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In order to come within the scope of the congress theme, I would like
to speak about not the square of opposition but the triangle of contradic-
tion which one finds when one centres one’s interest on the integers and the
infinite. It is usual indeed to contrast the finite with the infinite. I claim
that there is a grey area in between, where the large numbers are, hence the
following triangle:

Finite

NNNNNNNNNNN Infinite

ppppppppppp

Very large.

According to Cantor’s and Dedekind’s definition, a set is infinite if it can be
put in bijection with a proper subset. A set is therefore finite if it cannot
be put in bijection with a proper subset, that is, a subset strictly contained
within itself. From this, it follows that N, the set of integers, is infinite.
Indeed, as remarked already by Galileo, much to his surprise, the doubling
process puts in a one-to-one correspondance the numbers 0, 1, 2, 3, . . . with
the even numbers 0, 2, 4, 6, . . . Hence the collection of even numbers is as
large as the collection of all numbers. That is, against a well-known axiom
of Euclides, the part is as big as the whole!

1



Mathematical induction

A basic feature of the ordinary numbers is the possibility to count, that is to
enunciate them in order

zero, one, two, three, . . .

where each number is named following its predecessor, without any omission.
What makes this sequence infinite, is that it never stops: if a child can count
up to one thousand, he can go further and name one thousand and one.

A mathematical principle, expressing this intuitive remark, is the princi-
ple of mathematical (or complete) induction. Euclides knew already that the
sum of odd numbers in order is a square, namely

1 = 12 ,

1 + 3 = 22 ,

1 + 3 + 5 = 32 ,

1 + 3 + 5 + 7 = 42 ,

. . . . . . . . . . . .

This can be checked by direct calculation in any given case, but in order
to make it a general rule, we need a systematic procedure. We can use the
following sequence of equalities

12 = 1 ,

22 = 12 + 3 ,

32 = 22 + 5 ,

42 = 32 + 7 ,

. . . . . . . . . . . .

Each of these identities can be visualized using the “gnomon” (Greek word
for “tee-square”), as known to Euclides.
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Hence, the calculation of the sum of the first four odd numbers requires four
steps, and similarly we need thousands steps for the sum of thousands odd
numbers. In the classical age, one would be satisfied in describing explicitely
the first few steps, and concluding with “and so forth”, when the pattern of
each step is sufficiently clear.

To prove the veracity of a property P (n) for every integer n, one uses
mathematical induction. Historically speaking, one can trace the standard
principle of induction back to Fermat and Pascal. How was the reasoning
done before them? As in the previous example of the gnomon, one would
explain how to go from 0 to 1, then from 1 to 2, then from 2 to 3, and
so forth. . . To know the veracity of P (17), one conducted consequently 17
demonstrations. More exactly, the ellipsis following “and so forth” means
that the reader was asked to fill in the blank, with only the indication of
how to do it. What is new with Pascal (especially in his work about the
arithmetic triangle), is that one goes from n to n + 1 in full generality. This
lies on the progress in algebra made by Viète in the previous century. A single
demonstration is made now! After checking the starting point, obviously.
It is accepted as a logical principle that this sole demonstration replaces
all intermediate demonstrations. But does this sole demonstration actually
replace 100 000 billion demonstrations such?

The principle of complete induction was reformulated by Peano at the
end of the 19th century using his logical formal language:

The property1 “ ∀n ≥ 0 · P (n)” is implied by

“P (0) and ∀n ≥ 1 · (P (n)⇒ P (n + 1))” .

Peano proceeded then to define the elementary operations (sum, product,
exponentiation) on numbers and to prove their elementary properties using
this general principle. Poincaré was very impressed by this achievement, and
both Peano and Poincaré claimed that it was there the foundation of all
existing mathematics.

1That is, for all integers n ≥ 0, P (n) is valid.
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Infinite descent (or regression)

Looking for an explanation (or for a proof) can lead to unlimited regression:

– Why?

– Because so and so.

– But then why?

– Because. . .

This was illustrated in a comic vein by Lewis Carroll in the funny logical
tale of Achilles and the tortoise. In the mathematical practice, it has been
accepted since Euclides that one should stop questioning somewhere, and
start from axioms, that is unchallenged truths.

Contemporary of Pascal, Fermat made a very ingenious application of
such an infinite descent. Fermat wanted to prove that a fourth power is
never a sum of two fourth powers. He argues by contradiction: if there is an
example of the form a4 = b4 +c2 with positive integers a, b, c, we can produce
out of it another example a′4 = b′4 + c′2, smaller in the sense that a′ + b′ + c′

is smaller than a + b + c. Nothing prevents us to continue forever. Let us
compare this to the ordinary induction:

• start from 0,

• increase by one, n becoming n + 1,

• continue forever.

In Fermat’s case:

• start from some value of the index a + b + c,

• decrease the index by a variable amount,

• continue forever.

Is this possible?

By way of explanation, let us use a metaphor. We are in an elevator,
which can only descend. From time to time, it will stop; if the door doesn’t
open, press the button to restart it. When the elevator reaches the ground
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floor, it will stop there and the door will open. Common sense tells us that
the nightmare will end up, and we will be able to leave at the ground floor.
More seriously, it is impossible to have a sequence of positive integral numbers
which decreases forever

a1 > a2 > a3 > . . . > an > an+1 > . . .

With fractional numbers, this is possible, as seen from the example

1 >
1

2
>

1

4
>

1

8
> . . .

which lies at the heart of Zeno’s paradox (Achilles and the tortoise).

Assuming the impossibility of infinite descent, Fermat concludes, by re-
ductio ad absurdum, that the original assumption a4 = b4 + c2 is impossible.
Let us reflect for a while at this proof. Fermat is bold in two ways: first, he
imagines an infinite construction in a virtual world, which at the end will be
shown not to exist! Second, he introduces a new logical principle: the nonex-
istence of infinite descending sequences. This logical principle is logically
equivalent to the following: every nonempty set of positive integers contains
a smallest element. Using Cantor’s definitions, this states that the positive
integers, linearly ordered in the usual way, form a well-ordered set. Notice
that, logically speaking, this is a second-order property: it is not a statement
about individual numbers, but about sets (or properties) of numbers. In
the proper logical environment, the nonexistence of infinite descent is just
another, more sophisticated, version of the principle of complete induction.
Notice also that the reductio ad absurdum is accomplished, not by exhibiting
an explicit contradiction, but by contradicting an abstract logical principle!

Let us add a few remarks. First, the method of infinite descent was
resurrected by Mordell in 1922, and by André Weil in his thesis (1928) for
arithmetical purposes. At about the same time, Emmy Noether introduced
the similar principle of minimal chain condition (and the maximal one), in
the theory of ideals, and this is now a widely used method in algebra. Second,
the introduction of topoi in logic has given way to a deeper understanding
of the various logical forms of the principle of complete induction, as well
as of Dedekind’s definition of a finite set. Finally, the axiom of foundation
was proposed in set theory by von Neumann: it is not possible to have an
infinite sequence of sets X0, X1, X2, . . . where X1 is an element of X0, X2
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is an element of X1, . . . This axiom allows to view sets (and in particular
numbers) in a hierarchical way starting from the empty set ∅2.

An arrow in this diagram corresponds to membership:
the arrow 2→ 3 means that 2 is an element of 3!

Jacob’s ladder and the grey zone

The principle of complete induction can be depicted as Jacob’s ladder: man
can ascend with it from the earth to the sky, and angels can descend from
the sky to the earth.

That is, there is no gap between the earth and the sky. Nevertheless,
it seems natural to admit that there is a horizon on both ends, that there
are altitudes we will not dare to climb to, and that from the sky, it will be
difficult to imagine how to go down to the ground. There is room for a grey
zone, or a cloudy level, impenetrable to the eyesight from both sides. This
is particularly clear in ethical problems, where the distinction between white
and black is not that sharp. To define the precise boundary between life and
death, or between the living and the non-living in biology, is foolish.

But in the surest of all sciences, mathematics, the boundary is also not
completely sharp between truth and falsity. There are many historical ex-
amples where a revision was necessary: Euclides was considered the perfect
model, until a revision was felt necessary in the 18th century (Legendre) and
finally accomplished (after Pasch, Veronese and Peano) by D. Hilbert in his
famous book “Grundlagen der Geometrie”. For instance, one of the first
constructions in Euclides’ book I is of an equilateral triangle. This is accom-
plished by drawing circles and looking at their intersection, but nothing in

20 is the empty set ∅, 1 is {0}, 2 is {0, 1}, etc.
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Euclides’ axiomatics guarantees (what is clear intuitively) that circles should
meet in this construction.

A more difficult situation arose at the beginning of calculus. The notion
of a curve is not defined in a way which enables to guarantee the existence of
a tangent; the length of a circle, the area within a curve, were not properly
defined notions. Galois himself, as a high school student, pretended to prove
the existence of the derivative of an “arbitrary” function, a few years be-
fore the counter-examples of Liouville. The shaky foundations of calculus by
Leibniz or Newton, using infinitesimals or fluxions, were accepted with some
embarrassment until the revision by Cauchy, Weierstrass,. . . in the 19th cen-
tury. But this didn’t hamper a fruitful development in the hands of Newton,
Euler, Lagrange and many others during the 18th century.

In modern times, after the invention of set theory by Cantor, a major revi-
sion of mathematics occurred, first suggested by Hilbert, and put in textbook
form in the treatise of Bourbaki. Every mathematical notion is now reduced
to a specific set-theoretic construction. The notion of set (or class), and the
activity of classifying being so fundamental, premathematical in their essence,
there can be no doubt about the meaning of a set, and about the operations
on sets. Nevertheless, to discard annoying paradoxes, it was felt necessary
to rely on an axiomatic basis which is far from being intuitive. Also, the
mathematical practice, in its daily use of categories, plays with dangerous
notions like the category of all sets, worst the category of all categories. This
can be cured by resorting to large cardinals, but the lack of evidence for the
existence of these objects, as well as some logical difficulties (non-provability,
doubts about consistency) leave the “working mathematician” in a state of
uneasiness.

To borrow an allegory from Hermann Weyl, the mathematical activity
takes place in a playground well lit by the sun of axiomatics. But it is
surrounded by bushes, muddy and full of traps – another grey zone. It is
dangerous to wander there, but knowledge progresses by curiosity: take your
chances! I don’t believe in absolute rigour, but I’m a pragmatic. Every good
mathematical invention will survive, albeit perhaps in a different ideological
environment.
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Mastering the numbers

Mathematicians are creators of virtual and ideal realities. These realities
make sense only when they are able to incarnate in a project, not of society
but of civilization. Mathematics and its progress are part of civilization
and heritage of civilization. The first mathematical tools were forged by
the calculation of areas and lengths, also from astronomy seen as a science
of usage to elaborate calendars. Navigation requires knowledge of the sky
and the celestial motions. Lévi-Strauss, among other ethnologists, maintains
that the beginning of social organization started with the invention of incest.
By that, he means that humans lived before in hordes, in clans. Relations
between males and females were not codified. From the moment incest was
invented, that is the rule of exogamy, a spouse must be sought in another
clan, so rules of negociation must be invented, so rules of cooperation between
clans must be laid down. Gradually, as society develops, the economic needs
create needs in storage, accounting, trade, currencies, and all this means a
good handling of numbers and arithmetic. My thesis is that if mathematics
creates ideal objects, these objects are motivated by civilization needs and
mathematicians give back to society what they have created. This can be
seen across a generation. I maintain that in my childhood, negative numbers
were not perceived by the ordinary citizen, whereas today, it is clear that
negative numbers are part of common heritage in our countries. Lazare
Carnot, a great statesman and a great mathematician, wrote in one of his
deepest books a whole diatribe against negative numbers.

On the side of physics, there has been since the early 20th century this
extraordinary development which goes in the two directions as defined by
Pascal, the two infinite, the infinitely large and the infinitely small3. The
infinitely small is the resurrection of atomistic ideas in the early 20th cen-
tury, but with a change of status which allows atoms to move from virtual,
intellectual reality to something accessible to the outside by measurements.
Einstein’s first major scientific contribution is to propose a method for deter-
mining Lodschmit-Avogadro’s number, that is roughly the number of atoms
in 1g of hydrogen or 12g of carbon. Now, until Einstein, one had no idea
how to measure this number. With the study of Brownian motion and other
effects, Einstein provides a scale here: in the mathematical model of phenom-

3Pascal was one of the first to handle the infinitely small as a mathematical tool. He
is one of the inventors of infinitesimal calculus, integral calculus more than differential.
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ena appears explicitly this number of atoms per gram and in a measurable
way. Here we discover with some amazement that in 1g of hydrogen there
are 6×1023 atoms. It means 600 000 billion billion, it defies the imagination.
At the same time, developments in astronomy and astrophysics have gone
to another scale. It is only in the mid 19th century that one has a first idea
of the distance to the nearest star. Bessel was probably the first to give the
first determinations. Following the measurement of the parallax effect4, we
find that the nearest star is about 3 light-years away. At the same period,
the speed of light is measured (300 000 km/s). The power of 10 notation is
introduced. All the development of science shows that the universe is becom-
ing larger and larger, as Copernicus had known it and as Giordano Bruno
proclaimed it at the peril of his life.

Visible and invisible numbers

Here is another way to see that there is a gap between the finite and the
infinite. There are the visible and the invisible numbers. The visible num-
bers are the numbers which can be brought into the field of attentive, clear
consciousness. They are sufficiently individualized to be non-confusing. For
instance, one can distinguish in a single glance if there are 8 ou 10 objects
on a table, but not between 20 and 22 for instance. But the boundaries of
the invisible are constantly pushed back. The trick was to invent the com-
pact representation of numbers, with the decimal system. It dates from five
centuries in Europe. In many civilizations, numbers beyond 10 000 are not
mastered. Now, we are used to handling much larger quantities, especially by
using the power of ten notation, and the corresponding prefixes kilo, mega,
giga, tera, peta,. . .

When I speak of the visible and invisible numbers, the 20th century rep-
resents the momentary end of appropriation of very very large numbers by
nonspecialists. That is the test of a scientific notion. It is the day when
everyone captures it. The goal of sciences is to be disseminated as widely
as possible. There has been all along in recent times an increasing power of
numbers. There is still a horizon of invisible numbers, those for which we
do not have a convenient mode of representation or intuition, and there are

4Something known theoretically to Copernicus, but too small to be observable before
Bessel. This impossibility was the first hint of the real size of the universe.
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the non-visible which are captured gradually with scientific progress and its
dissemination.

All of this is my same concern. How does one capture scientific notions
which are initially in the domain of the invisible? Today the best clocks
measure time intervals of 10−17 second and distances are measured in billions
of light-years, so roughly the travel of light in 1015 seconds. We have about 30
orders of magnitude. It is the great novelty of the 20th century physics. The
paradox or the miracle of modern physics is that the same laws in physics
govern large numbers and small numbers.

Here is the logical perspective which I defend. When you look at a
painters’ representation of mathematicians in the 16th century, they are usu-
ally represented with a compass or a ruler, a globe,. . . Mathematicians have
tools. Mathematics does not do without tools. Beside this, contemporary
logic has developed with formalization by using tools also. Formalization
is the possibility to encode a reasoning unassailably. All the construction
rules accepted in logic implicitly use a principle of recurrence. The repeti-
tion is used at 1st level, 2nd level, and so forth. There are programs which
are made with loops. With formalization, there is the idea of materializing
or incarnating the reasoning in the form of a symbolical sequence. The hori-
zon is that every mathematical reasoning must be able to be encoded with
extremely precise rules and without derogation. The thing is that, with the
powers play, we get to numbers which exceed capacities5. In each construc-
tion stands the time factor. This introduces something new which is little
taken into account in current expositions of logic. You will be told that every
mathematical reasoning can be encoded with a formula, a sequence of sym-
bols. But it is still necessary to write the sequence! We have wanted to ensure
the accuracy of mathematical reasoning by mechanizing it, we have wanted
to dismiss every resort to intuition, every reference to the object which would
not be a mathematical ideality, but there is a reification, encoded reasoning
is a reification, it is a new object itself submitted to physical constraints.

Whatever the definition of the most elementary object in the universe,
the number of these objects is lesser than 10100. Basically, all estimates are
consistent. Now, with the stacked powers play, 10 power 10 power 10, and
so forth, we are vastly beyond. It is not difficult to imagine a mathematical
reasoning which would require a lot more symbols to be encoded properly.

5I listened recently to a statistician whose data base comprises 6× 1014 units of infor-
mation (the “character” or “byte”).
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We arrive in a new world of virtuality. The whole effort of formal logic
has been to give this reality observable by the mind. But we go beyond all
possibilities of real apprehension. The question which arises in logic is how
to ensure construction against contradiction, that is, we do not want to be
caught with our hands in the cookie jar, saying yes and no. We do not want
to be called a liar. And what if our logical system contains a flaw which
can be explained only through a text of a gigantic size, containing 10100

characters? It is possible that our logical system contains a contradiction,
yet invisible, in the same meaning as the visible and invisible numbers: a
contradiction beyond the horizon. This does not mean that we will never
reach it. It is beyond the current horizon, which can even count for a vastly
important time. On the one hand, we have no insurance that our logical
systems contain no contradiction. On the other hand, we can try to cheat,
that is, to deliberately work with logics which we know to be formally con-
tradictory, provided the contradiction may not be manifested. What is the
use of knowing that there is a trap beyond the horizon, since I will never go
beyond the horizon anyway? The trap is so far that it does not disturb me.
This has practical consequences: inconsistent, para-consistent logics. They
are logics which conceal a contradiction sufficiently distant to be not reached.
As the goal of logic is to speak reasonably, if we are not placed in front of its
contradiction, then it does not exist.

Conclusion

To conclude, if we want to found non-standard analysis, if we want to handle
infinitely large integers, there is a possibility of doing it by saying that we
refine the way of seeing things. Within everyone’s integers, we distinguish
those which may be reached in rising from the finite and those which may
be obtained only in descending from the infinite. We refine between the sky
and the earth. Fermat’s principle must be violated. We cannot accept that
every set has a smallest element, because this would be the smallest infinite
or the largest finite? We adapt Fermat’s principle. It is true under certain
conditions and not under others. Basically, Fermat’s principle is applicable
to every sufficiently explicit construction and it is not in a virtual or implicit
construction. Among integers, we distinguish those which we can actually
reach through a set in advance stock of operations. We can write them on
a sheet of paper or on a computer screen. They are the accessible numbers.
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There is the theoretical finite and the true finite. If we take this distinction
into account, we allow ourselves a vast new freedom.
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