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Abstract. In this paper we study representations of finite groups stable under
Galois operation over arithmetic rings in local and global fields.

We consider a Galois extensions E/F and realization fields of finite subgroups
G ⊂ GLn(E) stable under the natural operation of the Galois group of E/F ;
let E = F (G) be a field obtained via adjoining to F all matrix coefficients of all
matrices g ∈ G. Though for sufficiently large n and a fixed algebraic number
field F every its finite extension E is realizable as F (G) for some group G above,
there is only a finite number of possible F (G) if G ⊂ GLn(OE) for the ring OE

of integers of E. We study the possible realization fields for finite extensions
of Q, Qp and global fields of positive characteristic. In particular, for a finite
Galois extension E/Q and any finite subgroup G ⊂ GLn(OE) which is stable
under the natural operation of the Galois group Gal(E/Q) the realization field
Q(G) = Q(ζm) for an appropriate root ζm of 1.

Some related results and conjectures are considered.

1. INTRODUCTION

Let E/F be a Galois extension of finite degree of global fields, i.e. E, F are
finite extensions of the field of rationals Q or a field of rational functions R(x)
with a finite field R.

Let us denote byOE andOF the maximal orders of E and F , and let Γ be the
Galois group of E/F . Let E = F (G) be a field obtained via adjoining to F all
matrix coefficients of all matrices g ∈ G for some finite subgroup G ⊂ GLn(E).

We are interested in 3 basic conditions for the Γ-operation on G and the
integrality of G.

A) G is Γ-stable under the natural Galois operation.

B) G ⊂ GLn(OE).

C) A primitive t-root of 1 ζt 6∈ E.

We intend to discuss the following questions:

Question 1. Do the conditions A) and B) imply G ⊂ GLn(FEab), where Eab

is the maximal abelian subextension of E/Q?

Key words and phrases. algebraic integers, Galois groups, integral representations, real-
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Question 2. Do the conditions A), B) and C) imply G ⊂ GLn(F )?

Question 3. Is it possible to classify the realization fields E = F (G)?

Let us first consider a Galois extension E/F of characteristic 0 and realiza-
tion fields of finite abelian subgroups G ⊂ GLn(E) of a given exponent t. We
assume that G is stable under the natural operation of the Galois group of E/F .
In [M2], [M3], [M4], [M6] it is shown that under some reasonable restrictions
for n any E can be a realization field of G, while if all coefficients of matrices
in G are algebraic integers there are only finitely many fields E of realization
having a given degree d for prescribed integers n and t or prescribed n and d.

Below OE is the maximal order of E and F (G) is an extension of F generated
via adjoining to F all matrix coefficients of all matrices g ∈ G, Γ is the Galois
group of E over F .

In [M4] we prove the existence of abelian Γ-stable subgroups G such that
F (G) = E provided some reasonable restrictions on the fixed normal extension
E/F and integers n, t, d hold and study the interplay between the existence of
Γ-stable groups G over algebraic number fields and over their rings of integers.

The problems below originate from classification problems of positive definite
quadratic lattices and their isometries. There is a number of applications to
finite group schemes, arithmetic algebraic geometry and Galois cohomology (see
[BM1], [B], [M6]).

Let K be a totally real algebraic number field with the maximal order OK ,
G an algebraic subgroup of the general linear group GLn(C) defined over the
field of rationals Q. Since G can be embedded to GLn(C), the intersection
G(OK) of GLn(OK) and G(K), the subgroup of K-rational points of G, can
be considered as the group of OK-points of an affine group scheme over Z, the
ring of rational integers. Assume G to be definite in the following sense: the
real Lie group G(R) is compact.

The problem which is our starting point is the question:
Does the condition G(OK) = G(Z) always hold true for totally real fields

K?
This problem is easily reduced to the following conjecture from the repre-

sentation theory of finite groups:
Let K/Q be a finite Galois extension of the rationals and G ⊂ GLn(OK)

be a finite subgroup stable under the natural operation of the Galois group
Γ = Gal(K/Q). Then there is the following

Conjecture 1. If K is totally real, then G ⊂ GLn(Z).

There are several reformulations and generalizations of the conjecture.
It is reasonable to consider arithmetic groups defined over algebraic number

fields F and to study their subgroups of OF -points (see [Bo], 7.16); the functor
RF/Q of ”restriction of scalars” allows to reduce some problems to considering
groups over Q. For a good introduction to the theory of arithmetic groups see
[So]. The most interesting questions below are related to groups defined over
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Q. We can consider the behavior of automorphism groups of positive definite
quadratic Z - lattices under totally real scalar extensions as a motivation of of
our study of finite arithmetic groups, and to ask the following

Question. If two positive definite quadratic Z-lattices become isomorphic over
the ring OK of integers of a totally real field extension K of the rationals Q,
are they already isomorphic over Z, the ring of rational integers ?

The following definition (compare also Definition 2 given below in sect. 2
after the formulation of the Main Theorem) can be considered as an another
generalization of the ”generalized permutation lattice for a group G” in the
sense of [We], p. 318.

Definition 1. Consider an arbitrary not necessarily totally real finite Ga-
lois extension K of the rationals Q and a free Z-module M of rank n with
basis m1, . . . , mn. The group GLn(OK) acts in a natural way on OK ⊗M ∼=⊕n

i=1OKmi. The finite group G ⊂ GLn(OK) is said to be of A-type, if
there exists a decomposition M =

⊕k
i=1 Mi such that for every g ∈ G there

exists a permutation Π(g) of {1, 2, . . . , k} and roots of unity εi(g) such that
εi(g)gMi = MΠ(g)i for 1 ≤ i ≤ k.

The following conjecture generalizes (and would imply) conjecture 1:

Conjecture 2. Any finite subgroup of GLn(OK) stable under the Galois
group Γ = Gal(K/Q) is of A-type.

For totally real fields K conjecture 2 reduces to conjecture 1.
Both conjectures are true (see [BM1]) and have some extra applications to

arithmetic geometry and Galois cohomology [B]. Another application of the
conjectures above can be the computation of orders of finite arithmetic groups
in GLn(K). For instance, if K is a totally real algebraic number field and
f(x1, x2, ..., xn) ∈ Q[x1, x2, ..., xn] is a positive definite quadratic form, it is pos-
sible to estimate the order of the finite orthogonal group Of (OK) ⊂ GLn(OK)
of this form over OK using the formulas for finite integral groups of matrices
(see [So], sect. 6.3 and also [Min2]) since Of (OK) = Of (Z). The order of
Of (Z) is bounded by the number s(q, n) = Πqr(q,n), where the product is taken
for all primes q = 2, 3, 5, 7, ..., and

r(q, n) = Σ∞i=1[
n

qi(q − 1)
].

The results below imply the positive solution of the above conjectures (the
Main Theorem in sect. 2), the presented proof is shorter than one given in
[BM1], and it allows to obtain also a result for Galois stable groups over local
fields (theorem 6). The paper is organized as follows. The main results are
formulated in sect. 2. In sect. 3 an integrality criterion and the finiteness
theorem are proven and some auxiliary results are given for the needs of further
sections. Sect. 4 and 5 are devoted to the proofs of theorems describing the
structure of Galois stable groups over local and global fields. In sect. 7 a
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probabilistic characterization of Galois stable groups over extensions of Q and
Q(
√

d) is given, and in sect. 6 and 8 we can see, what happens in the case of
relative number field extensions and the case of fields of positive characteristic
respectively. In the last section some generalizations of Minkowski’s result is
suggested.

NOTATION

Throughout the paper we will use the following notations.
Q,Qp,Z,Zp,OK denote the field of rationals and p-adic rationals, the ring of
rational and p-adic rational integers respectively, and the ring of integers of
a local field K. GLn(R) denotes the general linear group over R. [E : F ]
denotes the degree of the field extension E/F . For a primitive t-root ζt of 1
and a number field E we write φE(t)d = [E(ζt) : E] for the generalized Euler
function. Im denotes the unit m×m-matrix, 0n,m and 0m are zero n×m and
m×m-matrices, ei,j are square matrices having the only nonzero element 1 in
the position (i, j), rankM and detM are rank and determinant of a matrix M .
tM denotes a transposed matrix for M , diag(d1, d2, ..., dm) is a block-diagonal
matrix having diagonal components d1, d2, ..., dn. We suppose that K is a Galois
extension of Qp. We denote by Γ the Galois group of a normal extension K/F ;
if needed we specify K/F as a subscript in ΓK/F . The symbols Γi(p) denote the
i-th ramification groups of the prime divisor p and Γ0(p) the inertia group in Γ.
In the case of local field extension K/Qp we have only one prime ideal over the
prime p, hence we will omit the prime divisor p in the notation Γi,Γ0. ei is the
order of Γi for i ≥ 1, while e is the order of the inertia group. It is known, that
e = e0 · e1, where e0 is the index of Γ1 in Γ0. For Γ acting on G and any σ ∈ Γ
and g ∈ G we write gσ for the image of g under σ-action. If G is a finite linear
group, F (G) denotes the field obtained by adjoining the matrix coefficients of
all matrices g ∈ G. ζm denotes a primitive m-th root of unity. For a local
field or an algebraic number field K of finite degree over Qp or Q respectively
we use the following notation: Kab is the maximal abelian extension of K (an
infinite extension of K) and Kab denotes the maximal abelian subextension of
K over Qp or Q respectively. We denote by Z(p) the localized ring with respect
to the multiplicative subset S := Z − (p)Z, i.e. the rational numbers with
denominators coprime to the given prime integer p.

2. FURTHER RESULTS

The following result was obtained in [M4] (see also [M6]).
Theorem 1 (Finiteness Theorem). 1) For a given number field F

and integers n and t, there are only a finite number of normal extensions E/F

such that E = F (G) and G is a finite abelian Γ-stable subgroup of GLn(OE) of
exponent t.

2) For a given number field F and integers n and d, there is only a finite number
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of fields E such that d = [E: F ] and E = F (G) for some finite Γ-stable subgroup
G of GLn(OE).

Theorem 2 (see [M4], theorem 1). Let F be a field of characteristic 0, let
d > 1, t > 1 and n ≥ φE(t)d (here φE(t)d = [E(ζt) : E] is the generalized
Euler function, ζt is a primitive t-root of 1) be given integers, and let E be a
given normal extension of F having the Galois group Γ and degree d. Then
there is an abelian Γ- stable subgroup G ⊂ GLn(E) of the exponent t such that
E = F (G).

In fact, G can be generated by matrices gγ , γ ∈ Γ for some g ∈ GLn(E).

Remark. For a given number field F and given integers d > 1, t > 1 and
n > [F (ζt): F ] · d, there are infinitely many normal extensions E/F of degree d

such that E = F (G) for some finite Γ-stable abelian subgroup G ⊂ GLn(E) of
exponent t.

In the case of quadratic extensions we can give an obvious example.

Example 1. Let d = 2, t = 2. Pick E = Q(
√

a) and g =
∣∣∣∣

0 1
a−1 0

∣∣∣∣
√

a for

any a ∈ F which is not a square in F . Then Γ is a group of order 2 and
G = {I2,−I2, g,−g} is a Γ-stable abelian group of exponent 2.

Theorem 3 (see [M4], proposition 1). Let E/F be a given normal extension
of algebraic number fields with the Galois group Γ, [E : F ] = d, and let G ⊂
GLn(E) be a finite abelian Γ-stable subgroup of exponent t such that E = F (G)
and n is the minimum possible. Then n = dφE(t) and G is irreducible under
conjugation in GLn(F ). Moreover, if G has the minimum possible order, then
G is a group of type (t, t, ..., t) and order tm for some positive integer m ≤ d.

In the case of unramified extensions the following theorem for integral rep-
resentations in a similar situation is proven in [M3]:

Theorem 4. Let d > 1, t > 1 be given rational integers, and let E/F be an
unramified extension of degree d.
1) If n ≥ φE(t)d, there is a finite abelian Γ- stable subgroup G ⊂ GLn(O′E) of
exponent t such that E = F (G) where O′E is the intersection of valuation rings
of all localization rings of OE with respect to primes ramified in E/F .
2) If n ≥ φE(t)dh and h is the exponent of the class group of F , there is a finite
abelian Γ-stable subgroup G ⊂ GLn(OE) of exponent t such that E = F (G).
3) If n ≥ φE(t)d and h is relatively prime to n, then any G given in 1) is
conjugate in GLn(F ) to a subgroup of GLn(OE).
4) If d is odd, then any G given in 1) is conjugate in GLn(F ) to a subgroup of
GLn(OE).

In all cases above G can be constructed as a group generated by matrices
gγ , γ ∈ Γ for some g ∈ GLn(E).
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Some further results for Galois stable groups G with entries in unramified
field extensions of characteristic 0 can be found in [M3] and [M6].

The case F = Q, the field of rationals, is specially interesting since there
are no unramified extensions of Q. The following theorem was proven in [BM1]
(see also [M2] for the case of totally real extensions) using the classification of
finite flat group schemes over Z annihilated by a prime p obtained by V. A.
Abrashkin and J.- M. Fontaine [F]:

Main Theorem. Let K/Q be a normal extension with Galois group Γ, and
let G ⊂ GLn(OK) be a finite Γ-stable subgroup. Then G ⊂ GLn(OKab

) where
Kab is the maximal abelian over Q subfield of K.

A similar result can be expected in the case of local field extensions. Consider
a finite Galois extension K/Qp of the field Qp of rational p-adic numbers for
p 6= 2 and a free Zp-module M of rank n with basis m1, . . . , mn. The group
GLn(OK) acts in a natural way on OK ⊗M ∼= ⊕n

i=1OKmi. In this case our
definition 1 should be modified:

Definition 2. Consider a finite Galois extension K/Qp for p 6= 2 and a
free Zp-module M of rank n with basis m1, . . . , mn. The group GLn(OK) acts
in a natural way on OK ⊗M ∼= ⊕n

i=1OKmi. A finite group G ⊂ GLn(OK)
is said to be of A-type, if there exists a decomposition M =

⊕k
i=1 Mi such that

for every g ∈ G there exists a permutation Π(g) of {1, 2, . . . , k} and roots of
unity εi(g) such that εi(g)gMi = MΠ(g)i for 1 ≤ i ≤ k.

Example 2. For a primitive p-root ζp of 1 and θ = 1
2 (ζp + ζ−1

p ) we can
consider K = Qp(θ,

√
1− θ2) and a Γ-stable subgroup G ⊂ GLn(OK) generated

by matrices gc, c ∈ Z, where

g =
∣∣∣∣

θ
√

1− θ2

−√1− θ2 θ

∣∣∣∣ .

Note that K/Qp is an abelian tamely ramified extension and G is a cyclic sub-
group of GL2(OK) of order p. If the odd prime p ≡ 3(mod4), then ζp 6∈ K

since ζp = θ+
√−1 ·θ−1 and the congruence x2 +1 ≡ 0(modp) has no solutions

iff p ≡ 3(mod4).
The paper [BM1] gives a more explicit formulation of the Main Theorem

above and states the following:
Theorem 5. Let K be a finite Galois extension of Q and G be a finite

subgroup of GLn(OK) which is stable under the natural operation of the Galois
group Γ of the field K. Then G is of A-type and, in particular, G ⊂ GLn(OKab

)
holds.

Corollary. The realization field Q(G) = Q(ζm) for any G which satisfies
the conditions of the Main Theorem and an appropriate root ζm of 1.

The proof of the corollary follows immediately from the theorem 5 and our
definition 1.

Following the result of theorem 5, we can ask 2 questions for the groups G

over local fields:
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Question 4. Let K be a finite Galois extension of Qp and G be a finite
subgroup of GLn(OK) which is stable under the natural operation of the Galois
group Γ of the field K. Is it true that G ⊂ GLn(OKab

) holds, Kab the maximal
abelian subextension of K over Qp?

It is known (see [BM1], [M2], [M6]) that for global normal field extensions
K/Q the same question can be reduced to the case of elementary abelian Galois
stable p-subgroup G ⊂ GLn(OK) of exponent p.

Question 5. Let K be a finite Galois extension of Qp with Galois group Γ,
and let G be a finite Γ-stable subgroup of GLn(OK). Is it possible to classify
all fields Qp(G) ?

We can give a positive answer to Question 4 for any elementary abelian Γ-
stable p-subgroup G ⊂ GLn(OK). This also shows that for elementary abelian
Γ-stable p-groups G above all fields Qp(G) are abelian over Qp.

It follows from example 2 that for abelian extensions K/Qp of local fields
under the conditions of Question 4 G is not always a group of A-type.

Theorem 6. Let K/Qp (p 6= 2) be a normal extension of local fields, let
Γ be its Galois group, let G ⊂ GLn(OK) be an elementary abelian Γ-stable
p-subgroup of exponent p, and let K = Qp(G). Then K/Qp is an abelian field
extension.

The idea of the proof is to show that K = Qp(G) has a special ramification
structure over Qp, in particular, the inertia subgroup of Γ is cyclic for the prime
divisor of p. For a certain subfield E ⊂ K let E/F be a Galois extension of
fields with the Galois group Γ̄ = {σ1 = 1, σ2, ..., σt}, let w1, w2, . . . , wd be a
basis of OE over OF , and let ζp ∈ E. For the proof of theorem 6 we can use
the reduction to the case of group G ⊂ GLn(E), which is irreducible under
GLn(F )-conjugation and generated by all gγ , γ ∈ Γ̄ and some g ∈ G. We can
use the following criterion of integrality of G:

Theorem 6 allows us to give a new proof of the Main Theorem stated above
and proven in [BM1]. In the virtue of theorem 6, the proof of the Main Theorem
can be reduced to the situation where K is an unramified extension of the
maximal abelian subfield of K over Q.

For the proof of the Main Theorem we can first reduce it to the case of
elementary abelian group G (see [BM1], [M2]), next to apply theorem 6 to
prove that the field extension Qp(G)/Qp is abelian and to use the following
theorem proven by Y. Ihara:

Let k be a fixed algebraic number field of finite degree over Q, kab be the
maximal abelian extension of k.

Theorem 7 (Y. Ihara, see [A]). Let L be a finite Galois extension of k.
Then, Lkab is unramified over kab if and only if, for any prime divisor of L its
decomposition group in L/k is commutative.

We can use Theorem 7 for the case k = Q. The proof of theorem 7 is given
in [A], proposition 1.

Finally we use the special ramification properties of the field K = Qp(G) in
theorem 6 to prove the Main Theorem above using theorem 6 and theorem 7.
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3. INTEGRALITY OF GALOIS STABLE REPRESENTATIONS

This section contains some auxiliary results, some of them are contained in
slightly different formulations in [M6]. For the convenience of the reader and
for the needs of our further proofs these results and proofs are given below.

3.1. Proposition 1. Let E/F be a normal extension of local fields with Galois
group ΓE/F = Gal(E/F ) and let E1, F1 be rings with quotient fields E and
F respectively. If G ⊂ GLn(E1) is a finite ΓE/F -stable subgroup which has
GLn(F1)-irreducible components G1, G2, . . . , Gr, then F (G) is the composite of
the fields F (G1), F (G2), . . . , F (Gr).

Proof of proposition 1. Let

h−1Gh ⊂
∣∣∣∣∣∣

G1 ∗
. . .

0 Gr

∣∣∣∣∣∣

for h ∈ GLn(F1). If there exists g ∈ G such that gγ 6= g for some automorphism
γ of F (G) over F (G1)F (G2) . . . F (Gr), then g′ = gγg−1 6= In. The blocks Gi

in h−1Gh are stable under the action of γ, since h ∈ GLn(F1) and the elements
of F (Gi) are fixed by γ. Because

h−1gh =

∣∣∣∣∣∣∣

g1 ∗
. . .

0 gr

∣∣∣∣∣∣∣

and

(h−1gh)γ = h−1gγh =

∣∣∣∣∣∣∣

g1 ∗′
. . .

0 gr

∣∣∣∣∣∣∣
are matrices having the same diagonal components, all eigenvalues of the matrix
g′ = gγg−1 of finite order are 1 and hence g′ = In. This contradiction completes
the proof of proposition 1. ¤

3.2. In this section we formulate the mentioned criterion for the existence
of an integral realization of an elementary abelian p-group G.

Let F be a finite field extension of Qp and E, L be finite Galois extensions of
F , different from F with Galois groups ΓE/F and ΓL/F respectively. As above
let OE , OL be the corresponding local rings of integers. Let w1, w2, . . . , wt be a
basis of OE over OF , and let D be the discriminant of this basis. Suppose that
some matrix g of prime order p has coefficients in E and all ΓE/F -conjugates
gγ , γ ∈ ΓE/F generate a finite abelian group G of exponent p. Let σ1 = 1,
σ2, . . . , σt denote all automorphisms of the Galois group ΓE/F of the field E

over F .
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Assume that L = E(ζ(1), ζ(2), . . . , ζ(n)) where ζ(1), ζ(2), . . . , ζ(n) are the eigen-
values of the matrix g, therefore L = E(ζp), ζp is a primitive p-th root of unity.
We will reserve the same notations for some extensions of σi to L, and the
automorphisms of L/F will be denoted σ1, σ2, . . . , σr for some r > t. Let E be
the field containing F (G) (the field obtained by adjoining to F all coefficients
of all g ∈ G). For a suitable choice of t elements of {ζ(1), ζ(2), . . . , ζ(n)} say
ζ(1), ζ(2), . . . , ζ(t) we have the following

Proposition 2. Let G be generated by all gγ , γ ∈ ΓE/F and irreducible un-
der GLn(F )-conjugation. Then G is conjugate in GLn(F ) to a subgroup of
GLn(OE) if and only if all determinants

dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1) wk+1 . . . wt

wσ2
1 . . . wσ2

k−1 ζσ2
(2) wσ2

k+1 . . . wσ2
t

...
wσt

1 . . . wσt

k−1 ζσt

(t) wσt

k+1 . . . wσt
t

∣∣∣∣∣∣∣∣∣

are divisible by
√

D in the ring OL.

Note that the conditions of proposition 2 are always true if E is unramified
over F since DOE = OE in this case.

Corollary 1. If there is an abelian ΓE/F -stable subgroup G ⊂ GLn(OE) of
exponent p generated by gγ , γ ∈ ΓE/F such that E = F (G) 6= F , then the
GLn(F )-irreducible components Gi ⊂ GLni(E), i = 1, ..., k of G are conjugate
in GLni(F ) to subgroups G′i ⊂ GLni(OE) such that E = F (G1)F (G2)...F (Gk).
In particular, F (Gi) 6= F for some indices i.

The following corollary shows that the conditions of proposition 2 hold true
even if G is not irreducible (for the definition of the semisimple matrices Bi

compare the proof of proposition 2).

Corollary 2. Let E/F be a normal extension of number fields with Galois
group ΓE/F . Let G ⊂ GLn(E) be an abelian ΓE/F -stable subgroup of exponent
p generated by g and all matrices gγ , γ ∈ ΓE/F , and let E = F (G). Then
G is conjugate in GLn(F ) to G′ ⊂ GLn(OE) if and only if all eigenvalues
of matrices Bi, i = 1, ..., t are contained in OL, where L = E(ζp). The latter
happens if and only if the criterion of proposition 2, 1) holds true, i.e. all
determinants

dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1) wk+1 . . . wt

wσ2
1 . . . wσ2

k−1 ζσ2
(2) wσ2

k+1 . . . wσ2
t

...
wσt

1 . . . wσt

k−1 ζσt

(t) wσt

k+1 . . . wσt
t

∣∣∣∣∣∣∣∣∣

are divisible by
√

D in the ring OL.
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Proof of proposition 2.
Using the basis w1, ..., wt of OE over OF we can write

gσj =
t∑

i=1

wi
σj Bi for j = 1, ..., t

with semisimple matrices Bi ∈ Mn(F ). Since the matrix W = [wσj

i ]j,i is
nondegenerate, the matrices Bi can be expressed as a linear combination of
gσj , i, j = 1, 2, . . . , t :

Bi =
t∑

j=1

mijg
σj ,

where [mij ] = W−1. Since by assumption the matrices gσj commute pairwise,
all matrices Bi also commute with each other. The irreducibility of G implies
that the minimal polynomial of Bi is irreducible over F for each i such that Bi

is not zero (see [ST], p. 8, corollary 3 for example). So if one of the eigenvalues
of Bi is in OL then all of them are since they are Galois conjugate. Using the
dual basis w∗1 , ..., w∗t to w1, ..., wt with respect to the trace form one can see
that the inverse matrix W−1 to W = [wσj

i ]j,i is of the form W−1 = [w∗j
σi ]j,i. In

order to prove the claim of the proposition, we need to determine whether or
not matrices Bi, i = 1, ..., t are conjugate in GLn(F ) to matrices B′

i ∈ Mn(OF ),
since for the generator g of G the equation

g = B1w1 + B2w2 + · · ·+ Btwt,

holds with Bi ∈ Mn(F ) and w1, ..., wt a basis of OE over OF . In fact each
semisimple matrix Bi ∈ Mn(F ) is conjugate in GLn(F ) to a matrix from
Mn(OF ) if and only if all its eigenvalues are contained in OL (see lemma 2
below).

Cramer’s rule now implies that w∗i
σj = (−1)i+jWi,jdet(W )−1, where Wi,j is

the (i, j)-minor of W . Over the splitting field L there is a basis which consists
of eigenvectors for G. Let u be one such common eigenvector with

gσiu = tiu.

Then ζ(i) := tσi
−1

i is an eigenvalue of g. It also follows, that u is an eigenvector
for Bk with eigenvalue

λk =
t∑

j=1

mkjtj =
t∑

j=1

(−1)j+kWj,kζ
σj

(j)det(W )−1.

The cofactor expansion for determinants implies λk = dk/detW and therefore
the eigenvalues of Bk are in OL iff detW divides dk, which proves the criterion
of proposition 2 and – by the definition of the eigenvalues ti – also the second
statement modulo the proof of the following
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Auxiliary lemma. i) Let all eigenvalues λj, j = 1, 2, . . . , k of the semisimple
matrices Bi ∈ Mn(F ), i = 1 . . . , t be contained in the ring OL for some field
L ⊃ F . Then Bi are conjugate in GLn(F ) simultaneously to matrices that are
contained in Mn(OF ).

ii) Conversely, if the semisimple matrices Bi are contained in Mn(OF ) and
Bi are diagonalizable over a field L ⊃ F , then their eigenvalues are contained
in OL.

Proof of the lemma. i) Consider the F -algebra A = F [B1, . . . , Bt] generated by
the matrices B1, . . . , Bt. By [ST], ch. 1, sect. 1, corollary 2 we can consider A

to be a field extending F . Let a1, a2, . . . , an be a basis of OA over OF . Then for
any B ∈ A we have B = b1a1+· · ·+bnan, and the elements bi ∈ F are contained
in OF iff B ∈ OA. But all coefficients kij of the characteristic polynomials
fi(x) = ki0 + ki1x + ... + kinxn of the matrices Bi are contained in OL, and
kin = 1, so Bi ∈ A are integral over F . It follows that Bi = bi1a1 + · · ·+ binan,

and bij ∈ OF . If v ∈ Fn is a non-zero vector in Fn, then a1v, a2v, . . . , anv is a
basis of Fn, and Biajv =

∑
k cijkakv, where cijk ∈ OF . It follows that for any

i the matrix Ci = [cijk]k,j belongs to GLn(OF ), and Ci is the matrix of the
operator Bi in the basis a1v, a2v, . . . , anv of Fn. Therefore, Bi is conjugate in
GLn(F ) to Ci for any i = 1, . . . , t.

ii) Consider the characteristic polynomials fi(x) = ki0 + ki1x + ... + kinxn

of the matrices Bi. Since kin = 1 and all kij are in OF all roots of f(x) are in
OL. This completes the proof of the Auxiliary lemma.

¤

Remark. In the situation of the Auxiliary lemma, i) the F -algebra A = F [B1, . . . , Bt]
is isomorphic to the field L = F [λ1, . . . , λk] where λj, j = 1, 2, . . . , k are all
eigenvalues of the matrices Bi, i = 1 . . . , t.

Proof of corollary 1. If G ⊂ GLn(OE) is a group of exponent p and g =
B1w1 + B2w2 + · · · + Btwt for a basis w1, ..., wt of OE over OF , then Bi ∈
Mn(OF ), and it follows from the Auxiliary lemma to proposition 2 that the
eigenvalues of Bj are contained in OL. Notice, that for the second part of
the Auxiliary lemma to proposition 2 the irreducibility is not needed. But
eigenvalues are preserved under conjugation, so the latter claim is also true for
all components Gi. We can apply proposition 2 to Gi, i = 1, ..., k. It follows that
Gi are conjugate to subgroups G′i ⊂ GLni(OE). Now, proposition 1 implies
E = F (G1)F (G2)...F (Gk). This completes the proof of corollary 1.

¤

Proof of corollary 2. Let

C−1GC =

∣∣∣∣∣∣

G1 ∗
. . .

0 Gk

∣∣∣∣∣∣
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for C ∈ GLn(F ) and irreducible components Gi ⊂ GLni
(E), i = 1, ..., k. Then

for g = B1w1 + B2w2 + · · ·+ Btwt

C−1gC =

∣∣∣∣∣∣∣

g1 ∗
. . .

0 gk

∣∣∣∣∣∣∣
= B′

1w1 + B′
2w2 + · · ·+ B′

twt

holds with B′
i = C−1BiC. Let us consider the F -algebra A generated by all

B′
i, i = 1, ..., t over F . Since A is semisimple, it is completely reducible. It

follows that matrices B′
i are simultaneously conjugate in GLn(F ) to the block-

diagonal form. Therefore, G is conjugate in GLn(F ) to a direct sum of its
irreducible components Gi. Since E ⊃ F (Gi) for all i, and OE contains all rings
OF (Gi), we can apply proposition 2 to each of them. Notice that in proposition
2 we need not to assume, that F (G) = E. proposition 2 implies that each Gi

is conjugate in GLni(F ) to G′i ⊂ GLni(OE) if and only if all eigenvalues of
matrices B′

i, i = 1, ..., t are contained in OLi , where Li = F (Gi)(ζp) and this
happens iff

dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1) wk+1 . . . wt

wσ2
1 . . . wσ2

k−1 ζσ2
(2) wσ2

k+1 . . . wσ2
t

...
wσt

1 . . . wσt

k−1 ζσt

(t) wσt

k+1 . . . wσt
t

∣∣∣∣∣∣∣∣∣

are divisible by
√

D in the ring OL. But F (G) = F (G1)F (G2)...F (Gk) by
proposition 1, and so L = L1L2...Lk. This completes the proof of corollary 2.

¤

Proposition 3. Let a Γ-stable abelian subgroup G ⊂ GLn(E) of exponent t be
irreducible under GLn(F )-conjugation, and let E = F (G). Then dt divides n.

Proof of proposition 3. Let w1, w2, . . . , wr be some basis of E(ζt) over F (ζt).
Let G be reducible under conjugation in GLn

(
F (ζt)

)
. Then G splits into com-

ponents of equal orders, each of them being GLn

(
F (ζt)

)
-irreducible. This can

be seen in the following way. By Wedderburn’s theorem the F (ζt)-span F (ζt)G
of G is a direct sum of fields. So A = F (ζt)G = ⊕k

i=1ei(F (ζt)G) for some
primitive idempotents ei, i = 1, ..., k, and Ai = eiF (ζt)G are F (ζt)-irreducible
components of A. But In = e1 + e2 + ... + en, and all ei are conjugate under
the action of automorphisms of F (ζt)/F . Indeed, if there are at least 2 orbits
of elements from the set {e1, ..., en} under the action of the Galois group of
F (ζt)/F then In = ε1 + ε2 for some idempotents ε1, ε2 ∈ Mn(F ) contrary to
the irreducibility of G. Therefore, we can restrict ourselves to considering a
GLn

(
F (ζt)

)
-irreducible component of G and use the same notation G for it.

Let εi =
∑

j aijwj , aij ∈ Mn(F (ζt)) be a primitive idempotent of E(ζt)-
algebra E(ζt)G. We can prove that E(ζt) is obtained by adjoining to F (ζt) all
eigenvalues of matrices aij . Indeed, we can consider just one eigenvalue λij of
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each matrix aij . Simultaneous diagonalization of matrices εi and aij gives a
system of linear equations in xij that can be determined using the Cramer’s
rule. The eigenvalues of aij are equal to its solutions x′ij = λij = det Wij

det W and
their conjugates, where W = [wσj

i ], Γ = {σ1, σ2, . . . , σr} is the Galois group
of E(ζt)/F (ζt), and Wij is obtained from W by replacing its j-th column with
t(0 . . . 1 . . . 0) (i-th element is 1, all other elements are 0). This can be done in
the same way as in proposition 2 in sect. 3.1. It is obvious that λij are precisely
the elements of the matrix W−1. But the coefficients of W generate E(ζt) over
F (ζt), and so the coefficients of W−1 generate E(ζt) over F (ζt) as well. This
proves our claim.

Furthermore, if
∑

kijλij = θ is a primitive element of E(ζt) over F (ζt) for
some kij ∈ F (ζt), then the matrix m =

∑
kijaij ∈ Mn(F (ζt)) and its spectrum

consists of all conjugate elements θσ, σ ∈ Γ, in virtue of irreducibility of G.
Indeed, m ∈ Mn(F (ζt)), so its characteristic polynomial f(x) ∈ F (ζt)[x], and
all its roots are the eigenvalues of m together with their conjugates, and they
have equal multiplicities. But m commutes elementwise with all g ∈ G since all
aij ∈ E(ζt)G. If f(x) had other roots, the matrix m would be reducible under
GLn(F (ζt))−conjugation together with all elements of FG ( see e.g. [G], ch.
VIII ). It follows that the number of eigenvalues of m is divisible by dt, and dt

divides n. This completes the proof of proposition 3.

Here we can prove the Finiteness Theorem formulated in sect. 2:

Theorem 1 (Finiteness Theorem). 1) For a given number field F and
integers n and t, there are only a finite number of normal extensions E/F such
that E = F (G) and G is a finite abelian Γ-stable subgroup of GLn(OE) of
exponent t.

2) For a given number field F and integers n and d = [E: F ], there is only
a finite number of fields E = F (G) for some finite Γ-stable subgroup G of
GLn(OE).

Proof of Theorem 1. 1) In the virtue of proposition 1 from sect. 3.1 we can
restrict ourselves to considering only irreducible G. It follows from integrality
in OE of all coefficients of G and Γ-stability of G that only divisors of t can
ramify in E. Indeed, let p be a ramified divisor of a prime p in F (G)/F . Then
the inertia subgroup Γ(p) ⊂ Γ of p is not trivial, and there is γ ∈ Γ(p) and
g ∈ G such that gγ 6= g, and h = gγg−1 ≡ In(modp). But it is well known
([Min], [Min2], [Min3]) that if h ≡ In(modp) then hpk

= In for some integer
k. Therefore, p divides the order of G. According to proposition 3, the degree
[E:F ] is restricted by a constant that depends only on t and n. Furthermore,
it follows from the formula (see [N], proposition 4.9, p.159)

dK/Q = NK0/Q(dK/K0)d
r
K0/Q, r = [K:K0]

for discriminants of the tower K ⊃ K0 ⊃ Q of number fields that there is
only a finite number of unramified extensions of the given number field of the
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prescribed degree. Since the number of algebraic number fields having the
prescribed discriminant is finite, and the power of the given ramified prime p

that divides the discriminant of number field having the prescribed degree is
restricted, we can obtain only a finite number of possibilities for the given n

and t. Therefore, we have only a finite number of fields E that satisfy our
conditions.

2) Let us denote d1 = [E : Q] = [F : Q] · d. We claim that if prime p is
ramified in E, then d1

p−1 > 1, that is p 6 d1 + 1. Bartels proved in [B] that the
absolute ramification index e = e(E/Q) of p in this situation satisfies inequality
e > p − 1, and it is clear that d1 = [E : Q] is always not less than e. Indeed,
let e < p − 1. Take any g ∈ G, γ ∈ Γ(p), the inertia group of p, for some
prime divisor p of p such that h = gγg−1 6= In. Then h ≡ In(modp) and for
some positive integer t h1 = hpt

is a matrix of order p, h1 6= In, hp
1 = In.

Since h1 ≡ In(modp) we have h1 = In + πmA for some prime element π of the
localization O of OE with respect to p, A ∈ Mn(O) and the maximal possible
m. Then

In = (In + πmA)p = In + pπm(A + πmB) + πmpAp.

This implies pA+πm(p−1)Ap ≡ 0n(modpπ), and so πm(p−1) divides p. But this
is impossible if e < p − 1. We proved the claim e > p − 1, and the number
of ramified primes is restricted. Now we can use the proof given in 1). This
completes the proof of Theorem 1.

3.3. Lemma 1. Let K/Qp be a finite extension, and let ζp ∈ OK . Let p = pe,
e = p − 1. Let G be a finite subgroup of GLn(OK) and g ≡ In(mod p) for
all g ∈ G. Then G is conjugate in GLn(OK) to an abelian group of diagonal
matrices of exponent p.

Proof of Lemma 1. It is a generalization of the well known argument proposed
by Minkowski [Min]. It is easy to prove that G is abelian of exponent p. Let π be
the prime element of OK . Let g1 = In+πB1, g2 = In+πB2 for some g1, g2 ∈ G.
Then g−1

i ≡ In − πBi(mod π2), i = 1, 2 and h = g1g2g
−1
1 g−1

2 ≡ In(mod π2). It
follows from lemma 1.5.1, (ii) in [BM1] that h = In, and the same lemma 1.5.1,
(ii) in [BM1] shows that gp = In for any g ∈ G. First of all, G is conjugate
over OK to a group of triangular matrices, since G is abelian and OK is a local
ring, see [CR] theorem (73.9) and the remarks in [CR] on p. 493. On the other
hand, we can describe explicitely the matrix M such that

M−1gM = diag(λ1, λ2, . . . , λn)

is a diagonal matrix for a triangular matrix g of order p which is congruent to
In(mod p). Indeed, let g ∈ G and

g =

∣∣∣∣∣∣∣∣∣

ζ(1)It1 P 1
2 . . . P 1

k

0 ζ(2)It2 . . . P 2
k

...
. . .

...
0 . . . ζ(k)Itk

∣∣∣∣∣∣∣∣∣
,
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and let

S =

∣∣∣∣∣∣∣∣

It1 0 . . . A1

0 It2 . . . A2

...
. . .

...
0 . . . Itk

∣∣∣∣∣∣∣∣
for t1 + t2 + ...+ tk = n and t1 ≤ t2 ≤ ... ≤ tk, ζ(i), i = 1, 2, ..., k are appropriate
p-roots of 1. We consider

S−1gS =

∣∣∣∣∣∣∣∣∣

ζ(1)It1 ∗ . . . M1
k

0 ζ(2)It2 . . . M2
k

...
. . .

...
0 . . . ζ(k)Itk

∣∣∣∣∣∣∣∣∣
,

and we find the system of conditions for providing M i
k = 0ti,tk

, the zero ti× tk-
matrix. We have the following system of conditions:





ζ(1)(1− ζ(k)ζ
−1
(1) )A1 + P 1

2 A2 + ... + P 1
k−1Ak−1 + P 1

k = 0t1,tk

. . .

ζ(k−2)Ak−2(1− ζ(k)ζ
−1
(k−2)) + P k−2

k−1 Ak−1 + P k−2
k = 0tk−2,tk

ζ(k−1)Ak−1(1− ζ(k)ζ
−1
(k−1)) + P k−1

k = 0tk−1,tk
.

The condition g ≡ In(mod p) implies P j
i ≡ 0tjti(mod p), and we can find

Ai, 1 ≤ i ≤ k − 1 sequentially using the results of previous steps:

Ak−1 = − P k−1
k

ζ(k−1)(1− ζ(k)ζ
−1
(k−1))

,

Ak−2 = − (P k−2
k + P k−2

k−1 Ak−1)

ζ(k−2)(1− ζ(k)ζ
−1
(k−2))

,

Ak−3 = − (P k−3
k + P k−3

k−1 Ak−1 + P k−3
k−2 Ak−2)

ζ(k−3)(1− ζ(k)ζ
−1
(k−3))

,

and so on. Now, using induction on the degree n we can find a matrix M that
transforms g to a diagonal form as required.

Since G is an abelian group of exponent p this allows to prove our claim
locally over the ring OK . ¤

Using the same argument for global fields in [BM1] we proved

Lemma 1A. Let O be a Dedekind ring in an algebraic number field, and let
ζp ∈ O. Let p = pe, e = p − 1. Let G be a finite subgroup of GLn(O) and
g ≡ In(mod p) for all g ∈ G. Then G is conjugate in GLn(O) to an abelian
group of diagonal matrices of exponent p.

Remark that for global fields in [BM1] we use statement (81.20) in [CR] for
proving our result globally for the given Dedekind ring (compare for this also
the proof of (81.20) and (75.27) in [CR]).
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3.4. Lemma 2. Let L be an extension of Qp and p a prime ideal in the field
L(ζp). Suppose that L is unramified at p. Let Γ denote the Galois group of
L(ζp) over L. If G is a finite Γ-stable subgroup of GLn(OL(ζp)) consisting of
matrices g, g ≡ In(mod p), then G is conjugate in GLn(OL) to an abelian group
of diagonal matrices of exponent p.

Proof of Lemma 2. We can assume that for some matrix g ∈ G and a generator
σ of Γ the condition gσ = gα, 1 < α < p, is fulfilled. Indeed, by lemma
1 G is an abelian group of exponent p, so it can be considered as an FpΓ -
module over the field Fp of p elements. Since Γ is a cyclic group of order p− 1
generated by an element σ this element determines an automorphism of G and
all its eigenvalues are contained in Fp. In fact, its matrix is diagonalizable
over Fp because the order of σ is prime to p. Hence we can take g ∈ G to
be an eigenvector of this automorphism and so gσ = gα, 1 < α < p since
not all eigenvalues are 1. Now lemma 1 provides the existence of a matrix
M ∈ GLn(OL(ζp)) such that M−1GM is a group of diagonal matrices. We
shall show that α coincides with the integer β, ζσ

p = ζβ
p , 1 < β < p. Let us

suppose that M−1gM = h = diag(λ1In1 , λ2In2 , . . . , λmInm), λj ∈ L(ζp), then
hσ = hβ and (Mσ)−1gσMσ = hβ . Since M−1gαM = hα and gσ = gα, it is
obvious that

(Mσ)−1MhαM−1Mσ = hβ .

As Γ coincides with the inertia group of the ideal p and M ∈ GLn(OL(ζp)), it
follows that Mσ ≡ M(mod p). Therefore, the congruence M−1Mσ ≡ In(mod p)
is valid and conjugation by matrix M−1Mσ maps diagonal elements of hα to
diagonal elements of hβ . But if α 6= β, then the matrix M−1Mσ must have at
least one diagonal element dii = 0, which is impossible. We proved our claim,
and α = β. We obtained also that M−1Mσ = λ = diag(d1, d2, . . . , dm) for
some nj × nj-matrices dj . Let us introduce the following matrix:

M1 =
1

p− 1
(Mσ1 + Mσ2 + · · ·+ Mσp−1), M1 = [mij ], mij ∈ OL(ζp),

σ1, σ2, . . . , σp−1 are all elements of Γ. It is clear, that M1 ≡ M(mod p) and
det M1 ≡ det M(mod p). It follows that M1 ∈ GLn(OL(ζp)). Furthermore,
M1 is stable under elementwise Γ-action, so all mij are Γ-stable and mij ∈ L.
Hence M1 ∈ GLn(L). Since Mσ = Mλ, it follows that M−1

1 GM1 is contained
in the group of diagonal matrices, as it was claimed.

¤

The same argument for global fields proves

Lemma 2A. Let L be an extension of Q and p a prime ideal in the field
L(ζp). Suppose that L is unramified at p and let Op denote the valuation ring
of the ramified prime ideal p in L(ζp). Let Γ denote the Galois group of L(ζp)
over L. If G is a finite Γ-stable subgroup of GLn(Op) consisting of matrices
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g, g ≡ In(mod p), then G is conjugate in GLn(L ∩ Op) to an abelian group of
diagonal matrices of exponent p.

The detailed proofs of lemmata 1A and 2A (using the arguments above) are
given in [BM1] ( see lemma 1.5.2 and corollary 1.5.3 in [BM1] ).

4. PROOF OF THEOREM 6

First of all we do not change the claim of theorem 6 when we adjoin ζp to
K and simultaneously enlarge the elementary abelian p-group G by the scalar
diagonal matrices diag(ζp

m, ζp
m, ..., ζp

m), 0 ≤ m ≤ p− 1 if necessary. So let us
assume ζp ∈ K and diag(ζp, ζp, ..., ζp) ∈ G.

Similar to the case of rings in global fields (compare the corresponding results
in [BM1] and [M2]) we need for the proof of theorem 6 in a first step the
reduction to the case of an irreducible group G and later a criterion for the
existence of integral realizations of an abelian matrix group.

Reduction to the case of an irreducible group G.

Here a matrix group G ⊂ GLn(R) is called reducible in GLn(R) or simply
R-reducible ( R a ring or a field ) if there exist h ∈ GLn(R) such that

h−1Gh ⊂
∣∣∣∣
G1 ∗
0 G2

∣∣∣∣ ,

and G is irreducible otherwise.
The reduction to the case of an irreducible group G can be done using propo-

sition 1 (see 3.1). Note, that under the assumption diag(ζp, ζp, ..., ζp) ∈ G also
the irreducible components Gi contain scalar matrices diag(ζp, ζp, ..., ζp) of the
appropriate size.

Since the composition of abelian field extensions of Qp is again abelian, we
can for the proof of theorem 6 restrict ourself to the case of an Qp-irreducible
elementary abelian p-group G ⊂ GLn(OK).

Assume that theorem 6 is not true in general. Then there would exist a
local field K normal over Qp and an irreducible elementary abelian p-group
G ⊂ GLn(OK) with a suitable number n such that K is generated over Qp by
the coefficients of the matrices g ∈ G and this extension is not abelian. Let us
assume that G is a minimal counterexample to the claim of theorem 6, minimal
in the following sense: the degree [KQp

ab : Qp
ab] is minimal. Notice that this

degree is greater than 1, since G is a counterexample to the claim of theorem
6 by assumption. Here Qp

ab denotes the maximal abelian extension of Qp.

For the proof we distinguish essentially two cases depending on the rami-
fication index e of Qp(G) over Qp. In both cases we need a criterion for the
existence of integral realizations of an abelian matrix group. It shows that the
existence of G in question is possible only if certain determinants dk are divisi-
ble by the root of the discriminant D of a certain field extension (for the details
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see below and proposition 2). We will show, that for a minimal counterexample
this condition is violated which gives the desired contradiction.

Recall, that e denotes the order of the inertia group, e1 the order of the first
ramification group and e0 index of Γ1 in Γ0. It is known, that e0 divides pf −1,
where f is the degree of the unique prime in K over the prime p, in particular,
e0 is prime to p and the equation e · f = [K : Qp] holds.

If we adjoin roots of unity to K the degree [KQp
ab : Qp

ab] remains un-
changed, furthermore if we adjoin ζt, for t prime to p – for instance t = e0 or
a divisor of e0 – we do not change the ramification index e of K over Qp (see
for instance [8], ch. IV §4). Now let K1 and K0 denote the subfields of Γ1-
and Γ0-fixed elements of K respectively, i.e. the first ramification field and the
inertia subfield of K. Γ1 and Γ0 are normal subgroups of the Galois group of
K/Qp, therefore K1 and K0 are Galois extensions of Qp, K1 is tamely ramified
and K0 is unramified over Qp. In particular K0 is a cyclic extension of Qp,
hence K0 ⊂ Kab and K1/K0 is cyclic. Let G0 = GΓ1 denote the subgroup of
elements in G that are fixed by the first ramification group Γ1. Since G and
Γ1 are p-groups, G0 is not trivial. Moreover, since Γ1 is also normal in Γ0, G0

is a Gal(K1/K0) stable subgroup of G. Consider the field Qp(G0) obtained
by adjoining the matrix coefficients of all g ∈ G0 to Qp. As a subfield of K1

it is a tamely ramified extension of Qp. We put e′0 := [K0(G0) : K0] the de-
gree of K0(G0)/K0 which is also the ramification degree of K0(G0) and set
t := e′0, which is prime to p, as remarked above. If we set E = K0(G0)(ζt) and
F = K0(ζt), we obtain a cyclic extension E/F such that ζt ∈ F for t = e′0.
Then E/F is a Galois extension of degree t, totally ramified and tamely rami-
fied and G0 ⊂ GLn(OE) and G0 is a Gal(E/F )- stable subgroup of GLn(OE).
We distinguish two cases:
Case I: e′0 does not divide p− 1 and case II: e′0 is a divisor of p− 1.

We start with

Case I. e′0 does not divide p− 1.

For later use in the proof, we notice: Since (p) = (ζp − 1)p−1 as principal
ideals in Qp(ζp) holds we have for the corresponding ideals in OE·Qp(ζp) the
equation (p)e′0 = (p) = (ζp − 1)p−1, here denotes p the prime divisor of p in

OE . Since p ≥ 3,
([

e′0
2

]
+ 1

)
(p− 1) > e′0 holds, hence p[t/2]+1 does not divide

(ζp − 1) in OE(ζp).
Recall, that G is supposed to be a minimal counterexample to theorem 6 and

Qp-irreducible. There is a matrix g ∈ G0 such that matrices gγ , γ ∈ Γ generate
G. Indeed, if matrices gγ , γ ∈ Γ generate a proper subgroup G1 of G for any
g ∈ G0, then G1 would be a group with coefficients contained in Kab, since G is
a minimal counterexample. But then the order e′0 would divide p− 1, because
Qp(G0)/Qp is tamely ramified at p, and as an abelian subextension of Qp(G1)
contained in Qp(ζm) for a suitable integer m with p divides m, but p2 - m.
But this contradicts the assumption that e′0 does not divide p − 1. Therefore,
there is a matrix g ∈ G0 such that matrices gγ , γ ∈ Γ generate G. Choose a
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generator σ of the Galois group of the cyclic extension E/F . The order of σ is
t = e′0, which by assumption does not divide p− 1.

For a subgroup G0 of G0 generated by a single element of G0 which also sat-
isfies the conditions of the case I we will later apply a criterion for the existence
of integral realizations in the general linear group. It shows that the existence
of the counterexample G in question is possible only if certain determinants dk

are divisible by the root of the discriminant D of the corresponding extension
of number fields (see below and proposition 2 in sect. 3). Here in case I we use
this for a certain subextension of the cyclic extension E/F which is also totally
and tamely ramified with respect to the prime ideal over the fixed prime p.

So, in a first step we replace G0 by a smaller subgroup G0 generated by
a single element of G0 which also satisfies the conditions of the case I. For
this purpose take an arbitrary g ∈ G0 such that gγ , γ ∈ Γ generate G and
consider the subgroups G0 of G0 generated by the elements gσi

, i = 1, 2, ..., t,
that means by the orbit of g under the action of ΓE/F , the Galois group of E/F.

G0 is covered by all these ΓE/F -stable subgroups G0 for different g, and F (G0)
is hence the composit of all the corresponding field extensions over F generated
by the coefficients of these matrix subgroups G0 of G0 for the different g. Since
F (G0)/F is a cyclic totally ramified extension whose Galois group is generated
by an element σ of order t equal to the ramification index of F (G0)/F and
since the field F (G0)/F is a composite of the above mentioned subfields, say
Ei, these extensions Ei/F are also cyclic and totally tamely ramified. We can
conclude, that the ramification index of F (G0)/F is the least common multiple
of the ramification indices of the different Ei/F. Since the order t = e′0 of σ

does not divide p − 1, at least one of these fields Ei must have a ramification
index say t which does not divide p− 1.

Let us now fix such a subgroup G0 of G0, with corresponding field extension
F (G0)/F and ramification index t dividing t but not dividing p − 1. G0 is
not cyclic, since the group of Galois automorphisms ΓF (G0)/F , which induce
automorphisms of G0, is of order not dividing p− 1.

Since E/F is a cyclic Kummer extension, for E′ = F (G0) ⊂ E the extension
E′/F is also a cyclic Kummer extension, and there are an integer t dividing
t, σ ∈ ΓE/F and a basis 1, π, π2, . . . , πt−1 such that πt ∈ F, πσ = πζt and the
Galois group ΓE′/F of E′/F is generated by σ. Moreover, both extensions E/F

and E′/F are totally ramified, and t is the ramification index of E′/F, so we
have as earlier the following inequality:

([
t
2

]
+ 1

)
(p−1) > t, and for the prime

ideal p′ in E′ p′[t/2]+1 does not divide (ζp − 1) in E′(ζp).
We use the statement of proposition 2 and its corollary 2 for the rings OE′

and OF and a basis 1, π, π2, . . . , πt−1 such that πt ∈ F . The Galois group
ΓE′/F of E′/F, is generated by σ, σ is of order t and we can consider the action
of ΓE′/F on the basis 1, π, . . . , πt−1 in the following way: (πi)σ = πiζi

t
. For the

matrix W = [(πi)σj

]t−1
i,j=0 we have then
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detW = πt(t−1)/2
∏

06i<j6t−1

(ζj

t
− ζi

t
).

Using proposition 2 or, alternatively, corollary 1 or corollary 2 of proposition
2, we will prove that G0 ⊂ GLn(OF ). For this purpose let us consider the de-
terminants of the matrices Wj that are obtained from W by changing elements
of j-th column of W to appropriate p-roots ζ(1), ζ(2), . . . , ζ(t) of 1 that are the

eigenvalues of the matrices gσi

, i = 1, 2, ..., t for some g ∈ G0, according to
proposition 2 (see sect. 3.1). Notice, that we can assume that t > 2, since p is
odd and t does not divide p−1. We will show that a generating matrix g0 ∈ G0

is not contained in GLn(OE′(ζp)), then g0 /∈ GLn(O′E), and this contradiction
is exactly the aim of our proof of the case 1). For simplicity let ζ = ζt, but
reserve previous notation for ζp for the rest of this proof. Consider the matrices

Mj =

∣∣∣∣∣∣∣∣∣∣

1 π . . . πj−2 ζ(1) − 1 πj . . . πt−1

1 πζ . . . πj−2ζj−2 ζ(2) − 1 πjζj . . . πt−1ζt−1

...
1 πζt−1 . . . (πj−2)σt−1

ζ(t) − 1 (πj)σt−1
. . . (πt−1)σt−1

∣∣∣∣∣∣∣∣∣∣

,

j = 2, . . . , t that are obtained from Wj by subtracting the first column of Wj

from the j-th column of Wj .
Let us consider the symmetric matrix Λ = [ζ(i−1)(j−1)]ti,j=1. The determinant

of this matrix Λ is

detΛ =
∏

06i<j6t−1

(ζj − ζi) =
∏

16j6t−1

(ζj − 1) ·
∏

0<i<j6t−1

(ζj − ζi),

and one can easily calculate the inverse: Λ−1 = [ ζ−(j−1)(i−1)

t
]ti,j=1. This gives

the easy calculation of the (jk)-th cofactor of Wj in the following expansion:

detWj = detMj = θj1(ζ(1) − 1) + θj2(ζ(2) − 1) + · · ·+ θjt(ζ(t) − 1),

namely
θjk = πt(t−1)/2−(j−1) · (Λ−1)jk · detΛ.

Notice, that Λ and Λ−1 are integral matrices, since t is a p-adic unit. In
order to apply the criterion of proposition 2, we consider the quotients

detWj

detW

for the different indices j. Since detW = πt(t−1)/2 · detΛ, we have:

detWj

detW
= π−(j−1) ·((ζ(1)−1)(Λ−1)j1+(ζ(2)−1)(Λ−1)j2+ · · ·+(ζ(t)−1)(Λ−1)jt).
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If all these elements for j = 2, . . . , t were integral in E′(ζp), then we could
conclude, that the vector

π−(j−1) · Λ−1 ·

∣∣∣∣∣∣∣∣∣

ζ(1) − 1
ζ(2) − 1

...
ζ(t) − 1

∣∣∣∣∣∣∣∣∣

has also integral entries, the same would be true for

π−(j−1) · Λ · Λ−1 ·

∣∣∣∣∣∣∣∣∣

ζ(1) − 1
ζ(2) − 1

...
ζ(t) − 1

∣∣∣∣∣∣∣∣∣
,

which means, that all elements π−(j−1) ·(ζ(k)−1) would be integral, i.e. π−(j−1) ·
(ζp − 1) is integral in E′(ζp). Since t does not divide p − 1 and p is an odd
prime, we have t ≥ 3. As already stated above for the prime ideal p′ in E′

p′[t/2]+1 does not divide (ζp − 1) in E′(ζp), we therefore obtain the desired
contradiction, so in the terms of proposition 2 (see sect. 3.1) dj · (

√
D)−1 can

not be contained in OL, L = E′(ζp). By proposition 2 and its corollary 2 this
implies that the above generating matrix g /∈ GLn(OL) and so G0 6⊂ GLn(OE).
This is a contradiction.

Case II. e0 divides p− 1.

Now we can consider the case II. We recall the notation from the beginning
of the proof of theorem 6. Below K = Qp(G) is Galois over Qp, p > 2 and G0 =
GΓ1 is the subgroup of elements in G that are fixed by the first ramification
group Γ1 for the prime divisor p of p, and e′0 denotes the ramification index of
Q(G0) over Qp with respect to p. For case II we assume that e′0 is a divisor of
p− 1 since e0 divides p− 1 and e′0 divides e0.

Adjoining a p-th root of unity ζp to K and extending the Galois operation to
this larger field K(ζp) does not influence the validity of condition II, e′0 is still a
divisor of p−1, moreover, it is equal to p−1, in particular, e′0 > 1 for p > 2. Note
that the subgroup G0(p) = {g ∈ G0, g ≡ In(modp)} is not trivial as a subgroup
of matrices g−1g ≡ In(modp), g ∈ G is not trivial and is a nontrivial p-group
and its subgroup of Γ1-fixed elements is not trivial, and according to lemma 1
in sect. 3 (which is a generalization of Minkowski’s lemma) we have that the
ramification index of Qp(G0(p)) over Qp is p−1. Simultaneously we can adjoin
scalar matrices ζpIn to G, this preserves Γ-stability and (if necessary) GLn(Qp)-
irreducibility of G, so K(ζp) is precisely the field obtained by adjoining the
matrix coefficients of all matrices g ∈ G to Qp. So we can and do assume that
ζp ∈ K without loss of generality. As it was already mentioned in the beginning
of the proof of theorem 6, we can assume that G is GLn(Qp)-irreducible and
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that G is a minimal counterexample to theorem 6 such that the degree
[KQp

ab : Qp
ab] is minimal. Therefore, also in case II let G ⊂ GLn(OK) be a

minimal counterexample such that the extension Qp(G)/Qp is not abelian. For
the treatment of case II we distinguish two subcases:

case II a): Γ1(p) is trivial, i.e. K is tamely ramified over Qp.

and

case II b): Γ1(p) is not trivial, i.e. K is wildly ramified over Qp.

We start with case II a).
Since the extension K/Qp is tame and normal, and the ramification index

e = e(K/Qp) is a divisor of p − 1, so K(ζp)/Q) is also tame and normal,
and the ramification index e(K(ζp)/Qp) = p − 1. Therefore, K(ζp)/Qp(ζp) is
unramified, so K(ζp) = Qp(ζp, ζm) for some primitive root ζm of unity with m

not divisible by p (see, for instance, [N], theorem 5.9), and we have:
K ⊂ K(ζp) = Qp(ζp, ζm). This implies that the field K is abelian over Qp,
contrary to our assumption concerning the minimal counterexample G.

Now we consider case II b), where K is wildly ramified.

We assume that ζp ∈ K. Since Qp(ζp) is a tame extension of Qp, Γ1 operates
trivially on the p-th roots of unity ζp, hence KΓ1 contains also ζp. Take now in
lemma 2 (see appendisect. 3) K0 = KΓ0 , then this field is unramified over Qp

for the prime divisor p of p. Lemma 2 shows: up to conjugation in GLn(Zp)

G0(p) = {g ∈ G0, g ≡ In(modp)}
consists of diagonal matrices. The group G(p) := {g ∈ G, g ≡ In(modp)} is a
nontrivial p-group and therefore G0(p) 6= {In} is not trivial as the subgroup of
Γ1-fixed elements of a nontrivial p-group. G is abelian and therefore in the cen-
tralizer of every matrix h ∈ G0(p). If, in particular, h = diag(l1In1 , . . . , lkInk

),
then g = diag(g1, . . . , gk), gi ∈ GLni(OK) holds for every g ∈ G and therefore
we can split G into GLn(OKΓ0 )-irreducible components. In this decomposition
we choose an irreducible component G′ ⊂ GLm(OK) of G with a suitable nat-
ural number m such that G′ has nontrivial Γ1-action. Moreover, the described
decomposition is stable under the operation of Γ0 (see lemma 2), in particular,
Γ0 operates on the group G′.

If G′0 denotes the subgroup of Γ1-fixed elements of G′, then the group

G′0(p) := {g ∈ G′0, g ≡ Im(modp)}

consists of scalar matrices. The conditions on the ramification of case II are
also satisfied for G′ and G′0 instead of G and G0. But now the group G′0(p) is
equal to the group

µ := {ζIm, ζp = 1}.
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Let us now consider the Galois equivariant

ψ = ψm : G′ → GLmp(K)

given by ψ(g) = g⊗
p

. The kernel of ψ is the set of all scalar matrices contained
in G′. This kernel is not trivial, since G′0(p) ⊂ Kerψ. Hence we have:

There is an exact sequence

1 −→ µ −→ G′ −→ ψ(G′) −→ 1

of Γ0-invariant groups.

The aim of our proof is to use the above homomorphism ψ = ψm for the
construction of a certain group G′1 in G′ ⊂ GLm(K) such that: KΓ1(G′1) is
an extension of KΓ1 with ζp ∈ KΓ1(G′1), e′0 = p − 1 and KΓ1(G′1)/KΓ1 is an
elementary abelian Kummer extension. In a second step a careful study of the
Galois action of Γ0 on G′1 will then show that the constructed group G′1 can
not exist. This will give the desired contradiction.

We will use the following lemma for our proofs of theorems 6 and the Main
Theorem, so we use it for the local and the global case. Since in the global
situation the ramification and the inertia groups depend on the choice of the
prime p over p we use the notation Γ0(p), Γ1(p) respectively.

Lemma 3. Let K/R be a finite Galois extension of either R = Q or R = Qp

with a Galois group Γ, and let G ⊂ GLn(OK) be a Γ-stable subgroup such that
R(G) 6= R. Assume that ζp ∈ K, then there is a subgroup G′1 ⊂ G′ ⊂ GLm′(K)
such that KΓ1(p)(G′1) is an extension of KΓ1(p) with ζp ∈ KΓ1(p)(G′1, ) e0 = p−1
and KΓ1(p)(G′1)/KΓ1(p) is an elementary abelian Kummer extension. In our
construction G′1 is generated by elements gδ, δ ∈ Γ0(p) for some g ∈ GLm′(K),
and g is not fixed by Γ1(p).

Proof of lemma 3.

Construction of G′1
We have H := ψ(G′)Γ1(p) 6= {Im} since both ψ(G′) and Γ1(p) are p-group.

We notice (and use this later), that

(i) H is Γ0(p)- stable, since Γ1(p) is a normal subgroup of Γ0(p), and

(ii) the action of Γ0(p) on H is given by the cyclotomic character.

More precisely, we have for h ∈ H and δ ∈ Γ0(p) hδ = hχ(δ). Here χ(δ)
denotes the unique integer modulo p such that ζδ = ζχ(δ) holds for all p-th root
of unity ζ and δ ∈ Γ0(p). This is an immediate corollary of lemma 2 and lemma
2A.

Now, if there exist a g ∈ ψ−1(H) having nontrivial Γ1(p)-action, then define
G′1 as the subgroup of ψ−1(H) generated by all gδ, δ ∈ Γ0(p). If such an element
g does not exist in ψ−1(H), we can suppose, that ψ(G′) has nontrivial Γ1(p)-
action ( since otherwise g with the needed property would exist ). Now consider
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a suitable irreducible component G′′ of ψ(G′) having nontrivial Γ1(p)-action
and apply the corresponding map ψ′ to G′′. For simplicity we call this map
ψ′ also simply ψ. If ψ(G′′) is fixed elementwise by Γ1(p), again we have the
needed element g ∈ G′′ with nontrivial Γ1(p)-action, and we can define G′′1 in
G′′ correspondingly. Otherwise, we take an irreducible component G′′′ ⊂ ψ(G′′)
having nontrivial Γ1(p)-action etc. Since the order of the groups G′, G′′, G′′′, ...
is becoming smaller and smaller (the kernel of the different maps ψ is not
trivial), we will have at last G(i) to be fixed by Γ1(p) with the least possible i,
so we have the needed element g ∈ G(i−1) with nontrivial Γ1(p)-action. Instead
of G′1 we consider then the subgroup of ψ−1(ψ(G(i−1))Γ1(p)) generated by all
gδ, δ ∈ Γ0(p). For simplicity let us call these groups again G′1, G′ and again we
denote by m the degree of the corresponding linear group.

¤
We continue with the proof of case II b).

2) Study of the Galois action of Γ0(p) on G′1 and on KΓ0(p)(G′1).

For g ∈ G′1 and for γ ∈ Γ1(p) we have ψ(gγ)ψ(g)−1 = ψ(g)γψ(g−1) =
ψ(g)ψ(g)−1 = Im. This implies gγ = gζ for any γ ∈ Γ1(p) with a suitable p-th
root of unity ζ = ζγ .

Let σ be an element of Γ0(p), whose image in Γ0(p)/Γ1(p) is a generator of
Γ0(p)/Γ1(p) and take g ∈ G′1 such that G′1 (according to our construction in
lemma 3) is generated by all elements gδ, δ ∈ Γ0(p) and g is not fixed by Γ1(p).

There are two possibilities: g−1gσ ∈ GLm(KΓ1(p)) or g−1gσ is not fixed by
the ramification group Γ1(p).

In the first of these two cases we claim that gσ = gζσ for a suitable p-th root
of unity ζσ. Let us prove this and show how to get the desired contradiction in
that case. For this purpose notice that d := g−1gσ ≡ Im(modp) and therefore
using lemma 2 we can diagonalize this matrix d over GLm(OKΓ0(p)). But since
G′ is irreducible over GLm(OKΓ0(p)) it follows, that d = ζσIm, for a suitable
root of unity ζσ.

Now we have gσ = gζσ and at the same time gγ = gζγ for any γ ∈ Γ1(p).
Since Γ1(p) operates trivially on the p-th roots of unity ζ we obtain: gσ = gγk

,

for some integer k and therefore the two Galois automorphisms σ and γk coin-
cide on KΓ0(p)(G′1) since g is any generator of G′1. This gives the contradiction
in the case, where g−1gσ ∈ GLm(KΓ1(p)).

In the alternative case g0 := g−1gσ is not fixed by the ramification group
Γ1(p). Now consider the group G̃ ⊂ G′1 generated by all elements g0

δ , δ ∈ Γ0(p).
Since for any δ ∈ Γ0(p) we have

ψ(g0
δ) = ψ(g0)

δ = ψ(g0)
χ(δ) = ψ(g0

χ(δ)),

it follows that g0
δ = g0

χ(δ)ζδ with suitable p-th roots of unity ζδ depending
on the Galois automorphism δ. Therefore the group G̃ is generated by g0 and
ζpIm and the order of G̃ is p2.
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Define K̃ := KΓ0(p)(G̃), which is Galois over KΓ0(p) by definition of G̃. We
study the Galois action on K̃ (like on KΓ0(p)(G′1) in the first case). For this

purpose we denote by Γ̃0(p) and Γ̃1(p) the corresponding inertia respectively

ramification groups of the extension K̃/KΓ0(p). We have Γ̃1(p) 6= {1} since
the Γ1(p)-action on G̃ is not trivial. We then claim first, that p is the high-

est p-power dividing the order of Γ̃0(p). The Galois group Γ̃0(p) of K̃/KΓ0(p)

is contained in the group of linear automorphism of G̃ ( considered as a 2-
dimensional vector space over the field Fp of p elements ), so its order divides
the order of GL2(Fp), which equals to (p2 − 1)(p2 − p). This implies that p2

does not divide the order of Γ̃0(p), so the Galois group of K̃/K̃Γ̃1(p) is cyclic of
order p, as claimed above.

Note that the inertia subgroup of Γ̃0(p), so the Galois group of K̃/K̃Γ̃0(p)

has the order p(p− 1).

Hence K̃ = K̃Γ̃1(p)( p
√

u) with u ∈ K̃Γ̃1(p). Now σ(K̃Γ̃1(p)) = K̃Γ̃1(p) since

Γ̃1(p) is a normal subgroup of Γ̃0(p). Therefore, K̃Γ̃1(p)( p
√

u) = K̃Γ̃1(p)( p
√

uσ),
and one concludes:

p
√

uσ( p
√

u)−1 ∈ K̃Γ̃1(p) ⊂ KΓ1(p).

Since g0
−1g0

γ = ζγIm for all γ ∈ Γ1(p) we have g0 = p
√

ug1 with g1 ∈
GLm(KΓ1(p)). It follows that

g−1
0 gσ

0 ∈ GLm(KΓ1(p))

and we can apply lemma 2 to this element. Like in the first of the considered
two cases with g0 instead of g we can conclude that g0

σ = g0ζσ for a suitable
p-th root of unity ζσ. The contradiction follows then analogously to the first
case for g−1gσ ∈ GLm(KΓ1(p)), but here we can replace g by g0.

¤
Note that under the conditions of lemma 3 in the case of a global field

extension K/Q for R = Q we can use lemmata 1A and 2A instead of lemma
1 and lemma 2 in the argument 2) above. So we can summarize the argument
given in 2) as

Résumé. Under the conditions of lemma 3 let σ be an element of Γ0(p), whose
image in Γ0(p)/Γ1(p) is a generator of Γ0(p)/Γ1(p) and take g ∈ G′1 such that
G′1 (according to the construction in lemma 3) is generated by all elements
gδ, δ ∈ Γ0(p) and g is not fixed by Γ1(p).

There are two possibilities:
1. g−1gσ ∈ GLm(KΓ1(p)). Then for any γ ∈ Γ1(p) we have gσ = gγk

, for
some integer k.

2. g−1gσ is not fixed by the ramification group Γ1(p). In this case there exist
an element g0 ∈ G′1 and a subgroup G̃ ⊂ G′1 generated by all elements g0

δ ,
δ ∈ Γ0(p) the condition g0

σ = g0ζσ for a suitable p-th root of unity ζσ holds
true. Then for any γ ∈ Γ1(p) we have gσ

0 = gγk

0 , for some integer k.
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Both conditions lead to a contradiction for a minimal counterexample G such
that R(G) 6= R and the extension R(G)/R is not abelian.

5. PROOF OF THE MAIN THEOREM

Now we can use theorem 6 for a proof of the Main Theorem formulated in
sect. 2, which is shorter than the proof given in [BM1].

According to [BM1], we can reduce the general situation to the case, when
K/Q is unramified outside a fixed prime p 6= 2, and G is an elementary abelian
p-group.

Let K = Q(G) for a Γ-stable elementary abelian p-group G satisfying the
conditions of the Main Theorem formulated in the introduction. In the virtue
of theorem 6 we can assume that for the completion Kp of K with respect to
any prime divisor p of p the extension Kp/Qp is abelian. Furthermore since we
can assume that K is unramified outside p, we have cyclic in particular abelian
decomposition groups of the finite primes not dividing p. But then according
to theorem 7 for this extension K/Q we have: K/Kab is unramified (here Kab

denotes the maximal abelian over Q subfield of K).
As mentioned above we have a Galois extension K = Q(G) unramified out-

side a fixed prime p, p > 2. Consider G0 = GΓ1(p) the subgroup of elements in G

that are fixed by the first ramification group Γ1(p) for some prime divisor p of p,
and e′0 denotes the ramification index of Q(G0) over Q with respect to p. Since
the ramification structure of KQp/Qp is the same as in K/Q, the value of e′0 is
a divisor of p−1, and e′0 = p−1 since for any ramified prime divisor p of a ram-
ified prime p the principal congruence subgroup G(p) = {g ∈ G, g ≡ In(modp)}
is not trivial provided the operation of Γ on G is not trivial.

As earlier in the proof of theorem 6, we see that adjoining a p-th root of unity
ζp to K and extending the Galois operation to this larger field does not influence
the validity of condition that e′0 is equal to p − 1. So we can and do assume
ζp ∈ K without loss of generality. After adjoining ζp to K we can suppose,
that e′0 = p − 1. As it follows from proposition 1 and its corollaries in 3.2, we
can assume that G is GLn(Q)-irreducible and that G is a counterexample to
the Main Theorem with minimal order. Therefore, let G ⊂ GLn(OK) be a
minimal counterexample such that the degree [Q(G)Qab : Qab] is minimal and,
in particular, the extension Q(G)/Q is not abelian.

Like in the proof of theorem 6, we have to distinguish two cases:

case a): Γ1(p) is trivial, i.e. K is tamely ramified over Q.

and

case b): Γ1(p) is not trivial, i.e. K is wildly ramified over Q.

We start with case a), since we can use an argument of the proof of case I
of theorem 6.
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First, let us assume that p 6= 3. We will consider the case p = 3 separately
below. We have the following conditions:

([
e′0
2

]
+ 1

)
(p− 1) > e′0,

and: p[t/2]+1 does not divide (ζp − 1) for t = e′0 = p− 1.

In the case if the group generated by all gγ , γ ∈ Γ for a g ∈ G is not cyclic,
we can apply the argument of the proof of case I of theorem 6, which implies
that the conditions of proposition 1 are not satisfied for the group generated
by all gγ , γ ∈ Γ, and so G 6⊂ GLn(OK).

Therefore, G should be cyclic, and gγ = ga for all g ∈ G and any γ ∈ Γ0(p).
Moreover, a is the same for all g. Indeed, if gγ = ga and g1

γ = g1
b, with

a 6= b, then the elements (gg1)γ , γ ∈ Γ would generate a noncyclic group. So
we have gγσ = gσγ for any γ ∈ Γ0, σ ∈ Γ. This implies gγ = gσγσ−1

. If G is
generated by all gγ , γ ∈ Γ, this implies the coincidence of all inertia groups Γ0.
Since Γ0 = Γ is cyclic, it follows that Q(G) must coincide with Q(ζp). Indeed,
for any g ∈ G the matrix h = g−1gγ ≡ In(modp) (here γ is a generator of
Γ0), so by lemma 2A (see sect. 3, 3.4) is conjugate over Z(p), the valuation
ring of p, to a diagonal matrix d with p-roots of unity as diagonal elements.
Therefore, C−1hC = d for an invertible matrix C with entries in Z(p), and
Q(G) = Q(C−1GC). If C−1hC = g′ = [gij ] ∈ C−1GC, then gγ

ij = gijζ(ij) for
some p-roots of unity ζ(ij). Since Q(g11, g12, . . . , gnn) adjoined by all entries of
g′ is a Kummer cyclic extension of Q containing ζp, this field should coincide
with Q(ζp), and this is true for any g′ ∈ C−1GC. This argument implies that
Q(G) = Q(C−1GC) = Q(ζp).

The case p = 3 should be considered separately. We can use discriminant
estimates for the field K = Q(G). It follows from corollary 1 of theorem 2.11 in
[N], p. 69, and proposition 4.9 in [N], p. 159, that there are no finite unramified
extensions of the field Q(ζ3) = Q(

√−3) having degree d > 1 over Q(
√−3).

This implies that K = Q(
√−3), and this field is abelian. This contradicts our

assumption concerning the minimal counterexample G.

Now we consider case b) and assume that K is wildly ramified. We assumed
ζp ∈ K. Since Q(ζp) is a tame extension of Q, Γ1 operates trivially on the p-th
roots of unity ζp, hence KΓ1 contains also ζp. Take now in lemma 2A L = KΓ0 ,

then this field is unramified over Q for the prime divisor p of p. Lemma 2A
shows: up to conjugation in GLn(Op ∩ KΓ0), where Op is the valuation ring
of of KΓ0(ζp) at p, the group G0(p) = {g ∈ G0, g ≡ In(modp)} consists of
diagonal matrices. The group G(p) := {g ∈ G, g ≡ In(modp)} is a nontrivial
p-group and therefore G0(p) 6= {In} is not trivial as the subgroup of Γ1-fixed
elements of a nontrivial p-group. G is abelian and therefore in the centralizer
of every matrix h ∈ G0(p). If, in particular, h = diag(l1In1 , . . . , lkInk

), then
g = diag(g1, . . . , gk), gi ∈ GLni(K) holds for every g ∈ G, and therefore we can
split G into GLn(Op ∩KΓ0)-irreducible components. In this decomposition we
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choose an irreducible component G′ ⊂ GLm(K) of G with a suitable natural
number m such that G′ has nontrivial Γ1-action. Moreover, the described
decomposition is stable under the operation of Γ0 (see lemma 2A in sect. 3,
3.4), in particular Γ0 operates on the group G′.

If G′0 denotes the subgroup of Γ1-fixed elements of G′, then the group

G′0(p) := {g ∈ G′0, g ≡ Im(modp)}

consists of scalar matrices. The conditions on the ramification e′0 = p − 1 are
also satisfied for G′ and G′0 instead of G and G0. But now the group G′0(p) is
equal to the group µ := {ζIm, ζp = 1} containing only scalar matrices.

Note that in the case of global field K/Q and a Galois stable subgroup
G ⊂ GLn(OK) the same groups G0(p) and G′0(p) are conjugate to groups of
scalar matrices, but according to lemma 2A, the conjugation is performed in
GLn(Op ∩KΓ0), where Op is the valuation ring of of KΓ0(ζp) at p.

Now we need to use the Galois equivariant homomorphism
ψ = ψm : G′ → GLmp(K) given by ψ(g) = g⊗

p

, which was defined earlier.
The kernel of ψ is the set of all scalar matrices contained in G′. This kernel is
not trivial, since G′0(p) ⊂ Kerψ, and there is an exact sequence
1 −→ µ −→ G′ −→ ψ(G′) −→ 1 of Γ0-invariant groups.

Now we can use lemma 3 proven in sect. 3 above for the construction of
a subgroup G′1 ⊂ G′ ⊂ GLm(K) such that: KΓ1(G′1) is an extension of KΓ1

with ζp ∈ KΓ1(G′1), tame ramification index e′0 = p − 1 and KΓ1(G′1)/KΓ1 is
an elementary abelian Kummer extension.

Finally, a careful study of the Galois action of Γ0 on G′1 shows that the
constructed group G′1 can not exist if Q(G′1) 6= Q and Q(G′1)/Q is not abelian.
For proving this we can apply Résumé formulated in the end of sect. 3.

¤

6. THE CASE OF RELATIVE
EXTENSIONS OF NUMBER FIELDS

It is known that if E/F has unramified subextensions E1/F , E1 ⊂ E, then
there exist examples of Galois stable finite groups G ⊂ GLn(OE) (see [M3]
for an explicit construction). This is completely different from the situation
where F = Q and there are no unramified extensions of the ground field Q. We
can consider the role of the group of units of the ring of integers OE for the
existence of finite Gal(E/F )-stable subgroups G ⊂ GLn(OE).

It is also difficult to transfer the idea of reduction to the case of abelian
Galois stable groups G of composite order.

Example 3. It is difficult to transfer the idea of reduction to abelian Galois
stable groups G of composite order. For p 6= 2 the simplest example can be
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constructed as follows: Let

g2 :=
∣∣∣∣

0 p
√

u
( p
√

u)−1 0

∣∣∣∣

and g := diag(g2, Ip−2) ∈ GLp(OK). Then gγ , γ ∈ Γ and ζpIp generate a finite
Γ-stable nonabelian subgroup of GLp(OK) of order divisible by 2 and p.

Example 4. Let

g :=
∣∣∣∣
√

3 +
√

2 −
√

2 +
√

2√
2 +

√
2 −

√
3 +

√
2

∣∣∣∣ ,

let E = F (
√

3 +
√

2),
F = Q(

√
3 +

√
2 ·

√
2 +

√
2). Then E/F is ramified at 2, the ramification is

wild, and G = {g,−g, I2,−I2} ⊂ GL2(OE) is a Γ-stable subgroup of order 2
and exponent 2.

Example 5. The difficulties to extend the result of the Main Theorem to
the case of relative extensions over a ground field F ramified over Q can be
illustrated using the following construction:

If there exist an intermediate extension L = F ( p
√

u) ⊂ E for some unit
u ∈ OE , we can put

g =

∣∣∣∣∣∣∣∣∣∣∣

0 p
√

u 0 . . . 0
0 0 p

√
u . . . 0

...
. . . . . .

0 . . . 0 p
√

u
p
√

u
1−p

. . . 0 0

∣∣∣∣∣∣∣∣∣∣∣

Then gγ , γ ∈ Γ and ζpIp generate a finite Γ-stable subgroup of GLp(OE).
Hence for relative extensions E/F,L 6= F and some units u it may happen

that neither F (ζp, p
√

u) ⊂ FEab nor F ( p
√

u)/F is unramified, when L = F (ζp).
However, some progress is still possible to give a positive answer for relative

extensions of number fields that satisfy the following
Assumption. Consider relative extensions K/F which are of the form

K = TF . Here we assume: T is a finite Galois over Q and unramified out-
side the rational primes p1, p2, ...pk, and F/Q is a number field unramified in
p1, p2, ..., pk. So we suppose that (d(F/Q), pi) = 1 for all indices i and the dis-
criminant d(F/Q) of F/Q. We consider finite subgroups G of GLn(OK) that
are stable under the natural operation of the Galois group Gal(K/F ).

It is possible to reduce our considerations to the case of the only one prime
p1 = p.

Theorem 8. Let F be a number field of discriminant d(F ) not divisible
by an odd prime p and let T be a finite Galois extension of Q of discriminant
coprime to d(F ) . Set K = TF . If G is a finite Gal(K/F )-stable p-subgroup of
GLn(OK) then G ⊂ GLn(FTab) where Tab is the maximal abelian subextension
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of T/Q (or equivalently, the commutator subgroup of Gal(K/F ) acts trivially
on G).

The proof of theorem 8 is given in [BM2].

Remark. Under the assumptions of theorem 8 for K and F there do not
exist unramified intermediate extensions between K and F .

7. RARITY OF Γ-STABLE REPRESENTATIONS

Let K = Q or K = Q(
√

d) and d is a negative rational integer. We consider
the set O(N) = {α ∈ OK

∣∣ |NK/Q(α)| 6 N} where NK/Q is the norm map. The
proof of the following theorem ( see [M4], theorem 4) is based on the result by S.
D. Cohen (see theorem 1 in [C]) combined with some asymptotic estimates for
the number of integral polynomials having bounded coefficients with respect to
the norm and reducible over K = (

√
b) (b is contained in a finite set of elements

from OK). Here estimates of the error term are added.

Theorem 9. Let v(N) denote the total number of polynomials of degree m

with coefficients in O(N), and let ψ(N) denote the number of those polyno-
mials whose splitting fields do not contain any fields K(G) 6= K for G ⊂
GLn(OE), E ⊃ K and fixed n. Then

lim
N→∞

ψ(N)
v(N)

= 1.

The error term can be estimated in the case K = Q as
v(N)− ψ(N) = o(Nm+0.5(lnN)2).

Theorem 3 shows that ”almost all” fields are not realizable via adjoining
matrix coefficients of of all matrices g ∈ G for Γ-stable groups G to K, the field
of rational numbers or its imaginary quadratic extensions, if these coefficients
are contained in the rings of integers of algebraic number fields.

Remark that we can also consider other number fields, but it will be neces-
sary to rearrange the definition of O(N), compare [C]. Note that proof below,
specially in the case 1), can produce explicit estimates, and we can also use the
estimates in [K1], [K2], [Gal].

Proof of theorem 9. We use properties of distribution of Galois groups of poly-
nomials that were considered by S. D. Cohen [C], for the case K = Q see
also [VW]. According to [C] the number of polynomials in question having the
symmetric Galois group Sm, divided by the total number of polynomials in
question, approaches 1 when N → ∞. Therefore, we can consider only the
number of these K-irreducible polynomials that are reducible over K(

√
α) for

a finite number of α. The elements
√

α can be contained only in a finite num-
ber of extensions K(G) that have no ramified primes p > m! + 1 (since p must
divide the order of Γ = Sn ) and have degree m! over K. Let us estimate the
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number of these polynomials. However, if K = Q, the situation is simplier, and
we have to check only 2 possible extensions of Q: the fields Q[i] and Q[

√−3].

1) Let us consider the case K = Q.

Note that in the virtue of the above result on the symmetric Galois group
Sm our Main Theorem (see also theorem 2 in [M2]) which implies that only
for fields Q(G) containing nontrivial roots of 1 it may happen that Q(G) 6= Q,
we have to eliminate a possibility that Q(G) has nontrivial roots of 1 and
simultaneously the Galois group of Gal(Q(G)/Q) is Sm. The latter is possible
only if one of the primitive roots ζ4 = i or ζ3 = −1+

√−3
2 is in KQ(G).

Let us start from the case i ∈ Q(G). Let k, l, k + l = m be positive integers
such that an integral polynomial A(x) satisfies the conditions of theorem 9,
A(x) = a(x)b(x) with a(x) =

∑k
i=0 aix

i, ai ∈ Z[i], and b(x) =
∑l

j=0 bjx
j , bj ∈

Z[i], and a0 6= 0, ak 6= 0, b0 6= 0, bl 6= 0. Since the number of possible polyno-
mials A(x) with either the first or the last coefficient equal 0 is ∼ Nm while
the total number of polynomials in O(N)[x] is ∼ Nm+1, so the polynomials
A(x) with either the first or the last coefficient equal 0 do not give any contri-
bution asymptotically. Let us show that the number of the sets of coefficients
(a0, a1, . . . , ak, b0, b1, . . . , bl) admissible for polynomials a(x), b(x) also do not
contribute anything asymptotically. The ring Z[i] is euclidean, and ±1,±i are
the only invertible elements in Z[i], also for any integer D |ab| 6 |D| imply
|b| 6 |D| or |a| 6 |D|. This implies |ai| 6 C(m)N and |bj | 6 C(m)N where
C = C(m) depends only on m. Also we have 1 6 |a0b0| 6 N and 1 6 |akbl| 6
N . Let us estimate the number L(N) of pairs of Gaussian integers a, b ∈ Z[i]
such that 1 6 |ab| 6 N . We can write a = a′1 + a′2i = c1(α1 + α2i) where
c1, α1, α2 are rational integers, α1, α2 are coprime, so c1 is the greatest com-
mon divisor c1 = (α1, α2)of α1, α2. Also, let b = b′1 + b′2i = c2(β1 + β2i) where
c2, β1, β2 are rational integers, and c2 = (β1, β2). It is known (see [D], ch. 4,
sect. 68 or [Cas], ch. 9, sect. 6 and appendix B) that the number F (t) of primi-
tive representations of a positive integer t as a sum of 2 squares does not exceed
cf2s where cf is a constant depending only on the form f(x1, x2) = x2

1 + x2
2,

the sum of 2 squares, cf = 4 in our case, and s is the number of distinct prime
divisors of t. Denote by M(j) the number of all pairs of integers c1, c2 such that
|c1c2| 6 j (note that both c1 and c2 can be positive or negative). Then (see e.g.
[HW], p.264) M(j) ∼ 4([j/1]+[j/2]+ · · ·+[j/k]+ . . . ) = 4(j ·lnj+O(j)), where
[x] denotes the greatest integer 6 x. Note that we can always write F (t) 6 cf t.
Let us estimate the number L(N) of integers a, b introduced above. We can
use that also F (t) = cf2s = o(t), and also F (t) = cf2s = o(t1/4) for t > N1/4

(see e.g. [HW], 18.7, p.270).

L(N) =
N∑

t=1

M(N/t)F (t) = o(
N

1
4∑

t=1

(N/t·ln(N/t))t)+o(
N∑

t=N
1
4

(N/t·ln(N/t))t
1
4 ) =
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o(
∫ N

1
4

1

N · ln(N/x)dx) + o(
∫ N

N
1
4

N · ln(N/x)dx
1
4 ) = o(N

5
4 lnN)

So the number of possible systems of (a0, ak, b0, bl) involving 2 couples (a0, b0)
and (ak, bl) of coefficients is o(N2.5(lnN)2). This estimate may be improved but
this is not essential for our theorem. Finally, the number of polynomials A(x)
that are reducible in Z[i][x] is o(Nk−1N l−1N2.5(lnN)2) = o(Nm+0.5(lnN)2) =
o(Nm+1), and we can combine this estimate with the estimate in [C] (see also
[Gal]), which implies that the number of polynomials A(x) =

∑m
i=0 pix

i ∈
O(N)[x] whose Galois group is not symmetric is O(Nm+0.5lnN). So our claim
is true for polynomials in Z[i][x].

In a similar way we can consider the polynomials A(x) ∈ Z[ζ3][x]. The num-
ber of these polynomials can be estimated using the quadratic form f(x1, x2) =
x2

1−x1x2 +x2
2 corresponding to multiplication in the ring Z[ζ3], which is equiv-

alent to the form f(y1, y2) = y2
1 + y1y2 + y2

2 , where x1 = y1 + y2, x2 = y2. The
constant cf for this form is cf = 6 (see [D], ch. 4, sect. 70 or [Cas], ch. 9, sect.
6 and appendix B), and our argument can be used without changes in the case
of the ring Z[ζ3] instead of Z[i].

2)Let us consider the case K = Q(
√

d), d < 0, d ∈ Z.
Letf ∈ O(N)[x] and f = g · g′, g, g′ ∈ K(

√
α)[x],

√
α /∈ K. Let E ∈ OK(

√
α)

be a unit of infinite order. We can suppose that after some adjustment both the
height |g| = max |ai| of g =

∑
aix

i and the height |g′| of g′ =
∑

a′ix
i are equal

up to a constant c = c(K,m). Indeed, let |g| = A, |g′| = B, |f | = c0N , c0 =
c0(K, m). Let t = logE

(
A√
N

)
, then changing g and g′ to p = E−[t]g and p′ =

E [t]g respectively we obtain |p| ∼ √
N , |p′| ∼ √

N , that is |p| 6 c1(K,m)
√

N

and |p′| 6 c2(K, m)
√

N . As p = p1 +
√

αp2 and p′ = p′1 +
√

αp2 for pi, p
′
i ∈ K[x]

and p′ = pσ for nonidentical automorphism σ of K(
√

α) over K, we can see
that |pi| 6 c3

√
N and |p′i| 6 c3

√
N for i = 1, 2 and c3 = c3(K,m). Therefore,

there are only (c2

√
N)2·(m/2+1) = c4N

m+2, c4 = c4(K,m), polynomials that
are reducible over K(

√
α). Likewise, there are c5N

2(m+1), c5 = c5(K,m),
polynomials f in O(N)[x] and it is obvious that

lim
N→∞

c4N
m+2

c5N2m+2
= 0.

Note that the number of polynomials f ∈ O(N)[x] that are reducible already
in O(N)[x] do not give any contribution asymptotically. Moreover, according to
the result in [C], the number of polynomials in O(N)[x] whose Galois group is
not symmetric do not contribute asymptotically as well. So, we have shown that
the number of polynomials whose splitting fields can contain any K(G) 6= K is
small asymptotically, and this completes the proof of theorem 9.

¤
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8. GALOIS STABLE GROUPS OVER
FIELDS OF CHARACTERISTIC p > 0

In the case of fields of positive characteristic we have

Theorem 10. Let F be a global field of a positive characteristic p, and let E

be a splitting field of some irreducible polynomial f(y) ∈ F [y] whose roots are
the conjugates of some element t ∈ E. Then E = F (G) for any positive integer
n and an appropriate group G ⊂ GLn(E). Moreover, if t ∈ E is an element of
OE then G ∈ GLn(OE).

Proof of theorem 10.
Let

gt :=

∣∣∣∣∣∣∣∣∣∣∣

1 t 0 . . . 0
0 1 0 . . . 0

0 0
. . . . . . 0

. . . . . . . . .
. . .

0 0 . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣

.

Then gp
t = In, the identity n× n-matrix, and for any automorphism σ of E

gσ
t =

∣∣∣∣∣∣∣∣∣∣∣

1 tσ 0 . . . 0
0 1 0 . . . 0

0 0
. . . . . . 0

. . . . . . . . .
. . .

0 0 . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣

.

We have (gσ
t )p = In, and the product of any 2 matrices gσ

t for any auto-
morphisms σ of E is still a n × n unitriangular matrix of order p. Therefore,
a group G generated by all matrices gσ

t is a finite abelian group of exponent p

with nontrivial Galois operation of Γ such that E = F (G) 6= F provided t /∈ F .
¤

The reason for this constructive realizability of the above field E of charac-
teristic p is that elements in G are not semisimple, the situation is completely
different for fields E,F of characteristic 0, and even for extensions E/F of fields
of characteristic p > 0, provided the order of G is not divisible by p.

9. SOME REMARKS ON THE ORDERS
OF FINITE ARITHMETIC GROUPS

As it has been already mentioned in the introduction, one of the applica-
tions of the Main Theorem of this paper is the computation of orders of finite
arithmetic groups in GLn(K). If K is a totally real algebraic number field
and f(x1, x2, ..., xn) ∈ Q[x1, x2, ..., xn] is a positive definite quadratic form, the
order of the finite orthogonal group Of (OK) ⊂ GLn(OK) of this form over
OK does not depend on the field K and can be estimated using the Minkowski
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formulas for finite integral groups of matrices obtained using reduction modulo
primes p and the fact that there is no torsion in the kernel of this reduction for
odd p ( [So], sect. 6.3 and [Min2]) since Of (OK) = Of (Z). The order of Of (Z)
is bounded by the number s(q, n) = Πqr(q,n), where the product is taken for all
primes q = 2, 3, 5, 7, ..., and

r(q, n) = Σ∞i=1[
n

qi(q − 1)
].

Remark that any finite subgroup G ⊂ GLn(OK) is a subgroup of Oq(OK) for
some quadratic form q(x1, x2, ..., xn) ∈ Q[x1, x2, ..., xn].

There are some generalizations of this result of Minkowski using both alge-
braic (see e. g. [Fe]) and analytic (see e. g. [LN]) methods.

It is possible to generalize the above formula for finite subgroups of GLn(OK)
for some cyclotomic fields K using lemmas 2 and 2A (p.16, 17, see also 3.3, p.14)
for K = Q(ζp) and K = Qp(ζp) since the ramification indices of these fields are
p− 1. However, the kernel of reduction of GLn(OK) modulo prime divisor of p

may contain a p-group of any prescribed nilpotency class for extensions K/Q
with large ramification.

Indeed, let us consider the following p-group of nilpotency class l, determined
by generators a, b1, ..., bl and relations bp

i = 1, bibj = bjbi, i = 1, 2, ..., l; ab1 =
b1a, bi−1 = biab−1

i a−1, i = 1, 2, ..., l; an = 1, where n = pt ≥ l > pt−1 and t is a
suitable integer. Let H be the abelian subgroup of G generated by b1, ..., bl, and
let χ denote the character of H given on the generators as follows: χ(b1) = ζp–a
primitive p-root of 1, χ(bi) = 1, i = 2, ..., l. The character χ together with the
decomposition of G into cosets with respect to H: G = 1¦H+a¦H+...+an−1 ¦H
gives rise to an induced representation R = IndχG

H of G. For the n×n-matrices
eij having precisely one nonzero entry in the position (i, j) equal to 1 we can

define a n× n-matrix using the binomial coefficients
(

n− j
i− j

)
:

C = Σn≥i≥j≥1(−1)i−j

(
n− j
i− j

)
eij .

Theorem 11. Let Qp(ζp∞) denotes the extension of Qp obtained by adjoining
all roots ζpi , i = 1, 2, 3, ... of p-primary orders of 1, let π be the uniformizing
element of a finite extension K/Qp such that K ⊂ Qp(ζp∞), and let D =
diag(1, π, π2, ..., πn−1). Then the representation Rπ = D−1C−1RCD of G is a
faithful, absolute irreducible representation in GLn(OK) by matrices congruent
to In(modπ). Moreover, such representations are pairwise nonequivalent over
OQp(ζp∞ ), and for the lower central series G = Gl ⊃ Gl−1 ⊃ ... ⊃ G0 = {In}
of G all elements of Rπ(Gl−i+1) are congruent to In(modπiw) if the elements
of Rπ(G) are congruent to In(modπw).

For the proof of theorem 11 (which is constructive) see [M7], see also [M8].
Remark that the construction of theorem 11 can be realized also over the inte-
gers of cyclotomic subextensions K ⊂ Q(ζp∞) of Q and other global fields.

The following proposition is used in the proof of the following propositions
(see [M8], lemma 1):
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Proposition 4. Let L be an ideal in a Dedekind ring S of characteristic 0,
let {0} 6= L 6= S, and let g be some n × n-matrix of finite order congruent to
In(modL). Then L contains a prime p and gpj

= In for some integer j > 0.
In particular, a finite group of matrices congruent to In(modL) is a p-group.
Let L = p be a prime ideal containing p having the ramification index e with
respect to p, let g ≡ In(modpr), and let

λpi−1(p− 1) 6 e

r
< pi(p− 1), i > 0, λ = min{1, i}.

Then gpi

= In, in particular, any finite group of matrices congruent to
In(modpt) is trivial if e < t(p− 1).

Remind that for a primitive t-root ζt of 1 φK(t)d = [K(ζt) : K] denotes the
generalized Euler function. The following propositions allow to estimate the
order of Sylow q-subgroups of GLn(OK/p), the reduction is considered modulo
some prime ideal p ⊂ OK .

The proof of the following propositions is technical; it is based on the reduc-
tion modulo some prime ideal p ⊂ OK such that its norm C is a prime integer
and the kernel of the reduction of GLn(OK) (modp) has no q-torsion for a
given prime q 6= 2 and the multiplicative order of NK/Q(p)(modqt) is φK(qt),
there is an infinite number of ideals like this (which can be shown using the
Chebotarev’s density theorem). Note that, according to proposition 4, for any
g ≡ In(modJ), g ∈ GLn(OK) the ideal J of OK should divide some prime p. It
is easy to show (see [M9], remark 2), that NK/Q(J) 6 p

d
p−1 for d = [K : Q].

This implies that the reduction (modJ) is trivial if NK/Q(J) > p
d

p−1 , moreover,
if NK/Q(J) > 2d. For q = 2 the same result is true if

√−1 ∈ K since 2d > p
d

p−1 .
It is possible to determine the structure of a p-subgroup of GLn(OK) having
the maximal possible order with some modifications in the case p = 2. The the-
orems describing the maximal p-subgroups of GLn(K) over fields can be found
in [LP], in particular, it is proven that there is only one conjugacy class of
maximal p-subgroups of GLn(K) for p > 2. Howewer, equivalence of subgroups
in GLn(OK) over OK is a more subtle question.

Proposition 5. Let q be an odd prime. There is a prime ideal p ∈ OK with
the norm NK/Q(p) = p – a prime integer – such that the order of a Sylow q-
subgroup of GLn(OK/p) is bounded by the number SK(q, n) = qRK(q,n), for any
matrix g ∈ GLn(OK) of order q the condition g ≡ In(modp) implies g = In

and
RK(q, n) = Σ∞i=1[

n

φK(qi)
].

Let us consider an integer h = [ n
φK(q) ] and a wreath product H = M wr Sn

of the symmetric group Sh and the matrix group M = diag(g1, g2, ..., gh, Ik) for
k = n − hφK(q) and gi ∈ Cqj for a cyclic group Cqj ⊂ GLφK(q)(OK) with the
operation of Sn (which can be identified to a subgroup Ph of block-permutation
matrices P ∈ GLn(OK)) on M determined by permutations of diagonal blocks
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g1: P ¦ diag(g1, g2, ..., gh, Ik) = diag(gP (1), gP (2), ..., gP (h), Ik), P ∈ Ph. H is
naturally isomorphic to the group consisting of matrices mp ∈ GLn(OK) for
m ∈ M and p ∈ Ph. Set H = In in the case n < φK(q).

Proposition 6. For a prime q let m be the maximal integer with the property
φK(qm) = φK(q).

1)For an odd prime q there is a q-subgroup of H = M wr S′h, where M =
diag(g1, g2, ..., gh, Ik), gi ∈ Cqm , Cqm is a cyclic subgroup of order qm in
GLφK(qm)(OK) and S′h is a Sylow q-subgroup of S′h, and the order |H| of the
q-subgroup H is equal to

SK(q, n) = q
Σ∞i=1[

n

φK (qi)
]
.

There are no q-subgroups in GLn(OK) of order greater than |H|.
2) For q = 2 let L = K(

√−1). There is a 2-subgroup of H = M wr S′h,

where M = diag(g1, g2, ..., gh, Ik), gi ∈ C2m , Cqm is a cyclic subgroup of order
qm in GLφL(qm)(OL) and S′h is a Sylow q-subgroup of S′h, and the order |H| of
the group H is equal to

SL(2, n) = 2
Σ∞i=1[

n

φL(qi)
]
.

There are no 2-subgroups in GLn(OL) (and therefore in GLn(OK)) of order
greater than |H|.

Note that |H| = 1 if n < φK(q).

The order of any finite subgroup of GLn(OK) can be bounded by the constant

TK(q, n) = Πq
Σ∞i=1[

n

φK (qi)
]
,

where the product is taken for all primes q = 2, 3, 5, 7, .... This is a generaliza-
tion of the above result by H. Minkowski [Min2].
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