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Abstract

In this paper, we complete the global qualitative analysis of the Leslie-Gover system
with the Allee effect which models the dynamics of the populations of predators
and their prey in a given ecological or biomedical system. In particular, studying
global bifurcations, we prove that such a system can have at most two limit cycles
surrounding one singular point. We also conduct some numerical experiments to
illustrate the obtained results.
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1 Introduction

In this paper, we complete the global qualitative analysis of a predator-prey
system derived from the Leslie-Gower type model, where the most common
mathematical form to express the Allee effect in the prey growth function
is considered; see [24]. The basis for analyzing the dynamics of such com-
plex ecological or biomedical systems is the interactions between two species,
particularly the dynamical relationship between predators and their prey [27].
From the classical Lotka—Volterra model, several alternatives for modeling con-
tinuous time consumer-resource interactions have been proposed [30]. In our
paper, a predator-prey model described by an autonomous two-dimensional
differential system is analyzed considering the following aspects: 1) the prey
population is affected by the Allee effect [4], [9]; 2) the functional response is
linear [29]; 3) the equation for predator is a logistic-type growth function as
in the Leslie-Gower model [1].

The main objective of the study in [24] was to describe the model behavior
and to establish the number of limit cycles for the system under consideration.
Such results are quite significant for the analysis of most applied mathemati-
cal models, thus facilitating the understanding of many real world oscillatory
phenomena in nature. The problem of determining conditions which guarantee
the uniqueness of a limit cycle or the global stability of the unique positive
equilibrium in predator-prey systems has been extensively studied over the
last decades. This question starts with the work [7] where it was proved for
the first time the uniqueness of a limit cycle for a specific predator-prey sys-
tem with a Holling type II functional response using the symmetry of prey
isocline. It is well-known that if a unique unstable positive equilibrium exists
in a compact region, then, according to the Poincaré-Bendixon theorem, at
least one limit cycle must exist. On the other hand, if the unique positive equi-
librium of a predator-prey system is locally stable but not hyperbolic, there
might be more than one limit cycle created via multiple Hopf bifurcations [8]
and the number of limit cycles must be established. The studied system is
defined in an open positive invariant region and the Poincaré-Bendixon theo-
rem does not apply. Due to the existence of an heteroclinic curve determined
by the equilibrium point associated to the strong Allee effect, a subregion in
the phase plane is determined where two limit cycles exist for certain para-
meter values, the innermost stable and the outermost unstable. Such result
has not been reported in previous papers and represents a significant differ-
ence with the Gause-type predation models [23]. In [24], it was proved also the
existence of parameter subsets for which the system can have: a cusp point
(Bogdanov—Takens bifurcation), homoclinic curves (homoclinic bifurcation),
Hopf bifurcation and the existence of two limit cycles, the innermost stable
and the outermost unstable, in inverse stability as they usually appear in the
Gause-type models. However, the qualitative analysis of [24] was incomplete,



since the global bifurcations of limit cycles could not be studied properly by
means of the methods and techniques which were used earlier in the qualitative
theory of dynamical systems. Applying to the system new bifurcation methods
and geometric approaches developed in [6], [10]-[22], we complete this quali-
tative analysis. We also conduct some numerical experiments to illustrate the
obtained results [31]. In Section 2, we present several predator-prey models
which we considered earlier in [6], [20], [21] and will consider in this paper.
In Section 3, we give some basic facts on singular points and limit cycles of
planar dynamical systems. In Section 4, we complete the global qualitative
analysis of a quartic dynamical system corresponding to the Leslie-Gover sys-
tem with the Allee effect which models the dynamics of the populations of
predators and their prey in a given ecological or biomedical system.

2 Predator-prey models

In [20], [21], we considered a quartic family of planar vector fields correspond-
ing to a rational Holling-type dynamical system which models the dynamics
of the populations of predators and their prey in a system which is a varia-
tion on the classical Lotka—Volterra one. For the latter system the change of
the prey density per unit of time per predator called the response function
is proportional to the prey density. This means that there is no saturation
of the predator when the amount of available prey is large. However, it is
more realistic to consider a nonlinear and bounded response function, and in
fact different response functions have been used in the literature to model the
predator response; see [3]-[6], [25], [26], [32].

For instance, in [32], the following predator—prey model has been studied:

& =x(a— M) —yp(z)  (prey),

(1.1)

y = —6y + yq(x) (predator).

The variables x > 0 and y > 0 denote the density of the prey and preda-
tor populations respectively, while p(x) is a non-monotonic response function
given by

mx

r)=—F-—— 1.2
p(z) az? + Bz + 1’ (1.2)
where «, m are positive and where 3 > —2,/a. Observe that in the absence
of predators, the number of prey increases according to a logistic growth law.
The coefficient a represents the intrinsic growth rate of the prey, while A > 0
is the rate of competition or resource limitation of prey. The natural death

rate of the predator is given by 6 > 0. In Gause’s model the function ¢(z) is



given by ¢q(z) = cp(z), where ¢ > 0 is the rate of conversion between prey and
predator [32].

In [5], [6], the following family has been investigated:
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(1.3)

where o > 0, 8 > —2y/a, § > 0, A > 0, and p > 0 are parameters. Note that
(1.3) is obtained from (1.1) by adding the term —puy? to the second equation
and after scaling = and y, as well as the parameters and the time ¢. In this way,
it has been taken into account competition between predators for resources
other than prey. The non-negative coefficient p is the rate of competition
amongst predators. Systems (1.1)—(1.3) represent predator-prey models with
a generalized Holling response functions of type I'V.

In [26], it has been considered the following generalized Gause predator—prey
system

& =rz(l —z/k) —yp(z),

(1.4)
y=y(=d+cp(x))
with a generalized Holling response function of type III:
2
mx
=\ 1.5
p(z) ax? +bxr +1 (1.5)

This system, where x > 0 and y > 0, has seven parameters: the parameters
a, ¢, d, k, m, r are positive and the parameter b can be negative or non-
negative. The parameters a, b, and m fitting parameters of response function.
The parameter d is the death rate of the predator while ¢ is the efficiency of
the predator to convert prey into predators. The prey follows a logistic growth
with a rate r in the absence of predator. The environment has a prey capacity
determined by k.

The case b > 0 has been studied earlier; see the references in [26]. The case
b < 0 is more interesting: it provides a model for a functional response with
limited group defence. In opposition to the generalized Holling function of
type IV studied in [5], [6], [32], where the response function tends to zero as
the prey population tends to infinity, the generalized function of type III tends
to a non-zero value as the prey population tends to infinity. The functional
response of type III with b < 0 has a maximum at some point; see [26]. When
studying the case b < 0, one can find also a Bogdanov-Takens bifurcation of



codimension 3 which is an organizing center for the bifurcation diagram of
system (1.4)—(1.5) [26].

After scaling = and y, as well as the parameters and the time ¢, this system
can be reduced to a system with only four parameters (o, 3, 6, p) [26]:

&= pr(l —x) — yp(z),

(1.6)
y = y(=0+p(x)),
where
- 1.7
PO = o BT T 17
In [20], [21], we studied the system
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where z > 0 and y > 0; «a > 0, —oo < 8 < +00, 0 >0, A > 0, and g > 0 are
parameters.

The Leslie-Gower predator-prey model incorporating the Allee effect phe-
nomenon on prey is described by the Kolmogorov-type rational dynamical
system [24]:

isz(l—i)@—WU—%> (prey),

Y= sy (1 - y) (predator),
nx

(1.9)

where the parameters have the following biological meanings: r and s repre-
sent the intrinsic prey and predator growth rates, respectively; K is the prey
environment carrying capacity; m is the Allee threshold or minimum of viable
population; ¢ is the maximal per capita consumption rate, i.e., the maximum
number of prey that can be eaten by a predator in each time unit; n is a
measure of food quality that the prey provides for conversion into predator
births.

System (1.9) can be written in the form of a quartic dynamical system [24]:

i=2*((1-2)(x—m)—ay) =P,
(1.10)

y=y(Br—vy) =Q.



Together with (1.10), we will also consider an auxiliary system (see [2], [28])
T =P —0Q, y=Q+ 0P, (1.11)

applying to these systems new bifurcation methods and geometric approaches
developed in [6], [10]-[22] and completing the qualitative analysis of (1.9).

3 Basic facts on singular points and limit cycles

The study of singular points of system (1.9) (or (1.10) and 1.11)) will use two
index theorems by H. Poincaré; see [2]. But first let us define the singular point
and its Poincaré index [2].

Definition 3.1. A singular point of the dynamical system

where P(z,y) and Q(x, y) are continuous functions (for example, polynomials),
is a point at which the right-hand sides of (3.1) simultaneously vanish.

Definition 3.2. Let S be a simple closed curve in the phase plane not passing
through a singular point of system (3.1) and M be some point on S. If the
point M goes around the curve S in positive direction (counterclockwise)
one time, then the vector coinciding with the direction of a tangent to the
trajectory passing through the point M is rotated through the angle 27j
(j = 0,£1,42,...). The integer j is called the Poincaré index of the closed
curve S relative to the vector field of system (3.1) and has the expression

1 [PdQ—QdP

‘7:27TS P2 4+ Q?

According to this definition, the index of a node or a focus, or a center is equal
to +1 and the index of a saddle is —1.

Theorem 3.1 (First Poincaré Index Theorem). If N, N¢, N,, and C are
respectively the number of nodes, foci, centers, and saddles in a finite part of
the phase plane and N’ and C" are the number of nodes and saddles at infinity,
then it is valid the formula

N+ Ny+N.+N=C+C"+1.



Theorem 3.2 (Second Poincaré Index Theorem). If all singular points
are simple, then along an isocline without multiple points lying in a Poincaré
hemisphere which is obtained by a stereographic projection of the phase plane,
the singular points are distributed so that a saddle is followed by a node or a
focus, or a center and vice versa. If two points are separated by the equator
of the Poincaré sphere, then a saddle will be followed by a saddle again and a
node or a focus, or a center will be followed by a node or a focus, or a center.

Consider polynomial system (3.1) in the vector form

= f(x,p), (3.2)
where £ € R?*; pu € R"; f € R? ( f is a polynomial vector function).

Let us recall some basic facts concerning limit cycles of (3.2). But first of all,
let us state two fundamental theorems from theory of analytic functions [10].

Theorem 3.3 (Weierstrass Preparation Theorem). Let F(w,z) be an
analytic in the neighborhood of the point (0,0) function satisfying the following
conditions

JF(0,0) _9MF(0,0) - 0FF(0,0)

FO0 == ==y %y 7Y

Then in some neighborhood |w| < €, |z| < & of the points (0,0) the function
F(w, z) can be represented as

F(w,2)=(w+ A (2)w* 7+ ..+ A1 (2)w + Ap(2))®(w, 2),

where ®(w, z) is an analytic function not equal to zero in the chosen neigh-
borhood and Ai(2), ..., Ax(z) are analytic functions for |z| < 4.

From this theorem it follows that the equation F'(w,z) = 0in a sufficiently
small neighborhood of the point (0, 0) is equivalent to the equation

w4+ A (2) w4 A (2)w + Ag(2) =0,

which left-hand side is a polynomial with respect to w. Thus, the Weierstrass
preparation theorem reduces the local study of the general case of implicit
function w(z), defined by the equation F(w,z) = 0, to the case of implicit
function, defined by the algebraic equation with respect to w.

Theorem 3.4 (Implicit Function Theorem). Let F(w, z) be an analytic
function in the neighborhood of the point (0,0) and F'(0,0)=0, F}(0,0)+#0.



Then there exist & > 0 and € > 0 such that for any z satisfying the condition
|z| < d the equation F(w,z) = 0 has the only solution w = f(z) satisfying
the condition |f(z)| < e. The function f(z) is expanded into the series on
positive integer powers of z which converges for |z| <6, i.e., it is a single-
valued analytic function of z which vanishes at z = 0.

Assume that system (3.2) has a limit cycle
Lo:a=py(t)

of minimal period Tj at some parameter value p=p, € R"; see Fig. 1 [10].

h(s)

) 2

Figure 1. The Poincaré return map in the neighborhood of a multiple limit cycle.

Let [ be the straight line normal to Ly at the point p, = ¢,(0) and s be
the coordinate along [ with s positive exterior of Lg. It then follows from the
implicit function theorem that there is a 6 > 0 such that the Poincaré map
h(s,p) is defined and analytic for |s| < § and || — pyl| < 6. Besides, the
displacement function for system (3.2) along the normal line [ to Lg is defined
as the function

d(s,p) = h(s,p) — s.

In terms of the displacement function, a multiple limit cycle can be defined as
follows [10].

Definition 3.3. A limit cycle Ly of (3.2) is a multiple limit cycle iff d(0, py) =
d,(0, o) =0 and it is a simple limit cycle (or hyperbolic limit cycle) if it is
not a multiple limit cycle; furthermore, Ly is a limit cycle of multiplicity m iff

d<0a IJ’O) - dT(()? IJJO) == dgm_l)(()v IJ’O) = 07

di™(0, ) # 0.

Note that the multiplicity of Ly is independent of the point p, € Ly through
which we take the normal line [.



Let us write down also the following formulas which have already become
classical ones and determine the derivatives of the displacement function in
terms of integrals of the vector field f along the periodic orbit ¢, (¢) [10]:

To
4,0, 1o) = exp [V - F(eo(t), o) dt — 1
0

and .y
dyi; (0, o) = - X
BT 1 F (o (0), o)
To t
Jexp (— 9 (). o) df) X F A £y (9o(t). o) dt
0 0
for j = 1,...,n, where wy = +1 according to whether L, is positively or

negatively oriented, respectively, and where the wedge product of two vectors
x = (z1, ) and y = (y1,y2) in R? is defined as

TANY =2T1Y2 — T2Y1.

Similar formulas for d.(0, py) and dg,, (0, pg) can be derived in terms of in-
tegrals of the vector field f and its first and second partial derivatives along

Po(t)-

Now we can formulate the Wintner—Perko termination principle [28] for poly-
nomial system (3.2).

Theorem 3.5 (Wintner—Perko Termination Principle). Any one-para-
meter family of multiplicity-m limit cycles of relatively prime polynomial sys-
tem (3.2) can be extended in a unique way to a maximal one-parameter family
of multiplicity-m limit cycles of (3.2) which is either open or cyclic.

If it 1s open, then it terminates either as the parameter or the limit cycles
become unbounded; or, the family terminates either at a singular point of (3.2),
which is typically a fine focus of multiplicity m, or on a (compound) separatriz
cycle of (3.2) which is also typically of multiplicity m.

The proof of this principle for general polynomial system (3.2) with a vector
parameter p € R" parallels the proof of the planar termination principle for
the system

.T:P(.T,y,)\), y:Q('Taya)‘) (33)

with a single parameter A € R (see [10], [28]), since there is no loss of generality
in assuming that system (3.2) is parameterized by a single parameter X; i.e.,
we can assume that there exists an analytic mapping () of R into R" such
that (3.2) can be written as (3.3) and then we can repeat everything, what



had been done for system (3.3) in [28]. In particular, if A is a field rotation
parameter of (3.3), the following Perko’s theorem on monotonic families of
limit cycles is valid; see [28].

Theorem 3.6. If Ly is a nonsingular multiple limit cycle of (3.3) for A = Ao,
then Lo belongs to a one-parameter family of limit cycles of (3.3); furthermore:

1) if the multiplicity of Lo is odd, then the family either expands or contracts
monotonically as \ increases through \o;

2) if the multiplicity of Lo is even, then Lq bifurcates into a stable and an
unstable limit cycle as A varies from Ay in one sense and Lo disappears as A
varies from \g in the opposite sense; i. e., there is a fold bifurcation at \g.

4 Global bifurcation analysis

Consider system (1.10). This system has two invariant straight lines: z = 0
(double) and y = 0. Its finite singularities are determined by the algebraic
system

2*((1 - 2)(x —m) —ay) =0,
(4.1)

y(Bx—~y)=0.

From (4.1), we have got: three singular points (0,0), (m,0), (1,0) (suppose
that m < 1) and at most two points defined by the system

(1-2)(z—m)—ay=0,
(4.2)

fr—~yy=0.

In according to the second Poincaré index theorem (Theorem 3.2), the point
(0,0) is a double (saddle-node), (m,0) is a node, and (1,0) is a saddle (for
m < 1); see also [24]. In addition, a double singular point (saddle-node) may
appear in the first quadrant and bifurcate into two singular points. If there
exist exactly two simple singular points in the open first quadrant, then the
singular point on the left with respect to the x-axis is a saddle and the singular
point on the right is an anti-saddle [24]. If a singular point is not in the first
quadrant, in consequence, it has no biological significance.

To study singular points of (1.10) at infinity, consider the corresponding diffe-
rential equation

dy y(Bx—y)

dr  22((1 —xz)(x —m) —ay)’

(4.3)
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Dividing the numerator and denominator of the right-hand side of (4.3) by z*
(x # 0) and denoting y/x by u (as well as dy/dz), we will get the equation

u=0, where u=y/z, (4.4)

for all infinite singularities of (4.3) except when x = 0 (the “ends” of the
y-axis); see [2], [10]. For this special case we can divide the numerator and
denominator of the right-hand side of (4.3) by y* (y # 0) denoting z/y by v
(as well as dz/dy) and consider the equation

vt =0, where v=u1/y. (4.5)

In according to the Poincaré index theorems (Theorem 3.1 and Theorem 3.2),
the equations (4.4) and (4.5) give two singular points at infinity for (4.3):
a simple node on the “ends” of the z-axis and a quartic saddle-node on the
“ends” of the y-axis.

Using the obtained information on singular points and applying a geometric
approach developed in [6], [10]-[22], we can study the limit cycle bifurcations of
system (1.10). This study will use some results obtained in [24]: in particular,
the results on the cyclicity of a singular point of (1.10). However, it is surely
not enough to have only these results to prove the main theorem of this paper
concerning the maximum number of limit cycles of system (1.10).

Applying the definition of a field rotation parameter [2], [10], [28], i.e., a
parameter which rotates the field in one direction, to system (1.10), let us
calculate the corresponding determinants for the parameters «, (3, and 7,
respectively:

Au = PQ, — QP = 2 (Bx — 7). (4.6)
Ay = PQjs— QP = a*y(1 —a)(x —m) — ay), (4.7)
A, = PQ, — QP = —a%X(1 —a)(x —m) — ay). (48)

It follows from (4.6) that in the first quadrant the sign of A, depends on the
sign of Sz —~vy and from (4.7) and (4.8) that the sign of Ag or A, depends on
the sign of (1 — z)(x — m) — ay on increasing (or decreasing) the parameters
a, 3, and 7, respectively.

Therefore, to study limit cycle bifurcations of system (1.10), it makes sense
together with (1.10) to consider also an auxiliary system (1.11) with a field
rotation parameter ¢ :

As=P*+Q*>0. (4.9)

Using system (1.11) and applying Perko’s results, we will prove the following
theorem.

11



Theorem 4.1. The Leslie-Gover system with the Allee effect (1.10) can have
at most two limit cycles surrounding one singular point.

Proof. In [24], it was proved that system (1.10) can have at least two limit cy-
cles. Let us prove now that this system has at most two limit cycles. The proof
is carried out by contradiction applying Catastrophe Theory; see [10], [28].

Consider system (1.11) with four parameters: «, 3, v, and 0 (we can fix the
parameter m fixing the position of the node on the z-axis). Suppose that
system (1.11) with two finite singularities in the first quadrant, a saddle S
and an anti-saddle A, has three limit cycles surrounding A. Then we get into
some domain of the parameters «, 3, v, and 6 bounded by two fold bifurcation
surfaces forming a cusp bifurcation surface of multiplicity-three limit cycles in
the space of the parameters «, 3, v, and d; see Fig. 2 [10].

S

[
K,

Figure 2. The cusp bifurcation surface.

The corresponding maximal one-parameter family of multiplicity-three limit
cycles cannot be cyclic, otherwise there will be at least one point correspon-
ding to the limit cycle of multiplicity four (or even higher) in the parameter
space; see Fig. 3 [10].

Extending the bifurcation curve of multiplicity-four limit cycles through this
point and parameterizing the corresponding maximal one-parameter family
of multiplicity-four limit cycles by the field rotation parameter ¢, according
to Theorem 3.6, we will obtain again two monotonic curves of multiplicity-

12



Figure 3. The swallow-tail bifurcation surface.

three and one, respectively, which, by the Wintner—Perko termination prin-
ciple (Theorem 3.5), terminate either at the point A or on a separatrix loop
surrounding this point. Since we know at least the cyclicity of the singular
point which is equal to two (see [24]), we have got a contradiction with the
termination principle (Theorem 3.5); see Fig. 4 [10].

G, (C))
G (C)

G, ()

.

Figure 4. The bifurcation curve (one-parameter family) of multiple limit cycles.

K,
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If the maximal one-parameter family of multiplicity-three limit cycles is not
cyclic, using the same principle, this again contradicts the cyclicity of A
(see [24]) not admitting the multiplicity of limit cycles higher than two. More-
over, it also follows from the termination principle that a separatrix loop
cannot have the multiplicity (cyclicity) higher than two in this case.

Thus, we conclude that system (1.11) (and system (1.10) as well) cannot have
either a multiplicity-three limit cycle or more than two limit cycles surrounding
a singular point which proves the theorem. Il
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