GALOIS EQUIVARIANCE OF CRITICAL VALUES OF
L-FUNCTIONS FOR UNITARY GROUPS

LUCIO GUERBEROFF AND JIE LIN

ABSTRACT. The goal of this paper is to provide a refinement of a for-
mula proved by the first author which expresses some critical values of
automorphic L-functions on unitary groups as Petersson norms of au-
tomorphic forms. Here we provide a Galois equivariant version of the
formula. We also give some applications to special values of automorphic
representations of GL,, x GL;. We show that our results are compatible
with Deligne’s conjecture.
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1. INTRODUCTION

In the present paper we provide a Galois equivariant version of a formula
for the critical values of L-functions of cohomological automorphic represen-
tations of unitary groups. Such formula expresses the critical values in terms
of Petersson norms of holomorphic automorphic forms, and was proved by
Harris ([ ]) when the base field is Q, and by the first author when the
base field is a general totally real field (| ]). To state the main theo-
rem, we need to introduce some notation. Let F/FT be a CM extension,
and let G be a similitude unitary group attached to an n-dimensional her-
mitian vector space over F. Fix a CM type @ for F/F™T, and let (r,,s,)
be the signature of G. Let m be a cohomological, cuspidal automorphic rep-
resentation of G(A). The weight of 7 can be parametrized by a tuple of
integers ((ar1,...,arn)rcd;a0). We let ¢ be an algebraic Hecke character
of F', with infinity type (m;);.p—c. Under some additional hypotheses on
m, it is proved in Theorem 4.5.1 of | | that

(1)
_ nt1
e (m n . 1’7r . St) N (2m.)[F+:Q](mn—n(n—n/g)—zaoDlLHz 12 p )0l ()

for certain integers m > n satisfying an inequality determined by the sig-
natures of G and the weight of w. In this expression, ~ means that the
elements on each side, which belong to F(m, 1) ® C, differ by an element of
E(rm,¢) @ FG¥, Here E(m,v¢) = E(r) ® E(¢), where E(r) and E(¢) are
certain number fields explicitly attached to  and v, and F&?! is the Galois
closure of F' in C. The element P(v) is an explicit expression involving
CM periods attached to ¢, and Q"!(7) is an automorphic quadratic period,
which is basically given as the Petersson norm of an arithmetic holomor-
phic vector in 7. It turns out that, up to multiplication by an element in
E(m, ) ® FG the product (2mi)~2% P(1))Q"!(7) can be seen as the in-
verse of a Petersson norm of an arithmetic vector in 7 ® 1 contributing to
antiholomorphic cohomology. In this paper, we will consider a Galois equi-
variant version of formula (1) when using these inverse Petersson norms,
which we denote by Q(m,%) in this introduction, for fixed choices of arith-
metic vectors; we refer the reader to Subsection 3.3 for more details. Galois
equivariance means that we obtain a formula up to factors in E(m, ) in-
stead of E(m,v¢) ® FG. We also incorporate an auxiliary algebraic Hecke
character «, which will provide useful for applications. The infinity type of
« will be assumed to be given by an integer x at all places of ®, and by 0
at places outside .

The formula (1) is proved using the doubling method, and it relies on a
detailed analysis of certain global and local zeta integrals. In this paper,
we study the action of Gal(Q/Q) on these zeta integrals. The global and
the finite zeta integrals are not hard to analyze, but the archimedean zeta
integral is subtler. This integral depends on certain choices that will not
be explicited in this introduction, but most importantly, it depends on 7,
¥, a and the integer m. We denote it by Z.(m;m, 1, ) here. Garrett
proved in | ] that Zu(m; 7,1, @) is non-zero and belongs to F&?, so it
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doesn’t appear in (1), but at the moment we must include it in our Galois
equivariant formulation.

Besides the archimedean integral, there is another factor that needs to be
added to (1) to obtain a Galois equivariant version, which is not originally
visible since it belongs to FS¥. To the quadratic extension F /FT, there is
attached a quadratic character ep of Gal(F/F') and an Artin motive [ep]
over F'*. We let d[er] be the period of this motive, an element of C* well
defined up to multiplication by an element in Q*. It can also be seen as
¢ [er]. When F™ = Q, it can be explicitly written down as a classical Gauss
sum. In any case, d[ep] € FG2L

We then define

Q(Tr’ w7 a)
Zoo(mym, 1, )

We can define L*(s,m ® v, St, ) € E(m,1,a) ® C to be the collection of
standard L-functions of 7w ® %4, twisted by “«, for o : E(m, 1, a) — C.
The automorphic representation 7 and the Hecke characters 7¢ and “«
are obtained from 7, ¥ and « by conjugation by o (see Subsections 2.3 and
2.5 for details). We can similarly define Q*(m;m, ¢, a) € E(m,¢,a) ® C.
The main result of this paper is the following.

Q(m; 7, ¥, @) =

Theorem 1. Keep the assumptions as above. Let m >n — & be an integer
satisfying inequality (3.2.1). Then

" n
LS (m 5T Y, St, a) ~E ()

(2m)lF 0072 D3 gl ] 1 (s v, ).

The presence of m in the element Q*(m; 7, ¥, «) is, as we explained above,
due to the difficulty in analyzing the Galois action on the archimedean
zeta integrals. If we all factors in E(m, ¢, a) ® FGal_ then we can replace
Q*(m; 7,4, o) with the period (27i) 2% P(1); a)Q"°! (1), which becomes for-
mula (1) when « is trivial. In any case, we can at least stress that the
dependence on m of Q(m;m, ¥, a) € E(m, 1, a) @ C disappears if we see it
modulo E(rm, v, a) @ F&,

1.1. Organization of the paper. Section 2. Section 3. Section ??7. Sec-
tion ?7.

Acknowledgements. The authors would like to thank Michael Harris for
his numerous suggestions and comments. The first author would also like
to thank Fabian Januszewski for several useful conversations.

Notation and conventions. We fix an algebraic closure C of R, a choice
of i = v/—1, and we let Q denote the algebraic closure of Q in C. We let
¢ € Gal(C/R) denote complex conjugation on C, and we use the same letter
to denote its restriction to Q. Sometimes we also write ¢(z) = z for z € C.
We let I'g = Gal(Q/Q). For a number field K, we let Ax and Ak denote
the rings of adeles and finite adeles of K respectively. When K = Q, we
write A = AQ and Af = Any.
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A CM field L is a totally imaginary quadratic extension of a totally real
field K. A CM type ® for L/K is a choice of one of the two possible
extensions to L of each embedding of K.

All vector spaces will be finite-dimensional except otherwise stated. By
a variety over a field K we will mean a geometrically reduced scheme of
finite type over K. We let S = Rc/gGmc. We denote by ¢ the complex
conjugation map on S, so for any R-algebra A, this is c ®g 14 : (C ®gr
A)* — (Cor A)*. We usually also denote it by z — Z, and on complex
points it should not be confused with the other complex conjugation on
S(C) = (C®r C)* on the second factor.

A tensor product without a subscript between Q-vector spaces will always
mean tensor product over Q. For any number field K, we denote by Jx =
Hom(K,C). For o € Jg, we let @ = co. Let E and K be number fields,
and 0 € Jg. If a,8 € E®C, we write o ~pgK,, [ if either 3 = 0 or if
e (EF®C) and a/f € (F® K)*, viewed as a subset of (£ ® C)* via
o. When K = Q and o = 1, we simply write a ~g b. There is a natural
isomorphism E ® C ~ [],c,, C given by e ® z — (p(e)z), for e € E and
z € C. Under this identification, we denote an element @ € F ® C by
(O‘W)SDGJE'

We choose Haar measures on local and adelic points of unitary groups as
in the Introduction of | .

2. AUTOMORPHIC REPRESENTATIONS

In this section we recall some basic facts about cohomological represen-
tation of a unitary group and their conjugation by Aut(C).

2.1. Unitary groups, Shimura varieties and conjugation. Let V be
a hermitian space of dimension n over F with respect to F/Ft. We let U
be the (restriction of scalars from F* to Q of the) unitary group associated
to V, and we let G be the associated similitude unitary group with rational
similitude factors. To be more precise, U and G are reductive algebraic
groups over Q, such that for any Q-algebra A, the A-points are given as

U(A) ={g € Autpga(V® A) : g9* =1d}
and
G(A) ={g € Autpga(V® A) : g¢* = u(g)Id with u(g) € A*},
where we write g* for the adjoint of g with respect to the hermitian form.
We fix once and for all a CM type ® for F//FT. Attached to G and ®
is a Shimura variety which we denote by S = Sh(G, X). The choice of ®
and an orthogonal basis of V' determine a choice of CM point x € X, which

will be fixed throughout the paper. We let K, C Ggr be the centralizer of x.
For each compact open subgroup K C G(Ay), Sk will be the corresponding
Shimura variety at level K. We also let E(G,X) be the reflex field of S.
For each 7 € Jp, we let (rr,s;) = (r-(V),s:(V)) be the signature of V' at
the place 7. We can write the group Ggr as

(2.1.1) Gr=G (H GU(?%SJ) )

TED
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which is defined to be the set of tuples (g;)rco that have the same similitude
factor.

We will parametrize irreducible representations of G¢ and of K, ¢ by their
highest weights, and we will use the conventions used in | ], 3.3. Thus,
an irreducible representation of G¢ (resp. K, c) will be given by a highest
weight p € AT (resp. A € A}). The corresponding representations will be
denoted by W), (resp. Vy). All these parameters can be written as tuples

((a’T,l) . 7aT,n)T€<I>; aO)

where each a,; and ag are integers, and a;1 > --- > ar, for each 7 € ® in
the case of irreducible representations of G¢. In the case of representations
of K, c, the condition is that a3 > --- > a;, and ar, 41 > --- > a,, for
every T € ®.

Let 0 € Aut(C). We let (?G,?X) be the conjugate Shimura datum with
respect to the automorphism o and the CM point € X (see [ |, 11.4,
for details). It follow from [ |, Theorem 1.3, that the group G can be
realized as the unitary group attached to another n-dimensional hermitian
space °V, whose signatures at infinity are obtained by permutation from
those of G. More precisely,

(rr(V),5:(7V)) = (ror(V), 867 (V))
for any 7 € Jp. The local invariants of V' at finite places are the same as
those of V, and we identify “G(Af) with G(A) without further mention.

We can also conjugate automorphic vector bundles, as in [ ]. The
CM point x € X will be fixed throughout, and all conjugations will be
with respect to this fixed point. For any o € Aut(C), we have a CM point
72 € °X, and we let A" and “A} denote the corresponding set of dom-
inant weights for the groups °G and K., C °Gr. When z needs to be
specified, we will denote A} by AY,. Suppose that € is a fully decomposed
automorphic vector bundle over S, associated with the irreducible repre-
sentation of K, ¢ with highest weight A. Then €, xc C is a vector bundle
over Sc Xc,» C, and identifying the latter with 7S¢, we get an automor-
phic vector bundle 7€y over 7S¢. It is fully decomposed, associated with

an irreducible representation of Ko, c whose highest weight we denote by
TN ETAL.

2.2. Base change and conjugation. Let E/F be an unramified quadratic
extension of local non-archimedean fields. Let G be a reductive group over F'.
Let P be a minimal parabolic subgroup of G(F') and M be a corresponding
Levi factor.

Let x be an unramified character of M. We may regard it as a represen-
tation of P. The unitarily parabolic induction is defined as

i%(x) = {¢ : G(F) = C continuous : ¢(pg) = 61/ *(p)x(p)d(g), p € P, g € G(F)}

where dp is the modulus character of P (see [ D).

The unitarily parabolic induction gives rise to a surjective map from the
set of unramified characters of M to the set of isomorphism classes of unram-
ified representations of G(F'). Two unramified characters induce the same
G(F)-representation if and only if they are equivalent under the action of
the Weyl group.



6 LUCIO GUERBEROFF AND JIE LIN

2.2.1. Congugation of representations. Let o € Aut(C). Let V be a complex
representation of G(F). We let °V = V ®c, C, with G(F) acting on the
first factor.

Let x be as before. If ¢ € i%(x), we have (c06)(pg) = 0(5]13/2(])))”)((9)(00
®)(g) for any p € P and g € G(F).

We define the character T, on P by

7 (5 (v)
3 )
It is easy to see that 7 (i%(x)) ~ i% (T, * x)-

To(p) =

2.2.2. Local base change. Let E/F be an unramified quadratic extension of
local non-archimedean fields. If we look at the dual side, we can construct
a base change map which sends unramified representations of G(F) to un-
ramified representations of G(F). Our aim is to study the commutativity
of the local base change and the conjugation by an element of Aut(C) for
quasi-split unitary groups.

We write Pg for a minimal parabolic subgroup of G(E), and Mg for a
corresponding Levi factor. The base change map induces a map from the
set of equivalence classes of characters of M (under the action of the Weyl
group) to those of M(FE). We write [x] for the equivalence class of x. We
take xg a character in the equivalence class of the image of [x].

We can define the character Tr , of Pg in a similar fashion as T,,. The
commutativity of local base change with conjugation by o € Aut(C) can be
stated as:

(2.2.1) [To,e * xE] = [(T6 * X) E]

2.2.3. Commutativity for quasi-split unitary groups. We now prove that (2.2.1)
is true for quasi-split unitary groups. Let n be an integer. We assume that
n = 2m is even for simplicity.

We take U to be the quasi-split unitary group of rank n with respect to
E/F defined over F'. Choosing a proper basis, we may identify U(F') with

{X € GL(B) :'X (_(}m 16”) X = (—(}m ISL) } |

We let P be the minimal parabolic given as the intersection of U(F') with
the set of upper triangular matrices in GL,(E).

Let Py be the algebraic group defined over F' consisting of upper triangular
matrices in GL,,(F). Let S be the algebraic group defined over F' such that
S(F)={X € M,(E) :'X = X}

The parabolic group P consists of elements of the form

g 9X
0 tg* 1 )

where g € Py(F') and X € S(F).

Let djg (resp. d,g) be a left (resp. right) invariant Haar measure on
Py(F) and dX be a (left and right) invariant Haar measure on S(F). We
may assume that d,g = 51301 d;(g).



A AB
Let 0 tZ_l € P. We have that

A AB\ (g gX _ (Ag Ag(X +g7'B'gt)
o tAa ') \o t7=1) = \ o tA—g—l

g gX A AB gA gA(B+ A~ 1XtA )
0 ‘g ! 0 ta! 0 gA

It is easy to verify that d;gdX is a left invariant Haar measure and
| det(g)|#" d,.g dX

is a right invariant Haar measure on P. We obtain that

oo (8 251) = o)l det(o) det@IF = b (0] der(s) -

The last equation is due to the fact that E/F is unramifield. In the following,
we write | - | for the absolute value in E.
We write the diagonal of g as (g1, , gm). Then

and

1/2 m—1 m—3 _m—1
6pﬁ<>:|gl| : |g2\ gl

Therefore, 5}3/2( ) = |g1| 52 |gm]%

We now consider U(E) = (E) We take Pr to be the minimal
parabolic subgroup of U(FE ) cons1st1ng of upper triangular matrices. Let
pe € U(E) with diagonal (g1, - ,92m). By Theorem 4.1 of | ], we

have that

xee) = x((91:-+ » 9m))X((Gma1s -+ 5 gam))

for any character y. (Here we consider the first case in Theorem 4.1 of op.
cit.. The proof for the second case is similar.)

We can see easily that (T, * x)gp = (T5)p * xg. Thus, to show (2.2.1), it
is enough to show that (1,)gp = T, . In fact, both sides map pE to

()™ ()™ ()

2.2.4. Global base change. If we already know that global base change ex-
ists, then the commutativity follows from local base change case and strong
multiplicity one for GL,. For example, see Theorem 1.4 of | | for the
Jacquet-Langlands transfer.

2.3. Conjugation of cohomological cuspidal representations. From
now on, we let 7 = 7, ® 75 be an automorphic representation of G(A). We
will assume that 7 satisfies the following list of hypotheses.

Hypothesis 2.3.1. (1) 7 occurs in the discrete spectrum.

(2) 7 is cohomological with respect to some irreducible representation W =
W, of G¢, with p € A™.

(3) The representation W is defined over Q.

(4) T is essentially tempered.
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Remark 2.3.1. By Theroem 4.3 of | |, Hypotheses 2.3.1 (1) and (4)
imply that 7 is cuspidal. This can also be deduced by assuming that m, is
tempered at some finite place, as in Proposition 4.10 of | .

Remark 2.3.2. Hypothesis (3) is assumed mostly for simplicity of notation.

Remark 2.3.3. If p is regular, in the sense that ar; > ar ;41 for every
T€dandeveryi=1,...,n—1, then 2.3.1 (1) and (2) imply (4) (see Prop.
4.2 and 5.2 of | ] and Prop. 2.2 of | D.

Under these hypotheses, 7 is a discrete series representation that belongs
to the L-packet whose infinitesimal character is that of WV.

By Theorem 4.4.1 of | ], the field of definition Q(7¢) of the iso-
morphism class of 7y is a subfield of a CM field. There is a finite exten-
sion Ey(m) of Q(7¢), which can also be taken to be a CM field, such that

7 has a model 7y over Eg(m) (see Corollary 2.13 of | ). We let
‘np=7f Qc,o C= o ®py(r),c C. We can also define the conjugate 77,
a discrete series representation of “G(R), as in (2.19) of | | (see also
[ ], 4.2).

We will make the following assumption throughout the paper: there exists
an automorphic representation 77 of ?G(A) satisfying Hypotheses 2.3.1 such
that (“7) ¢ = 7wy (recall that we are identifying “G(Af) = G(Ay)).

Remark 2.3.4. One of the main results of | | (Theorem 4.2.3) guar-
antees the existence of such “m when the Harish-Chandra parameter of m,
is far enough from the walls. Moreover, under these conditions, we have
that (“7)eo = “Too. In | |, 4.3, further conditions under which 77 is
shown to exist are discussed. A particular case of this is when the infini-
tesimal character of 7, is regular and 7 is not a CAP representation. This
last condition is expected to be true for tempered representations. See also
Corollary 2.14 of | .

Remark 2.3.5. Under the above assumptions, 7 is cohomological of a
certain weight 7 € 7AT. This parameter can be worked out explicitly
as follows. We let mg be a constituent of the restriction of m to U(A) C
G(A). This is cohomological of weight ((ar1,...,0rn)rcs). By a theorem
of Labesse (| |), there exists an automorphic representation BC'(m)
(resp. BC(“m)) of GL,(Ar), which is the base change of my (resp. 7).
Moreover, BC(m) is cohomological of weight

N = (a’7'717 e 7aT,n)T€JF )

where ar; = —azpt1—; if 7 ¢ ®. Then the conjugate ?BC(m), as defined

for example in [ ], 2.6, is cohomological of weight
gla = (aUT,la <o ’aUTvn)TEJF
(see | ], Proposition 2.4). On the other hand, in the last subsection we

proved that ?BC(my) = BC(°mg). It follows from the same reasoning as
above that 77 is cohomological of weight

UU = ((acﬂ',la cee 7aJT,n)T6¢'; aO) .
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2.4. The standard L-function and the motivic normalization. Let
7 be as above. As in | ], 2.7, we can define the standard L-function
of ™ as L%(s,m,St) = L%(s, BC(m),St). Here St refers to the standard
representation of the L-group of GL, over L, 7y is an irreducible constituent
of the restriction of 7 to U(A), and BC(m) is the base change of my to an
irreducible admissible representation of GL,,(A?), for a big enough finite set
of places S of L. The base change is defined locally at archimedean places,
at split places, and at places of K where the local unitary group U, and
7o, are unramified. Under our assumptions, it is known that BC(m) is the
restriction to GLn(Af) of an automorphic representation IT of GL,(Ay), so
we can actually define L(s, 7, St) at all places as L(s,II,St). We define the
motivic normalization by

LmOt’S(s,w, St) = L° <3 _n ; 1,71, St> .

More generally, if «a is an algebraic Hecke character of F', we define
L%(s,m,St,a) = L(s, BC(m), St, ),

the twisted L-function. The motivic normalization is defined similarly. We
define
L*7m0t75(3’ , Stv a) = (Lm0t75(37 0777 St: Ja))aeAut(C) ’
2.5. Algebraic Hecke characters. Let ¢ be an algebraic Hecke character
of F, of infinity type (m;)rcs,. Recall that this means that
Y AR /F* — C~
is continuous, and for each embedding 7 € Jg, we have
9(a) = (x) @) (@ € F).

Here w is the infinite place of F' determined by 7. We let Q(¢)) be the field
generated over Q by the values of ¢ on Aj f- Then Q(¢) is either Q or a
CM field. If o € Aut(C), we define 71 to be the algebraic Hecke character
whose values on A; 7 are obtained from those of ¥ by applying o, and whose
infinity type is (mgy-1,)reJp-

We need to fix the following notation. Suppose that ag is an algebraic
Hecke character of F'T of finite order, and o € Jr+. Then

do[ao] € (Q(ag) ® C)*
is the d-period of the Artin motive [ag]. This is a motive over F* with
coefficients in Q(ap). We also let

8lag] = 01 (Resp+ jglao]) € (Qag) ® C)*

be the period of the motive Resp+ g[ap] obtained from [ag] by restriction
of scalars from F* to Q. It is proved in | | that

1
Slao] ~geao) D2+ [ doll.

O'GJF+
Suppose now that « is an algebraic Hecke character of F' of weight w. Then
we can write

alyx, = ol 122,
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where o is a finite order algebraic Hecke character of F*. We define

Ga)= [ dolan] € (Qao) ® C)*.

O'EJF+

We can then write
1
(2.5.1) (5[&0] ~Q(ao) D;,_,_G(a)
For each embedding p € Jy(a,), We let G(a), € C* be its p-component.

3. THE DOUBLING METHOD, CONJUGATION AND THE MAIN THEOREM

3.1. Basic assumptions. In this section, we briefly recall the doubling
method used to obtain the mail formula of | ], and explain how it
behaves under Galois conjugation. We fix once and for all a cuspidal au-
tomorphic representation 7 of G(A), satisfying all the previous hypotheses.
In particular, 7 is cohomological of type u = ((ar1,...,arn)red; ao), with
W = W, defined over Q. We also assume that 7 2 7 ® [|v||?%, that
contributes to antiholomorphic cohomology, and that

(3.1.1) dime Homeya (%f,H{l(“SC,UeM)) <1

for all o € Aut(C). This is part of Arthur’s multiplicity conjectures for
unitary groups, a proof of which is expected to appear in the near future.
We refer the reader to | ] and their forthcoming sequels for more
details.

We fix a CM type ® for F//F*, and an algebraic Hecke character v of F
with infinity type (m;)rcj,.. We let A = A(u;9) € A} be the parameter

A= ((bT,la ceey b‘r,n)‘reb; bO) )

where
b . — Gr5,+i T My — M7 — 57 if1 <7<,
YT Gy, M —me 41, i +1<i<n,
and by = ag —ny_ .4 ms (this was denoted by A(u;n!) in | ). We

similarly define “A = A(7p;%%) for o € Aut(C).

3.2. The double hermitian space. Given our hermitian space V', we let
—V be the hermitian space whose underlying F'-vector space is V', but whose
hermitian form is multiplied by —1. Its associated Shimura conjugacy class
will be denoted by X~. We let 2V = V @ —V, and (G®, X)) be the
Shimura datum attached to 2V. The choice of our CM point z € X gives
rise to fixed CM points 2~ = 7 € X~ and z® € X@). The reflex field of
(G®, X)) is Q, and hence we can identify (G, X®?) = (G®), X)) for
any o € Aut(C). We let S® be the associated Shimura variety.

We also let G € G x G be the subgroup of pairs with the same similitude
factor, and we let zf : S — GFR be the map (z,27). The corresponding
Shimura datum will be denoted by (G¥, X*), and the Shimura variety by S*.
There is a natural embedding

i (GF X = (6P, x®2)

of Shimura data, which induces a closed embedding of Shimura varieties

i:St— S@),
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For o € Aut(C), we let (°G)* C °G x ?G be the group defined in a similar
fashion but using °V and ?G instead of V and G. Using the definition of the
twisting, given for example in | |, it is easy to see that we can naturally
identify (?G)? with 7 (G*) as a subgroup of G x °G. We let i : G — G2
be the inclusion defined above for 7V.

Keep in mind that our CM point z € X is fixed, and this in turn gives
choices of CM points “x € X for each 0. We fix these CM points, as well as
their variant (), 2, 7z for varying o € Aut(C). We will parametrize fully
decomposed automorphic vector bundles over the corresponding Shimura
varieties by irreducible representations of the corresponding groups K 22 .C
K: ¢y Koz c. We have the following identifications:

T

Kpc = (H GL,, c x GLs, ¢ x GL,_¢ X GLTT,C) X Gu.c,
TED

Kaxu@ = (H GLTOT,(C X GLng,(C X GLng,(C X GLTJﬂ(c) X Gm,(&
TED

Kz(z)@ = (H GLn,C X GLn,(c) X ijc.

TED
For
A= ((AT,]J ceey )\T,n)TG‘I); )\O) € A(J;x
and
A = <()\T_,1,...,/\;’n)76¢;)\5> et
we let
AT = (Artse s A Ao Ardreai Ao+ A7 ) € AT,

Let

A= ((=Arps s —Ar1)red; —Ao) € A:m_.
For an integers x, we define M[x] € AZmﬁ as Mkl = (\, N @ det ™ ) @ v~
Explicitly,
MKl = (Ar1s- s Ay =Arn = Ky e ooy —Ar1 — K)rea; 0) .
For any pair of integers (m, k), we let &, . be the fully decomposed au-

tomorphic line bundle over Sg) corresponding to the one-dimensional irre-
ducible representation of K 22 ¢ given by

((97'7 g‘lr)TE@; Z) = H det(g'r)imiﬁ det(g;_)m.
TED

It is easy to see that this line bundle &,, . has a canonical model over Q. Its
highest weight is parametrized by

((—m —FK,...,—m —K,m,...,m)rca;0).

Recall that A was defined in the previous subsection. We then obtain an
element A¥[x] € iju as above. The corresponding irreducible representation

of K4 ¢ defines an automorphic vector bundle € y4(,) over S(ﬁc. Its conjugate
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7Ept[x], @s an automorphic vector bundle over "S}é, can be identified with
gaAu [Ii] .

Remark 3.2.1. We correct here a simple misprint of | |, Section 4.5,
where an element denoted by A*(¢) was used, with £ = n}" o m; — ms.
The correct element to use is A*(0) (that is, with £ = 0). Indeed, the only
purpose of £ was to make sure that the parameter (u + u(n), " — p(n))?
equals the Serre dual of A#(£). The computation of these parameters actually
shows that the last integer, corresponding to the similitude factor, must be
0 instead of £ in both cases, so there is no need to introduce the integer ¢,
which has no influence on the rest of the proof. Also, note that the Aﬁ(O)
of | ] is what we call A*[0] here. In this paper we give a slightly more
general version of the results for any integer .

Let m € Z satisfy the inequalities
(3.2.1)

n—kK

<m< min{*af,sTJrl +Sr+mr —mz —K,Gr5, + 7+ Mz — mT}'rE(I)-

By Proposition 4.2.1 of | ], there exist non-zero differential operators
(322) Amﬁ = Amﬁ(A) : gmﬁls‘g — ((:Au[,{],

which are moreover rational over the relevant reflex fields (all of these are
contained in LGal). In op. cit., k was taken to be zero, but the proof for
any k is completely similar.

If 0 € Aut(C), then m also satisfies (3.2.1) for the conjugate Shimura
data, and the corresponding differential operator

aAmﬁ = Amﬁ(UA) : Em’,ilasé — EGMM
is the conjugate of (3.2.2) under o.

3.3. Petersson norms and CM periods. We recall now the definition of
certain CM periods attached to 1 that appear in our critical value formula.
The determinant defines a map det : G — T = Resp /@ Gm,F, and thus we
have a morphism detoz : S — (TF)g. The pair (T, det ox) is a Shimura
datum defining a zero dimensional Shimura variety, and the point det ox is
a CM point. Recall that Q(¢) is the field generated over Q by the values of
¥ on A;’f. Also, let E(u) D E(G, X) be the reflex field of the automorphic
vector bundle &, over S. Define E(¢) = E(u)E(TY,detox)Q(1)). The
infinity type of @ can be seen as an algebraic character of T, and the
corresponding automorphic vector bundle €, has a canonical model over
E(¢). Note that E(T* detox) D E(G, X).
Attached to the CM point det ox there is a CM period

p(¢; det ox) € C*,

defined in | | (see also [ ]). For every o € Aut(C), the conjugate
Shimura datum is canonically identified with (T'F, deto(“x)) (this is clear
from the definitions), so we can define as well a CM period p (“¢; det o(?x)) €
C*. If o € Aut(C/E(v)), then this coincides with p(1;detox), and this
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allows us to define p (P1;det o(Pz)) for any p € Jg(y) by extending p to an
element of Aut(C). We let

p*(¢; det ox) = (p (s det o(°2))) e g,
viewed as an element of (E(y) @ C)*. We also define
P(¢) = P(y;2) = p(¢; det ox)p(y " det o)

) 9

and
P*(¢) = P*(¢; ) = p*(¢; det ow)p* (v~ '; det o).
Note that this depends on the choice of the CM point z, but we will ignore

x for simplicity of notation. If « is another algebraic Hecke character of F,
we let

P*(¢;a) = P*(¢; a;2) = p* (¢ det ox)p* (v "o det oz) € E(¥,a) ® C,
where E(, @) = B($)Q(a).

Asin | ], 3.10, we let sy, be an automorphic form that contributes to
HY(S(det ox)c, €y), which is rational over E(1)). Similarly, we let fo be an
automorphic form in 7, contributing to H¥(Sc, €,,), rational over E(x). We
can then form an automorphic form f = fo®s, on 7®1, and a corresponding
non-zero G(Ay)-equivariant map v : wro ® E(¢) — H!d(S’Ew),E), where
€ is the automorphic vector bundle over Sc obtained by pulling back &
and taking the tensor product with €,. Concretely, € is attached to the
irreducible representation of K, ¢ whose highest weight is p + p(¢), where

() = ((mT — M, e = M) reain Y mf> -
TED
(see | ], 4.5).

We now let a be another algebraic Hecke character of F', whose infinity
type is given at each place 7 € ® by an integer —x (the same for all 7 € ®),
and at each place 7 € ® by 0. As similar construction as above, using
7 ®a~! and 9~ instead of m and 1, gives rise to elements Sy-1, f, and
f’, which in turn are associated with a map 4’ to coherent cohomology in
degree d of the conjugate Shimura variety “Sc. See | |, 4.5, for details.
The maps v and 7/ define via cup product and pullback to S(ﬁC — S¢ x €8¢,
an element (7,v')* that contributes to

HE (S € () )-8
Note that &€, (p),uv—u(w)—p(a))t 1 isomorphic to the Serre dual EZ\ﬁ[n] of
8Aﬁ [K/]'

For o € Aut(C), we can conjugate sy, s,-1, fo and fj (and hence f and
f) to obtain automorphic forms ° f € “7®%¢ and ° f' € 77V @7 1 @71
These are also associated with “G(Af)-equivariant maps “+ and “+/, and the
same procedure as above gives rise to an element

(v, 7 = (7,7 )
that contributes to
H2d<oSt¢ / )
! Cr Contfk)):
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We define
Q" (fo) = / fo(9) Fo(9) 1(g) [ dg,
Z(A)G(Q)G(A)

and we define QY¢*(? fo) for o € Aut(C) in a similar way. We let FE(r) =

E(p)Eo(m), and E(m,v) = E(7)E(¢)). By (3.1.1), we can define Q' (r) =

Q"*(fo) uniquely up to multiples by F(r). If o fixes F(r) (in particular, if

o fixes E(m,v)), then Q' (? fo) = QF*(fo), and hence we can define
QPet,*(ﬂ_) _ (QPet( ﬂ))PEJE(w,w) S E(7T, 1/)) ® C.

We also let

(. f) = / £(9)' () (det(g)) dg,
Z(A)G(Q\G(A)

and get in a similar fashion an element
(£ )= (1 Fec)

where E(m, ¢, a) = E(m,¢)Q(«).

Lemma 3.3.1. Keep the notation and assumptions as above. Then

(o ) ~Bapayprea (2m0)290Q7 (m) P ;) !

Proof. This is completely similar to the computations in Section 2.9 of
[ ]. O

Remark 3.3.1. The L-function L*’mOt’S(s, T®1, St, a) can be seen as valued
in E(m,9,a) ®C.

E(r,¢,a)®C,

S
peJE(w,'d),oe)

3.4. Eisenstein series and zeta integrals. Let a be an algebraic Hecke
character of F' as above. For s € C, let I(s, ) be the induced representation

I(s,0) = {f: GP(A) = C: f(pg) = dapa(p, a,8)f(g), g € GP(A), pe GP(A)},

2
ns

where S, (p, @, 5) = a (det(A(p))) | Ny det A)IIE " Iv(p) 7.2 . The
local inductions I(s, ), and finite and archimedean 1nductions I(s, ) and
I(s, ) are defined similarly. A section of I(s,«) is a function ¢(-, ), that
to each s € C assigns an element ¢(-,s) € I(s,a), with a certain continu-
ity property. Local sections are defined similarly. For Re(s) > 0, we can
defined the Eisenstein series

Eqb,s(g) = Z ¢(Uga8)7

oeGP(Q\GP(Q)

which converges absolutely to an automorphic form on G®(A). This ex-
tends meromorphically to a function of s € C.

From now on, fix m > n — § an integer satisfying (3.2.1). Let f € T ® ¢
and f' € 7V ® a~! ® ¢! as above. For any section ¢ of I(s, ), we define
the modified Piatetski-Shapiro-Rallis zeta integral to be

Z(s, f, ' ¢) = / Ey(i(9,9'))f(9)f (9" )dgdyg',
ZH(A)GH(Q)\GH(A)

where Z! is the center of Gf. Suppose moreover that f, f’ and ¢ are factoriz-
able as ®’ f,, @, fi®@ay ! and ]| ¢,. Note that we are taking f} € 7/ @1,
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with f/ ® a;! the function sending g to f/(g)a~! (det(g)). At almost all
places v, T, ® 1, is unramified and f, and f] are normalized spherical vec-
tors of T, ®1), and m) @, ! respectively, with the local pairing (f,, f/) = 1
Define the local zeta integrals as

2. 8. 80) = [ 0ulilhun 1).9)eq o),
Uy
where U, is the local unitary group at the place v for V', and

Cff’ ( ) (fvaf) ( U(hv)fvaf{;)

is a normalized matrix coefficient for m,. We let S be a big enough set of
primes of K containing the archimedean primes (in practice we take S to
be the set consisting of the archimedean places S, the places at which G
is not quasi-split and the places v where 7, is ramified or f, or f; is not a
standard spherical Vector). Write S =S¢ U S, and let

s, 1,1,0) = [ Zo(s, £, 6)

UESf

and

Zoo(s, £, 11 0) = ] Zu(s. 1. £, 9).

VESo
We can conjugate sections ¢ by an element o € Aut(C) as in the discus-
sion before Lemma 6.2.7 of | ]

Lemma 3.4.1. There exists a finite section ¢ (-, s) € I1(s,a)y with ¢5 (-,m —
taking values in Q(«) such that

Zg (m - S I b7) #0.
Moreover, for any o € Aut(C), we have
(a1 30 00)) = 21 (B0 )
In particular,
Z (m— 5. 1.1 1) € B(x.6,a).
Proof. The existence of ¢ with the first property follows as in Lemma 4.5.2

of | ] or Lemma 3.5.7 of | ] (see also the proof of Theorem 4.3 of
[ ]). The description of the action of o follows from Lemma 6.2.7 of
[ ]. O

From now on, fix ¢ as in Lemma 3.4.1. We consider the element G(«) €
E(m,1,a) ® C defined in Subsection 2.5, and denote its p-component by
G(a)p, for p : E(m,¢,a) — C. If 0 € Aut(C), we let G(o)s = G(a),,
where p is the restriction of o to E(m, v, ). Define a section ¢p, 4o of
I(s+m—1%,7a) by

Qom,np(gy S) = a]]m,n (97 s+m— ﬁ) (27TZ)[F+ Q](er”)nG( ) (U(;Sf)(g’ 5+m_2)

2
The element J,, . is defined in | ], (1.2.7) (with a misprint correction,
see | ], 4.3). The Eisenstein series Ep, x = Emx,1 = Ey,, ., has no pole

at s = 0 (see for example (1.2.5) of | |, where x = o Np/p+ |=%/2), and

2

3)
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thus this defines an automorphic form, also denoted by E,, ., on G® (A),

which can be seen as an element of HO(S((Cz)7 Emnk) (see | |, 4.3). Us-
ing the differential operators A,, ., as explained in op. cit., we can define
sections

@m,ﬁ,a = Am,ﬁ@m,m,a

for o € Aut(C), and a corresponding Eisenstein series

Em,m = E;

Pm,k,1°

Then Em,,.@ equals Ay, By, when restricted to GHA).

Proposition 3.4.1. The Fisenstein series E,, . and Em,,@ are rational over

Q(«v) with respect to the canonical models of Sg)

any o € Aut(C),

and &, .. Moreover, for

"By =FE

Pm, k0

and a similar equation holds for Emﬁ.

Proof. This follows by combining the ideas of Lemma 3.3.5.3 of | | and
Proposition 4.3.1 of | |. Namely, in the latter, we just need to note
that the character A is now given by

Ap) = (Npjgdet (A(p))) ™ v(p) " Arme  (det (A(p))) ™,

where ¢, is the algebraic character of Resp /g Gm,r, defined over Q(a), in-
verse of the infinity type of a, so that the restriction to Sh(Gy,, g, V) is the

Tate automorphic vector bundle Q (—[FT : Q|n(m + k)). O
We define
n n
z* - ' Py ) = (4 - 5,707 ' P, k.o .
(=5 Fo 0 Bmis) = (2 (m = 57178 B ) ) o

The elements of this family only depend on the restrictions of elements
o € Aut(C) to E(m, v, ), and hence we can consider

. n - n N
Z (m_iafa f,a(Pm,/i> = <Z <m_77pf7pf,’(pm,n,p>)
2 2 peJE(‘/r,'L/),a)
as an element of F (7,1, a) ® C. We can also define
n n
Z* ( T a0 d /7~ ) :(Z ( _7’[’ 7p /a~ )) 3
o " 2 f f pmn o\ 2 f f spmﬁ’p PEJE(ﬂ,w,oz)

which is an element of E(m, 1, a) ® C. Note that the archimedean part of
Pm,k,p 18 independent of p, and hence so are the archimedean zeta integrals.
Finally, we can define

. n B n ~
zj (m 5 £oma) = (2 (m - §’pf’pf/’@m’“"’>>

peJE(Tr,z/),a)
and Z} (m -5, f f’,¢f).

Lemma 3.4.2. Let the notation and assumptions be as above. Then

2" (m= 5. . f' Gmi) € Bl 16,0).
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Proof. Let
(3.4.1) Lo+ H (S, €)= C

be the map defined by pairing with A, oEn, . via Serre duality. Then, as
in Lemma 4.5.3 of | |, we have

N _ N’

Z (m 5 [ 790m,n,1> Lo, ((%7) ) ~

Let 0 € Aut(C). The conjugate of (3.4.1) by o is now
Lo+ H(7SE, €0 pug) = C,

which is given by cup product with A, .E,, , via Serre duality. It then
follows that

n -
g (Z (m - 57 f7 f/7 @mﬂi,l)) — Lm,ﬁ (0—(77 7/)ﬁ> ’
which equals
n -
z (m — 5 ”f,"f’,%m,m,a)

by Proposition 3.4.1 and the same reasoning as above. This finishes the

proof of the lemma. O
The main formula for the doubling method, proved by Li in | |, says
that
S(s_ ( e ) =
(3.4.2) d (s 2,oz)Z s 2,f,f,qb)
n mo
(VT 20 (5= 5 £ 1 0) L5 (s, @ 0, St a)
ves
for any section ¢. Here
n—1
S _ S o J
d’(s,a) = 1_IOL (2s+n j,a]A;+€F),
‘]:

where ef is the quadratic character associated with the quadratic extension
F/F*. We can write

olyz, = ool 5,

with g of finite order, so that

n—1
d®(s,a) = H L5(2s +n —j + K, ozgeiﬂ).

j=0
We let
n—1
d*(s,0) = [ L*(2s + n— j + K, 00e%) € Q(ag) ® C,
=0

and we define similarly d*(s, «) by removing the local factors at primes of
S. We can deduce from (3.4.2) that

(3.4.3) a5 (m - 5 o) z* (m - 2 f ) =

(I 25 (m= 5o b f i) Ze (= 5 o B ) L7205 (m, w0, St )
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Lemma 3.4.3. We have

%8 n A [FFQ] (@mAtmn— 205 ) L] /2 n
d (m_ 5704) ~Q(ao) (2mi) ( e : >DF+2 5[5F]L2JG(04)”-
Proof. First, suppose that 0 < j < n — 1 is even. Note that 2m — j + k is
even and positive, and hence is a critical integer of L*(s, aq), because the
motive Resp+ g[ao] is purely of type (0, 0) and the Frobenius involution acts
as (—1)". Since Deligne’s conjecture is known for Resp+ glao], we get

[F+:Q)(2m—j+k) Ci[

L*(2m — j + Ii,Oé()) ~Q(ao) (27Ti) 040],

where + = (—1)?™7JF% = (—1)%. Here we are writing c*[ag] = ¢* (ResF+/@ [a]).
Similarly, if 0 < 7 < n — 1 is odd, then 2m — j 4 k is a critical integer for
the motive Resp+ g[aoer| and

[F+:Q)(2m—j-+5) [

L*(2m — 7+ K, Oé()EF) ~Q(a0) (27Ti) Oéoé‘F].
We know use Remark 2.2.1 of | ], together with Proposition 2.2 of
[ ], to get
o] ~g(ay) 6laol

and
Flaoer] ~oan) Slao)dler] DY,

The lemma follows from these computations, combined with (2.5.1) and the

fact that
d*° (m - g,a) ~Qa) 4" (m - g,a) .
(]

3.5. Modified periods. A theorem of Garrett ([ ]) says that the
archimedean zeta integral Z., (m -5, 51, (ﬁm) is non-zero (and, moreover,

belongs to FS?1), and we define the modified (Petersson) period

(f, )"

Qpet 3, Y, = D ’
(mﬁ¢a) Zoo(m—%,faflvsomv'{)

It follows from Lemma 3.3.1 that
QP (m; 7,9, ) ~ E(mp,0) @ FGal (2mi) 20 QP (m) T P (1h; av).
More generally, we can define QY¢"*(m; 7, v, a) € (E(r,1,a) ® C)* as
1\ k,—1
Pet, . — Pet P P AP _ (fvf) '
Q (m,ﬂ,¢,0¢) (Q (m’ﬂ— ,w = ))PEJE(W,IP,&) Z;o (m - %hfa f/a@m,li) '

The doubling zeta integral agains the Eisenstein series Emﬁ defines a
bilinear form

B : H(S¢, &)[r @ ] x HX(Sc, &9)[r¥ @y ©a~!] = C,

which is moreover rational over E(m, 1, ). Here € and £* are the automor-
phic vector bundles determined by 7 and 7V ® a~'. In particular, with our
choice of f and f’, we have that B*(f, f') € E(m,,a). Moreover, for any
o € Aut(C),

(3.5.1) o (B(f,f) =B ("1.°f").
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By our multiplicity assumptions, any other bilinear form, such as the Pe-
tersson integral, must be a scalar multiple of B®. In particular, there exists
an element Q(m, v, a) € C* such that

B(f. ) = Q(m, ¥, a)(f, [').
We can define Q*(m, ¢, ) € (E(m,v¢,a) ® C)* by taking
Q*(ﬂ-a 1/), a) = (Q(pﬂ-v pwv pa))pEJE
By (3.5.1), we have that
(352) (f7 f/)*771 ~E(ra),a) Q*(ﬂ', ¥, Oé).
Remark 3.5.1. In the above computations, Q(m,1,a) depends a priori on
the Eisenstein series E,, ., and hence on the integer m. However, (3.5.2)

shows that, up to multiplication by an element in F (7,1, a) C E(m, 1, a) ®
C, Q*(m, ¢, ) does not depend on m or the Eisenstein series.

We define

(mp,0)

@)
Z;o (m_ %?f?f/7¢m,n).

Q% (m;m, Y, )

We have that
QPGﬁ,*(m; , w7 a) NE(ﬂ.7w7a) Q*<m7 T, w7 Ct)

3.6. The main theorem. Before stating our main theorem, we recall all
the hypothesis and assumptions that we have made so far. Thus, F/F7 is
a CM extension, ® is a CM type, and 7 is an automorphic representation of
G(A), satistying hypotheses 2.3.1 for a parameter . = ((ar1, ..., arn)red; ao)
(recall as well the assumption that 7 can be conjugated to 7 with the de-
sired properties). We also assume that 7V = 7 ® ||v||?*, 7 contributes
to antiholomorphic cohomology and satisfies the multiplicity assumption
(3.1.1).

We also have algebraic Hecke characters v and « of F'. The infinity type
of ¢ is (mr)rej., and that of a is given by an integer ~ at places of @,
and by 0 at places outside ®. We define the number field E(m, 1, ) as in
Subsection 3.3.

Theorem 3.6.1. Keep the notation and assumptions as above, and let m >
n — 5 be an integer satisfying (3.2.1). Then

LM% (m, @ 4, St, ) ~B(rp.a)
LH n
(2mi)FF@mnn(m=1)/2) p L2510 1151 0% (m; 7, 9, ).
Proof. We use formula (3.4.3). By Lemma 3.4.1, we have that
* n - - [FT:Q(m~+k)n n
Zf (m - 57 f: flagomﬁ) ~E(ma,a) (27”)[F Q(mtx) G(Oé) .
Also, Lemma 3.4.2 says that
Z*(m—ﬁff/ <ﬁmn> ~E(rapa) 1
90 s 0,0

The formula in the theorem follows immediately from these, Lemma 3.4.3
and the definition of Q(m;m, ¥, a).
O
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3.7. A refinement. Lemma 3.3.1 gives us a factorization of (f, f') in terms
of periods associated to 7, ¥ and « respectively. This will lead to a finer
result on the special values as Theorem 1 in | ].

Unfortunately, the relation in Lemma 3.3.1 is only shown under Gal(Q/F&a!)-
action. We hope to prove a Gal(Q/Q) version in the near future.

Before we state the main formula, let us define two more factors which
will appear.

Definition 3.7.1. (1) Let j € F be a purely imaginary element, i.e.,
j = —j where j refers to the complex conjugation of j in the CM
field F'. We define

Jp= H ()

TED
Its image in C*/Q* does not depend on the choice of the purely
imaginary element j or the CM type ®.

(2) Let E be a number field containing F&2! a verifier, if not, we should
add n in the definition of sign and a difficult lemma to show that
this is well-defined. We fix pg an element in Jg. For any p € Jg,
we define a sign eg(p) by (—1)#(®\9®) by taking any g € Aut(C)
such that gpg = p. We can see easily that it does not depend on the
choice of g.

We define ep = (ea(p))pcs, as an element of £ ® C.

Corollary 3.7.1. With the same assumption as in Theorem 3.6.1, we have
that
L*,mot,S (m T® w St a) NE(W,(/J,O{);Fgal

(27_{_Z)[FﬂL :Q](mn—n(n—1)/2)— QaOJ[n/Q](Diﬁ/f)nevgnQ*(ﬂ)flP*(w,a>.

Remark 3.7.1. (1) We identify (27Ti)m"d(F+)3E?/2]( 1/2) with
1® (27Ti)mnd(F+)j[}L/2](D117/f)n

as an element in F(II,n) ® C.
(2) Tt is not difficult to see that if g € Aut(C) fixes FG?! then it fixes

T DY e

Consequently, it can be ignored here since we consider relations
under Gal(Q/F%)-action. We keep them here because they are
predicted by Deligne’s conjecture if we want a finer result under
Gal(Q/Q)-action. We will discuss this more in Section 5.

Proof. By the proof of Lemma 2.4.2 of | | and Proposition 2.2 of | ]

we know that
Sler] ~o IrDYE.

Moreover, Lemma 3.3.1 implies that
Q¥ (m; w1, ) ~ (mp,a)@Fca (2mi)~ 200 Q* (1)1 P* (¢, a).

It remains to show that es € F @ FGl 1In fact, let p € Jg and
g € Aut(C/FS), we are going to show ey € E® FS. We take h € Aut(C)
such that p = hpg. By definition eg(p) = (—1)#®V®) and eg(gp) =
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(—1)#(®\9h®) " Gince g fixes F&2! we have gh® = h® and hence eq(gp) =
ea(p). We conclude that eg € E®FG! by Definition-Lemma 1.1 of | ].

The corollary then follows from Theorem 3.6.1.
O

Remark 3.7.2. We expect that Lemma 3.3.1 is true up to factors in E(m, ¢, a).
or change the periods to avoid this point Moreover, we hope to show that

" n ~
Zoo (m - 57 fv flv SOm,"”v> NE(vaya) e%n'

By the method explained in section 9.4 of | ] and Blasius’s proof of
Deligne’s conjecture for algebraic Hecke characters ([ ]), we can reduce
to show that certain archimedean zeta integral belongs to Q. Garett proved
this for particular cases (see [ ). We hope to show the two points in
the future and then the above corollary is true up to E(m, v, «).

4. APPLICATIONS TO GENERAL LINEAR GROUPS

4.1. Transfer from similitude unitary groups to unitary groups.

Let 7 be an automorphic representation of G(V)(A). We want to consider

the restriction of 7 to U(V)(A). We sketch the construction of | | in our
case.
Definition 4.1.1. (1) Let m and 7o be two admissible irreducible rep-

resentation of G(V)(A). We say they are E-equivalent if there exists
a character y of U(V)(A)\G(V)(A) such that m; = 7 ® x.

(2) Let mp be an admissible irreducible representation of U(V)(A) and
g be an element in G(V')(A). We define 79, a new representation on
U(V)(A), by 79(z) = n(gzg ™).

(3) Let mp1 and mp2 be two admissible irreducible representation of
U(V)(A). We say they are L-equivalent if there exists g € G(V)(A)
such that mo 1 = 7 ,.

Lemma 4.1.1. Let 7 be an admissible irreducible representation of G(V')(A).
The restriction of m to U(V')(A) is a direct sum of admissible irreducible rep-
resentations in the same L-equivalence class. This gives a bijection of the
&-equivalence classes of admissible irreducible representations of G(V)(A)
and the L-equivalence classes of admissible irreducible representations of
G(V)(A).

Moreover, if we restrict to the cuspidal spectrum then we get a bijection
on equivalence classes of cuspidal representations of both sides.

Proof. The proof is the similar as in Lemma 3.3 and Proposition 3.5 of [ ]
for the special linear group. More details for unitary groups can be found
in section 5 of | ]. We sketch the idea there for the last statement.

We write S for the maximal split central torus of G. It is isomorphic to
G, Its intersection with U is then isomorphic to p2 C Gyy,. Asin | ],
we denote this intersection by M.

Let w be a Hecke character of S(Q)\S(A). We write wy for its restriction
to M(Q)\M (A).The space of cuspidal forms L3(U(Q)\U(A),wp) is endowed
with an action of

G = G(Q)S(A)U(A)
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where G(Q) acts by conjugation, S(A) acts via w and U(A) acts by right
translation. We know G' is a closed subgroup of G(A) and the quotient
G(A)/G"' is compact. The representation of G(A) given by right translation
on the cuspidal spectrum L3(G(Q)\G(A),w) is nothing but

IndS™ L3(U(Q)\U(A), wo).
[

Remark 4.1.1. Let m be a cuspidal representation of GU(A). Each con-
stituent in the restriction of w to U(A) has the same unramified components.
In particular, they all have the same partial L-function.

Lemma 4.1.2. Let mg be an algebraic cuspidal automorphic representation
of U(A). We can always extend it to an algebraic cuspidal automorphic
representation of G(A).

Moreover, if my is tempered at some place, discrete series at some place,
or cohomological, then its extension has the same property.

Proof. For the extension, we only need to extend the central character of mg
to an algebraic Hecke character of S(Q)\S(A) by the above lemma.

In fact, since M (Q)\M (A) is compact, the central character of 7 is always
unitary. Hence it lives in the Pontryagin dual of S(Q)\S(A). We know
the Pontryagin dual is an exact functor. Therefore, we can extend it to a
unitary Hecke character of M (Q)\M (A). This unitary Hecke character is
not necessarily algebraic. Twisting by a real power of the absolute value,
we can get an algebraic Hecke character of S(Q)\S(A), which is still an
extension of the central character of mg.

To show the extension is locally tempered or discrete series if mg is, it is
enough to notice that for any place v of Q, M(Q,)\U(Q,) is a finite index
subgroup of S(Q,)\G(Qv).

For the cohomological property, we refer to (5.18) of [ ]. O

4.2. Base change for unitary groups. Recall U is the restriction to Q
of the unitary group over F'™ associated to V. We denote the latter by U,.
Let g be a cuspidal automorphic representation of U(A) = Uy(Ap+). Since
Uo(V)(Ar) =2 GL,(Ar). By Langlands functoriality, we expect to associate
mo with a GL,(Af)-representation with expected local components.

More precisely, we can describe the unramified representations at local
non-archimedean places by the Satake parameters. We refer to | ] for
more details. The local base change can be then defined explicitly in terms
of the Satake parameters. Let {/k be an extension of local non-archimedean
fields and H be a connected reductive group over k. The unramified local
base change is a map from the set of isomorphism classes of unramified
representations of H (k) to that of H(l). In the global settings, let L/K be
an extension of global field and H be a connected reductive group over K.
We say that an automorphic representation of H(Ay) is a weak base change
of an automorphic representation of H(Ay) if it is the local unramified base
change at almost every finite unramified places. We refer to section 26 of
[ ] for more details on Langlands functoriality.

The base change for unitary groups is almost completely clear thanks
to Kaletha-Minguez-Shin-White (| ]) and their subsequent articles.
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But we don’t find a precise statement in their paper for our purpose. We
will use the results and arguments in [ ]. The following proposition is
a slight variation of Théoréme 5.4 of | -

Proposition 4.2.1. Let II be a cohomological, conjugate self-dual cuspidal
representation of GL,(Ar). Then II is a weak base change of mg, a cohomo-
logical discrete series representation of Uy(Ap+) such that the infinitesimal
character of Il is compatible with the infinitesimal character of 7o, by base
change.and also at unramified local places?.

We know mg is also cuspidal. Moreover, if Il has reqular highest weight,
then so is my. In this case, mooo 5 a discrete series representation. If
the above blue text is OK, then we can have multiplicity one if (1) the two
assumptions in Labesse are satisfied (2) 11 is regular.

Proof. The existence of my is proved in | ]. There are two additional
assumptions in the beginning of section 5.2 of loc.it but they are only used
for showing the multiplicity one in the loc.it.

The compatibility of infinitesimal characters is also proved in loc.it by the
calculation on transfer of Lefschetz function.

We now show that 7 is cuspidal. Let v be a split place of F* and w
be a place of F' above v such that I, is the local unramified base change
of mp. In particular, we have U(F,}) = U(F,) = GL,(F,). We know
11, is tempered by the Ramanujan conjecture proved in this case by Clozel

( ]) and also by Cariani (| ]). Hence mp, is tempered since it it
isomorphic to I1,, if we identify U(F,") with GL,,(F,). The cuspidality then
follows from a theorem of Wallach (c.f. | |) generalized by Clozel (c.f.

[Clo93]).

Finally, it is clear that if the highest weight of II is regular then so is .
We know a cohomological representation of regular weight is discrete series
at infinity by Prop. 4.2 and 5.2 of | ]. O

This is the going down part of the base change for unitary groups. We
also state the going up part which has been used before refer to previous
calculations on infinity type of Aut twist, check if already assumed the very
regular condition, otherwise need some change

Proposition 4.2.2. Let w9 be a cuspidal, cohomological representation of
Uo(Ap+). We assume that the highest weight associated to my is very reqular.
Then there ezists I1, a cohomological representation of GL,(Ar) which is a
weak base change of my. Moreover, 11 is the unramified local base change of
mo at unramified places and the infinitesimal character of Il is compatible
with that of Ty o0 by base change.

Proof. This is exactly the Corollaire 5.3 of [ ]. We recall that the
condition (x) in the loc.cit is satisfied since the highest weight associated to
o is very regular. O

4.3. Special values of representations of general linear group. Let I1
be a cohomological conjugate self-dual cuspidal representation of GL,(Af).

For each 7 € @, let s; be an integer in {0, 1, --- ,n}. We write I := (s;)rca
be an element in {0,1,--- ,n}q’. Let Vi be a Hermitian space with respect
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to F'/FT of signature (n — s,,s,). We write Up s for the associated unitary
group over F'™ and GU7y for the associated rational similitude unitary group.
We assume that 11V, the contragredient of I, descends by base change
to a packet of representations of Uy (A p+), which contains a representation
mo,1 satisfying Hypothesis 2.3.1.
By Lemma 4.1.2, we can extend 7 s to 77, a cuspidal representation of
GU(A), which still satisfies Hypothesis 2.3.1.

Remark 4.3.1. By Proposition 4.2.1, we know if II is cohomological with
respect to a regular highest weight then it descends by base change to a cus-
pidal representation of Up j(Ap+) which is cohomological with respect to a
regular highest weight. In particular, this representation satisfies Hypothesis
2.3.1.

Definition 4.3.1. Let II be as before. Let I = (s4)pex € {0,1,--- ,n}>.
We keep the above notation and define the automorphic arithmetic pe-
riod PU) () by (2mi)~2%Qy, (7).

Theorem 4.3.1. Let I1 be as before. We denote the infinity type of 11 at
TED by (zai(T)E_‘“(T))lgign-

Let 1 be an algebraic Hecke character of F with infinity type z*(Mz) gt
T € &. We know that a(1) 4+ b(7) is a constant independent of T, denoted by
—w(n).

We suppose that a(t) — b(1) + 2a;(7) # 0 for all1 <i <n and 7 € ®.
We define I := I(IL,n) to be the map on ® which sends T € ® to I( ) =
#{i : a(t) — b(r) + 2a;(1) < 0}. As before, we write P>ITLMN(IL) for
(PUCTLEI)(PID) pe iy, € B 1) @ C.

—1 +
Let m € Z + nT If m > n;u(n) satisfies equation (3.2.1) , then we

have:

(43 1) L*(m,H X 77) ~E ( 7,,,]).F‘gcl,l
(i) DI A (D2 T TT p ) 7))
TE

where d(FT) is the degree of FT over Q.

Remark 4.3.2. (1) The infinity type stated in the theorem is different
from the infinity type in subsection 2.5. Previously when we say ¥
be an algebraic Hecke character of F', of infinity type (m;)rcj,. we
mean 1) is of infinity type z7™7z~™7 at T € Jr here.

(2) This theorem is first stated as Theorem 5.2.1 in | . It was
proved by assuming a conjecture (c.f. Conjecture 5.1.1 of loc.cit)
which is nothing but a variation of our Theorem 3.7.1.

Proof. to be fixed after generalization of a Let ¢ be an algebraic Hecke
character of F' with inifinty type
Moreover, we know

_1 —1 ~
IS <m_n2 ,7T®¢,St) =1° <m—n2 ,BC(m |U)®¢>
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where 1Z := 1 /1° is a Hecke character on F'. Therefore the above results can
be applied to describe special values of certain automorphic representations
of GL,(AF). O

5. MOTIVIC INTERPRETATION

5.1. The Deligne conjecture. We firstly recall the statement of the gen-
eral Deligne conjecture. For details, we refer the reader to Deligne’s original
paper | ]. We adapt the notation in [ ]

Let M be a motive over Q with coefficients in a number field E, pure of
weight w. For simplicity, we assume that if w is even then (w/2,w/2) is
not a Hodge type of M. In this case, the motive is critical in the sense of
[ ]. Deligne has defined two elements ¢ (M) and ¢~ (M) € (F® C)* as
determinants of certain period matrices.

For each p € Jg, we may define the L-function L(s,M,p). We write
L(s,M) = L(s,M,p)pets- If L(s,M,p) is holomorphic at s = sg for all
p € Jg, we may consider L(sg, M) as an element in F ® C as before.

Definition 5.1.1. We say an integer m is critical for M if neither Lo, (M, s)
nor Leo(M, 1 — s) has a pole at s = m where M is the dual of M. We call
m a critical value of M.

Deligne has formulated a conjecture on special values of motivic L-function
as follows.

Conjecture 5.1.1. (the Deligne conjecture) Let m be a critical point
for M. We write € for the sign of (—1)". We then have:

(5.1.1) L(m, M) ~p (271)™ (M)
where n := dimgME.

The following lemma can be deduced easily from (1.3.1) of | | (for
the proof, see Lemma 3.1 of | ).

Lemma 5.1.1. Let M be a pure motive of weight w as before. We assume
that if w is even then (w/2,w/2) is not a Hodge type of M. Let T'(M) :=
{p| (p,w — p) is a Hodge type of M}. An integer m is critical for M if and
only if:

max{p € T(M) |p < w/2} <m <min{p € T(M) | p > w/2}.
In particular, critical values always exists in this case.

Remark 5.1.1. We have assumed that if w is even then (w/2,w/2) is not
a Hodge type of M. In this case, dimpM is even and n* = n~ = dimgM/2.

It is not easy to relate Deligne’s periods to geometric objects directly. In
[ ] and its generalization in | |, more motivic periods are defined
for motives over a CM field. These motivic periods can be related more easily
to geometric objects. The Deligne periods are calculated in terms of these
new periods in the above two papers and in | ].
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5.2. Deligne conjecture for tensor product of motives. We give a
special example of the results in | ] which fits in our main results.

Let M (resp. M') be a regular motive over F with coefficients in a number
field E of rank n (resp. rank 1) and pure of weight w.

We first fix p € Jp an embedding of the coefficient field. For each 7 €
Jr, we write the Hodge type of M at 7 (and p) as (pi(7), ¢i(T))1<i<n With
p1(7) > p2(7) > - > pu(7). We know that ¢;(7) = w — p;(7).

We write the Hodge type of M’ at at 7 (and p) as (p(7), ¢(7)). We assume
that for any i and 7, 2p;(7) + p(7) — q(7) # 0.

Let I(M, M') be the map on ® which sends 7 € ® to #{i : 2p;(7)+p(7) —
q(17) —w > 0}.

The motivic periods Q¥ (M,7), 0 <i <n and QW (M,7),0<j <1 are
defined in Definition 3.1 of | ] as elements in (F'® C)*.

As usual, we identify F ® C with C’#. We write the p-component of
QW(M,T) by QW (M, 7). We define

Q*’I(M’M,)(M) = (H Q(I(M’M/)(T))(Ma T)p)peJE-
T€D

We remark that the index I(M, M') depends implicitly on the embedding
p € Jg.
Similarly, we write Q*(0) (M, T)”’I(MI’M)(T) for (Q) (M, T)Z_I(M ’M)(T))pGJE.

Proposition 5.2.1. The Deligne’s periods for the motive Resp (M @ M')
satisfy:

¢+ Respyg(M © M') ~p (2mi)~ "5 90/ 2 (D1/2)n

H Q*,I(M,M’)(M) H Q*’(O)(M,T)n_I(M/’M)(T)Q*’(l)(M,T)I(M”M)(T).
TE D TED

Moreover, we have
¢ Respig(M @ M') ~p egc” Respjg(M @ M').

Proof. The proposition follows from Propositions 2.11 and 3.13 of | ].
We refer to Definition 3.2 of loc.cit for the definition of the split index. It is
enough to show that sp(i, M; M’ 7) = 0ifi £ (M, M")(7), sp(i, M; M', 1) =
liféi=I1(M,M")(7), sp(0, M'; M,7) = n—I(M,M")(7) and sp(1, M'; M, T) =
I(M,M")(T).

We fix 7 € Jp. We denote I(M, M')(7) by t. We have:

p(7) +q(r) +w

p1(T)— >...>pt(7—)_

p(1) +q(1) +w
5 >

2

—p(T) >

- _p(7)+(é(7)+w . s p(T)—I—q2(7')+w.
Therefore sp(i, M; M',7) = 0 for i # ¢ and sp(t, M;M’',7) = 0 by the
definition of split index. The proof for sp(0, M'; M,7) = n — I[(M, M')(1)
and sp(1, M'; M,7) = I(M, M')(7) is similar.
We now prove the second part. We use the notation n.(p) and e,;(p) =
(=1)"() as in Remark 2.2 of | ]. It is easy to see that n=(p) = n—n.(p).
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Let e = [] er be an element in (F ® C)*. Let g € Aut(C). Recall that
TED

egp(T) = €,(g717) by Remark A.2 of | |. Then
e(gp) = [[ erlgp) = T] eg-1-(p) = (1) #TONE — (1) # (P9 (p),
Tcd TP

Hence e = fejg by the definition of es.
We know ¢~ (Resp (M @ M')) = ect(Respg(M @ M')) by Remark 2.2
of | ].
U

5.3. Compatibility of the main results with the Deligne conjecture.
Let II be as in section 4.3. It is conjectured that the representation II is
attached to a motive M = M(II) over F with coefficients in E(II) (c.f.
Conjecture 4.5 and paragraph 4.3.3 of | ).

We fix p € Jg. We write the infinity type of Il at 7 € ® as 2 (T)z_‘“(T)
Then the Hodge type of M (II) at 7 should be (—a;(7)+ 251, a;(7)+ 251 )1<i<n.

Similarly, we write M’ = M(n) the conjectural motif associated to 7.

We have:

1-n
(5.3.1) L(s, Mo M") = L(s + ?,H X ).

We want to compare Theorem 4.3.1 with the Deligne conjecture. The
main difficulty is to compare the automorphic periods with the motivic
periods. Recall that the automorphic periods P (IT) are constructed from
different geometric objects. It is hard to relate them with the same motive
M (II). However, if we admit the Tate conjecture, we will get

(5.3.2) PUO(ID) ~pan QU(ID)

as in section 4.4 of | ]. Roughly speaking, the Tate conjecture says that
a motive is determined by its [-adic realizations.

Corollary 5.3.1. We keep the notations as in Theorem 4.8.1. If we admit
the Tate conjecture, then the Deligne conjecture is true up to ~ B(I1n); Foal
for critical values m > n+w(n)/2 of the conjectural motive M (II) @ M (n).

Proof. We compare Proposition 5.2.1, Theorem 4.3.1 equation (5.3.1), equa-
tion (5.3.2) and the fact that:

Q(O) (M(n)a 7—) ~E(T) p(ﬁc’ 7_)7 and Q(l) (M(n)a T) ~E(T) p(ﬁv T)
(I

by Lemma 3.17 of | |. Tt is easy to verify that I(II,n) = I(M(II), M (n)).
It remains to show that if m > n + w(n)/2 critical for M (II) ® M (n) then
_.I_
m— 21> w satisfies equation (3.2.1).
to be fixed after generalization of « O

Extra remarks: 1. In the end of section 1, change « to other notation
2. add a remark on m > n to m > n/2 and compare with Deligne
conjecture
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