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Abstract

We establish a number of results on the subject of the �rst author's

topos-theoretic generalization of Grothendieck's Galois formalism. In

particular, we generalize in this context the existence theorem of alge-

braic closures, we give a concrete description of the atomic completion

of a small category whose opposite satis�es the amalgamation pro-

perty, and we explore to which extent a model of a Galois-type theory

is determined by its symmetries.
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1 Introduction

In this paper we explore a number of aspects of the general topos-theoretic
framework for building topological `Galois-type' theories introduced in [9].

The starting point of [9] was the observation that, given a (not necessarily
�nite-dimensional) Galois extension F ⊆ L, the classical Galois equivalence

LLF
op ' Contt(AutF (K))

between the opposite of the category LLF of �nite intermediate extensions and
the category Contt(AutF (K)) of non-emtpy transitive actions on discrete
sets of the Galois group AutF (K) can be obtained as a restriction of an
equivalence of toposes

Sh(LLF
op
, Jat) ' Cont(AutF (K))

where Jat is the atomic topology on LLF
op (that is, the Grothendieck topology

whose covering sieves are exactly the non-empty ones). In fact, for any to-
pological group G, the topos Cont(G) of continuous actions of G on discrete
sets can be represented as the topos Sh(Contt(G), Jat) of sheaves on the
full subcategory Contt(G) of Cont(G) on the non-empty transitive actions
with respect to the atomic topology on it. The opposites of the categories of
the form Contt(G) notably satisfy the amalgamation and joint embedding
properties.

Conversely, one can wonder when a topos Sh(Cop, Jat) of sheaves with
respect to the atomic topology Jat on the opposite of an essentially small
category C whose opposite satis�es the amalgamation property can be repre-
sented as the topos Cont(G) for a topological group G. The central result
of [9] is a representation theorem for these toposes Sh(Cop, Jat): if C also
satis�es the joint embedding property and the ind-completion of C contains
an object u satisfying some special properties (that of being C-universal and
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C-ultrahomogeneous) then the topos Sh(Cop, Jat) is equivalent to the topos
Cont(Aut(u)) of continuous actions on discrete sets of the automorphism
group Aut(u) of u, topologized in such a way that the subgroups of the form
{f : u ∼= u | f ◦ χ = χ}, where χ : c → u is an arrow of Ind-C, form a basis
of open neighbourhoods of the identity. From this result many consequences
follow; in particular, as it was shown in [9], one can characterize the catego-
ries which can be embedded as full dense subcategories of categories the form
Contt(G) (and those which are equivalent to them), thus obtaining natural
analogues of classical topological Galois theory in a great variety of di�erent
mathematical contexts.

The contents of this paper can be summarized as follows.
After reviewing the basic notions and the precise statement of the above-

mentioned theorem - to which we shall refer as `the representation theorem'
- and proving a few related results, we investigate in section 4 the existence
of universal and (ultra)homogeneous objects expressible as colimits of chains
of objects of a category satisfying the amalgamation and joint embedding
properties, which may thus serve as points u of atomic toposes such as the
ones involved in the representation theorem. More precisely, we identify
some natural conditions under which the categorical theorem of [6] generali-
zing Fraïssé's construction applies, thus yielding such objects. Interestingly,
this analysis allows to regard the classical construction of the algebraic (or
separable) closure of a �eld as a particular instance of application of (the
generalized) Fraïssé method for building ultrahomogeneous structures.

Next, in section 5, we establish, by functorializing the Morita-equivalence
provided by the main representation theorem, an adjunction between a cate-
gory of topological groups endowed with an algebraic base and a category of
pairs consisting of a category and an object of its ind-completion satisfying
the hypotheses of the theorem. This adjunction restricts to a duality bet-
ween the category of (totally discontinuous) complete groups and a category
of pairs whose underlying category is `atomically complete'. We investigate
in detail the notion of complete group and establish an explicit characteri-
zation for these groups also in terms of algebraic bases for them. We also
describe the natural behavior of the Morita-equivalence of the main repre-
sentation theorem with respect to localizations by an object coming from the
atomic site.

In section 6, we apply the `bridge' technique of [10] to the Morita-equiva-
lence of the representation theorem to obtain a number of insights on the
associated Galois theory. For instance, we obtain necessary and su�cient
conditions for two pairs (C, u) and (C ′, u′) satisfying the hypotheses of the the-
orem to give rise to Morita-equivalent topological groups Aut(u) and Aut(u′).
Then we provide a very concrete description of the `atomic completion' of a
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small category satisfying the dual of the amalgamation property. This con-
struction, which can be seen as a form of completion by the addition of `ima-
ginaries' (in the model-theoretic sense), was originally introduced in [9] (and
an alternative description of it was given therein) as a means for making such
a category Cop, in presence of an equivalence Sh(Cop, Jat) ' Cont(Aut(u))
provided by the representation theorem, equivalent to the category of non-
empty transitive actions of the group Aut(u); indeed, the atomic completion
of Cop is equivalent to the full subcategory of the topos Sh(Cop, Jat) on its
atoms. Next, we consider other topos-theoretic invariants from the points of
view of the two sides of the Morita-equivalence of the representation theorem,
notably including the notions of irreducible object, of Galois object and of co-
herent topos. We show in particular that the concept of irreducible generator
of a topos, which admits natural characterizations both from the categori-
cal side and from the group-theoretic one, allows one to capture the Galois
theories that are discrete (up to Morita-equivalence), while the concept of
Galois object, which is also shown to admit natural site characterizations,
allows one to identify the �xator subgroups that are normal (in terms of a
categorical condition that the objects corresponding to them should satisfy)
as well as the Galois theories whose Galois groups are prodiscrete (through
the invariant property of having enough Galois objects).

In the �nal section of the paper, we apply the logical interpretation of
the representation theorem already established in [9] to the study of the
relationships between special models of atomic and complete theories and
the associated automorphism groups; in particular, we investigate conditions
for a continuous homomorphism between the automorphism groups of two
such structures to be induced by an interpretation of one structure into the
other. Our results on this subject are shown to improve and generalize the
classical model-theoretic ones. Our topos-theoretic perspective also allows
us to understand the existence of di�erent special models for a given atomic
and complete theory in terms of the existence of non-trivial automorphisms
of its classifying topos.

2 Review of topological Galois theory

Recall that a topological group is a group G with a topology such that the
group operation and the inverse operation are continuous with respect to it;
for basic background on topological groups we refer the reader to [13].

The following well-known result allows to make a given group into a
topological group starting from a collection of subsets of the group satisfying
particular properties:
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Lemma 2.1. Let G be a group and B be a collection of subsets N of G
containing the neutral element e. Then there exists exactly one topology τ on
G having B as a neighbourhood basis of e and making (G, τ) into a topological
group if and only if all the following conditions are satis�ed:

(i) For any N,M ∈ B there exists P ∈ B such that P ⊆ N ∩M ;

(ii) For any N ∈ B there exists M ∈ B such that M2 ⊆ N ;

(iii) For any N ∈ B there exists M ∈ B such that M ⊆ N−1;

(iv) For any N ∈ B and any a ∈ G there exists M ∈ B such that M ⊆
aNa−1.

Notice that if all the subsets in the family B are subgroups of G then
conditions (ii) and (iii) in the statement of the lemma are automatically
satis�ed. We shall say that a collection B of subgroups of G is an algebraic
base for G if it is a basis of neighbourhoods of e, any �nite intersection of
subgroups in B contains a subgroup in B, and any conjugate of a subgroup
in B lies in B.

We shall denote the topology τ generated by an algebraic base B as in
Lemma 2.1 by τGB ; the resulting topological group will be denoted by GB.

All the topological groups considered in this paper are totally discontinu-
ous, that is their topology is generated by a family of open subgroups.

Recall from [6] and [9] the following categorical notions.

De�nition 2.2. Let C be a small category.

� C is said to satisfy the amalgamation property (AP) if for every objects
a, b, c ∈ C and morphisms f : a → b, g : a → c in C there exist an
object d ∈ C and morphisms f ′ : b → d, g′ : c → d in C such that
f ′ ◦ f = g′ ◦ g:

a

g

��

f // b

f ′

��
c

g′
// d

� C is said to satisfy the joint embedding property (JEP) if for every
pair of objects a, b ∈ C there exists an object c ∈ C and morphisms
f : a→ c, g : b→ c in C:

a

f

��
b g

// c
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� Given a full embedding of categories C ↪→ D, an object u of D is said
to be C-homogeneous if for every objects a, b ∈ C and arrows j : a→ b
in C and χ : a → u in D there exists an arrow χ̃ : b → u such that
χ̃ ◦ j = χ:

a

j
��

χ // u

b
χ̃

??

� Given a full embedding of categories C ↪→ D, an object u of D is
said to be C-ultrahomogeneous if for every objects a, b ∈ C and arrows
j : a → b in C and χ1 : a → u, χ2 : b → u in D there exists an
isomorphism ǰ : u→ u such that ξ ◦ χ1 = χ2 ◦ j:

a

j
��

χ1 // u

ξ

��
b χ2

// u

� Given a full embedding of categories C ↪→ D, an object u of D is said
to be C-universal if it is C-co�nal, that is for every a ∈ C there exists
an arrow χ : a→ u in D:

a
χ // u

Remark 2.3. Any C-universal and C-ultrahomogeneous object is C-homogen-
eous.

Recall that on any small category C satisfying the dual of AP, one can
put the atomic topology Jat, namely the Grothendieck topology on C whose
covering sieves are exactly the non-empty ones.

For any topological group G, the category Cont(G) whose objects are the
left continuous actions G ×X → X (where X is endowed with the discrete
topology and G × X with the product topology) and whose arrows are the
G-equivariant maps between them is a Grothendieck topos. Recall that a
left action α : G × X → X is continuous if and only if for every x ∈ X
the isotropy subgroup Ix := {g ∈ G | α(g, x) = x} is open in G. The topos
Cont(G) is atomic (recall that an atomic topos is a topos generated by its
atoms, that is the objects which are non-zero and which do not have any
proper subobjects); in fact, its atoms are precisely the non-empty transitive
continuous actions, and Cont(G) can be represented as the topos of sheaves
on the full subcategory Contt(G) on the non-empty transitive actions with
respect to the atomic topology on it. Notice that a non-empty transitive
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action α : G × X → X can be identi�ed with the canonical action G × G/
Ix → G/Ix of G on the set G/Ix of left cosets gIx of the isotropy group Ix of α
at any point x ∈ X; conversely, for any open subgroup U of G, the canonical
action of G on the set G/U makes G/U into a non-empty transitive G-set.

Theorem 2.4 (Theorem 3.5 [9]). Let C be a small non-empty category sa-
tisfying AP and JEP, and let u be a C-universal and C-ultrahomogeneous
object in Ind-C. Then the collection IC of sets of the form Iχ := {f : u ∼=
u | f ◦ χ = χ}, for an arrow χ : c→ u from an object c of C to u, de�nes an
algebraic base for the group of automorphisms of u in Ind-C, and, denoting
by Aut(u) the resulting topological group, we have an equivalence of toposes

Sh(Cop, Jat) ' Cont(Aut(u))

induced by the functor F : Cop → Contt(Aut(u)) which sends any ob-
ject c of C to the set HomInd-C(c, u) (equipped with the obvious action by
Aut(u)) and any arrow f : c → d in C to the Aut(u)-equivariant map
− ◦ f : HomInd-C(d, u)→ HomInd-C(c, u).

It was shown in [9] that the functor F of Theorem 2.4 is full and faithful if
and only if every arrow f : d→ c in C is a strict monomorphism (in the sense
that for any arrow g : e→ c such that h ◦ g = k ◦ g whenever h ◦ f = k ◦ f ,
g factors uniquely through f).

3 Some basic results

As observed at page 271 of [6], the points of the topos Sh(Cop, Jat), where
C is an essentially small category satisfying AP, can be identi�ed with the
C-homogeneous objects of Ind-C.

Proposition 3.1. Let C be a non-empty essentially small category satisfying
AP and u be a C-homogeneous object of Ind-C (that is, a point of the topos
Sh(Cop, Jat)). Then u is C-universal if and only if the category C satis�es
JEP (equivalently, if and only if the topos Sh(Cop, Jat) is two-valued).

Proof. If E is two-valued, the arrow from the image `(c) in E of any object c
of C to the �nal object of E is an epimorphism.

Therefore its inverse image u∗(`(c)) = (u∗ ◦ `)(c) = HomInd-C(c, u) by the
point u cannot be empty.

Conversely, let us suppose that u has this property.
For any objects c, c′ of C, there exist two arrows of Ind-C

c
f−−→ u and c′

f ′−−→ u .
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As the category
∫
F of elements of the functor F = Hom (−, u) is �ltered,

there exists an object d of C and a commutative diagram in Ind-C of the
form:

c

��

f

''
d // u

c′

@@

f ′

77

A fortiori, the category C satis�es JEP (equivalently, by Theorem 3.6 and
Lemma 3.7 [6], the topos Sh(Cop, Jat) is two-valued). �

By considering the invariant notion of point of a topos in the context
of the Morita-equivalence of Theorem 2.4, and recalling that every limit-
preserving (resp. colimit-preserving) functor between Grothendieck toposes
has a left adjoint (resp. a right adjoint), we immediately obtain the following
result:

Proposition 3.2. Under the hypotheses of Theorem 2.4, any C-homogeneous
object of Ind-C, regarded as a functor Cop → Set, can be extended via
F : Cop → Cont(Aut(u)), uniquely up to isomorphism, to a cartesian colimit-
preserving functor Cont(Aut(u)) → Set; conversely, any such functor re-
stricts, via F , to a C-homogeneous object of Ind-C.

�
The following proposition follows from `bridges' (in the sense of [10])

arising from the fact that the key notions involved in the topological Galois
theory of [9] can be formulated as topos-theoretic invariants. More precisely,
we can de�ne a point p of an atomic topos E to be universal if every set of the
form p∗(A) where A is an atom of E is non-empty, and to be ultrahomogeneous
if the canonical action of the automorphism group Aut(p) on every set of the
form p∗(A) (where A is an atom of E) is transitive. Since every arrow to
an atom is an epimorphism and the inverse image p∗ of any point p sends
epimorphisms to surjections, it follows that one can equivalently require, in
these de�nitions, A to vary among the atoms in a separating family F for
the topos; for instance, if E is Sh(Cop, Jat), F can be the collection of the
atoms of the form l(c) where c is an object of C. Recall also that the points
of the topos Sh(Cop, Jat) are precisely the C-homogeneous objects of Ind-C.

It thus follows that, if we have a Galois-type equivalence Sh(Cop, Jat) '
Cont(Aut(u)) as in Theorem 2.4, a C-homogeneous object u of Ind-C is
C-universal (resp. C-ultrahomogeneous) if and only if the object l(c) of
Sh(Cop, Jat) is universal (resp. ultrahomogeneous).
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Proposition 3.3. Let C and C ′ be two essentially small categories satisfying
AP. Suppose that there exists an equivalence between the atomic toposes E =
Sh(Cop, Jat) and E ′ = Sh(C ′op, Jat) associated to them (cf. Theorem 6.1).
Then:

(i) The equivalence E ' E ′ induces an equivalence between the category of
C-homogeneous objects of Ind-C towards that of C ′-homogeneous objects
of Ind-C ′.

(ii) If u and u′ are two homogeneous objects respectively of Ind-C and Ind-C ′
which correspond to each other as in point (i), u is C-universal if and
only if u′ is C ′-universal.

(iii) If u and u′ are two homogeneous objects respectively of Ind-C and Ind-C ′
which correspond to each other as in point (i), u is C-ultrahomogeneous
if and only if u′ is C ′-ultrahomogeneous.

�

4 Existence of points

In this section we shall prove a theorem which ensures the existence of homo-
geneous or ultrahomogeneous objects under some natural hypotheses. For
this, we need the following de�nition:

De�nition 4.1. In a category C, a family F of arrows is said to be dominant
if it satis�es the following properties:

(i) The family Dom (F) of domains of arrows of F is co�nal in C. In other
words, every object x of C admits an arrow

x −→ a

towards the domain a of an arrow a→ b of F .

(ii) For any object a of Dom (F) and any arrow f : a→ x of C, there exists
an arrow g : x→ b of C such that the composite

g ◦ f : a −→ x −→ b

is an arrow of F .

We have the following result:
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Theorem 4.2. Let C be a category whose arrows are all monomorphisms, κ
an in�nite regular cardinal and D, D′ the full subcategories of Ind-C on the
objects which are colimits of objects of C indexed by �ltered partially ordered
sets of cardinality respectively < κ et ≤ κ. Let us suppose that:

(1) The category D satis�es AP and JEP.

(2) The category D admits a dominating family of cardinality ≤ κ.
.

Then:

(i) There exists in D′ an object which is D-homogeneous and D-universal.

(ii) The D-homogeneous and D-universal objects of D′ are automatically
D-ultrahomogeneous. Moreover, they are all isomorphic.

Proof. We apply Theorem 2.8 of [6] to the embedding D ↪→ Ind-C, showing
that (using the notation of the theorem) (Ind-C)κ = (Ind-C)cκ = D′. For this,
we check that its hypotheses are satis�ed.

By hypothesis, the category D satis�es AP and JEP, and it admits a
dominating family of cardinality ≤ κ.

Let us now prove that the category D is closed with respect to colimits
indexed by �ltered partially ordered sets of cardinality < κ. This will imply
in particular that the category D is κ-bounded (in the sense of De�nition 2.5
of [6]).

We preliminarily notice that if all the arrows of C are monomorphisms
then all the arrows of Ind-C are monomorphisms as well (apply Corollary
7.2.9 [10] to the theory of �at functors on the category Cop), whence all the
categories of the form

∫
F for F ∈ Ind-C are (�ltered) preorders (and their

skeleta are partially ordered sets).
Let us notice that the objects of Ind-C which can be expressed as colimits

of objects of C indexed by �ltered partially ordered sets of cardinality ≤ λ
can be equivalently characterized as the objects of Ind-C whose category of
elements contains a co�nal full subcategory of cardinality ≤ λ which is a
partial order. Indeed, this is obvious in one direction, while in the other
it su�ces to observe that, since the objects of C are �nitely presentable in
Ind-C, if an object a of Ind-C can be expressed as a colimit of objects bj of
C indexed by a �ltered category J then for any object (c, x) of

∫
a, there

are an object j of J and an arrow c → bj in C with commutes with the
canonical colimit arrows c → a and ξj : bj → a, in other words an arrow
(c, x)→ (bj, ξj) in

∫
a.

Now, let d be an object of Ind-C which is given by the colimit of a diagram
D with values in D de�ned on a �ltered partially ordered set I of cardinality
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< κ, say k′. The colimit arrows χi : D(i) → d (for i ∈ I) clearly induce
functors

∫
χi :

∫
D(i) →

∫
d which are jointly essentially surjective. Now,

since eachD(i) is in D, the category
∫
D(i) contains a full co�nal subcategory

of cardinality < κ. The full subcategory U of
∫
d on the objects which belong

to the union of the images of these subcategories under the functors
∫
χi, is

clearly co�nal in
∫
d and �ltered as all the

∫
D(i) are. To deduce our claim,

it therefore su�ces to show that the cardinality of a skeleton of U is < κ;
but this follows from the fact that a union indexed by a cardinal < κ of sets
whose cardinality is < κ has cardinality < κ since κ is regular.

By Remark 2.6 [6], the fact that D is closed with respect to colimits
indexed by �ltered partially ordered sets of cardinality < κ implies that
every object of D′ can be expressed as the colimit of a continuous κ-chain
with values in D. Indeed, by de�nition of D′, every object of D′ can be
expressed as the colimit of a λ-chain D with values in D; if λ = κ then
we are done by Remark 2.6, while if λ < κ then we can extend D to a κ-
chain D̃ having the same colimit by setting D̃(i) = colim(D) for every i such
that λ < i < κ. Conversely, any colimit of a κ-chain of objects of D lies
in D′; this follows by an argument involving the categories of elements of
the given objects similar to the one used for proving that D is closed with
respect to colimits indexed by �ltered partially ordered sets of cardinality
< κ, noticing that a union indexed by κ of sets whose cardinality is < κ has
cardinality ≤ κ since κ is in�nite. This shows that, by using the notation
in Theorem 2.8 [6] (where we take C to be D and D to be Ind-C), we have
(Ind-C)κ = (Ind-C)cκ = D′.

To complete the veri�cation of the hypotheses necessary for the applica-
tion of Theorem 2.8 of [6] to the embedding D ↪→ Ind-C, it remains to show
that every object d of D is �κ-small� in Ind-C in the sense that the func-
tor HomInd-C(d,−) : Ind-C −→ Set preserves colimits of κ-chains. For this,
since all the arrows of Ind-C are monic, it is enough to show that for every
colimit representation d′ = colim(D), where D : κ → Ind-C, every arrow
f : d → d′ from an object d of D to d′ factors (uniquely) through a colimit
arrow ξi : D(i)→ d′. By de�nition of D, d is the colimit of a λ-chain A with
values in C. For any j ∈ λ, the arrow A(j)→ d′ given by the composite of f
with the canonical colimit arrow aj : A(j)→ d factors (uniquely) through a
colimit arrow ξi(j) : D(i(j))→ d′ since all the objects of C are �nitely presen-
table in Ind-C. This de�nes, by the axiom of choice, a function λ→ κ given
by the assignment j → i(j). Since the cardinal κ is regular, we have that
k′ = supj∈λi(j) < κ. So we have that all the arrows f ◦ aj factor (uniquely)
through ξk′ : D(k′)→ d′. Therefore, by the universal property of the colimit
d = colim(A), we obtain an arrow z : d → D(k′) such that ξk′ ◦ z = f , as
required. �
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Remarks 4.3. (a) An object of D′ which is D-homogeneous (resp. D-
universal, resp. D-ultrahomogeneous) is a fortiori C-homogeneous (resp.
C-universal, resp. C-ultrahomogeneous).

(b) If κ = ω, we have D = C. Conditions (1) et (2) thus rewrite as follows:
(1) The category C satis�es AP and JEP.

(2) It admits a countable dominating family.

(c) The C-universal and C-homogeneous or C-ultrahomogeneous objects of
Ind-C are not all isomorphic in general. For example, the category C
of �nite sets and injections satis�es AP and JEP. Its ind-completion
Ind-C identi�es with the category of sets and injections. The C-universal
objects of Ind-C are the in�nite sets; they are clearly C-ultrahomogeneous
and a fortiori C-homogeneous. Now, any two in�nite sets are isomorphic
if and only if they have the same cardinality. The associated atomic
topos is known under the name of Schanuel topos. It therefore admits as
many Galois-type representations (of the kind speci�ed in Theorem 2.4)
as there exist non-isomorphic in�nite sets.

(d) The requirement in Theorem 4.2 that the cardinal κ should be regular
is not really restrictive since any cardinal can be replaced by its co�na-
lity, which is always regular, without a�ecting the colimits of the chains
de�ned on it.

Let us show that the existence of the algebraic closure of a �eld F can be
deduced as a consequence of Theorem 4.2. Let us take C to be the category
of �nite separable �eld extensions of F ; notice that Ind-C is the category of
algebraic �eld extensions of C. Take κ equal to the maximum of ω and the
cardinality of F . The category D′ coincides with Ind-C since every algebraic
extension of F has cardinality κ and hence its representation as the colimit of
its �nite sub-extensions is indexed by κ. We have to show that the category
D satis�es AP and JEP. Since D has an initial object (F itself), JEP follows
from AP, so it is enough to verify the latter property. For this, we notice that
if F ′ and F ′′ are separable �eld extensions of F , the quotient F ′′′ of the tensor
product of F ′ and F ′′ over F by a maximal ideal is a separable �eld extension
of F which lies in D if F ′ and F ′′ do since if the representation of F ′ (resp.
F ′′) as the colimit of its �nite subextensions is indexed by a cardinal λ < κ
(resp. λ′ < κ) then F ′′′ can be expressed as the directed union of the �nite
�eld extensions generated by the union of a �nite subextension of F ′ with a
�nite subextension of F ′′, and the cardinality of this union is ≤ λ× λ′ < κ.
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The category D admits a dominating family of cardinality ≤ κ since the
collection SF of separable polynomials with coe�cients in F has cardinality
κ and hence, by using an isomorphism SF ∼= κ, one can de�ne F to be
the family obtained by choosing, for each λ ≤ λ′ < κ an embedding of the
splitting �eld Sλ of the polynomials indexed by the element ≤ λ into the
splitting �eld Sλ′ of the polynomials indexed by the elements ≤ λ′. For
any λ < κ, the splitting �elds of polynomials indexed by the elements ≤ λ
actually belong to D since they can be expressed as the directed union of the
(�nite-dimensional) splitting �elds of the �nite subsets of such polynomials,
which can be indexed by a �nite cardinal if λ < ω and by λ if λ is in�nite.
The family F is dominating for D since any �eld k in D is the colimit indexed
by a cardinal λ < κ of a chain A with values in C and each A(i) (for i < λ) is
generated over F by a �nite number of elements xji . Each of these elements
has a minimal polynomial P j

i over F and, κ being regular, there is κ′ < κ
such that all the P j

i 's are indexed by elements ≤ κ′. So k, which is contained
in the splitting �eld of the P j

i 's, maps into Sκ′ , say via an arrow g, and for
any arrow f : Sl → k, at the cost of composing g with an automorphism of
Sκ′ , we can suppose g ◦ f to lie in F .

The unique D-universal and D-ultrahomogeneous object of Ind-C is preci-
sely the separable closure of F . Indeed, it is a separable extension of F being
an object of Ind-C, and it is separably closed since D-universality implies
that every separable polynomial with coe�cients in a �nite extension of F
has a root in it.

If one does not want to invoke the notion of splitting �eld for a family of
polynomials, it is possible to apply our theorem to construct the separable
closure of F by choosing a cardinal bigger than κ, as follows. First, we
notice that the category C is essentially small with a skeleton of cardinality
κ. Since every functor F : C → Set in Ind-C actually takes values in the full
subcategory of Set on �nite sets, the functor F is isomorphic to a functor
F ′ : C → N taking values in N , where N is the full subcategory of Set
on the �nite cardinals. The number of such functors is therefore bounded
by |Arr(C)|ω. So the category D therefore admits a skeleton of cardinality
≤ |Arr(C)|ω, and this can be taken as a dominating family for it.

Similarly, by taking C to be the category of �nite extensions of C, Theorem
4.2 allows one to construct the algebraic closure of F .

5 Functorialization

We can functorialize the Morita-equivalence of Theorem 2.4 by means of a
`bridge' induced by the invariant notion of geometric morphism. For this, we
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need to recall the notion of a morphism of sites.

5.1 Morphisms of sites

Recall that for any (essentially) small site (C, J) and any Grothendieck topos
E , we have Diaconescu's equivalence

Geom(E ,Sh(C, J)) ' FlatJ(C, E)

between the category Geom(E ,Sh(C, J)) of geometric morphisms from E to
Sh(C, J) and the category FlatJ(C, E) of J-continuous �at functors from C
to E . In Chapter VII of [17] (cf. De�nition 1 of section 8, page 394, and
Theorem 1 of section 9, page 399), the authors established the following
characterization of �at functors: a functor

A : C −→ E

from an (essentially) small category C to a Grothendieck topos E is �at if
and only if it is �ltering in the sense that it possesses the following three
properties:

(1) If 1 = 1E is the terminal object of E , the family of arrows

A(c) −→ 1

indexed by the objects c of C is jointly epimorphic.

(2) If c1, c2 are two objects of C, the family of arrows

A(c) −→ A(c1)× A(c2)

indexed by the diagrams

c1 ←− c −→ c2

of C is jointly epimorphic.

(3) If f1, f2 : c⇒ d are two arrows of C and e is the subobject of A(c) de�ned
by the equation

A(f1) = A(f2) ,

the family of arrows
A(b) −→ e

indexed by the arrows h : b→ c de C such that

f1 ◦ h = f2 ◦ h

is jointly epimorphic.
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The following result, giving a characterization of morphisms of toposes
in terms of sites of de�nition, is an immediate consequence of Diaconescu's
equivalence in light of the above-mentioned characterization of �at functors
as �ltering functors.

Corollary 5.1. Let (C, J) and (C ′, J ′) be essentially small sites, and l : C →
Sh(C, J), l′ : C ′ → Sh(C ′, J ′) be the canonical functors (given by the com-
posite of the relevant Yoneda embedding with the associated sheaf functor).
Then, given a functor A : C → C ′, the following conditions are equivalent:

(i) A induces a geometric morphism u : Sh(C ′, J ′)→ Sh(C, J) making the
following square commutative:

C A //

l
��

C ′

l′

��
Sh(C, J) u∗ // Sh(C ′, J ′);

(ii) The functor A is a morphism of sites in the sense that it satis�es the
following properties:

(1) A sends every J-covering family in C into a J ′-covering family in
C ′.

(2) Every object c′ of C ′ admits a J ′-covering family

c′i −→ c′ , i ∈ I ,

by objects c′i of C ′ which have morphisms

c′i −→ A(ci)

to the images under A of objects ci of C.
(3) For any objects c1, c2 of C and any pair of morphisms of C ′

f ′1 : c′ −→ A(c1) , f ′2 : c′ −→ A(c2) ,

there exists a J ′-covering family

g′i : c′i −→ c′ , i ∈ I ,

and a family of pairs of morphisms of C

f i1 : ci −→ c1 , f i2 : ci → c2 , i ∈ I ,

15



and of morphisms of C ′

h′i : c′i −→ A(ci) , i ∈ I ,

making the following squares commutative:

c′i
g′i //

h′i
��

c′

f ′1
��

A(ci)
A(f i1) // A(c1)

c′i
g′i //

h′i
��

c′

f ′2
��

A(ci)
A(f i2) // A(c2)

(4) For any pair of arrows f1, f2 : c⇒ d of C and any arrow of C ′

f ′ : b′ −→ A(c)

satisfying
A(f1) ◦ f ′ = A(f2) ◦ f ′ ,

there exist a J ′-covering family

g′i : b′i −→ b′ , i ∈ I ,

and a family of morphisms of C

hi : bi −→ c , i ∈ I ,

satisfying
f1 ◦ hi = f2 ◦ hi , ∀ i ∈ I ,

and of morphisms of C ′

h′i : b′i −→ A(bi) , i ∈ I ,

making commutative the following squares:

b′i
g′i //

h′i
��

b′

f ′

��
A(bi)

A(hi) // A(c)

Remark 5.2. One can prove that the notion of morphism of sites appea-
ring in Corollary 5.1 coincides with that of De�nition 4.10 [20]; under this
identi�cation, Corollary 5.1 is subsumed by Proposition 11.14 [20].
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Specializing the above to atomic sites, we obtain that a functor F : C → C ′
between categories satisfying the dual of the amalgamation property is a
morphism of sites (C, Jat)→ (C ′, J ′at) if and only if it is atomic in the following
sense:

De�nition 5.3. A functor F : C → C ′ between categories satisfying the dual
of the amalgamation property is said to be atomic if it satis�es the following
properties:

(1) For any object c′ of C ′, there exists an object c of C and an object b′ of
C ′ admitting two arrows

b′ −→ c′ and b′ −→ A(c) .

(2) For any objects c1, c2 of C and any object c′ of C ′ with a pair of morphisms

f ′1 : c′ −→ A(c1) , f ′2 : c′ −→ A(c2) ,

there exists an object b′ of C ′, an arrow

g′ : b′ −→ c′ ,

a pair of morphisms of C

f1 : c −→ c1 , f2 : c −→ c2 ,

and an arrow of C ′
h′ : b′ −→ A(c)

such that
A(f1) ◦ h′ = f ′1 ◦ g′ , A(f2) ◦ h′ = f ′2 ◦ g′ .

(3) For any pair of arrows f1, f2 : c ⇒ d of C and any object c′ of C ′ with a
morphism

f ′ : c′ −→ A(c)

satisfying
A(f1) ◦ f ′ = A(f2) ◦ f ′ ,

there exist an object b′ of C ′, an arrow

g′ : b′ −→ c′ ,

an arrow of C
h : b −→ c
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satisfying
f1 ◦ h = f2 ◦ h

and an arrow of C ′
h′ : b′ −→ A(b)

satisfying
A(h) ◦ h′ = f ′ ◦ g′ .

5.2 Localizations

Let us now discuss the behaviour of the equivalence of Theorem 2.4 with
respect to taking slices.

Recall that for any (essentially) small site (C, J), the slice topos Sh(C, J)/
l(c) is equivalent to Sh(C/c, J/c), where J/c is the Grothendieck topology
canonically induced by J on the slice category C/c (see Proposition 5.4 in
vol. 1 of [3]). If the opposite of a category C satis�es the amalgamation and
joint embedding properties, then the opposite of the category C/c satis�es
them as well. It thus follows that

Sh(C, Jat)/l(c) ' Sh(C/c, Jat)

for any object c of C.

Lemma 5.4. Let G be a topological group. Then, for any open subgroup Z
of G, we have an equivalence of toposes

Cont(G)/(G/Z) ' Cont(Z) .

Proof. In light of the above observation concerning the representation of slice
toposes in terms of slice sites, it clearly su�ces to exhibit an equivalence of
categories Contt(G)/(G/Z) ' Contt(Z), where Contt(G) and Contt(Z)
are respectively the full subcategories of Cont(G) and Cont(Z) on the non-
empty transitive actions. Let us consider the functor Contt(G)/(G/Z) →
Contt(Z) sending any equivariant map f : X → G/Z in Contt(G) to the
Z-set f−1([e]), and acting on the arrows accordingly. The G-equivariance
of f implies that the action of Z on f−1([e]) is non-empty and transitive,
so the functor is well-de�ned. It remains to show that it is full, faithful
and essentially surjective. The essential surjectivity follows from the fact
that, for any open subgroup V of Z, the Z-set Z/V is isomorphic to the
image of the canonical G-equivariant map G/V → G/Z under our functor,
so it remains to prove the fullness and faithfulness. But these properties
immediately follow from the fact that, for any open subgroups U,U ′ of G
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contained in Z, the G-equivariant maps G/U → G/U ′ compatible with the
canonical projections G/U → G/Z and G/U → G/Z are precisely the maps
given by right multiplication by an element z of Z such that z−1Uz ⊆ U ′.�

In light of Lemma 5.4, we thus obtain the following result:

Proposition 5.5. For any pair (C, u) satisfying the hypotheses of Theorem
2.4 and any object c of C, we have an equivalence

Sh(Cop, Jat)/l(c) ' Cont(Aut(u)/Iχ),

where χ is any arrow c→ u in Ind-C and Iχ is the open subgroup of Aut(u)
given by the �xator of χ.

�
The equivalences of Proposition 5.5 can be made functorial, as follows.

For any arrow f : c → c′ in C, we have an arrow l(f) : l(c′) → l(c) in
Sh(Cop, Jat), which induces a geometric morphism

Sh(Cop, Jat)/l(c′)→ Sh(Cop, Jat)/l(c)

with the special property that its inverse image has also a left adjoint. This
morphism clearly corresponds, via equivalences as in Proposition 5.5, to the
geometric morphism

Cont(Iχ′)→ Cont(Iχ′◦f )

induced by the continuous embedding of open subgroups Iχ′ ⊆ Iχ′◦f , for any
arrow χ′ : c′ → u in Ind-C.

5.3 Algebraic bases and complete groups

Let us denote by GTop the category of totally discontinuous topological
groups and continuous group homomorphisms between them. We can con-
struct a category GTopb of `groups paired with algebraic bases' as follows:
the objects of GTopb are pairs (G,B) consisting of a group G and an al-
gebraic base B for it, while the arrows (G,B) → (G′,B′) in GTopb are the
group homomorphisms f : G → G′ such that for any V ∈ B′, f−1(V ) ∈ B.
We have a functor F : GTopb → GTop sending to any object (G,B) of
GTopb the topological group (G, τGB ) and acting accordingly on arrows. On
the other hand, any topological group G has a canonical algebraic base CG,
namely the one consisting of all the open subgroups of it; this allows one to
de�ne a functor G : GTop → GTopb sending G to (G,CG) and acting on
arrows in the obvious way. It is easily veri�ed that G is left adjoint to F
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and F ◦ G ∼= 1GTop, which allows us to regard GTop as a full subcategory
of GTopb.

There is a natural link between algebraic bases for a topological group and
dense subcategories of the associated topos of continuous actions. Indeed, as
observed in Remark 2.2 [9], for any algebraic base for G, the G-sets of the
form G/U for U ∈ B de�ne a dense full subcategory of Contt(G) (in the
sense that for any object of Contt(G) there exists an arrow from a G-set of
this form to it) which is closed under isomorphisms. Conversely, any dense
full subcategory of Contt(G) which is closed under isomorphisms gives rise
to an algebraic base for G which is stable under conjugation, namely the
base consisting of the open subgroups U of G such that G/U lies in the
subcategory. The algebraic bases for G which are stable under conjugation
can be thus identi�ed with the dense full subcategories of Contt(G) which
are closed under isomorphisms.

Proposition 5.6 (Proposition 2.3 [9]). For any algebraic base B of a group
G, the full subcategory ContB(G) of Contt(G) on the objects of the form
G/U for U ∈ B satis�es the dual of the amalgamation property and the dual
of the joint embedding property (as de�ned in section 2).

Notice that, since the subcategory ContB(G) is dense in Contt(G) and
hence in the topos Cont(G), Grothendieck's Comparison Lemma yields an
equivalence

Sh(ContB(G), Jat) ' Cont(G),

where Jat is the atomic topology on ContB(G).
The topos Cont(G) has a canonical point pG, namely the geometric mor-

phism Set → Cont(G) whose inverse image functor is the forgetful functor
Cont(G) → Set. Let us denote by Aut(pG) the group of automorphisms
of pG in the category of points of Cont(G). We have a canonical map
ξG : G → Aut(pG), sending any element g ∈ G to the automorphism of
pG which acts at each component as multiplication by the element g (this is
indeed an automorphism because the naturality conditions hold as the maps
in Cont(G) are G-equivariant).

As shown in [19], for any topological group G, the group Aut(pG) can
intrinsically be endowed with a pro-discrete topology (that is a topology
which is a projective limit of discrete topologies) in which the open subgroups
are those subgroups of the form U(X,x) for a continuous G-sets X and an
element x ∈ X, where U(X,x) denotes the set of automorphisms α : pG ∼= pG
such that α(X)(x) = x; the canonical map ξG : G → Aut(pG) is continuous
with respect to this topology.

It is natural to characterize the topological groups G for which the map ξG
is a bijection (equivalently, a homeomorphism). Following the terminology of
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[19], we shall call such groups complete, and we shall refer to the topological
group Aut(pG) as to the completion of G. For any complete group G with
an algebraic base B, we can alternatively describe the topology on Aut(pG)
induced by the topology on G via the bijection ξG as follows: a basis of open
neighbourhoods of the identity is given by the sets of the form {α : pG ∼=
pG | α(G/U)(eU) = eU} for U ∈ B.

For any group G and algebraic base B for G, the collection of subsets of
the form IU,x := {α : pG ∼= pG | α(G/U)(x) = x} for x ∈ G/U and U ∈ B
forms an algebraic base for the group Aut(pG) of automorphisms of pG, and,
if we consider Aut(pG) endowed with the resulting topology, the canonical
map ξG : G → Aut(pG) becomes a homomorphism of topological groups
which induces a Morita equivalence Cont(ξG) : Cont(G) ' Cont(Aut(pG))
between them (cf. section 5.4 below).

For any (totally discontinous) topological group G, we have a canonical
homomorphism

G→ End(pG)

towards the monoidM = End(pG) of endomorphisms of the forgetful functor

p∗G : Cont(G)→ Set .

Notice that this homomorphism is not necessarily surjective, nor the monoid
End(pG) is necessarily a group. Nonetheless, as shown by the following pro-
position (which corrects Proposition 2.4 of [9] - the �rst author wishes to
thank Emmanuel Lepage for pointing out the mistake), we can describe M
in terms of G and an algebraic base B for it:

Proposition 5.7. Let G be a topological group with an algebraic base B.
Then

(i) The endomorphisms of the point pG can be identi�ed with the element
of the projective limit M = lim←−U∈B(G/U) of the G/U for U ∈ B; in
particular, this projective limit has the structure of a monoid.

(ii) The automorphism group of the point pG is isomorphic to the groupM×

of invertible elements of the monoid M = lim←−U∈B(G/U).

(iii) The group G is complete if and only if the canonical map from G to the
set M× of invertible elements of lim←−U∈B(G/U) is an isomorphism.

(iv) More concretely, G is complete if and only if for any assignment U →
aU of an element aU ∈ G/U to any subset U ∈ B such that for any
U, V ∈ B with U ⊆ V , aU ≡ aV modulo V and there exist elements
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bU ∈ G/U for U ∈ B such that bU ≡ bV modulo V whenever U, V ∈ B
with U ⊆ V and baUUaU−1aU ≡ e, abUUbU−1bU ≡ e modulo U for each U ,
there exists a unique g ∈ G such that aU = gU for all U ∈ B.

Proof Since the full subcategory ContB(G) of the topos Cont(G) on the
objects of the form G/U for U ∈ B is dense in Cont(G), the endomor-
phisms of pG correspond exactly to the endomorphisms of the �at functor
F : ContB(G) → Set corresponding to pG, that is of the forgetful func-
tor. An endomorphism α : F → F is uniquely determined by the elements
aU := α(G/U)(eU) ∈ G/U since the naturality condition for α with respect
to the G-equivariant arrows G/gUg−1 → G/U , g′ → g′g, sending e(gUg−1)
to gU forces α(G/U)(gU) to be equal to agUg−1gU for any g ∈ G:

G/(gUg−1)

��

α(G/gUg−1) // G/(gUg−1)

��
G/U

α(G/U)
// G/U

On the other hand, since any arrow in ContB(G) can be factored as the
composition of a canonical projection arrow of the form G/U → G/V for
U ⊆ V with a canonical isomorphism of the form G/gWg−1 → G/W , any
assignment U → aU of an element aU ∈ G/U to any subset U ∈ B such that
for any U, V ∈ B with U ⊆ V , aU ≡ aV modulo V de�nes an endomorphism
α of F by means of the formula α(G/U)(gU) = agUg−1gU . This proves the
proposition. �

Remarks 5.8. (a) If g is a pro-group, that is if G admits an algebraic base
B consisting of normal open subgroups then M = lim←−U∈B(G/U) is a
group; otherwise, it is not necessarily the case.

(b) We can endow M = End(pG) with the least topology such that all the
subsets

{m ∈M | mx = y}
for x, y ∈ G/U,U ∈ B are open. Then the multiplication law M ×M →
M is continuous, and G identi�es with a subgroup of

M× = {(m,m′) ∈M ×M | mm′ = m′m = 1}

endowed with the topology induced by that of M×, that is of M ×
M . Denoting by Cont(M) the category of discrete sets endowed with a
continuous action of M , the embedding G ⊆M induces a functor

Cont(M)→ Cont(G)
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which is an equivalence. In other words, every continuous action of G on
a discrete set naturally extends to a continuous action of M on it.

5.4 A general adjunction

Notice that, for any categories C and C ′ satisfying the amalgamation pro-
perty, any morphism of sites (in the sense of Corollary 5.1(ii)) F : (Cop, Jat)→
(C ′op, Jat) induces a geometric morphism Sh(F ) : Sh(C ′op, Jat)→ Sh(Cop, Jat),
which in turn yields, via Diaconescu's equivalence, a functor

F̃ : FlatJat(C ′
op
,Set)→ FlatJat(Cop,Set)

which can be identi�ed with − ◦ F .
Let us de�ne G to be the category whose objects are the pairs (C, u), where

C is a small category satisfying AP and JEP and u is a C-ultrahomogeneous
and C-universal object of Ind-C, and whose arrows (C, u) → (C ′, u′) are
the atomic functors F : Cop → C ′op (in the sense of De�nition 5.3) such
that F̃ (u′) = u (notice that this is well-de�ned by Remark 2.3, as u is C-
ultrahomogeneous and C-universal). Then we have a functor A : Gop →
GTopb sending any pair (C, u) to the object (Aut(u), IC) of GTopb and any
arrow F : (C, u)→ (C ′, u′) to the arrow F̃ : Aut(u′)→ Aut(u) in GTopb:

Sh(Cop, Jat) ' Cont(Aut(u))

Sh(C ′op, Jat)

OO

' Cont(Aut(u′))

OO

(C, u)
F��

(Aut(u), IC)

(C ′, u′) (AutC′(u), IC′)
F̃
OO

This is well-de�ned since for any arrow χ : c→ u in Ind-C from an object
c of C to u, F̃−1(Iχ) = Iξ for some arrow ξ : F (c) → u′ in Ind-C ′. Indeed,
if we denote by ũ : Cop → Set and by ũ′ : C ′op → Set the �at functors
corresponding to the objects u and u′ respectively of Ind-C and of Ind-C ′, we
have that ũ′ ◦ F = ũ and hence the arrows χ : c → u in Ind-C (i.e., by the
Yoneda Lemma, the elements of ũ(c) = ũ′(F (c))) correspond exactly to the
arrows ξ : F (c)→ u′ in Ind-C ′ (i.e., by Yoneda, the elements of ũ′(F (c))); we
thus have F̃−1(Iχ) = Iξ, where ξ is the arrow F (c)→ u′ in Ind-C ′ associated
to χ : c→ u via this correspondence.

In the converse direction, we can de�ne a functor B : GTopb → Gop
sending any object (G,B) of GTopb to the pair (ContB(G)op, pGB) (where
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pGB , namely the canonical point of the topos Cont(GB), is regarded as an
object of Ind-ContB(G)op in the canonical way) and any arrow f : (G,B)→
(G′,B′) in GTopb to the arrow Cont(f)∗op| : ContB′(G

′)op → ContB(G)op

(notice that this restriction is indeed well-de�ned since by our hypotheses
the inverse image under f of any open subgroup of G′ belonging to B′ is
an open subgroup of G belonging to B). To prove that this functor is well-
de�ned we observe that by Proposition 5.6 for any object (G,B) ofGTopb the
category B(G,B) satis�es the amalgamation and joint embedding properties.
On the other hand, pGB is aContB(G)op-ultrahomogeneous andContB(G)op-
universal object, since for any object c of ContB(G)op,

HomInd-ContB(G)op(c, pGB) ∼= pGB(c) ∼= c,

which is a non-empty Aut(pGB)-transitive set (this follows from the fact that
it is a transitive GB-set and for any element g of GB, the action of g on
c coincides with the component at c of the action on pGB of the image of
g under the canonical map GB → Aut(pGB)). The fact that for any arrow
f : (G,B) → (G′,B′) in GTopb, B(f) : B(G′,B′) → B(G,B) is an arrow
in G is immediate from the fact that B(f) is the restriction to subcanonical
sites of the inverse image functor of a geometric morphism.

We can visualize this as follows:

Sh(ContB′(G
′), Jat) ' Cont(GB′)

Sh(ContB(G), Jat)

OO

' Cont(GB)

OO

(ContB′(G
′)op, pG′B′ )
Cont(f)∗op|��

(G′,B′)

(ContB(G)op, pGB) (G,B)
f
OO

We have the following result:

Theorem 5.9. The functor

A : Gop → GTopb

is right adjoint to the functor

B : GTopb → Gop .

This adjunction restricts to a duality between the full subcategory Gsm of Gop
on the objects (C, u) such that every morphism in C is a strict monomorphism
and the full subcategory GTopcb of GTopb on the objects (G,B) such that the
topological group GB is complete.
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Proof The counit ε : B ◦A→ idGop of the adjunction is given, for any (C, u)
in G, by ε(C, u) = F op := (C, u) → (ContIC(Aut(u))op, pAut(u)IC

), regarded
as an arrow in G, where F is the functor de�ned in the statement of Theorem
2.4, while the unit η : idGTopb → A ◦B is given, for any (G,B) ∈ GTopb, by
η(G,B) = ξGB := (G,B) → (AutContB(G)op(pGB), IContB(G)op) (cf. section 5.3
for the de�nition of the canonical map ξ).

One easily veri�es the naturality of ε and η and the fact that the induced
maps

HomGTopb((G,B), A(C, u))→ HomGop(B(G,B), (C, u))

and
HomGop(B(G,B), (C, u))→ HomGTopb((G,B), A(C, u))

are inverse to each other.
Now, by Proposition 4.1 [9], ε(C, u) is an isomorphism in G if and only if

every arrow of C is a strict monomorphism, while η(G,B) is an isomorphism
in GTopb if and only if GB is complete. �

Remark 5.10. Up to Morita equivalence, the functors A and B de�ning the
adjunction of Theorem 5.9 are inverse to each other. Indeed, for any (C, u)
in G, Sh(B(A(C, u)), Jat) ' Sh(Cop, Jat), while for any (G,B) ∈ GTopb,
Cont(GB) ' Cont(G′B′), where A(B(G,B) = (G′,B′).

The following result is an immediate consequence of Theorem 5.9.

Corollary 5.11. Let (C, u) and (C ′, u′) be objects of Gopsm. Then a continuous
group homomorphism h : Aut(u′)→ Aut(u) is induced by a (unique) functor
F : C → C ′ such that F̃ (u′) = u if and only if the inverse image under h of
any open subgroup of the form Iχ (where χ : c→ u is an arrow in Ind-C) is
of the form Iχ′ (where χ′ : c′ → u′ is an arrow in Ind-C ′).

�
In section 7 we shall apply this corollary in a logical context.
As we have seen above, the category GTop can be identi�ed with a

full subcategory of the category GTopb, by choosing the canonical alge-
braic base associated to any topological group. It is thus natural to wonder
whether it is possible to characterize the objects (C, u) of the category G
which correspond to such objects under the adjunction of Theorem 5.9. To
this end, we remark that the objects of GTopb of the form (G,CG) can be
characterized as the objects (G,B) such that the category ContB(G) coin-
cides with the full subcategory of Cont(GB) on its atoms. Therefore, the
pairs (C, u) of the form B(G,CG) for some topological group G satisfy the
property that every atom of Sh(Cop, Jat) has, up to isomorphism, the form
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l(c) for some object c of C, where l : Cop → Sh(Cop, Jat) is the compo-
site of the Yoneda embedding y : Cop → [C,Set] with the associated sheaf
functor aJat : [C,Set] → Sh(Cop, Jat). Conversely, if C satis�es this condi-
tion then A(C, u) = (Aut(u), IC) is of the form (G,CG), since the category
ContIC(Aut(u)) coincides with the full subcategory of Cont(Aut(u)) on its
atoms. An alternative characterization of the objects (C, u) of G such that
A(C, u) is of the form (G,CG) is the following: A(C, u) is of the form (G,CG)
if and only if every open subgroup of Aut(u) is of the form Iχ for some arrow
χ : c→ u.

Summarizing, we have the following result:

Proposition 5.12. For any object (C, u) of G, the following conditions are
equivalent:

(i) A(C, u) is, up to isomorphism in GTopb, of the form (G,CG) for some
topological group G.

(ii) Every open subgroup of Aut(u) is of the form Iχ for some χ : c→ u in
Ind-C.

(iii) Every atom of the topos Sh(Cop, Jat) is, up to isomorphism, of the form
l(c) for some object c ∈ C.

This motivates the following de�nition: we shall say that a category C
is atomically complete if its opposite category Cop satis�es AP, the atomic
topology on Cop is subcanonical and every atom of the topos Sh(Cop, Jat) is,
up to isomorphism, of the form l(c) for some object c ∈ C (see Theorem 4.17
[9], Corollary 6.8 or Remark 6.9 for explicit characterizations of this class of
categories).

These results lead to the following duality theorem.

Theorem 5.13. The functors A and B de�ned above restrict to a duality
between the full subcategory of G on the objects of the form (C, u) for Cop
atomically complete and the category of complete (totally discontinuous) to-
pological groups.

�

6 Other insights from the `bridge' technique

In this section we shall consider the equivalence of classifying toposes provi-
ded by Theorem 2.4 in conjunction with appropriate topos-theoretic invari-
ants to construct `bridges' (in the sense of [10]) for connecting the two sides
with each other:
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Sh(Cop, Jat) ' Cont(Aut(u))

Cop Aut(u)

This will yield various insights on the corresponding Galois theories.

6.1 A criterion for Morita equivalence

Theorem 6.1. Let C and C ′ be two small categories satisfying the dual of
the amalgamation property. Then the following conditions are equivalent:

(i) The toposes Sh(C, Jat) and Sh(C ′, Jat) are equivalent.

(ii) There is a small category A and two functors H : C → A and K : C ′ →
A such that

(a) for any object a ∈ A, there exist objects c of C and c′ of C ′ and
arrows H(c)→ a and K(c′)→ a in A;

(b) for any objects c, d of C (resp. of C ′) and any arrow ξ : H(c) →
H(d) (resp. ξ : K(c) → K(d)) of A there exist an objet e of C
(resp. of C ′) and arrows f : e→ c and g : e→ d of C (resp. of C ′)
such that ξ ◦H(f) = H(g) (resp. ξ ◦K(f) = K(g));

(c) for any arrows f, g : c → d of C (resp. of C ′), if H(f) = H(g)
(resp. K(f) = K(g)) then there exists an arrow h : a → c of C
(resp. of C ′) such that f ◦ h = g ◦ h.

Proof. Let us recall from [20] the following de�nition: a functor F : C → D
is said to be a dense morphism of sites (C, J) → (D, K) if it satis�es the
following properties:

(a) P is a covering family in C if and only if F (P ) is a covering family in D;

(b) for any object d of D there exists a covering family of arrows di → d
whose domains di are in the image of F ;

(c) for every x, y ∈ C and any arrow g : F (x) → F (y) in D, there exist a
covering family of arrows fi : xi → x and a family of arrows gi : xi → y
such that g ◦ F (fi) = gi for all i;

(d) for any arrows h, k : x → y in C such that F (h) = F (k) there exists a
covering family of arrows fi : xi → x such that h ◦ fi = k ◦ fi for all i.
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By Theorem 11.8 [20], if F is a dense morphism of sites then the associated
geometric morphism Sh(F ) : Sh(D, K) → Sh(C, J) is an equivalence. One
can prove (see [12]) that, conversely, if F is a morphism of sites (in the
sense of Corollary 5.1(ii)) such that (D, K) is subcanonical and Sh(F ) is an
equivalence then F is a dense morphism of sites.

Recall that the following diagram, where the functor lC (resp. lD) is
the composite of the relevant Yoneda embedding with the associated sheaf
functor, is commutative:

C
lC
��

F // D
lD
��

Sh(C, J)
Sh(F )∗ // Sh(D, K)

Now, the enumerated conditions in the statement of the proposition
amount precisely to the requirement that the functors H and K de�ne dense
morphisms of sites respectively (C, Jat)→ (A, Jat) and (C ′, Jat)→ (A, Jat) in
the sense of De�nition 11.1 [20]. To deduce the necessity of this condition
for the toposes Sh(C, Jat) and Sh(C ′, Jat) to be equivalent, in light of the
above discussion, it su�ces to notice that, taking A to be the full subcate-
gory of Sh(C, Jat) (resp. of Sh(C ′, Jat)) on its atoms, we have an equivalence
Sh(C, Jat) ' Sh(A, Jat) (resp. Sh(C ′, Jat) ' Sh(A′, Jat)) induced by a mor-
phism of sites (C, Jat) → (A, Jat) (resp. (C ′, Jat) → (A, Jat)). Conversely,
if both (C, Jat) → (A, Jat) and (C ′, Jat) → (A, Jat) are dense morphisms of
sites, then we have equivalences Sh(C, Jat) ' Sh(A, Jat) and Sh(C ′, Jat) '
Sh(A′, Jat), which yield an equivalence Sh(C, Jat) ' Sh(C ′, Jat). �

Corollary 6.2. Let (C, u) and (C ′, u′) be pairs satisfying the hypotheses of
Theorem 2.4. Then the following conditions are equivalent:

(i) The topological groups Aut(u) and Aut(u′) are Morita-equivalent.

(ii) There is a small category A and two functors H : C → A and K : C ′ →
A such that

(a) for any object a ∈ A, there exist objects c of C, c′ of C ′ and arrows
a→ H(c), a→ K(c′) in A;

(b) for any objects c, d of C (resp. of C ′) and any arrow ξ : H(d) →
H(c) (resp. ξ : K(d) → K(c)) of A there exists an objet e of C
(resp. of C ′) and arrows f : c→ e and g : d→ e of C (resp. of C ′)
such that H(f) ◦ ξ = H(g) (resp. K(f) ◦ ξ = K(g));
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(c) for any arrows f, g : c → d of C (resp. of C ′), if H(f) = H(g)
(resp. K(f) = K(g)) then there exists an arrow h : d → a of C
(resp. of C ′) such that h ◦ f = h ◦ g.

�

6.2 Categories of imaginaries

Section 4.3 of [9] explicitly described a completion process for the opposite of
an essentially small category D satisfying the amalgamation property, which
was called the atomic completion, making it equivalent to the full subca-
tegory of the associated topos Sh(Dop, Jat) on its atoms. As was observed
in that context, the objects of the atomic completion can be thought of as
`imaginaries' (in the model-theoretic sense) as they are formal quotients of
objects l(d) coming from D by equivalence relations internal to the topos;
recall that an equivalence relation on an object of the form l(d) in the topos
Sh(Dop, Jat) can be identi�ed with a function which assigns to each object e
of D an equivalence relation Re on the set HomDop(e, d) in such a way that
for any arrow h : e′ → e in Dop and any (χ, ξ) ∈ HomDop(e, d)2, (χ, ξ) ∈ Re

if and only if (χ ◦ h, ξ ◦ h) ∈ Re′ .
In this section, we shall provide an alternative, more combinatorial but

equivalent description of this construction; we shall denote the atomic com-
pletion of an essentially small category C satisfying the dual of the amalga-
mation property by Cat. This description relies in particular on the following
lemma, which shows how to reconstruct an atomic topos from its full subca-
tegory on atoms:

Lemma 6.3. Let E be an atomic topos and Eat its full subcategory on atoms.
Then E is equivalent to the category whose

• objects are the families (ai)i∈I of objects ai of Eat indexed by a set I,

• arrows
(ai)i∈I −→ (bj)j∈J

consist of a map α : I → J and a family of arrows of Eat

ai −→ bα(i) , i ∈ I .

The equivalence consists in associating
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

• to any family (ai)i∈I the coproduct in E∐
i∈I
ai ,

• to any family of arrows
(
ai → bα(i)

)
i∈I from (ai)i∈I to (bj)j∈J the arrow of E∐

i∈I
ai −→

∐
j∈J

bj

de�ned by the collection of composite arrows

ai −→ bα(i) −→
∐
j∈J

bj , i ∈ I .

Proof. By de�nition of an atomic topos, every object of E can be written as
a coproduct ∐

i∈I

ai

of atoms ai of E indexed by a set I.
Every arrow between any two such coproducts∐

i∈I

ai −→
∐
j∈J

bj

consists of a collection of arrows

ai −→
∐
j∈J

bj , i ∈ I .

The bj, j ∈ J , are pairwise disjoint subobjects of
∐
j∈J

bj = b and form a

covering family of b. For each i ∈ I, their inverse images in ai are pairwise
disjoint subobjects of ai which form a covering family of ai. Therefore they
are all zero with the exception of a single one, of index say α(i) ∈ J , which
is isomorphic to ai. This means that the arrow

ai −→
∐
j∈J

bj

is induced by a unique arrow

ai −→ bα(i) .

�
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Lemma 6.4. Let C be an essentially small category whose opposite category
Cop has the amalgamation property (AP).

(i) For any objects c1, . . . , cn of C, we say that two families of arrows of C

fi : d −→ ci , 1 ≤ i ≤ n ,

and
f ′i : d′ −→ ci , 1 ≤ i ≤ n ,

are equivalent if there exist two arrows of C

f : e −→ d , f ′ : e −→ d′ ,

such that
fi ◦ f = f ′i ◦ f ′ , 1 ≤ i ≤ n .

Then this relation between families of arrows
(
d

fi−−→ ci

)
1≤i≤n

is an

equivalence relation.

Its classes form a set, which we call the set of components of c1× . . .×
cn.

(ii) For any objets c1, . . . , cn of C and any map α : {1, . . . , k} → {1, . . . , n},
the maps (

d
fi−−→ ci

)
1≤i≤n

7−→
(
d

fα(j)−−−−→ cα(j)

)
1≤j≤k

de�ne a function from the set of components of c1 × . . .× cn to that of
components of cα(1) × . . .× cα(k).

(iii) For any arrows of C

gi : ci −→ bi , 1 ≤ i ≤ n ,

the composition(
d

fi−−→ ci

)
1≤i≤n

7−→
(
d

gi◦fi−−−−→ bi

)
1≤i≤n

de�nes a function from the set of components of c1× . . .× cn to that of
components of b1 × . . .× bn.

Proof. (i) This relation is clearly re�exive and symmetric. It is transitive
since the category Cop satis�es AP.

Its equivalence classes form a set since the category C is assumed to be
essentially small.

(ii) et (iii) are straightforward. �
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This lemma allows us to give the following

De�nition 6.5. Let C be, as above, an essentially small category whose
opposite category Cop satis�es the amalgamation property (AP).

(i) For any objects c1, c2 of C, we call relation of c1 into c2 every subset R
of the set of components of c1 × c2.
We then call opposite relation Rop of R the relation of c2 into c1 which
is obtained from R by permutation of c1 and c2.

(ii) For any objects c1, c2, c3 of C and any relations R of c1 into c2 and R′ of
c2 into c3, we call composite relation R′◦R of R and R′ the relation of c1
into c3 consisting of the components of c1×c3 which lift to a component
of c1 × c2 × c3 whose images in c1 × c2 and in c2 × c3 are elements of R
and R′.

(iii) For any object c of C, we call equivalence relation on c every relation R
of c in c such that

• R is re�exive in the sense that it contains the diagonal component
of c× c,
• R is symmetric in the sense that Rop = R,

• R is transitive in the sense that R ◦R ⊆ R.

The following lemma provides an explicit, site-level description of the
atomic decomposition of �nite products in the topos Sh(C, Jat) of objects of
the form l(c).

Lemma 6.6. Under the hypotheses of Lemma 6.4 and Proposition 6.7, let
us consider the canonical functor

` : C −→ Eat

and associate with any family of arrows of C

fi : d −→ ci , 1 ≤ i ≤ n ,

the image of the arrow of E∏
1≤i≤n

`(fi) : `(d) −→ `(c1)× . . .× `(cn) .

Then:
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(i) For any objects c1, . . . , cn de C, this assignment de�nes a bijection from
the set of �components� of c1× . . .× cn (in the sense of Lemma 6.4) to
the set of subobjects of `(c1)× . . .× `(cn) which are atoms of E.

(ii) For any objects c1, c2 of C, this map de�nes a bijection from the set of
�relations� of c1 into c2 (in the sense of De�nition 6.5(i)) to the set of
subobjects of `(c1)× `(c2) in the topos E.

Proof. (i) As any `(d) is an atom, the image in the atomic topos E of any
arrow

`(d) −→ `(c1)× . . .× `(cn)

is an atom of E .
As any arrow `(e) → `(d) is an epimorphism of E , the image of `(d) →

`(c1) × . . . × `(cn) does not depend on the representative chosen for each

equivalence class of families of arrows
(
d

fi−−→ ci

)
1≤i≤n

.

Conversely, let us consider an atom c of a product of image objects `(ci)
of objects c1, . . . , cn of C. There exists an object d of C admitting an epimor-
phism `(d)→ c whence c is the image of an arrow of E of the form

`(d) −→ `(c1)× . . .× `(cn) .

For each i, 1 ≤ i ≤ n, the contravariant functor on C

d′ 7−→ HomE(`(d
′), `(ci))

is the shea��cation for the atomic topology Jat of the presheaf

d′ 7−→ HomC(d
′, ci) .

Therefore, there exists an arrow of C

d′ −→ d

such that the composite arrow

`(d′) −→ `(d) −→ `(c1)× . . .× `(cn)

is induced by a family of arrows of C

d′ −→ ci , 1 ≤ i ≤ n .

Lastly, let us consider two families of arrows of C

(fi : d −→ ci)1≤i≤n and (f ′i : d′ −→ ci)1≤i≤n
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such that the induced arrows of E

`(d) −→ `(c1)× . . .× `(cn) and `(d′) −→ `(c1)× . . .× `(cn)

have as image the same atom.
Then the pullback in the topos E

`(d)×`(c1)×...×`(cn) `(d′)

is non-zero and there exists an object e of C and two arrows of E

`(e) −→ `(d) and `(e) −→ `(d′)

which make the following square commutative:

`(e)

��

// `(d)

��
`(d′) // `(c1)× . . .× `(cn)

By replacing, if necessary, e by a covering e′ → e in C, we can suppose that
the arrows `(e)→ `(d) and `(e)→ `(d′) are the images under ` of two arrows
of C

f : e −→ d and f ′ : e −→ d′

and that these arrows satisfy the relations

fi ◦ f = f ′i ◦ f ′ , 1 ≤ i ≤ n .

(ii) is an immediate consequence of (i).
�

We can now prove the following

Proposition 6.7. Let C be an essentially small category whose opposite ca-
tegory Cop satis�es the amalgamation property (AP), E = Sh(C, Jat) be the
atomic topos of sheaves on the category C with respect to the atomic topology
Jat, and Cat be the atomic completion of C.

Then Cat is equivalent to the category de�ned as follows:

• The objects are the pairs (c, R) consisting of an object c of C and an
equivalence relation R on c.
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• The arrows
(c1, R1) −→ (c2, R2)

are the relations R of c1 into c2 such that

R ◦R1 ⊆ R ,

R2 ◦R ⊆ R ,

R ◦Rop ⊆ R2 ,

Rop ◦R ⊇ R1 .

Proof. It follows from Lemma 6.6(ii) that, for any object c of C, giving an
equivalence relation on c in the sense of De�nition 6.5(iii) is the same thing
as giving an equivalence relation on the object `(c) of the topos E . Now,
any such equivalence relation on `(c) de�nes in E a quotient object which is
necessarily an atom.

Conversely, there exists for each atom a of E an objet c of C together
with an arrow `(c)→ a, whence a identi�es with the quotient of `(c) by the
equivalence relation `(c)×a `(c) � `(c)× `(c).

Lastly, let us consider two atoms a1 and a2 of E regarded as quotients
of two objects of the form `(c1) and `(c2), c1, c2 ∈ Ob(C) by equivalence
relations R1 and R2.

Giving an arrow a1 → a2 in E is equivalent to giving its graph as a
subobject of a1 × a2 or, equivalently, the inverse image R of this graph by
the epimorphism

`(c1)× `(c2) −→ a1 × a2 .

Conversely, a subobject R of `(c1) × `(c2) is the inverse image of the graph
of an arrow a1 → a2 if and only if it satis�es the four conditions

R ◦R1 ⊆ R ,

R2 ◦R ⊆ R ,

R ◦Rop ⊆ R2 ,

Rop ◦R ⊇ R1 .

�

In section 4.3 of [9] (cf. Theorem 4.17) the categories which are atomically
complete (i.e. equivalent to their atomic completions) were explicitly charac-
terized. Proposition 6.7 allows us to obtain an alternative characterization
for them, as provided by the following
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Corollary 6.8. Let C be an essentially small category whose opposite Cop
satis�es the amalgamation property (AP). Then C is atomically complete if
and only if every arrow of C is a strict epimorphism and for any equivalence
relation R on an object c of C (in the sense of De�nition 6.5) there exist an
object d and a quotient arrow q : c→ d characterized by the property that for
any arrows f, g : a→ c in C, q ◦ f = q ◦ g if and only if (f, g) ∈ R.

Proof If su�ces to recall that the atomic topology Jat on C is subcanonical,
that is the canonical functor from C to Sh(C, Jat) is full and faithful, if and
only if every arrow of C is a strict epimorphism. If this condition is veri�ed
then C is equivalent to its atomic completion if and only if every atom of
the topos Sh(C, Jat) is, up to isomorphism, of the form l(d) for an object
d of C. Now, by the explicit description of the atomic completion given by
Proposition 6.7, the latter condition is equivalent to the requirement that for
any object c of C and equivalence relation R on c, the quotient l(c) � l(c)/R
should be the image under l of an arrow q : c→ d in C; but l(q) is isomorphic
over l(c) to the quotient arrow l(c) � l(c)/R if and only if for any arrows
f, g : a→ c in C, q ◦ f = q ◦ g if and only if (f, g) ∈ R. �

Remark 6.9. In light of Proposition 6.7, atomically complete categories can
alternatively be characterized as the essentially small categories A satisfying
the following properties:

� the opposite Aop of A has the amalgamation property (AP);

� every equivalence relation R on an object a of A de�nes a quotient
arrow q : a→ aR of A characterized by the property that the arrows

aR −→ b

correspond bijectively, via composition with q, to the arrows

f : a −→ b

such that for every element
(
c

g−−→ a, c
g′−−→ a

)
of R, the identity f ◦g =

f ◦ g′ holds;

� for any object b together with an equivalence relation R and any object
a with a relation S of a into b such that

R ◦ S ⊆ S , S ◦ Sop ⊆ R and Sop ◦ S ⊇ ∆a (the diagonal of a)
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there exists in A a unique arrow

f : a −→ bR

the inverse image of whose graph in a× b is S, and every arrow

a −→ bR

in A is of this form.

Indeed, these conditions ensure that there exists a full and faithful functor
Aat → A whose composite with the canonical functor A → Aat is isomorphic
to the identity functor on A, and which is therefore essentially surjective.

Notice also that a quotient arrow in the sense of the second of the above
conditions is the same as a quotient arrow in the sense of Corollary 6.8 (with
respect to the same relation) if A is atomically complete, but not in general.
Indeed, by the characterization of epimorphisms in a topos in terms of their
kernel pairs, an arrow of C is a quotient by an equivalence relation R on an
object c in the sense of Corollary 6.8 if and only if its image in Sh(C, Jat)
is a quotient of R, regarded as an equivalence relation on l(c) internal to
Sh(C, Jat). On the other hand, the quotient in a topos E of an object X by
an equivalence relation R on it can be realized as the coequalizer of the pair of
canonical arrows R → X, and if E is the topos Sh(C, Jat) for an atomically
complete category C and X = l(c) for an object c ∈ C then it su�ces to
check the coequalizer property with respect to epimorphisms with domain
l(c) since the existence property follows from the fact that every arrow in
E can be factored as a epimorphism followed by a monomorphism and the
uniqueness property follows from the fact that every quotient arrow is an
epimorphism.

The following result gives a characterization of atomic completions by a
universal property:

Corollary 6.10. Let C be an essentially small category whose opposite Cop
satis�es the amalgamation property (AP), Cat its atomic completion and ` :
C → Cat the canonical functor.

Let F : C → A be an atomic functor (in the sense of De�nition 5.3) from
C to an atomically complete category A. Then there exists a unique (up to
isomorphism) atomic functor

F̃ : Cat −→ A

such that the functors
F, F̃ ◦ ` : C −→ A
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are isomorphic.
In other words, the atomic completion operation de�nes a re�ection of the

category of essentially small categories whose opposite satis�es the amalga-
mation property and atomic functors between them into the full subcategory
on the atomically complete categories.

Proof. This result arises from a `bridge' based on the equivalence

Sh(C, Jat) ' Sh(Cat, Jat)

by choosing as invariant the notion of geometric morphism from a topos of the
form Sh(A, Jat), where A is an atomically complete category, whose inverse
image sends atoms to atoms. By Diaconescu's equivalence, the geometric
morphisms Sh(A, Jat) → Sh(C, Jat) which send atoms to atoms correspond
precisely to the morphisms of sites (C, Jat) → (A, Jat) (since every atom of
the topos Sh(C, Jat) is a quotient of an atom of the form l(c) for c ∈ C), that is
to the atomic functors C → A, while the geometric morphisms Sh(A, Jat)→
Sh(Cat, Jat) which send atoms to atoms correspond to the atomic functors
Cat → A. �

The description of the components of the c1 × . . . × cn arising in the
construction of Proposition 6.7 simpli�es when the category C has �multi-
products� in the sense of the following lemma:

Lemma 6.11. Let C be an essentially small category whose opposite Cop has
the amalgamation property (AP).

Suppose that C has �multi-products� in the sense that, for any objects
c1, . . . , cn of C, there exists a family of objects di, i ∈ I, of C each of which
endowed with arrows

f i1 : di −→ c1, . . . , f
i
n : di −→ cn

and such that, for any object d of C endowed with arrows

f1 : d −→ c, . . . , fn : d −→ cn ,

there exists a unique index i ∈ I and a unique arrow

f : d −→ di

such that
f i1 ◦ f = f1, . . . , f

i
n ◦ f = fn .

Then, for any such objects c1, . . . , cn with multi-product (di)i∈I , every
component of c1 × . . . × cn in the sense of Lemma 6.4 is represented by a
unique element di of this family, which therefore identi�es with the set of
components of c1 × . . .× cn.
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Remarks 6.12. (a) When the multi-product (di)i∈I of objects c1, . . . , cn of
C exists, it is uniquely determined up to a unique family of isomorphisms.

(b) If C is the category of atoms Eat of an atomic topos E , then it has multi-
products: indeed, for any atoms c1, . . . , cn, their multi-product consists
in the subobjects of the product c1 × . . . × cn in the topos E which are
atoms.

(c) If the families (di)i∈I are always �nite, we say that the category C has
�nite multi-products. This is for instance the case if Cop is the category
of �nite separable extensions of a given �eld (see also Example 6.13(b)
below).

Examples 6.13. (a) Let Gpif be the category of �nite groups and injective
homomorphisms between them (a Galois theory for Gpif

op
was discussed

in section 5.5 of [9]). Then Gpif
op

has multi-products that are not ne-
cessarily �nite. These are obtained as follows. Given c1, . . . , cn ∈ Gpif ,
the family F of �nite groups q which are quotients of the free group
generated by the ci such that the induced homomorphisms ci → q are
injective is a multi-product of c1, . . . , cn. Indeed, given a family of arrows
f1 : d → c, . . . , fn : d → cn in Gpif

op
, there exist a unique element of F

and arrows from it to the ci through which the family uniquely factors,
namely the group-theoretic image of the arrow from the free group gene-
rated by the ci to d induced by the fi. Notice that these multi-products
are not �nite in general.

(b) Let Gpsf be the category of �nite groups and surjective homomorphisms
between them. ThenGpsf has �nite multi-products, which can be descri-
bed as follows. Given c1, . . . , cn ∈ Gpsf , the family G of �nite subgroups
h of c1 × . . .× cn such that the induced homomorphisms h→ ci are sur-
jective is a (�nite) multi-product of c1, . . . , cn. Indeed, given a family of
arrows f1 : d→ c, . . . , fn : d→ cn inGpsf , there exist a unique element of
G and arrows from it to the ci through which the family uniquely factors,
namely the group-theoretic image of the arrow from d to c1 × . . . × cn
induced by the fi.

6.3 Irreducibility and discreteness

Let us analyze the notion of irreducible object in the context of the Galois-
type equivalence

Sh(Cop, Jat) ' Cont(Aut(u))

provided by Theorem 2.4.
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Recall that an object of a Grothendieck topos is said to be irreducible
if any epimorphic sieve on it contains the identity; in a Boolean topos, an
object is irreducible if and only if it is an atom and every epimorphism to
it is an isomorphism. For any topological group G, the irreducible objects
of the topos Cont(G) are precisely the G-sets of the form G/U where U is
an open subgroup which does not contain any proper open subgroup. Notice
that any such subgroup is contained in any other open subgroup (otherwise
their intersection would be a smaller open subgroup) and, in particular, is
normal. Furthermore, Cont(G) ' Cont(G/U).

The following proposition gives a site characterization of the irreducible
objects of an atomic topos.

Proposition 6.14. Let C be a small category satisfying the dual of the amal-
gamation property. Then the irreducible objects of the topos Sh(C, Jat) are
all, up to isomorphism, of the form l(c) for some c ∈ C. Moreover:

(a) For any c ∈ C, the object l(c) is irreducible if and only if for any arrow
f : d → c in C, if f ◦ z = f ◦ w for some arrows z, w from a common
domain to d then there exists an arrow ξ in C such that z ◦ ξ = w ◦ ξ.

(b) If the topology Jat is subcanonical then an object of the form l(c) is irredu-
cible if and only if every arrow in C with codomain c is an isomorphism.

Proof. Let A be an irreducible object of the topos Sh(C, Jat). Then there
exists a split epimorphism from an object of the form l(c) to A. But the
splitting arrow A → l(c) must be an isomorphism, l(c) being an atom, and
hence an isomorphism.

First, let us show that l(c) is irreducible if and only if for any arrow
f : d → c in C, the arrow l(f) is an isomorphism. The object l(c) being an
atom, every arrow to it is an epimorphism and hence l(c) is irreducible if
and only if any arrow to l(c), whose domain can be supposed to be of the
form l(d) without loss of generality, is a split epimorphism (equivalently, an
isomorphism).

Let us show that, if for any arrow f : d → c in C the arrow l(f) is an
isomorphism then any arrow ξ : l(d)→ l(c) is an isomorphism. There exists
an arrow h : a → d in C and an arrow k : a → c such that ξ ◦ l(h) = l(k).
Since l(h) is an epimorphism (by de�nition of the atomic topology Jat), if
l(k) is an isomorphism then the identity ξ ◦ l(h) = l(k) implies that l(h) is
also a monomorphism and hence an isomorphism; so ξ is an isomorphism as
well, as required.

Now, we can express the condition that for any arrow f : d→ c in C, the
arrow l(f) is an isomorphism as the requirement that l(f) be a monomor-
phism, equivalently that the canonical monomorphism in the presheaf topos
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[Cop,Set] from y(d) to the kernel pair of y(f) be Jat-dense. This rewrites
explicitly as follows: if f ◦ z = f ◦ w for some arrows z, w from a common
domain to d then there exists an arrow ξ in C such that z ◦ ξ = w ◦ ξ.

Let us now suppose that Jat is subcanonical and show that l(c) is irre-
ducible if and only if every arrow f : d → c in C with codomain c is an
isomorphism. The `if' part follows from the general characterization esta-
blished in point (a), so it remains to prove the `only if' part. For this we
observe that, since l(c) is both an atom and an irreducible object and l(d) is
an atom, the arrow l(f) is a split epimorphism, equivalently an isomorphism.
But the Yoneda embedding re�ects isomorphisms, it being full and faithful,
whence our thesis follows. �

Every irreducible object A of an atomic topos E is a generator for it.
Given an atom B of E , consider the canonical projection A × B → A; this
is an epimorphism (A being an atom) and hence admits a section, which
provides an arrow A → B; but this arrow is necessarily an epimorphism,
B being an atom. Notice that every endomorphism of A is an isomorphism
since, A being irreducible, it admits a section which is both a monomorphism
and an epimorphism. So we have by Grothendieck's Comparison Lemma an
equivalence E ' [AutE(A)op,Set].

Notice that, if (C, u) is a pair satisying the hypotheses of Theorem 2.4
then it follows that the open subgroups of Aut(u) which do not contain any
proper open subgroup are precisely the ones of the form Iχ where dom(χ) is
an object satisfying the condition of Proposition 6.14

The following proposition, which summarizes the above discussion, re-
lates the concept of irreducible generator in a topos and the property of
discreteness of a topological group.

Proposition 6.15. Under the hypotheses of Proposition 6.14, the following
conditions are equivalent.

(i) There exists an open subgroup of Aut(u) which does not contain any
proper open subgroup.

(ii) There exists an object c of C satisfying the conditions of Proposition
6.14.

(iii) The topological group Aut(u) is Morita-equivalent to a discrete group.

�
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6.4 Galois objects

Recall that a Galois object of a Grothendieck topos E is an object X of E
such that the canonical arrow γ∗E(AutE(X))×X → X×X, where AutE(X) is
the set of automorphisms of X in E and γ∗E is the inverse image of the unique
geometric morphism γE : E → Set (which sends any set S to the coproduct
of 1E indexed by it), is an isomorphism.

In this section we shall describe the Galois objects of a topos as in The-
orem 2.4 in terms of the two sites of de�nition.

Proposition 6.16. (i) The Galois objects of a topos Cont(G) of continu-
ous actions of a topological group G are precisely the objects isomorphic
to one of the form G/U where U is a normal open subgroup of G.

(ii) The Galois objects of an atomic topos Sh(Cop, Jat), where C is an essen-
tially small category satisfying the amalgamation property, are precisely
the objects of the form l(c) for an object c satisfying the following pro-
perties:

For any arrows f, g : c → d and arrows x, x′ : d → e, if x ◦ f = x′ ◦ f
then there exists y : e→ e′ such that y ◦ x ◦ g = y ◦ x′ ◦ g.
If C satis�es moreover the property that all its arrows are strict mono-
morphisms then the above condition on c is equivalent to the following
condition: for any arrows f, g : c → d in C there exists exactly one
automorphism α : c → c such that there exists an arrow γ : d → e
satisfying γ ◦ g = γ ◦ f ◦ α.

(iii) Given a pair (C, u) satisfying the hypotheses of Theorem 2.4 and such
that all the arrows of C are strict monomorphisms, an object l(c) of
Sh(Cop, Jat) is Galois if and only if it satis�es the following property: for
any arrow χ : c → u in Ind-C and any automorphism α : u → u there
exists exactly one automorphism β : c→ c in C such that α ◦χ = χ ◦β:

c

β

��

χ // u

α

��
c χ

// u

Proof. (i) For a subgroup U of G, let 'U be the equivalence relation corre-
sponding to it (given by x 'U y if and only if x−1y ∈ U) and [g]U be the
resulting equivalence classes. The automorphisms of G/U in Cont(G) can be
identi�ed with the equivalence classes [h]U of elements such that hUh−1 = U ,
via the assignment which sends an automorphism to the image under it of

42



the equivalence class [e]U of the neutral element e. The condition that G/U
is Galois can thus be reformulated as the requirement that the G-equivariant
maps αh : G/U → G/U × G/U corresponding to the elements h satisfying
hUh−1 = U , which send an element [g]U to the pair ([g]U , [gh]U), are jointly
surjective. This is equivalent to saying that for any elements g1, g2 ∈ G there
exists h satisfying hUh−1 = U such that [g2]U = [g1h]U . But this is clearly
equivalent to saying that U is a normal subgroup of G.

(ii) Notice that the subobjects of an object X × X which are of the
form 〈1X , α〉, where α is an automorphism of X, can be identi�ed with the
subobjects 〈r1, r2〉 of X ×X such that both r1 and r2 are isomorphisms. By
de�nition, an object of the form l(c) is Galoisian in Sh(Cop, Jat) if and only
if all the atomic subobject of l(c)× l(c) are of this form; see Lemma 6.6 for
a desciption of them in terms of �components� of c× c.

On the other hand, notice that an arrow P → Q in [C,Set] is sent by the
associated sheaf functor aJat : [C,Set]→ Sh(Cop, Jat) to a monomorphism if
and only if the canonical arrow P → P ×Q P is a Jat-dense monomorphism.

Now, for a given pair of arrows f, g : c → d in C, let us consider the
image A′ � yc × yc in [C,Set] of the arrow 〈yf, yg〉 : yd → yc × yc. Since
any arrow with codomain an object of the form l(c) is an epimorphism, its
image under the associated sheaf functor aJat is of the above form if and only
if both the canonical arrows π1 : A′ → yc and π2 : A′ → yc are sent by
aJat to a monomorphism. But the latter condition for A′ follows from the
�rst condition for the subobject A′′ obtained from f and g considered in the
exchanged order. The former condition is equivalent, by the above remark,
to the condition that the diagonal subobject k1 : A′ � A′×ycA′ of the kernel
pair of π1 is Jat-dense. Now, for any object e of C, we have

A′(e) = {(x ◦ f, x ◦ g) | for some x : d→ e} .

The property of k1 to be Jat-dense can thus be reformulated as follows: for
any arrows x, x′ : d → e, if x ◦ f = x′ ◦ f , there exists y : e → e′ such that
y ◦ x ◦ g = y ◦ x′ ◦ g.

If Jat is subcanonical, then for any object c of C the automorphisms of
l(c) in Sh(Cop, Jat) are precisely the arrows of the form l(α) where α is an
automorphism of c in C. Therefore, in light of Lemma 6.6 (applied to the
opposite category Cop), the object l(c) is Galois if and only if every pair
of arrows f, g : c → d is equivalent in Cop, in the sense of Lemma 6.4(i),
to exactly one pair of the form 1c, α : c → c where α is an automorphism
of c in C. But this amounts precisely to saying that there is exactly one
automorphism α : c→ c in C such that there exists an arrow γ : d→ e with
γ ◦ g = γ ◦ f ◦ α.
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(iii) Under the equivalence of Theorem 2.4, the object l(c) corresponds
to the set HomInd-C(c, u) with the canonical action of Aut(u), and, if the
topology Jat is subcanonical, the �component� of c × c corresponding to an
automorphism β of c as in the proof of (ii) is the Aut(u)-equivariant map
HomInd-C(c, u) → HomInd-C(c, u) × HomInd-C(c, u) sending any element χ ∈
HomInd-C(c, u) to the pair (χ, χ ◦ β). So the requirement for the action of
Aut(u) on HomInd-C(c, u) to be Galois is equivalent to the condition that for
any arrow χ : c→ u in Ind-C and any automorphism α : u→ u there exists
exactly one automorphism β : c→ c in C such that α ◦ χ = χ ◦ β. �

The following `bridge' result is an immediate corollary of Proposition 6.16
in light of the equivalence of Theorem 2.4 (noticing for point (i) that for any
automorphism α of u, αIχα−1 = Iα◦χ).

Corollary 6.17. Let (C, u) be a pair satisfying the hypotheses of Theorem
2.4. Then, for any object c of C and any arrow χ : c → u in Ind-C, the
following conditions are equivalent:

(i) The open subgroup Iχ of Aut(u) is normal (equivalently, for any auto-
morphism α of u, Iχ = Iα◦χ).

(ii) The object c satis�es the properties in Proposition 6.16(ii).

If moreover all the arrows of C are strict monomorphisms, these conditions
are also equivalent to any of the following ones:

(iii) For any arrows f, g : c→ d in C there exists exactly one automorphism
α : c → c such that there exists an arrow γ : d → e satisfying γ ◦ g =
γ ◦ f ◦ α.

(iv) For any arrow χ : c → u in Ind-C and any automorphism α : u → u
there exists exactly one automorphism β : c→ c in C such that α ◦χ =
χ ◦ β.

�

6.5 Prodiscreteness

Recall that an object X of an atomic topos E is said to be split by an atom
U if we have an isomorphism X × U ∼= γ∗E(S) × U over U , where S is a set
and γ∗E is the inverse image of the unique geometric morphism γE : E → Set.
Notice that if U is a Galois object then X is split by U if and only if there
exists an arrow U → X. Indeed, one implication is clear, while in the converse
direction, if f : U → X is an arrow then one can easily see, by considering the
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pullback of an atom of X×U along the epimorphism f×1U : U×U → X×U ,
that every atom of X × U is of the form 〈f, α〉 : U → X × U where α is an
automorphism of U .

For any Galois object U of an atomic topos E , let Split(U) be the full
subcategory of E on the atoms of E which are split by U .

De�nition 6.18. An atomic topos is said to have enough Galois objects if
the Galois objects form a separating set for it.

Remarks 6.19. (a) If (E , p) is a pointed atomic topos with enough Galois
objects, the objects of the form (c, x) where c is a Galois object of E and
x ∈ p∗(c), are �nal in the category of elements of the functor p∗; indeed,
if any atom e of E admits a morphism f : c→ e from a Galois object c,
which is necessarily an epimorphism, the map p∗(f) is a surjection.

(b) If E has enough Galois objects then the category Eat of atoms of E is the
union of the categories Split(U) where U is a Galois object.

The next lemma will be instrumental in proving the main theorem of this
section.

Recall that a functor j : C → D is said to be �nal if for every d ∈ D
the comma category j/d (whose objects are the triplets (c, f) where a is an
object of C and f is an arrow j(a)→ d in D and whose arrows (c, f)→ (c, f ′)
are the arrows k : c → c′ in C such that f ′ ◦ j(k) = f) is non-empty and
connected. If j is �nal then for any functor F : D → Set, the limit of F is
isomorphic to the limit of F ◦ j.

Lemma 6.20. Let C be a full subcategory of a �ltered category D. Then, if
for any object d of D there exists an arrow d → c in D to an object c of C,
C is �ltered and co�nal in D.

Proof To prove that C is �ltered we observe that C is non-empty since D
is non-empty and for any object d of D there exists an arrow d → c in C to
an object c of C. The fact that C satis�es the joint embedding property and
the weak coequalizer property follows at once from the fact that C is full in
D as these properties are satis�ed by D by our hypotheses. It remains to
prove that for any d ∈ D the comma category d/C is connected. We shall
prove that it satis�es the joint embedding property, from which our thesis
will clearly follow. Given any two objects f : d → c and g : d → c′ in d/C,
since D satis�es the joint embedding property, there exist an object d′ and
two arrows h : c→ d′ and k : c′ → d′ in D; now, the fact that D satis�es the
weak coequalizer property and the fact that there exists an arrow d′ → c′′

where c′′ is an object of C imply that we can suppose without loss of generality
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that h ◦ f = k ◦ g and that d′ ∈ C; the arrow h ◦ f = k ◦ g : d → d′ thus
de�nes an object of (d/C) (as C is full in D) and the arrows h and k de�ne
respectively arrows f → h ◦ f and g → g ◦ k in d/C. �

Theorem 6.21. Let E be an atomic two-valued topos with enough Galois ob-
jects. Then, for any point p of E, the topological group Aut(p) is prodiscrete.

� For instance, Aut(p) is given by the projective limit of the following
diagram D : Pop → Gp of discrete groups: P is the poset of (isomor-
phism classes of) Galois objects of E with the order given by U ≤ V
if and only if U is split by V , D(U) = Aut(p∗|Split(U)) for any U
and if U ≤ V then we have a canonical surjective homomorphism
D(V ) = Aut(p∗|Split(V ))→ Aut(p∗|Split(V )) = D(U) given by restriction.

� Alternatively, Aut(p) can be represented as the projective limit of the
diagram D′ : P ′ → Gp de�ned as follows: P ′ is the full subcategory of
the category

∫
p∗|Eat of elements of the functor p∗|Eat : Eat → Set on the

objects of the form (e, x) where e is a Galois object and x ∈ p∗(e) is an
arbitrary element, and D assigns to any such object (e, x) the group of
automorphisms Aut(e) of e in E and to any arrow f : (e, x)→ (e′, x′) of∫
p∗ the canonically induced group homomorphism Aut(e)→ Aut(e′).

� If E is the topos Sh(Cop, Jat) with a point u as in Theorem 2.4, every
arrow of C is a strict monomorphism and every object of C admits an
arrow to an object of C satisfying the condition in Proposition 6.16(iii)
then the automorphism group Aut(u) is the projective limit of the di-
agram DC : PCop → Gp de�ned as follows: PC is the category having
as objects the (isomorphism classes of) pairs (c, f), where c is such
an object and f : c → u is an arrow in Ind-C, and whose arrows
(c, f) → (d, g) are the arrows l : c → d in C such that g ◦ l = f in
Ind-C, and the diagram DC assigns to any object (c, f) the automor-
phism group Aut(c) of c in C and to any arrow l : (c, f)→ (d, g) in PC
the group homomorphism Aut(d)→ Aut(c) sending any automorphism
of d in C to its (unique) restriction c → c along l. Moreover, the coli-
mit arrows (for (c, f) ∈ PC) are precisely the maps Aut(u) → Aut(c)
sending to any automorphism ξ of u the unique automorphism s of c
such that ξ ◦ f = f ◦ s.

Proof. Let us begin by establishing the �rst prolimit representation for Aut(p).
If U ≤ V then, clearly, Split(U) ⊆ Split(V ) and hence we have a group ho-
momorphism Aut(p∗|Split(V )) → Aut(p∗|Split(V )) given by restriction. The di-
agram D is therefore well-de�ned. The fact that the category P is co�ltered
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follows at once from the fact that the category Eat satis�es JEP (the topos
E being two-valued) and that, by our hypothesis, every atom of E admits
an arrow from a Galois object to it. The fact that Aut(p) is the limit of
D is clear set-theoretically (in light of Remark 6.19(b)). Topologically, we
have to verify that the topology on Aut(p) is the coarsest making all the
maps rU : Aut(p) → Aut(p∗|Split(U)) continuous (equivalently, it is the smal-
lest topology containing all the inverse images of the identity elements in a
subgroup of the form Aut(p∗|Split(U))). Recall that the topology on Aut(p)
has as basis of open neighbourhoods of the identity the subgroups of the
form U(e,x) = {α : p∗ ∼= p∗ | α(e)(x)} for e ∈ E and x ∈ p∗(e). Notice that
r−1U (1Split(U)) = {α : p∗ ∼= p∗ | α(U) = 1p∗(U)}; indeed, if V is an object in
Split(U), that is admitting an arrow f : U → V , then for any automorphism
α of p, if α(U) = 1p∗(U) then α(V ) = 1p∗(V ) since p∗(f) is an epimorphism.
But {α : p∗ ∼= p∗ | α(U) = 1p∗(U)} = U(U,x) for any x ∈ p∗(U), so our claim
follows in light of the co�nality of Galois objects among the atoms of E .

Let us now show how to derive from this prolimit representation of Aut(p)
the alternative one in terms of the diagram D′. First, let us notice that,
since (Eat, Jat) is a site of de�nition for E , the functor p∗|Eat : Eat → Set is
�at and hence its category of elements is �ltered. Therefore, the category
P ′ is �ltered by Lemma 6.20. Notice that, for any Galois object U of E , the
category Split(U) satis�es the dual of the amalgamation property. Indeed,
given two arrows f : V ′ → V and g : V ′′ → V in Split(U), all the atoms of
the �ber product V ′ ×V V ′′ are split by U . Clearly, the category Split(U)
also satis�es the dual of the joint embedding property, and the object U is
Split(U)-universal and Split(U)-ultrahomogeneous. So we have, by Theorem
2.4, an equivalence

Sh(Split(U), Jat) ' Cont(Aut(p∗|Split(U))),

where the group Aut(p∗|Split(U)) has the discrete topology. The geometric
morphism

Sh(Split(U), Jat) ' Cont(Aut(p∗|Split(U)))

Sh(Split(V ), Jat)

OO

' Cont(Aut(p∗|Split(V ))) .

OO

is actually induced by the group homomorphism

rU,V : Aut(p∗|Split(V ))→ Aut(p∗|Split(U))

given by restriction along the embedding Split(U) ⊆ Split(V ). Let us now
show that if U and V are related by a morphism f : (V, x′) → (U, x) in the
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category of elements of the functor p∗|Eat then we have group isomomorphisms
ξx,U : Aut(U) → Aut(p∗|Split(U)) and ξx′,V : Aut(U) → Aut(p∗|Split(U)) such
that the group homomorphism rU,V corresponds to the group homomorphism
ρfU,V : Aut(V ) → Aut(U) de�ned as follows: ρfU,V sends any automorphism
β : V → V to the unique automorphism ξ : U → U such that f ◦ ξ = β ◦ f :

V

f
��

β // V

f
��

U
ξ
// U

Recall from Proposition A.2.7 [14] that an object A of an atomic pointed two-
valued topos (E , p) is Galois if and only if there exists an element x ∈ p∗(A)
such that the map φA,x : Aut(A)→ p∗(A) sending any automorphism χ of A
to the element p∗(χ)(x) is a bijection. In fact, this property holds for every
x ∈ p∗(A) if A is Galois.

Let us �rst show that, under the identi�cations φU,x : Aut(U) ∼= p∗(U)
and φV,x′ : Aut(V ) ∼= p∗(V ) respectively provided by the elements x and
x′, our morphism ρfU,V corresponds to the arrow p∗(f) : p∗(V )→ p∗(U). We
have that for any element α ∈ Aut(V ), (p∗(f)◦φV,x′)(α) = p∗(f)(p∗(α)(x′)) =

p∗(f ◦ α)(x′) = p∗(ρfU,V (α) ◦ f)(x′) = p∗(ρfU,V (α))(x) = (φU,x ◦ ρfU,V )(α), as
required.

Next, we observe that for any Galois object U , the action of the group
Aut(p∗|Split(U)) on the set p∗(U) is simply transitive. Indeed, we already know
from the Galois representation Sh(Split(U), Jat) ' Cont(Aut(p∗|Split(U)))
that the action is transitive and non-empty, so it remains to show that if
an element g ∈ Aut(p∗|Split(U)) acts identically on an element x ∈ p∗(U)
then it is the identical automorphism. Notice that, the object U being Ga-
lois, the �xators of all the points in p∗(U) are the same (since they are all
conjugate to each other and the �xator subgroup is normal), so if g �xes
an element of p∗(U) then it �xes the whole of p∗(U), and hence also every
p∗(V ) since if V ∈ Split(U) then there is an epimorphism U → V in E
whose image under p∗ is a Aut(p∗|Split(U))-equivariant surjective map. The
action of Aut(p∗|Split(U)) on p∗(U) being simply transitive, we have a bi-
jection ψU,x : p∗(U) → Aut(p∗|Split(U)) sending any element z ∈ p∗(U) to
the unique element g ∈ Aut(p∗|Split(U)) such that g(U)(x) = z. Similarly,
we have a bijection ψV,x′ : p∗(V ) → Aut(p∗|Split(V )) sending any element
y ∈ p∗(V ) to the unique element h ∈ Aut(p∗|Split(V )) such that h(V )(x′) = y.
Let us show that, under these bijections, the restriction homomorphism
rU,V : Aut(p∗|Split(V ))→ Aut(p∗|Split(U)) corresponds to the map p∗(f). Given
y ∈ p∗(V ), we want to prove that (rU,V ◦ ψV,x′)(y) = (ψU,x ◦ p∗(f))(y). But
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(rU,V ◦ψV,x′)(y) = ψV,x′(y)(U), and ψV,x′(y)(U)(x) = ψV,x′(y)(U)(p∗(f)(x′)) =
p∗(f)((ψV,x′(y)(V ))(x′)) = p∗(f)(y) (where the second equality follows from
naturality), while on the other hand (ψU,x(p

∗(f)(y)))(U)(x) = p∗(f)(y),
whence we have our desired equality by the simple transitivity of the action
of Aut(p∗|Split(U)) on p∗(U).

Summarizing, we have the following commutative diagram:

Aut(V )

ρfU,V
��

φV,x′ // p∗(V )

p∗(f)
��

ψV,x′ // Aut(p∗|Split(V ))

rU,V
��

Aut(U)
φU,x // p∗(U)

ψU,x // Aut(p∗|Split(U))

The bijections
ξx,U : Aut(U)→ Aut(p∗|Split(U))

and
ξx′,V : Aut(U)→ Aut(p∗|Split(U))

given by the horizontal composites in the above diagram are group isomor-
phisms. Indeed, ξx,U is the homomorphism induced by the functor p∗|Split(U) :
Split(U)→ Cont(Aut(p∗|Split(U))) modulo the group isomorphism

AutCont(Aut(p∗|Split(U)))(p
∗(U)) ∼= Aut(p∗|Split(U))

given by the fact that the action of Aut(p∗|Split(U)) on p∗(U) is simply tran-
sitive, and similary for ξx′,V .

Now, D′ is the composite of D with the opposite of the canonical functor
π : P ′ → Pop. To deduce the second prolimit representation from the �rst,
it therefore su�ces to prove that the functor π is �nal. But this follows
immediately from the fact that P ′ satis�es the dual of the joint embedding
property.

Finally, the third prolimit representation can be obtained from the second
by observing that if every object of C admits an arrow to an object of C
satisfying the condition in Proposition 6.16(iii) then the full subcategory of
the category P ′ on the Galois objects of the form l(c), which is precisely
the opposite of the category PC de�ned in the statement of the theorem, is
�nal in P ′ (by Remark 6.19(a)) and �ltered (by Proposition 6.20) and hence
the diagram DC, which is the composite of D with the inclusion functor
PCop ↪→ P ′, has the same limit as D. �
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Remarks 6.22. (a) The �rst prolimit representation of Aut(p) in Theorem
6.21 involves a simple indexing category but an abstract description of
the diagram D, while the second involves a bigger indexing category but
a more concrete description of the diagram D.

(b) Conversely to Theorem 6.21, if G is a prodiscrete group then the topos
Cont(G) has enough Galois objects; indeed, if G = lim←−i∈I Gi in the cate-
gory of topological groups, where the Gi are discrete groups, the kernels
Hi of the canonical projections G → Gi are open normal subgroups of
G which generate its topology; so the cosets G/Hi (for i ∈ I) form a
separating set of Galois objects of the topos Cont(G) (cf. Proposition
6.16(i)).

6.6 Coherence

Recall from [5] that a (totally discontinuous) topological group G is said to
be coherent if for any open subgroup H of G the number of subsets of the
form HgH for g ∈ G is �nite; it is proved in [5] that a topological group
G is coherent if and only if the topos Cont(G) is coherent. Recall that a
topos is said to be coherent if it can be represented as the topos of sheaves
on a site (C, J) where C is a small cartesian category and J is generated by
�nite covering families, equivalently if it is the classifying topos of a coherent
theory.

A prodiscrete topological group is coherent if and only if it is pro�nite
(cf. section D3.4 of [16]). For any topological group G, the coherent objects
of the topos Cont(G) are exactly the compact objects, that is the actions
with a �nite number of orbits (cf. section D3.4 of [16]).

Proposition 6.23. Given an atomic topos E, the following conditions are
equivalent:

(i) E is coherent.

(ii) For every atoms A1, . . . , An of E, the object A1 × . . .× An has a �nite
number of components (in the sense of Lemma 6.4).

(iii) There exist a separating family S of atoms of E such that for any
A1, . . . , An in S, the object A1 × . . . × An has a �nite number of com-
ponents.

If E is the topos of Sh(C, Jat) on sheaves on an atomic site then E is
coherent if and only if for any c1, . . . , cn in C, c1 × . . . × cn has a �nite
number of components. In particular, if C has multi-products (in the sense
of Lemma 6.11) then E is coherent if and only if they are �nite.

50



Proof (i) ⇒ (ii) Since E is coherent, every atom of it is covered by a
coherent object. So we have epimorphisms H1 → A1, ..., Hn → An, which
induce an epimorphism H1 × . . .×Hn → A1 × . . .×An. But H1 × . . .×Hn

is a coherent object (since in any coherent topos the full subcategory on the
coherent objects is closed under �nite limits), whence it has a �nite number
of components (in the sense of Lemma 6.4). So A1 × . . . × An has a �nite
number of components as well, as it is covered by it.

(ii) ⇒ (iii) This follows at once from the fact that in every atomic topos
the family of its atoms is separating for it.

(iii) ⇒ (i) The full subcategory C of E consisting of the �nite coproducts
of atoms in S is closed under �nite limits in E . Indeed, it is closed under �nite
products since the latter commute with coproducts, and it is closed under
equalizers since any subobject of a �nite coproduct of atoms is a �nite sub-
coproduct of them. Since C is separating for E (as S is), E can be represented
as the topos of sheaves Sh(C, Jcan

E |C) on C with respect to the Grothendieck
topology on C induced by the canonical topology Jcan

E on E . But C is cartesian
and Jcan

E |C is of �nite type, whence E is coherent.
The last statement of the proposition follows from the implications (i)⇒

(ii) and (iii) ⇒ (i) in light of the fact that the objects of the form l(c) for
c ∈ C form a separating set for E = Sh(C, Jat). �

It is interesting to consider the invariant property of coherence in the
context of a theory classi�ed by an atomic two-valued topos admitting a
representation as in Theorem 2.4.

Let T be an atomic and complete geometric theory with a special model
M (see section 7 for the de�nition of these notions). Then T is syntactically
equivalent to a coherent theory (over its signature) if and only if for any �nite
string of sorts A1, . . . , An over the signature of T, the action of Aut(M) on
MA1× . . .×MAn has only a �nite number of orbits (see section 7.3 and the
criterion for a geometric theory to be coherent established in [8]).

From Theorem 7.1 it then follows that for any atomic and complete co-
herent theory T with a special model M , the topological group Aut(M) is
coherent; in particular, for any string of elements a1, . . . , an ofM there exists
a �nite number of automorphisms f1, . . . , fm of M such that every automor-
phism f of M can be written as gfjh for some j ∈ {1, . . .m}, where g and
h are automorphisms which �x all the ai. Anyway, this property holds more
generally for any atomic and complete theory which is Morita-equivalent to a
coherent (atomic and complete) theory with a special modelM ; for example,
by Lemma 3.3 [6], T can be the theory of homogeneous S-models where S is
a theory of presheaf type with a universal and ultrahomogeneous model and
such that its category of �nitely presentable models satis�es AP and JEP
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and has all fc �nite colimits (recall that a category is said to possess fc �nite
colimits if if every �nite diagram D with values in it admits a �nite set of
cocones over it such that any other cocone over D factors through one in
that family); notice that the latter condition is automatically satis�ed if S is
coherent, cf. [4].

7 Special models and their automorphism groups

Recall from [7] that atomic and complete theories are precisely the geometric
theories classi�ed by atomic and two-valued toposes. Given a geometric
theory T over a signature Σ, a geometric formula-in-context φ(~x) over Σ is
said to be T-complete if the sequent (φ `~x ⊥) is not provable in T, but for
any geometric formula ψ(~x) over Σ in the same context, either (φ `~x ψ) is
provable in T or (φ∧ ψ `~x ⊥) is provable in T (see section D3.4 of [16]). We
denote by CcT the full subcategory of the geometric syntactic category of T on
the T-complete formulae. The T-complete formulae {~x . φ} are precisely the
objects of CT which are sent by the canonical functor yT : CT → Sh(CT, JT)
to atoms of Sh(CT, JT).

In [9] a set-based model M of an atomic and complete theory is de�ned
to be special if each T-complete formula φ(~x) is realized in M and for any
~a,~b ∈ [[~x . φ]]M there exists an automorphism f of M such that f(~a) = ~b.

Theorem 7.1 (cf. Theorem 3.1 [9]). Let T be an atomic and complete
theory and M be a special model of T. Then, if we denote by Aut(M) the
group of (T-model) automorphisms of M , we have that the sets of the form
{f : M ∼= M | f(~a) = ~a}, where ~a ∈ [[~x . φ]]M for some T-complete formula
φ(~x) form an algebraic base for Aut(M) and, if we endow Aut(M) with the
resulting topology, we have an equivalence

Sh(CT, JT) ' Cont(Aut(M))

between the classifying topos of T and the topos of continuous Aut(M)-sets
(where (CT, JT) is the geometric syntactic site of T), which restricts to a
functor

CcT ' Contt(Aut(M)) .

This functor sends any T-complete formula φ(~x) to the set [[~x . φ]]M with the
obvious Aut(M)-action and any T-provably functional formula θ from φ(~x)
to ψ(~y) to the Aut(M)-equivariant map [[~x . φ]]M → [[~y . ψ]]M whose graph
is the interpretation [[~x, ~y . θ]]M .
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Remark 7.2. Given an atomic and complete theory T, the Comparison
Lemma yields an equivalence

Sh(CT, JT) ' Sh(CcT, Jat);

indeed, the fact that the images under the functor yT of the objects of CcT
are atoms of Sh(CT, JT) ensures that Grothendieck topology induced on CcT
by the canonical topology on Sh(CT, JT) is the atomic topology on CcT. We
thus have an equivalence between the T-models and the Jat-continuous �at
functors on CcT, which allows us to regard a set-based model of T as an object
of the ind-completion of CcT.

For any theory T and modelM satisfying the hypotheses of Theorem 7.1,
the category CcT and the model M , regarded as an object of Ind-CcT, satisfy
the hypotheses of Theorem 2.4.

The following theorem provides an explicit description of `the' universal
model of a theory T as in Theorem 7.1 in its classifying toposCont(Aut(M)).

Theorem 7.3. Let T be an atomic and complete theory with a special model
M . Then the model M , endowed with the (continuous) canonical action of
Aut(M), is a universal model of T in the topos Cont(Aut(M)).

Proof Let Σ be the signature of T. Consider the Σ-structure M̃ of T in the
topos Cont(Aut(M)) given by the canonical (continuous) action of Aut(M)

on M . Then the Σ-structure M̃ is a model of T in Cont(Aut(M)); indeed,
the forgetful functor Cont(Aut(M))→ Set is faithful, and the image of M̃
under this functor is isomorphic to M , which, by our hypothesis, is a model
of T in Set.

Let CcT be the full subcategory of the geometric syntactic category CT of
T on the T-complete formulae.

For any Grothendieck topos E , since Sh(CcT, Jat) can be identi�ed, via
the equivalence Sh(CT, JT) ' Sh(CcT, Jat) of Remark 7.2, with the classifying
topos for T, we have a correspondence between the T-models in E and the
geometric morphisms E → Sh(CcT, Jat), which in turn can be identi�ed with
the �at Jat-continuous functors CcT → E ; the �at functor corresponding to
a model N of T in E is given by the functor assigning to any T-complete
formula φ(~x) its interpretation [[~x . φ]]N (and acting on the arrows accor-
dingly). Now, the universal model of T in Sh(CcT, Jat) corresponds to the
�at functor l : CcT → Sh(CcT, Jat) given by the Yoneda embedding, while the
model M̃ corresponds to the functor CcT → Cont(Aut(M)) sending any T-
complete formula φ(~x) to its interpretation [[~x . φ]]M in M . Hence the two
�at functors correspond to each other under the equivalence de�ned in the
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proof of Theorem 7.1; the Σ-structure M̃ thus corresponds to the universal
model of T in Sh(CT, JT) ' Sh(CcT, Jat) under this equivalence, and hence it
is itself a universal model of T in the topos Cont(Aut(M)), as required. �

The fact that M̃ is a universal model of T has several remarkable conse-
quences, notably including the following ones.

Theorem 7.4 (Theorem 10.5.3 [10]). Let T be an atomic and complete theory
with a special model M . Then:

(i) For any subset S ⊆MA1×. . .×MAn which is closed under the action of
Aut(M), there exists a (unique up to T-provable equivalence) geometric
formula φ(~x) over the signature of T (where ~x = (xA1 , . . . , xAn)) such
that S = [[~x . φ]]M .

(ii) For any Aut(M)-equivariant map f : S → T between invariant subsets
S and T as in (i) there exists a (unique up to T-provable equivalence) T-
provably functional geometric formula θ(~x, ~y) from φ(~x) to ψ(~y), where
S = [[~x . φ]]M and T = [[~y . ψ]]M , such that the graph of f coincides
with [[~x, ~y . θ]]M .

Proof This immediately follows from Theorem 7.1 and Theorem 2.2 [11].�

Remark 7.5. It easily follows from the theorem that for any �nite string
A1, . . . , An of sorts of the signature of the theory T, the orbits of the action
of Aut(M) on MA1 × . . .×MAn coincide precisely with the interpretations
[[~x . φ]]M of T-complete formulae φ(~x), where ~x = (xA1 , . . . , xAn), that is
they correspond exactly to the T-provable equivalence classes of T-complete
formulae in the context ~x.

It is interesting to investigate to which extent a structure is determined
by its automorphism group. We can immediately deduce, from Remark 7.5,
that if M and N are two special models of an atomic and complete theory
then for any �nite string A1, . . . , An of sorts of the signature of the theory
T, the orbits of the action of Aut(M) on MA1 × . . .×MAn are in bijective
correspondence with the orbits of the action of Aut(N) on NA1× . . .×NAn.
The following result shows that, if the topological group Aut(M) is discrete
then M is uniquely determined by it.

Proposition 7.6. Let T be an atomic and complete theory with two special
models M and N . If Aut(M) is a discrete group then M ∼= N .

Proof By Theorem 7.1, the classifying topos of T can be represented as
Cont(Aut(M)). But if Aut(M) is discrete then the topos Cont(Aut(M))
has just one point, up to isomorphism, whence M ∼= N , as required. �
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It is interesting to apply Corollary 5.11 in the context of the investigation
of the relationship between group homomorphisms between the automor-
phism groups of special models of two atomic and complete theories and
interpretations which could induce them.

Recall from section 2.1.3 of [10] that there are various natural notions
of interpretations between theories. For instance, it is natural to de�ne an
interpretation between geometric theories T and T′ as a geometric functor
CT → CT′ between the geometric syntactic categories of T and T′, while for
coherent theories there are two additional natural notions of interpretations
directly inspired by classical Model Theory: we can de�ne a coherent in-
terpretation of a coherent theory T into a coherent theory T′ as a coherent
functor CcohT → CcohT′ , where CcohT and CcohT are respectively the coherent syn-
tactic categories of T and of T′, and a generalized coherent interpretation as
a coherent functor PT → PT′ , where PT and PT′ are respectively the preto-
pos completions of CcohT and of CcohT , that is the categories of model-theoretic
coherent imaginaries of T and T′. Notice incidentally that if the theories
in question are Boolean then any �rst-order formula over their signature is
provably equivalent in the theory to a coherent formula so that these cate-
gories coincide with the usual �rst-order syntactic categories or �rst-order
categories of imaginaries arising in classical model theory.

Moreover, it is natural to de�ne an atomic interpretation of an atomic the-
ory T into an atomic theory T′ to be a morphism of sites (CcT, Jat)→ (CcT′ , Jat),
where CcT (resp. CcT′) is the full subcategory of the geometric syntactic ca-
tegory CT of T (resp. CT′ of T′) on the T-complete (resp. the T′-complete)
formulae, and a generalized atomic interpretation of T into T′ as a morphism
of sites (CcTat, Jat)→ (CcT′at, Jat), where (CcTat (resp. CcT′at) is the atomic com-
pletion of CcT (resp. of CcT′), in the sense of section 6.2.

Proposition 7.7. Let T and T′ be atomic and complete theories with special
models M and M ′ respectively. Then a continuous group homomorphism
h : Aut(M ′) → Aut(M) (where the groups Aut(M) and Aut(M ′) are en-
dowed with the topology of pointwise convergence) is induced by an atomic
interpretation of T into T′ sending M ′ to M (as in section 5.4) if and only

if for any string ~a of elements of M there exists a string ~b of elements of
M ′ such that {f : M ′ ∼= M ′ | f(~b) = ~b} = {f : M ′ ∼= M ′ | h(f)(~a) = ~a}.
On the other hand, every continuous group homomorphism is induced by a
generalized atomic interpretation of T into T′.

Proof Corollary 5.11 can be applied to the pairs of the form (CcT,M), where
T is a theory satisfying the hypotheses of Theorem 2.4 with respect to the
model M (cf. Remark 7.2). From this the �rst assertion of the proposition
follows at once. �

55



Proposition 7.8. Let T and T′ be atomic and complete theories with special
models M and M ′ respectively. Then:

(i) A continuous group homomorphism h : Aut(M ′)→ Aut(M) (where the
groups Aut(M) and Aut(M ′) are endowed with the topology of pointwise
convergence) is induced by a generalized atomic interpretation if and
only if the image of h is dense in Aut(M).

(ii) If T and T′ are coherent then a continuous group homomorphism h :
Aut(M ′)→ Aut(M) is induced by a generalized coherent interpretation
of T into T′ if and only if for every open subgroup H of Aut(M), the
double quotient Aut(M ′)\Aut(M)/H is �nite (notice that this condition
is automatically satis�ed if the image of h is of �nite index in Aut(M)).

Proof (i) The inverse image functor of the geometric morphism Cont(G)→
Cont(G′) induced by a continuous group homomorphism h : G → G′ sends
atoms to atoms if and only if the action of G on every quotient G′/H is
transitive, that is if and only if the image of h is dense in G. Our thesis thus
follows at once in light of the results of section 5.4.

(ii) The classifying pretopos of a coherent theory is equivalent to the full
subcategory of its classifying topos on the coherent objects, and the coherent
objects of a topos of actions of a topological group are precisely the actions
with a �nite number of orbits (cf. section 6.6). Our thesis then follows
form the fact that the inverse image functor of the geometric morphism
Cont(G) → Cont(G′) induced by a continuous group homomorphism h :
G → G′ thus sends coherent objects to coherent objects if and only if for
every open subgroup H of G′, the double quotient G\G′/H is �nite. �

Remarks 7.9. (a) Given two atomic and complete geometric theories T and
T′ with special models M and N , we can de�ne an interpretation of M
in N as a generalized atomic interpretation CcTat → CcT′at. This notion is
stronger than the classical model-theoretic one (cf. [2]), since it implies
that for any sort A of the signature of T, MA can be represented in
the form [[~y . ψ]]N/R, where {~y . ψ} is a T-complete formula and R
is a geometrically de�nable equivalence relation on [[~y . ψ]]N . We shall
say that M and N are bi-interpretable if there exist interpretations of
M in N and of N in M which are mutually inverse to one another
(up to isomorphism). Proposition 7.8(i) thus implies that Aut(M) and
Aut(N) are isomorphic as topological groups if and only if M and N
are bi-interpretable (in our sense), strenghtening the classical result by
Coquand-Ahlbrandt-Ziegler (Corollary 1.4(ii) [2]).
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(b) Proposition 7.8(ii) generalizes Theorem 1.2 [2] (whose condition that the
image of h should be of �nite index is stronger than ours).

In view of Corollary 5.11, it is natural to wonder whether we can ex-
plicitly characterize, given any two atomic and complete theories T and T′
with special models respectively M and N , the continuous homomorphisms
Aut(M ′)→ Aut(M) which are induced by an interpretation of T into T′.

Thanks to Remark 7.5, we can characterize the continuous homomor-
phisms h : Aut(M ′) → Aut(M) induced by an interpretation CT → CT′ (via
the equivalences

Sh(CT, JT) ' Cont(Aut(M))

and
Sh(CT′ , JT′) ' Cont(Aut(M ′))

of Theorem 7.1): they are exactly the homomorphisms h such that for any
sort A of the signature of T there exists a �nite set of sorts B1, . . . Bn of the
signature of T′ such that the action of Aut(M ′) via h on MA is isomorphic
(in Cont(Aut(M ′))) to the action of Aut(M ′) on a Aut(M ′)-invariant subset
ofM ′B1× . . .×M ′Bn. Indeed, giving an interpretation I : CT → CT′ amounts
precisely to giving a T-model inside CT′ , and we have a commutative diagram
of the form

CT
yCT
��

I // CT′
yT′

��
Sh(CT, JT)

Sh(I)∗ //

τM
��

Sh(CT′ , JT′)
τM′

��
Cont(Aut(M))

Cont(h)∗ // Cont(Aut(M ′))

where yT and yT′ are the Yoneda embeddings and τM and τ ′M are the equiva-
lences of Theorem 7.1, if and only if for any sort A of the signature of T the
object Cont(h)∗(M̃)A is the image under τM ′ ◦ yT′ of an object of CT′ , since
by Theorem 7.4 every Aut(M ′)-equivariant arrow between de�nable subsets,
and every Aut(M ′)-equivariant subset of a de�nable subset, is de�nable.

The analogue of this characterization for coherent theories is obtained
by replacing the condition `Aut(M ′)-equivariant' with `Aut(M ′)-equivariant
with a �nite number of orbits'.

The following theorem shows a connection between endomorphisms of the
classifying topos of a theory satisfying the hypotheses of Theorem 7.1 and
homorphisms between special models for it. Before proving it, we need a
lemma.
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Lemma 7.10. Let T be a geometric theory and G a topological group. Then
a T-model in the topos Cont(G) can be identi�ed with a pair (M, f) con-
sisting of a set-based T-model M and a continuous group homomorphism
f : G → Aut(M), where Aut(M) is endowed with the topology of pointwise
convergence.

Proof Giving a T-model in Cont(G) clearly amounts to giving a set-based
modelM of T together with, for each sort A of the signature of T, a continu-
ous action αA : G×MA→MA of G onMA such that for each relation sym-
bol R � A1 · · ·An of the signature of T the subsetMR �MA1× . . .×MAn
is G-closed and for each function symbol f : A1 · · ·An → A over the signa-
ture of T the map Mf : MA1× . . .×MAn →MA is G-equivariant. Actions
αA : G ×MA → MA de�ne, by transposition, group homomorphisms from
G to the set of bijections of MA which give all together a group homomor-
phism G → Aut(M); by de�nition of topology of pointwise convergence on
Aut(M), this group homomorphism if continuous since all the actions αA
are. Conversely, any continuous group homorphism G → Aut(M) induces
continuous actions αA of G on the MA such that for each relation symbol
R � A1 · · ·An of the signature of T the subset MR �MA1× . . .×MAn is
G-closed and for each function symbol f : A1 · · ·An → A over the signature
of T the map Mf : MA1 × . . .×MAn →MA is G-equivariant. �

Theorem 7.11. Let T′ be a geometric theory and G a topological group.
Then there is a bijective correspondence between the geometric morphisms
Cont(G) → Set[T′] (where Set[T′] is the classifying topos of T′) and the
pairs (N, h), where N is a set-based model of T′ and h : G→ Aut(N) is a con-
tinuous group homomorphism. In particular, if T is an atomic and complete
theory with a special modelM then there is a bijective correspondence between
the (isomorphism classes of) geometric endomorphisms f : Set[T]→ Set[T]
of the classifying topos of T and the pairs (N, h), where N is a set-based
model of T and h : Aut(M) → Aut(N) is a continuous group homomor-
phism. Under this bijection, the automorphisms of Set[T] correspond to the
pairs (N, h) where N is a special model of T and h : Aut(M) → Aut(N)
is a continuous group homomorphism such that the geometric morphism
Cont(h) : Cont(Aut(M))→ Cont(Aut(N)) is an equivalence.

Proof The �rst statement of the theorem follows from Lemma 7.10 by the
universal property of classifying toposes, while the second follows from the
�rst by taking T′ = T andG = Aut(M) (recall that Set[T] ' Cont(Aut(M))
by Theorem 7.1). It thus remains to show that the bijection thus de�ned be-
tween the (isomorphism classes of) geometric endomorphisms f : Set[T] →
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Set[T] of the classifying topos of T and the pairs (N, h), where N is a set-
based model of T and h : Aut(M) → Aut(N) is a continuous group ho-
momorphism restricts to a bijection between the (isomorphism classes of)
equivalences f of Set[T] and the pairs (N, h) such that N is special and
Cont(h) is an equivalence.

IfN is special then Ñ is a universal model of T in the toposCont(Aut(N))

(by Theorem 7.3) and hence if Cont(h) is an equivalence Cont(h)∗(Ñ) is
a universal model of T in Cont(Aut(M)); so the corresponding geometric
morphism f is an equivalence (by the universal property of classifying to-
poses). Conversely, suppose that f : Cont(Aut(M)) → Cont(Aut(M))
is an equivalence. The model N appearing in the pair (N, h) correspon-
ding to it is the set-based model underlying the model f ∗(M̃). Since f is
an equivalence, its inverse image f ∗ sends atoms to atoms and hence for
any T-complete formula φ(~x), the set [[~x . φ]]N , equipped with the action
α : Aut(M)× [[~x . φ]]N → [[~x . φ]]N , is an atom of the topos Cont(Aut(M))
(i.e. it is a non-empty transitive action) as it is the image of [[~x . φ]]M̃
under f ∗. But this is the action induced by the canonical one of Aut(N)
on N via the homomorphism h : Aut(M) → Aut(N), that is the cano-
nical action of Aut(N) on [[~x . φ]]N . So N is special. The fact that
Cont(h) : Cont(Aut(M)) → Cont(Aut(N)) is an equivalence follows from
the fact that, N being special, Ñ is a universal model of T in Cont(Aut(N))

and Cont(h)∗(Ñ) is a universal model of T in Cont(Aut(M)), it being the
image of the universal model M̃ in Cont(Aut(M)) under the equivalence
f . �

Theorem 7.11 provides us with a geometric perspective on the relations-
hips between the automorphism groups of models of an atomic and complete
theory, which makes it possible to investigate them by analyzing the endo-
morphisms of its classifying topos, a task of entirely categorical/geometric
nature.
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