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Abstract

We provide a stochastic extension of the Baez–Fritz–Leinster characterization of the
Shannon information loss associated with a measure-preserving function. This recovers
the conditional entropy and a closely related information-theoretic measure that we call
‘conditional information loss.’ Although not functorial, these information measures are
semi-functorial, a concept we introduce that is definable in any Markov category. We also
introduce the notion of an ‘entropic Bayes’ rule’ for information measures, and we provide
a characterization of conditional entropy in terms of this rule.
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1 Introduction

The information loss K(f) associated with a measure-preserving function (X,p) f−→ (Y,q) be-
tween finite probability spaces is given by the Shannon entropy difference

K(f) := H(p) −H(q),

where H(p) := −
∑
x∈X px logpx is the Shannon entropy of p (and similarly for q). In [1], Baez,

Fritz, and Leinster proved that the information loss satisfies, and is uniquely characterized up
to a multiplicative factor by, the following conditions:

0. Positivity: K(f) > 0 for all (X,p) f−→ (Y,q). This says that the information loss associated
with a deterministic process is always non-negative.

1. Functoriality: K(g ◦ f) = K(g) + K(f) for every composable pair (f,g) of measure-
preserving maps. This says that the information loss of two successive processes is the
sum of the information losses associated with each process.

2. Convex Linearity: K(λf⊕ (1 − λ)g) = λK(f) + (1 − λ)K(g) for all λ ∈ (0, 1). This says that
the information loss associated with tossing a (possibly unfair) coin in deciding amongst
two processes is the associated weighted sum of their information losses.

3. Continuity: K(f) is a continuous function of f. This says that the information loss does not
change much under small perturbations (i.e., is robust with respect to errors).

As measure-preserving functions may be viewed as deterministic stochastic maps, it is nat-
ural to ask whether there exist extensions of the Baez–Fritz–Leinster (BFL) characterization of
information loss to maps that are inherently random (i.e., stochastic) in nature. In particular,
what information-theoretic quantity captures such an information loss in this larger category?

This question is answered in the present work. Namely, we extend the BFL characterization
theorem, which is valid on deterministic maps, to the larger category of stochastic maps. In doing
so, we also find a characterization of the conditional entropy. Although the resulting extension
is not functorial on the larger category of stochastic maps, we formalize a weakening of functo-
riality that restricts to functoriality on deterministic maps. This weaker notion of functoriality
is definable in any Markov category [3, 6], and it provides a key axiom in our characterization.

To explain how we arrive at our characterization, let us first recall the definition of stochas-
tic maps between finite probability spaces, for which the measure-preserving functions are a

special case. A stochastic map (X,p) f (Y,q) associates with every x ∈ X a probability distri-
bution fx on Y such that qy =

∑
x∈X fyxpx, where fyx is the distribution fx evaluated at y ∈ Y.

In terms of information flow, the space (X,p) may be thought of as a probability distribution
on the set of inputs for a communication channel described by the stochastic matrix fyx, while
(Y,q) is then thought of as the induced distribution on the set of outputs of the channel.

Extending the information loss functor by assigning H(p) − H(q) to any stochastic map

(X,p) f (Y,q) would indeed result in an assignment that satisfies conditions 1, 2, and 3 listed
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above. However, it would no longer be positive and the interpretation as an information loss
would be gone. Furthermore, no additional information about the stochasticity of the map f
would be used in determining this assignment. In order to guarantee positivity, an additional
term, depending on the stochasticity of f, is needed. This term is provided by the conditional

entropy of (X,p) f (Y,q) and is given by the the non-negative real number

H(f|p) :=
∑
x∈X

pxH(fx),

where H(fx) is the Shannon entropy of the distribution fx on Y.1 If (X,p) f (Y,p) is in fact
deterministic, i.e., if fx is a point-mass distribution for all x ∈ X, then H(fx) = H(f|p) = 0 for
all x ∈ X. As such, H(f|p) is a measure of the uncertainty (or randomness) of the outputs of f
averaged over the prior distribution p on the set X of its inputs. Indeed, H(f|p) is maximized
precisely when fx is the uniform distribution on Y for all x ∈ X.

Therefore, given a stochastic map (X,p) f (Y,q), we call

K(f) := H(p) −H(q) +H(f|p)

the conditional information loss of (X,p) f (Y,q).2 AsH(f|p) = 0 whenever f is deterministic,
the conditional information loss restricts to the category of measure preserving functions as the
information loss functor of Baez, Fritz, and Leinster, while also satisfying conditions 0, 2, and
3 (i.e., positivity, convex linearity, and continuity) on the larger category of stochastic maps.
However, conditional information loss is not functorial in general, and while this may seem
like a defect at first glance, we prove that there is no extension of the information loss functor
that remains functorial on the larger category of stochastic maps if the positivity axiom is to
be preserved, thus retaining an interpretation as information loss. In spite of this, conditional
information loss does satisfy a weakened form of functoriality, which we briefly describe now.

A pair (X,p) f (Y,q)
g

(Z, r) of composable stochastic maps is a.e. coalescable if and
only if for every pair of elements z ∈ Z and x ∈ X for which rz > 0 and px > 0, there exists a
unique y ∈ Y such that fyx > 0 and gzy > 0. Intuitively, this says that the information about the
intermediate step can be recovered given knowledge about the input and output. In particular,
if f is deterministic, then the pair (f,g) is a.e. colescable (for obvious reasons, since knowing
x alone is enough to determine the intermediate value). However, there are other many situa-
tions where a pair could be a.e. coalescable and the maps need not be deterministic. With this
definition in place (which we also generalize to the setting of arbitrary Markov categories), we
replace functoriality with the following weaker condition.

1?. Semi-functoriality: K(g ◦ f) = K(g) + K(f) for every a.e. coalescable pair (X,p) f

(Y,q)
g

(Z, r) of stochastic maps. This says that the conditional information loss of two

1In the case that (X,p) and (Y,q) are probability spaces associated with the alphabets of random variables X

and Y, then H(f|p) coincides with conditional entropy H(Y|X) [4].
2The same letter K is used here because it agrees with the Shannon entropy difference when f is deterministic.
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(b) The bloom-shriek factorization of (X,p) f
(Y,q)

Figure 1: A visualization of bloom and the bloom-shriek factorization via water droplets as
inspired by Gromov [8]. The bloom of f splits each water droplet of volume 1 (an element of
X) into several water droplets whose total volume equates to 1. If X has a probability p on it,
then the initial volume of that water droplet is scaled by this probability. The stochastic map
therefore splits the water droplet using this scale.

successive processes is the sum of the conditional information losses associated with each
process provided that the information in the intermediate step can always be recovered.

Replacing functoriality with semi-functoriality is not enough to characterize the conditional
information loss. However, it comes quite close, as only one more axiom is needed. Assuming
positivity, semi-functoriality, convex linearity, and continuity, there are several equivalent ax-
ioms that may be stipulated to characterize the conditional information loss. To explain the first

option, we introduce a convenient factorization of every stochastic map (X,p) f (Y,q). The
bloom-shriek factorization of f is given by the decomposition f = πY ◦

!

f, where

!

f : X X× Y
is the bloom of f whose value at x ′ is the probability measure on X× Y given by sending (x,y)
to δx ′xfyx ′ , where δx ′x is the Kronecker delta. In other words,

!

f records each of the probability
measures fx on a copy of Y indexed by x ∈ X. A visualization of the bloom of f is given in
Figure 1a. When one is given the additional data of probability measures p and q on X and Y,
respectively, then Figure 1b illustrates the bloom-shriek factorization of f. From this point of
view,

!

f keeps track of the information encoded in both p and f, while the projection map πY
forgets, or loses, some of this information.

With this in mind, our final axiom to characterize the conditional information loss is

4 (a). Reduction: K(f) = K(πY), where f = πY ◦

!

f is the bloom-shriek factorization of f. This
says that the conditional information loss of f equals the information loss of the projection
using the associated joint distribution on X× Y.

Note that this axiom describes how K is determined by its action on an associated class of
deterministic morphisms. These slightly modified axioms, namely, semi-functoriality, convex
linearity, continuity, and reduction, characterize the conditional information loss and therefore
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extend Baez, Fritz, and Leinster’s characterization of information loss. A much simpler ax-
iom that may be invoked in place of the reduction axiom which also characterizes conditional
information loss is the following.

4 (b). Blooming: K(

!

p) = 0, where

!

p is the unique map (•, 1) (X,p) from a one point prob-
ability space to (X,p). This says that if a process begins with no prior information, then
there is no information to be lost in the process.

The conditional entropy itself can be extracted from the conditional information loss by a
process known as Bayesian inversion, which we now briefly recall. Given a stochastic map

(X,p) f (Y,q), there exists a stochastic map (Y,q) f (Y,q) such that fyxpx = fxyqy for all
x ∈ X and y ∈ Y (the stochastic map f is the almost everywhere unique conditional probability
so that Bayes’ rule holds). Such a map is called a Bayesian inverse of f. The Bayesian inverse
can be visualized using the bloom-shriek factorization because it itself has a bloom-shriek fac-
torization f = πX ◦

!

f. This is obtained by finding the stochastic maps in the opposite direction
of the arrows so that they reproduce the appropriate volumes of the water droplets.

Given this perspective on Bayesian inversion, we prove that the conditional entropy of

(X,p) f (Y,q) equals the conditional information loss of its Bayesian inverse (Y,q) f (X,p).
And since the conditional information loss of f is just the information loss of πX, this indicates
how the conditional entropy and conditional information losses are the ordinary information
losses associated with the two projections πX and πY in Figure 1b. This duality also provides
an interesting perspective on conditional entropy and its characterization. Indeed, using
Bayesian inversion, we also characterize the conditional entropy as the unique assignment F
sending measure-preserving stochastic maps between finite probability spaces to real numbers
satisfying conditions 0, 1?, 2, and 3 above, but with a new axiom that reads as follows.

4 (c). Entropic Bayes’ Rule: F(f) + F(

!

p) = F(f) + F(

!

q) for all (X,p) f (Y,q). This is an infor-
mation theoretic analogue of Bayes’ rule, which reads fyxpx = fxyqy for all x ∈ X and
y ∈ Y, or in more traditional probabilistic notation P(y|x)P(x) = P(x|y)P(y).

In other words, we obtain a Bayesian characterization of the conditional entropy. This provides
an entropic and information-theoretic description of Bayes’ rule from the Markov category per-
spective, in a way that we interpret as answering an open question of Fritz [7].

2 Categories of stochastic maps

In the first few sections, we define all the concepts involved in proving that the conditional
information loss satisfies the properties that we will later prove characterize it. This section
introduces the domain category and its convex structure.

Definition 2.1. Let X and Y be finite sets. A stochastic map f : X Y associates a probability
measure fx to every x ∈ X. If f : X Y is such that fx is a point-mass distribution for every
x ∈ X, then f is said be to deterministic.
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Notation 2.2. Given a stochastic map f : X Y (also written as X f
Y), the value fx(y) ∈ [0, 1]

will be denoted by fyx. As there exists a canonical bijection between deterministic maps of the
form X Y and functions X → Y, deterministic maps from X to Y will be denoted by the
functional notation X→ Y.

Definition 2.3. A stochastic map of the form • X from a single element set to a finite set X is
a single probability measure on X. Its unique value at xwill be denoted by px for all x ∈ X. The
set Np := {x ∈ X | px = 0} will be referred to as the nullspace of p.

Definition 2.4. Let FinStoch be the category of stochastic maps between finite sets. Given a
finite set X, the identity map of X in FinStoch corresponds to the identity function idX : X → X.
Second, given stochastic maps f : X Y and g : Y Z, the composite g ◦ f : X Z is given by
the Chapmann–Kolmogorov equation (g ◦ f)zx :=

∑
y∈Y gzyfyx.

Definition 2.5. Let X be a finite set. The copy of X is the diagonal embedding ∆X : X → X× X,
and the discard of X is the unique map from X to the terminal object • in FinStoch, which will
be denoted by !X : X → •. If Y is another finite set, the swap map is the map γ : X× Y → Y ×X
given by (x,y) 7→ (y, x). Given morphisms f : X X ′ and g : Y Y ′ in FinStoch, the product
of f and g is the stochastic map f× g : X× Y X ′ × Y ′ given by (f× g)(x ′,y ′)(x,y) := fx ′xgy ′y.

The product of stochastic maps endows FinStoch with the structure of a monoidal category.
Together with the copy, discard, and swap maps, FinStoch is a Markov category [3, 6].

Definition 2.6. Let FinPS (this stands for “finite probabilities and stochastic maps”) be the co-
slice category • ↓ FinStoch, i.e., the category whose objects are pairs (X,p) consisting of a finite
setX equipped with a probability measure p, and a morphism from (X,p) to (Y,q) is a stochastic

map X f
Y such that qy =

∑
x∈X

fyxpx for all y ∈ Y. The subcategory of deterministic maps in

FinPS will then be denoted by FinPD (which stands for “finite probabilities and deterministic
maps”).3 A pair (f,g) of morphisms in FinPS is said to be a composable pair iff g ◦ f exists.

Remark 2.7. Though it is often the case that we will denote a morphism (X,p) f (Y,q) in

FinPS simply by f, such notation is potentially ambiguous, as the morphism (X,p ′) f (Y,q ′)

is distinct from the morphsim (X,p) f (Y,q) whenever p 6= p ′. As such, we will only employ
the shorthand of denoting a morphism in FinPS by its underlying stochastic map whenever the
source and target of the morphism are clear from the context.

Lemma 2.8. The object (•, 1) given by a single element set equipped with the unique probability measure
is a zero object (i.e. terminal and initial) in FinPS.

Definition 2.9. Given an object (X,p) in FinPS, the shriek and bloom of p are the unique maps
to and from (•, 1) respectively, which will be denoted !p : (X,p)→ (•, 1) and

!

p : (•, 1) (X,p)
(the former is deterministic, while the latter is stochastic). The underlying stochastic maps
associated with !p and

!

p are !X : X→ • and p : • X, respectively.
3The category FinPD was called FinProb in [1].
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Example 2.10. Since (•, 1) is a zero object, given any two objects (X,p) and (Y,q), there exists at

least one morphism (Y,q) (X,p), namely the composite (Y,q)
!q−→ (•, 1)

!

p
(X,p).

Definition 2.11. Let (X,p) f (Y,q) be a morphism in FinPS. The joint distribution associated
with f is the probability measure ϑ(f) : • X× Y given by ϑ(f)(x,y) = fyxpx.

It is possible to take convex combinations of both objects and morphisms in FinPS, and
such assignments will play a role in our characterization of conditional entropy.

Definition 2.12. Let p : • X be a probability measure and let {(Yx,qx)}x∈X be a collection of
objects in FinPS indexed by X. The p-weighted convex sum

⊕
x∈X px(Yx,q

x) is defined to be the
set4∐

x∈X Yx equipped with the probability measure
⊕
x∈X pxq

x given by(⊕
x∈X

pxq
x

)
z

:=

{
pxq

x
z if z ∈ Yx

0 otherwise.

In addition, if (Yx,qx)
Qx

(Y ′x,q ′x) is a collection of morphisms in FinPS indexed by X, the
p-weighted convex sum

⊕
x∈X pxQ

x :
(∐

x∈X Yx,
⊕
x∈X pxq

x
) (∐

x∈X Y
′
x,
⊕
x∈X pxq

′x) is given
by (⊕

x∈X
pxQ

x

)
z ′z

:=

{
px(Q

x)z ′z if (z ′, z) ∈ Y ′x × Yx
0 otherwise.

3 The Baez–Fritz–Leinster characterization of information loss

In [1], Baez, Fritz, and Leinster (BFL) characterized the Shannon entropy difference associated
with measure-preserving functions between finite probability spaces as the only non-vanishing,
continuous, convex linear functor from FinPD to the non-negative reals (up to a multiplicative
constant). It is then natural to ask whether there exist either extensions or analogues of their re-
sult by including non-deterministic morphisms from the larger category FinPS. Before delving
deeper into such inquiry, we first recall in detail the characterization theorem of (BFL).

Definition 3.1. Let BR be the convex category consisting of a single object and whose set
of morphisms is R. The composition in BR is given by addition. Convex combinations of
morphisms are given by ordinary convex combinations of numbers. The subcategory of non-
negative reals will be denoted BR>0.

Convention 3.2. In the rest of the paper, we will not necessarily assume that assignments from
one category to another are functors. Nevertheless, we do assume they form (class) functions
(see [10, Section I.7] for more details). Furthermore, we assume that they respect or reflect
source and targets in the following sense. If C and D are two categories, all functions F : C→ D

4This set is well-defined up to canonical isomorphism by the universal property of the disjoint union. We will
often ignore these canonical isomorphisms.
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are either covariant or contravariant in the sense that for any morphism a
γ−→ b in C, F(γ)

is a morphism from F(a) to F(b) or from F(b) to F(a), respectively. These are the only types
of functions between categories we will consider in this work. As such, we therefore abuse
terminology and use the term functions for such assignments throughout. IfM is a commutative
monoid and BM denotes its one object category, then every covariant function C→ BM is also
contravariant and vice-versa.

We now define a notion of continuity for functions of the form F : FinPS→ BR.

Definition 3.3. A sequence of morphisms (Xn,pn)
fn (Yn,qn) in FinPS converges to a mor-

phism (X,p) f (Y,q) if and only if the following two conditions hold.

(a) There exists an N ∈N for which Xn = X and Yn = Y for all n > N.

(b) The following limits5 hold: lim
n→∞pn = p and lim

n→∞ fn = f.

A function F : FinPS → BR is continuous if and only if lim
n→∞ F(fn) = F(f) whenever {fn} is a

sequence in FinPS converging to f.

Remark 3.4. In the subcategory FinPD, since the topology of the collection of functions from a
finite set X to another finite set Y is discrete, one can equivalently assume that a sequence fn as

in Definition (3.3), but this time with all fn deterministic, converges to (X,p) f−→ (Y,q) if and
only if the following two conditions hold.

(a) There exists an N ∈N for which Xn = X, Yn = Y, fn = f for all n > N.

(b) For n > N, one has lim
n→∞pn = p.

In this way, our definition of convergence agrees with the definition of convergence of BFL on
the subcategory FinPD [1].

Definition 3.5. A function F : FinPS → BR is said to be convex linear if and only if for all
objects (X,p) in FinPS,

F

(⊕
x∈X

pxQ
x

)
=
∑
x∈X

pxF(Q
x)

for all collections
{
(Yx,qx)

Qx

(Y ′x,q ′x)
}
x∈X in FinPS.

Definition 3.6. A function F : FinPS → BR is said to be functorial if and only if it is in fact a
functor, i.e., if and only if F(g ◦ f) = F(f) + F(g) for every composable pair (f,g) in FinPS.

Definition 3.7. Let p : • X be a probability measure. The Shannon entropy of p is given by

H(p) := −
∑
x∈X

px log(px).

5Note that these limits necessarily imply lim
n→∞qn = q.
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Convention 3.8. When considering any entropic quantity, we will always adhere to the con-
vention that 0 log(0) = 0.

Definition 3.9. Given a map (X,p) f−→ (Y,p) in FinPD, the Shannon entropy difference H(p) −
H(q) will be referred to as the information loss of f. Information loss defines a functor K :

FinPD→ BR, henceforth referred to as the information loss functor on FinPD.

Theorem 3.10 (Baez–Fritz–Leinster [1]). Suppose F : FinPD → BR>0 is a function which satisfies
the following conditions.

1. F is functorial.

2. F is convex linear.

3. F is continuous.

Then F is a non-negative multiple of information loss. Conversely, the information loss functor is non-
negative and satisfies conditions 1-3.

In light of Theorem 3.10, it is natural to question whether or not there exists a functor K :

FinPS→ BR>0 that restricts to FinPD as the information loss functor. It turns out that no such
non-vanishing functor exists, as we prove in the following proposition.

Proposition 3.11. If F : FinPS→ BR>0 is a functor, then F(f) = 0 for all morphisms f in FinPS.

Proof. Let (X,p) f (Y,q) be a morphism in FinPS. Since F is a functor,

F(

!

q) = F(f ◦

!

p) = F(f) + F(

!

p) =⇒ 0 6 F(f) = F(

!

q) − F(

!

p).

Let (Y,q)
g

(X,p) be any morphism in FinPS (which necessarily exists by Example 2.10, for
instance). Then a similar calculation yields

0 6 F(g) = F(

!

p) − F(

!

q) = −F(f).

Hence, F(f) = 0. �

4 Extending the information loss functor

Proposition 3.11 shows it is not possible to extend the information loss functor to a functor on
FinPS. Nevertheless, in this section, we define a non-vanishing function K : FinPS→ BR>0 that
restricts to the information loss functor on FinPD, which we refer to as conditional information
loss. While K is not functorial, we show that it satisfies many important properties such as
continuity, convex linearity, and invariance with respect to compositions with isomorphisms.
Furthermore, in Section 5 we show K is functorial on a restricted class of composable pairs of
morphisms (cf. Definition 5.15), which are definable in any Markov category. At the end of this
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section we characterize conditional information loss as the unique extension of the information
loss functor satisfying the reduction axiom 4 (a) as stated in the introduction. In Section 8,
we prove an intrinsic characterization theorem for K without reference to the deterministic
subcategory FinPD inside FinPS.

Definition 4.1. The conditional information loss of a morphism (X,p) f (Y,q) in FinPS is
the real number given by

K(f) := H(p) −H(q) +H(f|p),

where
H(f|p) :=

∑
x∈X

pxH(fx)

is the conditional entropy of (X,p) f (Y,q).

Proposition 4.2. The function K : FinPS → BR, uniquely determined on morphisms by sending

(X,p) f (Y,q) to K(f), satisfies the following conditions.

i) K(f) > 0.

ii) K restricted to FinPD agrees with the information loss functor (cf. Definition 3.9).

iii) K is convex linear.

iv) K is continuous.

v) Given (X,p) f (Y,q), then K(f) = K(πY), where (X× Y, ϑ(f))
πY−→ (Y,q) is the projection and

ϑ(f) is the joint distribution (cf. Definition 2.11).

Lemma 4.3. Let (X,p) f (Y,q) be a morphism in FinPS. Then

K(f) = −
∑

x∈X\Np

∑
y∈Y\Nfx

fyxpx log
(
fyxpx

qy

)
.

Proof of Lemma 4.3. Applying K to f yields

K(f) = −
∑
x,y
fyxpx log(fyx) −

∑
x

px log(px) +
∑
y

qy log(qy)

= −
∑
x,y
fyxpx log(fyx) −

∑
x

(∑
y

fyx

)
px log(px) +

∑
y

(∑
x

fyxpx

)
log(qy)

= −
∑

x∈X\Np

∑
y∈Y\Nfx

fyxpx log
(
fyxpx

qy

)
. �

Proof of Proposition 4.2. you found me!

i) The non-negativity of K follows from Lemma 4.3 and the equality qy =
∑
x ′∈X fyx ′px ′ >

fyxpx.
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ii) This follows from the fact that H(f|p) = 0 for all deterministic f.

iii) Let p : • X be a probability measure, and let (Yx,qx)
Qx

(Y ′x,q ′x) be a collection
of morphisms in FinPS indexed by X. Then the p-weighted convex sum

⊕
x∈X pxQ

x is a

morphism in FinPS of the form (Z, r) h (Z ′, r ′), where Z :=
∐
x∈X Yx, Z

′ :=
∐
x∈X Y

′
x,

h :=
⊕
x∈X pxQ

x, r :=
⊕
x∈X pxq

x, and r ′ :=
⊕
x∈X pxq

′x. Then

K(h) = −
∑
z∈Z

rz log(rz) +
∑
z ′∈Z ′

r ′z ′ log(r ′z ′) −
∑
z∈Z

∑
z ′∈Z ′

rzhz ′z log(hz ′z)

= −
∑
x∈X

∑
yx∈Yx

∑
y ′x∈Y ′x

pxq
x
yxQ

x
yxy ′x

log
(
Qxyxy ′x

)
=
∑
x∈X

pxH (Qx|qx) ,

which shows that K is convex linear.

iv) Let
(
X(n),p(n)

) f(n) (
Y(n),q(n)

)
be a sequence (indexed by n ∈ N) of probability-

preserving stochastic maps such that X(n) = X and Y(n) = Y for large enough n, and where
lim
n→∞ f(n) = f, lim

n→∞p(n) = p, and lim
n→∞q(n) = q. Then

lim
n→∞K

(
f(n)
)
= − lim

n→∞
∑
x,y
f
(n)
yx p

(n)
x log

 f
(n)
yx p

(n)
x∑

x ′ f
(n)
yx ′p

(n)
x ′

 = K(f),

where the last equality follows from the fact that the limit and sum (which is finite) can be
interchanged and all expressions are continuous on [0, 1].

v) This follows from

H
(
ϑ(f)

)
= −
∑
x∈X
y∈Y

fyxpx log(fyxpx) = −
∑
x∈X
y∈Y

fyxpx log(fyx) −
∑
y∈Y

fyx︸ ︷︷ ︸
=1

∑
x∈X

px log(px)

= H(f|p) +H(p)

and the fact that K(πY) = H
(
ϑ(f)

)
−H(q). �

Remark 4.4. Since conditional entropy vanishes for deterministic morphisms, conditional in-
formation loss restricts to FinPD as the information loss functor. It is important to note that if
the termH(f|p) was not included in the expression for K(f), then the inequality K(f) > 0 would
fail in general. When f is deterministic, Baez, Fritz, and Leinster proved H(p) − H(q) > 0.
However, when f is stochastic, the inequality H(p) −H(q) > 0 does not hold in general. This
has to do with the fact that stochastic maps may increase entropy, whereas deterministic maps
always decrease it (in the present classical setting).6 As such, the termH(f|p) is needed to retain
non-negativity as one attempts to extend BFL’s functor K on FinPD to a function on FinPS.

6This no longer holds for quantum systems [11].
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Item v of Proposition 4.2 says that the conditional information loss of a map (X,p) f (Y,q)
in FinPS is the information loss of the deterministic map (X × Y, ϑ(f))

πY−→ (Y,q) in FinPD,
so that conditional information loss of a morphism in FinPS may always be reduced to the
information loss of a deterministic map in FinPD naturally associated with it having the same
target. This motivates the following definition.

Definition 4.5. A function F : FinPS → BR is reductive if and only if F(f) = F(πY) for every

morphism (X,p) f (Y,q) in FinPS (cf. Proposition 4.2 item v for notation).

Proposition 4.6 (Reductive characterization of conditional information loss). Let F : FinPS →
BR>0 be a function satisfying the following conditions.

i) F restricted to FinPD is functorial, convex linear, and continuous.

ii) F is reductive.

Then F is a non-negative multiple of conditional information loss. Conversely, conditional information
loss satisfies conditions i and ii.

Proof. This follows immediately from Theorem 3.10 and item v of Proposition 4.2. �

In what follows, we will characterize conditional information loss without any explicit ref-
erence to the subcatgeory FinPD or the information loss functor of Baez, Fritz, and Leinster. To
do this, we first need to develop some machinery.

5 Coalescable morphisms and semi-functoriality

While conditional information loss is not functorial on FinPS, we know it acts functorially on
deterministic maps. As such, it is natural to ask for which pairs of composable stochastic maps
does the conditional information loss act functorially. In this section, we answer this question,
and then we use our result to define a property of functions FinPS → BR that is a weakening
of functoriality, and which we refer to as semi-functoriality. Our definitions are valid in any
Markov category (cf. Appendix B).

Definition 5.1. A deterministic map Z×X h−→ Y is said to be a mediator for the composable pair

(X,p) f (Y,q)
g

(Z, r) in FinPS if and only if

(g ◦ f)zx = gzh(z,x)fh(z,x)x for all (z, x) ∈ Z× (X \Np). (5.2)

If in fact equation (5.2) holds for all (z, x) ∈ Z×X, then h is said to be a strong mediator for the

composable pair X f
Y

g
Z in FinStoch.

Remark 5.3. Mediators do not exist for general composable pairs, as one can see by considering

any composable pair (•, 1)
p

(X,p) f (Y,q) such that H(ϑ(f)) 6= H(q) (cf. Definitions 2.11
and 3.7).
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Proposition 5.4. Let (X,p) f (Y,q)
g

(Z, r) be a composable pair of morphisms in FinPS. Then
the following statements are equivalent.

(a) For every x ∈ X \Np and z ∈ Z, there exists at most one y ∈ Y such that gzyfyx 6= 0.

(b) The pair (f,g) admits a mediator Z×X h−→ Y.

(c) There exists a function Z×X h−→ Y such that

hy(z,x)(g ◦ f)zxpx = gyzfyxpx ∀ (z,y, x) ∈ Z× Y ×X. (5.5)

Proof. you found me!

(a⇒b) For every (z, x) ∈ Z× (X \Np) for which such a y exists, set h(z, x) := y. If no such y
exists or if x ∈ Np, set h(z, x) to be anything. Then h is a mediator for (f,g).

(b⇒c) Let h be a mediator for (f,g). Since (5.5) holds automatically for x ∈ Np, suppose x ∈
X \Np, in which case (5.5) is equivalent to hy(z,x)(g ◦ f)zx = gyzfyx for all (z,y) ∈ Z× Y. This
follows from Equation (5.2) and the fact that h is a function.

(c⇒a) Let (z, x) ∈ Z × (X \ Np) and suppose (g ◦ f)zx > 0. If h is the mediator, then∑
y∈Y gzyfyx = (g ◦ f)zx = gzh(z,x)fh(z,x)x. But since gzyfyx = 0 for all y 6= h(z, x), there is

only one non-vanishing term in this sum, and it is precisely gzh(z,x)fh(z,x)x. �

Theorem 5.6 (Functoriality of Conditional Entropy). Let (X,p) f (Y,q)
g

(Z, r) be a compos-
able pair of morphisms in FinPS. Then

H(g ◦ f|p) = H(f|p) +H(g|q) (5.7)

holds if and only if there exists a mediator Z×X h−→ Y for (X,p) f (Y,q)
g

(Z, r).

We first prove two lemmas.

Lemma 5.8. Let (X,p) f (Y,q)
g

(Z, r) be a pair of composable morphisms. Then

H
(
(g× idY) ◦∆Y ◦ f|p

)
= H(g|q) +H(f|p).

In particular, H(g ◦ f|p) = H(g|q) +H(f|p) if and only if H(g ◦ f|p) = H
(
(g× idY) ◦∆Y ◦ f|p

)
.

Proof of Lemma 5.8. On components,
(
(g× idY) ◦∆Y ◦ f

)
(z,y)x = gzyfyx. Hence,

H
(
(g× idY) ◦∆Y ◦ f|p

)
= −
∑
x

px

(∑
y,z
gzyfyx log(gzyfyx)

)
= −

∑
x,y,z

pxgzyfyx log(gzy) −
∑
x,y,z

pxgzyfyx log(fyx)

= −
∑
y,z
qygzyfyx log(gzy) −

∑
x,y
pxfyx log(fyx)

= H(g|q) +H(f|p).
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Note that this equality still holds if gzy = 0 or fyx = 0 as each step in this calculation accounted
for such possibilities. �

Lemma 5.9. Let (X,p) f (Y,q)
g

(Z, r) be a pair of composable morphisms in FinPS. Then

0 6 H
(
(g× idY) ◦∆Y ◦ f|p

)
−H(g ◦ f|p)

= −
∑

x∈X\Np

∑
y∈Y\Nfx

∑
z∈Z\Ngy

pxgzyfyx log

(
gzyfyx∑
y ′ gzy ′fy ′x

)
. (5.10)

Note that the order of the sums matters in this expression and also note that it is always well-defined
since gzyfyx 6= 0 implies (g ◦ f)zx 6= 0.

Proof of Lemma 5.9. For convenience, temporarily set ℵ := H
(
(g× idY) ◦ ∆Y ◦ f|p

)
−H(g ◦ f|p).

Then

ℵ = −
∑
x,y,z

pxgzyfyx log(gzyfyx) +
∑
x,y,z

pxgzyfyx log
(
(g ◦ f)zx

)
= −

∑
x∈X\Np

∑
y∈Y\Nfx

∑
z∈Z\Ngy

pxgzyfyx log
(
gzyfyx

(g ◦ f)zx

)
,

which proves the claim due to the definition of the composition of stochastic maps. �

Proof of Theorem 5.6. Temporarily set ℵ := H
(
(g× idY) ◦∆Y ◦ f|p

)
−H(g ◦ f|p). In addition, note

that the set of all x ∈ X \Np and z ∈ Z \N(g◦f)x can be given a more explicit description in

terms of the joint distribution • s:=γ◦ϑ(g◦f)
Z×X associated with the composite g ◦ f and prior

p, namely s(z,x) := (g ◦ f)zxpx. Then,{
(z, x) : x ∈ X \Np, z ∈ Z \N(g◦f)x

}
= (Z×X) \Ns. (5.11)

(⇒) Suppose ℵ = 0. Then since each term in the sum from Lemma 5.9 is non-negative,

0 = −gzyfyxpx log

(
gzyfyx∑
y ′ gzy ′fy ′x

)
∀ x ∈ X \Np, y ∈ Y \Nfx , z ∈ Z ∈ Ngy .

Hence, fix such an x ∈ X \Np,y ∈ Y \Nfx , z ∈ Z ∈ Ngy . The expression here vanishes if and
only if

gzyfyx = (g ◦ f)zx, i.e. gzy ′fy ′x = 0 ∀ y ′ ∈ Y \ {y}. (5.12)

Hence, for every x ∈ X \Np and z ∈ Z \N(g◦f)x , there exists a unique y ∈ Y such that gzyfyx 6= 0.
But by (5.11), this means that for every (z, x) ∈ (Z× X) \Ns, there exists a unique y ∈ Y such
that gzyfyx 6= 0. This defines a function (Z× X) \Ns → Y \Nq which can be extended in an

s-a.e. unique manner to a function Z×X h−→ Y.
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We now show the function h is in fact a mediator for the composable pair (g, f). The equality
clearly holds if x ∈ Np since both sides vanish. Hence, suppose that x ∈ X \Np. Given y ∈
Y, z ∈ Z, the left-hand-side of (5.5) equals

δyh(z,x)(g ◦ f)zxpx
(5.12)
===

{
gzyfyxpx if z ∈ Z \N(g◦f)x and y = h(z, x)

0 otherwise
.

Similarly, if x ∈ X \Np and z ∈ N(g◦f)x , then gzyfyx = 0 for all y ∈ Y because otherwise
(g ◦ f)zxpx would be nonzero. If instead z ∈ Z \N(g◦f)x , then gzh(z,x)fh(z,x)x 6= 0 and gzyfyx = 0
for all y ∈ Y \ {h(z, x)} by (5.12). Therefore, (5.5) holds.

(⇐) Conversely, suppose a mediator h exists and let X k
Z× Y be the stochastic map given

on components by k(z,y)x := hy(z,x)(g ◦ f)zx. Then

H(k|p) = −
∑

x∈X\Np

∑
z∈Z\N(g◦f)x

∑
y∈Y

hy(z,x)(g ◦ f)zxpx log
(
hy(z,x)(g ◦ f)zx

)
= −

∑
(z,x)∈(Z×X)\Ns

∑
y∈Y

δyh(z,x)(g ◦ f)zxpx log
(
δyh(z,x)(g ◦ f)zx

)
= −

∑
(z,x)∈(Z×X)\Ns

(g ◦ f)zxpx log
(
(g ◦ f)zx

)
= H

(
(g ◦ f)|p

)
(5.7)
=== H

(
(g× idY) ◦∆Y ◦ f|p

)
Lem 5.8
===== H(g|q) +H(f|p).

This proves ℵ = 0 under the assumption (5.7). �

Corollary 5.13 (Functoriality of Conditional Information Loss). Let (X,p) f (Y,q)
g

(Z, r)
be a composable pair of morphisms in FinPS. Then K(g ◦ f) = K(f) +K(g) if and only if there exists a

mediator Z×X h−→ Y for the pair (X,p) f (Y,q)
g

(Z, r).

Proof. Since the Shannon entropy difference is always functorial, the conditional information
loss is functorial on a pair of morphisms if and only if the conditional entropy is functorial on
that pair. Theorem 5.6 then completes the proof. �

Example 5.14. In the notation of Theorem 5.6, suppose that f is a.e. deterministic, which means
fyx = δyf(x) for all x ∈ X \Np for some function f (abusive notation is used). In this case, the
deviation from functoriality, (5.10), simplifies to

H
(
(g× idY) ◦∆Y ◦ f|p

)
−H(g ◦ f|p) = −

∑
x∈X\Np

∑
z∈Z

pxgzf(x) log

(
gzf(x)

gzf(x)

)
= 0.

Therefore, if f is p-a.e. deterministic, H(g|q) +H(f|p) = H(g ◦ f|p). In this case, the mediator
Z×X h−→ Y is given by h :=!Z × f.
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Definition 5.15. A pair (X,p) f (Y,q)
g

(Z, r) of composable morphisms in FinPS is called

a.e. coalescable if and only if (X,p) f (Y,q)
g

(Z, r) admits a mediator Z×X h−→ Y. Similarly,

a pair X f
Y

g
Z of composable morphisms in FinStoch is called coalescable iff X f

Y
g

Z admits a strong mediator Z×X h−→ Y.

Remark 5.16. Example 5.14 showed that if (X,p) f (Y,q) is p-a.e. deterministic, then the pair

(X,p) f (Y,q)
g

(Z, r) is a.e. coalescable for any g. In particular, every pair of composable
morphisms in FinPD is coalescable.

In light of Theorem 5.6 and Corollary 5.13, we make the following definition, which will
serve as one of the axioms in our later characterizions of both conditional information loss and
conditional entropy.

Definition 5.17. A function F : FinPS → BR is said to be semi-functorial iff F(g ◦ f) = F(g) +

F(f) for every a.e. coalescable pair (X,p) f (Y,q)
g

(Z, r) in FinPS.

Example 5.18. By Theorem 5.6 and Corollary 5.13, conditional information loss and conditional
entropy are both semi-functorial.

Proposition 5.19. Suppose F : FinPS → BR is semi-functorial. Then the restriction of F to FinPD
is functorial. In particular, if F is, in addition, convex linear, continuous, and reductive, then F is a
non-negative multiple of conditional information loss.

Proof. By Example 5.14, every pair of composable morphisms in FinPD is a.e. coalescable.
Therefore, F is functorial on FinPD. The second claim then follows from Proposition 4.6. �

The following lemma will be used in later sections and serves to illustrate some examples
of a.e. coalescable pairs.

Lemma 5.20. Let (W, s) e−→ (X,p) f (Y,q)
g−→ (Z, r) be a triple of composable morphisms with e

deterministic and g invertible. Then each of the following pairs are a.e. coalescable:

i) (W, s) e−→ (X,p) f (Y,q)

ii) (X,p) f (Y,q)
g−→ (Z, r)

iii) (W, s) e−→ (X,p)
g◦f

(Z, r)

iv) (W, s) f◦e (Y,q)
g−→ (Z, r)

Proof. The proof that (W, s) e−→ (X,p) f (Y,q) is coalescable was provided (in a stronger form)

in Example 5.14. To see that (X,p) f (Y,q)
g−→ (Z, r) is coalescable, note that since g is an

isomorphism we have (g ◦ f)zx = gzg−1(z)fg−1(z)x. Thus, Z× X g−1×!X−−−−→ Y × • ∼= Y is a mediator
function for g ◦ f, thus g ◦ f is coalescable. The last two claims follow from the proofs of the first
two claims. �
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6 Bayesian inversion

In this section, we recall the concepts of a.e. equivalence and Bayesian inversion phrased in a
categorical manner [3, 5, 6], as they will play a significant role moving forward.

Definition 6.1. Let (X,p) f (Y,q) and (X,p)
g

(Y,q) be two morphisms in FinPS with
the same source and target. Then f and g are said to almost everywhere equivalent (or p-a.e.
equivalent) if and only if fyx = gyx for every x ∈ X with px 6= 0. In such a case, the p-a.e.
equivalence of f and gwill be denoted f =

p
g.

Theorem 6.2 (Bayesian Inversion [3, 5, 12]). Let (X,p) f (Y,q) be a morphism in FinPS. Then

there exists a morphism (Y,q) f (X,p) such that fxyqy = fyxpx for all x ∈ X and y ∈ Y. Further-

more, for any other morphism (Y,q) f
′

(X,p) satisfying this condition, f =
q
f
′.

Definition 6.3. The morphism (Y,q) f (X,p) appearing in Theorem 6.2 will be referred to as

a Bayesian inverse of (X,p) f (Y,q). It follows that fxy = pxfyx/qy for all y ∈ Y with qy 6= 0.

Proposition 6.4. Bayesian inversion satisfies the following properties.

i) Suppose (X,p) f (Y,q) and (X,p)
g

(Y,q) are p-a.e. equivalent, and let f and g be Bayesian
inverses of f and g respectfully. Then f =

q
g.

ii) Given two morphisms (X,p) f (Y,q) and (Y,q)
g

(X,p) in FinPS, then f is a Bayesian
inverse of g if and only if g is a Bayesian inverse of f.

iii) Let (Y,q) f (X,p) be a Bayesian inverse of (X,p) f (Y,q), and let γ : X× Y → Y × X be the
swap map (as in Definition 2.5). Then ϑ(f) = γ ◦ ϑ(f)

iv) Let (f,g) be a composable pair of morphisms in FinPS, and suppose f and g are Bayesian inverses
of f and g respectively. Then (g, f) is a composable pair, and f ◦ g is a Bayesian inverse of g ◦ f.

Proof. These are immediate consequences of the categorical definition of a Bayesian inverse
(see [6, 12, 14] for proofs). �

Definition 6.5. A contravariant function B : FinPS→ FinPS is said to be a Bayesian inversion
functor7 if and only if B acts as the identity on objects and B(f) is a Bayesian inverse of f for all
morphisms f in FinPS.

Remark 6.6. A Bayesian inversion functor exists. Given any (X,p) f (Y,q), set Y f
X to be

given by fxy = pxfyx/qy for all y ∈ Y with qy 6= 0 and fxy = 1/|X| for all y ∈ Y with qy = 0.
Note that this does not define a functor. Indeed, if (X,p) is a probability space with px0 = 0
for some x0 ∈ X, then (idX)x0 is the uniform measure on X instead of the Dirac delta measure

7This is mildly abusive terminology since functoriality only holds in the a.e. sense (cf. Remark 6.6).
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concentrated on x0. In other words, idX 6= idX. Similar issues of measure zero occur, indicating

that g ◦ f 6= f ◦ g for a composable pair of morphisms (X,p) f (Y,q)
g

(Z, r). Nevertheless,
Bayesian inversion is a.e. functorial in the sense that g ◦ f =

r
f ◦ g and id(X,p) =p id(X,p).

Corollary 6.7. B2(f) =
p
f for any Bayesian inversion functor B and every (X,p) f (Y,q) in FinPS.

Proposition 6.8. Let B be a Bayesian inversion functor on FinPS (as in Definition 6.5). Then B is a.e.
convex linear in the sense that

B

(⊕
x∈X

pxQ
x

)
=
q ′

⊕
x∈X

pxB(Qx),

where q ′ :=
⊕
x∈X pxq

′x and the other notation is as in Definition 2.12.

Proof. First note that it is immediate that B is convex linear on objects since Bayesian inversion

acts as the identity on objects. Let p : • X be a probability measure, (Yx,qx)
Qx

(Y ′x,q ′x)
be a collection of morphisms in FinPS indexed by X, and suppose B is a Bayesian inversion
functor. Then for (z, z ′) ∈ Yx × Y ′x with pxq ′xz ′ 6= 0, we have

B

(⊕
x∈X

pxQ
x

)
zz ′

=
pxq

x
z

(⊕
x∈X pxQ

x
)
z ′z

pxq
′x
z ′

=
qxz
(
pxQ

x
z ′z

)
q ′xz ′

= px

(
qxzQ

x
z ′z

q ′xz ′

)

= pxB(Qx)zz ′ =

(⊕
x∈X

pxB(Qx)

)
zz ′

.

Thus, B is a.e. convex linear. �

Proposition 6.9. Given (X,p) f (Y,q)
g

(Z, r) in FinPS, and let f and g be Bayesian inverses of
f and g respectively. Then (f,g) is a.e. coalescable if and only if (g, f) is a.e. coalescable.

Proof. Since Bayesian inversion is a dagger functor on a.e. equivalence classes [6, Remark 13.9],
it suffices to prove one direction in this claim. Hence, suppose (f,g) is a.e. coalescable and let h
be a mediator function realizing this. Then h ◦ γ is a mediator for (g, f) because

fxygyzrz = fxygzyqy = gzyfyxpx = hy(z,x)(g ◦ f)zxpx
= hy(z,x)(g ◦ f)xzrz = (h ◦ γ)y(x,z)(g ◦ f)xzrz.

A completely string-diagrammatic proof is provided in Appendix B. �

The following proposition is a reformulation of the conditional entropy identity H(Y|X) +
H(X) = H(X|Y) +H(Y) in terms of Bayesian inversion.

Proposition 6.10. Let (X,p) f (Y,q) be a morphism in FinPS, and suppose f is a Bayesian inverse
of f. Then

H(f|p) +H(p) = H(f|q) +H(q). (6.11)
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Proof. This follows from the fact that both sides of (6.11) are equal to H(ϑ(f)). �

Proposition 6.10 implies Bayesian inversion takes conditional entropy to conditional infor-
mation loss and vice versa, which is formally stated as follows.

Corollary 6.12. Let K : FinPS→ BR>0 and H : FinPS→ BR>0 be given by conditional information
loss and conditional entropy, respectively, and let B : FinPS→ FinPS be a Bayesian inversion functor.
Then8 H = K ◦B and K = H ◦B.

Remark 6.13. If (X,p) f→ (Y,q) is a deterministic morphism in FinPS, Baez, Fritz, and Leinster
point out that the information loss of f is in fact the conditional entropy of x given y [1]. Here,
we see this duality as a special case of Corollary 6.12 applied to deterministic morphisms.

7 Bloom-shriek factorization

We now introduce a simple, but surprisingly useful, factorization for every morphism in FinPS,
and we use it to prove some essential lemmas for our characterization theorems for conditional
information loss and conditional entropy, which appear in the following sections.

Definition 7.1. Given a stochastic map X f
Y, the bloom of f is the stochastic map X

!

f
X×Y

given by the composite X
∆X

X×X idX×f
X× Y, and the shriek of f is the deterministic map

X× Y !f−→ X given by the projection πX.

Proposition 7.2. Let (X,p) f (Y,q) be a morphism in FinPS. Then the following statement hold.

i) The composite (X,p)

!

f (X× Y, ϑ(f))
!f−→ (X,p) is equal to the identity idX.

ii) The morphism f equals the composite (X,p)

!

f (X× Y, ϑ(f))
!f◦γ−−→ (Y,q), where f denotes any

Bayesian inverse of f and γ : X× Y → Y ×X is the swap map.

iii) The pair (X,p)

!

f (X× Y, ϑ(f))
!f◦γ≡πY−−−−−→ (Y,q) is coalescable.

Definition 7.3. The decomposition in item ii Proposition 7.2 will be referred to as the bloom-
shriek factorization of f.

Proof of Propostion 7.2. Element-wise proofs are left as exercises. Appendix B contains an ab-
stract proof using string diagrams in Markov categories. �

The bloom of f can be expressed as a convex combination of simpler morphisms up to iso-
morphism. To describe this and its behavior under convex linear semi-functors, we introduce
the notion of an invariant and examine some of its properties.

8Since contravariant functions into BR>0 are covariant and vice versa (cf. Convention 3.2), the composites
K ◦B and H ◦B are all covariant, which is why we have not written any op superscripts.
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Definition 7.4. A function F : FinPS → BR is said to be an invariant if and only if for every

triple of composable morphisms (W, s) e−→ (X,p) f (Y,q)
g−→ (Z, r) such that e and g are

isomorphisms, then F(f) = F(g ◦ f ◦ e).

Lemma 7.5. If a function F : FinPS→ BR>0 is semi-functorial, then F is an invariant.

Proof. Consider a composable triple (W, s) e−→ (X,p) f (Y,q)
g−→ (Z, r) such that e and g are

isomorphisms. Then

F
(
g ◦ f ◦ e

)
= F
(
g ◦ (f ◦ e)

)
= F(g) + F(f ◦ e) = F(g) + F(f) + F(e)

by Lemma 5.20. Secondly, since g and e are isomorphisms, and since the pairs (g,g−1) and
(e, e−1) are coalescable, F(id) = F(g ◦ g−1) = F(g) + F(g−1). But since F(id) = 0 (by semi-
functoriality), this requires that F(g) = 0 for an isomorphism g since F(g) > 0 and F(g−1) > 0.
The same is true for F(e). Hence, F

(
g ◦ f ◦ e

)
= F(f). �

Lemma 7.6. Let (X,p) f (Y,q) be a morphism in FinPS, and suppose F : FinPS → BR>0 is
semi-functorial and convex linear. Then the following statements hold.

i) F(f) = F(!f) + F(

!

f)

ii) F(

!

f) =
∑
x∈X pxF(

!

fx)

iii) F(!f) =
∑
x∈X pxF(!fx)

Proof. For item i, we have

F(f) = F(!f ◦ γ ◦

!

f) by item ii of Proposition 7.2

= F(!f ◦ γ) + F(

!

f) by item iii of Proposition 7.2

= F(!f) + F(

!

f) by Lemma 7.5.

For items ii and iii, note that

!

f and !f can be expressed as composites of isomorphisms and
certain convex combinations, namely

(X,p)

⊕
x∈X

px(•, 1)
⊕
x∈X

px(Y, fx)

(
X× Y, ϑ(f)

)
∼= ψ
��

∼=ϕ

OO

!

f //

`:=
⊕
x∈X

px

!

fx

//

and

(
X× Y, ϑ(f)

)
⊕
x∈X

px(Y, fx)
⊕
x∈X

px(•, 1)

(X,p)
∼= ψ ′
��

∼=ϕ ′
OO

!f //

` ′:=
⊕
x∈X

px !fx

//

. (7.7)

Hence,

F(

!

f) = F(ϕ ◦ ` ◦ψ) F(!f) = F(ϕ ′ ◦ ` ′ ◦ψ ′) by (7.7)

= F(`) = F(` ′) by Lemma 7.5

=
∑
x∈X

pxF(

!

fx) =
∑
x∈X

pxF(!fx) since F is convex linear. �
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Proposition 7.8. Suppose F : FinPS → BR>0 is semi-functorial and convex linear. If f,g :

(X,p) // (Y,q) are two morphisms in FinPS such that f =
p
g, then F(f) = F(g).

Proof. Suppose (X,p) f (Y,q) and (X,p)
g

(Y,q) are such that f =
p
g, and let f and g be

Bayesian inverses for f and g. Then

F(f) = F(!f) + F(

!

f) by item i of Lemma 7.6

=
∑
y∈Y

qyF(!fy) +
∑
x∈X

pxF(

!

fx) by items ii and iii of Lemma 7.6

=
∑
y∈Y

qyF(!gy) +
∑
x∈X

pxF(

!

gx) since f =
p
g and f =

q
g

= F(!g) + F(

!

g) by items ii and iii of Lemma 7.6

= F(g) by item i of Lemma 7.6,

as desired. �

8 An intrinsic characterization of conditional information loss

Theorem 8.1. Suppose F : FinPS→ BR>0 is a function satisfying the following conditions.

1. F is semi-functorial.

2. F is convex linear.

3. F is continuous.

4. F(

!

p) = 0 for every probability distribution • p
X.

Then F is a non-negative multiple of conditional information loss. Conversely, conditional information
loss satisfies conditions 1-4.

Proof. Suppose F satisfies conditions 1-4, let (X,p) f (Y,q) be an arbitrary morphism in FinPS,
and let γ : Y ×X→ X× Y be the swap map, so that !f = πY ◦ γ. Then

F(f) = F(!f) + F(

!

f) by item i of Lemma 7.6

= F(!f) +
∑
x∈X

pxF(

!

fx) by item ii of Lemma 7.6

= F(!f) by condition 4

= F (πY ◦ γ)
= F(πY) since F is an invariant (Definition 7.4).

Thus, F is reductive (see Definition 4.5) and Proposition 5.19 applies. �

21



Remark 8.2. Under the assumption that F : FinPS → BR is semi-functorial and convex linear,
one may show F satisfies condition 4 in Theorem 8.1 if and only if F is reductive (see Defini-
tion 4.5 and Proposition 5.19). While the reductive axiom specifies how the semi-functor acts
on all morphisms in FinPS, condition 4 in Theorem 8.1 only specifies how it acts on morphisms
from the initial object. This gives not just a simple mathematical criterion, but one with a simple
intuitive interpretation as well. Namely, condition 4 says that if a process begins with no prior
information, then there is no information to be lost in the process.

We now use Theorem 8.1 and Bayesian inversion to prove a statement dual to Theorem 8.1.

Theorem 8.3. Suppose F : FinPS→ BR>0 is a function satisfying the following conditions.

1. F is semi-functorial.

2. F is convex linear.

3. F is continuous.

4. F(!p) = 0 for every probability distribution • p
X.

Then F is a non-negative multiple of conditional entropy. Conversely, conditional entropy satisfies con-
ditions 1-4.

Before giving a proof, we introduce some terminology and prove a few lemmas. We also
would like to point out that condition 4 may be given an operational interpretation as follows:
if a communication channel has a constant output, then it has no conditional entropy.

Definition 8.4. Let F : FinPS → BR be a function and let B be a Bayesian inversion functor.
Then F := F ◦B will be referred to as a Bayesian reflection of F.

Remark 8.5. By Proposition 7.8, if F : FinPS → BR is a convex linear semi-functor, then a
Bayesian reflection is independent of the choice of a Bayesian inversion functor, and as such, is
necessarily unique.

Lemma 8.6. Let (X,p) f (Y,q) be a morphism in FinPS, suppose F : FinPS → BR is a convex
linear semi-functor, and let f be a Bayesian inverse of f. Then F(f) = F(f).

Proof of Lemma 8.6. Let B be a Bayesian inversion functor, so that B(f) =
q
f. Then F(f) =

F(B(f)) = F(f), where the last equality follows from Proposition 7.8. �

Lemma 8.7. Let B : FinPS → FinPS be a Bayesian inversion functor and let (Xn,pn)
fn (Yn,qn)

be a sequence of morphisms in FinPS converging to (X,p) f (Y,q). Then lim
n→∞B(fn) =

q
B(f).

Proof of Lemma 8.7. Set f(n) := fn. For all y ∈ Y with qy 6= 0, we have

lim
n→∞B

(
f(n)
)
xy

= lim
n→∞ p

(n)
x f

(n)
yx

q
(n)
y

=
pxfyx

qy
= B(f)xy. �
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Lemma 8.8. Suppose F : FinPS→ BR>0 is a function satisfying conditions 1-4 of Theorem 8.3. Then
the Bayesian reflection F is a non-negative multiple of conditional information loss.

Proof of Lemma 8.8. We show F satisfies conditions 1-4 of Theorem 8.1. Throughout the proof,
let B denote a Bayesian inversion functor, so that F = F ◦B.

Semi-functoriality: Suppose (X,p) f (Y,q)
g

(Z, r) is an a.e. coalescable pair of composable
morphisms in FinPS. Then

F(g ◦ f) = F
(
g ◦ f

)
by Lemma 8.6

= F
(
f ◦ g

)
by item iv of Proposition 6.4

= F(f) + F(g) by Proposition 6.9

= F(f) + F(g) by Lemma 8.6.

Thus, F is semi-functorial.

Convex Linearity: Given any probability space (X,p) and a family of morphisms (Yx,qx)
Qx

(Y ′x,q ′x) in FinPS indexed by X,

F

(⊕
x∈X

pxQ
x

)
= F

(⊕
x∈X

pxB(Qx)

)
by Propositions 6.8 and 7.8

=
∑
x∈X

pxF
(
B(Qx)

)
since F is convex linear

=
∑
x∈X

F(Qx) by definition of F.

Thus, F is convex linear.

Continuity: This follows from Lemma 8.7 and Proposition 7.8.

F(

!

p) = 0 for every probability distribution • p
X: This follows from Lemma 8.6, since !p is the

unique Bayesian inverse of

!

p. �

Proof of Theorem 8.3. Suppose F : FinPS → BR is a function satisfying conditions 1-4 of Theo-
rem 8.3, and let B be a Bayesian inversion functor. Since F is semi-functorial and convex linear
it follows from Proposition 7.8 that F = F ◦B, and by Lemma 8.8 it follows that F = cK for some
non-negative constant c > 0. We then have F = F ◦B = cK ◦B = cH, thus F is a non-negative
multiple of conditional entropy. �

9 A Bayesian characterization of conditional entropy

We now prove a reformulation of Theorem 8.3 where condition 4 is replaced by a condition
which we view as an ‘entropic Bayes’ rule’.
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Definition 9.1. A function F : FinPS→ BR satisfies an entropic Bayes’ rule if and only if

F(f) + F(

!

p) = F(f) + F(

!

q)

for every morphism (X,p) f (Y,q) in FinPS and any Bayesian inverse f of f.

Remark 9.2. The entropic Bayes’ rule is an abstraction of the conditional entropy identity (6.11).

Theorem 9.3 (A Bayesian characterization of conditional entropy). Suppose F : FinPS → BR>0

is a function satisfying the following conditions.

1. F is semi-functorial.

2. F is convex linear.

3. F is continuous.

4. F satisfies an entropic Bayes’ rule.

Then F is a non-negative multiple of conditional entropy. Conversely, conditional entropy satisfies con-
ditions 1-4.

Proof. By Theorem 8.3, it suffices to show F(!p) = 0 for every object (X,p) in FinPS. For this,
first note that

!

1 =

!

1 ◦

!

1, where (•, 1) is the point-mass distribution on a single point. Since F is
semi-functorial and

!

1 ◦

!

1 is coalescable, we have F(

!

1) = F(

!

1) + F(

!

1), which implies F(

!

1) = 0.
Applying the entropic Bayes’ rule from Definition 9.1 to the morphism !p : (X,p) (•, 1) yields

F(!p) + F(
!

p) = F(
!

p) + F(
!
1) =⇒ F(!p) = F(

!
1) = 0,

as desired. �

Remark 9.4. In [7, slide 21], Fritz asked if there is a Markov category for information theory
explaining the analogy between the Bayes rule P(A|B)P(B) = P(B|A)P(A) and the conditional
entropy identity H(A|B) +H(B) = H(B|A) +H(A). In light of our work, we feel we have an
adequate categorical explanation for this analogy, which we now explain.

Let (X,p) f (Y,q) be an arbitrary morphism in FinPS, and suppose F : FinPS → BR is
semi-functorial. Then the commutative diagram (cf. Definition B.8)

(•, 1)

(X,p)

(X× Y, ϑ(f))

(Y,q)

!

p

uu

γ◦

!

f
uu

!

q

))

!

f
))

(9.5)

is a coalescable square (where γ is the swap map), i.e.,

!

f ◦

!

p and (γ ◦

!

f) ◦

!

q are both coalescable.
The semi-functoriality of F then implies the identity F(

!

f)+F(

!

p) = F(

!

f)+F(

!

q). Now suppose—
as in the case of conditional entropy—that F satisfies the further condition that F(f) = F(

!

f).
Then commutivity of (9.5) and this are equivalent to the following two respective equations:

Bayes’ Rule : fyxpx = fxyqy

Entropic Bayes’ Rule : F(f) + F(

!

p) = F(f) + F(

!

q).
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In the case that F = H, where H is the conditional entropy, we have H(

!

r |1) = H(r) for every
object (Z, r) in FinPS (where H(r) is the Shannon entropy). Thus, the entropic Bayes’ rule
becomes H(f|p) +H(p) = H(f|q) +H(q), which is the classical identity for conditional entropy.

A Correctable codes and conditional information loss

In this appendix, we prove that the conditional information loss of a morphism (X,p) f (Y,q)
in FinPS vanishes if and only if f is a disintegration, or equivalently, if and only if f is correctable
(cf. Remark A.4). Briefly, a disintegration is a particular kind of Bayesian inverse that we define
momentarily. This provides an additional interpretation of the conditional information loss,
namely as a deviation from correctability.

Definition A.1. Let (Y,q)
g

(X,p) be a morphism in FinPS. Then (X,p) f (Y,q) is said to
be a disintegration of g (or (g,q,p) for clarity) if and only if g ◦ f =

p
idX.

Lemma A.2. If f is a disintegration of g, then g is q-a.e. deterministic and f is a Bayesian inverse of g.
Conversely, if g is q-a.e. deterministic, then every Bayesian inverse of g is a disintegration of g.

Proof. This is proved in a more abstract setting in [12, Section 8]. �

Theorem A.3. Let (X,p) f (Y,q) be a morphism in FinPS. Then K(f) = 0 if and only if there exists

a map (Y,q)
g

(X,p) such that f is a disintegration of g.

Proof. The theorem will be proved by showing the equivalent statement ‘H(f|q) = 0 if and only
if f is q-a.e. deterministic for some Bayesian inverse f of f.’ We therefore first justify this as
being equivalent to the claim.

First, K(f) = 0 holds if and only if H(f) = 0 for some (and hence any) Bayesian inverse
f of f by Corollary 6.12 and Lemma 8.6. Second, the statement ‘there exists a g such that f is
a disintegration of g’ holds if and only if ‘there exists a g such that f is a Bayesian inverse of
g and g is q-a.e. deterministic’ by Lemma A.2. However, since Bayesian inverses always exist
(Theorem 6.2), and because Bayesian inversion is symmetric (item ii in Proposition 6.4), this
latter statement is equivalent to ‘there exists a q-a.e. deterministic Bayesian inverse g of f.’

Hence, suppose f has a q-a.e. deterministic Bayesian inverse g. Then

H(g|q) =
∑
y∈Y

qyH(gy) =
∑

y∈Y\Nq

qyH(gy) = 0,

since the entropy of gy vanishes because it is {0, 1}-valued for all y ∈ Y \Nq.

Conversely, supposeH(f) = 0 for some Bayesian inverse f of f. ThenH(f) =
∑
y∈Y\Nq

qyH(fy)

is a sum of non-negative numbers that vanishes. Hence, H(fy) = 0 for all y ∈ Y \Nq. But
since the entropy of a probability measure on a finite set vanishes if and only if the probability
measure is {0, 1}-valued, fy is {0, 1}-valued for all y ∈ Y \Nq. Hence, f is q-a.e. deterministic. �
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Remark A.4 (Vanishing of Conditional Information Loss in Terms of Correctable Codes). The
vanishing of the conditional information loss is closely related to the correctability of classical
codes.9 A possibilistic map (also called a full relation) from a finite set X to a finite set Y is an
assignment f sending x ∈ X to a nonempty subset fx ⊆ Y. Such a map can also be viewed as a

transition kernel X f
Y such that fyx ∈ {0, 1} for all x ∈ X and y ∈ Y and for each x ∈ X there

exists a y ∈ Y such that fyx = 1. A classical code is a tuple (A,X, Y,E,N) consisting of finite sets

A,X, Y, an inclusion A
E
↪−→ X (the encoding), and a possibilistic map X N

Y (the noise). Such a

classical code is correctable iff there exists a possibilistic map Y D
A (the recovery map) such

that D ◦N ◦ E = idA.

Associated with every morphism (X,p) f (Y,q) in FinPS is a classical code given by(
A := X \Np,X, Y,E := incl,N := dfe

)
, (A.5)

where X \Np
incl
↪−−→ X denotes the usual inclusion and where dfe is the possibilistic map defined

by

dfeyx := dfyxe :=

{
1 if fyx > 0

0 otherwise

as a transition kernel, or equivalently

dfex :=
{
y ∈ Y : fyx > 0

}
as a full relation.

Now, if K(f) = 0, then by Theorem A.3, there exists a (Y,q)
g

(X,p) such that f is a disin-
tegration of (g,q,p). Thus, g ◦ f =

p
idX. Since A := X \Np, the map g restricts to a deterministic

map g� : B → A, where B :=
⋃
x∈Xdfex ⊆ Y. Since g� is deterministic, it is also possibilistic. Let

D : Y //A be any extension of g� to a possibilistic map. This map satisfies D ◦N ◦ E = idA
precisely because g ◦ f =

p
idX. Thus, (A,X, Y,E,N) is correctable.

Conversely, suppose (A,X, Y,E,N) as in (A.5) is correctable, with a possibilistic recovery

map Y D
A. Then N restricts to a deterministic map N� : B → A, which is, in particular, a

stochastic map. Thus, set g : Y //X to be the stochastic map given by the composite X N

A
E
↪−→ X. Then f is a disintegration of (g,q,p).

This gives a physical interpretation to the vanishing of conditional information loss.
Namely, K(f) = 0 if and only if (A := X \Np,X, Y,E := incl,N := dfe) is correctable.

9Our references for correctable codes include [2, 9], though our particular emphasis in terms of possibilistic
maps instead of stochastic maps appears to be new. The correctability of classical codes does not require the
datum of a stochastic map, but rather that of a possibilistic map.
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B The Markov category setting

In this appendix, we gather some definitions and results that indicate how our formalism ex-
tends to the setting of Markov categories [3, 6] in terms of string diagrams [13].

Definition B.1. A Markov category is a symmetric monoidal category (M,⊗, I), with ⊗ the
tensor product and I the unit (associators and unitors are excluded from the notation), and
where each object X in M is equipped with morphisms !X ≡ X : X → I and ∆X ≡ : X →
X⊗X, all satisfying the following conditions

= = = =

X⊗ Y = X Y I = X⊗ Y =
X Y I

=

expressed using string diagrams. In addition, every morphism X
f−→ Y is natural with respect

to in the sense that f = . A state on X is a morphism I
p−→ X, which is drawn as

p

X
.

FinStoch is a Markov category (cf. Section 2). Although the definitions and results that
follow are stated for stochastic maps, many hold for arbitrary Markov categories as well.

Definition B.2 (Definition 2.11 in body). Let (X,p) f (Y,q) be a morphism in FinPS. The joint
distribution associated with f is given by the following commutative diagram/string diagram
equality:

•

X× Y

X

X×X
:=ϑ(f)

��

p //

idX×f
oo

∆X
��

/
ϑ(f)

X Y
:=

p

f
X Y

Proposition B.3 (Extending Proposition 5.4). The composable pair (X,p) f (Y,q)
g

(Z, r) in
FinPS is a.e. coalescable if and only if there exists a deterministic morphism Z×X h−→ Y such that

p

f

g

h

=

p

f

g

(B.4)

Proof. Item (c) of Proposition 5.4 is a direct translation of this string diagram in terms of the
composition of stochastic maps between finite sets. �
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Remark B.5. The morphism h in Proposition B.3 is closely related to the abstract notion of

conditionals in Markov categories [6, Definition 11.5]. Indeed, given morphisms X F
Z× Y

and I
p
X in a Markov category, an a.e. conditional of F given Z is a morphism Z×X F|Z

Y

such that

p

F

F|Z

Z Y X

=

p

F

Z Y X

.

In our case, F = (g× idY) ◦∆Y ◦ f and h is the mediator. Therefore, a mediator is a deterministic
(or at least a.e. deterministic) a.e. conditional for a specific morphism constructed from a pair
of composable morphisms.

Remark B.6. In string-diagram notation, Lemma 5.8 reads

H


f

g

Z Y

X

∣∣∣∣∣∣∣∣∣∣ p

X

 = H

 g

Z

Y

∣∣∣∣∣∣∣∣ q

Y

+H

 f

Y

X

∣∣∣∣∣∣∣∣ p

X

 .

Example B.7 (Example 5.14 in body). The mediator Z×X h−→ Y in this case may be given by

h := f .

The following string-diagrammatic calculation

p

f

g

f

=

p

ff

g

=

p

f

g

,

where p-a.e. determinism of fwas used in the second equality, shows that (B.4) holds.

Definition B.8 (Definition 6.3 in body). Let (X,p) f (Y,q) be a morphism in FinPS. A

Bayesian inverse of a morphism (X,p) f (Y,q) in FinPS is a morphism (Y,q) f (X,p)
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such that the following diagram commutes/string diagram equality holds:

•Y X

Y × Y X×XX× Y

p //qoo

∆Y

��
∆X

��

f×idY

//
idX×f
oo

===

/
q

f

X Y

=

p

f

X Y

Alternative proof of Propotion 6.9. A more abstract proof of Propotion 6.9 that is valid in an arbi-
trary classical Markov category can be given as follows:

r

g

f

h

=

r

g

f

h

=

p

f

g

h

=

p

f

g

h

=

p

f

g

h

=

p

f

g
=

r

g

f
=

r

g

f

=

r

g

f

. �

Definition B.9 (Definition 7.1 in body). Given a stochastic map X f
Y, the bloom X

!

f
X× Y

and shriek X× Y !f−→ X of f are given by

!

f

X

X Y

:=
f

and !f :=

X

X Y

.

Diagrammatic proof of Propostion 7.2. you found me!
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i) First,

!

f

!f

X

X

X Y =
f

X

X

= and
ϑ(f)

X Y

=

p

f

X Y

,

where the second equality holds by the very definition of the joint distribution ϑ(f).

ii) Secondly,

!

f

!f

X

Y

=
f

X

Y

=
f

= f .

iii) Finally, set the mediator function Y ×X h−→ X× Y to be the swap map. Then

!

f

!f

h

=
f

=

f

= f

=
f

=
f

=

!

f

!f

,

which proves that the pair (X,p)

!

f (X× Y, ϑ(f))
!f◦γ−−→ (Y,q) is coalescable. �
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