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1. INTRODUCTION.

In the paper [15] we formulated certain conjectures about algebraic
flows on abelian varieties and proved certain cases of these conjectures.
The purpose of this paper is two-fold. We first prove the ‘logarithmic
Ax-Lindemann theorem’ (see details below). We then prove a result
analogous to one of the main results of [15] in the hyperbolic (Shimura)
case about the topological closure of images of totally geodesic subva-
rieties of the symmetric spaces uniformising Shimura varieties.

Let (G, X) be a Shimura datum and X be a connected component
of X. Recall from [16], section 2.1 that a realisation X of X is a com-
plex quasi-projective variety X with a transitive holomorphic action of
G(R)™ such that for any zo € X, the orbit map ¢,,: G(R)T — X
mapping g to gz is semi-algebraic. There is a natural notion of a mor-
phism of realisations. By [16], lemma 2.1, any realisation of X has a
canonical semi-algebraic structure and any morphism of realisations is

semi-algebraic.
1
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In what follows we fix a realisation X of X and by a slight abuse of
language still call this realisation X . It is an immediate consequence
of Lemma 2.1 of [16] that all the conjectures and statements that follow
are independent of the chosen realisation.

In view of the lemma B1 of [7], we may define an algebraic subset
Y of X to be a closed analytic, semi-algebraic subset of X . Given
an irreducible analytic subset © C X, we define the Zariski closure of
© to be the analytic component containing © of the smallest algebraic
subset of X containing ©.

We can now state some results and conjectures.

The classical formulation of the hyperbolic Ax-Lindemann theorem
is:

Theorem 1.1 (Hyperbolic Ax-Lindemann theorem). Let S be a Shimura
variety and 7: X — S be the uniformisation map. Let Z be an alge-
braic subvariety of S andY a maximal algebraic subvariety of 7=1(Z).
Then w(Y') is a weakly special subvariety of S.

We will see (see proposition 5.1) that this is equivalent to:

Theorem 1.2 (Hyperbolic Ax-Lindemann theorem, version 2.). Let Z
be any irreducible algebraic subvariety of X+ then the Zariski closure
of m(Z) is weakly special.

The hyperbolic Ax-Lindemann conjecture had been proved in full
generality in [7].

In the second section we define a notion of a weakly special subvariety
of X . This is a complex analytic subset © of X* such that there exists
a semi-simple algebraic subgroup F of G(R)" and a point x € X7
satisfying certain conditions such that © = F' - x.

In Section 3 of this paper we prove a ‘logarithmic’ Ax-Lindemann
theorem (a question asked by D. Bertrand).

Theorem 1.3 (Logarithmic Ax-Lindemann). Let m: X+ — S be the
uniformisation map. Let'Y be an algebraic subvariety of S and let Y’
be an analytic component of 71 (Y). The Zariski closure of Y' is a
weakly special subvariety.

In [15], we formulated two conjectures on algebraic flows on abelian
varieties and proved partial results towards these conjectures. It seems
very hard to formulate meaningful conjectures of this type in the con-
text of Shimura varieties. We however prove a result which may be
seen as a generalisation in the context of Shimura varieties of one of
the main results of [15]. To state our result we need to introduce a few
notations.
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Consider an algebraic subset © of X*. In general, instead of (as in
the hyperbolic Ax-Lindemann case) being interested in the Zariski clo-
sure of m(©), we look at the usual topological closure 7(©). We define a
notion of real weakly special subvariety roughly as the image of H(R)-x
where H is a semisimple subgroup of G satisfying certain conditions
and z is a point of X*. Let K, be the stabiliser of  in G(R)*. In the
case where H(R)* N K, is a maximal compact subgroup, a real weakly
special subvariety of .S is a real totally geodesic subvariety of S. Notice
that in this case the homogeneous space H(R)"/H(R)" N K, is a real
symmetric space. In the case where x viewed as a morphism from S to
GRr factors through Hpg, the corresponding real weakly special subvari-
ety has Hermitian structure and in fact is a weakly special subvariety
in the usual sense. We also note that given a real weakly special sub-
variety Z of S, there is a canonical probability measure uz attached to
Z which is the pushforward of the Haar measure on H(R)", suitably
normalised to make it a probability measure.

In this paper we prove the following theorem.

Theorem 1.4. Let © be a complex totally geodesic subvariety of X.
Then the components of the topological closure m(©) are real weakly
special subvarieties.

Recall that a complex totally geodesic subvariety of X is of the
form F - x where F' is a semisimple real Lie group subject to certain
conditions and x is a point of X such that F'N K, is a maximal compact
subgroup of F'.

In certain cases, for example when the centraliser of ' in G(R) is
trivial, we are able to show that 7(0©) is actually a (complex) weakly
special subvariety. This condition is satisfied in many cases. For exam-
ple in the case of SLy(R) diagonally embedded into a product of copies
of SLy(R). In particular this answers in the affirmative the question
of Jonathan Pila which was the following. Consider the subset Z of
H x H which is

Z ={(r,g7) : 7 € H}
where g € SLy(R)\SL2(Q). Is the image of Z dense in C x C?

The proof of Theorem 1.4 relies on the results of Ratner (see [13]) on

closure of unioptent one parameter subgroups in homogeneous spaces.
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2. WEAKLY SPECIAL SUBVARIETIES AND MONODROMY.

2.1. Monodromy. Let (G, X) be a Shimura datum. Recall that G is
a reductive group over Q such that G has no Q-simple factor whose
real points are compact and X is a G(R)-conjugacy class of a morphism
r: S — Gg where S = Resc/rGy,c. The morphism z is required
to satify Deligne’s conditions which imply that components of X are
Hermitian symmetric domains. There is a natural notion of morphisms
of Shimura data. We fix a connected component X+ of X and we let
I' = G(Q)y N K where G(Q) is the stabiliser of X in G(Q). Let S
be T\X* and 7: X* — S be the natural morphism.

To (G, X), one associates the adjoint Shimura datum (G, X%?) with
a natural morphism (G, X) — (G%, X%?) induced by the natural map
G — G Notice that the this map identifies X+ with a connected
component of X% We have the following description of weakly special
(or totally geodesic) subvarieties (see Moonen [10]):

Theorem 2.1. A subvariety Z of S is totally geodesic if and only if
there exists a sub-datum (M, Xy) of (G, X) and a product decomposi-
tion

(M X3l) = (My, X1) x (Ma, X5)
and a point yo of Xy such that Z = 7(X{ X y2) for a component X;
Of Xl.

Note that X]‘ff* = X|" x X (with a suitable choice of connected
components) is a subspace of X+,

We can without loss of any generality assume the group I' to be
neat, i.e. the stabiliser of each point of Xt in I to be trivial (replacing
I' by a subgroup of finite index changes nothing to the property of a
subvareity to be weakly special). Fix a point x of the smooth locus Z*™
and T € 7~ (x)NZ*™. This gives rise to the monodromy representation

prm (2 ) — T

whose image we denote by I'". By Theorem 1.4 (due to Deligne and
André) of [10], we have I'™ C M (Q)NT.
This can all be summarised in the following theorem.

Theorem 2.2. Let (G, X) be Shimura datum, K a compact open sub-
group of G(Ay) andI' := G(Q)+ N K (assumed neat).

Let S =T\X™" and Z an irreducible subvariety of S. Let M be the
generic Mumford-Tate group on Z and Xy the M(R)-conjugacy class
of x.

Let T™ C M (Q) NT be the monodromy group attached to Z as
described above.
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Let (M X94) = (M, X;) x (My, X5) as in Theorem ??. In partic-
ular M is the image of the neutral component of the Zariski closure of
™ in M2,

Let K¢ = K, x Ky be a compact open subgroup containing the image
of Ky = M(Af)NK in M (Ay) (here K;s are compact open subgroups
of M;(Ay)). We let X; be the M;(R)-conjugacy classes of x.

Let Syr C S be a connected component of the image of Shar(a ynix (M, Xar)
i S containing Z.

Let S; (i = 1,2) be appropriate components of Shy,(M;, X;) and
Sy — 51 X Sy be the natural map.

The image of Z in Sy x Sy is of the form Zy x {z} (see Theorem
4.8 of [10]) where Zy is a subvariety of S whose monodromy is Zariski
dense in Miand z is a point of Ss.

2.2. Weakly special subvarieties of X . In this section we give a
precise description of totally geodesic (weakly special) subvarieties of
X,

Let (G, X) be a Shimura datum and Xt a connected component of
X. For the purposes of this section, we can without loss of generality
assume that G is a semi-simple group of adjoint type. This is because
there is a natural identification between connected components of X ™
and a connected component of X®. We will now describe totally geo-
desic subvarieties of Xt (that we will naturally call weakly special).

The group G has no Q-simple factors whose real points are compact
and there is a morphism z( : S — G satisfying the following Deligne’s
conditions such that X = G(R)".x.

(D1) The adjoint representation Lie(Gg) is of type {(—1, 1), (0,0), (1, —1}.
In particular (G, r) is trivial.

(D2) The involution x(y/—1) of G is a Cartan involution.

This is a consequence of [5] 1.1.17.

We have the following;:

Proposition 2.3. Let Z be a totally geodesic complex subvariety of
X*. There exists a semi-simple real algebraic subgroup F of Gg without
compact factors and some v € X such that x factors through FZg(F)°
such that Z = F(R)Y.z. Conversely, let F be a semi-simple real al-
gebraic subgroup of Gr without compact factors and let x € X such
that x factors through FZg(F)°. Then F(R)T.x is a totally geodesic
subvariety of XT.

Proof. let F' be a semi-simple real algebraic subgroup of G without
compact factors and let x € X such that x factors through H :=
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FZg(F)°. Then
Zg(H(R)) C Zg(z(V-1)).
As Zg(z(v/=1)) is a compact subgroup of G(R) so is Zg(H(R)). By

using [17] lemma 3.13 we see that H is reductive.

Then the proof of [17] lemma 3.3 shows that Xy := H(R)".z is an
hermitian symmetric subspace of X*. We give the arguments to be as
self contained as possible.

As Lie(Hg) is a sub vector space of Lie(Ggr) the Hodge weights of
Lie(Hg) are {(—1,1),(0,0),(1,—1)}. Then using Deligne [5] 1.1.17
we just need to prove that z(v/—1) induces a Cartan involution of
H,  As the square of z(v/—1) is in the centre of H(R), by Deligne
[5] 1.1.15, it’s enough to check that Hy admits a faithful real x(y/—1)-
polarizable representation (V,p). We may take V' = LieGg for the
adjoint representation and the x(y/—1)-polarization induced from the
Killing form B(X,Y).

Then Hp is the almost direct product Hg ~ FF“F} where F} is ei-
ther trivial or semi-simple without compact factors and FY is reductive
with F¢(R) compact. If F* is trivial X} = X}; is hermitian symmet-
ric. If F** is not trivial, we have a decomposition X;j = X3f x X L. is a
product of hermitian subspaces and we have the natural identification
of X;& with X% x {z;} where z; is the projection of z on X;flnc. In any

case X is hermitian symmetric and totally geodesic in X .
Conversely a totally geodesic subvariety of X+ is of the form X} =
F(R)*.x for a semi-simple subgroup Fy of Gg without compact factors.
Let T,(X;f) C T,(X™) be the tangent space of X at z. Let U! C S
be the unit circle. The complex structure on T,(X ") is given by the
adjoint action of x(U'). If X is a complex subvariety, then T),(X}) is
stable by x(U*). Using Cartan decomposition we see that z(U') = z(S)
normalizes F'. Let Fy; = x(S)F, then F; is reductive and is contained
in FZq(F)°. Tt follows that z factors through FZg(F)°.
O

Definition 2.4. An algebraic group H over Q is said to be of type H if
its radical is unipotent and if H/R,(H) is an almost direct product of
Q simple factors H; with H;(R) non-compact. Furthermore we assume
that at least one of those factors not to be trivial.

Let H C GG be a subgroup of type H and let us assume that G is of
adjoint type. We will now explain how to attach a hermitian symmetric
space Xy to a group of type H and explain that Xy is independent of
the choice of a Levi subgroup in H.
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The domain X7 is the set of maximal compact subgroups of G(R)*.
Let x € X, we denote by K, the associated maximal compact sub-
group of G(R)*. Let H be a subgroup of type H and let L be a Levi
subgroup of H. We have a Levi decomposition H = R,(H).L. Assume
that K, N L(R)* is a maximal compact subgroup of L(R)*. Then
X}/ = L(R)*.x C X7 is the symmetric space associated to L and is
independent of the choice of x € X such that K,NL(R)" is a maximal
compact subgroup of L(R)*. Let X}, := R,(H)X(R)", then X}, is
independent of the chosen Levi decomposition of H. This can be seen
as follows. The Levi subgroups of H are conjugate by an element of
R,(H). Let L' be a Levi of H and w € R,(H) such that L' = wLw™.
Let 2/ = w.x. Then K,/ is a maximal compact subgroup of G(R)" such
that K, N L'(R)" is a maximal compact subgroup of L'(R)" and

R.(H).X}, = R,(H).L'(R)*.2' = R,(H)wL(R)*.z = R,(H).X}.
This shows that the space X3, is independent of the choice of the Levi.
Definition 2.5. A real weakly special subvariety of S is a real analytic
subset of S of the form

Z=TNHRNH[R)" .z

where H is an algebraic subgroup of G of type H and x € X .

In the case where K, N L(R)" is a maximal compact subgroup of
L(R)* for some Levi subgroup of H, HR)" /K, N H(R)" is a real
symmetric space.

We have the following proposition.

Proposition 2.6. Let Z be a real weakly special subvariety of S. Then
the Zariski closure Z%% of Z is weakly special.

Proof. By definition, Z is of the foorm Z = H(R)" - = where H is a
group of type H. Let Sy be as in Theorem 2.2 the smallest special
subvariety containing ZZ9".

Let S7 x Sy be the product of Shimura varieties as in Theorem 2.2
such that the image of Z2%" in S} x Sy is of the form Z; x {2} where
Zy is a subvariety of S; whose monodromy I'f" is Zariski dense in M,
and z is a Hodge generic point of Sj.

To prove that Z#%" is weakly special, it is enough to show that Z, =
S1. In what follows, we replace S by S; and Z by Z;.

For any ¢ € H(Q)™, we have that Z C T,Z, therefore

7 C ZZar N Tq(ZZGT).
Since Z%% NT,(Z#%") is algebraic, we have

ZZar C ZZar N Tq(zZar)
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and therefore, for each ¢ € H(Q) we have
ZZm‘ C Tq(zZar).

Let T be a non-trivial subtorus of H. We define the Nori constant
C(Z%9) of ZZ%" as in [19], section 4. Let p > C(Z%°") and ¢ € T(Q)
given by Lemma 6.1 of [19]. Then T,(Z%°") is irreducible and the orbits
of T, +T,-1 are dense in S. This implies that Z#*" = S as required. [

3. LOGARITHMIC AX-LINDEMANN.

Let S =T\ X as before and consider a realisation X+ C C" (in the
sense of [17]). In particular X is a semi-algebraic set and the action
of G(R)* is sei-algebraic.

Let Y be a complex analytic subset of X . Then the Zariski closure

—Zar —Zar

Y  in C" is an algebraic subset of C" and Y N X has finitely

many analytic components. By slight abuse of notation, we refer to
—Zar

Y NXT as Zariski closure of Y. These components are algebraic in
the sense of the definition given in the Appendix B of [7].

Theorem 3.1 (Logarithmic Ax-Lindemann). Let 7: X+ — S be the
uniformisation map. Let'Y be an algebraic subvariety of S and let Y’
be an analytic component of 7= 1(Y). The Zariski closure of Y’ is a
weakly special subvariety.

Proof. Let Y be an analytic component of Y’'. As in the previous
section we can replace S by S7 and Y by Y; given by the Proposition
2.2. In doing this we attach the monodromy to a point y € Y*" and
y € Y'. Let I'y be the monodromy group attached to Y. Notice that
I'y is the stabiliser of Y/ in I'. Then, with our assumptions, I'y is
Zariski dense in G.
Let o € I'y. We have
aY' =Y’
Therefore,
(ay/)Zar _ Y/Zar
We also have
Y’ 5y’

. Zar - .
and since aY’“"" is algebraic, we have

ay/Zar S ay/Zar

1

The same argument with ™" instead of a shows that the reverse in-

clusion holds and therefore

Zar Zar Zar
oY =Y =Y
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It follows that Y'#°" is stabilised by I'y.

Consider the stabiliser Gy of Y"?*" in G(R). Since Y’ is semi-
algebraic and the action of G(R)* on X7 is semi-algebraic, Gy is semi-
algebraic. Furthermore, Gy is analytically closed and hence is a real
algebraic group. Since Gy contains [y which is Zariski dense in Gy,

we see that Gy = G(R)*. It follows that Y'?*" = S as required. [

4. FACTS FROM ERGODIC THEORY: RATNER’S THEORY.

In this section we recall some results from ergodic theory of homo-
geneous varieties to be used in the next section. The contents of this
section are mainly taken from Section 3 of [?]. We present results in
the way they are presented in [16].

Let G be a semi-simple algebraic group over Q. We assume that
G has no Q-simple simple factors that are anisotropic over R. This
condition is satisfied by all groups defining Shimura data.

Let T" be an arithmetic lattice in G(R)* and let Q = T\G(R)™.

We have already defined a subgroup H C G of type H, we now define
a group of type .

Definition 4.1. Let F' C G(R) be a closed connected Lie subgroup.
We say that F is of type K if

(1) FNT s a lattice in F. In particular FF NT\F s closed in
M\G(R)". We denote by up the F-invariant normalised mea-
sure on T\G(R)™.

(2) The subgroup L(F') generated by one-parameter unipotent sub-
groups of F' acts ergodically on F NT\F with respect to pp.

For the purposes of this section, we in addition assume F to be
semisimple.

The relation between types K and H is as follows (see [2], lemme 3.1
and 3.2):

Lemma 4.2. (1) If H is of type H, then H(R)™ is of type K.
(2) It F is a closed Lie subgroup of G(R)' of type IC, then there
exists a Q subgroup Fg of G of type H such that F = F(R)*.

For a subset E of G(R), we define the Mumford-Tate group MT(E)
of E as the smallest Q-subgroup of G whose R-points contain E. If F
is a Lie subgroup of G(R)" of type K , then by (2) of the above lemma,
MT(F) = Fy and it is of type H.

We will make use of the following lemma, which is Lemma 2.4 of
[16].



10 EMMANUEL ULLMO, ANDREI YAFAEV

Lemma 4.3. Let H be a Q-algebraic subgroup of G with H® almost
simple. Let L be an almost simple factor of HY. Then

MT(L) = H°

Let Q = I'\G(R)". Note that €2 carries a natural probability mea-
sure, the pushforward of the Haar measure on G(R)™", normalised to be
a probability measure (the volume of € is finite). For each F of type
IC, there is a natural probability measure up attached to F.

The following theorem is a consequence of results of Ratner.

Theorem 4.4. Let F = F(R)" be a subgroup of G(R)" be a semi-
simple group without compact factors.
Let H be MT(F'). The closure of T\I'F in Q is

MTHR) =T N HR)N\H(R)*

Proof. By a result of Cartan([14], Proposition 7.6) the group F' is gen-
erated by its one-parameter unipotent subgroups.

A result of Ratner (see [13], Theorem 3), implies that the closure of
[\I'F in Q is homogeneous i.e. there exists a Lie group H of type K
such that

I\I[F =T\T'H

By Lemme 2.1(c) of [2], there exists a Q-algebraic subgroup Hgp C G
such that

HR)" = H
Since F' C H, we have that MT(F) C H. On the other hand, by
Lemme 2.2 of [2] (due to Shah), the radical of MT(F') is unipotent

which implies that MT(F) is of type H. It follows that Hy = MT(F)
which finishes the proof. U

5. ALGEBRAIC FLOWS ON SHIMURA VARIETIES.

5.1. Reformulation of the hyperbolic Ax-Lindemann theorem.
Let (G, X) be a Shimura datum. Let K be a compact open subgroup
of G(Ay), T' = G(Q)+ NG(Ay) and S = I'"\XT. Let 7: Xt — 5 be
the uniformizing map. Without loss of any generality, in this section
we assume that the group G is semisimple of adjoint type.

We first give a reformulation of the hyperbolic Ax-Lindemann con-
jecture in terms of algebraic flows.

Proposition 5.1. The hyperbolic Az-Lindemann conjecture is equiv-
alent to the following statement. Let Z be any irreducible algebraic
subvariety of X then the Zariski closure of w(Z) is weakly special.
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Proof. Let us assume that the hyperbolic Ax-Lindemann conjecture
holds true. Let A be an irreducible algebraic subvariety of X+ and
V' be the Zariski closure of m(A). Let A’ be a maximal irreducible
algebraic subvariety of 7=!(V') containing A. By the hyperbolic Ax-
Lindemann conjecture 7(A’) is a weakly special subvariety of V. As
A C w(A) C V and as w(A’) is irreducible algebraic we have V = w(A’).
Therefore V' is weakly special.

Let us assume that the statement of the proposition holds true. Let
V' be an irreducible algebraic subvariety of S. Let Y be a maximal
irreducible algebraic subvariety of #=!(V'). Then the Zariski closure V'
of 7(Y) is weakly special. Moreover V' C V. Let W be an analytic
component of 771(V’) containing Y. As V' is weakly special, W is
irreducible algebraic. By maximality of Y we have Y = W. Therefore
7(Y) = V' is weakly special.

O

5.2. Application of Ratner’s theory. Let (G, X) be a Shimura da-
tum and X+ a connected component of X. In this section we consider
conjecture ?7?7. It is clear that in this conjecture, without any loss
of generality, one may assume that the group G to be semi-simple of
adjoint type, which we do.

We now consider a totally geodesic (weakly special) subvariety Z
of X*. Recall that there exists a semi-simple subgroup F(R)" of G
without almost simple compact factors and a point x such that x factors
through FZg(F)°.

Let « be the natural map G(R)* — I'\G(R)" and 7, be the map
MG(R)" — T'\X™ sending z to gz. Recall that 7: X+ — '\ X is
the uniformisation map. We have

m(Z) = 7, 0 a(F(R)7)

We let H be the Mumford-Tate group of F(R)". Recall that it is
defined to be the smallest connected subgroup of G' (hence defined over
Q) whose extension to R contains F'(R)*.

By [14], Prop 7.6, the group F(R)™" is generated by its one-parameter
unipotent subgroups.

By Theorem 4.4, we conclude the following:

Proposition 5.2. The closure of a(F(R)") inT\G(R)" isTNH(R)"\H(R)*.

5.3. Closure in S. From the fact that the map 7, is proper and Propo-
sition 5.2, we immediately deduce the following

Theorem 5.3. The closure of m(Z) in S is V', the image of H(R)' - x
i.e. it is a real weakly special subvariety.
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In this section we examine cases where we can actually make a
stronger conclusion, namely:

(1) The variety V from Theorem 5.3 is locally symmetric and hence
real totally geodesic.
(2) It has a Hermitian structure i.e. is a weakly special subvariety.

Theorem 5.4. Assume Zg(F') is compact. Then V is a locally sym-
metric variety.

Proof. Tt is enough to show that H(R)™ N K, is a maximal compact
subgroup of H(R)™.
Notice that since Zg(F') fixes x, we have

Za(F) C K,

We follow Section 3.2 of [16].

Since K, is a maximal compact subgroup of G(R)" such that F'(R)*n
K, is a maximal compact subgroup of F'(R)", we have two Cartan de-
compositions:

GR)t = P,K, and F = (P, N F) - (K, N F)

for a suitable parabolic subgroup P, of G(R)*.

We now apply Proposition 3.10 of [16] in out situation. We have
a connected semi-simple group H such that F' C Hg. According to
Proposition 3.10 of [16], there exists a Cartan decomposition

H(R) = (P, N H(R)) - (K, N H(R))

This, in particular implies that K, N H(R) is a maximal compact
subgroup of H(R)" as required. O

Theorem 5.5. Assume that Zg(F) is trivial. Then V' is a weakly
special subvariety.

Proof. In this case, x factors through F' and therefore through Hg. Let
Xp be the H(R)-orbit of z. By lemma 3.3 of [16], (H, Xp) is a Shimura
subdatum of (G, X) and therefore V' is a weakly special subvariety. [

Example 5.6. We give examples where Zg(F) is neither trivial nor
compact, but the closure of w(Z) is nevertheless hermitian.

Let G be an almost simple group over Q. A typical example is G =
Resg/gSLo . where K is a totally real field of degree n. Let F' be an R-
simple factor of Gg. In the above case F could be for example SLy(R)
embedded as SLy(R) x {1} x ---x{1}. Then the centraliser of F is not
compact. However, by Lemma 2.4 of [16], the Mumford-Tate group of
F is G and for any point v of X, the image of F -z in S is G.
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Example 5.7 (Products of two modular curves). Consider G = SLg X
SLy, XT =H x H and

Z ={(r,g7), 7 € H}.

Let T = SLy(Z) x SLy(Z) and 7: H x H —s T\ X+

Then, if g € G(Q), then the closure of n(Z) is a special subvariety.
It is the modular curve Yo(n) for some n.

If g ¢ G(Q), then w(Z) is dense in T\X*. In this case the group
F(R)*Y is (h,ghg™') C SLy(R) x SLy(R).

Example 5.8 (Rank one groups). Here is another quite general ex-
ample where Zg(F) is trivial and hence the closure of the image of
F(R)" -z is a weakly special subvariety.

Suppose that the groups G is U(n,1). In this case X is an open ball
in C™. The real rank of G is one. Let F be the subgroup U(m,1) of
U(n,1) (with m < n). Then the centraliser Zg(F) is trivial. Indeed,
as the split torus is already contained in F', the centraliser must be
compact.
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