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1. Introduction.

In the paper [15] we formulated certain conjectures about algebraic
flows on abelian varieties and proved certain cases of these conjectures.
The purpose of this paper is two-fold. We first prove the ‘logarithmic
Ax-Lindemann theorem’ (see details below). We then prove a result
analogous to one of the main results of [15] in the hyperbolic (Shimura)
case about the topological closure of images of totally geodesic subva-
rieties of the symmetric spaces uniformising Shimura varieties.

Let (G,X) be a Shimura datum and X+ be a connected component
of X. Recall from [16], section 2.1 that a realisation X of X+ is a com-
plex quasi-projective variety X with a transitive holomorphic action of
G(R)+ such that for any x0 ∈ X , the orbit map ψx0 : G(R)+ −→ X
mapping g to gx0 is semi-algebraic. There is a natural notion of a mor-
phism of realisations. By [16], lemma 2.1, any realisation of X+ has a
canonical semi-algebraic structure and any morphism of realisations is
semi-algebraic.
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In what follows we fix a realisation X of X+ and by a slight abuse of
language still call this realisation X+. It is an immediate consequence
of Lemma 2.1 of [16] that all the conjectures and statements that follow
are independent of the chosen realisation.

In view of the lemma B1 of [7], we may define an algebraic subset
Y of X+ to be a closed analytic, semi-algebraic subset of X+. Given
an irreducible analytic subset Θ ⊂ X+, we define the Zariski closure of
Θ to be the analytic component containing Θ of the smallest algebraic
subset of X+ containing Θ.

We can now state some results and conjectures.
The classical formulation of the hyperbolic Ax-Lindemann theorem

is:

Theorem 1.1 (Hyperbolic Ax-Lindemann theorem). Let S be a Shimura
variety and π : X+ −→ S be the uniformisation map. Let Z be an alge-
braic subvariety of S and Y a maximal algebraic subvariety of π−1(Z).
Then π(Y ) is a weakly special subvariety of S.

We will see (see proposition 5.1) that this is equivalent to:

Theorem 1.2 (Hyperbolic Ax-Lindemann theorem, version 2.). Let Z
be any irreducible algebraic subvariety of X+ then the Zariski closure
of π(Z) is weakly special.

The hyperbolic Ax-Lindemann conjecture had been proved in full
generality in [7].

In the second section we define a notion of a weakly special subvariety
of X+. This is a complex analytic subset Θ of X+ such that there exists
a semi-simple algebraic subgroup F of G(R)+ and a point x ∈ X+

satisfying certain conditions such that Θ = F · x.
In Section 3 of this paper we prove a ‘logarithmic’ Ax-Lindemann

theorem (a question asked by D. Bertrand).

Theorem 1.3 (Logarithmic Ax-Lindemann). Let π : X+ −→ S be the
uniformisation map. Let Y be an algebraic subvariety of S and let Y ′

be an analytic component of π−1(Y ). The Zariski closure of Y ′ is a
weakly special subvariety.

In [15], we formulated two conjectures on algebraic flows on abelian
varieties and proved partial results towards these conjectures. It seems
very hard to formulate meaningful conjectures of this type in the con-
text of Shimura varieties. We however prove a result which may be
seen as a generalisation in the context of Shimura varieties of one of
the main results of [15]. To state our result we need to introduce a few
notations.
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Consider an algebraic subset Θ of X+. In general, instead of (as in
the hyperbolic Ax-Lindemann case) being interested in the Zariski clo-

sure of π(Θ), we look at the usual topological closure π(Θ). We define a
notion of real weakly special subvariety roughly as the image of H(R) ·x
where H is a semisimple subgroup of G satisfying certain conditions
and x is a point of X+. Let Kx be the stabiliser of x in G(R)+. In the
case where H(R)+∩Kx is a maximal compact subgroup, a real weakly
special subvariety of S is a real totally geodesic subvariety of S. Notice
that in this case the homogeneous space H(R)+/H(R)+ ∩Kx is a real
symmetric space. In the case where x viewed as a morphism from S to
GR factors through HR, the corresponding real weakly special subvari-
ety has Hermitian structure and in fact is a weakly special subvariety
in the usual sense. We also note that given a real weakly special sub-
variety Z of S, there is a canonical probability measure µZ attached to
Z which is the pushforward of the Haar measure on H(R)+, suitably
normalised to make it a probability measure.

In this paper we prove the following theorem.

Theorem 1.4. Let Θ be a complex totally geodesic subvariety of X.
Then the components of the topological closure π(Θ) are real weakly
special subvarieties.

Recall that a complex totally geodesic subvariety of X+ is of the
form F · x where F is a semisimple real Lie group subject to certain
conditions and x is a point of X such that F ∩Kx is a maximal compact
subgroup of F .

In certain cases, for example when the centraliser of F in G(R) is

trivial, we are able to show that π(Θ) is actually a (complex) weakly
special subvariety. This condition is satisfied in many cases. For exam-
ple in the case of SL2(R) diagonally embedded into a product of copies
of SL2(R). In particular this answers in the affirmative the question
of Jonathan Pila which was the following. Consider the subset Z of
H×H which is

Z = {(τ, gτ) : τ ∈ H}
where g ∈ SL2(R)\SL2(Q). Is the image of Z dense in C× C?

The proof of Theorem 1.4 relies on the results of Ratner (see [13]) on
closure of unioptent one parameter subgroups in homogeneous spaces.
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2. Weakly special subvarieties and monodromy.

2.1. Monodromy. Let (G,X) be a Shimura datum. Recall that G is
a reductive group over Q such that Gad has no Q-simple factor whose
real points are compact and X is a G(R)-conjugacy class of a morphism
x : S −→ GR where S = ResC/RGm,C. The morphism x is required
to satify Deligne’s conditions which imply that components of X are
Hermitian symmetric domains. There is a natural notion of morphisms
of Shimura data. We fix a connected component X+ of X and we let
Γ = G(Q)+ ∩K where G(Q)+ is the stabiliser of X+ in G(Q). Let S
be Γ\X+ and π : X+ −→ S be the natural morphism.

To (G,X), one associates the adjoint Shimura datum (Gad, Xad) with
a natural morphism (G,X) −→ (Gad, Xad) induced by the natural map
G −→ Gad. Notice that the this map identifies X+ with a connected
component of Xad. We have the following description of weakly special
(or totally geodesic) subvarieties (see Moonen [10]):

Theorem 2.1. A subvariety Z of S is totally geodesic if and only if
there exists a sub-datum (M,XM) of (G,X) and a product decomposi-
tion

(Mad, Xad
M ) = (M1, X1)× (M2, X2)

and a point y2 of X2 such that Z = π(X+
1 × y2) for a component X+

1

of X1.

Note that Xad,+
M = X+

1 × X+
2 (with a suitable choice of connected

components) is a subspace of X+.
We can without loss of any generality assume the group Γ to be

neat, i.e. the stabiliser of each point of X+ in Γ to be trivial (replacing
Γ by a subgroup of finite index changes nothing to the property of a
subvareity to be weakly special). Fix a point x of the smooth locus Zsm

and x̃ ∈ π−1(x)∩Zsm. This gives rise to the monodromy representation

ρm : π1(Z
sm, x) −→ Γ

whose image we denote by Γm. By Theorem 1.4 (due to Deligne and
André) of [10], we have Γm ⊂Mder(Q) ∩ Γ.

This can all be summarised in the following theorem.

Theorem 2.2. Let (G,X) be Shimura datum, K a compact open sub-
group of G(Af ) and Γ := G(Q)+ ∩K (assumed neat).

Let S = Γ\X+ and Z an irreducible subvariety of S. Let M be the
generic Mumford-Tate group on Z and XM the M(R)-conjugacy class
of x.

Let Γm ⊂ Mder(Q) ∩ Γ be the monodromy group attached to Z as
described above.
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Let (Mad, Xad
M ) = (M1, X1)× (M2, X2) as in Theorem ??. In partic-

ular M1 is the image of the neutral component of the Zariski closure of
Γm in Mad.

Let Kad
M = K1×K2 be a compact open subgroup containing the image

of KM = M(Af )∩K in Mad(Af ) (here Kis are compact open subgroups
of Mi(Af )). We let Xi be the Mi(R)-conjugacy classes of x.

Let SM ⊂ S be a connected component of the image of ShM(Af )∩K(M,XM)
in S containing Z.

Let Si (i = 1, 2) be appropriate components of ShKi
(Mi, Xi) and

SM −→ S1 × S2 be the natural map.
The image of Z in S1 × S2 is of the form Z1 × {z} (see Theorem

4.3 of [10]) where Z1 is a subvariety of S1 whose monodromy is Zariski
dense in M1and z is a point of S2.

2.2. Weakly special subvarieties of X+. In this section we give a
precise description of totally geodesic (weakly special) subvarieties of
X+.

Let (G,X) be a Shimura datum and X+ a connected component of
X. For the purposes of this section, we can without loss of generality
assume that G is a semi-simple group of adjoint type. This is because
there is a natural identification between connected components of X+

and a connected component of Xad. We will now describe totally geo-
desic subvarieties of X+ (that we will naturally call weakly special).

The group G has no Q-simple factors whose real points are compact
and there is a morphism x0 : S −→ GR satisfying the following Deligne’s
conditions such that X+ = G(R)+.x0.

(D1) The adjoint representation Lie(GR) is of type {(−1, 1), (0, 0), (1,−1}.
In particular x(Gm,R) is trivial.

(D2) The involution x(
√
−1) of GR is a Cartan involution.

This is a consequence of [5] 1.1.17.
We have the following:

Proposition 2.3. Let Z be a totally geodesic complex subvariety of
X+. There exists a semi-simple real algebraic subgroup F of GR without
compact factors and some x ∈ X such that x factors through FZG(F )0

such that Z = F (R)+.x. Conversely, let F be a semi-simple real al-
gebraic subgroup of GR without compact factors and let x ∈ X such
that x factors through FZG(F )0. Then F (R)+.x is a totally geodesic
subvariety of X+.

Proof. let F be a semi-simple real algebraic subgroup of GR without
compact factors and let x ∈ X such that x factors through H :=
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FZG(F )0. Then

ZG(H(R)) ⊂ ZG(x(
√
−1)).

As ZG(x(
√
−1)) is a compact subgroup of G(R) so is ZG(H(R)). By

using [17] lemma 3.13 we see that H is reductive.
Then the proof of [17] lemma 3.3 shows that XH := H(R)+.x is an

hermitian symmetric subspace of X+. We give the arguments to be as
self contained as possible.

As Lie(HR) is a sub vector space of Lie(GR) the Hodge weights of
Lie(HR) are {(−1, 1), (0, 0), (1,−1)}. Then using Deligne [5] 1.1.17
we just need to prove that x(

√
−1) induces a Cartan involution of

Had. As the square of x(
√
−1) is in the centre of H(R), by Deligne

[5] 1.1.15, it’s enough to check that HR admits a faithful real x(
√
−1)-

polarizable representation (V, ρ). We may take V = LieGR for the
adjoint representation and the x(

√
−1)-polarization induced from the

Killing form B(X, Y ).
Then HR is the almost direct product HR ' FF nc

1 F c
1 where F1 is ei-

ther trivial or semi-simple without compact factors and F c
1 is reductive

with F c
1 (R) compact. If F nc

1 is trivial X+
F = X+

H is hermitian symmet-
ric. If F nc

1 is not trivial, we have a decomposition X+
H = X+

F ×X
+
Fnc
1

is a

product of hermitian subspaces and we have the natural identification
of X+

F with X+
F ×{x1} where x1 is the projection of x on X+

Fnc
1

. In any

case X+
F is hermitian symmetric and totally geodesic in X+.

Conversely a totally geodesic subvariety of X+ is of the form X+
F =

F (R)+.x for a semi-simple subgroup FR of GR without compact factors.
Let Tx(X+

F ) ⊂ Tx(X+) be the tangent space of X+
F at x. Let U1 ⊂ S

be the unit circle. The complex structure on Tx(X+) is given by the
adjoint action of x(U1). If XF is a complex subvariety, then Tx(X+

F ) is
stable by x(U1). Using Cartan decomposition we see that x(U1) = x(S)
normalizes F . Let F1 = x(S)F , then F1 is reductive and is contained
in FZG(F )0. It follows that x factors through FZG(F )0.

�

Definition 2.4. An algebraic group H over Q is said to be of type H if
its radical is unipotent and if H/Ru(H) is an almost direct product of
Q simple factors Hi with Hi(R) non-compact. Furthermore we assume
that at least one of those factors not to be trivial.

Let H ⊂ G be a subgroup of type H and let us assume that G is of
adjoint type. We will now explain how to attach a hermitian symmetric
space XH to a group of type H and explain that XH is independent of
the choice of a Levi subgroup in H.
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The domain X+ is the set of maximal compact subgroups of G(R)+.
Let x ∈ X+, we denote by Kx the associated maximal compact sub-
group of G(R)+. Let H be a subgroup of type H and let L be a Levi
subgroup of H. We have a Levi decomposition H = Ru(H).L. Assume
that Kx ∩ L(R)+ is a maximal compact subgroup of L(R)+. Then
X+

L = L(R)+.x ⊂ X+ is the symmetric space associated to L and is
independent of the choice of x ∈ X+ such that Kx∩L(R)+ is a maximal
compact subgroup of L(R)+. Let X+

H := Ru(H)XL(R)+, then X+
H is

independent of the chosen Levi decomposition of H. This can be seen
as follows. The Levi subgroups of H are conjugate by an element of
Ru(H). Let L′ be a Levi of H and w ∈ Ru(H) such that L′ = wLw−1.
Let x′ = w.x. Then Kx′ is a maximal compact subgroup of G(R)+ such
that Kx′ ∩ L′(R)+ is a maximal compact subgroup of L′(R)+ and

Ru(H).X+
L′ = Ru(H).L′(R)+.x′ = Ru(H).wL(R)+.x = Ru(H).X+

L .

This shows that the space X+
H is independent of the choice of the Levi.

Definition 2.5. A real weakly special subvariety of S is a real analytic
subset of S of the form

Z = Γ ∩H(R)+\H(R)+.x

where H is an algebraic subgroup of G of type H and x ∈ X+.
In the case where Kx ∩ L(R)+ is a maximal compact subgroup of

L(R)+ for some Levi subgroup of H, H(R)+/Kx ∩ H(R)+ is a real
symmetric space.

We have the following proposition.

Proposition 2.6. Let Z be a real weakly special subvariety of S. Then
the Zariski closure ZZar of Z is weakly special.

Proof. By definition, Z is of the form Z = H(R)+ · x where H is a
group of type H. Let SM be as in Theorem 2.2 the smallest special
subvariety containing ZZar.

Let S1 × S2 be the product of Shimura varieties as in Theorem 2.2
such that the image of ZZar in S1 × S2 is of the form Z1 × {z} where
Z1 is a subvariety of S1 whose monodromy Γm

1 is Zariski dense in M1

and z is a Hodge generic point of S2.
To prove that ZZar is weakly special, it is enough to show that Z1 =

S1. In what follows, we replace S by S1 and Z by Z1.
For any q ∈ H(Q)+, we have that Z ⊂ TqZ, therefore

Z ⊂ ZZar ∩ Tq(ZZar).

Since ZZar ∩ Tq(ZZar) is algebraic, we have

ZZar ⊂ ZZar ∩ Tq(ZZar)
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and therefore, for each q ∈ H(Q) we have

ZZar ⊂ Tq(Z
Zar).

Let T be a non-trivial subtorus of H. We define the Nori constant
C(ZZar) of ZZar as in [19], section 4. Let p > C(ZZar) and q ∈ T (Q)
given by Lemma 6.1 of [19]. Then Tq(Z

Zar) is irreducible and the orbits
of Tq +Tq−1 are dense in S. This implies that ZZar = S as required. �

3. Logarithmic Ax-Lindemann.

Let S = Γ\X+ as before and consider a realisation X+ ⊂ Cn (in the
sense of [17]). In particular X+ is a semi-algebraic set and the action
of G(R)+ is sei-algebraic.

Let Ỹ be a complex analytic subset of X+. Then the Zariski closure

Ỹ
Zar

in Cn is an algebraic subset of Cn and Ỹ
Zar

∩ X+ has finitely
many analytic components. By slight abuse of notation, we refer to

Ỹ
Zar

∩X+ as Zariski closure of Ỹ . These components are algebraic in
the sense of the definition given in the Appendix B of [7].

Theorem 3.1 (Logarithmic Ax-Lindemann). Let π : X+ −→ S be the
uniformisation map. Let Y be an algebraic subvariety of S and let Y ′

be an analytic component of π−1(Y ). The Zariski closure of Y ′ is a
weakly special subvariety.

Proof. Let Ỹ be an analytic component of Y ′. As in the previous
section we can replace S by S1 and Y by Y1 given by the Proposition
2.2. In doing this we attach the monodromy to a point y ∈ Y sm and
ỹ ∈ Y ′. Let ΓY be the monodromy group attached to Y . Notice that
ΓY is the stabiliser of Y ′ in Γ. Then, with our assumptions, ΓY is
Zariski dense in G.

Let α ∈ ΓY . We have
αY ′ = Y ′

Therefore,

(αY ′)
Zar

= Y ′
Zar

We also have
αY ′

Zar ⊃ αY ′

and since αY ′Zar is algebraic, we have

αY ′
Zar ⊃ αY ′

Zar

The same argument with α−1 instead of α shows that the reverse in-
clusion holds and therefore

αY ′
Zar

= αY ′
Zar

= Y ′
Zar
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It follows that Y ′Zar is stabilised by ΓY .
Consider the stabiliser GY of Y ′Zar in G(R). Since Y ′Zar is semi-

algebraic and the action of G(R)+ on X+ is semi-algebraic, GY is semi-
algebraic. Furthermore, GY is analytically closed and hence is a real
algebraic group. Since GY contains ΓY which is Zariski dense in GR,
we see that GY = G(R)+. It follows that Y ′Zar = S as required. �

4. Facts from ergodic theory: Ratner’s theory.

In this section we recall some results from ergodic theory of homo-
geneous varieties to be used in the next section. The contents of this
section are mainly taken from Section 3 of [?]. We present results in
the way they are presented in [16].

Let G be a semi-simple algebraic group over Q. We assume that
G has no Q-simple simple factors that are anisotropic over R. This
condition is satisfied by all groups defining Shimura data.

Let Γ be an arithmetic lattice in G(R)+ and let Ω = Γ\G(R)+.
We have already defined a subgroup H ⊂ G of typeH, we now define

a group of type K.

Definition 4.1. Let F ⊂ G(R) be a closed connected Lie subgroup.
We say that F is of type K if

(1) F ∩ Γ is a lattice in F . In particular F ∩ Γ\F is closed in
Γ\G(R)+. We denote by µF the F -invariant normalised mea-
sure on Γ\G(R)+.

(2) The subgroup L(F ) generated by one-parameter unipotent sub-
groups of F acts ergodically on F ∩ Γ\F with respect to µF .

For the purposes of this section, we in addition assume F to be
semisimple.

The relation between types K and H is as follows (see [2], lemme 3.1
and 3.2):

Lemma 4.2. (1) If H is of type H, then H(R)+ is of type K.
(2) It F is a closed Lie subgroup of G(R)+ of type K, then there

exists a Q subgroup FQ of G of type H such that F = F (R)+.

For a subset E of G(R), we define the Mumford-Tate group MT (E)
of E as the smallest Q-subgroup of G whose R-points contain E. If F
is a Lie subgroup of G(R)+ of type K , then by (2) of the above lemma,
MT (F ) = FQ and it is of type H.

We will make use of the following lemma, which is Lemma 2.4 of
[16].
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Lemma 4.3. Let H be a Q-algebraic subgroup of G with H0 almost
simple. Let L be an almost simple factor of H0

R. Then

MT (L) = H0

Let Ω = Γ\G(R)+. Note that Ω carries a natural probability mea-
sure, the pushforward of the Haar measure on G(R)+, normalised to be
a probability measure (the volume of Ω is finite). For each F of type
K, there is a natural probability measure µF attached to F .

The following theorem is a consequence of results of Ratner.

Theorem 4.4. Let F = F (R)+ be a subgroup of G(R)+ be a semi-
simple group without compact factors.

Let H be MT(F ). The closure of Γ\ΓF in Ω is

Γ\ΓH(R)+ = Γ ∩H(R)+\H(R)+

Proof. By a result of Cartan([14], Proposition 7.6) the group F is gen-
erated by its one-parameter unipotent subgroups.

A result of Ratner (see [13], Theorem 3), implies that the closure of
Γ\ΓF in Ω is homogeneous i.e. there exists a Lie group H of type K
such that

Γ\ΓF = Γ\ΓH
By Lemme 2.1(c) of [2], there exists a Q-algebraic subgroup HQ ⊂ G
such that

H(R)+ = H

Since F ⊂ H, we have that MT (F ) ⊂ H. On the other hand, by
Lemme 2.2 of [2] (due to Shah), the radical of MT (F ) is unipotent
which implies that MT (F ) is of type H. It follows that HQ = MT (F )
which finishes the proof. �

5. Algebraic flows on Shimura varieties.

5.1. Reformulation of the hyperbolic Ax-Lindemann theorem.
Let (G,X) be a Shimura datum. Let K be a compact open subgroup
of G(Af ), Γ = G(Q)+ ∩ G(Af ) and S = Γ\X+. Let π : X+ → S be
the uniformizing map. Without loss of any generality, in this section
we assume that the group G is semisimple of adjoint type.

We first give a reformulation of the hyperbolic Ax-Lindemann con-
jecture in terms of algebraic flows.

Proposition 5.1. The hyperbolic Ax-Lindemann conjecture is equiv-
alent to the following statement. Let Z be any irreducible algebraic
subvariety of X+ then the Zariski closure of π(Z) is weakly special.
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Proof. Let us assume that the hyperbolic Ax-Lindemann conjecture
holds true. Let A be an irreducible algebraic subvariety of X+ and
V be the Zariski closure of π(A). Let A′ be a maximal irreducible
algebraic subvariety of π−1(V ) containing A. By the hyperbolic Ax-
Lindemann conjecture π(A′) is a weakly special subvariety of V . As
A ⊂ π(A′) ⊂ V and as π(A′) is irreducible algebraic we have V = π(A′).
Therefore V is weakly special.

Let us assume that the statement of the proposition holds true. Let
V be an irreducible algebraic subvariety of S. Let Y be a maximal
irreducible algebraic subvariety of π−1(V ). Then the Zariski closure V ′

of π(Y ) is weakly special. Moreover V ′ ⊂ V . Let W be an analytic
component of π−1(V ′) containing Y . As V ′ is weakly special, W is
irreducible algebraic. By maximality of Y we have Y = W . Therefore
π(Y ) = V ′ is weakly special.

�

5.2. Application of Ratner’s theory. Let (G,X) be a Shimura da-
tum and X+ a connected component of X. In this section we consider
conjecture ??. It is clear that in this conjecture, without any loss
of generality, one may assume that the group G to be semi-simple of
adjoint type, which we do.

We now consider a totally geodesic (weakly special) subvariety Z
of X+. Recall that there exists a semi-simple subgroup F (R)+ of G
without almost simple compact factors and a point x such that x factors
through FZG(F )0.

Let α be the natural map G(R)+ −→ Γ\G(R)+ and πx be the map
Γ\G(R)+ −→ Γ\X+ sending x to gx. Recall that π : X+ −→ Γ\X+ is
the uniformisation map. We have

π(Z) = πx ◦ α(F (R)+)

We let H be the Mumford-Tate group of F (R)+. Recall that it is
defined to be the smallest connected subgroup of G (hence defined over
Q) whose extension to R contains F (R)+.

By [14], Prop 7.6, the group F (R)+ is generated by its one-parameter
unipotent subgroups.

By Theorem 4.4, we conclude the following:

Proposition 5.2. The closure of α(F (R)+) in Γ\G(R)+ is Γ∩H(R)+\H(R)+.

5.3. Closure in S. From the fact that the map πx is proper and Propo-
sition 5.2, we immediately deduce the following

Theorem 5.3. The closure of π(Z) in S is V , the image of H(R)+ · x
i.e. it is a real weakly special subvariety.
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In this section we examine cases where we can actually make a
stronger conclusion, namely:

(1) The variety V from Theorem 5.3 is locally symmetric and hence
real totally geodesic.

(2) It has a Hermitian structure i.e. is a weakly special subvariety.

Theorem 5.4. Assume ZG(F ) is compact. Then V is a locally sym-
metric variety.

Proof. It is enough to show that H(R)+ ∩ Kx is a maximal compact
subgroup of H(R)+.

Notice that since ZG(F ) fixes x, we have

ZG(F ) ⊂ Kx

We follow Section 3.2 of [16].
SinceKx is a maximal compact subgroup ofG(R)+ such that F (R)+∩

Kx is a maximal compact subgroup of F (R)+, we have two Cartan de-
compositions:

G(R)+ = PxKx and F = (Px ∩ F ) · (Kx ∩ F )

for a suitable parabolic subgroup Px of G(R)+.
We now apply Proposition 3.10 of [16] in out situation. We have

a connected semi-simple group H such that F ⊂ HR. According to
Proposition 3.10 of [16], there exists a Cartan decomposition

H(R) = (Px ∩H(R)) · (Kx ∩H(R))

This, in particular implies that Kx ∩ H(R) is a maximal compact
subgroup of H(R)+ as required. �

Theorem 5.5. Assume that ZG(F ) is trivial. Then V is a weakly
special subvariety.

Proof. In this case, x factors through F and therefore through HR. Let
XH be the H(R)-orbit of x. By lemma 3.3 of [16], (H,XH) is a Shimura
subdatum of (G,X) and therefore V is a weakly special subvariety. �

Example 5.6. We give examples where ZG(F ) is neither trivial nor
compact, but the closure of π(Z) is nevertheless hermitian.

Let G be an almost simple group over Q. A typical example is G =
ResK/QSL2,K where K is a totally real field of degree n. Let F be an R-
simple factor of GR. In the above case F could be for example SL2(R)
embedded as SL2(R)×{1}×· · ·×{1}. Then the centraliser of F is not
compact. However, by Lemma 2.4 of [16], the Mumford-Tate group of
F is G and for any point x of X+, the image of F · x in S is G.
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Example 5.7 (Products of two modular curves). Consider G = SL2×
SL2, X

+ = H×H and

Z = {(τ, gτ), τ ∈ H}.

Let Γ = SL2(Z)× SL2(Z) and π : H×H −→ Γ\X+.
Then, if g ∈ G(Q), then the closure of π(Z) is a special subvariety.

It is the modular curve Y0(n) for some n.
If g /∈ G(Q), then π(Z) is dense in Γ\X+. In this case the group

F (R)+ is (h, ghg−1) ⊂ SL2(R)× SL2(R).

Example 5.8 (Rank one groups). Here is another quite general ex-
ample where ZG(F ) is trivial and hence the closure of the image of
F (R)+ · x is a weakly special subvariety.

Suppose that the groups G is U(n, 1). In this case X+ is an open ball
in Cn. The real rank of G is one. Let F be the subgroup U(m, 1) of
U(n, 1) (with m ≤ n). Then the centraliser ZG(F ) is trivial. Indeed,
as the split torus is already contained in F , the centraliser must be
compact.
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