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Abstract

In this paper, the global qualitative analysis of planar polynomial dynamical sys-
tems is established and a new geometric approach to solving Hilbert’s Sixteenth

Problem on the maximum number and relative position of their limit cycles in two
special cases of such systems is suggested. First, using geometric properties of four
field rotation parameters of a new canonical system which is constructed in this
paper, we present a proof of our earlier conjecture that the maximum number of
limit cycles in a quadratic system is equal to four and the only possible their distri-
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Problem for Liénard’s polynomial system (in this special case, it is considered as
Smale’s Thirteenth Problem). Besides, generalizing the obtained results, we present
a solution of Hilbert’s Sixteenth Problem on the maximum number of limit cycles
surrounding a singular point for an arbitrary polynomial system and, applying the
Wintner–Perko termination principle for multiple limit cycles, we develop an alter-
native approach to solving the Problem. By means of this approach, for example,
we give another proof of the main theorem for a quadratic system and complete the
global qualitative analysis of a generalized Liénard’s cubic system with three finite
singularities. We discuss also some different approaches to the Problem.
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1 Introduction

We consider planar dynamical systems

ẋ = Pn(x, y), ẏ = Qn(x, y), (1.1)

where Pn and Qn are polynomials with real coefficients in the real variables
x, y. The main problem of qualitative theory of such systems is Hilbert’s

Sixteenth Problem on the maximum number and relative position of their
limit cycles, i. e., closed isolated trajectories of (1.1) [15], [21]. This Problem

was formulated as one of the fundamental problems for mathematicians of the
XX century, however it has not been solved even in the simplest cases of the
polynomial systems: for quadratic systems (when n = 2) and for Liénard’s
polynomial system of the form

ẋ = y, ẏ = −x + µ1 y + µ2 y2 + µ3 y3 + . . . + µ2k y2k + µ2k+1 y2k+1. (1.2)

In the case of system (1.2), it is considered as Smale’s Thirteenth Problem

becoming one of the main problems for mathematicians of the XXI century
[21], [30].

In this paper, we suggest a new geometric approach [17] to studying limit
cycle bifurcations of (1.1) and to solving the Problem in these two special case
of polynomial systems. In particular, in Section 2, we construct two canonical
quadratic systems with field rotation parameters, one of which contains four
such parameters. Using the canonical systems and geometric properties of the
spirals filling the interior and exterior domains of limit cycles, we present a
solution of the Problem on the maximum number and relative position of
limit cycles in the case of quadratic systems. In Section 3, by means of the
same geometric approach, we solve Smale’s Thirteenth Problem for Liénard’s
polynomial system (1.2). In Section 4, generalizing the obtained results, we
present a solution of Hilbert’s Sixteenth Problem on the maximum number of
limit cycles surrounding a singular point for an arbitrary polynomial system. In
Section 5, applying the Wintner–Perko termination principle for multiple limit
cycles, we develop an alternative approach to solving the Problem. By means
of this approach, for example, we give another proof of the main theorem for a
quadratic system and complete the global qualitative analysis of a generalized
Liénard’s cubic system with three finite singularities. Finally, in Conclusion,
we discuss some different approaches to Hilbert’s Sixteenth Problem.
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2 A quadratic system

In [4], [15], we constructed a canonical quadratic system with two field rotation
parameters for studying limit cycle bifurcations:

ẋ = P (x, y) + α Q(x, y), ẏ = Q(x, y) − αP (x, y), (2.1)

where

P (x, y) = −y + mxy + (n − γ)y2, Q(x, y) = x − x2 + γ xy + cy2.

In [4], [15], we show also by which linear transformations of the phase variables
x, y arbitrary quadratic system (1.1), where n = 2, is reduced to form (2.1) and
how the parameters of (2.1) are expressed via the parameters of (1.1). System
(2.1) is especially convenient for the investigation of quadratic systems in the
case two finite singularities when the parameters α, γ rotate the field of (2.1)
in the whole phase plane x, y.

Later, we constructed a canonical system with three field rotation parameters,
α, β, λ,

ẋ = −(1 + x) y + α Q(x, y), ẏ = Q(x, y), (2.2)

where

Q(x, y) = x + λy + ax2 + β(1 + x)y + cy2,

which, together with the system

ẋ = −y + νy2, ẏ = Q(x, y), ν = 0; 1, (2.3)

can be used in an arbitrary case of finite singularities [15].

Applying a similar approach, we can construct a canonical system with the
maximum number of field rotation parameters, namely: with four such para-
meters. It is valid the following theorem.

Theorem 2.1. A quadratic system with limit cycles can be reduced to the

canonical form

ẋ = −y (1 + x + α y) ≡ P,

ẏ = x + (λ + β + γ)y + a x2 + (α + β + γ)xy + c γ y2 ≡ Q
(2.4)

or

ẋ = −y (1 + ν y), ν = 0; 1,

ẏ = x + (λ + β + γ)y + a x2 + (β + γ)xy + c γ y2.
(2.5)
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Proof. In [15] is shown that an arbitrary quadratic system with limit cycles,
by means of Erugun’s two-isocline method [10], can be reduced to the form

ẋ = −y + mxy + ny2,

ẏ = x + λy + ax2 + bxy + cy2,
(2.6)

where m = −1 or m = 0.

Input the field rotation parameters into this system so that (2.4) corresponds
to the case of m = −1 and (2.5) corresponds to the case of m = 0.

Compare (2.4) with (2.6) when m = −1. Firstly, we have changed several
parameters: n by −α; b by β; c by c γ. Secondly, we have input additional terms
into the expression for ẏ : (β + γ) y and (α + γ) xy. Similar transformations
have been made in system (2.6) when m = 0; but in this case, we have denoted
n by ν assigning two principal values to this parameter: 0 and 1. It is obvious
that all these transformations do not restrict generality of systems (2.4) and
(2.5) in comparison with system (2.6), what proves the theorem.

System (2.4) will be a basic system for studying limit cycle bifurcations. It
contains four field rotation parameters: λ, α, β, γ. The following lemma is
valid for this system (a similar lemma is valid for system (2.5), with respect
to the parameters λ, β, γ).

Lemma 2.1. Each of the parameters λ, β, γ, and α rotates the vector field

of (2.4) in the domains of existence of its limit cycles, under the fixed other

parameters of this system, namely : when the parameter λ, β, γ, or α increases

(decreases), the field is rotated in positive (negative) direction, i. e., counter-

clockwise (clockwise), in the domains, respectively :

1 + x + α y < 0 (> 0);

(1 + x)(1 + x + α y) < 0 (> 0);

(1 + x + c y)(1 + x + α y) < 0 (> 0);

(λ + β + γ) y + (a − 1) x2 + (β + γ) xy + c γ y2 < 0 (> 0).

Proof. Using the definition of a field rotation parameter [6], [15] we can cal-
culate the following determinants:

∆λ = PQ′

λ − QP ′

λ = −y2(1 + x + α y);

∆β = PQ′

β − QP ′

β = −y2(1 + x)(1 + x + α y);

∆γ = PQ′

γ − QP ′

γ = −y2(1 + x + c y)(1 + x + α y);

∆α = PQ′

α − QP ′

α = y2((λ + β + γ) y + (a − 1) x2 + (β + γ) xy + c γ y2).
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Since, by definition, the vector field is rotated in positive direction (counter-
clockwise) when the determinant is positive and in negative direction (clock-
wise) when the determinant is negative [6], [15] and since the obtained domains
correspond to the domains of existence of limit cycles of (2.4), the lemma is
proved.

By means of canonical systems (2.4) and (2.5), we will study global limit cycle
bifurcations of (1.1), where n = 2. First of all, let us give a new proof of the
following theorem.

Theorem 2.2. A quadratic system can have at least four limit cycles in the

(3 : 1)-distribution.

Proof. To prove the theorem, consider the case of two finite anti-saddles and
the only saddle at infinity when, for example, a = 1/2 and c = −1 in (2.4):

ẋ = −y (1 + x + α y),

ẏ = x + (λ + β + γ) y + (1/2) x2 + (α + β + γ) xy − γ y2.
(2.7)

Vanish all field rotation parameters: α = β = γ = λ = 0. Then we have got a
system with two centers which is symmetric with respect to the x-axis.

Under increasing the parameter γ (0 < γ � 1), the vector field of (2.7) is
rotated in negative direction (clockwise) and the centers turn into foci: (0, 0)
becomes an unstable focus and (−2, 0) becomes a stable one.

Fix γ and take λ satisfying the condition: −1 � λ < −γ < 0 (−1 � γ+λ < 0).
Then, in the half-plane x > −1, the vector field of (2.7) is rotated in positive
direction and the focus (0, 0) changes the character of its stability generating
an unstable limit cycle. In the half-plane x < −1, the field is rotated in
negative direction again and the focus (−2, 0) remains stable.

Fix the parameters γ, λ and take α satisfying the condition: γ + λ � α < 0.
After rotation of the vector field of system (2.7) in positive direction, the
straight line x = 1 is destroyed and two limit cycles are generated by the
separatrix cycles formed by this line and two Poincaré hemi-circles: a stable
limit cycle surrounding the focus (0, 0) and an unstable one surrounding the
focus (−2, 0).

Finally, fix the parameters γ, λ, α and take β satisfying the condition:
0 < −γ − λ < β � 1 (0 < β + γ + λ � −α). Then, after rotation of
the vector field in negative direction in the whole phase plane, the focus (0, 0)
changes the character of its stability again generating a stable limit cycle, since
the parameter α is non-rough and negative when β = −γ − λ. Thus, we have
obtained at least three limit cycles surrounding the focus (0, 0), under the
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co-existence of a limit cycle surrounding the focus (−2, 0), what proves the
theorem.

It is valid a much stronger theorem.

Theorem 2.3. A quadratic system has at most four limit cycles and only in

the (3 : 1)-distribution.

Proof. Consider again the most interesting case of quadratic systems: with
two finite anti-saddles and the only saddle at infinity when a = 1/2 and c = −1
in (2.4). All other cases of singular points can be considered in a similar way.

Vanish all field rotation parameters of system (2.7), α = β = γ = λ = 0:

ẋ = −y (1 + x),

ẏ = x + (1/2) x2.
(2.8)

We have got a system with two centers which is symmetric with respect to
the x-axis. Let us input successively the field rotation parameters into (2.8).

Begin, for example, with the parameter γ supposing that γ > 0:

ẋ = −y (1 + x),

ẏ = x + γ y + (1/2) x2 + γ xy − γ y2.
(2.9)

Under increasing γ, the vector field of (2.9) is rotated in negative direction
(clockwise) and the centers turn into foci: (0, 0) becomes an unstable focus
and (−2, 0) becomes a stable one.

Fix γ and input a new parameter, for example, λ < 0 into (2.9):

ẋ = −y (1 + x),

ẏ = x + (λ + γ) y + (1/2) x2 + γ xy − γ y2.
(2.10)

Then, in the half-plane x > −1, the vector field of (2.10) is rotated in positive
direction (counterclockwise) and the focus (0, 0) changes the character of its
stability (when λ = −γ) generating an unstable limit cycle. Under decreasing
λ, this limit cycle will expand until it disappears in a Poincaré hemi-cycle with
a saddle-node lying on the invariant straight line x = −1 [15]. In the half-plane
x < −1, the field is rotated in negative direction again and the focus (−2, 0)
remains stable.

Denote the limit cycle by Γ1, the domain inside the cycle by D1, the domain
outside the cycle by D2 and consider logical possibilities of the appearance of
other (semi-stable) limit cycles from a “trajectory concentration” surrounding
the focus (0, 0). It is clear that under decreasing λ, a semi-stable limit cycle
cannot appear in the domain D1, since the focus spirals filling this domain
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will untwist and the distance between their coils will increase because of the
vector field rotation in positive direction.

By contradiction, we can also prove that a semi-stable limit cycle cannot ap-
pear in the domain D2. Suppose it appears in this domain for some values of
the parameters γ∗ > 0 and λ∗ < 0. Return to initial system (2.8) and change
the order of inputting the field rotation parameters. Input first the parameter
λ < 0:

ẋ = −y (1 + x),

ẏ = x + λ y + (1/2) x2.
(2.11)

Fix it under λ = λ∗. In the half-plane x > −1, the vector field of (2.11)
is rotated in negative direction and (0, 0) becomes a stable focus. Inputting
the parameter γ > 0 into (2.11), we have got again system (2.10), the vector
field of which is rotated in positive direction in the half-plane x > −1. Under
this rotation, an unstable limit cycle Γ1 will appear from a Poincaré hemi-
cycle with a saddle-node on the invariant straight line x = −1. This cycle
will contract, the outside spirals winding onto the cycle will untwist and the
distance between their coils will increase under increasing the parameter γ to
the value γ = γ∗. It follows that there are no values of γ = γ∗ and λ = λ∗, for
which a semi-stable limit cycle could appear in the domain D2.

This contradiction proves the uniqueness of a limit cycle surrounding the focus
(0, 0) in system (2.10) for any values of the parameters γ and λ of different
signs. Obviously, if these parameters have the same sign, system (2.10) has no
limit cycles surrounding (0, 0) at all, like there are no limit cycles surrounding
the focus (−2, 0) for the parameters γ and λ of different signs.

Let system (2.10) have the unique limit cycle Γ1. Fix the parameters γ > 0,
λ < 0 and input the third parameter, α < 0, into this system:

ẋ = −y (1 + x + α y),

ẏ = x + (λ + γ) y + (1/2) x2 + (α + γ) xy − γ y2.
(2.12)

The vector field of (2.12) is rotated in positive direction again, the invariant
straight line x = −1 is immediately destroyed and two limit cycles appear
from the corresponding Poincaré hemi-cycles containing this straight line: a
stable cycle, denoted by Γ2, surrounding the focus (0, 0) and an unstable limit
cycle, denoted by Γ3, surrounding the focus (−2, 0). Under further decreasing
α, the limit cycle Γ2 will join with Γ1 forming a semi-stable limit cycle, Γ12,
which will disappear in a “trajectory concentration” surrounding the origin
(0, 0). Can another semi-stable limit cycle appear around the origin in addition
to Γ12? It is clear that such a limit cycle cannot appear neither in the domain
D1 bounded by the origin and Γ1 nor in the domain D3 bounded on the inside
by Γ2 because of increasing the distance between the spiral coils filling these
domains under decreasing α.
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To prove impossibility of the appearance of a semi-stable limit cycle in the
domain D2 bounded by the cycles Γ1 and Γ2 (before their joining), suppose
the contrary, i. e., for some set of values of the parameters γ∗ > 0, λ∗ < 0,
and α∗ < 0, such a semi-stable cycle exists. Return to system (2.8) again and
input the parameters α < 0 and λ < 0:

ẋ = −y (1 + x + α y),

ẏ = x + λ y + (1/2) x2 + α xy.
(2.13)

In the half-plane x > −1, both parameters act in a similar way: they rotate the
vector field of (2.13) in positive direction turning the origin (0, 0) into a stable
focus. In the half-plane x < −1, they rotate the field in opposite directions
generating an unstable limit cycle from the focus (−2, 0).

Fix these parameters under α = α∗, λ = λ∗ and input the parameter γ > 0
into (2.13) getting again system (2.12). Since, on our assumption, this system
has two limit cycles for γ < γ∗, there exists some value of the parameter, γ12

(0 < γ12 < γ∗), for which a semi-stable limit cycle, Γ12, appears in system
(2.12) and then splits into an unstable cycle, Γ1, and a stable cycle, Γ2, under
further increasing γ. The formed domain D2 bounded by the limit cycles Γ1, Γ2

and filled by the spirals will enlarge, since, on the properties of a field rotation
parameter, the interior unstable limit cycle Γ1 will contract and the exterior
stable limit cycle Γ2 will expand under increasing γ. The distance between the
spirals of the domain D2 will naturally increase, what will prohibit from the
appearance of a semi-stable limit cycle in this domain for γ > γ12. Thus, there
are no such values of the parameters, γ∗ > 0, λ∗ < 0,α∗ < 0, for which system
(2.12) would have an additional semi-stable limit cycle.

Obviously, there are no other values of the parameters γ, λ, α, for which system
(2.12) would have more than two limit cycles surrounding the origin (0, 0) and
simultaneously more than one limit cycle surrounding the point (−2, 0) (on
the same reasons). It follows that system (2.12) can have at most three limit
cycles and only in the (2 : 1)-distribution.

Suppose that system (2.12) has two limit cycle, Γ1 and Γ2, around the origin
(0, 0) and the only limit cycle, Γ3, around the point (−2, 0). Fix the parameters
γ > 0, λ < 0, α < 0 and input the fourth parameter, β > 0, into (2.12)
getting system (2.7). Under increasing β, the vector field of (2.7) is rotated
in negative direction, the focus (0, 0) changes the character of its stability
(when β = −γ − λ) and a stable limit cycle, Γ0, appears from the origin.
Suppose it happens before the cycle Γ1 disappears in (0, 0) (this is possible
by Theorem 2.2). Under further increasing β, the cycle Γ0 will join with Γ1

forming a semi-stable limit cycle, Γ01, which will disappear in a “trajectory
concentration” surrounding the origin (0, 0); the other cycles, Γ2 and Γ3, will
expand tending to Poincaré hemi-cycles with the straight line x = −1.
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Let system (2.7) have four limit cycles: Γ0, Γ1, Γ2, and Γ3. Can an additional
semi-stable limit cycle appear around the origin under increasing the parame-
ter β ? It is clear that such a limit cycle cannot appear neither in the domain
D0 bounded by the origin and Γ0 nor in the domain D2 bounded by Γ1 and Γ2

because of increasing the distance between the spiral coils filling these domains
under increasing β. Consider two other domains: D1 bounded by the cycles
Γ0, Γ1 and D3 bounded on the inside by the cycle Γ2. As before, we will prove
impossibility of the appearance of a semi-stable limit cycle in these domains
by contradiction.

Suppose that for some set of values of the parameters, γ∗ > 0, λ∗ < 0, α∗ < 0,
and β∗ > 0, such a semi-stable cycle exists. Return to system (2.8) again and
input first the parameters β > 0, γ > 0 and then the parameter α < 0:

ẋ = −y (1 + x + α y),

ẏ = x + (β + γ) y + (1/2) x2 + (α + β + γ) xy − γ y2.
(2.14)

Fix the parameters β, γ under the values β∗, γ∗, respectively. Under decreasing
the parameter α, two limit cycles immediately appear from Poincaré hemi-
cycles with the straight line x = −1 : a stable cycle, Γ2, around (0, 0) and
an unstable one, Γ3, around (−2, 0). Fix α under the value α∗ and input the
parameter λ < 0 into (2.14) getting system (2.7).

Since, on our assumption, system (2.7) has three limit cycles around the origin
(0, 0) for λ > λ∗, there exists some value of the parameter, λ01 (λ∗ < λ01 < 0),
for which a semi-stable limit cycle, Γ01, appears in this system and then splits
into a stable cycle, Γ0, and an unstable cycle, Γ1, under further decreasing λ.
The formed domain D1 bounded by the limit cycles Γ0, Γ1 and also the domain
D3 bounded on the inside by the limit cycle Γ2 will enlarge and the spirals
filling these domains will untwist excluding a possibility of the appearance
of a semi-stable limit cycle there, i. e., at most three limit cycles can exist
around the origin (0, 0). On the same reasons, a semi-stable limit cannot ap-
pear around the point (−2, 0) under decreasing the parameter λ, i. e., at most
one limit cycle can exist around this point simultaneously with three limit
cycles surrounding (0, 0).

All other combinations of the parameters λ, α, β, γ are considered in a similar
way. It follows that system (2.7) has at most four limit cycles and only in the
(3 : 1)-distribution. Applying the same approach to canonical system (2.5),
we can complete the proof of the theorem.

9



3 Liénard’s polynomial system

System (1.2) and more general Liénard’s systems have been studying in nu-
merous works (see, for example, [1], [2], [5], [11], [17], [19], [22]–[26], [29]). It
is easy to see that (1.2) has the only finite singularity: an anti-saddle at the
origin. At infinity, system (1.2) for k > 1 has two singular points: a node at
the “ends” of the y-axis and a saddle at the “ends” of the x-axis. For studying
the infinite singularities, the methods applied in [1] for Rayleigh’s and van der
Pol’s equations and also Erugin’s two-isocline method developed in [15] can be
used. Following [15], we will study limit cycle bifurcations of (1.2) by means
of a canonical system containing only the field rotation parameters of (1.2).
It is valid the following theorem.

Theorem 3.1. Liénard’s polynomial system (1.2) with limit cycles can be

reduced to the canonical form

ẋ = y ≡ P, ẏ = −x + µ1 y + y2 + µ3 y3 + . . . + y2k + µ2k+1 y2k+1 ≡ Q, (3.1)

where µ1, µ3, . . . , µ2k+1 are field rotation parameters of (3.1).

Proof. Vanish all odd parameters of (1.2),

ẋ = y, ẏ = −x + µ2 y2 + µ4 y4 + . . . + µ2k y2k, (3.2)

and consider the corresponding equation

dy

dx
=

−x + µ2 y2 + µ4 y4 + . . . + µ2k y2k

y
≡ F (x, y). (3.3)

Since F (x,−y) = −F (x, y), the direction field of (3.3) (and the vector field
of (3.2) as well) is symmetric with respect to the x-axis. It follows that for
arbitrary values of the parameters µ2, µ4, . . . , µ2k system (3.2) has a center
at the origin and cannot have a limit cycle surrounding this point. Therefore,
without loss of generality, all even parameters of system (1.2) can be supposed
to be equal, for example, to one: µ2 = µ4 = . . . = µ2k = 1 (they could be also
supposed to be equal to zero).

To prove that the rest (odd) parameters rotate the vector field of (3.1), let us
calculate the following determinants:

∆µ1
= PQ′

µ1
− QP ′

µ1
= y2 ≥ 0,

∆µ3
= PQ′

µ3
− QP ′

µ3
= y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆µ2k+1
= PQ′

µ2k+1
− QP ′

µ2k+1
= y2 ≥ 0.
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By definition of a field rotation parameter [6], for increasing each of the para-
meters µ1, µ3, . . . , µ2k+1, under the fixed others, the vector field of system (3.1)
is rotated in positive direction (counterclockwise) in the whole phase plane;
and, conversely, for decreasing each of these parameters, the vector field of
(3.1) is rotated in negative direction (clockwise).

Thus, for studying limit cycle bifurcations of (1.2), it is sufficient to consider
canonical system (3.1) containing only its odd parameters, µ1, µ3, . . . , µ2k+1,
which rotate the vector field of (3.1). The theorem is proved.

By means of canonical system (3.1), let us study global limit cycle bifurcations
of (1.2) and prove the following theorem.

Theorem 3.2. Liénard’s polynomial system (1.2) has at most k limit cycles.

Proof. According to Theorem 3.1, for the study of limit cycle bifurcations of
system (1.2), it is sufficient to consider canonical system (3.1) containing only
the field rotation parameters of (1.2): µ1, µ3, . . . , µ2k+1.

Vanish all these parameters:

ẋ = y, ẏ = −x + y2 + y4 + . . . + y2k. (3.4)

System (3.4) is symmetric with respect to the x-axis and has a center at the
origin. Let us input successively the field rotation parameters into this system
beginning with the parameters at the highest degrees of y and alternating
with their signs. So, begin with the parameter µ2k+1 and let, for definiteness,
µ2k+1 > 0:

ẋ = y, ẏ = −x + y2 + y4 + . . . + y2k + µ2k+1 y2k+1. (3.5)

In this case, the vector field of (3.5) is rotated in positive direction (counter-
clockwise) turning the origin into a nonrough unstable focus.

Fix µ2k+1 and input the parameter µ2k−1 < 0 into (3.5):

ẋ = y, ẏ = −x + y2 + y4 + . . . + µ2k−1 y2k−1 + y2k + µ2k+1 y2k+1. (3.6)

Then the vector field of (3.6) is rotated in opposite direction (clockwise) and
the focus immediately changes the character of its stability (since its degree
of nonroughness decreases and the sign of the field rotation parameter at
the lower degree of y changes) generating a stable limit cycle. Under further
decreasing µ2k−1, this limit cycle will expand infinitely, not disappearing at
infinity (because of the parameter µ2k+1 at the higher degree of y).

Denote the limit cycle by Γ1, the domain outside the cycle by D1, the domain
inside the cycle by D2 and consider logical possibilities of the appearance of
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other (semi-stable) limit cycles from a “trajectory concentration” surrounding
the origin. It is clear that, under decreasing the parameter µ2k−1, a semi-stable
limit cycle cannot appear in the domain D2, since the focus spirals filling this
domain will untwist and the distance between their coils will increase because
of the vector field rotation.

By contradiction, we can also prove that a semi-stable limit cycle cannot
appear in the domain D1. Suppose it appears in this domain for some values
of the parameters µ∗

2k+1 > 0 and µ∗

2k−1 < 0. Return to initial system (3.4) and
change the inputting order for the field rotation parameters. Input first the
parameter µ2k−1 < 0:

ẋ = y, ẏ = −x + y2 + y4 + . . . + µ2k−1 y2k−1 + y2k. (3.7)

Fix it under µ2k−1 = µ∗

2k−1. The vector field of (3.7) is rotated clockwise
and the origin turns into a nonrough stable focus. Inputting the parameter
µ2k+1 > 0 into (3.7), we get again system (3.6), the vector field of which
is rotated counterclockwise. Under this rotation, a stable limit cycle Γ1 will
immediately appear from infinity, more precisely, from a separatrix cycle of
the Poincaré circle form containing infinite singularities of the saddle and node
types [1]. This cycle will contract, the outside spirals winding onto the cycle
will untwist and the distance between their coils will increase under increasing
µ2k+1 to the value µ∗

2k+1. It follows that there are no values of µ∗

2k−1 < 0 and
µ∗

2k+1 > 0, for which a semi-stable limit cycle could appear in the domain D1.

This contradiction proves the uniqueness of a limit cycle surrounding the origin
in system (3.6) for any values of the parameters µ2k−1 and µ2k+1 of different
signs. Obviously, if these parameters have the same sign, system (3.6) has no
limit cycles surrounding the origin at all.

Let system (3.6) have the unique limit cycle Γ1. Fix the parameters µ2k+1 > 0,
µ2k−1 < 0 and input the third parameter, µ2k−3 > 0, into this system:

ẋ = y, ẏ = −x + y2 + . . . + µ2k−3 y2k−3 + y2k−2 + . . . + µ2k+1 y2k+1. (3.8)

The vector field of (3.8) is rotated counterclockwise, the focus at the origin
changes the character of its stability and the second (unstable) limit cycle,
Γ2, immediately appears from this point. Under further increasing µ2k−3, the
limit cycle Γ2 will join with Γ1 forming a semi-stable limit cycle, Γ12, which will
disappear in a “trajectory concentration” surrounding the origin. Can another
semi-stable limit cycle appear around the origin in addition to Γ12? It is clear
that such a limit cycle cannot appear neither in the domain D1 bounded on
the inside by the cycle Γ1 nor in the domain D3 bounded by the origin and Γ2

because of increasing the distance between the spiral coils filling these domains
under increasing the parameter µ2k−3.
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To prove impossibility of the appearance of a semi-stable limit cycle in the
domain D2 bounded by the cycles Γ1 and Γ2 (before their joining), suppose the
contrary, i. e., for some set of values of the parameters, µ∗

2k+1 > 0, µ∗

2k−1 < 0,
and µ∗

2k−3 > 0, such a semi-stable cycle exists. Return to system (3.4) again
and input first the parameters µ2k−3 > 0 and µ2k+1 > 0:

ẋ = y, ẏ = −x + y2 + . . . + µ2k−3 y2k−3 + y2k−2 + y2k + µ2k+1 y2k+1. (3.9)

Both parameters act in a similar way: they rotate the vector field of (3.9)
counterclockwise turning the origin into a nonrough unstable focus.

Fix these parameters under µ2k−3 = µ∗

2k−3, µ2k+1 = µ∗

2k+1 and input the
parameter µ2k−1 < 0 into (3.9) getting again system (3.8). Since, on our as-
sumption, this system has two limit cycles for µ2k−1 > µ∗

2k−1, there exists some
value of the parameter, µ12

2k−1 (µ∗

2k−1 < µ12
2k−1 < 0), for which a semi-stable

limit cycle, Γ12, appears in system (3.8) and then splits into a stable cycle,
Γ1, and an unstable cycle, Γ2, under further decreasing µ2k−1. The formed
domain D2 bounded by the limit cycles Γ1, Γ2 and filled by the spirals will
enlarge since, on the properties of a field rotation parameter, the interior un-
stable limit cycle Γ2 will contract and the exterior stable limit cycle Γ1 will
expand under decreasing µ2k−1. The distance between the spirals of the do-
main D2 will naturally increase, what will prohibit from the appearance of a
semi-stable limit cycle in this domain for µ2k−1 < µ12

2k−1.

Thus, there are no such values of the parameters, µ∗

2k+1 > 0, µ∗

2k−1 < 0,
and µ∗

2k−3 > 0, for which system (3.8) would have an additional semi-stable
limit cycle. Obviously, there are no other values of the parameters µ2k+1,
µ2k−1, and µ2k−3 for which system (3.8) would have more than two limit cycles
surrounding the origin. Therefore, two is the maximum number of limit cycles
for system (3.8). This result agrees with [29], where it was proved for the first
time that the maximum number of limit cycles for Liénard’s system of the
form

ẋ = y, ẏ = −x + µ1 y + µ3 y3 + µ5 y5 (3.10)

was equal to two.

Suppose that system (3.8) has two limit cycles, Γ1 and Γ2 (this is always
possible if µ2k+1 � −µ2k−1 � µ2k−3 > 0), fix the parameters µ2k+1, µ2k−1,
µ2k−3 and consider a more general system than (3.8) (and (3.10)) inputting
the fourth parameter, µ2k−5 < 0, into (3.8):

ẋ = y, ẏ = −x + y2 + . . . + µ2k−5 y2k−5 + y2k−4 + . . . + µ2k+1 y2k+1. (3.11)

Under decreasing µ2k−5, the vector field of (3.11) will be rotated clockwise and
the focus at the origin will immediately change the character of its stability
generating the third (stable) limit cycle, Γ3. Under further decreasing µ2k−5,
Γ3 will join with Γ2 forming a semi-stable limit cycle, Γ23, which will disappear
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in a “trajectory concentration” surrounding the origin; the cycle Γ1 will expand
infinitely tending to the Poincaré circle at infinity.

Let system (3.11) have three limit cycles: Γ1, Γ2, Γ3. Could an additional
semi-stable limit cycle appear under decreasing µ2k−5, after splitting of which
system (3.11) would have five limit cycles around the origin? It is clear that
such a limit cycle cannot appear neither in the domain D2 bounded by the
cycles Γ1 and Γ2 nor in the domain D4 bounded by the origin and Γ3 because
of increasing the distance between the spiral coils filling these domains under
decreasing µ2k−5. Consider two other domains: D1 bounded on the inside by
the cycle Γ1 and D3 bounded by the cycles Γ2 and Γ3. As before, we will prove
impossibility of the appearance of a semi-stable limit cycle in these domains
by contradiction.

Suppose that for some set of values of the parameters µ∗

2k+1 > 0, µ∗

2k−1 < 0,
µ∗

2k−3 > 0, and µ∗

2k−5 < 0, such a semi-stable cycle exists. Return to system
(3.4) again, input first the parameters µ2k−5 < 0, µ2k−1 < 0 and then the
parameter µ2k+1 > 0:

ẋ = y, ẏ = −x+y2+. . .+µ2k−5y
2k−5+. . .+µ2k−1y

2k−1+y2k+µ2k+1y
2k+1. (3.12)

Fix the parameters µ2k−5, µ2k−1 under the values µ∗

2k−5, µ∗

2k−1, respectively.
Under increasing µ2k+1, the node at infinity will change the character of its
stability, the separatrix behaviour of the infinite saddle will be also changed
and a stable limit cycle, Γ1, will immediately appear from the Poincaré circle at
infinity [1]. Fix µ2k+1 under the value µ∗

2k+1 and input the parameter µ2k−3 > 0
into (3.12) getting system (3.11).

Since, on our assumption, (3.11) has three limit cycles for µ2k−3 < µ∗

2k−3,
there exists some value of the parameter µ23

2k−3 (0 < µ23
2k−3 < µ∗

2k−3) for which
a semi-stable limit cycle, Γ23, appears in this system and then splits into an
unstable cycle, Γ2, and a stable cycle, Γ3, under further increasing µ2k−3. The
formed domain D3 bounded by the limit cycles Γ2, Γ3 and also the domain
D1 bounded on the inside by the limit cycle Γ1 will enlarge and the spirals
filling these domains will untwist excluding a possibility of the appearance of
a semi-stable limit cycle there.

All other combinations of the parameters µ2k+1, µ2k−1, µ2k−3, and µ2k−5 are
considered in a similar way. It follows that system (3.11) has at most three
limit cycles. If we continue the procedure of successive inputting the odd
parameters, µ2k−7, . . . , µ3, µ1, into system (3.4), it is possible first to obtain
k limit cycles (µ2k+1 � −µ2k−1 � µ2k−3 � −µ2k−5 � µ2k−7 � . . .) and then
to conclude that canonical system (3.1) (i. e., Liénard’s polynomial system
(1.2) as well) has at most k limit cycles. The theorem is proved.
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4 An arbitrary polynomial system

Let us consider an arbitrary polynomial system

ẋ = Pn(x, y, µ1, . . . , µk), ẏ = Qn(x, y, µ1, . . . , µk) (4.1)

containing k field rotation parameters, µ1, . . . , µk, and having an anti-saddle
at the origin. Generalizing the main result of the previous section on the
maximum number of limit cycles surrounding a singular point in Liénard’s
polynomial system (1.2), we prove the following theorem.

Theorem 4.1. Polynomial system (4.1) containing k field rotation parameters

and having a singular point of the center type at the origin for the zero values

of these parameters can have at most k−1 limit cycles surrounding the origin.

Proof. Vanish all parameters of (4.1) and suppose that the obtained system

ẋ = Pn(x, y, 0, . . . , 0), ẏ = Qn(x, y, 0, . . . , 0) (4.2)

has a singular point of the center type at the origin. Let us input successively
the field rotation parameters, µ1, . . . , µk, into this system.

Suppose, for example, that µ1 > 0 and that the vector field of the system

ẋ = Pn(x, y, µ1, 0, . . . , 0), ẏ = Qn(x, y, µ1, 0, . . . , 0) (4.3)

is rotated counterclockwise turning the origin into a stable focus under in-
creasing µ1.

Fix µ1 and input the parameter µ2 into (4.3) changing it so that the field of
the system

ẋ = Pn(x, y, µ1, µ2, 0, . . . , 0), ẏ = Qn(x, y, µ1, µ2, 0, . . . , 0) (4.4)

would be rotated in opposite direction (clockwise). Let be so for µ2 < 0.
Then, for some value of this parameter, a limit cycle will appear in system
(4.4). There are three logical possibilities for such a bifurcation: 1) the limit
cycle appears from the focus at the origin; 2) it can also appear from some
separatrix cycle surrounding the origin; 3) the limit cycle appears from a
so-called “trajectory concentration”. In the last case, the limit cycle is semi-
stable and, under further decreasing µ2, it splits into two limit cycles (stable
and unstable), one of which then disappears at (or tends to) the origin and the
other disappears on (or tends to) some separatrix cycle surrounding this point.
But since the stability character of both a singular point and a separatrix cycle
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is quite easily controlled [15], this logical possibility can be excluded. Let us
choose one of the two other possibilities: for example, the first one, the so-
called Andronov–Hopf bifurcation. Suppose that, for some value of µ2, the
focus at the origin becomes non-rough, changes the character of its stability
and generates a stable limit cycle, Γ1.

Under further decreasing µ2, three new logical possibilities can arise: 1) the
limit cycle Γ1 disappears on some separatrix cycle surrounding the origin;
2) a separatrix cycle can be formed earlier than Γ1 disappears on it, then it
generates one more (unstable) limit cycle, Γ2, which joins with Γ1 forming
a semi-stable limit cycle, Γ12, disappearing in a “trajectory concentration”
under further decreasing µ2; 3) in the domain D1 outside the cycle Γ1 or in
the domain D2 inside Γ1, a semi-stable limit cycle appears from a “trajectory
concentration” and then splits into two limit cycles (logically, the appearance
of such semi-stable limit cycles can be repeated).

Let us consider the third case. It is clear that, under decreasing µ2, a semi-
stable limit cycle cannot appear in the domain D2, since the focus spirals filling
this domain will untwist and the distance between their coils will increase
because of the vector field rotation. By contradiction, we can prove that a
semi-stable limit cycle cannot appear in the domain D1. Suppose it appears
in this domain for some values of the parameters µ∗

1 > 0 and µ∗

2 < 0. Return
to initial system (4.2) and change the inputting order for the field rotation
parameters. Input first the parameter µ2 < 0:

ẋ = Pn(x, y, µ2, 0, . . . , 0), ẏ = Qn(x, y, µ2, 0, . . . , 0). (4.5)

Fix it under µ2 = µ∗

2. The vector field of (4.5) is rotated clockwise and the
origin turns into a unstable focus. Inputting the parameter µ1 > 0 into (4.5),
we get again system (4.4), the vector field of which is rotated counterclockwise.
Under this rotation, a stable limit cycle, Γ1, will appear from some separatrix
cycle. The limit cycle Γ1 will contract, the outside spirals winding onto this
cycle will untwist and the distance between their coils will increase under
increasing µ1 to the value µ∗

1. It follows that there are no values of µ∗

2 < 0 and
µ∗

1 > 0, for which a semi-stable limit cycle could appear in the domain D1.

The second logical possibility can be excluded by controlling the stability
character of the separatrix cycle [15]. Thus, only the first possibility is valid,
i. e., system (4.4) has at most one limit cycle.

Let system (4.4) have the unique limit cycle Γ1. Fix the parameters µ1 > 0,
µ2 < 0 and input the third parameter, µ3 > 0, into this system supposing that
µ3 rotates its vector field counterclockwise:

ẋ = Pn(x, y, µ1, µ2, µ3, 0, . . . , 0), ẏ = Qn(x, y, µ1, µ2, µ3, 0, . . . , 0). (4.6)

16



Here we can have two basic possibilities: 1) the limit cycle Γ1 disappears at the
origin; 2) the second (unstable) limit cycle, Γ2, appears from the origin and,
under further increasing the parameter µ3, the cycle Γ2 joins with Γ1 forming a
semi-stable limit cycle, Γ12, which disappears in a “trajectory concentration”
surrounding the origin. Besides, we can also suggest that: 3) in the domain D2

bounded by the origin and Γ1, a semi-stable limit cycle, Γ23, appears from a
“trajectory concentration”, splits into an unstable cycle, Γ2, and a stable cycle,
Γ3, and then the cycles Γ1, Γ2 disappear through a semi-stable limit cycle, Γ12,
and the cycle Γ3 disappears through the Andronov–Hopf bifurcation; 4) a semi-
stable limit cycle, Γ34, appears in the domain D2 bounded by the cycles Γ1,
Γ2 and, for some set of values of the parameters, µ∗

1, µ∗

2, µ∗

3, system (4.6) has
at least four limit cycles.

Let us consider the last, fourth, case. It is clear that a semi-stable limit cycle
cannot appear neither in the domain D1 bounded on the inside by the cycle
Γ1 nor in the domain D3 bounded by the origin and Γ2 because of increasing
the distance between the spiral coils filling these domains under increasing the
parameter µ3. To prove impossibility of the appearance of a semi-stable limit
cycle in the domain D2, suppose the contrary, i. e., for some set of values of
the parameters, µ∗

1 > 0, µ∗

2 < 0, and µ∗

3 > 0, such a semi-stable cycle exists.
Return to system (4.2) again and input first the parameters µ3 > 0, µ1 > 0:

ẋ = Pn(x, y, µ1, µ3, 0, . . . , 0), ẏ = Qn(x, y, µ1, µ3, 0, . . . , 0). (4.7)

Fix these parameters under µ3 = µ∗

3, µ1 = µ∗

1 and input the parameter µ2 < 0
into (4.7) getting again system (4.6). Since, on our assumption, this system
has two limit cycles for µ2 > µ∗

2, there exists some value of the parameter, µ12
2

(µ∗

2 < µ12
2 < 0), for which a semi-stable limit cycle, Γ12, appears in system (4.6)

and then splits into a stable cycle, Γ1, and an unstable cycle, Γ2, under further
decreasing µ2. The formed domain D2 bounded by the limit cycles Γ1, Γ2 and
filled by the spirals will enlarge, since, on the properties of a field rotation
parameter, the interior unstable limit cycle Γ2 will contract and the exterior
stable limit cycle Γ1 will expand under decreasing µ2. The distance between
the spirals of the domain D2 will naturally increase, what will prohibit from
the appearance of a semi-stable limit cycle in this domain for µ2 < µ12

2 .

Thus, there are no such values of the parameters, µ∗

1 > 0, µ∗

2 < 0, µ∗

3 > 0, for
which system (4.6) would have an additional semi-stable limit cycle. Therefore,
the fourth case cannot be realized. The third case is considered absolutely
similarly. It follows from the first two cases that system (4.6) can have at
most two limit cycles.

Suppose that system (4.6) has two limit cycles, Γ1 and Γ2, fix the parameters
µ1 > 0, µ2 < 0, µ3 > 0 and input the fourth parameter, µ4 < 0, into this
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system supposing that µ4 rotates its vector field clockwise:

ẋ = Pn(x, y, µ1, . . . , µ4, 0, . . . , 0), ẏ = Qn(x, y, µ1, . . . , µ4, 0, . . . , 0). (4.8)

The most interesting logical possibility here is that when the third (stable)
limit cycle, Γ3, appears from the origin and then, under preservation of the
cycles Γ1 and Γ2, in the domain D3 bounded on the inside by the cycle Γ3

and on the outside by the cycle Γ2, a semi-stable limit cycle, Γ45, appears and
then splits into a stable cycle, Γ4, and an unstable cycle, Γ5, i. e., when system
(4.8) for some set of values of the parameters, µ∗

1, µ∗

2, µ∗

3, µ∗

4, has at least five
limit cycles. Logically, such a semi-stable limit cycle could also appear in the
domain D1 bounded on the inside by the cycle Γ1, since, under decreasing
µ4, the spirals of the trajectories of (4.8) will twist and the distance between
their coils will decrease. On the other hand, in the domain D2 bounded on
the inside by the cycle Γ2 and on the outside by the cycle Γ1 and also in the
domain D4 bounded by the origin and Γ3, a semi-stable limit cycle cannot
appear, since, under decreasing µ4, the spirals will untwist and the distance
between their coils will increase. To prove impossibility of the appearance of a
semi-stable limit cycle in the domains D3 and D1, suppose the contrary, i. e.,
for some set of values of the parameters, µ∗

1 > 0, µ∗

2 < 0, µ∗

3 > 0, and µ∗

4 < 0,
such a semi-stable cycle exists. Return to system (4.2) again, input first the
parameters µ4 < 0, µ2 < 0 and then the parameter µ1 > 0:

ẋ = Pn(x, y, µ1, µ2, µ4, 0, . . . , 0), ẏ = Qn(x, y, µ1, µ2, µ4, 0, . . . , 0). (4.9)

Fix the parameters µ4, µ2 under the values µ∗

4, µ∗

2, respectively. Under increas-
ing µ1, a separatrix cycle is formed around the origin generating a stable limit
cycle, Γ1. Fix µ1 under the value µ∗

1 and input the parameter µ3 > 0 into (4.9)
getting system (4.8).

Since, on our assumption, system (4.8) has three limit cycles for µ3 < µ∗

3, there
exists some value of the parameter µ23

3 (0 < µ23
3 < µ∗

3) for which a semi-stable
limit cycle, Γ23, appears in this system and then splits into an unstable cycle,
Γ2, and a stable cycle , Γ3, under further increasing µ3. The formed domain
D3 bounded by the limit cycles Γ2, Γ3 and also the domain D1 bounded on the
inside by the limit cycle Γ1 will enlarge and the spirals filling these domains
will untwist excluding a possibility of the appearance of a semi-stable limit
cycle there.

All other combinations of the parameters µ1, µ2, µ3, and µ4 are considered in
a similar way. It follows that system (4.8) has at most three limit cycles. If we
continue the procedure of successive inputting the field rotation parameters,
µ5, µ6, . . . , µk, into system (4.2), it is possible to conclude that system (4.1)
can have at most k − 1 limit cycles surrounding the origin. The theorem is
proved.
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5 The Wintner–Perko termination principle

For the global analysis of limit cycle bifurcations in [15], we used the Wintner–
Perko termination principle which was stated for relatively prime, planar,
analytic systems and which connected the main bifurcations of limit cycles [27],
[31]. Let us formulate this principle for the polynomial system

ẋ = f(x, µ), (5.1µ)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial vector function).

Theorem 5.1 (Wintner–Perko termination principle). Any one-para-

meter family of multiplicity-m limit cycles of relatively prime polynomial sys-

tem (5.1µ) can be extended in a unique way to a maximal one-parameter

family of multiplicity-m limit cycles of (5.1µ) which is either open or cyclic.

If it is open, then it terminates either as the parameter or the limit cycles be-

come unbounded; or, the family terminates either at a singular point of (5.1µ),
which is typically a fine focus of multiplicity m, or on a (compound ) separatrix

cycle of (5.1µ), which is also typically of multiplicity m.

The proof of the Wintner–Perko termination principle for general polynomial
system (5.1µ) with a vector parameter µ ∈ Rn parallels the proof of the
planar termination principle for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (5.1λ)

with a single parameter λ ∈ R (see [15], [27]), since there is no loss of generality
in assuming that system (5.1µ) is parameterized by a single parameter λ; i. e.,
we can assume that there exists an analytic mapping µ(λ) of R into Rn such
that (5.1µ) can be written as (5.1 µ(λ)) or even (5.1λ) and then we can repeat
everything, what had been done for system (5.1λ) in [27]. In particular, if λ is
a field rotation parameter of (5.1λ), it is valid the following Perko’s theorem
on monotonic families of limit cycles.

Theorem 5.2. If L0 is a nonsingular multiple limit cycle of (5.10), then L0

belongs to a one-parameter family of limit cycles of (5.1λ); furthermore:

1) if the multiplicity of L0 is odd, then the family either expands or contracts

monotonically as λ increases through λ0;

2) if the multiplicity of L0 is even, then L0 befurcates into a stable and an

unstable limit cycle as λ varies from λ0 in one sense and L0 disappears as λ
varies from λ0 in the opposite sense; i. e., there is a fold bifurcation at λ0.
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Using Theorems 5.1 and 5.2 in [12]–[16], we proved a theorem on three limit
cycles around a singular point for canonical systems (2.2) and (2.3). Let us
prove the same theorem using systems (2.4) and (2.5).

Theorem 5.3. There exists no quadratic system having a swallow-tail bifur-

cation surface of multiplicity-four limit cycles in its parameter space. In other

words, a quadratic system cannot have neither a multiplicity-four limit cycle

nor four limit cycles around a singular point (focus ), and the maximum multi-

plicity or the maximum number of limit cycles surrounding a focus is equal to

three.

Proof. The proof of this theorem is carried out by contradiction. Consider
canonical systems (2.4) and (2.5), where system (2.5) represents two limit
cases of (2.4).

Suppose that system (2.4) with four field rotation parameters, λ, α, β, and γ,
has four limit cycles around the origin (system (2.5) is considered in a similar
way). Then we get into some domain of the field rotation parameters being
restricted by definite conditions on two other parameters, a and c, correspond-
ing to one of the six cases of finite singularities which we considered in [15].
Without loss of generality, we can fix both of these parameters. Thus, there
is a domain bounded by three fold bifurcation surfaces forming a swallow-tail
bifurcation surface of multiplicity-four limit cycles in the space of the field
rotation parameters λ, α, β, and γ.

The corresponding maximal one-parameter family of multiplicity-four limit
cycles cannot be cyclic, otherwise there will be at least one point corresponding
to the limit cycle of multiplicity five (or even higher) in the parameter space.
Extending the bifurcation curve of multiplicity-five limit cycles through this
point and parameterizing the corresponding maximal one-parameter family
of multiplicity-five limit cycles by a field-rotation parameter, according to
Theorem 5.2, we will obtain a monotonic curve which, by the Wintner–Perko
termination principle (Theorem 5.1), terminates either at the origin or on some
separatrix cycle surrounding the origin. Since we know absolutely precisely at
least the cyclicity of the singular point (Bautin’s result [1]) which is equal
to three, we have got a contradiction with the termination principle stating
that the multiplicity of limit cycles cannot be higher than the multiplicity
(cyclicity) of the singular point in which they terminate.

If the maximal one-parameter family of multiplicity-four limit cycles is not
cyclic, on the same principle (Theorem 5.2), this again contradicts to Bautin’s
result not admitting the multiplicity of limit cycles higher than three. This
contradiction completes the proof.
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As was shown in [15], to complete the solution of Hilbert’s Sixteenth Problem

for quadratic systems, it is sufficient to prove impossibility of the (2 : 2)-
distribution of limit cycles only in the case of two finite foci and a saddle
at infinity. In [4] (see also [15]), using canonical system (2.1) with two field
rotation parameters, α and γ, in the case of two foci and a saddle at infinity,
we constructed a quadratic system with at least four limit cycles in the (3 :1)-
distribution. If to let this system have only three limit cycles in the (2 : 1)-
distribution, i. e., two cycles around the focus (0, 0) and the only one around
the focus (1, 0), it is easy to show impossibility of obtaining the second limit
cycle around (1, 0) by means of the parameters α and γ. Logically, we can
suppose only that a semi-stable cycle appears around the focus (1, 0) under
the variation of a field rotation parameter, for example, α. Then, applying
the Wintner–Perko termination principle, we can show that the maximal one-
parameter family of multiplicity-three limit cycles parameterized by another
field rotation parameter, γ, cannot terminate in the focus (1, 0), since it will be
a rough focus for any α 6= 0 (see [4], [15]). The same proof could be given for
canonical system (2.4). Thus, we have given one more proof of Theorem 2.3 on
at most four limit cycles in the only (3 : 1)-distribution for quadratic systems.

In [18], we considered a generalized Liénard’s cubic system of the form:

ẋ = y, ẏ = −x + (λ − µ) y + (3/2) x2 + µ xy − (1/2) x3 + α x2y . (5.2)

This system has three finite singularities: a saddle (1, 0) and two antisaddles —
(0, 0) and (2, 0). At infinity system (5.2) can have either the only nilpotent
singular point of fourth order with two closed elliptic and four hyperbolic
domains or two singular points: one of them is a hyperbolic saddle and the
other is a triple nilpotent singular point with two elliptic and two hyperbolic
domains. We studied global bifurcations of limit and separatrix cycles of (5.2),
found possible distributions of its limit cycles and carried out a classification
of its separatrix cycles. We proved also the following theorems.

Theorem 5.4. The foci of system (5.2) can be at most of second order.

Theorem 5.5. System (5.2) has at least three limit cycles.

Using the results obtained in [18] and applying the approach developed in this
paper, we can easily prove a much stronger theorem.

Theorem 5.6. System (5.2) has at most three limit cycles with the follow-

ing their distributions : ((1, 1), 1), ((1, 2), 0), ((2, 1), 0), ((1, 0), 2), ((0, 1), 2),
where the first two numbers denote the numbers of limit cycles surrounding

each of two anti-saddles and the third one denotes the number of limit cycles

surrounding simultaneously all three finite singularities.
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Theorem 5.6 agrees, for example, with the earlier results by Iliev and
Perko [20], but it does not agree with a quite recent result by Dumortier
and Li [7] published in the same journal. The authors of both papers use very
similar methods: small perturbations of a Hamiltonian system. In [20], the
zeros of the Melnikov functions are studied and, in particular, it is proved
that at most two limit cycles can bifurcate from either the interior or exte-
rior period annulus of the Hamiltonian under small parameter perturbations
giving a generalized Liénard system. In [7], zeros of the Abelian integrals are
studied and it is “proved” that at most four limit cycles can bifurcate from
the exterior period annulus. Thus, Dumortier and Li “obtain” a configuration
of four big limit cycles surrounding three finite singularities together with the
fifth small limit cycle which surrounds one of the anti-saddles.

The result by Dumortier and Li [7] also does not agree with the Wintner–
Perko termination principle for multiple limit cycles [15], [27]. Applying the
method as developed in [3], [12]–[17], we can show that system (5.2) cannot
have neither a multiplicity-three limit cycle nor more than three limit cycles
in any configuration. That will be another proof of Theorem 5.6 (the same
approach can be applied to proving Theorems 3.2 and 4.1 as well).

Proof of Theorem 5.6. The proof is carried out by contradiction. Suppose
that system (5.2) with three field rotation parameters, λ, µ, and α, has three
limit cycles around, for example, the origin (the case when limit cycles sur-
round another focus is considered in a similar way). Then we get into some
domain in the space of these parameters which is bounded by two fold bifur-
cation surfaces forming a cusp bifurcation surface of multiplicity-three limit
cycles.

The corresponding maximal one-parameter family of multiplicity-three limit
cycles cannot be cyclic, otherwise there will be at least one point corresponding
to the limit cycle of multiplicity four (or even higher) in the parameter space.
Extending the bifurcation curve of multiplicity-four limit cycles through this
point and parameterizing the corresponding maximal one-parameter family
of multiplicity-four limit cycles by a field-rotation parameter, according to
Theorem 5.2, we will obtain a monotonic curve which, by the Wintner–Perko
termination principle (Theorem 5.1), terminates either at the origin or on some
separatrix cycle surrounding the origin. Since we know absolutely precisely at
least the cyclicity of the singular point (Theorem 5.4) which is equal to two,
we have got a contradiction with the termination principle stating that the
multiplicity of limit cycles cannot be higher than the multiplicity (cyclicity)
of the singular point in which they terminate.

If the maximal one-parameter family of multiplicity-three limit cycles is not
cyclic, on the same principle (Theorem 5.1), this again contradicts to Theo-
rem 5.4 not admitting the multiplicity of limit cycles higher than two. More-
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over, it also follows from the termination principle that neither the ordinary
separatrix loop nor the eight-loop cannot have the multiplicity (cyclicity)
higher than two (in that way, it can be proved that the cyclicity of three
other separatrix cycles [18] is at most two). Therefore, according to the same
principle, there are no more than two limit cycles in the exterior domain sur-
rounding all three finite singularities of (5.2). Thus, system (5.2) cannot have
neither a multiplicity-three limit cycle nor more than three limit cycles in any
configuration. The theorem is proved.

6 Conclusion

In [15], applying the methods of catastrophe theory and the Wintner–Perko
termination principle for multiple limit cycles, we have developed the global
bifurcation theory of planar polynomial dynamical systems and, basing on
this theory, we have suggested a program on the complete solution of Hilbert’s

Sixteenth Problem in the case of quadratic systems. In principal, the program
has been realized in [15] (see Section 5). In this paper, we have presented
a new (geometric) approach to its realization (Section 2). Besides, we have
applied this approach to solving the Problem in the case of Liénard’s polyno-
mial system (it is Smale’s Thirteenth Problem) and to completing the global
qualitative analysis of a generalized Liénard’s cubic system with three finite
singularities (Section 3 and Section 5). Generalizing the obtained results, we
have also presented a solution of the Problem on the maximum number of
limit cycles surrounding a singular point for an arbitrary polynomial system
(Section 4).

Our program on the solution of Hilbert’s Sixteenth Problem is an alternative
to the program which is put forward in [8], [9] and which is often called as
“Roussarie’s program” by the name of its ideological inspirer [28]. Roussarie’s
program is reduced to the classification of separatrix cycles, determining their
cyclicity and finding an upper bound of the number of limit cycles for quadratic
systems. Unfortunately, there are some serious problems in the realization of
this program: for example, it is not clear how to determine the cyclicity of
non-monodromic separatrix cycles when there is no return map in the neigh-
borhood of these cycles and there is no general approach to the study of the
cyclicity of separatrix cycles in the case of center when the return map is iden-
tical zero. Besides, even in the case of realization of the program, as its authors
note themselves [8], the obtained upper bound of the number of limit cycles
obviously can not be optimal, since the used pure analytic methods cannot
ensure neither the global control of limit cycle bifurcatins around a singu-
lar point nor, especially, the simultaneous control of the bifurcations around
different singular points.
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Thereupon, it makes sense to say some words on Roussarie’s review MR2023976
(2005d:37102) on [15]. The only concrete remark in this “awkward” review is
the following: “I just mention the hazardous claim made in Theorem 4.12,
page 137, that there exists no quadratic system having a swallow-tail bifur-
cation surface of multiplicity-four limit cycles. Looking at the proof, it seems
that the author unfortunately confuses two different notions: paths of limit
cycles, as defined in Definition 4.7, page 112, and lines of multiple limit cy-
cles, as defined by Perko (and recalled in Definition 4.13, page 127). In fact,
there is nothing forbidding that a path begin at a parameter value with a
multiplicity-four limit cycle and end at a focus point”. So, Roussarie’s remark
is related to a swallow-tail bifurcation surface of multiplicity-four limit cy-
cles. However, Definition 4.13, page 127, is a definition of a cusp bifurcation
surface of multiplicity-three limit cycles. This is an evident lack of correspon-
dence! Maybe, the reviewer means Definition 4.14, pages 128-129? Then it
seems that he did not pay attention for our remark on page 132, following just
after Theorem 4.10, which could perhaps settle his doubts. Moreover, there
is a reference to the corresponding work by Perko in this remark (see also
[27]). Or the reviewer has complaints against Perko’s work, too? Besides, his
“claim” that “there is nothing forbidding that a path begin at a parameter
value with a multiplicity-four limit cycle and end at a focus point” says that
he unfortunately does not see (or does not want to see) Bautin’s result [1]
(Theorem 2.1, page 45) on the cyclicity of a singular point of the focus or
center type, which is an obstacle on such a path. Or, maybe, Bautin’s result
is also “questionable”?

So, we have found two approaches to solving Smale’s Thirteenth and Hilbert’s

Sixteenth Problems. Both these approaches are based on the application of field
rotation parameters which determine limit cycle bifurcations of polynomial
systems.
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