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Abstract

In this paper, we study multi-parameter planar dynamical systems and carry out the
global bifurcation analysis of such systems. To control the global bifurcations of limit
cycle in these systems, it is necessary to know the properties and combine the effects
of all their field rotation parameters. It can be done by means of the development
of our bifurcational geometric method based on the Wintner—Perko termination
principle and application of canonical systems with field rotation parameters. Using
this method, we solve, e. g., Hilbert’s Sixteenth Problem on the maximum number
of limit cycles and their distribution for the general Liénard polynomial system
and a Holling-type quartic dynamical system. We also conduct some numerical
experiments to illustrate the obtained results.
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1 Introduction

We develop geometric aspects of bifurcation theory for studying multi-para-
meter planar polynomial dynamical systems. It gives a global approach to the
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qualitative analysis of such systems and helps to combine all other approaches,
their methods and results. First of all, the two-isocline method which was de-
veloped by N.P.Erugin is used [4]. The isocline portrait is the most natural
construction in the corresponding polynomial equation. It is sufficient to have
only two isoclines (of zero and infinity) to obtain principal information on
the original system, because these two isoclines are the right-hand sides of
the system. Geometric properties of isoclines (conics, cubics, quartics, etc.)
are well-known, and all isocline portraits can be easily constructed. By means
of them, all topologically different qualitative pictures of integral curves to
within a number of limit cycles and distinguishing center and focus can be ob-
tained. Thus it is possible to carry out a rough topological classification of the
phase portraits for the polynomial systems. It is the first application of Eru-
gin’s method. After studying contact and rotation properties of isoclines, the
simplest (canonical) systems containing limit cycles can be also constructed.
Two groups of parameters can be distinguished in such systems: static and
dynamic. Static parameters determine the behavior of the phase trajectories
in principle, since they control the number, position and character of singu-
lar points in a finite part of the plane (finite singularities). Parameters from
the first group determine also a possible behavior of separatrices and singular
points at infinity (infinite singularities) under the variation of the parameters
from the second group. Dynamic parameters are rotation parameters. They
do not change the number, position and index of finite singularities and in-
volve the vector field into directional rotation. The rotation parameters allow
to control infinite singularities, the behavior of limit cycles and separatrices.
The cyclicity of singular points and separatrix cycles, the behavior of semi-
stable and other multiple limit cycles are controlled by these parameters as
well. Therefore, by means of the rotation parameters, it is possible to control
all limit cycle bifurcations and to solve the most complicated problems of the
qualitative theory of polynomial systems [4].

To control all of the limit cycle bifurcations (especially, bifurcations of multi-
ple limit cycles), it is necessary to know the properties and combine the effects
of all of the rotation parameters. It can be done by means of the development
of new methods based on the well-known Weierstrass preparation theorem
and the Perko planar termination principle stating that the maximal one-
parameter family of multiple limit cycles terminates either at a singular point,
which is typically of the same multiplicity, or on a separatrix cycle, which is
also typically of the same multiplicity [4,14]. This principle is a consequence of
the principle of natural termination which was stated for higher-dimensional
dynamical systems by A. Wintner, who studied one-parameter families of pe-
riodic orbits of the restricted three-body problem and used Puiseux series to
show that in the analytic case any one-parameter family of periodic orbits
can be uniquely continued through any bifurcation except a period-doubling
bifurcation. Such a bifurcation can happen, for example, in a Lorenz system.
Besides, the periods in a one-parameter family of a higher-dimensional system



can become unbounded in strange ways: for example, the periodic orbits may
belong to a strange invariant set, strange attractor, generated at a bifurcation
value for which there is a homoclinic tangency of the stable and unstable man-
ifolds of the Poincaré map. This cannot happen for planar systems. That is
why the Wintner—Perko termination principle is applied for studying multiple
limit cycle bifurcations of the multi-parameter planar polynomial dynamical
systems [4,14].

We have already presented a solution of Hilbert’s Sixteenth Problem in the
quadratic case of polynomial systems proving that for quadratic systems four
is really the maximum number of limit cycles and (3 : 1) is their only possible
distribution. The proof is carried out by contradiction applying catastrophe
theory. On the first step, the non-existence of four limit cycles surrounding a
singular point is proved. A canonical system containing three field-rotation pa-
rameters is considered and it is supposed that this system has four limit cycles
around the origin. Thus we get into some three-dimensional domain of the field
rotation parameters being restricted by some conditions on the rest two pa-
rameters corresponding to definite cases of singular points in the phase plane.
This three-parameter domain of four limit cycles is bounded by three fold
bifurcation surfaces forming a swallow-tail bifurcation surface of multiplicity-
four limit cycles. Since the corresponding maximal one-parameter family of
multiplicity-four limit cycles generated by a field rotation is monotonic, it is
proved that it cannot be cyclic and terminates either at the origin or on some
separatrix cycle surrounding the origin. Besides, we know absolutely precisely
the cyclicity of the singular point which is equal to three and therefore we
have got a contradiction with the termination principle stating that the mul-
tiplicity of limit cycles cannot be higher than the multiplicity (cyclicity) of the
singular point in which they terminate. Since we know the concrete properties
of all three field rotation parameters in the canonical system and can control
simultaneously bifurcations of limit cycles around different singular points, we
are able to complete the proof of the theorem [4]. The same result can be
obtained by purely geometric methods as well [6].

We have also established some preliminary results on generalizing our ideas
and methods to special planar cubic, quartic and other polynomial dynamical
systems. In [5], we have constructed a canonical cubic dynamical system of
Kukles type and have carried out the global qualitative analysis of its special
case corresponding to a generalized Liénard equation. In [11,12], using the
Wintner—Perko termination principle of multiple limit cycles and our bifur-
cational geometric approach, we have solved the problem on the maximum
number and distribution of limit cycles in the general Kukles cubic-linear sys-
tem. In [2], we have established the global qualitative analysis of centrally
symmetric cubic systems which are used as learning models of planar neu-
ral networks. In [3], we have carried out the global bifurcation analysis of a
quartic dynamical system which models the dynamics of the populations of



predators and their prey in a given ecological system. We have also completed
the study of multiple limit cycle bifurcations in the well-known FitzHugh—
Nagumo neuronal model [7]. Besides, we have presented a solution of Smale’s
Thirteenth Problem [15] proving that the Liénard system with a polynomial
of degree 2k + 1 can have at most k limit cycles [8]. Generalizing the obtained
results, we have presented a solution of Hilbert’s Sixteenth Problem on the
maximum number of limit cycles surrounding a singular point for an arbitrary
polynomial system [8].

In Section 2 of this paper, applying a canonical system with field rotation
parameters and using geometric properties of the spirals filling the interior
and exterior domains of limit cycles, we solve the limit cycle problem for the
general Liénard polynomial system with an arbitrary (but finite) number of
singular points generalizing our previous results which we obtained in [9,10]
under some assumptions on the parameters of the Liénard system. In Section 3,
we complete the global bifurcation analysis of a quartic dynamical system
corresponding to a new class of rational Holling-type systems which model the
dynamics of the populations of predators and their prey in a given ecological or
biomedical system. We also conduct some numerical experiments to illustrate
the results obtained in this paper [16].

2 The General Liénard Polynomial System

In this Section, by means of our bifurcational geometric approach [2]-[10], we
consider the general Liénard polynomial system:

=y, y=-c(l+tazt.. tayr®)+ylaptarzt.. fagz®). (1)

Suppose that a? + ...+ a3, # 0 in system (1). The finite singularities of (1)
are determined by the algebraic system

r(l+ayx+...+ayz?)=0, y=0. (2)

This system always has an anti-saddle at the origin and, in general, can have
at most 2/ + 1 finite singularities which lie on the z-axis and are distributed
so that a saddle (or saddle-node) is followed by a node or a focus, or a center
and vice versa [1]. For studying the infinite singularities, the methods applied
in [1] for Rayleigh’s and van der Pol’s equations and also Erugin’s two-isocline
method developed in [4] can be used.

Following [4], we will study limit cycle bifurcations of (1) by means of canonical
systems containing field rotation parameters of (1) [1,4].



Theorem 2.1. Liénard polynomial system (1) with limit cycles can be reduced
to one of the canonical forms:

T =Y,
y=—x(l+ax+... +ayz?) (3)
+y(ag—Pi—. .. = Bop—1+Srx+aox®+. .+ a2 +aga?)
or
&=y =Pry),
y=a(x— 1)1 +bz+... +by 12271 (4)
+y(ag—B1—...— Pogp—1+ L1z + sz +. . .+ Bop_ 122+ agz®*)
= Q(z,y),
where 1+ ayx + ...+ ayx® #0, ag, ao,. .., ag are field rotation parameters
and B1, Bs, ..., Pox_1 are semi-rotation parameters.

Proof. Let us compare system (1) with (3) and (4). It is easy to see that system
(3) has the only finite singular point: an anti-saddle at the origin. System (4)
has at list two singular points including an anti-saddle at the origin and a
saddle which, without loss of generality, can be always putted into the point
(1,0). Instead of the odd parameters oy, as,..., ag_1 in system (1), also
without loss of generality, we have introduced new parameters S, s, ...,
Pok—1 into (3) and (4).

We will study now system (4) (system (3) can be studied absolutely similarly).
Let all of the parameters g, ao, ..., age and By, B3, ..., Por_1 vanish in this
system,

i=y, y=x(@—11+bx+.. . +by 2, (5)

and consider the corresponding equation

d —1)(1+0b o byt
di/;:x(x (1 + 11’;- + by )EF(x,y). (6)

Since F(x,—y) = —F(x,y), the direction field of (6) (and the vector field
of (5) as well) is symmetric with respect to the z-axis. It follows that for
arbitrary values of the parameters by, ..., by_1 system (5) has centers as anti-
saddles and cannot have limit cycles surrounding these points. Therefore, we
can fix the parameters by,...,by_1 in system (4), fixing the position of its
finite singularities on the z-axis.



To prove that the even parameters ayg, ao, . . . , ag rotate the vector field of (4),
let us calculate the following determinants:

AaOZPQ/aO_QP:xO:yQZov

Aag = PQixg _QP:)Q :$2?J2 > 0,

Ao, = PQ., —QP =a*y*>0.
By definition of a field rotation parameter [1,4,14], for increasing each of the
parameters ag, Qa,..., ag, under the fixed others, the vector field of sys-
tem (4) is rotated in the positive direction (counterclockwise) in the whole
phase plane; and, conversely, for decreasing each of these parameters, the vec-
tor field of (4) is rotated in the negative direction (clockwise).

Calculating the corresponding determinants for the parameters (5, (s, ...,
[Bor_1, we can see that

Ag, = PQ’B1 —QP’B1 = (z —1)y?%

Ag, = PQs, —QP%, = (2% — 1) 92,

Aﬂ%—l = PQ,lekfl - QP 2321@71 = ("L‘Zkil_ 1) y2'

It follows [1,4] that, for increasing each of the parameters (;, 53, ..., Bar_1,
under the fixed others, the vector field of system (4) is rotated in the positive
direction (counterclockwise) in the half-plane x > 1 and in the negative direc-
tion (clockwise) in the half-plane z < 1 and vice versa for decreasing each of
these parameters. We will call these parameters as semi-rotation ones.

Thus, for studying limit cycle bifurcations of (1), it is sufficient to consider
the canonical systems (3) and (4) containing the field rotation parameters «p,
Qa, ..., a9, and the semi-rotation parameters 51, fs, ..., Bor_1. The theorem
is proved. ([l

By means of the canonical systems (3) and (4), we will prove the following
theorem.

Theorem 2.2. Liénard polynomial system (1) can have at most k+1+1 limit
cycles, k + 1 surrounding the origin and | surrounding one by one the other
singularities of (1).



Proof. According to Theorem 2.1, for the study of limit cycle bifurcations
of system (1), it is sufficient to consider the canonical systems (3) and (4)
containing the field rotation parameters aq, ao, ..., as; and the semi-rotation
parameters (31, (s, ..., fox_1. We will work with (4) again (system (3) can be
considered in a similar way).

Vanishing all of the parameters ag, ag, ..., as and By, B, ..., Bap_1 in (4),
we will have system (5) which is symmetric with respect to the z-axis and has
centers as anti-saddles. Its center domains are bounded by either separatrix
loops or digons of the saddles or saddle-nodes of (5) lying on the x-axis.

Let us input successively the semi-rotation parameters Sy, fs,..., Bor_1 into
system (5) beginning with the parameters at the highest degrees of z and
alternating with their signs. So, begin with the parameter (5,1 and let, for
definiteness, (o1 > 0:

T =y,
y = .CE(.T — 1)(1 -+ blx + ...+ b21_1$2l_1) (7>

+y(—Pag-1 + Lop_12%71).

In this case, the vector field of (7) is rotated in the negative direction (clock-
wise) in the half-plane z < 1 turning the center at the origin into a rough
stable focus. All of the other centers lying in the half-plane x > 1 become
rough unstable foci, since the vector field of (7) is rotated in the positive
direction (counterclockwise) in this half-plane [1,4].

Fix for_1 and input the parameter So;_3 < 0 into (7):

T =y,
y=a(x— 1)1 +bx+...+by 2% (8)

+y(—Par—s — Par—1 + Par—37* 7> + Loy 2* 7).

Then the vector field of (8) is rotated in the opposite directions in each of the
half-planes x < 1 and > 1. Under decreasing fo_3, when B3 = — k1,
the focus at the origin becomes nonrough (weak), changes the character of its
stability and generates a stable limit cycle. All of the other foci in the half-
plane x > 1 will also generate unstable limit cycles for some values of (o535
after changing the character of their stability. Under further decreasing (ox_3,
all of the limit cycles will expand disappearing on separatrix cycles of (8) [1,4].



Denote the limit cycle surrounding the origin by Ij, the domain outside the
cycle by Dy, the domain inside the cycle by Dy, and consider logical possibil-
ities of the appearance of other (semi-stable) limit cycles from a “trajectory
concentration” surrounding this singular point. It is clear that, under decreas-
ing the parameter for_3, a semi-stable limit cycle cannot appear in the domain
Dys, since the focus spirals filling this domain will untwist and the distance
between their coils will increase because of the vector field rotation [4].

By contradiction, we can also prove that a semi-stable limit cycle cannot
appear in the domain Dg;. Suppose it appears in this domain for some values
of the parameters 5, _; > 0 and /5, 5 < 0. Return to system (5) and change
the inputting order for the semi-rotation parameters. Input first the parameter

Pok—3 < 0:
T =y,
Y= .ilj(x — 1)(1 +bix+...+ b21_1$2l_1) (9)

+ y(—Pak—3 + Lar_3x*73).

Fix it under for_3 = B3, _5. The vector field of (9) is rotated counterclockwise
and the origin turns into a rough unstable focus. Inputting the parameter
Par—1 > 0 into (9), we get again system (8) the vector field of which is ro-
tated clockwise. Under this rotation, a stable limit cycle I will appear from a
separatrix cycle for some value of Bor_1. This cycle will contract, the outside
spirals winding onto the cycle will untwist and the distance between their coils
will increase under increasing (o1 to the value 33, ;. It follows that there
are no values of 35, _5 < 0 and 33,_; > 0 for which a semi-stable limit cycle
could appear in the domain Dy .

This contradiction proves the uniqueness of a limit cycle surrounding the origin
in system (8) for any values of the parameters o3 and (a1 of different
signs. Obviously, if these parameters have the same sign, system (8) has no
limit cycles surrounding the origin at all. On the same reason, this system
cannot have more than [ limit cycles surrounding the other singularities (foci
or nodes) of (8) one by one.

It is clear that inputting the other semi-rotation parameters (o5_s, . .., 51 into
system (8) will not give us more limit cycles, since all of these parameters are
rough with respect to the origin and the other anti-saddles lying in the half-
plane x > 1. Therefore, the maximum number of limit cycles for the system

T =y,
y :.CE(l'— 1)(1+b13§'+...+b2[71$2l_1) (1())
+y(=Bi—...—Por—3—Por—1+5rx+ . . .+ Lo 3223+ oy 221



is equal to [+ 1 and they surround the anti-saddles (foci or nodes) of (10) one
by one.

Suppose that 81 + ...+ Bor_3 + Por—1 > 0 and input the last rough parameter
ap > 0 into system (10):

&=y,
gy=a(x—1)(1+bz+...+0by 122" (11)
+y(060 - /81 — ... ﬁQk*l —|— 611; + L. + ﬁ2k71x2k_1).

This parameter rotating the vector field of (11) counterclockwise in the whole
phase plane also will not give us more limit cycles, but under increasing ay,
when ag = 1 + ... + Por_1, we can make the focus at the origin nonrough
(weak), after the disappearance of the limit cycle I in it. Fix this value of the
parameter o (ap = af):

T =y,
y=a(r—1)(1+bx+...+by 122" (12)

+y(Brz + ...+ Loz ).

Let us input now successively the other field rotation parameters as, ..., ao
into system (12) beginning again with the parameters at the highest degrees
of x and alternating with their signs. So, begin with the parameter as; and
let aigp, < 0O:

T =y,
y=a(r—1)(1+bx+...+0by 2% (13)

+y(Briz + ...+ Bop 12 4 agpa?F).

In this case, the vector field of (13) is rotated clockwise in the whole phase
plane and the focus at the origin changes the character of its stability ge-
nerating again a stable limit cycle. The limit cycles surrounding the other
singularities of (13) can also still exist. Denote the limit cycle surrounding the
origin by I3, the domain outside the cycle by D; and the domain inside the
cycle by Ds. The uniqueness of a limit cycle surrounding the origin (and limit
cycles surrounding the other singularities) for system (13) can be proved by
contradiction like we have done above for (8).

Let system (13) have the unique limit cycle I} surrounding the origin and
[ limit cycles surrounding the other antisaddles of (13). Fix the parameter



agr < 0 and input the parameter ag,_o > 0 into (13):

T =y,
y=a(x—1)(1+bx+ ...+ by 12271 (14)

+ y(ﬁlx + ...+ 52k_1x2k_1 + OéQk_gl‘Zk_Q + Oégkxzk).

Then the vector field of (14) is rotated in the opposite direction (counter-
clockwise) and the focus at the origin immediately changes the character of
its stability (since its degree of nonroughness decreases and the sign of the field
rotation parameter at the lower degree of x changes) generating the second
(unstable) limit cycle I's. The limit cycles surrounding the other singularities
of (14) can only disappear in the corresponding foci (because of their rough-
ness) under increasing the parameter agy_o. Under further increasing gy,
the limit cycle I'y will join with I} forming a semi-stable limit cycle, I'o, which
will disappear in a “trajectory concentration” surrounding the origin. Can an-
other semi-stable limit cycle appear around the origin in addition to I'57 It is
clear that such a limit cycle cannot appear either in the domain D; bounded
on the inside by the cycle I7 or in the domain D3 bounded by the origin and I'y
because of the increasing distance between the spiral coils filling these domains
under increasing the parameter.

To prove the impossibility of the appearance of a semi-stable limit cycle in the
domain Dj bounded by the cycles I} and I'y (before their joining), suppose the
contrary, i. e, that for some values of these parameters, a3, < 0 and a3;,_, > 0,
such a semi-stable cycle exists. Return to system (12) again and input first
the parameter agy_o > 0:

T =Y,
y :ZE(iL‘— 1)(1+b11’+...+b2l_1$2171) (15>

+y(51x + ...+ 52]6_11'2]&‘71 + agk_21'2k72).

This parameter rotates the vector field of (15) counterclockwise preserving the
origin as a nonrough stable focus.

Fix this parameter under ay;_2 = a3;,_, and input the parameter awy, < 0 into
(15) getting again system (14). Since, by our assumption, this system has two
limit cycles surrounding the origin for ag, > a3, there exists some value of
the parameter, a2 (32 < a3 < 0), for which a semi-stable limit cycle, I,
appears in system (14) and then splits into a stable cycle I7 and an unstable
cycle I's under further decreasing asi. The formed domain Dy bounded by the
limit cycles I, I's and filled by the spirals will enlarge since, on the properties

10



of a field rotation parameter, the interior unstable limit cycle I's will contract
and the exterior stable limit cycle I} will expand under decreasing aws,. The
distance between the spirals of the domain D, will naturally increase, which
will prevent the appearance of a semi-stable limit cycle in this domain for
Qop < Q3.

Thus, there are no such values of the parameters, o3, < 0 and a3, _, > 0, for
which system (14) would have an additional semi-stable limit cycle surround-
ing the origin. Obviously, there are no other values of the parameters awy and
Qo for which system (14) would have more than two limit cycles surround-
ing this singular point. On the same reason, additional semi-stable limit cycles
cannot appear around the other singularities (foci or nodes) of (14). Therefore,
[ 4 2 is the maximum number of limit cycles in system (14).

Suppose that system (14) has two limit cycles, [T and I's, surrounding the
origin and [ limit cycles surrounding the other antisaddles of (14) (this is
always possible if —ag > agr_o > 0). Fix the parameters agy, ag_o and
consider a more general system inputting the third parameter, ag,_4 < 0,

into (14):

T =y,
y=a(r—1)(1+bx+...+by 1221 (16)

+y(frx+ ...+ Bop_ 10271+ o a2 + 0?2 4 a%xzk).

For decreasing ag_4, the vector field of (16) will be rotated clockwise and
the focus at the origin will immediately change the character of its stability
generating a third (stable) limit cycle, I's. With further decreasing agy_4, I's
will join with I'y forming a semi-stable limit cycle, I3, which will disappear in
a “trajectory concentration” surrounding the origin; the cycle I will expand
disappearing on a separatrix cycle of (16).

Let system (16) have three limit cycles surrounding the origin: I3, Iy, T's.
Could an additional semi-stable limit cycle appear with decreasing aq_4 after
splitting of which system (16) would have five limit cycles around the origin?
It is clear that such a limit cycle cannot appear either in the domain D,
bounded by the cycles I} and I's or in the domain D, bounded by the origin
and I's because of the increasing distance between the spiral coils filling these
domains after decreasing awy_4. Consider two other domains: D; bounded on
the inside by the cycle I} and D3 bounded by the cycles I'; and I's. As before,
we will prove the impossibility of the appearance of a semi-stable limit cycle
in these domains by contradiction.

Suppose that for some set of values of the parameters o3, < 0, a3, _o > 0
and a3, < 0 such a semi-stable cycle exists. Return to system (12) again

11



inputting first the parameters ag,_o > 0 and awg,_4 < 0:

T =y,
y=a(x—1)(1+bx+ ...+ by 12271 (17)

+ y(ﬁlx 4+ ...+ 5%_1%2]{71 + 062]{;_41‘2]{:74 + OéQk.Izk).

Fix the parameter as,_» under the value aj, ,. With decreasing awoy_4, a
separatrix cycle formed around the origin will generate a stable limit cycle I7.
Fix g4 under the value af,_, and input the parameter ag, > 0 into (17)
getting system (16).

Since, by our assumption, (16) has three limit cycles for agg > a3, there exists
some value of the parameter a3; (a3; < aj), < 0) for which a semi-stable limit
cycle, I's3, appears in this system and then splits into an unstable cycle I'y and
a stable cycle I's with further decreasing aiy. The formed domain D3 bounded
by the limit cycles I's, I's and also the domain D; bounded on the inside by
the limit cycle I7 will enlarge and the spirals filling these domains will untwist

excluding a possibility of the appearance of a semi-stable limit cycle there.

All other combinations of the parameters awy, aoi_2, and asy,_4 are considered
in a similar way. It follows that system (16) can have at most [+ 3 limit cycles.

If we continue the procedure of successive inputting the field rotation param-
eters, aog, . . ., (g, into system (12),

T =y,
y = LE(%’ — 1)(1 +bix+ ...+ b2171$2l_1)

+y(Brx + ..+ ok 2T+ ana® + L+ agpr?),

it is possible to obtain £ limit cycles surrounding the origin and [ surrounding
one by one the other singularities (foci or nodes) (—awgg > agg_o > —aog_4 >
Qop_g > .. )

Then, by means of the parameter oy # 1+ ..+ Par—1 (o > af, if ap < 0, and
ap < o, if ag > 0), we will have the canonical system (4) with an additional
limit cycle surrounding the origin and can conclude that this system (i.e., the
Liénard polynomial system (1) as well) has at most k& + [ + 1 limit cycles,
k + 1 surrounding the origin and [ surrounding one by one the antisaddles
(foci or nodes) of (4) (and (1) as well). The theorem is proved. O

12



3 A Holling-Type Quartic Dynamical System

In this Section, we study a Holling-type rational system which models the
dynamics of the populations of predators and their prey in a given ecological
or biomedical system:

. ry
= 1-Xe— —<2
e ( T+ Bx + 1) (prey), (19)
, a?
Y=y <(5 + uy — CW—W) (predator),

where © > 0 and y > 0; & > 0, 8 > =2/, § > 0, A\ > 0, and p > 0 are
parameters.

Dividing the second equation of (19) by the first one (left and right hand sides,
respectively), after algebraic transformations in the corresponding equation,
we can rewrite rational system (19) in the form of a quartic dynamical system

= z((1—-M)(az®+ Bz +1) —ay) = P,
(20)

g =—y((6 + py)(aa® + Bz +1) —2°) = Q.

Together with (20), we will also consider an auxiliary system; see [1,4,14]

t=P-1Q, y=Q+P (21)
applying to these systems our bifurcational geometric approach [2]-[10] and
completing the qualitative analysis of (19).

Consider first a general polynomial system in the vector form

&= f(x,p), (22)

where & € R?; pu € R"; f € R? ( f is a polynomial vector function).

Let us formulate the Wintner—Perko termination principle [4,14] for this sys-
tem.

Theorem 3.1. Any one-parameter family of multiplicity-m limit cycles of
relatively prime polynomial system (22) can be extended in a unique way to a
mazximal one-parameter family of multiplicity-m limit cycles of (22) which is
either open or cyclic.

13



If it is open, then it terminates either as the parameter or the limit cycles
become unbounded; or, the family terminates either at a singular point of (22),
which is typically a fine focus of multiplicity m, or on a (compound) separatriz
cycle of (22) which is also typically of multiplicity m.

The proof of this principle for general polynomial system (22) with a vector
parameter p € R" parallels the proof of the planar termination principle for
the system

.T:P(l',y,)\), y:Q(x>ya>‘) (23>

with a single parameter A € R [4,14], since there is no loss of generality in
assuming that system (22) is parameterized by a single parameter ; i.e., we
can assume that there exists an analytic mapping pu(A) of R into R" such that
(22) can be written as (23) and then we can repeat everything, what had been
done for system (23) in [14]. In particular, if A is a field rotation parameter
of (23), the following Perko’s theorem on monotonic families of limit cycles is
valid [4,14].

Theorem 3.2. If Ly is a nonsingular multiple limit cycle of (23) for A = Ao,
then Lo belongs to a one-parameter family of limit cycles of (23); furthermore:

1) if the multiplicity of Lo is odd, then the family either expands or contracts
monotonically as A increases through Ao;

2) if the multiplicity of Lo is even, then Lg bifurcates into a stable and an

unstable limit cycle as A varies from Ay in one sense and Lo disappears as A
varies from Ao in the opposite sense; 1. e., there is a fold bifurcation at \.

Consider again system (20). This system has two invariant straight lines: z = 0
and y = 0. Its finite singularities are determined by the algebraic system

z((1 = Ax)(ax® + Bz + 1) —xy) = 0,
(24)

y((6 + py)(ax® + fr +1) — 2?) = 0.

From (24), we have got: two singular points (0,0) and (0, —0/u), at most two
points defined by the condition

ar’?+pr+1=0, y=0, (25)
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and at most six singularities defined by the system

zy = (1 — Az)(az? + Bz + 1), (26)

y (0 +py) =z (1 —Az),
among which we always have the point (1/\,0). See [13] for more details.

The point (0, 0) is always a saddle, but (1/A,0) can be a node or a saddle, or a
saddle-node. The point (1/A,0) can change multiplicity when singular points
enter or exit the first quadrant. In addition, a singular point of multiplicity 2
may appear in the first quadrant and bifurcate into two singular points. In
the case § > 0 (respectively, —2,/a < < 0), there is a possibility of up to
one singular point (respectively, two singular points) in the open first quadrant
[13]. If there exists exactly one simple singular point in the open first quadrant,
then it is an anti-saddle. If there exists exactly two simple singular points in
the open first quadrant, then the singular point on the left with respect to the
x-axis is an anti-saddle and the singular point on the right is a saddle [13]. If a
singular point is not in the first quadrant, in consequence, it has no biological
significance.

To study singular points of (20) at infinity, consider the corresponding diffe-
rential equation

dy __ y((6+py)(aw® + Ba +1) — 2 (27)
dx z((1 = Az)(ax? + fr+1) —ay)

Dividing the numerator and denominator of the right-hand side of (27) by z*
(x # 0) and denoting y/x by u (as well as dy/dx), we will get the algebraic
equation

u((u/ANu—1) =0, where u=y/z, (28)

for all infinite singularities of (27) except when x = 0 (the “ends” of the y-axis)
[1,4]. For this special case we can divide the numerator and denominator of
the right-hand side of (27) by y* (y # 0) denoting z/y by v (as well as dz/dy)
and consider the algebraic equation

v*(v—p/A) =0, where v=uzx/y. (29)

The equations (28) and (29) give three singular points at infinity for (27):
a simple node on the “ends” of the x-axis, a triple node on the “ends” of the
y-axis, and a simple saddle in the direction of y/x = A/ p.
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To investigate the character and distribution of the singular points in the phase
plane, we have used a method developed in [3]. The sense of this method is
to obtain the simplest (well-known) system by vanishing some parameters
(usually field rotation parameters) of the original system and then to input
these parameters successively one by one studying the dynamics of the singular
points (both finite and infinite) in the phase plane.

Using the obtained information on singular points and applying our bifurca-
tional geometric approach [2]-[10], we can study the limit cycle bifurcations
of system (20). This study will use some results obtained in [13]: in particular,
the results on the cyclicity of a singular point of (20). However, it is surely
not enough to have only these results to prove the main theorem of this paper
concerning the maximum number of limit cycles of system (20).

Finally, we will see also that the main result of this paper is quite similar to
the main result of [3], where a Holling system of type IV was studied, but the
number of singular points in the first quadrant and the distribution of limit
cycles in the two systems are different.

Applying the definition of a field rotation parameter [1,4,14], i.e., a parameter
which rotates the field in one direction, to system (20), let us calculate now
the corresponding determinants for the parameters o and 3, respectively:

Ao = PQ — QP = 2"y (y(d + py) — x(1 — Ax)), (30)
As = PQj — QP = z"y(y(d + py) — x(1 — Ax)). (31)
It follows from (30) and (31) that on increasing « or /3 the vector field of (20)

in the first quadrant is rotated in the positive direction (counterclockwise)
only on the outside of the ellipse

y(0 + py) —x(1 — Az) =0. (32)
Therefore, to study limit cycle bifurcations of system (20), it makes sense to-

gether with (20) to consider also an auxiliary system (21) with a field rotation
parameter y:

A, =P +Q*>0. (33)

Using system (21) and applying Perko’s results [4,14], we prove the following
theorem.

Theorem 3.3. System (20) can have at most two limit cycles surrounding
one singular point.
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Proof. First let us prove that system (20) can have at least two limit cycles.
Begin with system (20), where o = 3 = 0. It is clear that such a cubic system,
with two invariant straight lines, cannot have limit cycles at all [13]. Inputting
a negative parameter ( into this system, the vector field of (20) will be rotated
in the negative direction (clockwise) at infinity, the structure and the character
of stability of infinite singularities will be changed, and an unstable limit, I'y,
will appear immediately from infinity in this case. This cycle will surround a
stable anti-saddle (a node or a focus) A which is in the first quadrant of system
(20). Inputting a positive parameter a, the vector field of quartic system (1.10)
will be rotated in the positive direction (counterclockwise) at infinity, the
structure and the character of stability of infinite singularities will be changed
again, and a stable limit, I'y, surrounding I'; will appear immediately from
infinity in this case. On further increasing the parameter «, the limit cycles I';
and I'y combine a semi-stable limit, I'y5, which then disappears in a “trajectory
concentration” [1,4]. Thus, we have proved that system (20) can have at least
two limit cycles; see also [13].

Let us prove now that this system has at most two limit cycles. The proof
is carried out by contradiction applying catastrophe theory [4,14]. Consider
system (21) with three parameters: «, 3, and v (the parameters §, A, and p
can be fixed, since they do not generate limit cycles). Suppose that (21) has
three limit cycles surrounding the only point A in the first quadrant. Then
we get into some domain of the parameters a, 5, and v being restricted by
definite conditions on three other parameters d, A, and p. This domain is
bounded by two fold bifurcation surfaces forming a cusp bifurcation surface
of multiplicity-three limit cycles in the space of the parameters a, £, and 7.

The corresponding maximal one-parameter family of multiplicity-three limit
cycles cannot be cyclic, otherwise there will be at least one point correspon-
ding to the limit cycle of multiplicity four (or even higher) in the parameter
space.

Extending the bifurcation curve of multiplicity-four limit cycles through this
point and parameterizing the corresponding maximal one-parameter family of
multiplicity-four limit cycles by the field rotation parameter v, according to
Theorem 3.2, we will obtain two monotonic curves of multiplicity-three and
one, respectively, which, by the Wintner—Perko termination principle (Theo-
rem 3.1), terminate either at the point A or on a separatrix cycle surrounding
this point.

Since we know at least the cyclicity of the singular point which is equal to
two [13], we have got a contradiction with the termination principle stating
that the multiplicity of limit cycles cannot be higher than the multiplicity
(cyclicity) of the singular point in which they terminate.
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If the maximal one-parameter family of multiplicity-three limit cycles is not
cyclic, using the same principle (Theorem 3.1), this again contradicts the
cyclicity of A [13] not admitting the multiplicity of limit cycles to be higher
than two. This contradiction completes the proof in the case of one singular
point in the first quadrant.

Suppose that system (21) with two finite singularities, a saddle S and an
anti-saddle A, has three limit cycles surrounding A. Then we get again into
some domain of the parameters «, 5, and v bounded by two fold bifurcation
surfaces forming a cusp bifurcation surface of multiplicity-three limit cycles in
the space of the parameters «, (3, and v being restricted by definite conditions
on three other parameters 6, A, and pu.

The corresponding maximal one-parameter family of multiplicity-three limit
cycles cannot be cyclic, otherwise there will be at least one point corresponding
to the limit cycle of multiplicity four (or even higher) in the parameter space.
Extending the bifurcation curve of multiplicity-four limit cycles through this
point and parameterizing the corresponding maximal one-parameter family of
multiplicity-four limit cycles by the field rotation parameter v, according to
Theorem 3.2, we will obtain again two monotonic curves of multiplicity-three
and one, respectively, which, by Theorem 3.1, terminate either at the point A
or on a separatrix loop surrounding this point [4].

Since we know at least the cyclicity of the singular point which is equal to two
[13], we have got a contradiction with the termination principle (Theorem 3.1).

If the maximal one-parameter family of multiplicity-three limit cycles is not
cyclic, using the same principle, this again contradicts the cyclicity of A [13]
not admitting the multiplicity of limit cycles higher than two. Moreover, it
also follows from the termination principle that a separatrix loop cannot have
the multiplicity (cyclicity) higher than two in this case.

Thus, we conclude that system (20) cannot have either a multiplicity-three
limit cycle or more than two limit cycles surrounding a singular point which
proves the theorem. O
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