9] we omit the proof.

2.4. Construction of Dx_y. This subsection gives the definition of the linear map
Dx_y in Theorem 2.9

Consider two actions dR and dL of the universal enveloping algebra U(g) on
the space C*°(G) of smooth complex-valued functions on G induced by the regular
representation L x R of G x G on C*(G):

d d
(210) (@R = 5| e and @LZ)N)) = &
t=0 t=0
for Z € g(R).
The right differentiation (2.10) defines a bilinear map
®:C*(G)xU(g) » C=(G), (F,u) = dR(u)F,
with the following properties
(2.11) O(L(g)F,u)
(2.12) O(F,u'u)

for any g € G and u,u’ € U(g).
Combining ¢ with the canonical pairing V x V'V — C, we obtain a bilinear map

Dy C=(G) eV xU(g) 8c VY - C=(G).

Then we have the following:

fle?x),

L(g)®(F,u),
dR(u")®(F,u),

Lemma 2.14. The map Oy induces a well-defined diagram of maps:

C=(G) @V xU(g) ®c VY —% C=(G)

? v |
C=(X,V) xindg(V¥)  ---> C=(G).

Proof. Denote by AV the contragredient representation of the representation (A, V)
of H, and by d\¥ the infinitesimal representation of fj. The kernel of the natural
quotient map U(g) ®c V' - indy (V) is generated by

—uY @ v +u®d\(Y)vY
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with w € U(g),Y € b and v¥ € VV. Hence it suffices to show
Oy (f,—uY ®@v¥ +u®d\(Y)vY) =0
for any feC=(X,V)~C>(G, V).
Since f e C=(G,V)H satisfies dR(Y) f = —d\(Y) f for Y € b, we have
Oy (f,uY ®vY) (dR(uw)dR(Y) f,v")
(dR(u) f,dX" (Y )v")
Oy (fiu®d\(Y)vY).

Thus the lemma is proved. O

Lemma 2.15. 1) The bilinear map
(2.13) (X, V) xindS (V) > C, (f,m) > By (f,m) (e)

is (g, H)-invariant.

2) If meindg(VY) satisfies @y (f,m)(e) =0 for all f € C=(X,V) then m = 0.
Proof. 1) Let f e C>(X,V) and m € indi(V¥). It follows from (2.11]) and (2.12)) that
Oy (dL(Z)f,m) =dL(Z)Py(f,m)

Oy (f, Zm) =dR(Z)Pv (f,m)

for any Z € g. Since
(dL(Z)+dR(Z))F(e)=0
for any F'e C*°(G), we have shown the g-invariance of the bilinear map ([2.13)):
Oy (dL(Z) f,m)(e) + Py (f,Zm)(e) = 0.

The proof for the H-invariance of (2.13)) is similar.
2) Take a basis {vy, -, v, } of V, and let {vY,---, v/} be the dual basis in VV. Choose
a complementary subspace q of  in g, and fix a basis {Xj,-+, X;,} of q. Then by the
Poincaré-Birkhoff-Witt theorem, we can write m € indg(VV) as a finite sum:
k
m = Z Z U j X1 X

J=la=(ai,on)

If m is non-zero, we can find a multi-index 8 and j, (1 < j, < k) such that ag;, # 0
and that a,j, = 0 for any multi-index « satisfying |o| > || and for any j. Here
lo] = ¥« for a e N*. We take fe C~(G,V)H ~C>~(X,V) such that f is given in
a right H-invariant neighborhood of H in G by

f (exp (Z xiXZ-) h) = x*BA(h)_lvjo forz = (zq1,--,x,) e R"and h € H.
i1

Then ®v (f,m)(e) = asj,B1!--Fx! # 0. The contraposition completes the proof. [
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We regard C*°(G) as a G x g-module via the (L x dR)-action. Then the space
Homg(C*(X,V),C>~(G)) of continuous G-homomorphisms becomes a g-module by

the remaining dR-action on the target space. By (2.11)), (2.12)) and Lemma [2.14] we

get the following g-homomorphism:
(2.14)  ind(VY) — Homg(C*(X,V),C*(G)), uev' = (f+ (dR(u)f,v")).

Furthermore, it is actually a (g, H)-homomorphism, where the group H acts on
indg (V) = U(g) ®u(y) V" diagonally and acts on Homg(C>(X,V), 0= (G)) via the
R-action on C*(G).

Let H' be a connected closed Lie subgroup of G. Given a finite-dimensional repre-
sentation W of H', we form a homogeneous vector bundle W, =W = G xg W over
Z:=G[H'

Taking the tensor product of the (g, H)-modules in (2.14]) with the H’-module W/,
we get an (H’ x (g, H))-homomorphism:

Home (WY, indj (V")) — Home(C*(X,V),C=(G,W)).

Let A(H') be a subgroup of H' x H defined by {(h,h): h e H'}. Taking A(H')-
invariants, we obtain the following C-linear map:

(2.15) Hom g (WY, indf (V")) — Homg(C™(X,V),C%(Z,W)), ¢+ D,
where D, satisfies

(216) <Dg0f7wv) :(I)V(fago(wv))

for any f e C>(X,V) and any w¥ e WV.

Remark 2.16. If H' is connected, then we can replace Homys by Homy in ([2.15).
Lemma 2.17. The map (2.15)) is injective.

Proof. By (2.16]), Lemma is derived from the second statement of the Lemma
2.1l U

Take any subgroup G’ of G containing H’ and form a homogeneous vector bundle
Wy = G' xgo W over Y = G'/H'. Then, the vector bundle Wy is isomorphic to the
restriction Wy|y of the vector bundle Wy to the submanifold Y of the base space Z.
Let

RZQY : COO(Z, Wz) - COO(Y, Wy)

be the restriction map of sections. For ¢ € Homy (WY, indy(VV)) we set

(217) Dx_,y(gp) = RZ—)Y o D‘p.

Then Dx_y(¢) : C*(X,V) - C>(Y,W) is a G’-equivariant differential operator, i.e.
Dx_y defines a linear map Homy (W",indf (V")) — Diffe:(Vx, Wy ). Theorem
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describes explicitly the image Dx_y when H' ¢ H n G’, namely, when the following
diagram exists:

Z=G/H'

TN

Y =G'/H' X =G/H

Remark 2.18. The left-hand side of (2.8) does not depend on the choice of G’. This
fact is reflected by the commutativity of the following diagram.

(2.18) Homy (W, indg (VV)) - Diff¢(Vx, Wz)

k\%

Differ (Vx, Wy)

2.5. Proof of Theorem We have already seen in Lemma that Dx_y is
injective. In order to prove the surjectivity of the linear map Dyx_y, we realize the
induced U(g)-module indf(Vv) in the space of distributions.

We recall that V* = VYV ® (2x is the dualizing bundle of a vector bundle V over X.
For a closed subset S and an open subset U in X containing S, we write D (U, V*) for
the space of V*-valued distributions on U with support in S. Obviously, Dy (U, V*) =
DL(X,V*). If S is compact, then Dy (U,V*) is contained in the space &'(U,V*)
of distributions on U with compact support, and thus coincides with EL(U,V*) :=
DL(U,V*)n&(U,V*).

We return to the setting of Theorem [2.9] where V is a G-equivariant vector bundle
over X = G/H. Then the Lie group G acts on C*°(X,V) and &£'(X,V*) by the
pull-back of smooth sections and distributions, respectively. The infinitesimal action
defines representations of the Lie algebra g on C(U,V) and E{(U, V™).

The “integration map” ([2.2))
(2.19) £'(X,0x) - C, w»—>fw
X

is G-invariant. Composing this with the G-invariant bilinear map (contraction):
COO(X,V)Xg,(X,V*)HS’(X’QX% (fuh)'_)<f7h>7

we obtain the following G-invariant bilinear form

(2.20) C=(X,V) x (X, V") — C, (f,h)»fx(f,h).

Similarly, we obtain the following local version:
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Lemma 2.19. Let S be a closed subset of X and U an open neighborhood of S in
X. Then, we have the natural g-invariant bilinear form:

C=(U,V) x E4(U, V*) — C, (f,h)n—>/£J(f,h).

Moreover, if S c U are both H-invariant subsets in X, then the bilinear form is also
H-invariant.

We write o = eH € X for the origin. By Lemmas and [2.19, we have obtained

two (g, H)-invariant pairings:

C=(X,V) xindg(V¥) — C, (f,m)~ @y (f,m)(e),
C2(X,V) x E,,(X, V) — C (f,h)»—>fX(f,h).

Let us show that there is a natural (g, H)-isomorphism between indj(V"") and
5{0}()(, V*). In fact, it follows from Lemma that there exists an injective (g, H )-
homomorphism

A: indﬁ(VV) g g{o}(X,V*)
such that

@V(f,m)(e):[X(f,A(m)) for all m € ind?(V") and f € C*(X, V),

For a homogeneous vector bundle ¥V = G xz V we define a vector-valued Dirac
d-function § @ vV € & , (X, V"), for v e V¥ by
(2.21) (f,0@vY):=(f(e),v¥) for feC>(X,V)~C>(G V).
By the definition of ®y,, we have

Py (f,1@v7)(e) = (f(e),v").

Hence A(1®vY) = d ® v by (2.21). Since A is a g-homomorphism, we have shown
that

A(u®vY) =dL(u)(d®vY), forueU(g),veV".
Lemma 2.20. The (g, H)-homomorphism
(2.22) A:indp(VY)—E&[, (X, V"), u®v' > dL(u)(devY),
18 bijective.
Proof. By Lemma the map is injective. Let us show that it is also sur-
jective. By the structural theorem of (scalar-valued) distributions [S66, Chapter II1,

Théoreme XXXVII], distributions supported on the singleton {o} are obtained as
a finite sum of derivatives of the Dirac’s delta function. An analogous statement
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holds for vector-bundle valued distributions supported on {0}, as we can see by triv-
ializing the bundle near the origin o. Choose a complementary subspace q(R) of
h(R) = Lie(H) in g(R) = Lie(G). Since dL(Z) (Z € q(R)) spans the tangent space
T,(G/H) ~ q(R), any derivative of the vector-valued Dirac’s delta function is given
as a linear combination of elements of the form dL(u)(d ® vV) (u € U(g),v € VV).
Thus the map is surjective. U

Let C,, denote the one-dimensional representation of H defined by

h |det(Adg/u(h) : g/b - g/b)| ™"

If H is a parabolic subgroup of GG with Langlands decomposition P = M AN, then the
infinitesimal representation of Cs, is given by the sum of the roots for n, = Lie(V,).
The bundle of densities {0/ is given as a G-equivariant line bundle,

QG/H ~ (7 X f |det_1 Adg/H| ~ G XH (C2p-

For an H-module (A, V), we define a “twist” of the contragredient representation
A3, on the dual space V'V (or simply denoted by VQVP) by the formula

A= /\\Q/p =\ ®(C2p =\"® |det_1 Adg/H |

Then the dualizing bundle V* = VY ® Qg of the vector bundle V = G'xy V' is given,
as a homogeneous vector bundle, by:

(2.23) V=V, ~Gxg Vs,
Then D'(X,V*) is identified with
(D'(G)® ‘Q,)A(H) ={FeD(G)eVY:\;,(h)F(-h) = F(-) forany heH}.

Now let us consider the setting of Theorem [2.9 where we have a G’-equivariant
(but not necessarily injective) morphism from Y = G'/H’ to X = G/H.
Lemma 2.21. Suppose that G' is a subgroup of G. Then the multiplication map

m:GxG -G, (g,9)~(9)"g,
induces the isomorphism:
m*: (D/(X, V) e W) L p/(X x Y,V mW)AE),

Proof. The image of the pull-back m* : D'(G) - D'(GxG") is D'(G x G")A(E") | where

G’ acts diagonally from the left. Thus, considering the remaining G x G’ action
from the right, we take H x H’-invariants with respect to the diagonal action in the
(G x G' x H x H'")-isomorphism:

m*®ideid: D'(G) & Vy, @ W - D'(Gx G e Vy @ W,

and therefore we get the lemma. O
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We recall from Section that any continuous linear map 7 : C>°(X,V) —
C>=(Y,W) is given by a unique distribution kernel Ky € D'(X x Y, V*® W). The
following lemma gives a necessary and sufficient condition on the distribution K1 for
the linear map 7' to be a G'-equivariant differential operator.

Lemma 2.22. There is a natural linear isomorphism:
(2.24) Differ(Vx, Wy) — (Dj,y (X, V) @ W)AH) 1 T (m*) ! (Krp).

Proof. First, we show that the map is well-defined. Suppose T € Diffo/(Vx, Wy ).
Since K is uniquely determined by 7', the operator T" is G'-equivariant, i.e. L(g) o
TolL(g') =T for all ge G if and only if K7 € D'(X xY,V*®W)A(E), By Lemma
the distribution kernel K7 is supported on the diagonal set A(Y) = {(p(y),y) :
yeY}c X xY. Via the bijection m* given in Lemma we thus have

Supp((m*) " Kr)  {o}.
Hence the map ([2.24) is well-defined. The injectivity of (2.24)) is clear.
Conversely, take any element k € (Dio}(Xv V)@ W)AHD - We set K := m*(k) €
D'(X xY,V*®W)AE) | and define a linear map

T:C=(X,V) — D'(Y, W), f»—>fo(a:)K(a:,~).

Then T is G'-equivariant because K is A(G')-invariant.

Let us show that T'f € C(Y,W) for any f € C~(X,V). To see this, we take
neighborhoods U, U’ and U" of z, = p(y,) in X, y, in Y, and e in G', respectively,
such that gU’ c p1(U) for any g € U”. Since the kernel K is supported on the
diagonal set A(Y'), T'F|y is locally of the form (2.4)) as in the proof of Lemma [2.3]

Since T is G'-equivariant, we have

> ha(y)% (9p(y)) = 3 ha(gy) %'Z;f (p(v)),

for any y e U',g e U", and f e C~(U)® V. By taking f(z) = 2*®v (« € N* and
veV) as test functions, there are some o5 € C(U"” x U') for || < |a| such that

ha(gy) = ha(y) + | |Z|: Iwaﬁ(g,y)hﬁ(y)-
Bl<|e
Therefore we see inductively on |a| that h,(y) € C°(U’) ® Hom(V,W) for all «
because G’ acts transitively on Y. Hence T'f|y € C~(U') @ W. Thus we have shown
that 7" maps C*(X,V) into C>=(Y,W).
Finally, it follows from Lemmal[2.3|that T is a differential operator because SuppK c
A(Y). Now we have proved the lemma. O
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Proof of Theorem[2.9. Taking the tensor product of each term in (2.22) with the
finite-dimensional representation W of H’, we get a bijection between the subspaces
of h’-invariants:

Homy, (WY, ind}(VY)) — (D, (X, Vi) @ W)2U1).

Composing this with the bijection in Lemma [2.22] we obtain a bijection from
Homy, (WY, ind?(VV)) to Diff g/ (Vx, Wy ), which is by construction nothing but Dx_,y
in Theorem Iﬂli O

3. ALGEBRAIC FOURIER TRANSFORM FOR GENERALIZED VERMA MODULES

The duality theorem (Theorem states that, to obtain a differential symmetry
breaking operator D € Diff/(Vx, Wy), it suffices to find ¢ € Homp (W, indg(V")).
In Section {4} we shall present a new method (F-method) which characterizes the “al-
gebraic Fourier transform” of ¢ as a solution to a certain system of partial differential
equations.

In this section we introduce and study the “algebraic Fourier transform” of gener-
alized Verma modules. Proposition is particularly important to the F-method.

3.1. Weyl algebra and algebraic Fourier transform. Let F be a vector space
over C. The Weyl algebra D(F) is the ring of holomorphic differential operators on
E with polynomial coefficients.

Definition 3.1. We define the algebraic Fourier transform as an isomorphism of
two Weyl algebras on F and its dual space EV:

D(E) - D(EY), TwT,

induced by
el _ 0 . :
(31) a_zj:: _Cja Zj = a—cj, 1San=d1rnE
where (21, ...,2,) are coordinates on E and ((3,...,(,) are the dual coordinates on
Ev.

Example 3.2. Let I, := 37, zj% be the Fuler operator on E. Then, by the com-
mutation relations

0 0
3.2 —C = C== = dij,
( ) aCz CJ C] 8C’L J
in the Weyl algebra D(EY), where d;; is the Kronecker delta. Hence we have E. =
_EC —n.
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The isomorphism 7"+ T in Definition[3.1| does not depend on the choice of coordi-
nates. To see this, we consider the natural action of the general linear group GL(FE)
on E, which yields automorphisms of the ring Pol(E) of polynomials of £ and the
Weyl algebra D(FE). For Ae GL(E), we set

Ay i Pol(E) — Pol(E), Fw~ F(A™),
A, : D(E) —D(E), T~ AuoToAl.

We denote by ‘A € GL(EV) the dual map of A. Then we have
Lemma 3.3. For any Ae GL(E) and T e D(F),
AT=(A). T

The proof is straightforward from the definition (3.1]), and we omit it.

Next we consider the group homomorphism GL(E) — GL(Pol(E)), A » Ay.
Taking the differential, we get a Lie algebra homomorphism End(E) - D(FE). In
the coordinates, we write Z =*(z1,-+, 2,) and dz =* (6‘971,---, %). Then this homo-
morphism amounts to

(3.3) Uy End(E) - D(E), Aw —Z1A0,=- ZAiij%~
i i

Let 0 : g » End(F) be a representation of a Lie algebra g on E, and ¢¥ : g —>
End(EY) the contragredient representation. Then the algebraic Fourier transform

T + T relates the two Lie algebra homomorphisms ¥goo : g — D(FE) and VooV :
g~ D(EY) as follows:

Lemma 3.4.

\PE o0 = \Iva oo’ + (Traceo 0') ldEv
Proof. In the coordinates, we write A :=o0(Z) € End(F) ~ M(n,C) for Z € g. Then,
\IJE OO'(Z) - \I/Ev OO'V(Z) = -tz tAaz - t(A@g

= 9. 'AC - 'CAQ,
(Trace A) idgv,

where the last equality follows from the commutation relations (3.2)). O

For actual computations that will be undertaken in a subsequent paper [KP14-2],
it is convenient to give another interpretation of the algebraic Fourier transform by
using real forms of E.
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Definition 3.5. Fix a real form F(R) of the complex vector space E. Let Eloy (E(R))

be the space of distributions on the vector space E(R) supported at the origin 0. We
define a “Fourier transform” F,: SEO}(E (R)) = Pol(EV) by the following formula:

(3.4) Ff(Q =10k = [ ee0p @) forCe .

We have used the function e(@<) in (3.4)) rather than e-V=1@< or e~(@:€) which are
involved in the usual Fourier transform or the Laplace transform, respectively. This
convention makes later computations simpler (see Remark .

Furthermore, with our convention

(3.5) Fe(f(A)) = (Fof)('ATH),
for any A € GLg(E(R)).

The Fourier transform F. induces an algebra isomorphism
F.: 5{0}(E(R)) = Pol(EY)
between the polynomial algebra Pol(EV) with unit 1, the constant function on EV,
and the convolution algebra 5{0}(E (R)) with unit 4, the Dirac delta function. We
write F;1: Pol(EY) — &gy (E(R)) for the inverse “Fourier transform”:

F (1) =0.

Remark 3.6. The Weyl algebra D(E) acts naturally on the space of distributions on
E(R), and in particular, on &£ {0}(E (R)). The algebraic Fourier transform defined in
Definition [B.1] satisfies

(3.6) T=F.oToF.' forTeD(E),

and the formula (3.6 characterizes T. To sce this, we take coordinates (1, x)
on E(R), and extend them to the complex coordinates (21, z,) on E and the dual

Il
ones ((1,-+,¢,) on EV. Let P(¢) =(*€ePol(EY) and T = 2&57726% € D(FE). Then
Byy z

we have
TP = S (<1)Play. 20 o

and on the other hand,

FooToF'P

(-D)F 0 T(8%(x)) = (-1)IF, (Zaﬂwﬁéa”(x))
By

(~1)k Z(_l)la\ﬂv\aﬂ W@CO‘H-
5 108
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Hence the identity (3.6) holds on Pol(E£Y). Since the Weyl algebra D(EY) acts
faithfully on Pol(E£Y), we have shown ({3.6)). In particular, the composition F.oT o F !
does not depend on the choice of a real form E(R).

3.2. Holomorphic vector fields associated to the Gelfand—Naimark decom-
position. It is convenient to prepare some notation in the complexr reductive Lie
algebras for later purpose.

Let g be a complex reductive Lie algebra, and p = [+ n, a Levi decomposition of
a parabolic subalgebra. Let Gi¢ be a connected complex Lie group with Lie algebra
g, and Pr = Leexpn, the parabolic subgroup with Lie algebra p = [+n,. According
to the Gelfand—Naimark decomposition g =n_ + [+ n, of the Lie algebra g, we have
a diffeomorphism

n_xLexng, > Ge, (Z,0,Y)w (expZ)l(expY),
into an open dense subset G&® of G¢. Let
pe i GEP — ., poGe® - Le,
be the projections characterized by the identity

exp(p-(9))po(9) exp(p+(9)) = g

We set
d tY Z
(3.7) argxn. - (Y. Z) > —| po(e¥e?),
dt =g
d
(3.8) Bigxn_ —>n_, (Y, Z) > —| p_(ee?).
dt =g
d
(3.9) yrgxn. - [+n,, (Y, 2) » a(Y,Z) + @l P (e™e?).
t=

We regard (Y, -) as a holomorphic vector field on n_ through the following iden-
tification.

n>Z~pY,Z)en_~Tym._.

Example 3.7. Gc =GL(p+¢q,C), Lc = GL(p,C) x GL(q,C), and n_~ M(p,q;C).
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We note that n_ is realized as upper block matrices. Then for g~! = (OCL b) € Gg,

Y:(é g)e]\/[(p+q;(C) and Z € M(p,q;C) we have

p-(g7") =bd’",

Po(g™") =(a—bd "¢, d) e GL(p,C) x GL(q,C),
a(Y,Z)=(A-zC,CZ+D) egl,(C)egl,(C),
B(Y,Z)=AZ +B-ZCZ - ZD.

Then B(Y,-) is regarded as the following holomorphic vector field on n_~ M(p,q;C)
given by

0
aZab

2 6
(Z Aaizib + Bab - Z Z Zaj C]zzzb Z Za] ]b

i=1 i=1j=1

M=
MQ

Trace(S8(Y, Z) '07) = BY, Z)avm—

15

S)
1l
1l

—_

M=
MQ

Il
—_
o

I
—_

a

A reductive Lie algebra g is said to be k-graded if it admits a direct sum decom-
position g = @ _,g(j) such that [g(:),a(j)] c g(i +j) for all i,j. Any parabolic
subalgebra p = [+n, of g is given by [ = g(0) and n, = @,.09(j) for some k-gradation
of g. We then have the following estimates of coefficients of holomorphic differential
operators dm,(Y).

Lemma 3.8. According to the direct sum decomposition g = @f;_kg(j), we write

VY. Z) = $iove and B(Y, Z) = .1, B, where v, € g(€) for 0< £ <k and By € g({)
for =k <0 <-=1. Then ~, and By are polynomials in Z of degree at most k —{.

Proof. Since the map N_c x Pc — G¢® is an analytic diffeomorphism, we have

(3'10) etY o2 = Z+tB(Y,Z)+o(t) pta(Y,Z)+o(t)

for sufficiently small ¢t € C, where we use the Landau symbol o(¢) for a g-valued
function dominated by ¢ when ¢ tends to be zero. Multiplying (3.10) by e=4 from
the left, and taking the differential at ¢t = 0, we get

Ad(e™?)Y = (Y, Z)+ B(Y 7Z),

( )
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d ad(Z) _ 1

because —| e Ze?*W = £ " “y1 We note that ad(Z) lowers the grading of g,
dt t=0 . ad(Z)

namely ad(Z)g(j) c ®/_",g(i) because Z en_. In particular, we have

(3.11) Z( 1‘) ad(2)7Y =~(Y, Z) + Zad(zli' (Y, 2).

Let qe g = g(¢) be the projection according to the direct sum decomposition g =

@ 9(7). Suppose £ > 0. Applying ¢, to (3.11)), we have
ik

- )

Hence v, is a polynomial in Z of degree at most k — /.
Suppose ¢ < 0. Applying g, to (3.11)), we get

~ (-1)/ad(2) ad(Z)
(5 U)o (S5 808 ).

7=0 1=0 j=¢

By the downward induction on ¢, we see that (5, is a polynomial in Z of degree at
most k -/ for -k <0< -1. O

3.3. Fourier transform of principal series representations. Suppose g is a
complex reductive Lie algebra, p = [+n, a parabolic subalgebra, and A : p — End¢ (V')
a finite-dimensional representation.

We use the letter p to denote the representation of p on the dual space V'V given
by
(3.12) =N = A\ @ Trace(ad(-) : ny » ny).

By applying the (algebraic) Fourier transform of the Weyl algebra, we define a Lie
algebra homomorphism
dm,: g —D(n,) ®Ende(VY),

by using the complex flag variety G¢/ P in this subsection. In Section , we relate
dm, with the “algebraic Fourier transform” of a generalized Verma module

F.:ind}(VY) > Pol(n,) @ V",
which is defined by using a real flag variety G/ P, see ([3.23)).

Let G¢ be a connected complex reductive Lie group with complex reductive Lie
algebra g, and Pc = Lc/V, ¢ be the parabolic subgroup with Lie algebra p. Let €x,
be the canonical line bundle of the complex generalized flag variety X¢ = G¢/Pe.
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Suppose A lifts to a holomorphic representation of Pr, then so does u. We form a
Gc-equivariant holomorphic vector bundle V and VY ® (1. over X¢ associated to A
and u, respectively.

We consider the regular representation 7, of G¢ on C*(Ge¢/Pc, VY ® Qx.). The
infinitesimal action will be denoted by dm,, which is defined on C*(U, V¥ ® Qx |v)
for any open subset U of G¢/Pc. In particular, we take U to be the open Bruhat cell
n. = Gc/Pc, Z — expZ-o, where o = ePc € Ge/Pc. By trivializing the holomorphic
vector bundle VY ® Q2x. - G¢/Pc on it, we define a function F' e C*°(n_,VV) for a
section f e C°(Ge/Pc, VY ®Qx.) by

F(Z):=f(expZ) for Zen_.
Then the action of g on C*(n_, V") given by

d
(dr,(Y)F)(Z)= = —| [f(e™e?)
dt |0
(3.13) = (Y, 2)F(Z) - (B(Y,)F)(Z) for Y g,
where by a little abuse of notation p stands for the infinitesimal action. The right-
hand side of (3.13)) defines a representation of Lie algebra g whenever p (or \) is a
representation of the Lie algebra p without assuming that it lifts to a holomorphic
representation of the complex reductive group Fe.
It follows from (B.13)) and Lemma [3.8] that we obtain a Lie algebra homomorphism

(3.14) dm,:g—D(n_)® End(V"),

for any representation A of the Lie algebra p. By taking the algebraic Fourier trans-
form on the Weyl algebra D(n_) (see Definition [3.1)), we get another Lie algebra
homomorphism:

(3.15) dr, g - D(n,) ® End(V").

We use the same letter 7, to denote the “action” of G¢ on C*(n_, V") given as

(3.16)  (mu(9)F) (Z) = upo(g™ exp Z) exp(p. (9~ exp Z))) " F(p-(g™" exp Z)).
This formula makes sense if F' comes from C*(G¢/Pc, VoY ), orif F'e C=(n_, V)

reg

and g € G¢ and Z € n_ satisfy g7'expZ € G®. In particular, if X is trivial on the
nilpotent radical n, for g = mexpW with m € L¢c and W e n_, and if n, is abelian
we have

(3.17) (mu(9)F) (Z) = p(m)F(Ad(m)~' Z - W).

Let us analyze dm,(Y) for Y e [+n,. We begin with the case Y € [. We let the
Levi subgroup L¢ act on Pol(n,) by

Ady(l): f() = f(AL(ITY)),  leLe.
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Since this action is algebraic, the infinitesimal action defines a Lie algebra homomor-
phism into the Weyl algebra:

ady:[->D(n,), Y rady(Y),

where ad4(Y) is a holomorphic vector field on n, given by ad4(Y'), := %h: JAd(e™ ) e
T.(n,) for x en,.

Lemma 3.9. Let A be a representation of the parabolic Lie algebra p = [+n,, and
=X beasin (3.12). Then the following two representations of I on Pol(n,)®V"are
isomorphic:

(3.18) d/ﬂh ~ady ®id +id ® (- Trace o ad’ )=adx(Y)®id+id ® (-)).

In particular, if A lifts to a holomorphic representation of Pc then the right-hand
side is the infinitesimal action of Ady ® AV of L¢ on Pol(n,) @ V'V.

Proof. For Y e [, X € n_ we have y(Y,X) =Y, and the formula (3.13)) reduces, in
D(n_) ® End(VV), to
dr,(Y)=ide u(Y) - 5(Y, ) ®id.
We apply Lemma [3.4] to the case where (o, F') is the adjoint representation of [ on
n_. Since B(Y,:) = =dL(Y") for Y € [, we have ¥, oad = - on [, with the notation

therein. Moreover, via the identification n¥ ~ n,, the map W,v o ad” amounts to
VU, oad = ady. Therefore, we get

dr,(Y) = ideu(Y)+¥yoad’(Y)®id + (Trace oad(Y) )id ®id
= deou(Y)+ady(Y)®id - (Trace oad(Y) ) id ® id.
Thus, the lemma follows. O

The differential operators d/w:(Y) with Y € n, play a central role in the F-method.
If the parabolic subalgebra p is associated to a k-gradation of g, then these differential
operators are at most of order 2k by Lemma [3.8f We describe their structure in the
case where k = 1, namely n, is abelian.

Proposition 3.10. Assume that n, is abelian. Let (\,V') be a representation of I,
extended trivially on ny, and p = \* be as in (3.12)). For every Y € n, the operator
dr,(Y') is of the form

N 9
3.19 O+ Y,

where afk and b7 € End(V'V) are constants depending on Y .
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Proof. Since n, is abelian, we can take a characteristic element H such that
Ad(e*)Y =e*Y  foranyY en,.

We set m :=esH. Then ‘Ad(m)~! = e*id on n_ ~ nY.

Taking the algebraic Fourier transform of the formula

dr,(Ad(m)Y) = 7, (m)dr, (Y)m.(m™),
where (m,(m)F)(Z) = p(m) F(Ad(m™)Z) = p(m)F(Ad(m)4F)(Z) by @I, we
et

) dm,(Ad(m)Y) = (‘Ad(m)™), dmn(Y)
by Lemma |3.3] Hence
(3.20) e*dr, (V) = (e7id), dmu(Y)

If we write Eﬂ'\u(Y) in the form

olBl

Oa,ﬂga_

a,BZE:N” aCﬁ
then (3.20) implies that C, 3 # 0 only when |a|+|8]| = =1 because (e‘sid)*a%j = e‘sa%j
and (e=*id).¢; = e5¢; (1 < j <n). As dm,(Y) is a vector field there is no term for
|o| > 1. Hence we get the expression ((3.19)). U

3.4. Fourier transform on the real flag varieties. In this subsection we define
“algebraic Fourier transform” of generalized Verma modules, see (3.23)):

F.:ind}(VY) = Pol(n,) @ V.
As we shall prove in Proposition[3.11] the Lie algebra homomorphism dmy : U(g) —
(3-15

D(n,)®End(V") defined in (3.15)) in the previous section can be reconstructed from
F,, namely, dmy+(u) (ueU(g)) is the operator S that is characterized by
SF.(v) = F.(u-v) forany v eindj(V").
For later purpose, we work with a real form G of G¢. From now on, let G be
a real semisimple Lie group, P a parabolic subgroup of G with Levi decomposition
P=LN,, and V a finite-dimensional representation of P.
Let LN_ be the opposite parabolic subgroup of P = LN,. We write n,(R) and

n_(R) for the Lie algebras of N, and N_, respectively, and set n, = n,(R) ®g C. The
open Bruhat cell is given as the image of the following embedding

t:n_(R) > G/P, X w—exp(X)-o,
where 0o = eP € G/P.

Let A: P - GLc(V) be a finite-dimensional representation of P, and V =G xp V
the G-equivariant vector bundle over the real flag variety G/P. The pullback of the
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dualizing bundle V* =V, — G/P via ¢ is trivialized into the direct product bundle
n_(R) x VvV > n_(R) and thus we have a linear isomorphism:

(3.21) €y (GIPVy,) — Elpy(n-(R)) @ VY,
through which we induce the (g, P)-action on EEO}(n_(R)) ® V" from EEO}(G/P, Vy,).

The Killing form of g identifies the dual space n_(R)Y with n,(R), and thus the
Fourier transform F. in (3.4)) gives rise to a linear isomorphism:

(3.22) Fe@id: g (n(R)) ® VY — Pol(n,) ® V",

through which we induce the (g, P)-action further on the right-hand side.
In summary we have the following (g, P)-isomorphisms:

@-22) [B-21) F.oid

(3.23)  F.:indd(VY) > &, (GIP.V3,) — Elp,(n_(R)) @ V¥ —> Pol(n,) ® V",

We say that F, is the algebraic Fourier transform of a generalized Verma module.
The (g, P)-module structure of Pol(n,) ® V'V is described by the following propo-
sition.

Proposition 3.11. Let (A, V') be a finite-dimensional representation of P and define
another representation of P on the dual space V¥ by pn:= \* = \Y ® Cy,. Then,

1) The g-action on Pol(n,) ® VV induced by F. in coincides with the one
given by d/ﬂ mn .

2) The L action on Pol(n,)® VV induced by F, in (3.23)) coincides with the one
given by Ady ® \V.

Proof. 1) Let G¢ be a complexification of G and P¢ the connected subgroup of G¢
with Lie algebra p = Lie(P) ®g C. First we assume that A extends to a holomorphic
representation of Pe. Then the G-equivariant vector bundle Vy, over X = G/P
is the restriction of the Gc-equivariant holomorphic vector bundle VY ® (1x. over
Xc = G¢/Pc that was introduced in the previous subsection. Therefore, the action
of Y egon 5{’0}(11_(]R) ® VV) induced by ¢* in is given by the restriction of the
holomorphic differential operator dm,(Y").

In turn, the action of Y € g on Pol(n,) ® V¥ induced by the isomorphism is
given by

(Fe®id)odm, (V) o (F.'®id),

which is equal to dm,(Y) by Remark .

To complete the proof in the general case we denote by Hom(Pc, GLc(V)) the
set of holomorphic representations of Pc on V' and by Hom(p, End(V')) the set of
Lie algebra representations of p. Since the former is Zariski dense in the latter, the
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two g-actions on Pol(n,) ® V'V coincide for all A because both depend algebraically
(actually affinely) on A € Hom(p, End(V)).

2) This statement is the analogue of Lemma for the Lie group L. Indeed, since
the group L normalizes n_(R) and fixes the origin 0, the isomorphism ¢* in ([3.21))
respects the L-action when L acts diagonally on & {0}(11_(]1%)) ® VV. To conclude the

proof we use (3.5)). O

The map F. does not depend on the choice of a real form G of G¢ that appears
in the two middle terms of dﬁ . Moreover, the isomorphism £, : indy (V") —
Pol(n,) ® V'V depends only on the infinitesimal action of P on V. In fact, the
following corollary follows immediately from the statement 1) of Proposition .

Corollary 3.12. The algebraic Fourier transform of generalized Verma modules (see
62 N
F, :indy(V") — Pol(n,) @ V¥
s given by
(uev¥) » dry(u)(1®vY), uelU(g), v’ eV,

4. F-METHOD

In Section [2] we have established a one-to-one correspondence between differential
symmetry breaking operators for vector bundles and certain Lie algebra homomor-
phisms (Theorem . Using this framework our aim is to find explicit formulee for
such operators, in particular, when such operators are a priori known to be unique
up to scalar. For this purpose we propose a new method, which we call the F-method.
Its theoretical foundation is summarized in Theorem [4.1} This method becomes par-
ticularly simple when b is a parabolic subalgebra with abelian nilradical. In this case
we develop the F-method in more details, and give its recipe in Section [4.4] Some
useful lemmas for actual computations for vector-valued differential operators are
collected in Section 4.5

4.1. Construction of equivariant differential operators by algebraic Fourier
transform. Let E be a finite-dimensional vector spaces over C and FEV its dual
space. Let Diff®**(E) denote the ring of holomorphic differential operators on E
with constant coefficients. We define the symbol map
Symb : Diff**"(E)— Pol(EY), D, Q(()
by the following characterization
D.e*¢) = Q(¢)e*9).

Then Symb is an algebra isomorphism. The differential operator on £ with symbol

Q(¢) will be denoted by 0Q)..
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By the definition of the algebraic Fourier transform (Definition one has
(4.1) OP. = (-1)'P(¢),  Q(z)=0Qc

for any homogeneous polynomial P on EV of degree ¢ and any polynomial () on E
seen as a multiplication operator.

We recall from Corollary that Pol(n,) ® VV is a (g, P)-module if V is a P-
module. Note that the action of exp(n,) (c P) on Pol(n,) ® VV is not geometric,
namely, it is not given by the pull-back of polynomials via the action on the base
space n,.

The key tool for the F-method that we explain in Section [4.4] is the following
assertion. We note that the two approaches (the canonical invariant pairing )
and the algebraic Fourier transform ((3.23))) give rise to the same differential operators,
provided that n, is abelian:

Theorem 4.1. Suppose that p is a parabolic subalgebra g and that P = Lexp(n,)
1s its Levi decomposition. Let P' be a closed subgroup of P such that P’ has a
decomposition P = L'exp(n}) with L' ¢ L and v, c n,. Let G' be an arbitrary
subgroup of G containing P'. For a representation (A, V') of P and a representation
(v, W) of P, we form a G-equivariant vector bundle V = GxpV over X = G[P and a
G'-equivariant vector bundle W = G' xp: W over Y = G'| P', respectively. Let p:= \*
be as in (3.12).

(1) There is a natural isomorphism

(Pol(n,) ® Home(V, W)X 7(%)

(Homy, (V ® Pol(n, ), W)™

Here the right-hand side of consists of 1 € Pol(n,) ® Home(V, W) sat-

(42) DiﬁG/(VX, WY)

12

1R

1sfying
(4.3) v(0) o Ady () o A(( 1) =4  forallle L
(4.4) (dm,(C) @ idy +idev(C)) =0  for allC en’.
(2) Assume that the nilradical n, is abelian. Then the following diagram com-
mutes:
F.®id Symb ®id
Home(WY,ind}(VV)) —  Pol(n,) @ Home(V,W)  «— Diff**"(n_) ® Home(V, W)
U O U
HOIIlp/(WV, 1ndg(VV)) DL) DiffG/(Vx, Wy)
X-Y

Remark 4.2. The convention on the Fourier transform F,. in Definition makes the
diagram in Theorem commutative without additional powers of \/-1.
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Theorem [4.1] may be regarded as a construction of symmetry breaking operators
by using the Fourier transform of generalized Verma modules.

Corollary 4.3. Assume that n, is abelian and that P’ = L'exp(n’) with L' c L and

. cn,. Then the following diagram of three isomorphisms commutes.

Homy, (V ® Pol(n, ), W)™ (™)

HOIHPI(WV, mdg(VV)) - DiHGI(VX, Wy)

Dx_y

In the above corollary, Homy (V ® Pol(n,), W))dw“(ni) consists of L’-equivariant,
Homge(V, W)-valued polynomial solutions 1) on n, to a system of partial differential
equations of second order, see Sections and 4.4 Corollary implies that, once
we find such a polynomial solution 1, we obtain a P’-submodule WV in indg(VV)
(sometimes referred to as singular vectors) by (F,®id)~'(¢), and a differential sym-
metry breaking operator by (Symb ® id)~!(1)).

We first give proofs for the first statement of Theorem here. The proof of the
second statement is postponed until the next subsection.

Proof of Theorem (1). Combining the duality theorem (Theorem [2.9) with the
algebraic Fourier transform (Corollary [3.12)) we have an isomorphism

Homp (WY, Pol(n,) ® V¥) — Diffo:(Vx, Wy)

where the P’-action on Pol(n,) ® V'V is defined via the algebraic Fourier transform
F,, namely, the left-hand side consists of ¢ € Homc(WV,Pol(n;) ® VV) ~ Pol(n;) ®
Homge (V, W) satisfying

(dr.(C)®idw +ide@v(C))1 =0 forall Cel +n,,

provided L’ is connected. Owing to Lemma [3.9 the condition for C € I is equivalent
to that ¢ € (Pol(n,) ® Homc(V,W))", where [' acts on Pol(n,) ® Home(V, W) by
ady @ id+id®(\' ® id+id ®v).

In a more general setting where we allow L’ to be disconnected, by the same
argument as in the proof of Lemma [3.9] we see that the P-action on Pol(n,) ® V¥
via the algebraic Fourier transform F, of generalized Verma modules (Corollary
coincides with the tensor product representation Adx®\¥ when restricted to the Levi
subgroup L. Thus the isomorphism is proved. O

4.2. Symbol map and reversing signatures. The purpose of this section is to
carefully and clearly set up relations involving various signatures in connection with
the algebraic Fourier transform in a coordinates-free fashion.
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Denote by v : S(E) = Pol(E") the canonical isomorphism, and define another

algebra isomorphism

Ysgn : S(E) = Pol(EY),
by yoa, where a: S(E) — S(F) denotes the automorphism of the symmetric algebra
S(F) induced by the linear map X — -X for X € F.

Now we regard E as an abelian Lie algebra over C, and identify its enveloping al-
gebra U(FE) with the symmetric algebra S(F). Then, the right and left-infinitesimal
actions induce two isomorphisms:

dR:S(E) = Diff™(E), dL:S(E) = Diff*™(E).

By the definition of the symbol map, we get,

SymbodR =7, Symb odL = 7ygp.

On the other hand, it follows from (4.1)) that

S —_—

dL(u) =~y(u),  dR(u) = 7sgn(u),
for every u € S(F) ~ U(FE), where polynomials are regarded as multiplication oper-
ators. Hence we have proved

Lemma 4.4. Let E be an abelian Lie algebra over C. For any u e U(E),
SymbodR(u) = dL(u), SymbodL(u) = dR(u).

4.3. Proof of Theorem [4.1] (2). We are ready to complete the proof of Theorem
(and Corollary [4.3)).

Proof. Take an arbitrary ¢ € Home(WY,indg(VY)), which may be written as a finite
sum

=Y u;®1; € U(n_) ® Home(V, W)
J

by the Poincaré-Birkhoff-Witt theorem U(g) ~ U(n_) ® U(p). Then it follows from
£23) and (323) that
Fup =Y F. (dL(u;)5) ® b, € Pol(n,) ® Home(V, W).
J

Since 6 = F (1), we get
Fep =) dL(u;) ®1);.
j
On the other hand, by the construction ({2.18)),
Dx_y(p) = ZdR(uj) ® Y.
J

Now we use the assumption that n, or equivalently n_ is abelian. Then, in the
coordinates n_(R) — G/P the operator dR(u;) for u; € U(n_) defines a constant
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coefficient differential operator on n_. Thus Dx_y(¢) can be regarded as an element
of Diff****(n_(R)) ® Home(V, W).
Applying the symbol map we have

(Symb®id) o Dx_y(p) = Z SymbodR(u;) ® ¢, = Z dL(uJ) ® 1;,

where the last equation follows from Lemma[4.4] Thus we have proved that
(Fc ® ld)@ = (Symb ® ld) o DXHy((p),

whence the second statement of Theorem (.11 O

4.4. Recipe of the F-method for abelian nilradical n,. Our goal is to find an
explicit form of a differential symmetry breaking operator from Vx to Wy . Equiva-
lently, what we call F-method provides a way to find an explicit element in the space
Homyg (ind (W), ind?(V")) = Homy (W",ind$(V")).

A semisimple element Z in g is called hyperbolic if all the eigenvalues of ad(Z) are
real. A hyperbolic element Z defines a parabolic subalgebra p(Z) = [(Z) + n.(Z),
where [(Z) and n,(Z) are the sum of eigenspaces of ad(Z) with zero and positive
eigenvalues, respectively.

Let g’ be a reductive subalgebra in g, in the sense that g’ itself is reductive and
the adjoint representation of g’ on g is completely reducible.

Definition 4.5. A parabolic subalgebra p is said to be g’-compatible if there exists
a hyperbolic element Z € g’ such that p = p(2).

If p=[+n, is g’-compatible, then p’:= pn g’ becomes a parabolic subalgebra of g’
with the following Levi decomposition:

pr=l+ni:=(ng)+(n.ng),

which satisfies the assumptions of Theorem 2).
In this case the space Diff o/ (Vx, Wy ) of differential symmetry breaking operators
is always finite-dimensional owing to Corollary because:

dimg Homg (ind%, (W), ind3(V")) < oo

for any finite-dimensional representations V' and W of p and p’, respectively [K14,
Proposition 2.8].



32 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Our assumption here is that p = [+n, is a g/-compatible parabolic subalgebra of g
with abelian nilradical n,. Based on the following diagram (see Corollary ,
(4.5)

(Pol(n, ) ® Home (V, W)~ @)

HOIHPI(WV, 1ndg(VV)) - Diffgl(VX, WY)

Dx_y

we develop a method as follows:

Step 0. Fix a finite-dimensional representation (A, V') of the parabolic subgroup P.
It defines a G-equivariant vector bundle Vx = G xp V over X = G/P.

Step 1. Let o= AV ® Cy, and compute (see (3.14) and (3.15))),
drm,:g - D(n_)®End(VY),
dr,:g - D(n,)®End(VY).

According to (3.13)), R only depends on the infinitesimal representation A
of the parabolic subalgebra p.

Step 2. Find a finite-dimensional representation (v, W) of the Lie group P’ such that
Homp: (WY, ind3 (V")) # {0}.

It defines a G’-equivariant vector bundle Wy = G’ xp W over Y = G’/ P’ such
that Diff o (Vx, Wy ) is non-trivial.

Step 3. Consider 1) € Pol(n,) ® Home(V, W) satisfying (4.3 and (4.4). Note that the
system of partial differential equations (|4.4])) is of second order (see Proposition
3.10)).

Step 4. Take a slice S for generic Li-orbits on n,. Use invariant theory for (4.3 and
consider the system of differential equations on S induced from (4.4). Find
polynomials ¢ € Pol(n,) ® Hom(V, W) satisfying (4.3)) and (4.4)) by solving
those equations on S.

Step 5. Let ¥ be a polynomial solution to (4.3)) and (4.4) obtained in Step 4. In
the diagram (4.5)), (Symb®id)~!(¢) gives the desired differential symmetry
breaking operator in the coordinates n_ of X by Theorem 1.1 In the same
diagram, (F. ® id)~*(¢)) gives an explicit element in Hom, (W",indg(V"))
& Homgf(indgi(WV), indy(V'))), which is sometimes referred to as a singular
vector.
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This method gives all non-trivial differential symmetry breaking operators for given
data (Y - X,Vx) by providing G’-equivariant vector bundles Wy and explicit ele-
ments in Diffo/(Vx, Wy ). In fact, Step 2 based on Theorem [2.9| gives a necessary and
sufficient condition for a P’-module W to ensure that Diffo(Vx, Wy ) is non-zero.
Steps 1, 3 and 5 based on Theorem [4.1|show that any differential symmetry breaking
operator is of the form (F, ®id)~'(¢) where 1 is a polynomial solution to and
().

Actual applications of the F-method include the following cases:

1. Holomorphic discrete series representations.

2. Principal series representations of real reductive groups (Corollary [2.13).

The latter is related to questions in conformal geometry (more generally parabolic
geometry), see [J09, [KOSS13]. The former case includes the classical Rankin—Cohen
bidifferential operators as a prototype, and it is the main object of the second part
of this work [KP14-2]. The connection between these two is discussed in [KKP15].

Here we give some comments on the actual applications of the F-method when X
and Y are Hermitian symmetric spaces. In Theorem [5.3] we prove that all continuous
symmetry breaking operators in this case are given by holomorphic differential oper-
ators that extend to the complex flag varieties, so that the F-method for a parabolic
subalgebra with abelian nilradical applies.

Furthermore, if (G,G") is a reductive symmetric pair, we know a priori that
Diffo/(Vx, Wy ) is one-dimensional for line bundles Vx with generic parameter [K14,
Theorem 2.7]. Thus, it is natural to look for explicit formulee for such canonical op-
erators. In Step 2 we can use explicit branching laws (see [KP14-2) Fact [1.2]) to find
all W such that Hom,, (W",indg (V")) is non-zero. Conversely, the differential equa-
tions in Step 3 are useful in certain cases to get a finer structure of branching laws,
e.g., to find the Jordan—Holder series of the restriction for exceptional parameters A
(see [KODSS13]).

The Rankin-Cohen operators as well as Juhl’s conformally covariant differential
operators are recovered by the F-method as a special case where generic Lg-orbits
on n, are of codimension one. The induced system of reduces to ordinary
differential equations on the one dimensional complex manifold S. In the second part
of this work [KP14-2] we shall treat all the six geometries with a one-dimensional
slice S.

4.5. F-method — supplement for vector valued cases. In order to deal with
the general case where the target Wy is no longer a line bundle but a vector bundle,
i.e., where W is an arbitrary finite-dimensional irreducible [-module, we may find
the condition somewhat complicated in practice, even though it is a system
of differential equations of first order. In this section we give two useful lemmas to
simplify Step 3 in the recipe by reducing to a simpler algebraic question on
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polynomial rings, so that we can focus on the crucial part consisting of a system of
differential equations of second order . The results here will be used in [KP14-2]
Sections 7| and .

We fix a Borel subalgebra b(I') of I'. Let x : b(I') > C be a character. For an
I'-module U, we set

Uy ={uelU: Zu=x(Z)u forany Zeb(l')}.

Suppose that W is an irreducible representation of I’ with lowest weight —y. Then
the contragredient representation WV has a highest weight y. We fix a non-zero
highest weight vector w¥ € (WV),.. Then the contraction map

UeW U, ¢ (¢,uw’),
induces a bijection between the following two subspaces:
(4.6) (UeW)" U,

if U is completely reducible as an I'-module. By using the isomorphism (4.6]), we
reformulate Step 3 of the recipe for the F-method as follows:

Lemma 4.6. Suppose we are in the setting of Section[{.4] Assume that W is an
irreducible representation of the parabolic subalgebra p’. Let —x be the lowest weight
of W as an '-module. Then we have a natural injective homomorphism

Diffe:(Vx, Wy) = {Q € (Pol(n,) ® V) :dm,(C)Q =0 forall Cenl},
which 1s bijective if L' is connected.

Proof. Applying (4.6)) to the I'-module U := Pol(n;) ® Homc(V, W), we get an iso-

morphism:
(4.7) (Pol(n,) ® Hom(V, W))" > (Pol(n.) ® V). .

Since W is an irreducible p’-module, the Lie subalgebra n’ acts trivially on W and I
acts irreducibly. In particular, the condition (4.4)) amounts to

(dr,(C) ®idw ) =0 forall Cen.
Therefore, the isomorphism (4.7)) induces a bijection
{w e (Pol(n,) ® Hom(V, W))" : ¢ satisfies }
S {Qe(Pol(n.)®VY), :dm,(C)Q=0 forall Cen’}.

Now Lemma follows from Theorem [4.1] O
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Since any non-zero vector in WV is cyclic, the next lemma explains how to recover
Dx_y(p) from @ given in Lemma 4.6

We assume, for simplicity, that the [-module (A, V') lifts to L¢, the I-module
(v, W) lifts to L;, and use the same letters to denote their liftings.

Lemma 4.7. For any ¢ € Homy (WY, indj(V')), £ € Li, and w¥ e WY,
(4.8) (Dx-y (), v (O)w”) = (Ad(£) @ A7 (€)) (Dx-y (), w") .

Proof. We write ¢ = ¥, u; ® 1; € U(n_) ® Home(V,W). Since ¢ is p’-invariant, we
have the identity:

Zuj ®Y; = ZAd(E)uj ®v(l)ohjo () for le L.

In turn, we have

(Dxy(9), " (Hw")

S AR(AA(D)u;) ® iy, w) o A(L)

((Ad(£) @ X7(0)) (Dx-y (), w").
Thus, we have proved Lemma. 0

We notice that the right-hand side of (4.8]) can be computed by using the identity
in Diff*™ (n_) @ VV:

(Dxoy (), w”) = (Symb ™' ®idyv)(Q),

once we know the polynomial @ = (¢, w") with ¢ = (F. ® id)(p) (see Theorem {.1J).
In [KP14-2, Sections [7| and , we find explicit formulee for vector-bundle valued
equivariant differential operators by solving equations for the polynomials ).

5. LOCALNESS AND EXTENSION THEOREM FOR SYMMETRY BREAKING
OPERATORS

Let G o G’ be a pair of real reductive Lie groups. In general, continuous sym-
metry breaking operators between two principal series representations of G and G’
are not always given by differential operators. Actually, generic ones are supposed
to be given by integral transforms and their meromorphic continuation, as one can
see from a classification result [KS14]. In this section, however, we formulate and
prove a quite remarkable phenomenon (localness theorem) that any continuous G'-
intertwining operator between two representation spaces consisting of holomorphic
sections over Hermitian symmetric spaces is given by differential operators, see The-
orem [5.3] In particular, the covariant holomorphic differential operators which we
shall obtain explicitly in the second part [KP14-2] of this work exhaust all continuous
symmetry breaking operators.
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5.1. Formulation of the localness theorem. Let G be a connected reductive
Lie group, € a Cartan involution, and G/K the associated Riemannian symmetric
space. We write ¢(£) for the center of the complexified Lie algebra € := Lie(K) @z C =
¢(R) ®g C. In order to formulate a localness theorem, we suppose that G/K is a
Hermitian symmetric space. This means that there exists a characteristic element
Z € ¢() such that the eigenvalues of ad(Z) € End(g) is 0 or +1 and that we have an
eigenspace decomposition

g=t+n, +n_

of ad(Z) with eigenvalues 0, 1, and -1, respectively. We note that c¢(€) is one-
dimensional if G is simple. With the notation of the previous sections, the complex
Lie algebra ¢ plays the role of the Levi subalgebra .

Let G¢ be a complex reductive Lie group with Lie algebra g, and Pr the maximal
parabolic subgroup with Lie algebra p := € + n,, with abelian nilradical n,. The
complex structure of the homogeneous G/K is induced from the open embedding

G/K c G@/Kcexpm = G(C/P(C.

Let G’ be a connected reductive subgroup of G. Without loss of generality we may
and do assume that G’ is f-stable. We set K’ := K nG’. Our crucial assumption
throughout this section is

(5.1) Zet

Lemma 5.1. If (5.1) holds, then the parabolic subalgebra p is g'-compatible (see
Definition , and the homogeneous space G'|K' is a Hermitian sub-symmetric
space of G| K such that the embedding G'|K' - G|K is holomorphic.

Proof. Let G be the connected complex subgroup of G¢ with Lie algebra g’ :=
Lie(G’") g C. Then p’:= & +n’ = (Eng’) + (n, ng’) is the sum of the eigenspaces
of ad(Z) in g’ with 0 and +1 eigenvalues, respectively, and therefore is a parabolic
subalgebra of g’. We set P} := Pc nG’. Then, the Riemannian symmetric space
G'/K' becomes a Hermitian symmetric space, for which the complex structure is
induced from the open embedding in the complex flag variety Y¢ := Gi./Pf:

G'|K' - G|K
open N N open
Y(C: G(,C/P(é > Gc/P(C :X(C.
Since Y is a complex submanifold of X¢ = G¢/Pc, the embedding G'/K' - G/K is
holomorphic. O

Notice that in the setting of Lemma the complexified Lie algebra of K’ is a
Levi subalgebra of the parabolic subalgebra p’.
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Example 5.2. (1) Let G' be a connected simple Lie group such that the asso-
ciated Riemannian symmetric space G'|K' is a Hermitian symmetric space.
We take a characteristic element Z' € ¢(¥'). Let G := G' x G', and we re-
alize G' as the diagonal subgroup A(G') := {(g,9) : g € G'} of G. Then
Z = (Z',7") € c(t) satisfies (5.1)), yielding a holomorphic embedding A :
G'|K'>G|K=G'|K'<xG'|K".

(2) Let G be a connected simple Lie group such that the associated symmetric
space G| K is a Hermitian symmetric space with Z a characteristic element in
c(€). Suppose T is an automorphism of G of finite order such that 7(Z) = Z.
Let G" be the identity component of the subgroup GT™ := {g € G : 7(g) = g},
and K' := G'n K. Then the assumption is satisfied, and G'|K' is a
Hermitian sub-symmetric space of G/K. We shall focus on the case where
(G,G7) is a symmetric pair, namely, T is of order two in [KP14-2] for detailed
analysis.

Consider a finite-dimensional representation of K on a complex vector space V.
We extend it to a holomorphic representation of Pr by letting the unipotent subgroup
exp(n,) act trivially, and form a holomorphic vector bundle Vx,. = Gexp. V over X¢ =
Gc/Pc. The restriction to the open set G/K defines a G-equivariant holomorphic
vector bundle V := G xx V. We then have a natural representation of GG on the vector
space O(G/K,V) of global holomorphic sections endowed with the Fréchet topology
of uniform convergence on compact sets.

Likewise, given a finite-dimensional representation W of K’, we form the G’'-
equivariant holomorphic vector bundle W = G" x i W and consider the representation
of G on O(G'/K',W). By definition, it is clear that

(5.2) Diff!(Vx, Wy ) ¢ Homer (O (G/K, V), 0(G' K", W)) .
Theorem below shows that the two spaces do coincide.
Theorem 5.3. Let G' be a reductive subgroup of G satisfying (5.1)). Let V' and W

be any finite-dimensional representations of K and K', respectively. Then,

(1) (localness theorem) any continuous G'-homomorphism from O(G/K,V) to
O(G'|K', W) is given by a holomorphic differential operator, in the sense
of Definition with respect to a holomorphic map between the Hermitian
symmetric spaces G'|K' = G|K, that is,

Diff%! (Vx, Wy) = Home (O (G/K, V), 0(G'|K',W)):;

(2) (extension theorem) any such a differential operator (or equivalently, any
continuous G'-homomorphism) extends to a Gi.-equivariant holomorphic dif-
ferential operator with respect to a holomorphic map between the flag varieties
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Yo = G/ Pl = X¢ = Ge/Pe, namely, the injection
(5.3) Diffe (Ve Wye) = Diffe! (W, Wy)

18 bijective.
Remark 5.4. More generally, we may ask whether an analogous statement to Theorem
5.3 (1) holds or not if we replace O (G/K,V) and O(G'/K', W) by some other topo-
logical vector spaces having the same underlying (g, K )-module and (g’, K’)-module,
respectively (e.g. the Casselman—Wallach globalization, Hilbert space globalization,
etc.). This question was raised by D. Vogan in May 2014. It turns out that this

generalization is also true, as we shall show in the proof of Theorem [5.3, that the
natural injection

(54) Diﬁ‘g‘?’cl(VXc’ WY(C) > Hom(g'vK') (O (G/K7 V)K—ﬁnite ) O(G,/K’7 W)K’-ﬁnite)
is surjective if the assumption ([5.1)) is satisfied.

Remark 5.5. An analogous statement for real parabolic subgroups is not true. For
instance, for the pair (G,G") = (O(n+1,1),0(n, 1)) there always exists a non-zero
continuous G’-equivariant map from the spherical principal series representations
C>=(G|P,Ly) of G to the one C=(G'/P',L,) of G’ for any (\,v) € C2, however,
non-zero G'-equivariant differential operators exist if and only if v — A € 2N [KS14].

Remark 5.6. Suppose that V' is a generic character of K and (G,G’) is a symmet-
ric pair. Then owing to Theorems and (2), Diff&! (Vx., Wy,) is at most
one-dimensional for any irreducible K’-module W, and [KP14-2, Fact tells us
precisely when it is non-zero.

In [KP14-2] we describe explicit formulee of such differential operators by using
the F-method (Theorem for the six complex geometries arising from symmetric
pairs of split rank one.

5.2. Proof of the localness theorem. Theorem is a reflection of the theory of
discretely decomposable restrictions (see [K94, [K98]). The proof is based on a careful
analysis of the following three objects:

(g, K)-modules, (g, K')-modules, and (g’, K')-modules.

We say that a K’-module Z is K’-admissible if the multiplicity
[M : F]:=dimHomg (F, M

Kr)

is finite for any F € K'. Then, K’-admissibility is preserved by taking the tensor
product with finite-dimensional representations.

We write O(G/K, V) k-finite Tor the space of K-finite vectors of O(G/K, V), which
becomes naturally a (g, K)-module.
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Lemma 5.7. The (g, K)-module O(G|K, V) k_finite 15 K'-admissible if Z € g'.

Proof. As a K-module, we have the following isomorphism

O(G/ K, V) k-fnite S(ny)®V
(EB S“(m)) eV,

a>0

1R

1R

where S%(n,) denotes the space of symmetric tensors of homogeneous degree a.
Since exp(Rv/~1Z) acts on S%(n,) as the scalar ev-1at (¢ € R), the whole S(n,)
is admissible as a module of the one-dimensional subgroup exp(Rv/-12), and so is
O(G/K,V) k_finite- Hence it is also admissible as a K’-module by [K94, Theorem
1.2]. Alternatively, the lemma follows as a special case of the general result [K94,
Theorem 2.7] or [K98|, II, Theorem 4.1]. O

Given a (g, K’)-module M, we consider the contragredient representation on the
dual space MV := Hom¢ (M, C). Collecting K’-finite vectors in MV, we get a (g, K')-
module (M") g/ gpige-

Lemma 5.8. Let M be a K'-admissible (g, K')-module. Then,
(1) M is discretely decomposable as a (g, K')-module.
(2) The (g, K')-module (M) k1 guie 5 K'-admissible and one has the following
K'-isomorphism

(MV)K’-ﬁnite 3 @[M : F] FV.
FeK’'

For the proof we refer to [K98, Part III, Proposition 1.6].
Lemma 5.9. Let M be a K'-admissible (g, K)-module. Then,

(M V)K-ﬁnite = (M V)K’—ﬁnite :

Proof. There is an obvious inclusion (M) g0 € (MY) jerpnie- We shall prove that
the multiplicities in (MY) x guie @A (MY) ki guie are both finite and are the same.
Indeed, M being K’-admissible, one has

[M:F]=@[M:E]|[E:F]<oo.
Ee<K
Conversely, (MY) k1 gnite = Ppege[M : F] FV and thus,

()= DU EVE = @ (@B 7)) P

EeR FeK’ \EeK

which concludes the proof. ([l
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The next lemma is known to experts, but for the sake of completeness, we give a
proof.

Lemma 5.10. There is a natural (g, K)-isomorphism:
((0(G/K, V)K-ﬁnite>v)K_ﬁnite ~indg(V'").
Proof. As in Lemma there is a natural non-degenerate g-invariant bilinear form
O(G/K, V) k-finite x indg (V) - C.

Hence, we have an injective (g, K')-homomorphism ind§(V¥) ¢ (O(G/K, V) k_gnite) -
Taking K-finite vectors we get the following commutative diagram of K-modules
isomorphisms:

indy (V) c (((’)(G/K, V)K—ﬁnite)v)K_ﬁnite
| |
Sn)e VY = ((Pol(n-) ® V1)) ik finie -
Hence the first row is also bijective. 0

Combining Lemmas [5.7} 5.9 and we have shown the following key result:
Proposition 5.11. There is a natural (g, K)-isomorphism:

((O(GIK, V) k-tinite)”) ~ ind$(V").

K'-finite ~

Proof of Theorem[5.3. Let T: O(G/K,V) - O(G'/K', W) be a continuous G'-intertwining
operator. It induces a (g’, K’)-homomorphism

(55) TK : O(G/Ka V)K-ﬁnite - O(G,/Kla W)K’-ﬁnite-

We shall prove that any such (g, K’)-homomorphism Tk comes from a G-equivariant
differential operator on the flag variety.

To see this, we take the dual map , and apply Lemma and Proposition
5.11, Then there is a (g’, K’)-homomorphism 1) : indgi(WV) — indj (V) such that
the following diagram commutes:

Tk
(O(GI/K,7W)}/{’—ﬁnite) - (O(G/va)\}/(_ﬁnite)
\

Lemmal5.10] < ZPropositionm

ind?, (W) v indg(V)

K'-finite K'-finite
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The correspondence Tk + 1 is one-to-one, and thus we have obtained the following
natural injective map

Hom(g/’K,) (O(G/K, V)K—ﬁnite, O(G’/K’, W)K’—ﬁnite) > HOIHg/ (mdﬁ:(WV), 1ndg(VV))

According to Theorems and [4.1|the latter space is isomorphic to Diff& (Vy, Wy ).
This shows that (5.4) is surjective.

Since the injective map ([5.4]) factors the two injective maps (5.2)) and (5.3, both
(5.2) and (5.3) are bijective. O

5.3. Automatic continuity theorem in the unitary case. Any unitary high-
est weight module is realized as a subrepresentation of O(G/K,V) for some G-
equivariant holomorphic vector bundle V over G/K. In this subsection, we prove that
any continuous homomorphism between Fréchet modules O(G/K,V) and O(G'/K', W)
induces a continuous homomorphism between their unitary submodules.

Definition 5.12. For a Fréchet G-module F, we say a GG-submodule H is a unitary
submodule if H is a Hilbert space such that the inclusion map H — F is continuous
and that G acts unitarily on H.

If V' is an irreducible K-module, then there exists at most one non-zero unitary
submodule (up to a scaling of the inner product) of O(G/K,V). We denote by HS
the unitary submodule of O(G/K,V). The classification of irreducible K-modules
V for which H{ # {0} was accomplished in [EHW83]. We shall prove that any G’-
equivariant differential operator in Theorem preserves the unitary submodules in
the following sense:

Theorem 5.13. Let G’ be a reductive subgroup of G satisfying (5.1)). Let V and W be
any 1rreducible finite-dimensional representations of K and K', respectively. Suppose

that T : O(G|K,V) — O(G'|K', W) is a G'-equivariant differential operator such
that T‘H‘G, #£0. Then HS # {0} and T induces a continuous G'-equivariant linear

map from the Hilbert space H‘C}' onto the Hilbert space H%
Applying Theorems and to the setting of Example (1), we have:

Example 5.14. Any symmetry breaking operator for the tensor product of two holo-
morphic discrete series representations is given by a holomorphic differential op-
erator if those representations are realized in the space of holomorphic sections for
G-equivariant holomorphic vector bundles over the Hermitian symmetric space G| K.
The Rankin—Cohen bidifferential operators are such operators for G = SL(2,R).

Remark 5.15. As we shall see in the proof, the unitary representation S decom-
poses discretely when restricted to G’ if the condition ([5.1)) is satisfied. The unitary
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submodule ’Hﬁ,’ occurs as a discrete summand of the restriction of the unitary rep-
resentation H{ of G to the subgroup G'.

Let V' be an irreducible representation of K as before. Then, there exists a unique
K-submodule of O(G/K, V) k _finite * S(n,)®V isomorphic to V, namely S%(n,)®V =~
V.

Lemma 5.16. Let M be a non-zero (g, K)-submodule of O(G|/K,V) k. gnite- Then,

1) The module M contains V.
2) If M is unitarizable, then its Hilbert completion can be realized in O(G|K,V)
and M = (Hg)K-ﬁnite'

Proof. 1) Since any non-zero quotient of the (generalized) Verma module indj (V)
contains V'V, the first statement follows from Lemma [5.10] Alternatively, since the
infinitesimal action of n_ on O(G/K,V)k finite ~ Pol(n_) ® V' is given by directional
derivatives, iterated operators of n_ yield non-zero elements in V.

2) Denote by (7, M) the unitary representation of G obtained as an (abstract)
Hilbert completion of the (g, K)-module M. We regard V' as a K-submodule of M,
and also of M. Then the map

GXMXV—>(C, (g,w,v)'—’(wﬂr(g)U)M»

induces an injective G-homomorphism ¢ : M — O(G/K, V). Since H$ is the unique
non-zero unitary submodule, ¢ is an isomorphism onto ’Hg 0]

Proof of Theorem[5.13. By Lemma the module (H{), . . is K’-admissible.
Therefore, the unitary representation H¢! decomposes into a Hilbert direct sum of
irreducible unitary representations {U,} of G":

(56) HG = Z€B ijj,
J

with m; < oo for all j ([K94, Theorem 1.1]) and the underlying (g, K)-module
(M) je-finite 1S isomorphic to an algebraic direct sum of irreducible and unitarizable
(g/, K’)-modules

(5.7) (7—[3) K-finite (H‘(/;)K'-ﬁnite = @mj (U5) kit
J

with the same multiplicities [K98| Part III]. (We remark that an analogous statement
fails for the restriction 7|g of an irreducible unitary representation = of G if the
branching law contains continuous spectrum).

As we saw in the proof of Theorem [5.3] the G’-equivariant differential operators
T induces a (g’, K')-homomorphism

Tk : (’Hg) — O(G'| K", W) k' _finite-

K-finite
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By (5-7), M = Tk ((H$) 4 gir ) i an algebraic direct sum of some irreducible unita-
rizable (g’, K’)-modules. Since O(G'/K', W) k'_ginite cONtains at most one irreducible
unitarizable (g’, K')-module, M is irreducible as a (g’, K’)-module, and we can re-
alize its Hilbert completion as 'H%’ by Lemma .

In view of and , there exists a continuous G’-homomorphism between
Hilbert spaces:

T:H] — Hfj
such that T|(H€)K_ﬁnite = T|(”\C5)K.ﬁnite' Since the inclusion map H§ - O(G/K,V) and

the differential operator T : O(G/K,V) — O(G'/K’, V) are both continuous, we
get T =T on HS. Hence Theorem is proved. O

5.4. Orthogonal projectors. If V' is one-dimensional and (G,G’) is a reductive
symmetric pair satisfying (5.1), then all the multiplicities m; in are equal to
one (see [K08]) and it becomes meaningful to describe the projector from H$ to each
G’-irreducible summand. We explain briefly the relationship between the projector
for the unitary representation and the symmetry breaking operator.

For this, suppose T : O(G/K,V) - O(G'/K',W) is a G'-equivariant differential
operator such that T|H5 # 0. By Theorem , T induces a continuous map 7' :
HE — HVGV' . Let T™ : 'H%’ - HE be its the adjoint operator. Then the composition
T*T : HG — H{ is a G'-intertwining operator onto the G’-irreducible summand which
is isomorphic to ’H% Since T vanishes on the orthogonal complement to T™* (H%’),
it is (up to scaling) the orthogonal projector onto ’H‘Cfvl

Explicit description of such differential operators T will be the main concern of
the second part [KP14-2] of this work.
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