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Abstract

We study the correction of the energy spectrum of a gravitational quantum well due to
the combined effect of the braneworld model with infinite extra dimensions and generalized
uncertainty principle. The correction terms arise from a natural deformation of a semiclassical
theory of quantum gravity governed by the Schrédinger-Newton equation based on a minimal
length framework. The two fold correction in the energy yields new values of the spectrum, which
are closer to the values obtained in the GRANIT experiment. This raises the possibility that the
combined theory of the semiclassical quantum gravity and the generalized uncertainty principle
may provide an intermediate theory between the semiclassical and the full theory of quantum
gravity. We also prepare a schematic experimental set-up which may guide to the understanding
of the phenomena in the laboratory.

1 Introduction

The fact that the minimal observable length can be useful to impose an effective cut-off in the ultra-
violet domain in order to make the theory of quantum fields renormalizable was suggested very early
by Heisenberg. It was Snyder, who formalized the idea for the first time in the form of an article,
and showed that the noncommutative structure of space-time characterizes the minimal measurable
length in a very natural way [1]. Since then, the notion of noncommutativity has evolved from
time to time and revealed its usefulness in different contexts of modern physics [2]. Some natural
and desirable possibilities arise when the canonical space-time commutation relation is deformed
by allowing general dependence of position and momentum [3-7]. In such scenarios, the Heisen-
berg uncertainty relation necessarily modifies to a generalized version to the so-called generalized
uncertainty principle (GUP). Over last two decades, it is known that within this framework, in par-
ticular, where the space-time commutation relation involves higher powers of momenta, explicitly
lead to the existence of nonzero minimal uncertainty in position coordinate, which is familiar as the
minimal length in the literature. An intimate connection between the gravitation and the existence
of the fundamental length scale was proposed in [8]. The string theory, which is the most popular
approach to quantum gravity, also supports the presence of such minimal length [9-13], since the
strings are the smallest probes that exist in perturbative string theory, and so it is not possible to
probe space-time below the string length scale. In loop quantum gravity, the existence of a mini-
mum length has a very interesting consequence, as it turns the big bang into a big bounce [14,15].
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Furthermore, the arguments from black hole physics suggest that any theory of quantum gravity
must be equipped with a minimum length scale [16,17], due to the fact that the energy required
to probe any region of space below the Plank length is greater than the energy required to create
a mini black hole in that region of space. The minimal length exists in other subjects too; such
as, path integral quantum gravity [18,19], special relativity [20], doubly special relativity [21-23],
etc. In short, the existence of minimal measurable length, by now, has become a universal feature
in almost all approaches of quantum gravity. Moreover, some Gedankenexperiments and thought
experiments [8, 24,25 in the spirit of black hole physics have also supported the idea. For fur-
ther informations on the subject one may follow some review articles devoted to the subject, for
instance, [26-28].

In spite of having several serious proposals for quantizing the general relativity, unfortunately
we do not have a fully consistent quantum theory of gravity yet. This has motivated the study of
semi-classical quantum gravity (SCQG), where the gravitational filed is treated as a background
classical field, and the matter fields are treated quantum mechanically. Under such approximation,
if |¢) is the wave function of the matter field, the Einstein tensor G, can be obtained in terms of the
quantum mechanical energy-momentum tensor for matter fields T as G, = 87G(|TH|)/ct.
However, Newtonian gravity has been observed to be the correct approximation to general relativ-
ity till the smallest length scale (0.4mm) to which general relativity has been tested [29]. Thus,
at small distances, it is expected that the semi-classical approximation can be described by a
Schrodinger-Newton equation [30—-34], which is the nonrelativistic limit of the Dirac equation and
the Klein-Gordon equation with a classical Newtonian potential [35]. It has been proposed that the
Schrodinger-Newton equation can be utilized to explore various interesting properties of gravita-
tional systems at the given length scale [36-38].

Some interesting consequences may follow from the combination of the above two frameworks,
namely, the GUP and SCQG, and it is allowed since both of the effects occur at small scales.
Technically, this can be achieved by imposing the minimal length structure into the semi-classical
scheme of gravity by means of deforming the Schrédinger-Newton equation in accordance with the
laws of GUP. The most interesting fact is that the new theory resulting from the combination of
GUP and SCQG may provide an intermediate theory between a full quantum theory of gravity
and the SCQG and, this is precisely the issue that we address in the present manuscript. Recently,
it has been suggested that both the Schrédinger-Newton equation [39,40] and the deformation of
quantum mechanical structure by the GUP [41] can be tested experimentally by using the opto-
mechanical systems. Therefore, it becomes important to understand the effects of the combined
theory, especially when there is a strong viability that the theory may be tested by using a similar
type of experimental set-up in near future.

2 GUP and minimal length

Let us commence by introducing a particular version of modified commutation relation between the
position and momentum operators X, P [3,4]

[Xi, Pj) = ih(bij + Boi; P? + 2BP,P)),  [Xi, Xj] = [P, P} = 0, (2.1)

with B having the dimension of inverse squared momentum and, P? = E?:l Pj2. As obviously,
in the limit 5 — 0, the deformed relations (2.1) reduce to the standard canonical commutation
relations [z;,pj] = ihd;;. However, there exist many other similar type of deformations in the
literature, which have been used to investigated many interesting phenomena in different contexts;
see, for instance [6,7,28,42—44]. Nevertheless, the generalized uncertainty relation or the Robertson-
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Schrodinger uncertainty relation corresponding to the deformed algebra (2.1) turns out to be
1
AXAP; = S |([X:, P (2.2)
h
AXiAP, > o [1+B{(AP)* +(P)*} + 28 {(AP)* + (P)*}] (2:3)

from which one can compute the exact expression of the minimal observable length by using the
standard minimization technique. For further information on the minimization procedure, one may
refer, for instance [3,6,43]. A possible representation of the algebra (2.1) in terms of the canonical
position and momentum operators x, p is given by [3,4]

X; = x;, P; = pi(1+ Bp?), (2.4)

where p; = —ih%. Certainly, the representation (2.4) is not unique [3], as for instance; see [45],
where the authors explore four possible representations of the algebra (2.1) with some of them being
Hermitian. However, it is easy to show that (2.4) satisfies (2.1) up to the first order of 5 (hence,
we neglect higher order terms of ). Physically, the notations are understood in the sense that p;
represents the momenta at low energy, while P; correspond to those at high energy.

3 The gravitational quantum well

The gravitational quantum well (GQW) is characterized by the motion of a nonrelativistic object
of mass m in a gravitational field 7 = —g?z with a restriction imposed by a mirror placed at the
origin z = 0, such that the potential turns out to be

400, 2<0,
mgz, 2> 0,

V) = { (3.1)
with g being the gravitational acceleration. The experimental set-up of the corresponding potential
(3.1) has already been studied [46]. Theoretically, the problem resemble a quantum mechanical
particle moving in a potential well given by (3.1) subjected to a boundary condition 1°(0) = 0 at
z = 0. If we consider wO(Y) = 9%(2)9°(y), then the solutions of the corresponding time-independent

Schrodinger equation along the z direction
P2
Hy'(z) = E%(z),  Ho= o tmoz, (3.2)
m

are well-known and, are given by [47] (Problem 40)

1/3
mgay, 2m?2g
E?L = - 0 0_< 72 > ) (33)
Y2(2) = NLAi[fz + ay), (3.4)

where «, is the n'® zero of the regular Airy function Ai(z) [48], and N,, = 6'/2/|Ai'(a,)| is the
normalization factor. Along the y axis, the particle is free and the corresponding wave function
takes the form ~
) = [ gwetar, (35)
—0o0
where g(k) determines the shape of the wave packet in momentum space. In analogy to a classical
object, a collision of a quantum particle with the impenetrable mirror along the z direction will
make it bounced at a critical height A,

EY o,
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which is, naturally, quantized. In the GRANIT experiment [49], the measured critical heights for
the first two states are

WP = 12.2pm + 1.84yst £ 0.7gtat, (3.7)
hSP = 21.6pm £ 2.2ys0 £ 0. 7star.

Whereas, the theoretical values for h; and hs can be obtained from (3.6) as

R = 13.7um, (3.9)
At = 24.0um, (3.10)

where m = 939 Mev/c? and g = 9.81 m/s?. The variation of the heights h; and hs resulting from
the theory and the experiment are, therefore, §'' = hi" — hih = 10.3um and 6P = hJP — TP =
9.4um <+ 5.4pum, respectively. Thus, the deviation of § between the theory and the experiment turns
out to be 4.5um. The argument that we shall pursue here is that any correction in the Hamiltonian
(3.2) will effectively reduce this deviation of § between the theory and the experiment, and thus
the theoretical result will become closer to the experiment. A similar argument has already been
used in [50-53]|. However, we explore two types of correction here. First, we consider a braneworld
model studied in [54], which was discovered in the course of solving the hierarchy problem of the
standard model. Their theory is based on the assumption that, while all the standard model fields,
gauge and matter, are confined in a (34+1) dimensional manifold, only the graviton can propagate
freely in the extra dimensions which are considered to be infinite. In presence of such infinite extra
dimensions, the Newtonian potential is modified to the following form

M
Vir)= —G m (1 + kb) . r>> A=k, (3.11)

r

where A is the length scale at which the correction due to the infinite extra dimensions becomes
dominant. If we consider the Newtonian potential —GMm/r = Vy(r), we can write the above
equation (3.11) as V(r) = Vo(r) + V4(r), so that Vi(r) = —GMmky,/r’T' can be considered as a
perturbation, which will eventually contribute to the correction over the theoretical values of §.
Therefore, §* will be changed to §** + , where

Q= — [(UIVBI(=)) — (R VEI(=))). .12

and Q| < 4.5um. The second correction emerges from the contribution of the GUP deformed
Hamiltonian. If we replace the momentum p corresponding to the low energy in (3.2) by the
momentum P coming from the GUP deformation (2.4), we obtain

H = Hy + Hy, H, ép4, (3.13)

where we neglect the higher order terms of 8. Thus, if we denote the correction of 6" coming from
the GUP by =, with

== r;g [(U3(2) [ H¥3(2)) — (¥} (2) [ Ha |7 (2))] , (3.14)

then
1] < |2+ E] < 4.5um. (3.15)

Let us now compute both of the corrections €2 and = in the following section.
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4 Corrections

The potential described in (3.11) corresponds to an interaction between two particles. However, we
are dealing with a situation where a point particle bounces on a plane mirror placed at the surface
of the Earth. Therefore, we are required to derive the effective potentials between the test particle
and the Earth, as well as, between the particle and the mirror.

4.1 Correction due to Earth-particle interaction

Let us first derive the potential coming from the Earth-particle interaction. By considering our
planet to be a spherical body with mass density pg, the total potential acting on the particle is

321
VE(T) = —mGppks : ?f—;w. (4.1)
In spherical coordinates which becomes
) R 9 ! du
Vi (h) = —QWmGpEkb/U redr /_1 2 (h T Rjut (h s RO (4.2)

where h is the altitude above Earth’s surface and R being the radius of the Earth. For, b = 0,1, 2, 3,
one obtains [53]

GmM
Vi == R
3mgki [ h(h+2R). [h+2R
VE(h) = — n |2 (h+R)ln< - >]
B,y 3mgka [, (h+2R 2R (43)
i =—mm ") T her)
3mgks [ 2R 1 h+2R
E
h)=— — 1
Vi'(h) AR |h(h+2R) h+Rn< h >]
while for b > 3, it becomes
3mgky b—-3)R—h (b-—1)R+h
E
h) = — 4.4
Vi () 2(b—1)(b—2)(b—3)R(h+ R) [ hb—2 (h+2R)b-2 (44)

Notice that in the limit 6 — 0 (ko = 1), we recover the Newtonian potential in an exact form.

4.2 Correction due to mirror-particle interaction

Although the mass of the mirror is negligible with respect to that of the Earth, the effect originating
from the mirror-particle interaction should be taken into account since the mirror is placed at a
distance much closer to the particle. The mirror can be seen as a parallelepiped with density pas,
and located at —oo < (z,y) < oo and —L < z < 0. With respect to the size of the particle, the
mirror can be considered as an infinite plane, so that the mirror behaves as a disc of infinite radius.
Thus, the total interacting potential in this case becomes

VM (h) = —2mmGprrky [ d " s (45)
b = —2mmGppkp L z o [r2+ (h—2)2+D/2’ '
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where R* is taken to be very large, but finite, in order to avoid the divergent integrals. Nevertheless,
the integrals (4.5) are computed as follows

k h+L
VM () = Sm9Mp [Lln(h+L) +hin <+>] :

2R h
3mgkop h+L
V() = -y, ( . ) | (46)
3mgkpp 1 1
M —_
Vis2(h) = 2R(b—1)(b—2) | hb—2 * (h + L)b-2

4.3 The perturbative correction from GUP deformation

Now, let us consider the correction due to the perturbation term H; (3.13) arising from the GUP
deformation. The correction to the energy AFE,, at the lowest order in 3 is given by

MBS = 2 (y(@)lp ()

= Dlam? (W0 00(2)) + 2 0 2E)) () )

= 2 4 (B — Vo)) + S (B — V(o)

= 4Bm[E)(E, + 2E.) — 2(E) + E.) (Vo(2)) + (V5 (2))],

where E. = m <¢0(y) |v§|¢0(y)> /2 is the kinetic energy of the particle along the horizontal direction.
Note that a term proportional to <w0 (y)|p‘y1]w0 (y)> has been omitted since it only leads to a global
shift of the energy spectrum. Therefore, by computing the following integrals

(4.7)

—+00 2
(Vo(2)) = (W) Vo(2)|(2)) = mgN? / AP0z + an) = 2B

+o00 ’ ] (4'8)
(V& (2)) = (n(2)|V§'(2)|¢n(2)) = (mg)QNﬁ/ AP (02 + o) = B(EQ)Q,
0
we obtain the final expression of the correction to the energy as follows
4 10F
Gup _ % 02 c
AEJ = 55m(En) (1+ 3D ). (4.9)
5 The modified GQW spectrum
Combining the corrections coming from the SCQG, we obtain
Vo = VP (2) + Vi (), (5.1)

which when combined with the correction to the energy arising from the GUP deformation, we
obtain the total energy shift

AE, = (V,) + AESYP, (5.2)
Therefore, we have
0+ 2 = n; [(9() [V lvd(2)) + AESUP — (u0(2)[Ve[uf(2)) — ABETP] . (5.3)
Let us now compute the numerical values of the above expressions, with R = 6378km, m =
939MeV /c?, g = 9.81m/s?, L = 10cm,p = 1 and E, ~ m <Uy>2 /2 >~ 0.221ueV
Q1 + 2=k x5.59203 x 107 + 8 x 1.62357 x 107°"m < 4.5um, (5.4)

Qo+ 2 = ko x 2.38493 x 107 "m ™ + 3 x 1.62357 x 10™°"m < 4.5um,
Q3+ 2 = k3 x 0.0101239 m~2 + 3 x 1.62357 x 10°"m < 4.5um.
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IA|(m) < | 813 x 10* 4.34 0.076

Table 1: Constrains on the power-law parameters

In order to obtain the bounds on the power-law parameters A and ky, let us consider Vj, = —mgk:bf/},.
Eq. (3.11) implies that k, = A®, so that V, = —mgA®’Vj;. Therefore, we can write

Q= APy, = —A" [(98(=) [Thlu(2) ) — (w2 ()Val00(=))] (5.7)

which immediately leads to the constraint on the parameter A as [A| = {/€3/Q. According to
(3.12), Q is bounded below 4.5um and, so A is bounded by the following relation

IA| = y/4.5/Q. (5.8)

Using the results from (5.4)-(5.6), we can calculate Q, corresponding to different values of b. If we

turn off the GUP deformation (8 = 0), we obtain the Table 1. In a similar way it is also possible
to obtain the bounds for the cases when 8 # 0. On the other hand, if we turn off the power-law
modification, we see that the GUP deformation parameter has the constraint

B < 2.77167 x 10°!, (5.9)

which provides a tighter upper bound than those derived in the context of gravitational fields; see,
for instance [55]. However, the upper bound (5.9) is weaker in comparison to [7,56,57], which
were obtained in different contexts in the literature. Nevertheless, what we notice is that we obtain
positive contributions from both SCQG and GUP deformation, which will make the theoretical
values of § closer to the experiment.

6 A schematic proposal for experiment

To this end, we make a proposal for an experimental quantum bouncer through an opto-mechanical
set-up, which would be able to provide an understanding of the combined effect of SCQG and GUP.
Opto-mechanical devices yield a promising avenue for preparing and investigating quantum states
of massive objects ranging from a few picograms up to several kilograms [58]. Significant experi-
mental progress has been achieved by using such devices in different contexts, including coherent
interactions [59], laser cooling of nano and micro-mechanical devices into their quantum ground
state [60]. Recently, such types of systems have been utilized for the understanding of more exciting
features like the SNE in SCQG [39,40] and GUP [41]. Here, our goal is to understand the combined
effect of SCQG and GUP through the given opto-mechanical system.

The underlying principle behind the experiment is that the ultra cold neutrons (UCN) move
freely in the gravitational field above a mirror and make a total reflection from the surface of the
mirror when the corresponding de Broglie wavelength is bigger than the interatomic distances of
the matter. Thus, the set-up gives rise to a GQW, where the UCN form bound quantum states in
the Earth’s gravitational field. The eigenvalues are non-equidistant and, are in the range of pico-eV.
These type of scenarios offer fascinating possibilities to combine the effects of Newton’s gravity at
short distances with the high precision resonance spectroscopy methods of quantum mechanics. The
schematic diagram of the experimental set-up is given in Fig. 1, which consists of an anti-vibrator
granite table, a convex magnification system (mirror), an inclinometer, a ceiling scatterer and a
position sensitive detector. The UCN shall be formed by passing the neutrons of the proposed
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Figure 1: The schematic of the opto-mechanical setup for the proposed experiment

wavelength between 0.75- 0.90 nm through the superfluid of “He of a volume of about 4-5 liters.
The UCN are brought to the experimental set-up by a guided system composed of a slit, a neutron
collimator and an aperture. The neutrons fly in the slit and are screened in the range of 4-10
m/s. The upper wall of the slit is an efficient absorber which only lets the surviving neutrons to
pass and, hence forth controlling first quantum states of the neutron flux. The mirror consists of a
magnification system , which is made of a bi-metal (NiP) coated glass rod of radius between 3-3.5
nm with the roughness of about 1.5 nm. However the mirror system shall be modified to elliptical
shape in order to harness the neutrons of much smaller wavelength as well. The distribution of
100 pm in height is magnified to ~ 2.5 mm at the position on the detector. This gives the average
magnification power of about 25 at the glancing angle at 20" to make the reflection high.

The most important aspect of the position sensitive neutron detector is that the neutrons must
be changed into a charged particles by a nuclear reaction. The converter materials are available as
3He, OLi, '°B, and '5"Gd, etc. A black thin CCD (charge coupled detector) could be used along
with a thin layer of He, 1°B or Ti-'°B-Ti. The ideal thickness of '°B should be about 200 nm, and
must be evaporated directly on the CCD surface. The standard pixel size is 24 pm x 24 pm and
the thickness of the active volume should be about 20 gm. The kinetic energy is deposited on the
active area and a charge cluster is created, which typically spreads into nine pixels. The weighted
center of the charge cluster is a good estimation of the incident neutron position.

At the exit of the UCN system the wavefucntion changes due to the absence of suppressing slit
and as such the neutrons turn as bouncers on the mirror surface and their trajectories are measured
by the Time of flight (TOF) method. They are characterized by a Gaussian distribution with a
mean of 9.4 m/s and the standard deviation of 2.8 m/s which is subject to change due to various
modifications of the design.

7 Conclusions

We have studied a two-fold correction in the energy spectrum of a GQW. The first correction
arises from the scheme of the SCQG itself, where we considered the SNE in a particular framework
of braneworld model with infinite extra dimensions. The second correction emerges from a GUP
deformation of the given SCQG framework. The combined effect of these two interesting theories
provide a new bound on the energy spectrum of the GQW, which is closer to the observed values in
the GRANIT experiment. Since, both of the effects of SCQG and GUP occur at small length scales,
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and both of the theories provide positive contributions in the correction of the energy spectrum,
it raises a natural possibility that the combined theory may guide us towards a theory beyond the
SCQG. Thus our proposal may yield an intermediate theory beyond the SCQG and the complete
theory of quantum gravity. Moreover, we have provided a schematic experimental set-up which
would help the laboratory experts to explore our theory further in the lab.

There are many natural directions that may follow up our investigation. First, it will be inter-
esting to study the similar kind of effects of GUP in the context of other theories of gravity. There
exist many other type of GUP deformation, which may be useful to study the similar theories to
confirm our findings. However, the most interesting future problem lies on the understanding of the
experimental realization of the combined theory of SCQG and GUP by using the opto-mechanical
set-up, while it has already been used to understand each of the individual frameworks of SCQG
and GUP.
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