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Abstract

We study the correction of the energy spectrum of a gravitational quantum well due to

the combined effect of the braneworld model with infinite extra dimensions and generalized

uncertainty principle. The correction terms arise from a natural deformation of a semiclassical

theory of quantum gravity governed by the Schrödinger-Newton equation based on a minimal

length framework. The two fold correction in the energy yields new values of the spectrum, which

are closer to the values obtained in the GRANIT experiment. This raises the possibility that the

combined theory of the semiclassical quantum gravity and the generalized uncertainty principle

may provide an intermediate theory between the semiclassical and the full theory of quantum

gravity. We also prepare a schematic experimental set-up which may guide to the understanding

of the phenomena in the laboratory.

1 Introduction

The fact that the minimal observable length can be useful to impose an effective cut-off in the ultra-

violet domain in order to make the theory of quantum fields renormalizable was suggested very early

by Heisenberg. It was Snyder, who formalized the idea for the first time in the form of an article,

and showed that the noncommutative structure of space-time characterizes the minimal measurable

length in a very natural way [1]. Since then, the notion of noncommutativity has evolved from

time to time and revealed its usefulness in different contexts of modern physics [2]. Some natural

and desirable possibilities arise when the canonical space-time commutation relation is deformed

by allowing general dependence of position and momentum [3–7]. In such scenarios, the Heisen-

berg uncertainty relation necessarily modifies to a generalized version to the so-called generalized

uncertainty principle (GUP). Over last two decades, it is known that within this framework, in par-

ticular, where the space-time commutation relation involves higher powers of momenta, explicitly

lead to the existence of nonzero minimal uncertainty in position coordinate, which is familiar as the

minimal length in the literature. An intimate connection between the gravitation and the existence

of the fundamental length scale was proposed in [8]. The string theory, which is the most popular

approach to quantum gravity, also supports the presence of such minimal length [9–13], since the

strings are the smallest probes that exist in perturbative string theory, and so it is not possible to

probe space-time below the string length scale. In loop quantum gravity, the existence of a mini-

mum length has a very interesting consequence, as it turns the big bang into a big bounce [14, 15].
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Furthermore, the arguments from black hole physics suggest that any theory of quantum gravity

must be equipped with a minimum length scale [16, 17], due to the fact that the energy required

to probe any region of space below the Plank length is greater than the energy required to create

a mini black hole in that region of space. The minimal length exists in other subjects too; such

as, path integral quantum gravity [18, 19], special relativity [20], doubly special relativity [21–23],

etc. In short, the existence of minimal measurable length, by now, has become a universal feature

in almost all approaches of quantum gravity. Moreover, some Gedankenexperiments and thought

experiments [8, 24, 25] in the spirit of black hole physics have also supported the idea. For fur-

ther informations on the subject one may follow some review articles devoted to the subject, for

instance, [26–28].

In spite of having several serious proposals for quantizing the general relativity, unfortunately

we do not have a fully consistent quantum theory of gravity yet. This has motivated the study of

semi-classical quantum gravity (SCQG), where the gravitational filed is treated as a background

classical field, and the matter fields are treated quantum mechanically. Under such approximation,

if |ψ〉 is the wave function of the matter field, the Einstein tensor Gµν can be obtained in terms of the

quantum mechanical energy-momentum tensor for matter fields Tµν as Gµν = 8πG〈ψ|Tµν |ψ〉/c4.
However, Newtonian gravity has been observed to be the correct approximation to general relativ-

ity till the smallest length scale (0.4mm) to which general relativity has been tested [29]. Thus,

at small distances, it is expected that the semi-classical approximation can be described by a

Schrödinger-Newton equation [30–34], which is the nonrelativistic limit of the Dirac equation and

the Klein-Gordon equation with a classical Newtonian potential [35]. It has been proposed that the

Schrödinger-Newton equation can be utilized to explore various interesting properties of gravita-

tional systems at the given length scale [36–38].

Some interesting consequences may follow from the combination of the above two frameworks,

namely, the GUP and SCQG, and it is allowed since both of the effects occur at small scales.

Technically, this can be achieved by imposing the minimal length structure into the semi-classical

scheme of gravity by means of deforming the Schrödinger-Newton equation in accordance with the

laws of GUP. The most interesting fact is that the new theory resulting from the combination of

GUP and SCQG may provide an intermediate theory between a full quantum theory of gravity

and the SCQG and, this is precisely the issue that we address in the present manuscript. Recently,

it has been suggested that both the Schrödinger-Newton equation [39, 40] and the deformation of

quantum mechanical structure by the GUP [41] can be tested experimentally by using the opto-

mechanical systems. Therefore, it becomes important to understand the effects of the combined

theory, especially when there is a strong viability that the theory may be tested by using a similar

type of experimental set-up in near future.

2 GUP and minimal length

Let us commence by introducing a particular version of modified commutation relation between the

position and momentum operators X,P [3, 4]

[Xi, Pj ] = i~(δij + βδijP
2 + 2βPiPj), [Xi, Xj ] = [Pi, Pj ] = 0, (2.1)

with β having the dimension of inverse squared momentum and, P 2 =
∑3

j=1 P
2
j . As obviously,

in the limit β → 0, the deformed relations (2.1) reduce to the standard canonical commutation

relations [xi, pj ] = i~δij . However, there exist many other similar type of deformations in the

literature, which have been used to investigated many interesting phenomena in different contexts;

see, for instance [6,7,28,42–44]. Nevertheless, the generalized uncertainty relation or the Robertson-
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Schrödinger uncertainty relation corresponding to the deformed algebra (2.1) turns out to be

∆Xi∆Pj ≥
1

2

∣∣∣〈[Xi, Pj ]〉
∣∣∣ (2.2)

∆Xi∆Pi ≥
~
2

[
1 + β

{
(∆P )2 + 〈P 〉2

}
+ 2β

{
(∆Pi)

2 + 〈Pi〉2
}]
, (2.3)

from which one can compute the exact expression of the minimal observable length by using the

standard minimization technique. For further information on the minimization procedure, one may

refer, for instance [3, 6, 43]. A possible representation of the algebra (2.1) in terms of the canonical

position and momentum operators x, p is given by [3, 4]

Xi = xi, Pi = pi(1 + βp2), (2.4)

where pj = −i~ ∂
∂xj

. Certainly, the representation (2.4) is not unique [3], as for instance; see [45],

where the authors explore four possible representations of the algebra (2.1) with some of them being

Hermitian. However, it is easy to show that (2.4) satisfies (2.1) up to the first order of β (hence,

we neglect higher order terms of β). Physically, the notations are understood in the sense that pi
represents the momenta at low energy, while Pi correspond to those at high energy.

3 The gravitational quantum well

The gravitational quantum well (GQW) is characterized by the motion of a nonrelativistic object

of mass m in a gravitational field −→g = −g−→e z with a restriction imposed by a mirror placed at the

origin z = 0, such that the potential turns out to be

V0(z) =

{
+∞, z ≤ 0,

mgz, z > 0,
(3.1)

with g being the gravitational acceleration. The experimental set-up of the corresponding potential

(3.1) has already been studied [46]. Theoretically, the problem resemble a quantum mechanical

particle moving in a potential well given by (3.1) subjected to a boundary condition ψ0(0) = 0 at

z = 0. If we consider ψ0(−→x ) = ψ0(z)ψ0(y), then the solutions of the corresponding time-independent

Schrödinger equation along the z direction

H0ψ
0(z) = E0ψ0(z), H0 =

p2

2m
+mgz, (3.2)

are well-known and, are given by [47] (Problem 40)

E0
n = −mgαn

θ
, θ =

(
2m2g

~2

)1/3

, (3.3)

ψ0
n(z) = NnAi[θz + αn], (3.4)

where αn is the nth zero of the regular Airy function Ai(z) [48], and Nn = θ1/2/|Ai′(αn)| is the

normalization factor. Along the y axis, the particle is free and the corresponding wave function

takes the form

ψ0(y) =

∫ ∞
−∞

g(k)eikydk, (3.5)

where g(k) determines the shape of the wave packet in momentum space. In analogy to a classical

object, a collision of a quantum particle with the impenetrable mirror along the z direction will

make it bounced at a critical height hn

hn =
E0
n

mg
= −αn

θ
, (3.6)
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which is, naturally, quantized. In the GRANIT experiment [49], the measured critical heights for

the first two states are

hexp1 = 12.2µm± 1.8syst ± 0.7stat, (3.7)

hexp2 = 21.6µm± 2.2syst ± 0.7stat. (3.8)

Whereas, the theoretical values for h1 and h2 can be obtained from (3.6) as

hth1 = 13.7µm, (3.9)

hth2 = 24.0µm, (3.10)

where m = 939 Mev/c2 and g = 9.81 m/s2. The variation of the heights h1 and h2 resulting from

the theory and the experiment are, therefore, δth = hth2 − hth1 = 10.3µm and δexp = hexp2 − hexp1 =

9.4µm±5.4µm, respectively. Thus, the deviation of δ between the theory and the experiment turns

out to be 4.5µm. The argument that we shall pursue here is that any correction in the Hamiltonian

(3.2) will effectively reduce this deviation of δ between the theory and the experiment, and thus

the theoretical result will become closer to the experiment. A similar argument has already been

used in [50–53]. However, we explore two types of correction here. First, we consider a braneworld

model studied in [54], which was discovered in the course of solving the hierarchy problem of the

standard model. Their theory is based on the assumption that, while all the standard model fields,

gauge and matter, are confined in a (3+1) dimensional manifold, only the graviton can propagate

freely in the extra dimensions which are considered to be infinite. In presence of such infinite extra

dimensions, the Newtonian potential is modified to the following form

V (r) = −GMm

r

(
1 +

kb
rb

)
, r >> Λ = b

√
|kb|, (3.11)

where Λ is the length scale at which the correction due to the infinite extra dimensions becomes

dominant. If we consider the Newtonian potential −GMm/r = V0(r), we can write the above

equation (3.11) as V (r) = V0(r) + Vb(r), so that Vb(r) = −GMmkb/r
b+1 can be considered as a

perturbation, which will eventually contribute to the correction over the theoretical values of δ.

Therefore, δth will be changed to δth + Ω, where

Ω =
1

mg

[〈
ψ0
2(z)|Vb|ψ0

2(z)
〉
−
〈
ψ0
1(z)|Vb|ψ0

1(z)
〉]
, (3.12)

and |Ω| ≤ 4.5µm. The second correction emerges from the contribution of the GUP deformed

Hamiltonian. If we replace the momentum p corresponding to the low energy in (3.2) by the

momentum P coming from the GUP deformation (2.4), we obtain

H = H0 +H1, H1 =
β

m
p4, (3.13)

where we neglect the higher order terms of β. Thus, if we denote the correction of δth coming from

the GUP by Ξ, with

Ξ =
1

mg

[〈
ψ0
2(z)|H1|ψ0

2(z)
〉
−
〈
ψ0
1(z)|H1|ψ0

1(z)
〉]
, (3.14)

then

|Ω| ≤ |Ω + Ξ| ≤ 4.5µm. (3.15)

Let us now compute both of the corrections Ω and Ξ in the following section.

4



Modified Schrödinger-Newton equation

4 Corrections

The potential described in (3.11) corresponds to an interaction between two particles. However, we

are dealing with a situation where a point particle bounces on a plane mirror placed at the surface

of the Earth. Therefore, we are required to derive the effective potentials between the test particle

and the Earth, as well as, between the particle and the mirror.

4.1 Correction due to Earth-particle interaction

Let us first derive the potential coming from the Earth-particle interaction. By considering our

planet to be a spherical body with mass density ρE , the total potential acting on the particle is

V E
b (−→r ) = −mGρEkb

∫
E

d3−→r ′

|−→r −−→r ′|b+1
. (4.1)

In spherical coordinates which becomes

V E
b (h) = −2πmGρEkb

∫ R

0
r2dr

∫ 1

−1

du

[r2 − 2r(h+R)u+ (h+R)2](b+1)/2
, (4.2)

where h is the altitude above Earth’s surface and R being the radius of the Earth. For, b = 0, 1, 2, 3,

one obtains [53]

V E
0 (h) = −GmM

h+R
,

V E
1 (h) = −3mgk1

4R

[
2R− h(h+ 2R)

h+R
ln

(
h+ 2R

h

)]
,

V E
2 (h) = −3mgk2

2R

[
ln

(
h+ 2R

h

)
− 2R

h+R

]
,

V E
3 (h) = −3mgk3

4R

[
2R

h(h+ 2R)
− 1

h+R
ln

(
h+ 2R

h

)]
,

(4.3)

while for b > 3, it becomes

V E
b (h) = − 3mgkb

2(b− 1)(b− 2)(b− 3)R(h+R)

[
(b− 3)R− h

hb−2
+

(b− 1)R+ h

(h+ 2R)b−2

]
. (4.4)

Notice that in the limit b→ 0 (k0 = 1), we recover the Newtonian potential in an exact form.

4.2 Correction due to mirror-particle interaction

Although the mass of the mirror is negligible with respect to that of the Earth, the effect originating

from the mirror-particle interaction should be taken into account since the mirror is placed at a

distance much closer to the particle. The mirror can be seen as a parallelepiped with density ρM ,

and located at −∞ < (x, y) < ∞ and −L < z < 0. With respect to the size of the particle, the

mirror can be considered as an infinite plane, so that the mirror behaves as a disc of infinite radius.

Thus, the total interacting potential in this case becomes

VM
b (h) = −2πmGρMkb

∫ 0

−L
dz

∫ R∗

0

rdr

[r2 + (h− z)2](b+1)/2
, (4.5)
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where R∗ is taken to be very large, but finite, in order to avoid the divergent integrals. Nevertheless,

the integrals (4.5) are computed as follows

VM
1 (h) =

3mgk1ρ

2R

[
L ln(h+ L) + h ln

(
h+ L

h

)]
,

VM
2 (h) = −3mgk2ρ

2R
ln

(
h+ L

h

)
,

VM
b>2(h) = − 3mgkbρ

2R(b− 1)(b− 2)

[
1

hb−2
+

1

(h+ L)b−2

]
.

(4.6)

4.3 The perturbative correction from GUP deformation

Now, let us consider the correction due to the perturbation term H1 (3.13) arising from the GUP

deformation. The correction to the energy ∆En at the lowest order in β is given by

∆EGUP
n =

β

m

〈
ψ(−→x )|p4|ψ(−→x )

〉
=
β

m
[4m2

〈
ψ0
n(z)|p4z|ψ0

n(z)
〉

+ 2
〈
ψ0
n(z)|p2z|ψ0

n(z)
〉 〈
ψ0(y)|p2y|ψ0(y)

〉
=
β

m
[4m2

〈
[E0

n − V0(z)]2
〉

+ 8m2Ec
〈
E0
n − V0(z)

〉
]

= 4βm[E0
n(E0

n + 2Ec)− 2(E0
n + Ec) 〈V0(z)〉+

〈
V 2
0 (z)

〉
],

(4.7)

where Ec = m
〈
ψ0(y)|v2y |ψ0(y)

〉
/2 is the kinetic energy of the particle along the horizontal direction.

Note that a term proportional to
〈
ψ0(y)|p4y|ψ0(y)

〉
has been omitted since it only leads to a global

shift of the energy spectrum. Therefore, by computing the following integrals

〈V0(z)〉 = 〈ψ0
n(z)|V0(z)|ψ0

n(z)〉 = mgN2
n

∫ +∞

0
zAi2(θz + αn) =

2

3
E0
n,〈

V 2
0 (z)

〉
= 〈ψ0

n(z)|V 2
0 (z)|ψ0

n(z)〉 = (mg)2N2
n

∫ +∞

0
z2Ai2(θz + αn) =

8

15
(E0

n)2,

(4.8)

we obtain the final expression of the correction to the energy as follows

∆EGUP
n =

4

5
βm(E0

n)2(1 +
10Ec
3E0

n

). (4.9)

5 The modified GQW spectrum

Combining the corrections coming from the SCQG, we obtain

Vb = V E
b (z) + VM

b (z), (5.1)

which when combined with the correction to the energy arising from the GUP deformation, we

obtain the total energy shift

∆En = 〈Vb〉+ ∆EGUP
n . (5.2)

Therefore, we have

Ωb + Ξ =
1

mg

[〈
ψ0
2(z)|Vb|ψ0

2(z)
〉

+ ∆EGUP
2 −

〈
ψ0
1(z)|Vb|ψ0

1(z)
〉
−∆EGUP

1

]
. (5.3)

Let us now compute the numerical values of the above expressions, with R = 6378km, m =

939MeV/c2, g = 9.81m/s2, L = 10cm, ρ = 1 and Ec ' m 〈vy〉2 /2 ' 0.221µeV

Ω1 + Ξ = k1 × 5.59203× 10−11 + β × 1.62357× 10−57m < 4.5µm, (5.4)

Ω2 + Ξ = k2 × 2.38493× 10−7m−1 + β × 1.62357× 10−57m < 4.5µm, (5.5)

Ω3 + Ξ = k3 × 0.0101239 m−2 + β × 1.62357× 10−57m < 4.5µm. (5.6)
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b 1 2 3

|Λ|(m) < 8.13× 104 4.34 0.076

Table 1: Constrains on the power-law parameters

In order to obtain the bounds on the power-law parameters Λ and kb, let us consider Vb = −mgkbṼb.
Eq. (3.11) implies that kb = Λb, so that Vb = −mgΛbṼb. Therefore, we can write

Ωb = −ΛbΩ̃b = −Λb
[〈
ψ0
2(z)|Ṽb|ψ0

2(z)
〉
−
〈
ψ0
1(z)|Ṽb|ψ0

1(z)
〉]
, (5.7)

which immediately leads to the constraint on the parameter Λ as |Λ| = b

√
Ωb/Ω̃b. According to

(3.12), Ω is bounded below 4.5µm and, so Λ is bounded by the following relation

|Λ| = b

√
4.5/Ω̃b. (5.8)

Using the results from (5.4)-(5.6), we can calculate Ω̃b corresponding to different values of b. If we

turn off the GUP deformation (β = 0), we obtain the Table 1. In a similar way it is also possible

to obtain the bounds for the cases when β 6= 0. On the other hand, if we turn off the power-law

modification, we see that the GUP deformation parameter has the constraint

β < 2.77167× 1051, (5.9)

which provides a tighter upper bound than those derived in the context of gravitational fields; see,

for instance [55]. However, the upper bound (5.9) is weaker in comparison to [7, 56, 57], which

were obtained in different contexts in the literature. Nevertheless, what we notice is that we obtain

positive contributions from both SCQG and GUP deformation, which will make the theoretical

values of δ closer to the experiment.

6 A schematic proposal for experiment

To this end, we make a proposal for an experimental quantum bouncer through an opto-mechanical

set-up, which would be able to provide an understanding of the combined effect of SCQG and GUP.

Opto-mechanical devices yield a promising avenue for preparing and investigating quantum states

of massive objects ranging from a few picograms up to several kilograms [58]. Significant experi-

mental progress has been achieved by using such devices in different contexts, including coherent

interactions [59], laser cooling of nano and micro-mechanical devices into their quantum ground

state [60]. Recently, such types of systems have been utilized for the understanding of more exciting

features like the SNE in SCQG [39,40] and GUP [41]. Here, our goal is to understand the combined

effect of SCQG and GUP through the given opto-mechanical system.

The underlying principle behind the experiment is that the ultra cold neutrons (UCN) move

freely in the gravitational field above a mirror and make a total reflection from the surface of the

mirror when the corresponding de Broglie wavelength is bigger than the interatomic distances of

the matter. Thus, the set-up gives rise to a GQW, where the UCN form bound quantum states in

the Earth’s gravitational field. The eigenvalues are non-equidistant and, are in the range of pico-eV.

These type of scenarios offer fascinating possibilities to combine the effects of Newton’s gravity at

short distances with the high precision resonance spectroscopy methods of quantum mechanics. The

schematic diagram of the experimental set-up is given in Fig. 1, which consists of an anti-vibrator

granite table, a convex magnification system (mirror), an inclinometer, a ceiling scatterer and a

position sensitive detector. The UCN shall be formed by passing the neutrons of the proposed
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Figure 1: The schematic of the opto-mechanical setup for the proposed experiment

wavelength between 0.75- 0.90 nm through the superfluid of 4He of a volume of about 4-5 liters.

The UCN are brought to the experimental set-up by a guided system composed of a slit, a neutron

collimator and an aperture. The neutrons fly in the slit and are screened in the range of 4-10

m/s. The upper wall of the slit is an efficient absorber which only lets the surviving neutrons to

pass and, hence forth controlling first quantum states of the neutron flux. The mirror consists of a

magnification system , which is made of a bi-metal (NiP) coated glass rod of radius between 3-3.5

nm with the roughness of about 1.5 nm. However the mirror system shall be modified to elliptical

shape in order to harness the neutrons of much smaller wavelength as well. The distribution of

100 µm in height is magnified to ∼ 2.5 mm at the position on the detector. This gives the average

magnification power of about 25 at the glancing angle at 200 to make the reflection high.

The most important aspect of the position sensitive neutron detector is that the neutrons must

be changed into a charged particles by a nuclear reaction. The converter materials are available as
3He, 6Li, 10B, and 157Gd, etc. A black thin CCD (charge coupled detector) could be used along

with a thin layer of 3He, 10B or Ti-10B-Ti. The ideal thickness of 10B should be about 200 nm, and

must be evaporated directly on the CCD surface. The standard pixel size is 24 µm × 24 µm and

the thickness of the active volume should be about 20 µm. The kinetic energy is deposited on the

active area and a charge cluster is created, which typically spreads into nine pixels. The weighted

center of the charge cluster is a good estimation of the incident neutron position.

At the exit of the UCN system the wavefucntion changes due to the absence of suppressing slit

and as such the neutrons turn as bouncers on the mirror surface and their trajectories are measured

by the Time of flight (TOF) method. They are characterized by a Gaussian distribution with a

mean of 9.4 m/s and the standard deviation of 2.8 m/s which is subject to change due to various

modifications of the design.

7 Conclusions

We have studied a two-fold correction in the energy spectrum of a GQW. The first correction

arises from the scheme of the SCQG itself, where we considered the SNE in a particular framework

of braneworld model with infinite extra dimensions. The second correction emerges from a GUP

deformation of the given SCQG framework. The combined effect of these two interesting theories

provide a new bound on the energy spectrum of the GQW, which is closer to the observed values in

the GRANIT experiment. Since, both of the effects of SCQG and GUP occur at small length scales,
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and both of the theories provide positive contributions in the correction of the energy spectrum,

it raises a natural possibility that the combined theory may guide us towards a theory beyond the

SCQG. Thus our proposal may yield an intermediate theory beyond the SCQG and the complete

theory of quantum gravity. Moreover, we have provided a schematic experimental set-up which

would help the laboratory experts to explore our theory further in the lab.

There are many natural directions that may follow up our investigation. First, it will be inter-

esting to study the similar kind of effects of GUP in the context of other theories of gravity. There

exist many other type of GUP deformation, which may be useful to study the similar theories to

confirm our findings. However, the most interesting future problem lies on the understanding of the

experimental realization of the combined theory of SCQG and GUP by using the opto-mechanical

set-up, while it has already been used to understand each of the individual frameworks of SCQG

and GUP.
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