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ABSTRACT. In this paper we study representations of finite groups stable under
Galois operation over arithmetic rings in local and global fields.

We consider a Galois extensions E/F and realization fields of finite subgroups
G C GLy(F) stable under the natural operation of the Galois group of E/F;
let E = F(G) be a field obtained via adjoining to F' all matrix coefficients of all
matrices g € G. Though for sufficiently large n and a fixed algebraic number
field F every its finite extension E is realizable as F'(G) for some group G above,
there is only a finite number of possible F(G) if G C GL,(OF) for the ring O
of integers of E. We study the possible realization fields for finite extensions
of Q, Qp and global fields of positive characteristic. In particular, for a finite
Galois extension E/Q and any finite subgroup G C GL,(Og) which is stable
under the natural operation of the Galois group Gal(E/Q) the realization field
Q(G) = Q(¢m) for an appropriate root (m of 1.

Some related results and conjectures are considered.

1. INTRODUCTION

Let E/F be a Galois extension of finite degree of global fields, i.e. E,F are
finite extensions of the field of rationals Q or a field of rational functions R(x)
with a finite field R.

Let us denote by O and O the maximal orders of E and F', and let I" be the
Galois group of E/F. Let E = F(G) be a field obtained via adjoining to F all
matrix coeflicients of all matrices g € G for some finite subgroup G € GL,(E).

We are interested in 3 basic conditions for the I'-operation on G and the
integrality of G.

A) G is I'-stable under the natural Galois operation.
B) G € GL,(Og).
C) A primitive t-root of 1 (; ¢ E.

We intend to discuss the following questions:

Question 1. Do the conditions A) and B) imply G C GL,(FEy), where Egy,
is the maximal abelian subextension of £E/Q?
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Question 2. Do the conditions A), B) and C) imply G C GL,,(F)?
Question 3. Is it possible to classify the realization fields E = F(G)?

Let us first consider a Galois extension E/F' of characteristic 0 and realiza-
tion fields of finite abelian subgroups G C GL, (FE) of a given exponent ¢t. We
assume that G is stable under the natural operation of the Galois group of E/F'.
In [M2], [M3], [M4], [M6] it is shown that under some reasonable restrictions
for n any F can be a realization field of G, while if all coefficients of matrices
in G are algebraic integers there are only finitely many fields E of realization
having a given degree d for prescribed integers n and ¢ or prescribed n and d.

Below Op is the maximal order of F and F'(G) is an extension of F' generated
via adjoining to F' all matrix coefficients of all matrices g € G, I' is the Galois
group of F over F.

In [M4] we prove the existence of abelian I'-stable subgroups G such that
F(G) = FE provided some reasonable restrictions on the fixed normal extension
E/F and integers n, t,d hold and study the interplay between the existence of
I"-stable groups G over algebraic number fields and over their rings of integers.

The problems below originate from classification problems of positive definite
quadratic lattices and their isometries. There is a number of applications to
finite group schemes, arithmetic algebraic geometry and Galois cohomology (see
[BM1], [B], [M6]).

Let K be a totally real algebraic number field with the maximal order O,
G an algebraic subgroup of the general linear group GL,(C) defined over the
field of rationals Q. Since G can be embedded to GL,(C), the intersection
G(Ok) of GL,(Ok) and G(K), the subgroup of K-rational points of G, can
be considered as the group of Ox-points of an affine group scheme over Z, the
ring of rational integers. Assume G to be definite in the following sense: the
real Lie group G(R) is compact.

The problem which is our starting point is the question:

Does the condition G(Og) = G(Z) always hold true for totally real fields
K?

This problem is easily reduced to the following conjecture from the repre-
sentation theory of finite groups:

Let K/Q be a finite Galois extension of the rationals and G C GL,(Ok)
be a finite subgroup stable under the natural operation of the Galois group
I' = Gal(K/Q). Then there is the following

Conjecture 1. If K is totally real, then G C GL,(Z).

There are several reformulations and generalizations of the conjecture.

It is reasonable to consider arithmetic groups defined over algebraic number
fields F' and to study their subgroups of Op-points (see [Bo], 7.16); the functor
Rp/q of "restriction of scalars” allows to reduce some problems to considering
groups over Q. For a good introduction to the theory of arithmetic groups see
[So]. The most interesting questions below are related to groups defined over



Q. We can consider the behavior of automorphism groups of positive definite
quadratic Z - lattices under totally real scalar extensions as a motivation of of
our study of finite arithmetic groups, and to ask the following

Question. If two positive definite quadratic Z-lattices become isomorphic over
the ring Ok of integers of a totally real field extension K of the rationals Q,
are they already isomorphic over Z, the ring of rational integers ¢

The following definition (compare also Definition 2 given below in sect. 2
after the formulation of the Main Theorem) can be considered as an another
generalization of the ”generalized permutation lattice for a group G” in the
sense of [We], p. 318.

Definition 1. Consider an arbitrary not necessarily totally real finite Ga-
lois extension K of the rationals Q and a free Z-module M of rank n with
basis m1,...,my,. The group GL,(Ok) acts in a natural way on Og @ M =
@, Oxm;. The finite group G C GL,(Ok) is said to be of A-type, if
there exists a decomposition M = @le M; such that for every g € G there
exists a permutation 1(g) of {1,2,...,k} and roots of unity €;(g) such that
€i(9)gM; = Mgy for 1 <i <k.

The following conjecture generalizes (and would imply) conjecture 1:

Conjecture 2. Any finite subgroup of GL,(Ok) stable under the Galois
group I' = Gal(K/Q) is of A-type.

For totally real fields K conjecture 2 reduces to conjecture 1.

Both conjectures are true (see [BM1]) and have some extra applications to
arithmetic geometry and Galois cohomology [B]. Another application of the
conjectures above can be the computation of orders of finite arithmetic groups
in GL,(K). For instance, if K is a totally real algebraic number field and
f(x1, 22, ..., xp) € Q[x1, 22, ..., x,] is a positive definite quadratic form, it is pos-
sible to estimate the order of the finite orthogonal group Of(Ox) C GL,,(Ok)
of this form over Ok using the formulas for finite integral groups of matrices
(see [Sol, sect. 6.3 and also [Min2]) since O¢(Ok) = Of(Z). The order of
O¢(Z) is bounded by the number s(g,n) = I1g"(¢™) where the product is taken
for all primes ¢ = 2,3,5,7, ..., and

r(g;n) = f&[m

].

The results below imply the positive solution of the above conjectures (the
Main Theorem in sect. 2), the presented proof is shorter than one given in
[BM1], and it allows to obtain also a result for Galois stable groups over local
fields (theorem 6). The paper is organized as follows. The main results are
formulated in sect. 2. In sect. 3 an integrality criterion and the finiteness
theorem are proven and some auxiliary results are given for the needs of further
sections. Sect. 4 and 5 are devoted to the proofs of theorems describing the
structure of Galois stable groups over local and global fields. In sect. 7 a



probabilistic characterization of Galois stable groups over extensions of QQ and
Q(\/E) is given, and in sect. 6 and 8 we can see, what happens in the case of
relative number field extensions and the case of fields of positive characteristic
respectively. In the last section some generalizations of Minkowski’s result is
suggested.

NOTATION

Throughout the paper we will use the following notations.

Q,Qp, 7,7y, Ok denote the field of rationals and p-adic rationals, the ring of
rational and p-adic rational integers respectively, and the ring of integers of
a local field K. GL,(R) denotes the general linear group over R. [E : F]
denotes the degree of the field extension E/F. For a primitive t-root (; of 1
and a number field E we write ¢p(t)d = [E((;) : E] for the generalized Euler
function. I,,, denotes the unit m x m-matrix, 0,, ,, and 0,, are zero n x m and
m X m-matrices, e; ; are square matrices having the only nonzero element 1 in
the position (i, 7), rankM and detM are rank and determinant of a matrix M.
tM denotes a transposed matrix for M, diag(dy,ds, ...,d,,) is a block-diagonal
matrix having diagonal components dy, ds, ..., d,,. We suppose that K is a Galois
extension of Q,. We denote by I' the Galois group of a normal extension K/F ;
if needed we specify K /I as a subscript in I'/p. The symbols I';(p) denote the
i-th ramification groups of the prime divisor p and I'y(p) the inertia group in I'.
In the case of local field extension K/Q, we have only one prime ideal over the
prime p, hence we will omit the prime divisor p in the notation I';,I'g. e; is the
order of I'; for ¢ > 1, while e is the order of the inertia group. It is known, that
e = eg - €1, where ¢eq is the index of I'; in I'g. For I' acting on G and any o € I’
and g € G we write g7 for the image of g under o-action. If GG is a finite linear
group, F'(G) denotes the field obtained by adjoining the matrix coefficients of
all matrices g € G. (,, denotes a primitive m-th root of unity. For a local
field or an algebraic number field K of finite degree over Q, or QQ respectively
we use the following notation: K% is the maximal abelian extension of K (an
infinite extension of K) and K, denotes the maximal abelian subextension of
K over Q, or Q respectively. We denote by Z,) the localized ring with respect
to the multiplicative subset S := Z — (p)Z, i.e. the rational numbers with
denominators coprime to the given prime integer p.

2. FURTHER RESULTS

The following result was obtained in [M4] (see also [M6]).

Theorem 1 (Finiteness Theorem). 1) For a given number field F
and integers n and t, there are only a finite number of normal extensions E/F
such that E = F(G) and G is a finite abelian I'-stable subgroup of GL,(Og) of
exponent t.

2) For a given number field F' and integers n and d, there is only a finite number
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of fields E such that d = [E: F] and E = F(G) for some finite I'-stable subgroup
G of GL,(Og).

Theorem 2 (see [M4], theorem 1). Let F' be a field of characteristic 0, let
d>1,t > 1 and n > ¢g(t)d (here ¢pp(t)d = [E((:) : E| is the generalized
Euler function, (; is a primitive t-root of 1) be given integers, and let E be a
given normal extension of F' having the Galois group I' and degree d. Then
there is an abelian I'- stable subgroup G C GL,,(E) of the exponent t such that
E = F(G).

In fact, G can be generated by matrices g7, v € T' for some g € GL,(FE).

Remark. For a given number field F and given integers d > 1, t > 1 and
n = [F((): F]-d, there are infinitely many normal extensions E/F of degree d
such that E = F(QG) for some finite I'-stable abelian subgroup G C GL,(FE) of
exponent t.

In the case of quadratic extensions we can give an obvious example.

Example 1. Let d = 2, t = 2. Pick E = Q(y/a) and g = 'a(_)l (1)‘\/5 for

any a € F which is not a square in F. Then I' is a group of order 2 and
G ={I5,—1I5,9,—g} is a I'-stable abelian group of exponent 2.

Theorem 3 (see [M4], proposition 1). Let E/F be a given normal extension
of algebraic number fields with the Galois group T', [E : F| = d, and let G C
GL,(E) be a finite abelian I'-stable subgroup of exponent t such that E = F(G)
and n is the minimum possible. Then n = dpg(t) and G is irreducible under
congugation in GL,(F). Moreover, if G has the minimum possible order, then
G is a group of type (t,t,...,t) and order t" for some positive integer m < d.

In the case of unramified extensions the following theorem for integral rep-
resentations in a similar situation is proven in [M3]:

Theorem 4. Let d > 1,t > 1 be given rational integers, and let E/F be an
unramified extension of degree d.
1) If n > ¢p(t)d, there is a finite abelian I'- stable subgroup G C GL,(O%) of
exponent t such that E = F(G) where O is the intersection of valuation rings
of all localization rings of Op with respect to primes ramified in E/F .
2) If n > ¢ (t)dh and h is the exponent of the class group of F', there is a finite
abelian I'-stable subgroup G C GL,(Og) of exponent t such that E = F(G).
3) If n > ¢p(t)d and h is relatively prime to n, then any G given in 1) is
congugate in GLy(F) to a subgroup of GL,(Og).
4) If d is odd, then any G given in 1) is conjugate in GL,(F') to a subgroup of
GL,(Og).

In all cases above G can be constructed as a group generated by matrices
g7,y €T for some g € GL,(E).



Some further results for Galois stable groups G with entries in unramified
field extensions of characteristic 0 can be found in [M3] and [M6].

The case F' = Q, the field of rationals, is specially interesting since there
are no unramified extensions of Q. The following theorem was proven in [BM1]
(see also [M2] for the case of totally real extensions) using the classification of
finite flat group schemes over Z annihilated by a prime p obtained by V. A.
Abrashkin and J.- M. Fontaine [F]:

Main Theorem. Let K/Q be a normal extension with Galois group T'; and
let G C GL,(Ok) be a finite I'-stable subgroup. Then G C GL,(Ok,,) where
Ky is the maximal abelian over Q subfield of K.

A similar result can be expected in the case of local field extensions. Consider
a finite Galois extension K/Q, of the field Q, of rational p-adic numbers for
p # 2 and a free Z,-module M of rank n with basis mq,...,m,. The group
GL,(Ok) acts in a natural way on Ox @ M = @', Ogm;. In this case our
definition 1 should be modified:

Definition 2. Consider a finite Galois extension K/Q, for p # 2 and a
free Zy-module M of rank n with basis m1,...,m,. The group GL,(Ok) acts
in a natural way on Ox @ M = @, Oxm;. A finite group G C GL,,(Ok)
is said to be of A-type, if there exists a decomposition M = @le M; such that
for every g € G there exists a permutation I1(g) of {1,2,...,k} and roots of
unity €;(g) such that €;(g)gM; = Myyg); for 1 <i < k.

Example 2. For a primitive p-root ¢, of 1 and 6 = 1((, + ¢, ') we can
consider K = Q,(0,v/1 — 02) and a T-stable subgroup G C GL,(Of) generated
by matrices g¢, c € Z, where

e V= p2
I=|vi=e2 o |

Note that K/Q, is an abelian tamely ramified extension and G is a cyclic sub-
group of GL2(Ok) of order p. If the odd prime p = 3(mod4), then ¢, ¢ K
since (p = 0++/—1-071 and the congruence % +1 = 0(modp) has no solutions
iff p = 3(mod4).

The paper [BM1] gives a more explicit formulation of the Main Theorem
above and states the following:

Theorem 5. Let K be a finite Galois extension of Q and G be a finite
subgroup of GL,(Ok) which is stable under the natural operation of the Galois
group I' of the field K. Then G is of A-type and, in particular, G C GL,(Ok,,)
holds.

Corollary. The realization field Q(G) = Q((n) for any G which satisfies
the conditions of the Main Theorem and an appropriate root (,, of 1.

The proof of the corollary follows immediately from the theorem 5 and our
definition 1.

Following the result of theorem 5, we can ask 2 questions for the groups G
over local fields:
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Question 4. Let K be a finite Galois extension of Q, and G be a finite
subgroup of G Ly, (Ok) which is stable under the natural operation of the Galois
group I' of the field K. Is it true that G C GL,(Ok,,) holds, K., the mazimal
abelian subextension of K over Q%

It is known (see [BM1], [M2], [M6]) that for global normal field extensions
K /Q the same question can be reduced to the case of elementary abelian Galois
stable p-subgroup G C GL,,(Ok) of exponent p.

Question 5. Let K be a finite Galois extension of Q, with Galois group T',
and let G be a finite T'-stable subgroup of GL,(Ok). Is it possible to classify
all fields Q,(G) ¢

We can give a positive answer to Question 4 for any elementary abelian I'-
stable p-subgroup G C GL, (Ok). This also shows that for elementary abelian
I'-stable p-groups G above all fields Q,(G) are abelian over Q,,.

It follows from example 2 that for abelian extensions K/Q, of local fields
under the conditions of Question 4 G is not always a group of A-type.

Theorem 6. Let K/Q, (p # 2) be a normal extension of local fields, let
I' be its Galois group, let G C GL,(Ok) be an elementary abelian T'-stable
p-subgroup of exponent p, and let K = Q,(G). Then K/Q, is an abelian field
extension.

The idea of the proof is to show that K = Q,(G) has a special ramification
structure over Q, in particular, the inertia subgroup of I' is cyclic for the prime
divisor of p. For a certain subfield £ C K let E/F be a Galois extension of
fields with the Galois group I' = {01 = 1,09,...,0¢}, let wy,wo,...,wq be a
basis of O over OF, and let ¢, € E. For the proof of theorem 6 we can use
the reduction to the case of group G C GL,(F), which is irreducible under
G L, (F)-conjugation and generated by all g7,y € I' and some g € G. We can
use the following criterion of integrality of G:

Theorem 6 allows us to give a new proof of the Main Theorem stated above
and proven in [BM1]. In the virtue of theorem 6, the proof of the Main Theorem
can be reduced to the situation where K is an unramified extension of the
maximal abelian subfield of K over Q.

For the proof of the Main Theorem we can first reduce it to the case of
elementary abelian group G (see [BM1], [M2]), next to apply theorem 6 to
prove that the field extension Q,(G)/Q, is abelian and to use the following
theorem proven by Y. Ihara:

Let k be a fixed algebraic number field of finite degree over Q, k% be the
maximal abelian extension of k.

Theorem 7 (Y. Ihara, see [A]). Let L be a finite Galois extension of k.
Then, Lk® is unramified over k® if and only if, for any prime divisor of L its
decomposition group in L/k is commutative.

We can use Theorem 7 for the case k = QQ. The proof of theorem 7 is given
in [A], proposition 1.

Finally we use the special ramification properties of the field K = Q,(G) in
theorem 6 to prove the Main Theorem above using theorem 6 and theorem 7.



3. INTEGRALITY OF GALOIS STABLE REPRESENTATIONS

This section contains some auxiliary results, some of them are contained in
slightly different formulations in [M6]. For the convenience of the reader and
for the needs of our further proofs these results and proofs are given below.

3.1. Proposition 1. Let E/F be a normal extension of local fields with Galois
group T'g/p = Gal(E/F) and let Ey, Fy be rings with quotient fields E and
F respectively. If G C GLy(E1) is a finite I'g/p-stable subgroup which has
GL,(F1)-irreducible components G1,Ga, ..., Gy, then F(QG) is the composite of
the fields F(G1), F(G2), ..., F(G,).

Proof of proposition 1. Let

G *
h~'Gh C ,
0 G,
for h € GL,(Fy). If there exists g € G such that g7 # g for some automorphism
v of F(G) over F(G1)F(G3)...F(G,), then ¢ = g7g~! # I,,. The blocks G;
in h=!Gh are stable under the action of v, since h € GL,,(F}) and the elements
of F(G;) are fixed by . Because

h=lgh =

and
g1 *
(h'gh) = h™'g'h =
0 Gr

are matrices having the same diagonal components, all eigenvalues of the matrix
g = g7g~! of finite order are 1 and hence ¢’ = I,,. This contradiction completes
the proof of proposition 1. O

3.2. In this section we formulate the mentioned criterion for the existence
of an integral realization of an elementary abelian p-group G.

Let F' be a finite field extension of Q, and E, L be finite Galois extensions of
F, different from F with Galois groups I'g,r and I'z/p respectively. As above
let O, O, be the corresponding local rings of integers. Let wq,ws,...,ws be a
basis of O over Op, and let D be the discriminant of this basis. Suppose that
some matrix g of prime order p has coefficients in F' and all ', p-conjugates
g7, v € I'g/r generate a finite abelian group G of exponent p. Let o1 = 1,
02,...,0¢ denote all automorphisms of the Galois group I'g/p of the field F
over I
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Assume that L = E(((1),{(2); - - - »(n)) Where (1), {(2), - - -, {(n) are the eigen-
values of the matrix g, therefore L = E((,), (, is a primitive p-th root of unity.
We will reserve the same notations for some extensions of o; to L, and the
automorphisms of L/F will be denoted 01,09, ...,0, for some r > t. Let E be
the field containing F(G) (the field obtained by adjoining to F' all coefficients
of all g € G). For a suitable choice of ¢ elements of {(1),((2),---,{m)} say
C(1),¢2)s - - - » Gty We have the following

Proposition 2. Let G be generated by all g7,y € U'g,p and irreducible un-
der GL,, (F)-conjugation. Then G is conjugate in GL,(F) to a subgroup of
GL,,(Og) if and only if all determinants

w1 . Wi —1 C(l) WEk+1 ce W
o2 o2 [} g9 g2
w7 wy? C(Q Wiy ... W
dk = det .
Ot O¢ Ot gt Ot
wy wyt C(t) Wl e wy

are divisible by /D in the ring Oy .

Note that the conditions of proposition 2 are always true if F is unramified
over F since DOg = Og in this case.

Corollary 1. If there is an abelian I'g/p-stable subgroup G C GL,(Og) of
exponent p generated by g7, v € I'gy/p such that E = F(G) # F, then the
GL,(F)-irreducible components G; C GL,,(E), i =1,...,k of G are conjugate
in GL,,,(F) to subgroups G; C GL,,(Og) such that E = F(G1)F(G2)...F(Gy).
In particular, F(G;) # F for some indices i.

The following corollary shows that the conditions of proposition 2 hold true
even if G is not irreducible (for the definition of the semisimple matrices B;
compare the proof of proposition 2).

Corollary 2. Let E/F be a normal extension of number fields with Galois
group U'g/p. Let G C GL,(E) be an abelian I, p-stable subgroup of exponent
p generated by g and all matrices g7,y € I'g/p, and let E = F(G). Then
G is conjugate in GL,(F) to G' C GL,(Og) if and only if all eigenvalues
of matrices B;,i = 1,...,t are contained in O, where L = E((,). The latter
happens if and only if the criterion of proposition 2, 1) holds true, i.e. all
determinants

w1 e Wi -1 C(l) WEk+1 ce W
o2 o2 o2 o) g2
wl ... wk_l (2) wk;_’_l DY wt
dk = det
Ot Ot Ot g¢ (o7
wit .. wpty C(t) Wl .. wy

are divisible by /D in the ring Oy .
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Proof of proposition 2.
Using the basis wq, ..., w; of O over Op we can write

t
g% = ZwinBi for j7=1,...,t
i=1

with semisimple matrices B; € M, (F). Since the matrix W = [w;]’];; is
nondegenerate, the matrices B; can be expressed as a linear combination of
g%, 4,5 =1,2,...t:

t

o

B; = E mi;g~?,
=1

where [m;;] = W1, Since by assumption the matrices g° commute pairwise,
all matrices B; also commute with each other. The irreducibility of G implies
that the minimal polynomial of B; is irreducible over F for each i such that B;
is not zero (see [ST], p. 8, corollary 3 for example). So if one of the eigenvalues
of B; is in O, then all of them are since they are Galois conjugate. Using the
dual basis w7, ...,w; to wy,...,w; with respect to the trace form one can see
that the inverse matrix W' to W = [w;’];; is of the form W~ = [w}*]; ;. In
order to prove the claim of the proposition, we need to determine whether or
not matrices B;,i = 1, ..., t are conjugate in GL,(F) to matrices B € M, (Or),
since for the generator g of G the equation

g = Blwl +BQ'U)2 +---+Btwt,

holds with B; € M,(F) and wy,...,w; a basis of O over Op. In fact each
semisimple matrix B; € M, (F) is conjugate in GL,(F) to a matrix from
M,,(Op) if and only if all its eigenvalues are contained in Op, (see lemma 2
below).

Cramer’s rule now implies that w}? = (=1)""W, ;det(W)~!, where W, ; is

the (4, j)-minor of W. Over the splitting field L there is a basis which consists
of eigenvectors for GG. Let u be one such common eigenvector with

g% u = t;u.

Then ((; := t‘i’i_l is an eigenvalue of g. It also follows, that u is an eigenvector
for By with eigenvalue

t

t
Mo =Y gty = (=17 HW; (T det (W)~
j=1

j=1

The cofactor expansion for determinants implies A\ = dj/detW and therefore
the eigenvalues of By are in Oy, iff detW divides dj, which proves the criterion
of proposition 2 and — by the definition of the eigenvalues ¢; — also the second
statement modulo the proof of the following
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Auxiliary lemma. i) Let all eigenvalues \j, j =1,2,...,k of the semisimple
matrices B; € M,(F),i = 1...,t be contained in the ring O for some field
L D F. Then B; are conjugate in GL,(F') simultaneously to matrices that are
contained in M, (OF).

i1) Conversely, if the semisimple matrices B; are contained in M, (Or) and
B; are diagonalizable over a field L O F', then their eigenvalues are contained
m OL.

Proof of the lemma. i) Consider the F-algebra A = F[B,..., B] generated by
the matrices By, ..., B;. By [ST], ch. 1, sect. 1, corollary 2 we can consider A
to be a field extending F'. Let ay,as,...,a, be a basis of O4 over Op. Then for
any B € A we have B = bja;+- - -+bna,, and the elements b; € F are contained
in O iff B € O4. But all coefficients k;; of the characteristic polynomials
fi(x) = kio + kix + ... + kinz™ of the matrices B; are contained in Oy, and
kin =1, s0 B; € A are integral over F. It follows that B; = bj1a1 + -+ binan,
and b;; € Op. If v € F™ is a non-zero vector in F", then aiv,azv,...,a,v is a
basis of F", and Bjajv =Y, ¢;jrarv, where ¢;j; € Op. It follows that for any
i the matrix C; = [cjjk]k,; belongs to GL,(OF), and C; is the matrix of the
operator B; in the basis aiv,aqv, ..., a,v of F™. Therefore, B; is conjugate in
GL,(F) to C; for any i = 1,...,t.

ii) Consider the characteristic polynomials f;(z) = kio + kinx + ... + kipa™
of the matrices B;. Since k;,, = 1 and all k;; are in O all roots of f(x) are in

Op. This completes the proof of the Auxiliary lemma.
O

Remark. In the situation of the Auziliary lemma, i) the F-algebra A = F[By, . ..

is isomorphic to the field L = F[Ay,..., \;] where \;, j = 1,2,...,k are all
eigenvalues of the matrices B;,1 =1...,t.

Proof of corollary 1. If G C GL,(Og) is a group of exponent p and g =
Biwi + Bows + - -+ + Bywy for a basis wi,...,w; of Og over O, then B; €
M, (OF), and it follows from the Auxiliary lemma to proposition 2 that the
eigenvalues of Bj; are contained in Or. Notice, that for the second part of
the Auxiliary lemma to proposition 2 the irreducibility is not needed. But
eigenvalues are preserved under conjugation, so the latter claim is also true for
all components G;. We can apply proposition 2 to G;,¢ = 1, ..., k. It follows that
G, are conjugate to subgroups G, C GL,,(Og). Now, proposition 1 implies
E = F(G1)F(G2)...F(Gy). This completes the proof of corollary 1.

O

Proof of corollary 2. Let

ClGC =

9 Bt]
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for C € GL,(F) and irreducible components G; C GL,,(E),i = 1,...,k. Then
for g = Biwi + Bows + - -+ + Bywy

g1 *
ClgC = = Bjw; + Bywy + - - + Bjwy,
0 Ik

holds with B! = C7!B;C. Let us consider the F-algebra A generated by all
Bl,i = 1,..,t over F. Since A is semisimple, it is completely reducible. It
follows that matrices B are simultaneously conjugate in GL,,(F') to the block-
diagonal form. Therefore, G is conjugate in GL, (F') to a direct sum of its
irreducible components G;. Since E D F(G;) for all i, and Op contains all rings
OF(a;), we can apply proposition 2 to each of them. Notice that in proposition
2 we need not to assume, that F/(G) = E. proposition 2 implies that each G;
is conjugate in GL,,(F) to G}, C GL,,(Og) if and only if all eigenvalues of
matrices B],i = 1,...,t are contained in O, where L; = F(G;)((p) and this
happens iff

w1 N Wik -1 C(l) WEk+1 e W
oo (o) o2 g9 g2
wi® .. wp?y C(2 Wiy .. Wy
dk = det .
Ot Ot Ot O¢ Ot
Wy wyp' C(t) Wl ... Wy

are divisible by /D in the ring Op. But F(G) = F(G1)F(G3)...F(G}) by
proposition 1, and so L = Ly Ls...Ly. This completes the proof of corollary 2.
U

Proposition 3. Let a I'-stable abelian subgroup G C GL,(E) of exponent t be
irreducible under G L, (F')-conjugation, and let E = F(G). Then d; divides n.

Proof of proposition 3. Let wq,ws,...,w, be some basis of E((;) over F(().
Let G be reducible under conjugation in GL,, (F({;)). Then G splits into com-
ponents of equal orders, each of them being GL,, (F (Ct))—irreducible. This can
be seen in the following way. By Wedderburn’s theorem the F'((;)-span F((;)G
of G is a direct sum of fields. So A = F(()G = ®F_,e;(F(()G) for some
primitive idempotents e;,i = 1,....,k, and A; = e;F({;)G are F((;)-irreducible
components of A. But I,, = e; + e + ... + e,, and all e; are conjugate under
the action of automorphisms of F((;)/F. Indeed, if there are at least 2 orbits
of elements from the set {ey,...,e,} under the action of the Galois group of
F(¢)/F then I,, = €1 + €5 for some idempotents 1,69 € M, (F') contrary to
the irreducibility of GG. Therefore, we can restrict ourselves to considering a
GL, (F (Ct))—irreducible component of G and use the same notation G for it.
Let e; = >, aijjwj, aij € Mn(F(¢:)) be a primitive idempotent of E(Gt)-
algebra F((;)G. We can prove that E((;) is obtained by adjoining to F'((;) all
eigenvalues of matrices a;;. Indeed, we can consider just one eigenvalue \;; of
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each matrix a;;. Simultaneous diagonalization of matrices €; and a;; gives a

system of linear equations in z;; that can be determined using the Cramer’s
det W;;
o det WJ
their conjugates, where W = [w;’], I' = {01,09,...,0,} is the Galois group
of E(¢)/F((t), and Wi  is obtained from W by replacing its j-th column with
'(0...1...0) (i-th element is 1, all other elements are 0). This can be done in

the same way as in proposition 2 in sect. 3.1. It is obvious that A;; are precisely

and

rule. The eigenvalues of a;; are equal to its solutions x;j = N\ij =

the elements of the matrix W ~!. But the coefficients of W generate FE((;) over
F(¢;), and so the coefficients of W~1 generate E((;) over F((;) as well. This
proves our claim.

Furthermore, if ) k;;\;; = 6 is a primitive element of E((;) over F((;) for
some k;; € F((t), then the matrix m = ) k;ja;; € My, (F(¢;)) and its spectrum
consists of all conjugate elements 67, o € I', in virtue of irreducibility of G.
Indeed, m € M, (F((:)), so its characteristic polynomial f(z) € F((;)[z], and
all its roots are the eigenvalues of m together with their conjugates, and they
have equal multiplicities. But m commutes elementwise with all g € G since all
a;; € E(¢)G. If f(z) had other roots, the matrix m would be reducible under
GL, (F(())—conjugation together with all elements of FG ( see e.g. [G], ch.
VIII ). It follows that the number of eigenvalues of m is divisible by d;, and d;
divides n. This completes the proof of proposition 3.

Here we can prove the Finiteness Theorem formulated in sect. 2:

Theorem 1 (Finiteness Theorem). 1) For a given number field F' and
integers n and t, there are only a finite number of normal extensions E/F such
that E = F(G) and G is a finite abelian T'-stable subgroup of GL,(Og) of
exponent t.

2) For a given number field F' and integers n and d = [E: F], there is only
a finite number of fields E = F(G) for some finite I'-stable subgroup G of
GL,(Og).

Proof of Theorem 1. 1) In the virtue of proposition 1 from sect. 3.1 we can
restrict ourselves to considering only irreducible G. It follows from integrality
in Op of all coefficients of G and I'-stability of G that only divisors of ¢ can
ramify in E. Indeed, let p be a ramified divisor of a prime p in F(G)/F. Then
the inertia subgroup I'(p) C I' of p is not trivial, and there is v € I'(p) and
g € G such that g7 # g, and h = ¢g7g~! = I,,(modp). But it is well known
([Min], [Min2|, [Min3]) that if h = I,,(modp) then h?" = I, for some integer
k. Therefore, p divides the order of G. According to proposition 3, the degree
[E: F] is restricted by a constant that depends only on ¢ and n. Furthermore,
it follows from the formula (see [N], proposition 4.9, p.159)

dK/@ = NKO/Q(dK/KO)d%O/Q, T = [K: KO]

for discriminants of the tower K O Ky O Q of number fields that there is
only a finite number of unramified extensions of the given number field of the
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prescribed degree. Since the number of algebraic number fields having the
prescribed discriminant is finite, and the power of the given ramified prime p
that divides the discriminant of number field having the prescribed degree is
restricted, we can obtain only a finite number of possibilities for the given n
and t. Therefore, we have only a finite number of fields E that satisfy our
conditions.

2) Let us denote d; = [E : Q] = [F : Q] - d. We claim that if prime p is
ramified in F, then pd_ll > 1, that is p < d; + 1. Bartels proved in [B] that the
absolute ramification index e = e(E/Q) of p in this situation satisfies inequality
e > p—1, and it is clear that d; = [E : Q)] is always not less than e. Indeed,
let e < p—1. Take any g € G,v € T'(p), the inertia group of p, for some
prime divisor p of p such that h = g7g~! # I,,. Then h = I,,(modp) and for

some positive integer t hy = RP' is a matrix of order p, hi # I, K = 1,,.

Since hy = I,,(modp) we have hy = I,, + 7™ A for some prime element 7 of the
localization O of Op with respect to p, A € M,,(O) and the maximal possible
m. Then

I,=I,+7mAP =1, +pr™(A+7"B)+ n"PAP.
This implies pA + 7™ ®~1 AP = 0,,(modpr), and so 7P~ divides p. But this
is impossible if e < p — 1. We proved the claim e > p — 1, and the number

of ramified primes is restricted. Now we can use the proof given in 1). This
completes the proof of Theorem 1.

3.3. Lemma 1. Let K/Q, be a finite extension, and let (, € Ok . Let p = p°,
e =p—1. Let G be a finite subgroup of GL,(Ok) and g = I,(modp) for
all g € G. Then G is conjugate in GL,(Ok) to an abelian group of diagonal
matrices of exponent p.

Proof of Lemma 1. 1t is a generalization of the well known argument proposed
by Minkowski [Min]. It is easy to prove that G is abelian of exponent p. Let 7 be
the prime element of Ok . Let gy = I,,+7B1, g2 = I, +7Bs for some g1, g2 € G.
Then g; ' = I,, — 7B;(mod 72), i = 1,2 and h = g1g29; 'g5 * = I,(mod 72). It
follows from lemma 1.5.1, (ii) in [BM1] that h = I,,, and the same lemma 1.5.1,
(ii) in [BM1] shows that g? = I, for any g € G. First of all, G is conjugate
over Ok to a group of triangular matrices, since GG is abelian and O is a local
ring, see [CR] theorem (73.9) and the remarks in [CR] on p. 493. On the other
hand, we can describe explicitely the matrix M such that

M~ gM = diag(A1, Aoy - .., An)
is a diagonal matrix for a triangular matrix g of order p which is congruent to
I,(mod p). Indeed, let g € G and
Cylt, Pl... P!
0 Cy Lty - - - P?

0 el
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and let
Ii, O.. Ay
0 I,. Ay
S = i .
0 I,

for ty +ia 4.+t =nand t; <ty < ... <y, (4),t = 1,2,..., k are appropriate
p-roots of 1. We consider

C(I)Itl *... Mklr
sigg_| Coylyy - M?
0 e

and we find the system of conditions for providing M ,i = 0, +,, the zero t; X t-
matrix. We have the following system of conditions:

Cy (X = CyCry)Ar + PiAs + oo+ Py Aoy + Pl = 0,

Cih—2) Ak—2(1 = () Ctny) + PP P A1+ PP =04y,
Ctk—1) A1 (1 = CyCmyy) + PP =044,
The condition g = I,,(mod p) implies Pl = O ¢

; .(modyp), and we can find

A;, 1 <1 <k — 1 sequentially using the results of previous steps:
o

Ce—1) (1 = Sy Crtyy)

(P %+ Py Apa)
ey (1— iy Cianay)
(P2 + PEP A1 + P75 Ay o)

Ctk—3) (1 = Sty Cirtay)

and so on. Now, using induction on the degree n we can find a matrix M that

Ap1 =

Ap_g =

Ap—3 = —

Y

transforms g to a diagonal form as required.
Since G is an abelian group of exponent p this allows to prove our claim
locally over the ring Og. O

Using the same argument for global fields in [BM1] we proved

Lemma 1A. Let O be a Dedekind ring in an algebraic number field, and let
(p € O. Let p=19p°, e =p—1. Let G be a finite subgroup of GL,(O) and
g = I,(modyp) for all g € G. Then G is conjugate in GL,(O) to an abelian
group of diagonal matrices of exponent p.

Remark that for global fields in [BM1] we use statement (81.20) in [CR] for
proving our result globally for the given Dedekind ring (compare for this also
the proof of (81.20) and (75.27) in [CR]).
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3.4. Lemma 2. Let L be an extension of Q, and p a prime ideal in the field
L((p). Suppose that L is unramified at p. Let I' denote the Galois group of
L(Cp) over L. If G is a finite I'-stable subgroup of GL,(Or(,)) consisting of
matrices g, g = I,(mod p), then G is conjugate in GL,(Or) to an abelian group
of diagonal matrices of exponent p.

Proof of Lemma 2. We can assume that for some matrix g € GG and a generator
o of I' the condition ¢ = g%, 1 < a < p, is fulfilled. Indeed, by lemma
1 G is an abelian group of exponent p, so it can be considered as an F,I' -
module over the field F}, of p elements. Since I' is a cyclic group of order p —1
generated by an element o this element determines an automorphism of G and
all its eigenvalues are contained in Fj. In fact, its matrix is diagonalizable
over I}, because the order of ¢ is prime to p. Hence we can take g € G to
be an eigenvector of this automorphism and so ¢ = g%, 1 < a < p since
not all eigenvalues are 1. Now lemma 1 provides the existence of a matrix
M € GL,(Ofr(,)) such that M~'GM is a group of diagonal matrices. We
shall show that « coincides with the integer 3, (7 = Qpﬁ, 1 < B < p. Let us
suppose that M ~'gM = h = diag(A 11, , Aalnyy -y Amln,, ), Aj € L({p), then
h® = kP and (M°)~'g"M? = hP. Since M~1g*M = h® and g7 = ¢°, it is
obvious that
(M) *MheM~1M° = hP,

As T’ coincides with the inertia group of the ideal p and M € GL,(Or(,)), it
follows that M° = M (mod p). Therefore, the congruence M 1M = I,,(mod p)
is valid and conjugation by matrix M ~'M° maps diagonal elements of h* to
diagonal elements of h®. But if o # 3, then the matrix M ~'M? must have at
least one diagonal element d;; = 0, which is impossible. We proved our claim,
and a = 3. We obtained also that M~1M° = \ = diag(dy,ds,...,d,,) for
some n; X n;j-matrices d;. Let us introduce the following matrix:

MlZI%(MUl+MU2_|_,.._|_MUp1>’ Mlz[mij], mijEOL(Cp),
01,02,...,0p—1 are all elements of I'. It is clear, that M; = M (modyp) and
det My = det M(modp). It follows that M; € GL,(Op,)). Furthermore,
M, is stable under elementwise I'-action, so all m;; are I'-stable and m;; € L.
Hence M; € GL,,(L). Since M7 = M, it follows that Ml_lGMl is contained
in the group of diagonal matrices, as it was claimed.

O

The same argument for global fields proves

Lemma 2A. Let L be an extension of Q and p a prime ideal in the field
L((p). Suppose that L is unramified at p and let O, denote the valuation ring
of the ramified prime ideal p in L((,). Let I' denote the Galois group of L((p)
over L. If G is a finite I'-stable subgroup of GL,(O,) consisting of matrices
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g, g = I,(modp), then G is conjugate in GL,,(L N Oy) to an abelian group of
diagonal matrices of exponent p.

The detailed proofs of lemmata 1A and 2A (using the arguments above) are
given in [BM1] ( see lemma 1.5.2 and corollary 1.5.3 in [BM1] ).

4. PROOF OF THEOREM 6

First of all we do not change the claim of theorem 6 when we adjoin ¢, to
K and simultaneously enlarge the elementary abelian p-group G by the scalar
diagonal matrices diag(¢,™, ™", ('), 0 < m < p — 1 if necessary. So let us
assume ¢, € K and diag((p, Cp, ..., (p) € G.

Similar to the case of rings in global fields (compare the corresponding results
in [BM1] and [M2]) we need for the proof of theorem 6 in a first step the
reduction to the case of an irreducible group G and later a criterion for the
existence of integral realizations of an abelian matrix group.

Reduction to the case of an irreducible group G.

Here a matrix group G C GL,(R) is called reducible in GL,(R) or simply
R-reducible ( R a ring or a field ) if there exist h € GL,(R) such that

G1 *
0 Go

Y

h~'Gh C ’

and G is irreducible otherwise.

The reduction to the case of an irreducible group G can be done using propo-
sition 1 (see 3.1). Note, that under the assumption diag((p, (p, --.,(p) € G also
the irreducible components G; contain scalar matrices diag(¢p, Cp, ..., p) of the
appropriate size.

Since the composition of abelian field extensions of QQ,, is again abelian, we
can for the proof of theorem 6 restrict ourself to the case of an Qp-irreducible
elementary abelian p-group G C GL,(Ok).

Assume that theorem 6 is not true in general. Then there would exist a
local field K normal over @, and an irreducible elementary abelian p-group
G C GL,(Ok) with a suitable number n such that K is generated over Q, by
the coefficients of the matrices g € G and this extension is not abelian. Let us
assume that GG is a minimal counterexample to the claim of theorem 6, minimal
in the following sense: the degree [KQ,"" : @, is minimal. Notice that this
degree is greater than 1, since G is a counterexample to the claim of theorem
6 by assumption. Here Qpab denotes the maximal abelian extension of Q,.

For the proof we distinguish essentially two cases depending on the rami-
fication index e of Q,(G) over Q,. In both cases we need a criterion for the
existence of integral realizations of an abelian matrix group. It shows that the
existence of G in question is possible only if certain determinants dj are divisi-
ble by the root of the discriminant D of a certain field extension (for the details
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see below and proposition 2). We will show, that for a minimal counterexample
this condition is violated which gives the desired contradiction.

Recall, that e denotes the order of the inertia group, e; the order of the first
ramification group and eg index of I'y in I'y. It is known, that eq divides pf —1,
where f is the degree of the unique prime in K over the prime p, in particular,
eo is prime to p and the equation e - f = [K : Q] holds.

If we adjoin roots of unity to K the degree [K@pab : Qp"“b] remains un-
changed, furthermore if we adjoin (;, for ¢ prime to p — for instance ¢t = ey or
a divisor of ey — we do not change the ramification index e of K over Q, (see
for instance [8], ch. IV §4). Now let K; and K denote the subfields of I';-
and I'g-fixed elements of K respectively, i.e. the first ramification field and the
inertia subfield of K. I'y and T’y are normal subgroups of the Galois group of
K/Q,, therefore K; and K are Galois extensions of Q,, K is tamely ramified
and Ky is unramified over QQ,. In particular Ky is a cyclic extension of Q,,
hence Ky C K4 and K1 /K is cyclic. Let Gg = G''* denote the subgroup of
elements in G that are fixed by the first ramification group I'y. Since G and
I'y are p-groups, Gg is not trivial. Moreover, since I'y is also normal in I'y, G
is a Gal(K1/Kj) stable subgroup of G. Consider the field Q,(G() obtained
by adjoining the matrix coefficients of all g € Gy to Q,. As a subfield of K;
it is a tamely ramified extension of Q,. We put ef, := [Ko(Go) : Ko| the de-
gree of Ko(Gp)/Ko which is also the ramification degree of Ky(Go) and set
t := e{), which is prime to p, as remarked above. If we set E = Ky(Go)({;) and
F = Ky(¢;), we obtain a cyclic extension E/F such that (; € F for t = e.
Then E/F is a Galois extension of degree t, totally ramified and tamely rami-
fied and Gy C GL,(Og) and Gy is a Gal(E/F)- stable subgroup of GL,(Og).
We distinguish two cases:

Case I: ef does not divide p — 1 and case II: e, is a divisor of p — 1.

We start with

Case I. ¢, does not divide p — 1.

For later use in the proof, we notice: Since (p) = ({, — 1)?~! as principal
ideals in @Q,(¢p) holds we have for the corresponding ideals in Op.q,(¢,) the
equation (p)® = (p) = (¢, — 1)P~1, here denotes p the prime divisor of p in
Opg. Since p > 3, ([%} + 1> (p— 1) > e} holds, hence p!*/21*1 does not divide
(Cp - 1) in OE(Cp)'

Recall, that G is supposed to be a minimal counterexample to theorem 6 and
Qp-irreducible. There is a matrix g € G such that matrices g7, € I' generate
G. Indeed, if matrices g7,y € I' generate a proper subgroup G; of G for any
g € Gg, then G7 would be a group with coefficients contained in K, since G is
a minimal counterexample. But then the order ef, would divide p — 1, because
Qp(Go)/Q, is tamely ramified at p, and as an abelian subextension of Q,(G1)
contained in Q,(¢,,) for a suitable integer m with p divides m, but p? { m.
But this contradicts the assumption that ef, does not divide p — 1. Therefore,
there is a matrix g € Gy such that matrices g7,y € I' generate G. Choose a



19

generator o of the Galois group of the cyclic extension E/F. The order of o is
t = e{,, which by assumption does not divide p — 1.

For a subgroup Gy of G generated by a single element of G, which also sat-
isfies the conditions of the case I we will later apply a criterion for the existence
of integral realizations in the general linear group. It shows that the existence
of the counterexample G in question is possible only if certain determinants dy
are divisible by the root of the discriminant D of the corresponding extension
of number fields (see below and proposition 2 in sect. 3). Here in case I we use
this for a certain subextension of the cyclic extension E/F which is also totally
and tamely ramified with respect to the prime ideal over the fixed prime p.

So, in a first step we replace Gy by a smaller subgroup Gy generated by
a single element of GGy which also satisfies the conditions of the case 1. For
this purpose take an arbitrary g € Gy such that ¢7,v € T' generate G and
consider the subgroups Gy of Gy generated by the elements g"i,i =1,2,...,t,
that means by the orbit of g under the action of '/, the Galois group of E/F.
G\ is covered by all these I'g/p-stable subgroups G for different g, and F(G))
is hence the composit of all the corresponding field extensions over F' generated
by the coefficients of these matrix subgroups Gy of Gy for the different g. Since
F(Gp)/F is a cyclic totally ramified extension whose Galois group is generated
by an element o of order ¢ equal to the ramification index of F'(Gy)/F and
since the field F(Go)/F is a composite of the above mentioned subfields, say
E;, these extensions F;/F are also cyclic and totally tamely ramified. We can
conclude, that the ramification index of F'(Gy)/F is the least common multiple
of the ramification indices of the different E;/F. Since the order ¢t = e}, of o
does not divide p — 1, at least one of these fields E; must have a ramification
index say ¢ which does not divide p — 1.

Let us now fix such a subgroup Gy of G, with corresponding field extension
F(Gy)/F and ramification index # dividing ¢ but not dividing p — 1. Gy is
not cyclic, since the group of Galois automorphisms I" F(Go)/F> which induce

automorphisms of Gy, is of order not dividing p — 1.

Since E/F is a cyclic Kummer extension, for B/ = F(Gy) C E the extension
E'/F is also a cyclic Kummer extension, and there are an integer ¢ dividing
t,o € I'g/r and a basis 1,7, 72,... ,ﬁ¥_1 such that 7 € F. 70 = 7(¢; and the
Galois group I'g/ /p of E'/F is generated by @. Moreover, both extensions E/F

and E'/F are totally ramified, and ¢ is the ramification index of E'/F, so we

have as earlier the following inequality: ( [%} + 1) (p—1) > t, and for the prime

ideal p’ in B p'l!/21+1 does not divide (¢, — 1) in E'((p).
We use the statement of proposition 2 and its corollary 2 for the rings Op/

and Op and a basis 1,7, 72, ... ,fz_l such that 7 € F. The Galois group

I'g/p of E'/F, is generated by @, @ is of order t and we can consider the action
of '/ on the basis 1,7,..., 7! in the following way: (7*)7 = ﬁic%. For the

matrix W = [(7)7 z._i we have then
2,7=0
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detW =702 T (-
0<i<j<t—1
Using proposition 2 or, alternatively, corollary 1 or corollary 2 of proposition
2, we will prove that Gy C GL,(Op). For this purpose let us consider the de-
terminants of the matrices W, that are obtained from W by changing elements
of j-th column of W to appropriate p-roots ((1), ((2),- - -, Q(;) of 1 that are the

eigenvalues of the matrices ¢° ,i = 1,2,...,t for some g € Gy, according to
proposition 2 (see sect. 3.1). Notice, that we can assume that ¢ > 2, since p is
odd and t does not divide p — 1. We will show that a generating matrix go € Go
is not contained in G L, (Og(,)), then go ¢ GL,(OF), and this contradiction
is exactly the aim of our proof of the case 1). For simplicity let ¢ = (3, but
reserve previous notation for , for the rest of this proof. Consider the matrices

1 7 ... W2 (y-1 @ . F

1 7" ... WX (-1 W e
M; =1, )

1 ﬁgf—l o (ﬁj—2)5¥71 C(f) -1 (ﬁj)5271 (ff—1)62*1

J =2,...,t that are obtained from W; by subtracting the first column of W;
from the j-th column of Wj.

Let us consider the symmetric matrix A = [¢(~1U _1)]5 j=1- The determinant
of this matrix A is

detA = H (7 —¢Y = H (¢F—1)- H (¢ = ¢h,
0<i<j<i—1 1<5<t-1 0<i<j<i—1

CUTUTUNE L. This gives

the easy calculation of the (jk)-th cofactor of W; in the following expansion:

and one can easily calculate the inverse: A7! = |

det W; = detM; = 6;1(Ca) — 1) +052(Ce) — 1) + -+ 05(¢z) — 1),
namely o
01 = F(E=1)/2=(G-1) | (A—l)jk - detA.

Notice, that A and A~! are integral matrices, since ¢ is a p-adic unit. In
order to apply the criterion of proposition 2, we consider the quotients

deth
detW

for the different indices j. Since detW = F(E-1)/2. detA, we have:

cl(Zf,v[/z =7 UV (Cy = DA+ (G = DA 2+ (G = DA )
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If all these elements for j = 2,...,¢ were integral in E’({,), then we could
conclude, that the vector

Cay —1

1
G g1 [P

G — 1

has also integral entries, the same would be true for

Gy — 1

1
ﬁ—o—n.A.A—l.C@f ,

o — 1

which means, that all elements 7~ 0. (C(xy—1) would be integral, i.e. 70D,
(¢p — 1) is integral in E’((,). Since t does not divide p — 1 and p is an odd
prime, we have ¢ > 3. As already stated above for the prime ideal p’ in E’
p'lt/2141 does not divide (¢, — 1) in E’((,), we therefore obtain the desired
contradiction, so in the terms of proposition 2 (see sect. 3.1) d; - (v/D)~! can
not be contained in O, L = E’((,). By proposition 2 and its corollary 2 this
implies that the above generating matrix g ¢ GL,,(Or) and so Gg ¢ GL,,(Og).
This is a contradiction.

Case II. ¢y divides p — 1.

Now we can consider the case II. We recall the notation from the beginning
of the proof of theorem 6. Below K = Q,(G) is Galois over Q,, p > 2 and Gy =
G'1 is the subgroup of elements in G that are fixed by the first ramification
group I'y for the prime divisor p of p, and ef, denotes the ramification index of
Q(Gyp) over Q, with respect to p. For case II we assume that e is a divisor of
p — 1 since e divides p — 1 and e[, divides ep.

Adjoining a p-th root of unity ¢, to K and extending the Galois operation to
this larger field K ((,) does not influence the validity of condition II, ef is still a
divisor of p—1, moreover, it is equal to p—1, in particular, e, > 1 for p > 2. Note
that the subgroup Go(p) = {g € Go, g = I,(modp)} is not trivial as a subgroup
of matrices g~ g = I,,(modp),g € G is not trivial and is a nontrivial p-group
and its subgroup of I';-fixed elements is not trivial, and according to lemma 1
in sect. 3 (which is a generalization of Minkowski’s lemma) we have that the
ramification index of Q,(Go(p)) over Q, is p— 1. Simultaneously we can adjoin
scalar matrices (, I, to G, this preserves I'-stability and (if necessary) GL,, (Qy)-
irreducibility of G, so K((,) is precisely the field obtained by adjoining the
matrix coefficients of all matrices g € G to Q. So we can and do assume that
(p € K without loss of generality. As it was already mentioned in the beginning
of the proof of theorem 6, we can assume that G is GL,,(Qp)-irreducible and
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that G is a minimal counterexample to theorem 6 such that the degree
[KQp“b : Qp“b] is minimal. Therefore, also in case II let G C GL,(Ok) be a
minimal counterexample such that the extension Q,(G)/Q, is not abelian. For
the treatment of case II we distinguish two subcases:

case IT a): I'y(p) is trivial, i.e. K is tamely ramified over Q,.
and

case II b): I'y(p) is not trivial, i.e. K is wildly ramified over Q,.

We start with case II a).

Since the extension K/Q, is tame and normal, and the ramification index
e = e(K/Q,) is a divisor of p — 1, so K((,)/Q) is also tame and normal,
and the ramification index e(K((,)/Qp) = p — 1. Therefore, K((,)/Qp((p) is
unramified, so K((p) = Qp((p, () for some primitive root ¢, of unity with m
not divisible by p (see, for instance, [N], theorem 5.9), and we have:
K C K(() = Qp(p,¢m). This implies that the field K is abelian over Q,,
contrary to our assumption concerning the minimal counterexample G.

Now we consider case 11 b), where K is wildly ramified.

We assume that ¢, € K. Since Q,((,) is a tame extension of Q,, I'; operates
trivially on the p-th roots of unity ¢,, hence K contains also (,. Take now in
lemma 2 (see appendisect. 3) Ko = K'°, then this field is unramified over Q,
for the prime divisor p of p. Lemma 2 shows: up to conjugation in GL,(Z,)

Go(p) = {9 € Go, g = In(modp)}

consists of diagonal matrices. The group G(p) := {g € G,g = I,,(modp)} is a
nontrivial p-group and therefore Go(p) # {I,,} is not trivial as the subgroup of
I';-fixed elements of a nontrivial p-group. G is abelian and therefore in the cen-
tralizer of every matrix h € Go(p). If, in particular, h = diag(l1 L, ..., lkIn, ),
then g = diag(g1,-..,9%),9i € GL,,(Ok) holds for every g € G and therefore
we can split G into G L,,(Ogr, )-irreducible components. In this decomposition
we choose an irreducible component G’ C GL,,,(Ok) of G with a suitable nat-
ural number m such that G’ has nontrivial I';-action. Moreover, the described
decomposition is stable under the operation of T'y (see lemma 2), in particular,
I'y operates on the group G’.
If G{, denotes the subgroup of I';-fixed elements of G’, then the group

Gy (p) = {g € Gb,g = Ln(modp)}

consists of scalar matrices. The conditions on the ramification of case II are
also satisfied for G’ and Gj, instead of G and Gy. But now the group Gy (p) is
equal to the group

pi= {CTn, P = 1.
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Let us now consider the Galois equivariant

’l,b :Q/)m N G/ — Gme(K)

given by 9(g) = ¢®". The kernel of v is the set of all scalar matrices contained
in G’. This kernel is not trivial, since G{,(p) C Kert. Hence we have:

There is an exact sequence

l—p— G —y((G) —1

of I'y-invariant groups.

The aim of our proof is to use the above homomorphism v = 1), for the
construction of a certain group G} in G’ C GL,,(K) such that: K'1(G}) is
an extension of K1t with ¢, € K" (G}), e¢j, = p—1 and K'1(G})/K"" is an
elementary abelian Kummer extension. In a second step a careful study of the
Galois action of T'g on G’ will then show that the constructed group G can
not exist. This will give the desired contradiction.

We will use the following lemma for our proofs of theorems 6 and the Main
Theorem, so we use it for the local and the global case. Since in the global
situation the ramification and the inertia groups depend on the choice of the
prime p over p we use the notation I'g(p), I'1(p) respectively.

Lemma 3. Let K/R be a finite Galois extension of either R = Q or R = Q,
with a Galois group T', and let G C GL,(Ok) be a I'-stable subgroup such that
R(G) # R. Assume that (, € K, then there is a subgroup G| C G' C GL, (K)
such that K'1®)(GY) is an extension of KT1®) with ¢, € KT1®)(GY,) e = p—1
and KT ®)(GY) /KT ®) s an elementary abelian Kummer extension. In our
construction G| is generated by elements g°,6 € To(p) for some g € GLy (K),
and g is not fized by T'1(p).

Proof of lemma 3.
Construction of G

We have H := ¢(G")"(®P) £ {T,.} since both ¢(G") and T';(p) are p-group.
We notice (and use this later), that

(i) H is T'o(p)- stable, since I'; (p) is a normal subgroup of I'y(p), and
(ii) the action of T'g(p) on H is given by the cyclotomic character.

More precisely, we have for h € H and § € T'o(p) h® = hX(®). Here x(4)
denotes the unique integer modulo p such that ¢¢ = ¢X(®) holds for all p-th root
of unity ¢ and § € I'g(p). This is an immediate corollary of lemma 2 and lemma
2A.

Now, if there exist a g € ¥ ~1(H) having nontrivial I'y (p)-action, then define
G as the subgroup of 1y ~!(H) generated by all g°, 5 € T'o(p). If such an element
g does not exist in ¢ ~1(H), we can suppose, that 1/(G’) has nontrivial I'y (p)-
action ( since otherwise g with the needed property would exist ). Now consider
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a suitable irreducible component G of ¢ (G’) having nontrivial I'; (p)-action
and apply the corresponding map v’ to G”. For simplicity we call this map
Y also simply . If (G") is fixed elementwise by T'1(p), again we have the
needed element g € G” with nontrivial I'; (p)-action, and we can define G in
G" correspondingly. Otherwise, we take an irreducible component G"”" C »(G")
having nontrivial I'y (p)-action etc. Since the order of the groups G',G"”,G", ...
is becoming smaller and smaller (the kernel of the different maps 1 is not
trivial), we will have at last G to be fixed by I';(p) with the least possible 1,
so we have the needed element g € G~1) with nontrivial I'; (p)-action. Instead
of G we consider then the subgroup of ¥~ (y(GC~)F1(P)) generated by all
g°,8 € To(p). For simplicity let us call these groups again G}, G’ and again we
denote by m the degree of the corresponding linear group.

U
We continue with the proof of case II b).

2) Study of the Galois action of To(p) on G} and on KTo®)(GY).

For g € G} and for v € T1(p) we have ¥(g97)y(g)™" = ¥(9)W(97") =
¥(g)w(g)~t = I,,,. This implies g7 = g¢ for any v € 'y (p) with a suitable p-th

root of unity ¢ = (.

Let o be an element of I'y(p), whose image in I'g(p)/T'1(p) is a generator of
Io(p)/I'1(p) and take g € G such that G (according to our construction in
lemma 3) is generated by all elements ¢°, 5 € T'o(p) and g is not fixed by I'; (p).

There are two possibilities: ¢g=1g7 € GL,, (K" ®) or g~1¢7 is not fixed by
the ramification group I'; (p).

In the first of these two cases we claim that g7 = g(, for a suitable p-th root
of unity (,. Let us prove this and show how to get the desired contradiction in
that case. For this purpose notice that d := g~ '¢° = I,,(modp) and therefore
using lemma 2 we can diagonalize this matrix d over G Ly, (O gry) ). But since
G’ is irreducible over GL,,(Ogro»)) it follows, that d = (,I,,, for a suitable
root of unity (,.

Now we have g7 = g(, and at the same time g7 = g(, for any v € I';(p).
Since I'1 (p) operates trivially on the p-th roots of unity ¢ we obtain: g% = g”k,
for some integer k and therefore the two Galois automorphisms ¢ and ~* coin-
cide on KTo®)(G1) since g is any generator of Gj. This gives the contradiction
in the case, where g~ 'g% € GL,, (K1),

In the alternative case go := ¢~ '¢° is not fixed by the ramification group
I'1(p). Now consider the group GcC G', generated by all elements go° , § € Io(p).
Since for any § € I'y(p) we have

¥(90°) = ¥(90)° = 1(90)*" = (90X ),

it follows that go® = goX(?)¢s with suitable p-th roots of unity (5 depending
on the Galois automorphism J. Therefore the group G is generated by go and
(pIm and the order of G is p.
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Define K := KT ®) (@), which is Galois over KT0(®) by definition of G. We
study the Galois action on K (like on KTo®)(G") in the first case). For this

P

purpose we denote by I'g(p) and I'y(p) the corresponding inertia respectively

ramification groups of the extension K/KT0®_ We have E?p/) # {1} since
the I'y (p)-action on G is not trivial. We then claim first, that that p is the high-
est p-power dividing the order of I'g(p). The Galois group I'o(p ) of K /KT o(p)
is contained in the group of linear automorphism of G ( considered as a 2-

dimensional vector space over the field F), of p elements ), so its order divides
the order of GLy(F),), which equals to (p? — 1)(p* — p). This implies that p?

does not divide the order of Fo(p) so the Galois group of K /K KT1() s cyclic of
order p, as claimed above.

—~—

Note that the inertia subgroup of I'y(p), so the Galois group of K / KTo(»)
has the order p(p — 1).

Hence K = KT'(®)(¢/n) with u hu e KT®). Now O'(Krl(p)) — KT gince

P

I'1(p) is a normal subgroup of Fo(p) Therefore, Krl(p)({/_) I?m(@u“),

and one concludes:
Yo (Yu)~t e KT ¢ kT,

Since go~'go” = (I for all v € Ti(p) we have go = Yugs with g1 €
G L, (KT (). Tt follows that

9095 € GLy(K™®)

and we can apply lemma 2 to this element. Like in the first of the considered
two cases with gg instead of g we can conclude that gy = go(, for a suitable
p-th root of unity (,. The contradiction follows then analogously to the first
case for g7'g° € GL,,(K" (")), but here we can replace g by go.
O
Note that under the conditions of lemma 3 in the case of a global field
extension K/Q for R = Q we can use lemmata 1A and 2A instead of lemma
1 and lemma 2 in the argument 2) above. So we can summarize the argument
given in 2) as

Résumé. Under the conditions of lemma 3 let o be an element of T'g(p), whose
image in Lo(p)/T1(p) is a generator of To(p)/T'1(p) and take g € Gy such that
G (according to the construction in lemma 3) is generated by all elements
g°,8 € To(p) and g is not fived by Ty (p).

There are two possibilities:

1. g7'¢% € GL, (K™ ®). Then for any v € T'1(p) we have ¢° = g”k, for
some integer k.

2. g~1g° is not fized by the ramification group 'y (p). In this case there exist
an element gy € G and a subgroup G C G" generated by all elements go° |
6 € To(p) the condition go” = go(, for a suztable p-th root of unity (, holds

true. Then for any v € I'1(p) we have g§ = g0 , for some integer k.
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Both conditions lead to a contradiction for a minimal counterezample G such
that R(G) # R and the extension R(G)/R is not abelian.

5. PROOF OF THE MAIN THEOREM

Now we can use theorem 6 for a proof of the Main Theorem formulated in
sect. 2, which is shorter than the proof given in [BM1].

According to [BM1], we can reduce the general situation to the case, when
K/Q is unramified outside a fixed prime p # 2, and G is an elementary abelian
p-group.

Let K = Q(G) for a I'-stable elementary abelian p-group G satisfying the
conditions of the Main Theorem formulated in the introduction. In the virtue
of theorem 6 we can assume that for the completion K, of K with respect to
any prime divisor p of p the extension K, /Q, is abelian. Furthermore since we
can assume that K is unramified outside p, we have cyclic in particular abelian
decomposition groups of the finite primes not dividing p. But then according
to theorem 7 for this extension K/Q we have: K/K,; is unramified (here K,
denotes the maximal abelian over Q subfield of K).

As mentioned above we have a Galois extension K = Q(G) unramified out-
side a fixed prime p, p > 2. Consider Gy = GT*(®) the subgroup of elements in G
that are fixed by the first ramification group I'; (p) for some prime divisor p of p,
and e, denotes the ramification index of Q(Gy) over Q with respect to p. Since
the ramification structure of KQ,/Q, is the same as in K/Q, the value of e, is
a divisor of p—1, and ef, = p—1 since for any ramified prime divisor p of a ram-
ified prime p the principal congruence subgroup G(p) = {g € G, g = I,(modp)}
is not trivial provided the operation of I' on G is not trivial.

As earlier in the proof of theorem 6, we see that adjoining a p-th root of unity
(p to K and extending the Galois operation to this larger field does not influence
the validity of condition that ej is equal to p — 1. So we can and do assume
(p € K without loss of generality. After adjoining ¢, to K we can suppose,
that e, = p — 1. As it follows from proposition 1 and its corollaries in 3.2, we
can assume that G is GL,,(Q)-irreducible and that G is a counterexample to
the Main Theorem with minimal order. Therefore, let G C GL,(Ok) be a
minimal counterexample such that the degree [Q(G)Q? : Q2°] is minimal and,
in particular, the extension Q(G)/Q is not abelian.

Like in the proof of theorem 6, we have to distinguish two cases:

case a): I'1(p) is trivial, i.e. K is tamely ramified over Q.
and

case b): I';(p) is not trivial, i.e. K is wildly ramified over Q.

We start with case a), since we can use an argument of the proof of case I
of theorem 6.
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First, let us assume that p # 3. We will consider the case p = 3 separately
below. We have the following conditions:

(I

and: pl*/2+1 does not divide ((, — 1) for t = e} = p — 1.

In the case if the group generated by all g7,y € I for a g € G is not cyclic,
we can apply the argument of the proof of case I of theorem 6, which implies
that the conditions of proposition 1 are not satisfied for the group generated
by all g7,y € T', and so G ¢ GL,(Ok).

Therefore, G should be cyclic, and g7 = ¢° for all g € G and any v € T'g(p).
Moreover, a is the same for all g. Indeed, if g7 = ¢® and ¢;7 = ¢1°, with
a # b, then the elements (gg1)7, 7 € I' would generate a noncyclic group. So
we have ¢g77 = ¢?7 for any v € I'g,0 € I'. This implies g7 = g‘”"_l. If G is
generated by all g7,~ € I', this implies the coincidence of all inertia groups I'y.
Since I'g = I is cyclic, it follows that Q(G) must coincide with Q((,). Indeed,
for any g € G the matrix h = g~ 1¢7 = I,,(modp) (here « is a generator of
I'o), so by lemma 2A (see sect. 3, 3.4) is conjugate over Z,, the valuation
ring of p, to a diagonal matrix d with p-roots of unity as diagonal elements.
Therefore, C~'hC = d for an invertible matrix C' with entries in Zpy, and
@(G) = Q(C_lGC) If C71hC = g = [gij] S C_lGC, then g;yj = gijC(ij) for
some p-roots of unity ((;;). Since Q(g11, 912, .., 9nn) adjoined by all entries of
¢’ is a Kummer cyclic extension of QQ containing (,, this field should coincide
with Q(¢p), and this is true for any ¢’ € C™'GC. This argument implies that
QG) = QC1GC) = QUG).

The case p = 3 should be considered separately. We can use discriminant
estimates for the field K = Q(G). It follows from corollary 1 of theorem 2.11 in
[N], p. 69, and proposition 4.9 in [N], p. 159, that there are no finite unramified
extensions of the field Q(¢3) = Q(v/—3) having degree d > 1 over Q(v/=3).
This implies that K = Q(v/—3), and this field is abelian. This contradicts our
assumption concerning the minimal counterexample G.

Now we consider case b) and assume that K is wildly ramified. We assumed
¢p € K. Since Q((p) is a tame extension of Q, I'; operates trivially on the p-th
roots of unity ¢,, hence K™ contains also (,. Take now in lemma 2A L = Ko,
then this field is unramified over QQ for the prime divisor p of p. Lemma 2A
shows: up to conjugation in GL, (O, N K'0), where O, is the valuation ring
of of KT0(¢{,) at p, the group Go(p) = {g € Go,g9 = I,(modp)} consists of
diagonal matrices. The group G(p) := {g € G,g = I,,(modp)} is a nontrivial
p-group and therefore Go(p) # {I,} is not trivial as the subgroup of I';-fixed
elements of a nontrivial p-group. G is abelian and therefore in the centralizer
of every matrix h € Go(p). If, in particular, h = diag(l11,,,...,lxIy,), then
g = diag(g1,...,9x),9; € GL,,(K) holds for every g € G, and therefore we can
split G into GL,, (O, N KT0)-irreducible components. In this decomposition we
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choose an irreducible component G’ C GL,,(K) of G with a suitable natural
number m such that G’ has nontrivial I'i-action. Moreover, the described
decomposition is stable under the operation of I'y (see lemma 2A in sect. 3,
3.4), in particular I'y operates on the group G’.

If G}, denotes the subgroup of I';-fixed elements of G’, then the group

Go(p) == {9 € Gi, 9 = Ln(modp)}

consists of scalar matrices. The conditions on the ramification ef; = p — 1 are
also satisfied for G’ and Gj, instead of G and Gy. But now the group G{(p) is
equal to the group p := {(I,,,(P = 1} containing only scalar matrices.

Note that in the case of global field K/Q and a Galois stable subgroup
G C GL,(Ok) the same groups Go(p) and G{(p) are conjugate to groups of
scalar matrices, but according to lemma 2A, the conjugation is performed in
GL,(0p N K'), where O, is the valuation ring of of K1°((,) at p.

Now we need to use the Galois equivariant homomorphism

Y =y, 1 G — GLpy»(K) given by 1(g) = ¢®", which was defined earlier.
The kernel of v is the set of all scalar matrices contained in G’. This kernel is
not trivial, since Gj,(p) C Kert, and there is an exact sequence
1—pu— G — Yp(G') — 1 of T'y-invariant groups.

Now we can use lemma 3 proven in sect. 3 above for the construction of
a subgroup G C G’ C GL,,(K) such that: K't1(G}) is an extension of Kt
with ¢, € K'1(G)), tame ramification index e} = p — 1 and K'1(G})/K"" is
an elementary abelian Kummer extension.

Finally, a careful study of the Galois action of T’y on G} shows that the
constructed group G} can not exist if Q(G}) # Q and Q(G})/Q is not abelian.
For proving this we can apply Résumé formulated in the end of sect. 3.

0

6. THE CASE OF RELATIVE
EXTENSIONS OF NUMBER FIELDS

It is known that if F/F has unramified subextensions F;/F, E; C E, then
there exist examples of Galois stable finite groups G C GL,(Og) (see [M3]
for an explicit construction). This is completely different from the situation
where F' = Q and there are no unramified extensions of the ground field Q. We
can consider the role of the group of units of the ring of integers Of for the
existence of finite Gal(E/F)-stable subgroups G C GL,,(Og).

It is also difficult to transfer the idea of reduction to the case of abelian
Galois stable groups G of composite order.

Example 3. It is difficult to transfer the idea of reduction to abelian Galois
stable groups G of composite order. For p # 2 the simplest example can be
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constructed as follows: Let

and g := diag(g2, I[,—2) € GL,(Ok). Then g7,y € I' and (,I,, generate a finite
I'-stable nonabelian subgroup of GL,(Ok) of order divisible by 2 and p.

Example 4. Let

let £ = F(V/3+2),
F =Q(V34+V2-vV2+V?2). Then E/F is ramified at 2, the ramification is
wild, and G = {g,—g, 2, — 2} C GL2(Of) is a I'-stable subgroup of order 2
and exponent 2.

Example 5. The difficulties to extend the result of the Main Theorem to
the case of relative extensions over a ground field F' ramified over Q can be

illustrated using the following construction:
If there exist an intermediate extension L = F(¥/u) C E for some unit
u € O, we can put

0 Yu O0...
0 0 Yu... 0

0 e 0 Yu
Jutt oL 0 0
Then ¢7,v € I" and (I, generate a finite I-stable subgroup of GL,(OF).

Hence for relative extensions E/F, L # F and some units u it may happen
that neither F((,, ¥/u) C FEg, nor F(¢/u)/F is unramified, when L = F((,).

However, some progress is still possible to give a positive answer for relative
extensions of number fields that satisfy the following

Assumption. Consider relative extensions K/F which are of the form
K = TF. Here we assume: T is a finite Galois over Q and unramified out-
side the rational primes pi,pa,...pk, and F/Q is a number field unramified in
DP1,P2, -y Pi- S0 we suppose that (d(F/Q),p;) = 1 for all indices i and the dis-
criminant d(F/Q) of F/Q. We consider finite subgroups G of GL,(Ok) that
are stable under the natural operation of the Galois group Gal(K/F).

It is possible to reduce our considerations to the case of the only one prime
b1 =D

Theorem 8. Let F be a number field of discriminant d(F') not divisible
by an odd prime p and let T be a finite Galois extension of Q of discriminant
coprime to d(F') . Set K =TF. If G is a finite Gal(K/F)-stable p-subgroup of
GL,(Ok) then G C GL,(FT,p) where Ty, is the mazimal abelian subeztension
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of T/Q (or equivalently, the commutator subgroup of Gal(K/F) acts trivially
on G).

The proof of theorem 8 is given in [BM2].

Remark. Under the assumptions of theorem 8 for K and F there do not
exist unramified intermediate extensions between K and F' .

7. RARITY OF I'-STABLE REPRESENTATIONS

Let K =Qor K = @(\/3) and d is a negative rational integer. We consider
the set O(N) = {a € Ok||Nk/g(@)| < N} where Ny g is the norm map. The
proof of the following theorem ( see [M4], theorem 4) is based on the result by S.
D. Cohen (see theorem 1 in [C]) combined with some asymptotic estimates for
the number of integral polynomials having bounded coefficients with respect to
the norm and reducible over K = (v/b) (b is contained in a finite set of elements
from Ok). Here estimates of the error term are added.

Theorem 9. Let v(N) denote the total number of polynomials of degree m
with coefficients in O(N), and let ¥(N) denote the number of those polyno-
mials whose splitting fields do not contain any fields K(G) # K for G C
GL,(Og),E D K and fized n. Then

. Y(N)
oy b

The error term can be estimated in the case K = Q as

o(N) = H(N) = o(N"™*05(InN')2).

Theorem 3 shows that ”"almost all” fields are not realizable via adjoining
matrix coefficients of of all matrices g € G for I'-stable groups G to K, the field
of rational numbers or its imaginary quadratic extensions, if these coefficients
are contained in the rings of integers of algebraic number fields.

Remark that we can also consider other number fields, but it will be neces-
sary to rearrange the definition of O(N), compare [C]. Note that proof below,
specially in the case 1), can produce explicit estimates, and we can also use the
estimates in [K1], [K2], [Gal].

Proof of theorem 9. We use properties of distribution of Galois groups of poly-
nomials that were considered by S. D. Cohen [C], for the case K = Q see
also [VW]. According to [C] the number of polynomials in question having the
symmetric Galois group S,,, divided by the total number of polynomials in
question, approaches 1 when N — oo. Therefore, we can consider only the
number of these K-irreducible polynomials that are reducible over K (y/«) for
a finite number of a. The elements \/a can be contained only in a finite num-
ber of extensions K (G) that have no ramified primes p > m! + 1 (since p must
divide the order of I' = S,, ) and have degree m! over K. Let us estimate the
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number of these polynomials. However, if K = Q, the situation is simplier, and
we have to check only 2 possible extensions of Q: the fields Q[¢] and Q[v/—3].

1) Let us consider the case K = Q.

Note that in the virtue of the above result on the symmetric Galois group
S our Main Theorem (see also theorem 2 in [M2]) which implies that only
for fields Q(G) containing nontrivial roots of 1 it may happen that Q(G) # Q,
we have to eliminate a possibility that Q(G) has nontrivial roots of 1 and
simultaneously the Galois group of Gal(Q(G)/Q) is S,,. The latter is possible
only if one of the primitive roots (4 =i or (3 = %j?’ is in KQ(G).

Let us start from the case i € Q(G). Let k, 1,k + 1 = m be positive integers
such that an integral polynomial A(x) satisfies the conditions of theorem 9,
A(z) = a(z)b(x) with a(z) = Zf:o a;x',a; € Zli], and b(z) = Zé:o bjzd b €
Z[i], and ag # 0,ax # 0,bg # 0,b; # 0. Since the number of possible polyno-
mials A(z) with either the first or the last coefficient equal 0 is ~ N™ while
the total number of polynomials in O(N)[z] is ~ N™*1 so the polynomials
A(z) with either the first or the last coefficient equal 0 do not give any contri-
bution asymptotically. Let us show that the number of the sets of coefficients
(ap,aq,...,ak,bo,b1,...,b) admissible for polynomials a(x),b(x) also do not
contribute anything asymptotically. The ring Z][i] is euclidean, and +1, +i are
the only invertible elements in Z[i], also for any integer D |ab| < |D| imply
1b| < |D| or |a| < |D|. This implies |a;| < C(m)N and |b;| < C(m)N where
C = C(m) depends only on m. Also we have 1 < |agbg| < N and 1 < |axb| <
N. Let us estimate the number L(N) of pairs of Gaussian integers a,b € Z]i]
such that 1 < |abl] < N. We can write a = a} + ahi = ¢1(a1 + aqi) where
c1, a1, are rational integers, oy, o are coprime, so ¢; is the greatest com-
mon divisor ¢; = (aq, az)of ag,as. Also, let b = b} + bhi = co(B1 + P2i) where
c2, b1, B2 are rational integers, and ¢y = (01, 32). It is known (see [D], ch. 4,
sect. 68 or [Cas]|, ch. 9, sect. 6 and appendix B) that the number F(t) of primi-
tive representations of a positive integer t as a sum of 2 squares does not exceed
c¢2°% where ¢y is a constant depending only on the form f(z1,22) = 2% + 23,
the sum of 2 squares, ¢y = 4 in our case, and s is the number of distinct prime
divisors of t. Denote by M (j) the number of all pairs of integers ¢, ¢ such that
|c1e2| < j (note that both ¢; and ¢ can be positive or negative). Then (see e.g.
W], p.264) M) ~ A/ /24 + /8] o) — 40 Ing 4 O()), where
[z] denotes the greatest integer < z. Note that we can always write F'(t) < cyt.
Let us estimate the number L(N) of integers a,b introduced above. We can
use that also F(t) = ¢;2° = o(t), and also F(t) = ¢;2° = o(t'/*) for t > N1/4
(see e.g. [HW], 18.7, p.270).

N
(N/t-In(N/t)t Z (N/t-In(N/t))ti) =

Mi

L(N) =) M(N/t)F(t) = of

~+
I
—
~+
I
—
»b-l»—t
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N1 N
o N -ln(N/z)dz) +o( [ . N-In(N/z)dz1) = o(N%inN)
1 N1

So the number of possible systems of (ag, ax, bo, b;) involving 2 couples (ag, bo)
and (ay, by) of coefficients is o( N?-°(InN)?). This estimate may be improved but
this is not essential for our theorem. Finally, the number of polynomials A(x)
that are reducible in Z[i][x] is o N* "I N'=IN2-5(InN)?) = o(N™+0-5(InN)?) =
o(N™*1) and we can combine this estimate with the estimate in [C] (see also
[Gal]), which implies that the number of polynomials A(z) = > piz* €
O(N)|[x] whose Galois group is not symmetric is O(N™+%-5InN). So our claim
is true for polynomials in Z[i][z].

In a similar way we can consider the polynomials A(z) € Z[(3][z]. The num-
ber of these polynomials can be estimated using the quadratic form f(x1,x2) =
x3 — 1179 + 23 corresponding to multiplication in the ring Z[(3], which is equiv-
alent to the form f(y1,y2) = y> + y1y2 + y3, where x1 = y1 + ya, 22 = y2. The
constant cy for this form is ¢y = 6 (see [D], ch. 4, sect. 70 or [Cas], ch. 9, sect.
6 and appendix B), and our argument can be used without changes in the case
of the ring Z[(3] instead of Z[i].

2)Let us consider the case K = Q(v/d), d < 0, d € Z.

Letf € O(N)[z] and f =g-¢, 9,9 € K(Va)[z],\/a ¢ K. Let £ € Og(/a)
be a unit of infinite order. We can suppose that after some adjustment both the
height |g| = max |a;| of g = >~ a;x" and the height |¢'| of ¢’ = 3" ala® are equal
up to a constant ¢ = ¢(K,m). Indeed, let |g| = A, |¢'| = B, |f| = ¢coN, co =
co(K,m). Let t = loge (%), then changing ¢ and ¢’ to p = £ g and p/ =
EMg respectively we obtain |p| ~ VN, |p/| ~ VN, that is |p| < ¢1(K, m)VN
and [p/| < c2(K,m)V'N. Asp = pi++/apy and p’ = pi +/ap; for p;, p; € K|z]
and p’ = p? for nonidentical automorphism o of K(y/a) over K, we can see
that [p;| < e3V/N and |p}| < e3v/N for i = 1,2 and ¢3 = c3(K,m). Therefore,
there are only (cov/N)2("/2+0) = ¢y N™+2 ¢, = ¢4(K,m), polynomials that
are reducible over K(y/a). Likewise, there are csN2™*D ¢y = c5(K,m),
polynomials f in O(N)[z] and it is obvious that

) Ca Nm+2
N e =

Note that the number of polynomials f € O(N)[z] that are reducible already
in O(N)[z] do not give any contribution asymptotically. Moreover, according to
the result in [C], the number of polynomials in O(N)[z] whose Galois group is
not symmetric do not contribute asymptotically as well. So, we have shown that
the number of polynomials whose splitting fields can contain any K(G) # K is

small asymptotically, and this completes the proof of theorem 9.
O
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8. GALOIS STABLE GROUPS OVER
FIELDS OF CHARACTERISTIC p >0

In the case of fields of positive characteristic we have

Theorem 10. Let F be a global field of a positive characteristic p, and let E
be a splitting field of some irreducible polynomial f(y) € F[y] whose roots are
the conjugates of some elementt € E. Then E = F(G) for any positive integer
n and an appropriate group G C GL,(E). Moreover, if t € E is an element of
Og then G € GL,(Og).

Proof of theorem 10.

Let
1 t 0 0
0
gt = 0
0 o ... ... 1

Then g7 = I,,, the identity n x n-matrix, and for any automorphism o of E

1 t©° 0 ... 0
1 0
g7 = 0
0 0 ... ... 1

We have (¢g7)? = I, and the product of any 2 matrices g7 for any auto-
morphisms o of E is still a n X n unitriangular matrix of order p. Therefore,
a group G generated by all matrices gf is a finite abelian group of exponent p
with nontrivial Galois operation of I" such that E = F(G) # F provided t ¢ F.

O

The reason for this constructive realizability of the above field E of charac-
teristic p is that elements in G are not semisimple, the situation is completely
different for fields F, F' of characteristic 0, and even for extensions FE/F of fields
of characteristic p > 0, provided the order of GG is not divisible by p.

9. SOME REMARKS ON THE ORDERS
OF FINITE ARITHMETIC GROUPS

As it has been already mentioned in the introduction, one of the applica-
tions of the Main Theorem of this paper is the computation of orders of finite
arithmetic groups in GL,(K). If K is a totally real algebraic number field
and f(z1,x2,...,x,) € Q[x1,x2,...,z,] is a positive definite quadratic form, the
order of the finite orthogonal group Of(Ox) C GL,(Ok) of this form over
Ok does not depend on the field K and can be estimated using the Minkowski



34

formulas for finite integral groups of matrices obtained using reduction modulo
primes p and the fact that there is no torsion in the kernel of this reduction for
odd p ( [So], sect. 6.3 and [Min2]) since O¢(Ok) = Of(Z). The order of O¢(Z)
is bounded by the number s(q,n) = IIg"(¢™) | where the product is taken for all
primes ¢q = 2,3,5,7, ..., and

r(g,n) = Eiﬁﬂm]-

Remark that any finite subgroup G C GL,,(Ok) is a subgroup of O,(Ok) for
some quadratic form q(x1, 2, ..., z,) € Q[z1, T2, ..., Ty].

There are some generalizations of this result of Minkowski using both alge-
braic (see e. g. [Fe]) and analytic (see e. g. [LN]) methods.

It is possible to generalize the above formula for finite subgroups of GL,,(Ok)
for some cyclotomic fields K using lemmas 2 and 2A (p.16, 17, see also 3.3, p.14)
for K = Q(¢p) and K = Q,((p) since the ramification indices of these fields are
p — 1. However, the kernel of reduction of GL,, (O ) modulo prime divisor of p
may contain a p-group of any prescribed nilpotency class for extensions K/Q
with large ramification.

Indeed, let us consider the following p-group of nilpotency class [, determined
by generators a, by, ..., b, and relations b = 1,b;b; = bjb;,i = 1,2,...,l;aby =
bra,bj_1 = biabi_la_l,i =1,2,....;a" =1, wheren =p' > 1 >pl~! and t is a
suitable integer. Let H be the abelian subgroup of G generated by b1, ..., b;, and
let x denote the character of H given on the generators as follows: x(b1) = (,—a
primitive p-root of 1, x(b;) = 1,7 = 2,...,1. The character x together with the
decomposition of G into cosets with respect to H: G = 1.H+a.H+...+a" 1. H
gives rise to an induced representation R = 1 ndxg of G. For the n x n-matrices
ei; having precisely one nonzero entry in the position (4,j) equal to 1 we can
n—jy\.

define a n x n-matrix using the binomial coefficients i)

C =Spzizjz1 (1) (7__;) €ij-

Theorem 11. Let Q,((p) denotes the extension of Q, obtained by adjoining
all roots Cpi,i = 1,2,3,... of p-primary orders of 1, let ™ be the uniformizing
element of a finite extension K/Q, such that K C Qu((pe), and let D =
diag(1, 7,72, ..., 7" "1). Then the representation Ry = D"'C 'RCD of G is a
faithful, absolute irreducible representation in GL,(Ok) by matrices congruent
to I,(modm). Moreover, such representations are pairwise nonequivalent over
O@p@pm), and for the lower central series G = Gy D Gi—1 D ... D Gy = {I,,}
of G all elements of Ry (Gy_;y1) are congruent to I,(modn*™) if the elements
of R:(G) are congruent to I,,(modr™).

For the proof of theorem 11 (which is constructive) see [M7], see also [M8].
Remark that the construction of theorem 11 can be realized also over the inte-
gers of cyclotomic subextensions K C Q((p) of Q and other global fields.

The following proposition is used in the proof of the following propositions
(see [M8], lemma 1):
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Proposition 4. Let L be an ideal in a Dedekind ring S of characteristic 0,
let {0} # L # S, and let g be some n X n-matriz of finite order congruent to
I,(modL). Then L contains a prime p and gpj = I,, for some integer 5 > 0.
In particular, a finite group of matrices congruent to I,(modL) is a p-group.
Let L = p be a prime ideal containing p having the ramification index e with
respect to p, let g = I,(modp™), and let

M (p—1) < = < pl(p—1),i > 0,0 = min{L,i}.

Then gpi = I,, in particular, any finite group of matrices congruent to
I,(modp?) is trivial if e < t(p — 1).

Remind that for a primitive t-root (; of 1 ¢ (t)d = [K((;) : K] denotes the
generalized Euler function. The following propositions allow to estimate the
order of Sylow g-subgroups of GL,,(Ok /p), the reduction is considered modulo
some prime ideal p C Og.

The proof of the following propositions is technical; it is based on the reduc-
tion modulo some prime ideal p C Og such that its norm C is a prime integer
and the kernel of the reduction of GL,,(Ok) (modp) has no g¢-torsion for a
given prime ¢ # 2 and the multiplicative order of Ny q(p)(modq') is ¢k (q"),
there is an infinite number of ideals like this (which can be shown using the
Chebotarev’s density theorem). Note that, according to proposition 4, for any
g = I,(mody), g € GL,(Ok) the ideal J of Ok should divide some prime p. It
is easy to show (see [M9], remark 2), that Ng,g(3J) < pp;il for d = [K : Q].
This implies that the reduction (modJ) is trivial if Ny q(J) > pp;il, moreover,
if Nk ,o(3) > 2% For ¢ = 2 the same result is true if /=1 € K since 2¢ > p%.
It is possible to determine the structure of a p-subgroup of GL,(Ofk) having
the maximal possible order with some modifications in the case p = 2. The the-
orems describing the maximal p-subgroups of GL,,(K) over fields can be found
in [LP], in particular, it is proven that there is only one conjugacy class of
maximal p-subgroups of GL,, (K) for p > 2. Howewer, equivalence of subgroups
in GL,,(Ok) over Ok is a more subtle question.

Proposition 5. Let q be an odd prime. There is a prime ideal p € Ok with
the norm N go(p) = p — a prime integer — such that the order of a Sylow q-
subgroup of GL,(Ok /p) is bounded by the number Sk (q,n) = ¢"*5(@™) | for any
matriz g € GL,(Ok) of order q the condition g = I,(modp) implies g = I,

and
n

RK(Q?”) = Efil[qb[{(qz)

.

Let us consider an integer h = [#(q)] and a wreath product H = M wr S,
of the symmetric group S;, and the matrix group M = diag(g1, 92, ---, gn, L) for
k=mn—h¢r(q) and g; € Cy for a cyclic group Cyi C GLg, ()(Ok) with the
operation of S, (which can be identified to a subgroup P, of block-permutation
matrices P € GL,,(Ok)) on M determined by permutations of diagonal blocks
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g1: P .diag(g1,92, -, 9n, Ir) = diag(gpay,9p@), - 9pn) k), P € Pn. H is
naturally isomorphic to the group consisting of matrices mp € GL, (Of) for
m € M and p € Py,. Set H = I, in the case n < ¢x(q).

Proposition 6. For a prime q let m be the maximal integer with the property
ok (™) = ¢x(q).

1)For an odd prime q there is a q-subgroup of H = M wr S}, where M =
diag(g1, 92, - Ghs L), gi € Cqm, Cym is a cyclic subgroup of order ¢ in
GLg . (qm)(Ok) and S} is a Sylow q-subgroup of S}, and the order |H| of the
q-subgroup H is equal to

22—
Sic(qn) =g —oxa),

There are no q-subgroups in GL,, (Ok) of order greater than |H|.

2) For q = 2 let L = K(y/—1). There is a 2-subgroup of H = M wr S},
where M = diag(g1,92,---,9n, 1x),9i € Cam, Cym is a cyclic subgroup of order
q"™ in GLg, (qm)(OL) and Sj, is a Sylow q-subgroup of S}, and the order |H| of
the group H s equal to

Sp(2,n) =2 =],

There are no 2-subgroups in GL,(OL) (and therefore in GL,(Ok)) of order
greater than |H|.
Note that |H| =1 if n < ¢k (q).

The order of any finite subgroup of GL,, (O ) can be bounded by the constant

TK(Qv n) = quﬁl[%%

where the product is taken for all primes ¢ = 2,3,5,7,.... This is a generaliza-
tion of the above result by H. Minkowski [Min2].
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