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Abstract

We study quantum chromodynamics from the viewpoint of urtated Dyson—Schwinger equa-
tions turned to an ordinary differential equation for theagl anomalous dimension. This non-
linear equation is parameterized by a functi®f) which is unknown beyond perturbation theory.
Still, very mild assumptions o (x) lead to stringent restrictions for possible solutions ts@y-
Schwinger equations.

We establish that the theory must have asymptotic freedoyorioeperturbation theory and
also investigate the low energy regime and the possibitityafmass gap in the asymptotically free
theory.
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1 Introduction

We study non-perturbative aspects of quantum chromodyeg®(QCD). We do so by investigating
Dyson-Schwinger equations. Instead of solving a truncaézdion of these a priori very intricate

*Department of Mathematics and Statistics, Boston Unitsersi 1 Cummington Street, Boston MA, 02215, USA
TCNRS-IHES 91440 Bures sur Yvette, France; and Center fohdfaatical Physics Boston University, 111 Cumming-
ton Street, Boston MA, 02215, USA



equations [21], we use recent insight into the mathemasicatture of quantum field theory to gain
insight into the possible structure of solutions. This @agh has been successfully applied to quantum
electrodynamics in [5] and is here extended to QCD.

1.1 The method

We follow the methods employed in our work on QED [5], adoptethe study of QCD in the back-
ground field approach as developed by Abbott [1, 2]. Let usfsonsider the situation for quantum
electrodynamics. There, thanks to the Ward identity, ifise$ to consider the anomalous dimension
7 (x) of the photon which is essentially tiefunction, 5(z) = xy,(x).

This anomalous dimension is obtained from the photon'sesgdrgy, a two-point function which is
determined non-perturbatively by the knowledge of a sihgientz scalar function

Gla, 1) = 1= 3 m(a)L*,
k=1

with z the fine structure constant ahd= In (—¢*/1?), where the inverse photon-propagatdiiyy,,, —
9.9,)G(z, L).

Combining this with the combinatorial Dyson-Schwinger &ipns and using an expansion into sulit-
able integral kernels which parametrize the corresponditegral equation, the Dyson-Schwinger
equation combine with the renormalization group equatogite

i) a recursion for they,:
1

(@) = —2n(2) (1 = 20:) -1 (2), k = 2, (1)
ii) a differential equation fory; (x):
(@) (1 = 20:) 0 (2) + n(z) — Pr) =0. (2)

Here, i) comes from the renormalization group, ii) from th8E) andP(z) is a suitably constructed
series over residues. The appearance of the opédrator:0, ) is typical for a gauge theory.

We will now address a non-abelian gauge theory, resultirmgsimmilar set-up (in particular, i) and ii)
remain form-invariant) once we learned to make effective afsquantum gauge invariance to reduce
again to a single ODE. Obviously, howevét(z) will be a different function, in particular, it will
change sign. We study the consequences of this fact wittrmairkinowledge on the behavior &f(z).
Still, as in QED, we will see that we can learn quite a bit regay the non-perturbative sector of QCD.

To proceed, we turn to the background field method.
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1.2 Background field method

We first have to consider the set of vertices and propagatdheibackground field gauge. They define
a setR given as follows:
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Here, names attached to the vertices and propagators atédahd memos of the corresponding mono-
mials in the Lagrangian.

The field content ig) for the internal quantized gauge field, for an external background gauge
field, ¢, ¢ for the anti-ghost and ghost field. Coupling of Fermionic teravill not change the ensuing
discussion in any way and is omitted for convenience. See#ljp)] for details.

With the setR comes an accompanying set of 1Pl Feynman graphs naturbéield by elements in
this set according to their type and number of external legs.

We consider in particular Green functions for such graplisaatopt the results of [17], see also [18],
which read as expectétt € R

1 o Tloeqyo X°
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where max(fl") is the number of maximal forests bf |h|, is the number of distinct graphs obtainable
by permuting edges df, bij (v, h, I') is the number of bijections of external edges ofith an insertion
place iny such that the result i8, and finally(v|%) is the number of insertion places fbrin ~ [17].

> re<r- indicates a sum over the linear spari” > of generators of{.

Next, we divide by the ideal which implements the Slavnov—Taylor identities which hergenerated
order in order ing? by

XEAC — XEQC — XEC, XdQQQ — XdAQQ — XQQ — XAA ’
YAAQQ _ AQAQ _ xAQQQ _ xQQQQ _ dQQQ

On H/I we then get two independent Green functions which need mesdration
XAA, XEc 7
corresponding to a mere two-element set
Ruy = {AA, éc} .
Also, we then find an combinatorial invariant charge uniguifined as
C = VXA —1/V/X0Q
so that, as in QED, thg-function is just half the negative anomalous dimensiorhefgauge field.

Note that the addition of massless fermions would just adé id an element)) for the fermion
self-energy but would not change the ideal or the invaribatge.

The system of combinatorial Dyson Schwinger equationsas th

XAA T _ Z[gZ]k:B_IT_,AA <XAA [C]_%)
X ] _ Z[g2]kB_Ii,ac <Xac [C]—Zk:) .

Note that this determineX 44 in terms of itself, whileX® is a function of itself and{“?. We write

Xr =1-3%,..19%Fc, with ¢, € H/I the generators of a sub Hopf algebra [17, 9] given by all
graphs which contribute to an amplitudeat a chosen ordégr. Note that the resolution of a Green
functions into images of Hochschild one-cocycléfs is the mathematical equivalent of a resolution of
all overlapping divergences into non-overlapping intégeanels. That this is possible in a non-abelian
theory was realized early by Baker and Lee [7].

See [17, 18, 24, 25] for explicit examples how Hochschildaroblogy and Hopf algebras relate.

There hence is a quotient Hopf algebifa 4 spanned by generatorg” of X44. Similarly, going
temporarily to the quotient Hopf algebrd.. defined byX44 = 1, ¢4 = 0, we find that this is a
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cocommutative Hopf algebra (which is obvious from setting- ) and hence we find a factorization
of groups into an abelian subgroipec(H;.) and a normal subgroufpec(H 44),

Spec(H/I) = Spec(Haa) x Spec(Hz.) ,
corresponding to a short exact sequence which splits
I — Spec(Haa) — Spec(H/I) — Spec(Hz) — 1.

It is this factorization which allows us to compute thdfunction of QCD by an ODE for a single
equation below. Note that the situation is similar to QE2ré) the Ward identity allows for a similar
semi-direct product structure between photon amplitudds=@rmionic matter. Gauge invariance then
allows to eliminate all short-distance singularities ia #tbelian subgroup thanks to the work of Baker,
Johnson and Willey, and one is left with the photon propagedis the only source of renormalization.

Here, we can compute th&function from G44(x, L), but would have to consider the full coupled
system to determin€<(x, L) (andG¥¥(z, L)), which we do not attempt here.

Furthermore, note that the simplificationkat 1

This is typically for gauge theories and emphasizes thatre/éea single equation situation with= 1
[5]. TermsB’, (I) always deliver a pure residue from their short-distancgidarities, and these terms
are intimately connected to fermion determinants. We vatlpursue this connection any further here.

The background field method is then suited to our approachadews us to compute the QCD beta
function from a single ordinary differential equation.

Indeed, a change of basis of primitives allows to reduce pipé@ation of Feynman rules to the study of
one-variable Mellin transforms for the integral kernelstfe above primitive$s”" (I), and from there
we can strictly follow the techniques of [19, 20, 26] to geatosingle ordinary differential equation:

71(2) + m(2)* = Pl2) —2n(2)yi(z) =0.

Here, P(z) is a suitable series over primitives. As always, we renoealsing a momentum scheme
with subtractions aj*> = ;2. That scheme is uniquely suited [14] to our gauge-invanantperturbative
approach.

1.3 Qualitative properties of QCD

From perturbative computations, asymptotic freedom isljimstablished. We will establish it beyond
perturbation theory below. Perturbatively, this is maialgelf-consistency statement: assuming that
the QCD coupling constant is small, we approximate the thbgrits loop expansion to a few orders.
The resulting polynomial approximation to the beta funcopports the claim of asymptotic freedom
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in perturbation theory3(x) < 0,0 < < 1, hence at large momentum transfiet 2., as(L) — 0,
L = In(—Q?*/i?). The coupling indeed becomes small in that limit.

As usual, perturbation theory agrees well with observati@symptotic freedom is a well-established
experimental fact.

Much more intricate is the study
—Q2 — 0+ .

This is beyond the reach of perturbation theory. Nevertsldifferent approaches point out that in
that limit, the gluon propagator might turn to a constanfifcaning an old suggestion of Cornwall that
the free gluon develops in the interacting theory a momerdependent mass which vanishes at high
energies, but turns to a non-vanishing constant in the limiif — 0,.. We study this behavior from
our viewpoint in section 3.

Results to this effect were already obtained by
i) Lattice computations [4];

i) numerical study of Dyson Schwinger equations truncateal gauge invariant way [13];
iii) in the Gribov-Zwanziger formalism [16].

Below, we reconsider the problem from a study of the possileture of solutions of Dyson Schwinger
equations. We want to establish asymptotic freedom beyenaation theory, and want to discuss
to what extent a solution which exhibits asymptotic freediamn also exhibit a mass gap.

Again, as in the case of QED, we find the most interesting Emiub be a separatrix. In the case of
QCD, that separatrix is the only solution which has asynipfatedom.

2 Results

In QCD, the Dyson-Schwinger equation foris

W) o e).

mi(2) + (@) = Pla)
dx ’

zy1(z)
We will assume that the primitive skeleton function satsstiee following assumptions:

(4)

H1: P is atwice differentiable function oR*, with P(0) = 0, P'(0) < 0 andP”(0) < 0.
H2: There exist:* such thatP(z) > —1 andP"(z) < 0 (i.e. P is concave) o0, z*].

H3: The functionP(z) satisfiesP(z) < 0 for all z > 0.
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As in [5], we avoid the singularities of (4) at = 0 andx = 0 by specifying with an initial condition
atz*, namely,

dyi(z) _ ) +m(x)? - Px) o
P fn(z),z) = (@) , n@) =. (5)

This ensures that solutions of (5) exist at least locallyado: = x*. Though we will mainly look for
solutions or (4) withy; (z*) < 0 andz > 0, we will occasionally comment on thg(z*) > 0 case.

In the QED case, we proved in [5] (see also Section 5 of theeptgsaper) the existence of a unique
value~i(zy) (the separatrix) separating solutions that exist globfmtyall + > z, from those that
can only be continued up to a finitg,., > z¢. As shown in Section 5, all solutions in QED can be
continued as: — 0, differing there ‘only’ by a flat behaviox e~=. In QCD the situation is reversed:
we will prove that all solutions starting at some approgriat can be continued as — oo, but that
there is a unique valug; (z*) that separates solutions that cannot be continued-as0 from those
that can, which either satisfy; (0) = —1 if v (2*) < 77 (2*) ory1(0) = 0 if vy (2*) = 75 («*). We call
the solutiomy;(z) that satisfies;(0) = 0 theasymptotically freesolution.

We will also use more speculative hypothesesnm):

S1: There exisp > 0 such thatP(z) = —ca? + o(z?) asx — oo.

S2: There exist,. > —P,L(O) such thatP”(z) < 0 forall z € [0,z

S3: There exist a (finite) intervat.., x| with z. > z* such that
Y14+ 4P
_/ +27(Z>dz >1.

z

(&

S4: There exist finite; andz, such thatP(z;) = P(z,) = —1 andP(z) > —1forall0 < z <
andx > x,.. The functionP(x) doesnotsatisfy S1, S2 and S3, but rathen, ...(P(x) — Py) =
lim, .o P'(z) = 0 for someP,, > —1.

Let us briefly comment on our logic here. The H1-H3 hypothesesa bare minimum for the results
we will present below. Within perturbation theory, we have

P(z) = yi(z) + O=%) = =Bz — Box® + O(a®) (6)

asx — 0, where—(3; and— (3, are thel and2-loop coefficients of the function, namely3; = 9 and
B2 = 64 for ny = 6. As such, the hypotheses H1 and H2 are reasonable. Whiloif@llows from
(6) that P(z) < 0 at least for small values af, extending this to all values af is somewhat more
speculative.

As we will show below, ifP(z) < —1 on a ‘sufficiently large interval’, for instance if either S32 or

S3 hold, all solutions of (5) satisfy; () = —1 for somex > z*. It then follows from H3 that they
grow linearly asr — oo if
> P(2)
D(P):—/m* g dz < o0,



and faster than linearly iD(P) = co. Incidentally, we showed in [5] (see also Section 5 of thesene
paper), that the finiteness/infinitenessAfP) was intimately linked with the existence/non-existence
asr — oo of solutions of the analogous of (5) for QED. It is strikingdee that thesame criterion
distinguishes between different type of behavior in QCD afi'w

Note that an anomalous dimension growing at least lineagly a~ oo leads to a Landau pole for

the running coupling, and hence a serious obstacle to stgdyie infrared behavior of the Gluon

propagator. Despite that, we will show in Section 3.1 that gole (if present) can be removed using
an unsubtracted dispersion relation, see e.g. [23], anGhhen propagator can still be studied in the
infrared limit.

In contrast, ify,(x) is finite ast — oo, we avoid the Landau pole, and can study the Gluon propagator
without using dispersion relations. Such constant asytigstéor v, can only happen if’(z) tends to

a constant as — oo. This motivates (part of) the hypothesis S4. Under that tiygsis, we will show
that there is only one solution that satisfies

: 1+ v1+4P,
A i) = s = 0

If P, = 0, we call that solution theonfinement solution¢(x), and if P, > 0, we call it astrong
confinement solutiorOn physical grounds, the asymptotically free and (straogfinement solutions
need to be the same. Unfortunately, for genétie) satisfying H1, H2 and S4, these two solutions are
different. We did not succeed in finding a sufficient conditam P(z) that guarantees both solutions
are the same. Despite that, a necessary condition is dgrthat P(x) makes at least one (small)
excursion below—i, while avoiding the S1-S3 conditions, see also figure 1 belo$ection 4.4.

By standard folklore and heuristics [3], a nowhere vanighirfunction, 5(z) < 0, Ya > 0, which
we will indeed establish below under assumption H1 abovpligs a mass gap in QCD, and hence a
confinement scenario following old ideas of Cornwall [15]e Will come back to that in Section 3 of
this paper.

Remark 2.1 If P,, > 0 in hypothesis S4P(z) has a further zero for a finite; > 0, P(z;) = 0. In
such a case, using the running coupling formulation of (#g eees that some solutions spiral around
the zero ofP(x), themselves having infinitely many zeroes. The asymptgticge solutiomy;(z) may
or may not spiral around: = x;, depending on details d?. Should it be captured, we get a solution
v (x) which has a UV fix-point at zero and an infrared fixpoint:at This is the Banks-Zaks scenario

[8].

In the remainder of this section, we are going to state ounmeults. The proofs and technical details
are postponed to Section 4 of this paper.

Our first main result gives a complete characterization eftitehavior of solutions of (5) for < z*.
In particular, it establishes the uniqueness of the salugdhibiting asymptotic freedom.

though of course the primitive skeleton functiaRsare different in both cases
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Theorem 2.2 Under the hypothesddl and H2, there is a unique value;(z*) < 0 such that the
corresponding solution] (x) of (5) exists for alk € [0, 2*] and satisfieﬂir%qf(x) = 0. Additionally,
that solution satisfies

HAPI L i) < Ploge )

If v1(z*) < 7 (2*), then the corresponding solution satisﬂﬁ%vl (x) = =1. If y7(2*) < m(z*) <0,
then there exist,,,;, > 0 such that the corresponding solution satisfie&,,i,) = 0.

Note that since—vl’%zp(“”)_1 = P'(0)x + O(z?) asz — 0, (7) shows that;(z) = P'(0)z + O(2?) as

x — 0.

As we will prove in Proposition 4.8) of Section 4 below, allgmns of Theorem 2.2 can be continued
asx — oo by only adding the H3 assumptions. In Proposition 4.6, wé stibw that solutions that
satisfyvy; (zmin) = 0 for some0 < z,,,;, < z* can be continued in the first quadrant (becoming double-
valued) by reverting to the so-called ‘running coupling’'rfaulation of (5) (see also [5]). In particular
these solutions will satisfy, (o) > 0 for somezry > -

Our second main result concerns the asymptotic behavior-as oo of solutions that enter the first
guadrant, or attain the valuel somewhere. This last condition can be verified under additias-
sumptions onP such as S1, S2 or S3.

Proposition 2.3 AssumeP(z) satisfies H1-H3 and that one of the two following statemeaolidsh

1. —1 < y1(2*) < 0 and P(x) satisfies S1 or S3,

2. y1(z*) < ~f(x*) and P(x) satisfies S2.
Then there exists, > z* such that the corresponding solution(z) satisfiesy, (xy) = —1.

To be able to state our asymptotic resultzas— oo, we need first to introduce th&ope function
Sp(xo, z). This function is given by

 ((x)? / —P(z)  \?
Sp(xo,x)—( 22 +2 T dz |

Note that, ifD(P) < oo, the slope functios »(xg, ) goes to a finite value as — oo for any x.

We can now completely describe the asymptotic behaviar-asoo of solutions of (5):



Theorem 2.4 AssumeP(x) satisfies H1-H3. If there existsy > 0 such that eithery;(z¢) > 0 or
’}/1(1'0) < —1then

1 .
z Sp(wo,z) <m(z) < @ (SP(%J) + —)— 1 if y(zo) >0,

o
1 .
—z Sp(zg,x) < 1(x) < —x (Sp(xo,x) — —)— 1 if y(z) < —1.
Furthermore, ifD(P) < oo and~;(xg) < —1 or v1(xg) > 0, there exists > 0 such that

. ryl<gj) —s<0 Iif ’}/1(370) < -1
lim = _
r—oo I s>0 if ’Yl(l’o) >0

If v1(z0) < —1, the convergence towards the limit is given by
)Vl(x) +s) gc/ _P§Z)dz. ®)
T " Z

If D(P) < oo and~;(zg) > 0, then (8) also hold, with-s replaced bys.

We want to stress here that the slope valukepends on the actual solution under consideration. Also,
for solutions that eventually enter the first quadrant, thkeie of the slope has no reason to be the
same along the two branches of the solution (the one in thegfiedrant, and the one in the fourth).
Also, note that the result depends only on the assumpfitrn) = —1.

We now state the existence and uniquenes®afinement solutionsnder hypothesis S4.

Theorem 2.5 AssumeP(x) satisfies H1, H2 and S4. Then there exist a unique solutjon) of (4)

such that
1++/1+4P
lim 7{(x) = lim — il 2+ (z) = Yoo -

Furthermorey{(x) satisfies the usual trichotomy aglecreases: eithey{(0) = —1, orv§(0) = 0, or
v¢(z) cannot be continued far < z,,;, for somez,,;, > 0 wherev{(zy,) = 0. Finally, if there exists
Tmax SUCh that P(z) > 0 for all z > x,,., (henceP(x) is strictly increasing toward#..), then

V1+4Po+1 < f(a) < V14+4P(@)+1
2 - = 2

forall x > xpax.

As already noted above, we cannot show tidt:) = ~{(z) without additional hypotheses an(x).
We can however note that the two types of solutions are cabipathe confinement solution satisfies
the integral equation

P(xt)
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Figure 1: A ‘fragile’ solution: the solid bold curve is thelston combining asymptotic freedom
and confinement for some artificiél(z) with P,, = 0. The dashed curves are the nullclings+

vi — P(z) = 0. The solid curvesy . and~} . correspond to confinement and asymptotically free
solutions withP(x) perturbed so that the gap. — ;| is slightly larger (4" subscripts) or smaller ¢’
subscripts). In both cases, the asymptotically free smitdaind the confinement solution do not match.

whose r.h.s. converges@asz — 0 if P(x)/~v{(z) — 1 asz — 0. Characterizing the set of functions
P(z) for which the confinement solution and the asymptoticalgefone are the same is a difficult
problem, see e.g. figure 1 for an example with an ‘artificia(z). A necessary condition is that
P(x) makes an excursion below; on (at least) one interval so that the nullclines, i.e. tation in
(x,v1)-plane wherey|(z) = 0,

 EV1+4P(x) — 1
B 2

Y+ ()

show a gap as in figure 1. However if the gap is ‘too wide’, weeh@\(z) = 7., for some finitez,
and~{(xmin) = 0 for somez,,;, > 0, whereas if the gap is ‘too small; (z) intersects the nullcline
at somexr > z,, and hence cannot reagh, asz — oo, while v{(x) intersects the nulicline at some
r < x7, and hence cannot reaBlasz — 0.
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We conclude this section by explaining the terminol@gymptotically freeconfinemenand strong
confinementor our solutions. These come from the study of the inverseGpropagator,

P7@,Q%) = QCGla,L) with L=In(Q*/r).

In Section (3.2) below, we solve the RGE equation expresgiagscale invariance aff(z, L). In
particular, in Theorem 3.2, we show thatif(x) — 7., asz — oo, then

Glo.I) = X(L,x) 7

X

whereX (¢, ) is the running coupling, i.e. the solution of

X .
% = X(t,2)n(X(t,z)) with X(t=0,2)=z.
The possible largé| behavior ofX (¢, z) are given by

Too€?! ast — —oo if limy(7) = Ys ,
-~ 1 ; s (@) pr
X(t,z) ~ Fog ast—oo f glﬂlir(l) . P'(0),

—t

Toe ast—oo f lir%%(:c) =-1,

wherez,, andx, are some positive functions of Thus, in all cases wherg (x) can be continued to
x=0,G(x, L) — 0in the ultraviolet regimd. — oo, and moreover

0 as L — oo |f lim“T(x) = P'(0),
P_1<J}7 Qz) R z—0
+r9 as L —oo |f lirré%(:c) =-1,

hence the terminologgsymptotic freedorfor the solution that satisfieg (z) = 2P’(0) + O(2?) as
x — 0. In the infrared regime, however,

2\ Voo
G(x,L) ~ To0 el — Too (Q—2) as L — —o0o,
x x \
and hence we find
1 ) prE=if lim oy (x) = —1
lim P~ (x, = o , 10
L——o0 (. Q") 00 if  lim y(x) < —1 (10)

Tr—00

a finite mass gap ., = —1.
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3 The Gluon propagator, confinement and mass gaps in QCD

3.1 Corrections from dispersion relations

In QED, the coupling is weak at low energy or momentum transfie our previous work [5], we
could hence define boundary conditions at low energy, artiestuhe behavior of ", ~,L* for L > 0.

In particular, fory; = ~,(z(L)), a continuation tal,. < 0 was never needed by the choice of our
renormalization conditions. On the other hand, for lakge- 0 we could establish a separatrix, which
possibly avoids a Landau pole at any finite positiveWe conjectured that this might be the solution
chosen by Nature, and further detailed analysis of its ptegseawaits more analysis of the function
P(z). Should it turn out thaf’(x) is such that the separatrix will not avoid a Landau pake furns

to infinity at finite L), we will have to turn to dispersion relations to understéme non-perturbative
corrections coming with such a pole, as recognized by Shiakal collaborators early on [11].

For QCD, we again fix a small coupling, but this time large motam transfer,, > 0 for our
boundary conditions. We are now interested in a continndbd. < 0, in particular we are interested
in L — —oo. Under very mild assumptions d?(z), and certainly by any experience from perturbative
approximations of the theory, we expect the anomalous dsinan; to go below the value-1 at some
finite couplingz, and hencez(L) to turn to infinity at some finite negativie. Shifting thatZ to zero
essentially defines the scalgcp, and we are interested for that shifteg to study the regimé,, < 0,

in particularL, — —oo. To consider such a limit based from an approach formulaied f > 0, we
will use dispersion relations. Our approach is motivatealrmlyy Shirkov and collaborators work [23].

On general grounds, we know thatl,) andG(x, L,) can be treated by an unsubtracted dispersion

relation [22]:
@) = [ S8 4o

The inverse propagator needs a subtracted dispersiomorelathich leads back to an unsubtracted
dispersion relation fo€ [22].

The Dyson—Schwinger equations themselves are supposeddidon the whole theory regardless of
the sign ofL,. Similar, the renormalization group equations for the ragrcoupling are supposed to
hold. Our derivation which turned the Dyson—Schwinger ¢éigua into a ODE was valid fof. > — L,
hence remain valid, after shifting, fdr, > 0.

Continuing toL, < 0 will generate non-perturbative correctionsyi@dz), and hence(x), determined
from the requirement that equations of motion, renormtéibragroup flow and analyticity properties
of field theory are what they are supposed to be.

Any perturbative approximation is in accordance with thps#perties of field theory only up to the
order considered. When we study solutions of Dyson—Schavieguations, we demaratcordwith
these properties as a guide to find the necessary non-patierlsorrections in the regioh, < 0.
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We hence will start by first applying a dispersion relatiorat@lyzez(L, ). That leads to a corrected
" .disp due to the fact that at, = 0 we find thatz = oco. Combining this with the assumption that the
uncorrectedy, (x) is driven below -1 at finite: allows an easy estimate of the corrected;,, and also
allows for consistency with the direct analysistoby dispersion methods.

Let us now start with a study af(L,). We start our considerations by boundary conditions suah th
G(x,L) = 1 at some very high momentum transfér > 0, L = In(Q?*/u?), which determines a
suitably small: in agreement with say deep inelastic scattering experisréo{.

We have

dz(z, L) _ . _ w@l)
_ o du = L,
dL (7) /x uy(u) b ’

and assume that the integral

& 1
/ du < co.
x U’yl(U)

In particular, we assume thaf(z) < —1 for some positive finiter, in accordance with our previous
discussions and experimental evidence. We thus define

Adep = 1 + I Fm}

SettingL, = In(Q?/A?) to absorb the dependence on.?, we get

—/ L du = Ly . (11)
z(La) uyy(u)

This equation defines, (z) as well as the inverse functiar{L, ). Sincez(0) = +oo, we cannot trust
our solution forQ? < A2. To remedy this, we use our previous result that for large, (z) — —su,
under our present assumptions.

Following the conventions of Shirkov [23], we define a rumgooupling in accordance with the ex-
pected analytic behavior of field theory using a dispersaation:

* & (z(In(o /A2
Taisp(Q?) = % /0 2%2 /_ AZ,T))))da. (12)

The pole at-Q? gives us back the uncorrectgdl, ). But by assumption, there is a further pole in the
complexo-plane, located ak, (oo0) = 0. To study the contribution from that pole, we first note treat a
T — oo, we have

& 1 & 1 1
LA:—/ 7du2/ — du=— ,
2(Ly) UY1(u) H(Ly) SU st(Ly)

and hence(Ly) ~ i nearL, = 0. Feeding this relation into (12) gives (see [23])

_ _ 1
«Tdisp(LA) = JJ(LA) —+ m .
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If we were to identifys with the one-loop coefficient of the-function, this would reproduce Shirkov’s
analysis for one-loop QCD, see [23], where Shirkov alsosithitats seem not to vary much at low loop
orders. Note that the correction 9L, ) goes to the finite valug/s in the infrared limitL, — —oo.

Now, +; also obeys an unsubtracted dispersion relation:4s) is finite for all finitez and depends
on L only throughz, the dispersion integral will corregt (z(L)) ~ —sz(L,) by

1
1—ebla’

V1,disp (Z(La)) = 1(2(La)) —
Note now that the correction tp goes to—1 asL, — —oo. Using (1) andey; (z)0, = J;, we get

(=D*
k!

f}/k,disp(j(LA» = f)/k(i’(LA)) + f}/k,corr(LA) Wlth ’Yk,corr(LA> - as LA — —O0 .

As such, the correction from the dispersion relation to threfionG(x, L, ) satisfies

(_1)k k —L A?
Georr(2, Ln) — Z A Ly=e"= @ as Ly — —oo,
« k!

[e’e)
k=

which gives an inverse propagator satisfying

lim P Yz, Q%) = —A%.
LA—>—OO
This gives a finite and renormalization group invariant peisy-violating mass gap. This compares
nicely with the results of Gracey et.al. [16].

Note that we rely completely on the assumption that physjoahtities in massless field theory have
neither poles nor branch cuts off the negative (in our cotwag) real axis and the result that the
solutions we get from our ODEs for the uncorrected,, G(x, L,) are in accordance with these re-
quirements but for the isolated polelat = 0.

If a future analysis ofP(z) justifies the trust in field theory expressed in this sectemains to be
seen. We are content having identified a clean mechanisrhdageneration of a mass gap, based on

the consequences of the Hopf algebra structure underlgod field theory, and assuming analyticity
properties in accordance with the underlying axiomatiecttire of local quantum fields.

3.2 Solving The Renormalization Group Equation forG(z, L)

Our goal in this section is to analyze the dressing functiim, L) that modulates the free inverse
propagator. On general grounds, this function solves thmRealization Group equation

(— Op + xy1(x)0, — svﬂx))G(z,L) =0 and G(z,0)=1 for >0, (13)

15



wheres = +1 distinguishes between writing the propagator as
G(z, In(Q*/p*))*
QQ
with s = 1 or s = —1. Note that the difference of (13) from the usual RGE equation

<Nau + B(g)ag + ’?(g))G =0

is merely a matter of convention on the definitioniofy; andz. In particular, (13) agrees with two-loop
computation of the Gluon propagator.

P(z,Q%) =

We will here make the following (minimal) hypothesis o(x):

Hypothesis 3.1 The functiony, (x) is a negativeC'([0, o), (—oo, 0]) function whose only possible
zerois atr = 0, wherey, (z) = —dz® + O(z®*1) with ¢y > 0 andd > 0.

Note that the results of Section 2 giyg = 1 andd = —P’(0) for the asymptotically free solution
~v(z), in accordance with perturbation theory. For the solutisaissfyingy,(0) = —1 however, we
getqo = 0 andd = 1.

We first note that one can attempt to solve (13) by writing

G(z, L) —1—32% JLF with  ~(z) = %lix)(xﬁx—s>7k_1(x) k>2, (14)

since one has (at least formally) that

(— O + zv1(x)0, — 871(:1:)>G(x, L) = —sy(x) + SZ kyp(z)LFY — 4y (2 )(x@x — s)vk(x)Lk

_SZ< % )<x0 —S)% 1(z )) kLF =0. (15)

This approach naturally raises the (difficult) question ofivergence of the series in (14) and (15).
We will use instead an alternative way of solving (13) thadids these convergence problems. In
particular, while the series (14) necessarily converge synametric interval of the forni—L,, L) for
some (possibly infinitel, > 0, our approach will give a solution to (13) that is defined onrdarval

of the form(— Ly, o) for the samel,,. As such, the approach below shows that the limit> oo of
G(z, L) makes sense also if the series solution converges only oitaifiterval.

Our method is based on the fact that (13) can be transformediiimear transport equatiorby ap-
propriately factorizing=(x, L) into one part that cancels the term involving no derivatased one part
that solves a genuine transport equation of the form

(—0r + xy1(x)0)H(z, L) = 0. (16)
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As such, it is important at first to consider the charactiessturve of (16). For each fixed > 0, we
first defineX (¢, x) as the solution of the running coupling equation
dX(t,x)
dt

= X(t,x)1(X(t,z)) with X(t=0,z)=x. (17)

Sincev;(z) is assumed to bé&!, solutions of this equation exist at least locally around 0. For
further reference, we denote [y(x) the maximal interval of existence of the solution of (17) éor
fixed x.

Then for each fixedz, L) € R* x R, we define the characteristic cur@ér, L) as

C(g:,L):{(X(t,x),L—t) with teD(x)} ,

= { (X,L - /j Zi?z)) with X € R+} : (18)

Note that both above formulations of the characteristigedsz, L) are equivalent. The characteristics
corresponding to different values éfarevertical translations of the same curve in the L)-plane.
By hypothesis 3.1, we get that the characteristics are whptotically vertical asX’ — 0, and, as a
function oft, we have

—ct

e ast—oo if gg=0

1 19
(ct)~0 ast—oo if ¢ >0 (19)

X(tw)z{

The behavior of the characteristics.8s— oo depends on the asymptotic behaviorofr) asr — oo.
In all cases((x, L) approachegoo, L — Lo (z)) asX — oo, whereL.(z) is thepossibly infinite

guantity defined by
> dz
Lo (z) = —.
(@) /;p 271 (2)

This shows that the maximal interval of existence for sohsiof (17) iSD(x) = (Lo (x),0). The

results of Section 2 show that. (z) is finite if there exists:, > 0 wherey,(zy) = —1, and infinite
otherwise. IfL.(z) > —oo, the characteristi€(z, L) intersects the lind. = 0 if and only if L >
Ly(z). If =1 < y(z) < 0forall x > 0, thenL.(z) = —oc for all z > 0, andall characteristic

curves cross the ling = 0. The generic shape of the characteristics curves is disglayfigure 2.

We can now give the solution of (13) in accordance §fer —1, as expected) with Bogoliubov-Shirkov
([12], App.I1X, €q.(27)):

Theorem 3.2 Assumey, (=) satisfies Hypothesis 3.1. Then the solution of (13) is giyen b

Gz, L) = (X(zx))s (20)

forall (z, L) such thatL..(x) < L < coandz > 0.
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ﬁL AL

Figure 2: Generic shape of characteristics curvegs:jrl)-plane. The left panel shows the case where
L () is finite, the right panel when itis infinite. In the left panttle characteristics cross the lihe=
0 if and only if they are above the (bold) curve= L. (x), and all characteristics are asymptotically
horizontal asc — oo. In the right panel, all characteristics cross the line- 0, as they link(0, —oco)

to (00, ).
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We want to stress here that the relation (20) hold only for pavalues of(z, L) satisfyingL.,(z) <
L < oo. For pairs(z, L) with L < L. (z), G(x, L) can only be determined froi#(z,0) = 1 if one
specifiesy;(x) for z < 0 as well.

Assuming X (¢, x) to be analytic for allt € D(x), it is a straightforward computation (see Section
(3.3)) to show that (14) is the Taylor series expansion oj 0. = 0. As such, the series solution
(14) is expectedhot to converge fotL| > L., (z). However, the function provided by (20) is defined
for unbounded positivé and do solve (13) for all such. If L..(x) > —oo, Theorem 3.2 thus gives
G(x, L) for values of(x, L) for which the series formulation fails.

proof of Theorem 3.2 We first set
G(z,L) =2"H(x, L) (21)
for all z > 0. Substitution into (13) gives
(— oy, + xvl(x)agE)H(x, L)=0 and H(z,0)=2"° if z>0. (22)
We then note tha#{ (x, L) is constant along the characteristic cuf\(e, L), for we have

d
dt

dX(t,z)
dt

<H(X(t, 2), L — t)) = —DoH(X(t,2), L —t) + DyH(X(t,2), L — t)

= [(— L + xvl(x)&p)]'-[(x, L)] =0.

=X (t,x),L=L—t N
If the curveC(x, L) crosses the liné = 0 in the (z, L)-plane, it does so at= L, and we get
H(z,L)=H(X(L,z),0) = X(L,z)*,

which completes the proo

3.3 The series solution foiG(x, L)

Throughout this section, we considgrto be a fixed solution of (5) that exists for all> 0. We first
pick zo > 0 andt, € R. These values are arbitrary. We then introduce

T(z) = to + / = (23)
We then note that

lim T'(x) =

r—00

To=-00 if—1<y(x)<0Ve>0,
{ Y1() (24)
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SinceT"(z) = 5; < 0,2 = T(x) is an invertible map fronR™ to [T.,,, c0). Moreover, we have
T(0) = oo andT'(c0) = T. The inverse mag(t) (the solution oft = 7'(z(t))) satisfies the ‘running
coupling equations’
da (t dz(t) _, ..
i M s, (25)
where¥; (t) = v1(2(t)). SinceT' (o) = T, Z(t) diverges ag — T, (and so does; (t) if v1(z) = —1
for somez > 0).

=%(t) +51.(t)* — P(i(t)) and

Consider now the series solution (14). We first introducduhnetionssS), such that

W(o) = 5 2° Su(T(@)
for k£ > 1. Substitution into (14) gives
d
(7)) = (7)) = ( 5510 .
t=T(x

Sinces = +1, we find from (25) thaf5; (t) = Ztt(;) = —s3(z(t)~*). Usings® = 1, we find

zt (dF 1
—sy(w) = ! (@(ﬂt)s)) 1=T(z) (20)
forall k > 1. Sincez(T'(z)) = z, the r.h.s. of (26) is equal tbwhenk = 0, and so
. i k — S - N
G, L) =1+  —su(@) L =a"y <dtk<:z(t)5>) 1 @)
k=1 k=0 (m)

We now fix0 < z < oco. Sincez is finite, T'(x) > T, and since the above series is a Taylor series
of z(t)~* att = T'(x), the series converges and takes the valite+ L)~ for small values ofl. if we
assume(t) to be analytic at = 7'(z). We thus find

60 = (s7er) 29

at least for sufficiently small. This formula is the same as the one of Theorem 3(2:(z) +t) solves
dz(T(x) + 1)
dt
with initial conditionz(7'(z)) = = att = 0, and saz(7'(x) 4+ t) = X (¢, z) by uniqueness of solutions
of (17) and (29).

= (T (z) + ) (2(T(z) +1)) (29)

The question of convergence of (27) for larbelepends on the (in-)finiteness'Bf.. If T, is finite,
Z(t) has a pole as — T, and (27) must diverge for

Lng—T(x)z/m%:Lm(x)

as in Section 3.2. However, since the series (27) can onlyerge for. on symmetric intervals, it is

also divergent fol. > —L..(x) > 0. In that case, we have to revert to Section 3.2 for the valiofit
(28).
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4 Technical details for QCD

In this section, we present the technical details provimgdfatements of Section 2 on QCD. In our
analysis of (5), we use mainly two tools: integral repreatans of the solutions and null-clines. Our
strategy is directly inspired from [6] and our previous wskon QED.

There are two types of integral equations one can write fpribe first one (see also [5]) reads
1 * r P
71(x):w—1—x/ 2(2) dz . (30)
x* o 22m1(2)
For the second one, we let(x) be a solution of (5) and,(x) beanyfunction. Then for alk:y, x € Z,
whereZ is the common interval wherg and~, are defined, we have

o

71(2) = 1e(z) = (%(ﬂfo) - 72(%)) K[y, v2)(zo, ) + / Ryel(y) Ky, 72l(y, ) dy,  (31)

T

where
dya(z)  72(2) + 72(2)* = P(a)

Rial(r) = <2 o

The null-clines are defined as the locationg:ny, )-plane where solutions satisfy(z) = 0). These
are given by the graph of the two functions

+v/1+4P(z) — 1
i) = AW 2L

In particular, as”(0) = 0 by hypothesis H1, ané?(z) > —1 for = € [0, 2*], the null-clines extend at
least up to the line = z* in the (z, v;)-plane. On the null-clines, the second derivative/pfs given

by

)

d P’
) = 3 (P ) = o (32
By hypotheses H1 and H2, we have
P'(z) = P'(0) + /1‘ P"(2)dz < P'(0) <0 Vz € [0,2]. (33)
0

Hence by (32), solutions of (5) can have at most one local maxi in the intervak € [0, z*], and no
local minimum. For further reference, we also note that bydtlgeses H1 and H2,

Plz) = P'(0)x + /0 ( /0 ’ P”(z)dz) dy < P'(0)z Va e [0,27]. (34)

In particular, we have

min —29 _ oy = 1P(0)] > 0., (35)

z€[0,x*] x

and sinceP(z*) > —3 by hypothesis on*, we haver* < _—413}(0) < 0.

21



4.1 Existence, uniqueness and properties of the asymptofieedom solution
We can now establish the existence, uniqueness and pegpeftihe solution with asymptotic freedom.

Theorem 4.1 Under the hypothesds1 andH2, there exists a unique valug (z*) such that the cor-
responding solution;(z) of (5) exists for all: € [0, 2*] and satisfieéirréyf(x) =0.

Proof. We first prove that the solution is unique. Namely, assamabsurdunthat~; and~, are two
solutions of (5) orf0, z*] SatiSinngliH(l)%({L’) = 0. Sincey;(z*) <0 andlirr(l)%(x) = 0, we necessarily
havev;(x) > ~f(x) for all z € [0, 2*]. Since~, is a solution, we can apply (31) with[y,] = 0, and
using (35), we get

) = 220)] 2 o) = o) S [ 20N, (36)

Sincev(z) = P'(0)z + O(2?) asz — 0, the r.h.s. of (36) diverges as — 0, which contradicts
lirr(l)%(l’) = 0. This shows that there can be at most one solution of (5)f§siaxyslir%71(x) = 0.

To prove the existence of this solution, we define the two sets

L = {7 (z") €]y (z¥),0[ S.t. Jrmin €]0, 2*[ With v (zmim) = 0},

L = {7 (z") €]y (z¥),0[ s.t. 3z €]0, *[ with vy (z1) = v (z1)} .
We will prove in Propositions 4.2 and 4.4 below that these ast hon-empty. Continuity of solutions
w.r.t. initial conditions imply that they are open, whilel{3with R[v,] = 0 shows that solutions are
ordered which imply that each; is a single interval. Now sinch andI, are disjoint open intervals,

there exist at least one initial conditiorf(z*) that is in neither sets, and hence the corresponding
solutionv; (z) satisfiedim, o v;(z) =0. =

To establish that; is non-empty, we show that initial conditionsat= z* sufficiently close to the
xr-axis necessary cross it at somg, < z*.

Proposition 4.2 For all 7 € [P'(0)z*, 0[, there exists: i, €]0,2*[ such that the solution of (5) only
exists o € [pin, z*] and~y; (i) = 0.

Proof. Pick vy, (x) = P’(0)z. Then by (34), we have

Rl (z) = #,(0) /0</0y P”(z)dz) dy >0 Vae 0,7

Applying (31), we get

*

fmwzpmm+/ZMﬁmemﬁ%@@>Pmm\m<f. @37)
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In particular,y; cannot cease to exist by divergingteo at a finiter < x*. We also see from (37) that
there existsyy < a* with v, (zg) > P'(0)zo. Using R[y2] > 0, (35) andy,(x) > P'(0)z in (31), we
find

i (x) > P'(0)z + (1 (o) — P'(0)a) = exp( / Wlwdz)

o
x p , 11
> = (P(0)w0 + (m(w0) — P'(0))e 0T 70T )

Zo

The proof is completed sineg (xy) — P'(0)xg > 0. =

Before proving that the interva is non-empty, we can establish an additional property obgyamp-
totically free solutiorny;:

Corollary 4.3 The solutiony; of Theorem 4.1 satisfies

Ve (z) <m(z) < P(0)x. (38)
for all = €]0, z*].
Proof. To get the lower bound in (38), we recall that solutions carets most one local maximum in

10, 2*] and no local minimum. SinCEIré’yI‘(x) =0, 71 (x) > v+ (z) forall z €]0, 2*]. The upper bound
follows immediately from Proposition 4.2

We now show that initial conditions sufficiently close (bittoge) the null-cliney («*) necessarily
cross it at some < z*.

Proposition 4.4 There exist; < 1 sufficiently small such that the solution of (5) with(x*) =
v (2*)(1 — €) satisfiesy; (x) = ~.(z) for some) < = < z*.

Proof. Let0 < ¢; < § andv,(z*) = ~/(2*)(1 — ;). By continuity of solutions and sincg"(2*) <
7 (%) < 71 (2*)(1 — 2¢;), there exist® < x; < x* such that

v (2*) < () < v (@) (1 —2¢) Vo €]zy,2*] and (39)
(@) =~ (@) or m(x) =7 (@) (1 - 2€)
Using these inequalities and hypothesis H2, we get
dy 2¢;  P(a%) .
R S
de = 1—=2e vf(z¥) Ve € o]
which, upon integration, gives
2 P * *
() < 7 @)1 —a) + 5 _‘f;q 7:((9; *)) n (%) Yz € [z1,2Y] . (40)
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Let nowzx, be the value at which the r.h.s. of (40) attaiigz*)(1 — 2¢;), namely
At x)2 1—-2
70(‘7:)(* El))<l’*.
2|P(a*)|
We now consider the two alternatives < =, andxy > x;.

To = 2 exp (

Assume first that, < x1. Then (40) shows that; (z;) < v (2*)(1 — 2¢;), and thus by definition of
x1 (see (39)), we have, (z1) = v (z*) and since by H2; () increases as — 0, there exists an
x € [y, 2] with 3 (z) = 7 ().

Consider now the other possible case, namegly ;. Since nowy (z*) < vi(z) < vF(2*)(1 — 2¢;)
for all x € [z5, 2*], and we conclude from (40) that

(o) <o) 906 <) - et )+ e T (D) e

The proof is completed by noting that forvery close to (but strictly less thany, v (¢*) — v (x) is
negative, while the last two (positive terms) in (41) can kedmarbitrarily small by picking; small
enough.m

4.2 Behavior towardsz = 0 of non-asymptotically free solutions

We first consider solutions of (5) corresponding to initiahditions~, (z*) < ~f(z*). We have the
following result.

Proposition 4.5 Let~y, < ~;(z*). The corresponding solution (x) of (5) exists for alk: € [0, z*] and
satisfiesy; (z) = —1 + O(zIn(z)) asz — 0.

Proof. Note first that sincey, < ~f(x*), there always exists, < z* such thaty;(zo) < v ().
Namely, if this does not already holdat, the proof of Theorem 4.1 shows that it will eventually hold
at some smaller value af Since solutions can have at most one local maximum and abr@aimum

in [0, 2*], we then have

min(—1,7(x0)) < m(x) <7/ (20)  Va € [0, 0] .

In particular, these solutions exist for all valueswof [0, z*]. We then apply (30) and get

x 0 —P(z) x T —P(z)
—1+Cx+ / dz < 7(z) < -1+Cx+ / dz,
Gl e 2 =) max(L 17 (xo)) Jo 2

whereC = 120 By hypotheses H1 and H2 (see also (3B)z) = P'(0)z + O(a?) it is then

o

straightforward to prove that () = —1 + O(z(1 + In(x))) asz — 0, which completes the proo

We now consider solutions of (5) corresponding to initiahditions~, (z*) in the intervally; (z*), 0].
We have the following result.
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Proposition 4.6 Let~y, €]y;(z*), 0[. The corresponding solution (z) of (5) satisfiesy; (zmyin) = 0 for
somezr,, €]0,x*[. It can then be continued and enters the first quadrant (b@ughouble-valued),
and thus satisfies; (z¢) > 0 for x > zy;,.

Proof. Let z,,;, > 0 be the minimal value such that(z) existsVz € [z, 2z*]. We claim that
Tmin > 0 @ndvy; (zmin) = 0. Namely, sincey, (z*) > ~f(z*), we have by (31) withR[+,] = 0 that

) =i+ ) i) Zew( [T O Sa )i @

231 (2
forall x € [z, z*]. Assumingab absurdunthatz,,;, = 0 andy;(x) < 0 for all € [0, 2*] leads to
a contradiction, for then we would have(z) > ~i(z) >~ (z) for all « € [0, 2*], and using (35) and
(42), we get

. o xpoany = 1P(0)]
> - il
(o) 2 9160) + (nla) =1t S e [ 20
which goes tot-oco asz — 0. SO0z, > 0 and~y; (i) = 0. Although (5) is singular at; (zmim) = 0,
these solutions can be continued in the first quadrant byrtiegdo the so-called ‘running coupling’
formulation of (5) (see also (25) and [5]). Namely, we intnod a new independent varialileand
write x = X (t) and~; (X (t)) = 41 (t), getting

O Xt X (to) = Tmin

These equations amdtsingular aty; = 0, and thus solutions will exist (at least locally around ).
SinceP(x) < 0, the solution to these equations will satisfy(t) = v, > 0 and X (t) = z¢ > xy;, for
some finitet > t,. m

4.3 Behaviorasr — oo

We first show that solutions in the first quadrant are globad,satisfy appropriate estimatesias> oo.
Proposition 4.7 Let v, (zo) > 0, and assumé’(x) satisfiesH3. The corresponding solutiofy (x)
exists for allz > z(, and satisfies
0 < zSp(xo,z) < y(x) < xSp(xo, x) + xﬁ -1
0

forall z > .
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Proof. We first note that

i (71( )2>: 71(93)% _ =) n n(2)* — P(x) > n(z)* — P(x) ‘

2dx dx T T T

By integration, we find

3
xH z

m(z) > 93\/%@20)2 + 2/:0 —P(@) dz = 2Sp(xg,z) > 0. (43)

This shows that solutions cannot cease to exist by reaching = 0 at somer > x,. Inserting (43)
into (30) gives

z(1 4 71(%0)) /m —P(z) x
< A v U T\ s = i
m(x) < . 1+z S, Z)dz xSp(zo, x) + = 1, (44)
since
dSp(l’Q,[L’) _ P(l’)
dz - 13Sp(wo, )

The proof is completed since (44) shows that solutions daoease to exist by diverging t& at a
finite x > z, either. m

We now turn to the fate of any type of solutions of (5) witl{z*) < 0 asx — oc. Our first result is
that these solutions are globak., they can be extended as— oc. In particular, the asymptotically
free~f(z) is global.

Proposition 4.8 Let v;(z*) < 0 and assume”(z) satisfiesH3. The corresponding solution of (5)
exists for allx > z*, and satisfies

—zSp(x*,z) < v1(r) < max (71(x*), sup -~ L +4P(z) - 1) <0

z€[z*,x] 4

for all x > z*. In particular, if D(P) < oo, solutions grow at most linearly as— oc.

Proof. For the lower bound, note first that, as in the proof of Prajpms#.6, we have

1d 2 dn _ m@)  n@)?® - Pl) _ n@)? - P
el = = = <
(71@) ) (@) dz P x - x ’
which givesy; (z) > —xSp(x*, z) upon integration. This shows that solutions cannot divésgeco

at a finitex > z*. Now supposeab absurdunthat there exists,,., < oo such thaty; (zyax) = 0. By
hypothesis H1-H3, we have; < sup,c(,- ... P(z) <0, and thus

1+4P(2)—1
4

Ymax = Max <71 (SL’*), sup

zE€ [1’*7xmax]
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satisfies—i < vmax < 0. Note then thay(y;, x) is strictly negative along the, = ~,,.. line since

1) 1
sup T f (Ymax, ) < (1 + Ymax — ) < 1

e [-’E* vaax}

Sincey; (%) < Ymax, this shows that; (x) < ypax forall x € [2*) 24,4/, contradicting thab absurdum
assumption. Hence solutions exist globallyras: co. m

Our second result concern the asymptotics of some of thdgBoss asx — oo. Namely, we can
estimate the growth of solutions that are somewhere less-tha

Proposition 4.9 AssumeP(x) satisfiedH3 and~, (z*) < 0. If the corresponding solution of (5) satis-
fiesy,(zg) < —1 for somer, > x*, then

—xSp(xg,2) < 1i(x) < —xSp(xo, x) + 5 —1<0
0

forall x > .

Proof. The lower bound is already contained in Proposition 4.8. dpeer bound then follows imme-
diately from the lower bound and the integral formulatiof)(3m

The conditiony; (z9) < —1 is essential in Proposition 4.9 to guarantee that the uppendis indeed
negative. We now give possible scenarios that guaranteté@w indeed reach;, = —1.

Proposition 4.10 Assume one of the two following statements holds:

1. —1 < v (a*) < 0and P(x) satisfies S1 or S3,

2. =1 <y (z*) < ~(2*) and P(x) satisfies S2.
Then there exists, > x* such that the corresponding solution(x) satisfiesy; (zo) = —1.

Proof. We consider the alternative 1. first. Note that S1 impliessB3ye can use hypothesis S3 only.
As shown in Proposition 4.8, any solution startingyatz*) < 0 exists for all values of: > z*. In
particular,y;(z.) = Ymin < 0. If ymin < —1, the proof is completed. K1 < ~,,;, < 0, we assume
ab absurdumhaty,(z) > —1 for all x € [z., z4]. Note that there cannot be anc [z, z,4] such that

7 (x) =0, hence-1 < v (x) < 0 forall z € [z, z4], and we have

d n@) +n@)?+3  4P@)+1 L _AP(x) +1

P 2 — —
dx (n(2)") =2 T 2x - 2x
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forall z € [z, z4]. Upon integration, we thus find that

T144P /
Wl(x)g_\/ I2nm_/ +2 (Z)dZS_ 1+7§11n<_1
Ze <

by hypothesis S3, which is a contradiction.

Consider then the alternative 2. Under hypothesis S2, weextamd (35) to geP’(z) < P'(0)x for
all x € [0, z.]. Consider nowy,(z) = P’'(0)z. We haveR[y,|(x) > 0 for all z € [0, z.]. Thus, since
y(x*) < 45(2*) and~i(xz*) < P'(0)z* by Corollary 4.3, we find from (31) that

T

m(z) = P (0)x — | n(z*) —re(z") | Kln, )@ z) - /R[%](y) K[y, 7]y, ) dy < P'(0)x
for all z € [x*,z.]. The proof is completed since. > —P,L(O) by hypothesis S2, and thug(z.) <
P0)z.<—1. m

We conclude this section by showing tlatP) < oo implies that all solutions that are either positive
or go belowy; = —1 have a finite slope as — oc.

Proposition 4.11 AssumeD(P) < oo and~y;(xg) < —1 or v1(xg) > 0, there exists > 0 such that

. m(z) —s <0 if yi(zg) < -1
lim A _
s>0 if v1(zg) >0

T—00 €T

If v1(z0) < —1, the convergence towards the limit is given by

)#jLS)SC/OO_Z?’(Z)dz. (45)

If D(P) < oo and~;(zo) > 0, then (8) also hold, with-s replaced bys.

Proof. Note that from Proposition 4.7 and 4.9, the hypoth&3{#®) < oo implies that all solutions
under consideration here satisfy

ar<|n@)| < (46)
for somecy, ¢, > 0 and allx > xy. The integral formulation (30) then gives

ni) Lenim) 1 f* PO .

x xo Tz 2y1(z)

from which the proof follows immediately, since the r.h.5(47) converges by (46) and the hypothesis
D(P) <. m
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4.4 The confinement solution

In this section, we considé?(z) satisfying the hypotheses H1,H2 and S4. In particular,|rétat we
assume the existencef > 0 such that”(z,) = —% andP(z) > —1 forall z > z, andP(z) tending
to a finite limit asr — oo. Any solution of (5) that satisfies

1+ VIF4P,
2 Y

(48)

lim 7,(7) = 700 = =

needs to solve the integral equation obtained by takingftmmél) limit z* — oo in (30), namely

~i(z) :—1—0—x/oo P(z) dz:—1+/loo Plat) dt . (49)

2271(2) 271 (t)

Defining

[ Plat)-Po . Po [T h(zt)
Thile) = /1 Pm+h@) | e i P+ haD)

we see that any confinement solution can be writteff &8) = ., + h(z) whereh(x) satisfiesh(x) =
T[h](x). Consider ther,, the Banach space obtained by completing the spacg°dfz,, ), R)
functions under the norm

1Flly = sup [f ()] + [ f'(z)]

T>T0

Since;}i_{ﬂlo P(z) — Py = g}l_,rgo zP'(x) =0, ||P — Pxll+, can be made as small as one likes by taking
ro > x, large enough. Standard arguments then showZhat a contractionin a ball of positive
radiusp < 1 centered ab in B, which shows there exists a uniqtiec B solvingh = 7[h|. Since
h(x) is regular,y$(x) = v + h(z) solves (5) for allz > x,. We now remark tha}{(x) will satisfy
(49) as long as it exists whendecreases below,. However, it can only cease to exist if it satisfies
7 (Zmin) = 0 for somez,,;, > 0, for the r.h.s. of (5) is negative for large negatiye Assuming it can
be continued up ta = 0, we can conclude from Theorem (2.2) that eithgi0) = 0 or 75(0) = —1.

Finally, if P/(x) > 0 for all z > x,.x, then the lower nullcline

V1+4P(z)+1

" () = — 5

is decreasing towards,.. If there was ancy > ., Such thaty(xy) = v, (z9), theny§(x) would

enter a region of strictly positive derivatives w.t:t.and hence we would get(xz) > 77 (o) > Yoo

contradicting (48). Similarly, if there was ag > ., such thaty{(zo) = 7, theny$(x) would enter
a region of strictly negative derivative w.rit, and hence would satisfy;(z) < 7., for all x > z,

contradicting (48) again. We thus find that under the moriottyrassumption orP(x), we have

1+ IT4P, 1+/1+4P()
Yoo = — 5 <m(z) < — 5

for all (finite) z > x,,.x. This concludes the proof of Theorem 2.5.
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5 Post Scriptum: QEDI5] revisited

In a previous publication (see [5]), we have consideredriiai value problem

dyi()
dx

n(@) + () — Px)
st ()

= fs(n(x), x) ; Mlwo) =% >0. (50)

with 0 < z, < 1 fixed andP aC? function on[0, cc), positive on(0, oo), with P(0) = 0 andP’(0) # 0.
Defining the following (possibly infinite) quantity

we showed thaD(P) was intimately linked to the behavior/existenceras> oo of solutions starting
with ~+; (z) > 0. Namely, ifD(P) < oo, we showed that there was a smallest (non-zero) value,)
separating global solutions (with (z9) > ~f(xo)) from solutions that cannot be continuedite= cc.
We also showed that despite the singular nature of (5@)-as0 and/orv; — 0, all solutions of (50)
could be continued for alt € [0, 2], and would approact?, 0) while satisfying for allx € [0, z,] the
bound

Cyx if s<1
v1<:c><{ Cyx ()| it s=1, (51)
C, /s if s>1

for some constant, = Cy(s,v0). In Lemma 5.2 below, we will improve the above to get lineantds
in all cases (i.e. fos > 1 as well). In the mean time, we define, for any (finite) integer 2, the
truncation of the (divergent) series solution:

p
Yop(z) = P'(0)x + Z a, x" .
n=2

The coefficients{a, },—2_, can be found recursively by imposing[ys,](z)| < CazP~! asz — 0,
where the remainder map is defined by

dya(z) _ 12(z) +(2)® — P(x)

Rh/?](x) dx SJI’)/Q(.T)

for ~,(x) any function on|0, zy]. Note that by choosing, sufficiently small, we can ensure that
Yap(z) > 0forall x € [0,z0]. Also, sinceP’(0) # 0 and~,, is continuous, there exists a constant
C > 0 such thatyy(z) < Cx for all z € [0, o).

Finally, we also note that if; solves (50) andy(z) is any positive function on0, z,|, then for all
x € [0, z0], we have

o

() = ) = (3 an) = a0)) K el ) + [ REa)(o) Kol ) dy . (52)

xT
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where

We are now in position to show that all solutions to (50) adceall orders in perturbation theory with
the series solution.

Theorem 5.1 Let~; and~, be two solutions of (50). Fix > 2 and lety, , as above. Then there exist
constants” andC), such that

| n(2) = y2,(@) | < Cpa?, (53)

me—w@WS\mmw—w@ﬂ(f)ﬂwQ%———D, (54)

0

where (53) holds for alk € [0, z(/2] and (54) for allz € [0, z].

In other words, for any solution of (50), any derivative (afifie order) converges as — 0 to the
corresponding derivative of, ,. Hence a (truncated) power series expansion-at0 of any solution
agrees to any (finite) order with the truncated divergeneseasf the same order. Also, the difference
between any two solutions of (50) decays faster #&m* asz — 0.

Proof. In Lemma 5.2 below, we prove that there exist constanendc, such thaty, (z) < ¢;z and

Y2(x) < cox for all z € [0, x0] if v, and~, are solutions of (50). In particular, there exist a constant
C > 0 such that

s () ol [ 50)- () mle-) s

forall 0 <z <y < x. SinceR|:](z) = 0 if ~, is a solution of (50), we have
(@) = 72(@) = (1) = 72@) ) Kn, 22l (w0, 7)
from which we get (54) immediately.

On the other handy, , also satisfies, ,(x) < Cz forall z € [0, o], and sak |1, 72| also satisfies

i< () {e3-2)

forall 0 < x <y < z,. In particular, for fixedry, K|[y1,v2,](x0, x) decays faster than any power law
asx — 0. Assume now that < x/2, and note that

0

| (@) = 22p(2) | < | 71(@0) = 220(z0) | K1, Y2) (0, ) +C/xyp‘1 Ky, o) (y,2) dy .
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Splitting the integral ovelr, x| into [z, 2x] and|2x, x,], and using thak[y1, 72,](y, ) is a decreasing
function ofy, we find

2z 2z
/ y* 7 Ky, vel(y, @) dy < / y* T K, vapl(x, @) dy = 2P (E22)

p

x0 Zo D _ P
/ P Kl (0, ) dy < Ky, y2,) (22, ) / v dy = Ky, 0] (22, ) (25
2 2

T X

The proof of (53) is completed by noting that by (55)[y1, V2, (22, ) and K[y, v, (20, z) decay
faster than any power law as— 0. =

Lemma 5.2 For any~, > 0, the solution of (50) exists for all € [0, z,] and
1(r) <Cx Vel
for someC' = C(xg,70) > 0.

Proof. We first note for future reference thﬁf—) is continuous for alk: € [0, x4, and that there exists
constant®’. > 0 such thatC_z < P(x) < C,z forall z € [0, zo]. By (51), we only have to consider
s > 1. We first chooser > 0 such that

max(2C, Cy|In(xg)|) if s=1
@ = { max<2C’+, m, Ci4s71(s — 1)3_1> if s>1 "~
We then note that

1
s —a=— — I _1)y> — - & I 1)> — 1_
flaw o) —a s sx2a+a(s )_sx sxa+a(s )_2$x+a(s )
from which it follows that
Zo if s=
fs(az,z) >a Vzel0,X(s,a) where X(s,a)= { 1 . : (56)
m |f S > 1
We then note that
Cy X(1,a)|In(X(1,))| = Cpxolln(xg)] < axg aX(1l,a),
/s _ Oy 1 (57)
Cb X(S,Oé) - (4a(s—1))1/s S is—1) — aX

(
(s,a) If s>1.
(

In other words, (51) and (57) imply that the solution of (58)isfiesy; (X (s,a)) < aX (s, ). Since
X(s,a) < zy, this means that asdecreases, solutions enter the triangle

Aja={(z,7)|z€[0,X(s,a)]and0 <y <az}
through its right boundary (i.e. at= X (s, «)).
Solutions that entel\, , atz = X (s, ) cannot satisfyy,(z*) = az* at somex* < X(s,«), for
by (56), we would havey,(z) > ax for all x € (z*, X (s, «)], a contradiction withy, (X (s, a)) <

aX(s,a). Hencey,(z) < ax for all z € [0, X (s, «)], and the proof is completed by noting that the
bound (51) is stronger than (z) < ax for z € (X (s,a),zo|. ®m
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