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ABSTRACT. We determine positive-dimensional G-periodic proper subvarieties of an n-dimensional
projective variety X under the action of an abelian group G of maximal rank n−1 and of positive
entropy. The motivation of the paper is to understand the obstruction for X to be G-equivariant
birational to the quotient variety of an abelian variety modulo the action of a finite group.
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1. INTRODUCTION

We work over the field C of complex numbers. Let X be a normal projective variety of
dimension n ≥ 2. Denote by NS(X) := Pic(X)/Pic0(X) the Néron–Severi group, i.e., the
(finitely generated) abelian group of Cartier divisors modulo algebraic equivalence. The rank
of its free part is called the Picard number of X . For a field F = Q, R or C, NSF(X) stands
for NS(X)⊗Z F. The first dynamical degree of an automorphism g ∈ Aut(X) is defined as the
spectral radius of its natural pullback action g∗ on NSC(X):

d1(g) := ρ
(
g∗|NSC(X)

)
:= max

{
|λ| : λ is an eigenvalue of g∗|NSC(X)

}
.

Such g ∈ Aut(X) is said to be of positive entropy (resp. null-entropy), if d1(g) > 1 (resp.
d1(g) = 1). By the fundamental work of Gromov and Yomdin, the above definition is equiva-
lent to the original definition in the dynamical system of holomorphisms on compact Kähler
manifolds, and d1(g) of g ∈ Aut(X) depends only on the birational model of X . See [13, 22]
and also [24, Lemmas 2.2 and 2.6], or Lemmas 2.1 and 2.8 below.
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Recall that a group H is virtually solvable (resp. virtually free abelian, . . . ), if a finite-index
subgroup of H is solvable (resp. free abelian, . . . ).

Take a subgroup G ≤ Aut(X). Define the null-entropy subset of G as

N(G) :=
{
g ∈ G : g is of null-entropy, i.e., d1(g) = 1

}
.

Such G ≤ Aut(X) is said to be of positive entropy (resp. null-entropy), if N(G) = {id} (resp.
N(G) = G). It is known that either G contains a subgroup isomorphic to the non-abelian
free group Z ∗ Z, or G is virtually solvable. In the latter case or when G|NSC(X) is virtually
solvable, there is a finite-index subgroup G1 of G such that N(G1) is a normal subgroup of G1

and G1/N(G1) is a free abelian group of rank r ≤ n− 1. We call this r the dynamical rank of
G and denote it as r = r(G), which is independent of the choice of the finite-index subgroup G1

of G. See [5, 23] and references therein for details.
When the dynamical rank is maximal (i.e., r = n − 1), Dinh–Sibony showed in [10] that

the null-entropy subset N(G) is a finite subgroup, assuming that G is commutative. In general,
it is expected that N(G) is finite except the case when X is an abelian variety. This has been
confirmed recently in [9]. Note that there indeed exist examples of abelian varieties and their
quasi-étale quotients admitting the action of commutative groups with maximal dynamical rank
(cf. [10, Example 4.5] or [26, Example 1.7]).

The purpose of the paper is to understand the obstruction for X with the action of a maximal
rank abelian group G of positive entropy, to be G-equivariant birational to a quasi-étale torus
quotient. By virtue of [28] and [9], the remaining case we need to consider is the case when
X is rationally connected. Our main results are Theorems 1.1, 1.2 (see their detailed versions:
Theorems 4.1, 4.5, respectively) and Theorem 1.5 below.

By a quasi-étale torus quotient, we mean a quotient of an abelian variety T by a finite group
F , which acts freely on T outside a codimension-2 subset of T . Note that such T → T/F is
étale in codimension-1. A Zariski-closed subset Z of X is G-periodic if a finite-index subgroup
of G set-theoretically stabilizes Z. A variety V of dimension d is uniruled, if there exists a
dominant rational map P1 ×W 99K V for some variety W of dimension d− 1. Note that being
uniruled is a birational property.

Theorem 1.1. Let X be a projective variety of dimension n ≥ 2, and G ≤ Aut(X) such that
the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.

Then after replacing G by a finite-index subgroup, the following assertions hold.

(1) The union of all positive-dimensionalG-periodic proper subvarieties ofX is a Zariski-closed
proper subset ofX . Denote the irreducible decomposition of this union by Z1∪Z2∪· · ·∪Zm.

(2) Either Zk is uniruled, or a finite-index subgroup of G fixes Zk pointwise.
(3) If X has no G-periodic proper subvariety of positive dimension and n ≥ 3, then X is equal

to a quasi-étale torus quotient.
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(4) The Picard number ρ(X) ≥ n. If ρ(X) = n ≥ 3, then X is G-equivariant birational to a
quasi-étale torus quotient.

(5) Either X is G-equivariant birational to an abelian variety, or X has at most ρ(X)− n of
distinct G-periodic prime divisors.

The assertions (1) and (3) of Theorem 1.1 follow from [28, Proposition 3.11] or Proposition
2.6, and [28, Theorem 2.4], respectively, with the help of [9, Theorem 4.1] or Proposition 2.2. We
include them here for the convenience of the reader. Note that the condition (i) of Theorem 1.1
(or Theorem 4.1, Question 1.4) is not restrictive, since we can always take a G-equivariant
resolution and even assume that X is smooth; its condition (ii) is birational in nature (see
Proposition 2.2 and [28, Lemma 3.1]).

We remark that if the Picard number ρ(X) > n2, then X is not equal to a quasi-étale torus
quotient. Indeed, X is then not dominated by any abelian variety T via a generically finite
surjective morphism. This is because the Picard number ρ(T ) ≤ (dimT )2 = n2.

Theorem 1.2 below gives information about the pair (X,D), where D is a G-periodic non-
uniruled prime divisor on X .

A varietyX is rationally connected (resp. rationally chain connected) in the sense of Campana
and Kollár–Miyaoka–Mori, if any two points on X are contained in an irreducible rational curve
(resp. a chain of rational curves).

Theorem 1.2. Let X be a normal projective variety of dimension n ≥ 2, and G ≤ Aut(X)

such that the following conditions are satisfied.

(i) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.
(ii) X contains a G-periodic non-uniruled prime divisor D.

Then after replacing G by a finite-index subgroup, the following assertions hold.

(1) X is a rationally connected variety.
(2) Every G-periodic prime divisor, other than D, is uniruled.
(3) A finite-index subgroup of G fixes D pointwise.

Furthermore, there is a G-equivariant birational map X 99K Y , which is isomorphic at the
generic point of D with DY ⊂ Y the strict transform of D, such that we have:

(4) Every positive-dimensional G-periodic proper subvariety of Y is contained in DY .
(5) KY +DY ∼Q 0 (Q-linear equivalence); both KY and DY are Q-Cartier; the pair (Y,DY )

and hence Y both have at worst canonical singularities.
(6) DY has at worst canonical singularities and KDY

∼Q 0.

In dimension 2, Theorem 1.2 means that if X is a normal projective surface with an auto-
morphism g of positive entropy and D is an irrational g-periodic curve, then X is a rational
surface, D is an elliptic curve pointwise fixed by a power of g, and all other g-periodic curves
are rational. See Lemma 3.7 and Remark 3.8 for an elementary treatment.
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Remark 1.3. (1) In dimension 2, there is an example satisfying the conditions (i) and (ii) in
Theorem 1.2. See [8, Theorem 2 or Example 3.3]. Indeed, in that example, X is a smooth
rational surface and D is a smooth elliptic curve.

(2) Are there examples in higher dimensions satisfying the conditions (i) and (ii) in Theorem 1.2?

A positive answer to the question below roughly means that when r(G) = n− 1 is maximal,
X is G-equivariant birational to a quasi-étale torus quotient if and only if X has no non-uniruled
G-periodic prime divisor.

Question 1.4. Let X be a projective variety of dimension n ≥ 3, and G ≤ Aut(X) such that
the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.

Is it true that the following hold?

(1) Suppose that X does not have any G-periodic non-uniruled prime divisor. Then X is
G-equivariant birational to a quasi-étale torus quotient.

(2) Suppose that X has a G-periodic non-uniruled prime divisor. Then X is not G-equivariant
birational to a quasi-étale torus quotient.

The theorem below gives an affirmative answer to Question 1.4 (2), see also Proposition 4.4.
The implications (2) =⇒ (1) and (3) =⇒ (1) below are proved in [28, Theorem 2.4]. We include
them here for the convenience of the reader.

Theorem 1.5. Let X be a projective variety of dimension n ≥ 3, and G ≤ Aut(X) such
that G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1. Consider the
following conditions:

(1) After replacing G by a finite-index subgroup, X is G-equivariant birational to a quasi-étale
torus quotient X ′.

(2) After replacing G by a finite-index subgroup, X is G-equivariant birational to a projective
variety X ′ with only klt singularities, such that X ′ has no positive-dimensional G-periodic
proper subvariety.

(3) After replacing G by a finite-index subgroup, X is G-equivariant birational to a projective
variety X ′ with a G-periodic divisor D′, such that (X ′, D′) is Q-factorial klt and KX′ +D′

is pseudo-effective.
(4) Every connected component of the union of positive-dimensional G-periodic proper subva-

rieties of X is rationally chain connected.

Then the conditions (1), (2) and (3) are equivalent, and imply the condition (4).

The following proposition generalizes a well-known result on surface — there are only finitely
many g-periodic curves if g is an automorphism of positive entropy on a projective surface. We
prove a result of this type up to dimension 3 in the present paper. Naturally, we would like to
know whether it is still true in higher dimensions.
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Proposition 1.6. Let X be a projective variety of dimension n ≤ 3, and G ≤ Aut(X) such that
the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) X is not birational to an abelian variety.

(iii) G = 〈g1, . . . , gn−1〉 ' Z⊕n−1 is of positive entropy.

Then for any non-trivial g ∈ G, there are at most ρ(X)− n of g-periodic prime divisors.

2. PRELIMINARY RESULTS

Notation. We refer to [18] for the standard definitions, notations and terminologies in birational
geometry. For instance, see [18, Definitions 2.34 and 2.37] for the definitions of canonical
singularity, Kawamata log terminal singularity (klt), divisorial log terminal singularity (dlt), and
log canonical singularity (lc).

Let X be a normal projective variety. X is called Q-factorial, if every integral Weil divisor
M on X is Q-Cartier, i.e., sM is a Cartier divisor for some integer s ≥ 1.

Let M be an R-Cartier divisor (an R-linear combination of Cartier integral divisors) on X .
We call M is nef, if the intersection M · C ≥ 0 for every irreducible curve C on X . Denote by
Nef(X) the closed cone of all nef R-Cartier divisors on X . We call M is pseudo-effective, if it
is contained in the closure of the cone of all effective R-divisors on X .

For a birational map f : X 99K Y , which is isomorphic at the generic point of a subvariety B,
define the strict transform BY ⊂ Y as the Zariski-closure of the image of B ∩ dom(f) under
the restriction f |dom(f) of f to the domain dom(f) of the map f .

For an automorphism g of X , we use g|X to emphasize that g acts on X . For a g-invariant
subspace V of some cohomology space H∗(X,C), we use g∗|V to denote the natural pullback
action of g∗ on V . The spectral radius ρ

(
g∗|V

)
is the maximal absolute value of all eigenvalues

of g∗|V as a linear transformation on V .

The result below shows that our notion of the first dynamical degree of an automorphism as in
the introduction is equivalent to the same one on its equivariant resolution, and hence equivalent
to the usual definition in the dynamical system (see Lemma 2.8).

Lemma 2.1 (cf. [24, Lemma 2.6] or [21, Lemma A.8]). Let X and Y be two normal projective
varieties of dimension n ≥ 2, and f : X → Y a g-equivariant generically finite surjective
morphism. Then we have d1(g|X) = d1(g|Y ). In particular, g|X is of positive entropy (resp.
null-entropy) if and only if so is g|Y .

Proof. We follow the proof of [24, Lemma 2.6]. LetW → X → Y be a g-equivariant resolution.
By using the Lefschetz hyperplane theorem (on W ), we reduce to the surface case. Then both
d1(g|X) and d1(g|Y ) are equal to d1(g|W ). �

Consider the following hypotheses. We note that the natural map G|NSR(X) → G|NSC(X) is an
isomorphism, for the comparison with the same hypothesis in [28].
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Hyp(A). Let X be a normal projective variety of dimension n ≥ 2, and G ≤ Aut(X) such that
the representation G∗ := G|NSC(X) is isomorphic to Z⊕n−1, and every element of G∗ \ {id} is of
positive entropy.

Hyp(A’). Let X be a normal projective variety of dimension n ≥ 2, and G ≤ Aut(X) such
that G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.

Obviously, Hyp(A) implies Hyp(A’). The converse is also true up to finite-index, by the
following proposition.

Proposition 2.2. Suppose that (X,G) satisfies Hyp(A’). Then, replacing G by a finite-index
subgroup, the null-entropy subset N(G) of G is a (necessarily normal) subgroup of G and
virtually contained in the identity connected component Aut0(X) of Aut(X), i.e.,[

N(G) : N(G) ∩ Aut0(X)
]
<∞.

In particular, the pair (X,G) with G replaced by a finite-index subgroup, satisfies Hyp(A).

Proof. Let π : X̃ → X be an Aut(X)-equivariant resolution ofX due to Hironaka. ReplacingG
by a finite-index subgroup, we may assume that G|NSC(X̃) is solvable and has connected Zariski-

closure in GL
(
NSC(X̃)

)
. On the other hand, for any g ∈ G, we have d1(g|X̃) = d1(g|X) by

Lemma 2.1. Thus, if we identify G|X̃ with G|X , via the natural map π, then

N(G)|X̃ = N(G)|X = N(G|X) = N(G|X̃),

where the second equality holds by definition. By [9, Theorem 4.1 (1)], we know that N(G)|X̃
is virtually contained in Aut0(X̃). Hence N(G)|X is virtually contained in Aut0(X), since
the Aut(X)-equivariant birational morphism X̃ → X induces an isomorphism Aut0(X̃) →
Aut0(X). Therefore, N(G)|NSC(X) = N(G)|NSC(X̃) is finite, since the continuous part Aut0(X̃)

acts trivially on the lattice NS(X̃) (modulo torsion), and hence acts trivially on NSC(X̃).
Now as in [28, Lemma 3.1], replacing G by a finite-index subgroup, we have G|NSC(X̃) '
G|X̃

/
N(G|X̃) ' Z⊕n−1, and also G|NSC(X) ' Z⊕n−1. �

Let X be a normal projective variety of dimension n ≥ 2, and G ≤ Aut(X). Denote the
union of all positive-dimensional G-periodic proper subvarieties of X by Per+(X,G), i.e.,

Per+(X,G) :=
⋃

Y is G-periodic

Y,

where Y runs over all positive-dimensional G-periodic proper subvarieties of X .
The result below follows from the equivariance assumption.

Lemma 2.3. Let f : X1 → X2 be a G-equivariant generically finite surjective morphism. Then
we have the following relation:

Per+(X1, G) = f−1
(

Per+(X2, G)
)
,

where f−1 denotes the set-theoretical inverse. �
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In the rest of this section, we prepare some results under Hyp(A). First note that if X is
smooth, a quasi-nef sequence with 1 ≤ k ≤ n

0 6= L1 · · ·Lk ∈ L1 · · ·Lk−1 · Nef(X) ⊆ Hk,k(X,R)

was constructed in [23, §2.7]. Here as in [28, Lemma 3.4], we give a more general form for
mildly singular variety X . Besides, we introduce a nef and big R-Cartier divisor A, which plays
an important role in running the Log Minimal Model Program (LMMP for short) with scaling
(cf. [3, Corollary 1.4.2] or [2, Theorem 1.9 (i)]).

Lemma 2.4. Suppose that (X,G) satisfies Hyp(A). Then there are nef R-Cartier divisors Li
for 1 ≤ i ≤ n with L1 · · ·Ln 6= 0, such that for any g ∈ G,

g∗Li = expχi(g)Li

for some characters χi : G→ (R,+), and the group homomorphism

ϕ : G→
(
R⊕n−1,+

)
, g 7→

(
χ1(g), . . . , χn−1(g)

)
has image a spanning (discrete) lattice of

(
R⊕n−1,+

)
and satisfies the following:

Kerϕ = N(G), G∗ ' G/N(G)
∼−→ Imϕ ' Z⊕n−1. (†)

In particular,

A :=
n∑
i=1

Li

is a nef and big R-Cartier divisor.

Proof. Let π : X̃ → X be a G-equivariant resolution of X due to Hironaka. We follow the
proof of [10, Theorem 4.3], and consider the action of G on the pullback π∗Nef(X) of the nef
cone Nef(X) ⊂ NSR(X) (instead of the Kähler cone K(X̃) ⊂ H1,1(X̃,R) there). Then there
are nef R-Cartier divisors π∗Li with 1 ≤ i ≤ n on X̃ as common eigenvectors of G acting
on π∗NSR(X), i.e., g∗(π∗Li) = expχi(g)π∗Li, such that χ1 + · · · + χn = 0 and the induced
homomorphism ϕ satisfies (†). By taking a pushforward, these Li satisfy g∗Li = expχi(g)Li.
For details, see [28, Lemma 3.4] or [27, proof of Theorems 1.2 and 2.2, p. 137].

Note that A is nef by its definition. Then it is big because

An = (L1 + · · ·+ Ln)n ≥ L1 · · ·Ln > 0.

The latter inequality follows from [10, Lemma 4.4]. More precisely, that lemma implies that
L1 · · ·Ln is nonzero and hence positive since these Li are nef. �

For a nef R-Cartier divisor L on a projective variety X , define the null locus of L as

Null(L) :=
⋃

L|Z is not big

Z,

where Z runs over all positive-dimensional proper subvarieties of X . Note that L|Z is nef, so it
is not big if and only if LdimZ · Z = 0.
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Lemma 2.5 (cf. [28, Lemma 3.9]). Suppose that (X,G) satisfies Hyp(A). Then

Per+(X,G) = Null(A),

and it is a Zariski-closed proper subset ofX , whereA is constructed in Lemma 2.4. In particular,
A is ample if and only if every G-periodic proper subvariety of X is a point.

Below is the key proposition in [28] which was used to prove [28, Theorem 2.4]. Note that
we do not need the pseudo-effectivity of KX +D or dimX ≥ 3.

Proposition 2.6 (cf. [28, Proposition 3.11]). Suppose that (X,G) satisfies Hyp(A). Assume that
for some effective R-divisor D whose irreducible components are G-periodic, the pair (X,D)

has at worst Q-factorial klt singularities. Let A =
∑
Li be the nef and big R-Cartier divisor as

in Lemma 2.4. Replacing G by a finite-index subgroup and A by a large multiple, the following
are true.

(1) There is a sequence τs ◦ · · · ◦ τ0 of G-equivariant birational maps:

X = X0
τ0
99K X1

τ1
99K · · ·

τs−1

99K Xs
τs−→ Xs+1 = Y (?)

such that each τj : Xj 99K Xj+1 for 0 ≤ j < s is either a divisorial contraction of a
(KXj

+ Dj)-negative extremal ray or a (KXj
+ Dj)-flip; the τs : Xs → Xs+1 = Y is a

birational morphism such that KXs +Ds = τ ∗s (KY +DY ) is R-Cartier; here Di ⊂ Xi for
0 ≤ i ≤ s+ 1 is the direct image of D and DY := Ds+1.

(2) For 0 ≤ i ≤ s+ 1, the direct image Ai of A on Xi is a nef and big R-Cartier divisor.
(3) For 0 ≤ i ≤ s + 1, the pair (Xi, Di + Ai) and hence the pair (Xi, Di) have at worst klt

singularities; Xj is Q-factorial for 0 ≤ j ≤ s.
(4) KY +DY + AY is an ample R-Cartier divisor, where AY := As+1.
(5) For 0 ≤ i ≤ s+ 1, the union of all positive-dimensional G-periodic proper subvarieties of

each Xi is a Zariski-closed proper subset of Xi. Further, Ai|Z ≡ 0 (numerical equivalence)
for every positive-dimensional G-periodic proper subvariety Z of Xi.

(6) For 0 ≤ i ≤ s+ 1, the induced action of G on each Xi is biregular. Further, each (Xi, G)

also satisfies Hyp(A).

Note that if (X,D) is only a dlt pair, one has the following proposition (but need KX +D to
be pseudo-effective). The main idea is to apply Proposition 2.6 to the klt pair

(
X, (1− ε)D

)
for

some 0 < ε� 1.

Proposition 2.7 (cf. [28, Proposition 2.6]). Suppose that (X,G) satisfies Hyp(A). Suppose
further that for some effective R-divisor D whose irreducible components are G-periodic, the
pair (X,D) has at worst Q-factorial dlt singularities, and KX +D is a pseudo-effective divisor.
Then there is a birational map X 99K Y such that:

(1) Y is a normal projective variety. The map X 99K Y is surjective in codimension-1.
Replacing G by a finite-index subgroup, the induced action of G on Y is biregular.

(2) The pair (Y,DY ) has only log canonical singularities and KY + DY ∼Q 0, where DY is
the direct image of D.
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(3) Every G-periodic positive-dimensional proper subvariety of Y is contained in the support
of DY .

For a Kähler manifold X , the first dynamical degree d1(g) of a surjective endomorphism g

of X can be equivalently defined as the spectral radius of the pullback action g∗ on H1,1(X,R)

(cf. [21, §A.2]).

Lemma 2.8.
(1) Let X be a compact Kähler manifold of dimension n, and g a surjective endomorphism of

X . Let V be a g-invariant subspace of H1,1(X,R) containing a Kähler current B. Then
d1(g) equals the spectral radius ρ

(
g∗|V

)
.

(2) Suppose that X is a smooth projective variety and g is a surjective endomorphism of X .
Then ρ

(
g∗|H1,1(X,R)

)
= ρ
(
g∗|NSR(X)

)
. So the two definitions (preceding this lemma or in the

introduction) of the first dynamical degree for endomorphisms or automorphisms coincide
for smooth projective varieties.

Proof. (1) It suffices to show that d1(g) ≤ ρ
(
g∗|V

)
. Let P be the closed cone in H1,1(X,R)

consisting of classes of positive closed (1, 1)-currents, and C := P ∩ V . Note that P is a strictly
convex cone preserved by the pullback action g∗, so is C. Replacing V by the subspace spanned
by C, we may assume that V = C + (−C). Take an interior point B1 ∈ C. Then B′ := B1 + εB

is still contained in the interior of C (also in the interior of P) for sufficiently small ε > 0. Fix a
Kähler class ω of X . We can define a linear form χ : H1,1(X,R)→ R by χ(ξ) =

∫
X
ξ ^ ωn−1.

Note that for a non-trivial class T in P , one has χ(T ) > 0 (cf. [21, Lemmas A.3 and A.4]). So
by applying [21, Proposition A.2] to the triplets

(
H1,1(X,R),P , B′

)
and (V, C, B′), we obtain

the following
d1(g) = lim

m→∞
χ
(
(gm)∗B′

) 1
m = ρ

(
g∗|V

)
.

Note that in the proof above we have replaced V by a subspace, so we actually prove that
d1(g) ≤ ρ

(
g∗|V

)
. This proves the assertion (1).

(2) In this case, NSR(X) is a g-invariant subspace of H1,1(X,R) containing an ample divisor,
whose first Chern class induces a Kähler class. So the assertion (2) follows from the first one.
This proves Lemma 2.8. �

Under Hyp(A), the rank of the Néron–Severi group has the following lower bound (see also
[10, Theorem 4.3]).

Lemma 2.9. Suppose that (X,G) satisfies Hyp(A). Then we have:

(1) The Picard number ρ(X) ≥ n.
(2) Assume the existence of an R-Cartier non-trivial divisor M such that g∗M ≡ M for any

g ∈ G. Then ρ(X) ≥ n+ 1.
(3) If ρ(X) = n and KX is Q-Cartier, then KX ≡ 0.

Proof. (1) We use the notations as in Lemma 2.4. We first claim that Li for 1 ≤ i ≤ n− 1 are
linearly independent in NSR(X). Indeed, suppose that

∑n−1
i=1 aiLi = 0 for some real numbers
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ai. Acting on this equality by gp for an element g ∈ G of positive entropy, we have

0 =
n−1∑
i=1

ai(g
p)∗Li =

n−1∑
i=1

ai expχi(g
p)Li =

n−1∑
i=1

ai exp
(
pχi(g)

)
Li.

Then there are two characters χj1 and χj2 (depending on g) such that χj1(g) = χj2(g) (using
Vandermonde determinant). Therefore, the spanning lattice ϕ(G) of

(
R⊕n−1,+

)
is contained in

a finite union of hyperplanes. This is a contradiction (cf. Lemma 2.4). Thus the claim holds.
Next we only need to show that Ln is not a linear combination of those Li with i < n. This

can be seen by the construction of such Ln (cf. [10, proof of Theorem 4.3]). In fact, there is an
f ∈ G of positive entropy such that the coordinates of ϕ(f) in R⊕n−1 are all strictly negative,
and hence f ∗Ln = d1(f)Ln (cf. Lemma 2.8). Suppose that Ln =

∑n−1
i=1 biLi for some real

numbers bi. Let f act on both sides. Then we have

f ∗Ln =
n−1∑
i=1

bif
∗Li =

n−1∑
i=1

bi expχi(f)Li.

On the other hand, f ∗Ln = d1(f)Ln. Hence we have

d1(f)
n−1∑
i=1

biLi =
n−1∑
i=1

bi expχi(f)Li,

which implies that
(
d1(f) − expχi(f)

)
bi = 0 for any i. It follows that all bi vanish, since

d1(f) > 1 > expχi(f). Hence L1, . . . , Ln are linearly independent, so ρ(X) ≥ n.
(2) By the assertion (1), it suffices to show that the numerical equivalence class [M ] (6= 0) is

not a linear combination of the classes of L1, . . . , Ln in NSR(X). Suppose to the contrary that
M ≡

∑n
k=1 ckLk for some real numbers ck. Letting the f as in the assertion (1) act on both

sides, we have
n∑
k=1

ckLk ≡M ≡ f ∗M ≡
n∑
k=1

ckf
∗Lk =

n−1∑
k=1

ck expχk(f)Lk + cnd1(f)Ln,

which implies that ck = 0 for all k, because d1(f) > 1 > expχk(f). Hence M ≡ 0, which is a
contradiction.

(3) It follows from the assertion (2) by taking M = KX . �

Proposition 2.10. Suppose that (X,G) satisfies Hyp(A) and X has at worst Q-factorial klt
singularities. Suppose further that the irregularity q(X) = 0. Let B1, . . . , Bs be distinct
G-periodic prime divisors on X . Then B1, . . . , Bs are linearly independent in NSQ(X) with
s ≤ ρ(X)− n. In particular, ρ(X) ≥ n, and the equality holds true only when KX ≡ 0.

Proof. Replacing G by a finite-index subgroup, we may assume that all of Bi have been
stabilized by G. Suppose to the contrary that these Bi are linearly dependent in NSQ(X). Then
we have

∑s
i=i aiBi ≡ 0 in NSQ(X) for some integers ai, not all zero. After rearranging the

order of Bi, we may assume that E1 :=
∑s1

i=1 aiBi ≡
∑s2

j=s1+1 bjBj =: E2, where ai, bj = −aj
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are positive integers. Since q(X) = 0 by assumption, we have E1 ∼ E2 (linear equivalence)
after replacing Ei by some multiples. Hence the Iitaka D-dimension κ := κ(X,E1) ≥ 1.

Replacing E1 by some mE1, we may assume that the map Φ|E1| : X 99K PH0
(
X,OX(E1)

)
gives rise to the Iitaka fibration associated to E1, so that its image has dimension equal to κ.
Take a G-equivariant resolution π : X̃ → X such that the linear system |π∗E1| equals |M |+ F ,
where M is base point free, F is the fixed component of |π∗E1|, and both of their divisor
classes are G-stable. Now the rational map Φ|E1| : X 99K PH0

(
X,OX(E1)

)
is birational to the

G-equivariant morphism Φ|M | : X̃ → Y ⊂ PH0
(
X̃,OX̃(M)

)
with dimY = κ.

If κ = n, then M is a nef and big divisor. So by [24, Lemma 2.23], G is virtually contained in
Aut0(X̃) and hence is of null-entropy on X̃ , and also on X (cf. Lemma 2.1). This contradicts
that the dynamical rank r(G) = n− 1 ≥ 1. Thus we have 1 ≤ κ ≤ n− 1. In other words, Φ|M |
is a non-trivial G-equivariant fibration with general fibres of dimension n− κ ∈ {1, . . . , n− 1}.
Then by [23, Lemma 2.10], the dynamical rank r(G) ≤ n− 2, which contradicts Hyp(A). So
we have proved the linearly independence of these Bi.

We continue using the notations as in Lemmas 2.4 and 2.9. By the argument similar to
the proof of Lemma 2.9, we can show that L1, . . . , Ln, B1, . . . , Bs are linearly independent in
NSQ(X). Thus we have n+ s ≤ ρ(X). This ends the proof of Proposition 2.10. �

The following lemma generalizes a fact, which asserts that every effective divisor on an
abelian variety is indeed nef.

Lemma 2.11. Suppose that π : T → X is a finite surjective morphism between normal
projective varieties. Suppose further that T satisfies one of the following conditions.

(i) T has at worst klt singularities and contains no rational curve; KT ∼Q 0.
(ii) T is an abelian variety.

Then we have:

(1) Every pseudo-effective R-Cartier divisor on X is nef.
(2) Every big R-Cartier divisor on X is ample.

Proof. Since π is finite and by the projection formula, an R-Cartier divisor D on X is pseudo-
effective, big, nef or ample if and only if so is π∗D. Thus we only need to prove this lemma
for X = T . Further, we may assume that T satisfies the condition (i), since the condition (ii)
implies the condition (i). By the Kodaira lemma, which states that every big R-divisor is the
sum of an ample Q-divisor and an effective R-divisor (cf. [20, Lemma 3.16]), it suffices to prove
the assertion (1). Since the cone of all pseudo-effective R-Cartier divisors on T is the closure of
the cone of all effective R-Cartier divisors on T in NSR(T ) and the nef cone Nef(T ) is closed,
we only need to show that every effective R-Cartier divisor on T is nef. For this it suffices to
show that every effective Cartier divisor on T is nef. Suppose to the contrary that some effective
Cartier divisor D on T is not nef. By [18, Corollary 2.35], (T, εD) is klt for all sufficiently
small rational number ε > 0. Now KT + εD ∼Q εD is not nef. Therefore, applying the Cone
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Theorem in MMP to (T, εD) (cf. [18, Theorem 3.7]), we obtain an extremal rational curve on
T , which contradicts the condition (i). This proves Lemma 2.11. �

The following result proves the implication (1) =⇒ (2) in Theorem 1.5.

Lemma 2.12. Let X be a quasi-étale torus quotient T/F for some abelian variety T and a
finite group F acting freely outside a codimension-2 subset of T , and G ≤ Aut(X) such that
(X,G) satisfies Hyp(A). Then X has no positive-dimensional G-periodic proper subvariety.

Proof. Let T̃ → X be the Galois covering (or minimal split covering in the Beauville’s sense;
see [1, §3]) corresponding to the unique maximal lattice L in π1

(
X \ SingX

)
such that T̃ is an

abelian variety. Then there exists a group G̃ (which is the lifting of G) acting faithfully on T̃ ,
such that G = G̃/F . See also [27, §2.15]. Note that the action of G on X can be identified with
a not necessarily faithful action of G̃ on X (with finite kernel). Replacing G̃ by a finite-index
subgroup, we may assume that the new G̃ acts faithfully on both T̃ and X (cf. [27, Lemma 2.4]),
and both (T̃ , G̃) and (X, G̃) satisfy Hyp(A) (cf. [28, Lemma 3.1]). By Lemma 2.11, the nef and
big R-Cartier divisor Ã on T̃ as constructed in Lemma 2.4, is ample. Hence every G̃-periodic
proper subvariety of T̃ is a point (see Lemma 2.5). The same holds for X by Lemma 2.3. �

3. SOME GENERAL RESULTS FROM BIRATIONAL GEOMETRY

In this section, we prepare some general results which will be used in the section 4 to prove
the main theorems. They should be of interest in their own right.

We first quote the following result, which will be frequently used in the sequel of the paper.

Lemma 3.1 (cf. [15, Corollary 1.5]). Let (X,∆) be a dlt pair for some effective Q-divisor ∆

and φ : W → X a birational projective morphism. Denote by Excφ the exceptional locus of φ,
i.e., the subset of W along which φ is not an isomorphism. Then we have:

(1) Every fibre of φ is rationally chain connected.
(2) Every connected component of Excφ is rationally chain connected.
(3) Every irreducible component of Excφ is uniruled. In particular, if D is a non-uniruled

prime divisor on W , then the image of D on X is still a divisor.

Below is an easy fact, but we give the proof for the convenience of the reader.

Lemma 3.2. Let X be a normal projective variety and D a Weil Q-divisor. If D is R-Cartier,
then it is Q-Cartier.

Proof. Since D is R-Cartier, we may write D =
∑n

i=1 riDi for some ri ∈ R and some Cartier
integral divisors Di. On the other hand, since D is a Weil Q-divisor, D =

∑m
j=1 bjPj for some

bj ∈ Q and some prime Weil divisors Pj . Write Di =
∑m

j=1 aijPj , where aij ∈ Z. So we have

D =
n∑
i=1

ri

m∑
j=1

aijPj =
m∑
j=1

n∑
i=1

riaijPj.
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Hence

bj =
n∑
i=1

riaij, 1 ≤ j ≤ m,

i.e.,
A · r = b,

where A = (aij)
ᵀ is an integral m×n matrix, r = (r1, . . . , rn)ᵀ ∈ Rn and b = (b1, . . . , bm)ᵀ ∈

Qm. In other words, A · x = b has one real solution x = r. So it has at least one rational
solution (q1, . . . , qn)ᵀ ∈ Qn, since both A and b are rational. Now D =

∑n
i=1 qiDi. Thus D is

Q-Cartier. �

It is well known that the birational automorphism group of a projective variety of general type
is finite. Below is a similar result.

Lemma 3.3. Let X be a non-uniruled normal projective variety, and G ≤ Aut(X) such that
the linear equivalence class of an ample divisor H is G-periodic. Then G is finite.

Proof. Replacing H by a large multiple, we may assume that H is very ample and the linear
system |H| defines a closed embedding into some projective space PH0

(
X,OX(H)

)
' PN .

Identify X with its image. Replacing G by a finite-index subgroup, we may assume that G itself
stabilizes the linear equivalence class of H . Thus the above embedding is G-equivariant. So G
is contained in Aut(PN , X), the Zariski-closed subgroup of Aut(PN) stabilizing X . Suppose
to the contrary that G is not finite. Then the linear algebraic group Aut(PN , X) contains a
1-dimensional linear algebraic group Ga or Gm. Thus the orbit of a general point is a rational
curve. But our X is non-uniruled. This is a contradiction. Hence G is finite. �

We give a criterion for KX +D to be pseudo-effective. See [19, Theorem 1.4 or 3.7] for a
more general form.

Lemma 3.4. Let X be a rationally connected normal projective variety, and D a non-uniruled
prime divisor such that KX +D is Q-Cartier. Then KX +D is pseudo-effective.

Proof. Take a log resolution X̃ → X for the pair (X,D), and denote by D̃ the proper transform
of D. Note that the pushforward of a pseudo-effective divisor is still pseudo-effective. Hence
we may replace the pair (X,D) by (X̃, D̃), and assume that it is Q-factorial dlt now.

Suppose to the contrary that KX + D is not pseudo-effective. We follow the proof of [19,
Theorem 3.7]. After running a (KX +D)-MMP with an ample scaling, we reach a Fano fibration
h : W → Y as follows (cf. [3, Corollary 1.3.3])

X = X0

f0 // X1

f1 // · · ·
fm−2 // Xm−1

fm−1 // Xm =: W

h
��
Y

.

Note that each fi above is either a divisorial contraction of a (KXi
+Di)-negative extremal ray

or a (KXi
+Di)-flip, where Di ⊂ Xi is the direct image of D. So (Xi, Di) is still Q-factorial
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and dlt (cf. [18, Corollary 3.44]). Thus the direct (birational) image DW on W of D is still a
non-uniruled prime divisor because so is D (see Lemma 3.1). The argument in [19, proof of
Theorem 3.7] says that then h : W → Y is a P1-fibration with DW a cross-section. Hence DW

is birational to Y via the restriction map h|DW
. Since X is rationally connected, so are each

Xi and the h-image Y of W . Thus DW is rationally connected and hence uniruled. This is a
contradiction. So the lemma is proved. �

The following two lemmas are sufficient conditions to have canonical singularities.

Lemma 3.5 (cf. [16, Lemma 2.4]). Let X be a non-uniruled normal projective variety of
dimension n, andD an effective Weil R-divisor such thatKX +D is R-Cartier andKX +D ≡ 0

(numerical equivalence). Then D = 0 and X has at worst canonical singularities.

Proof. We follow the proof of [16, Lemma 2.4]. Take a log resolution π : X̃ → X for the
pair (X,D), and denote the proper transform of D by D̃. Note that X̃ is also non-uniruled.
Then by [4, Theorem 2.6], KX̃ is pseudo-effective, and hence admits a Zariski σ-decomposition
KX̃ = P + N , where the R-divisors P and N are the movable part and the negative part,
respectively (cf. [20, Ch. III, §1.b]). On the other hand, we have

KX̃ + D̃ = π∗(KX +D) + E1 − E2 ≡ E1 − E2, (‡)

where E1 and E2 are effective π-exceptional divisors and have no common component. Thus it
follows that

E1 ≡ P +N + D̃ + E2.

SinceE1−(N+D̃+E2) is numerically equivalent to the movable divisor P , we haveN+D̃+E2

larger than or equal to the negative part of the Zariski σ-decomposition of E1, while the latter is
just E1 itself (cf. [20, Ch. III, Proposition 1.14]). Namely, N + D̃ + E2 ≥ E1. Take a general
ample divisor H on X̃ . Then

0 = Hn−1 · (P +N + D̃ + E2 − E1) = Hn−1 · P +Hn−1 · (N + D̃ + E2 − E1) ≥ 0.

Hence 0 = Hn−1 · P = Hn−1 · (N + D̃ + E2 − E1). Moreover, since N + D̃ + E2 − E1 is
effective, by the Nakai–Moishezon criterion for ampleness, it is zero, i.e., E1 = N + D̃ + E2.
Now since E1 and E2 have no common component, we have E2 = 0. Hence E1 = N + D̃.
Since D̃ is the π-proper transform of D and E1 is π-exceptional, D̃ = 0. Thus D = 0 too.

The second part follows from the equality (‡) (with E2 = 0 now) by definition. �

Lemma 3.6. Let X be a rationally connected normal projective variety, and D a non-uniruled
prime divisor such thatKX +D is Q-Cartier andKX +D ≡ 0. Then (X,D) has only canonical
(and hence dlt) singularities. In particular, the prime divisor D itself as a variety is normal.

Proof. Take a log resolution π : X̃ → X for the pair (X,D), and denote the proper transform
of D by D̃. Note that X̃ is still rationally connected and D̃ is non-uniruled. So KX̃ + D̃ is
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pseudo-effective by Lemma 3.4, and hence admits a Zariski σ-decomposition KX̃ + D̃ = P +N

as in Lemma 3.5. On the other hand, we have

KX̃ + D̃ = π∗(KX +D) + E1 − E2 ≡ E1 − E2,

where E1 and E2 are effective π-exceptional divisors and have no common component. Then it
follows that E1 ≡ P +N + E2. Now the same argument as in Lemma 3.5 implies that E2 = 0,
and hence (X,D) has only canonical singularities by definition. The final assertion comes from
[18, Proposition 5.51 or Corollary 5.52]. �

When X is a surface, we have a more specific description of X and a periodic curve C.

Lemma 3.7. Let X be a normal projective surface with an automorphism g of positive entropy,
and C a g-periodic curve. Then either X is a rational surface, or C is a rational curve.

Proof. Replacing X by a g-equivariant resolution, we may assume that X is smooth. Since X
admits an automorphism of positive entropy, by [6, Proposition 1], either X is a rational surface,
or it has Kodaira dimension κ(X) = 0.

Thus we have only to consider (and rule out) the case where κ(X) = 0 and C is irrational. Let
X → Xm be the smooth blowdown to the (unique smooth) minimal model of X . Note that the
strict transform Cm of C is still a curve by Lemma 3.1, and g descends to an automorphism on
Xm. So we may replace (X,C) by (Xm, Cm), and assume that X is minimal. Hence KX ∼Q 0.
More precisely, X is either a K3 surface, or an Enriques surface, or an abelian surface (cf. [6,
Proposition 1]).

Replacing g by some power, we may assume that g stabilizes the curve C. The generalized
Perron–Frobenius theorem due to Birkhoff says that (g±1)∗Lg±1 = d1(g

±1)Lg±1 for some
nonzero nef divisors Lg±1 . Then A := Lg + Lg−1 is nef and also big since A2 ≥ Lg · Lg−1 > 0.
It is perpendicular to C because d1(g±1) > 1. Indeed,

Lg±1 · C = (g±1)∗(Lg±1 · C) = (g±1)∗Lg±1 · (g±1)∗C = d1(g
±1)Lg±1 · C. (*)

It follows that Lg±1 · C = 0, and hence A · C = 0. Thus C2 < 0, since A2 > 0 and by the
Hodge index theorem.

On the other hand, by the arithmetic genus formula, we have

0 > C2 = (KX + C) · C = 2pa(C)− 2 ≥ 0,

since C is irrational. This is a contradiction. Lemma 3.7 is proved. �

Remark 3.8. Suppose X is a smooth projective rational surface with an automorphism g of
positive entropy. Then K2

X < 0. Indeed, since g∗KX ∼ KX , we have A ·KX = 0 as calculated
in the (*) of the lemma above with C replaced by KX . Hence either KX ≡ 0, or K2

X < 0. Since
X is a smooth rational surface, KX is not numerically trivial, so K2

X < 0.
If C is a g-periodic curve on X , then the arithmetic genus pa(C) ≤ 1. Otherwise, the

Riemann–Roch theorem and the Serre duality imply that

h0
(
X,OX(KX + C)

)
≥ χ(OX) +

1

2
C · (KX + C) = pa(C) ≥ 2.
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So the nef part of the Zariski decomposition of KX +C is nonzero and g-invariant, contradicting
d1(g) > 1.

We end the section with the following rigidity result for the proof of Proposition 1.6. It
follows from [18, Lemma 1.6] and [7, Proposition 1.14 or Lemma 1.15].

Lemma 3.9 (Rigidity Lemma). Let f : X → Y be a projective surjective morphism of normal
varieties. Suppose that all fibres of f are connected and of the same dimension. Let f ′ : X → Y ′

be another projective morphism of varieties such that f ′ contracts one fibre f−1(y0) of f for
some y0 ∈ Y . Then there is a unique morphism π : Y → Y ′ such that f ′ = π ◦ f .

4. GENERALIZATIONS OF THEOREMS 1.1 AND 1.2, AND THEIR PROOFS

Theorem 1.1 will follow from the more general form below. For a projective variety V , we
take a resolution Ṽ → V and define the albanese map

albV : V // Alb(V ) := Alb(Ṽ )

as the natural composition V // Ṽ
alb

Ṽ // Alb(Ṽ ). It is known that albV is a well-defined
morphism when V has at worst rational singularities.

Theorem 4.1. Let X be a projective variety of dimension n ≥ 2, and G ≤ Aut(X) such that
the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.

Then after replacing G by a finite-index subgroup, the following assertions hold.

(1) The union Per+(X,G) of all positive-dimensional G-periodic proper subvarieties of X is a
Zariski-closed proper subset of X .

(2) Let Per+(X,G) = Z1 ∪ Z2 ∪ · · · ∪ Zm be the irreducible decomposition. Then either Zk is
uniruled, or a finite-index subgroup of G fixes Zk pointwise.

(3) If X has no G-periodic proper subvariety of positive dimension and n ≥ 3, then X is equal
to a quasi-étale torus quotient T/F for some abelian variety T and a finite group F whose
action on T is free outside a finite subset of T , such that the action of G lifts to an action of
a group G̃ on T with G̃/Gal(T/X) ' G. Moreover, every G- (resp. G̃-) periodic proper
subvariety of X (resp. T ) is a point.

(4) The Picard number ρ(X) ≥ n. If ρ(X) = n ≥ 3, then X is G-equivariant birational to a
quasi-étale torus quotient.

(5) Either the albanese map albX : X → Alb(X) is an Aut(X)- (and hence G-) equivariant
surjective birational morphism, or X has at most ρ(X) − n of distinct G-periodic prime
divisors.

Before proving Theorem 4.1 we prepare the following two lemmas.
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Lemma 4.2. Suppose that we have the sequence (?) of G-equivariant birational maps as in
Proposition 2.6. Then we have the following relations among the Per+(Xi, G).

(1) For a divisorial contraction τi with 0 ≤ i < s and for the birational morphism τi with i = s,
we have

Per+(Xi, G) = τ−1i

(
Per+(Xi+1, G)

)
.

Moreover, the exceptional locus Exc τi is an irreducible divisor and uniruled.
(2) If τi is a flip for some 0 ≤ i < s:

Xi

τi //

f ��

Xi+1 = X+
i

f+zz
Vi

,

then there is a Zariski-closed subset ∆i ⊂ Vi such that

Exc(f) = f−1(∆i) and Exc(f+) = (f+)−1(∆i).

Further,

Per+(Xi, G) = f−1
(

Per+(Vi, G)
)

and Per+(Xi+1, G) = (f+)−1
(

Per+(Vi, G)
)
.

Every irreducible component of the flipping locus Exc f or the flipped locus Exc f+ is
uniruled.

Proof. (1) The first assertion follows directly from Lemma 2.3. For the second one, we know
that every (Xi, Ai) is klt (so is dlt) by Proposition 2.6 (3). Then it follows from Lemma 3.1 (3)
that Exc τi, known to be an irreducible divisor, is uniruled.

(2) The first assertion follows from the uniqueness of the flip (cf. [18, Lemma 6.2 and Corollary
6.7]). Now the second assertion follows, using also the G-equivariance of the morphisms f and
f+ and Lemma 2.3.

Hence we still have to prove the last assertion. We assume that f is a contraction of (KXi
+Ai)-

negative extremal ray R≥0[`]. Choose a suitable ample divisor H such that

(KXi
+ Ai + εH) · ` = 0 and (Xi, Ai + εH) is still klt

for some 0 < ε� 1. By the Cone Theorem in MMP (cf. [18] or [12, Theorem 1.1]), there is an
R-Cartier divisor Θi on Vi such that

KXi
+ Ai + εH = f ∗Θi.

By the projection formula, Θi = KVi + f∗Ai + εf∗H . Then (Vi, f∗Ai + εf∗H) is a klt pair. So
Lemma 3.1 (3) implies the last assertion. We have proved Lemma 4.2. �

The following lemma tells us the relationship among the irreducible components of these
Per+(Xi, G). We will also use this lemma to prove Theorem 4.5 (2) later.
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Lemma 4.3. Under the assumption of Lemma 4.2, for any 0 ≤ i ≤ s, every non-uniruled
irreducible component of Per+(Xi, G) is G-equivariant birational to some irreducible compo-
nent of Per+(Xi+1, G) by τi, which is then isomorphic at the generic point of that irreducible
component.

Proof. We use the same notation as in Lemma 4.2. Let Zi be any non-unruled irreducible
component of Per+(Xi, G).

If τi is a divisorial contraction for some 0 ≤ i < s or τs, by Lemma 4.2 (1) above, Zi is
not contained in the exceptional locus of τi. Hence Zi is G-equivariant birational to its strict
transform in Xi+1, and the latter is also an irreducible component of Per+(Xi+1, G).

If τi is a flip for some 0 ≤ i < s, by Lemma 4.2 (2), Zi is not contained in the exceptional
locus of f : Xi → Vi. Hence Zi is G-equivariant birational to its strict transform in Vi, and the
latter one is G-equivariant birational to its strict transform in Xi+1 via the map f+ : Xi+1 → Vi.
This last one in Xi+1 is also the strict transform of Zi via the birational map Xi 99K Xi+1, and
hence an irreducible component of Per+(Xi+1, G). In the above argument, we use the fact that
both exceptional loci of f : Xi → Vi and f+ : Xi+1 → Vi lie over the same Zariski-closed
subset ∆i ⊂ Vi. �

Proof of Theorem 4.1. By Proposition 2.2, replacing G by a finite-index subgroup, we may
assume that (X,G) satisfies Hyp(A). So we can apply Proposition 2.6 by choosing D = 0. Then
our assertion (1) is just Proposition 2.6 (5). The assertion (3) follows from [28, Theorem 2.4]
(under the condition (iii) there).

Proof of Assertion (2). We are going to prove this assertion by the backward induction on the
index i ofXi. We will use the sequence (?) ofG-equivariant birational maps as in Proposition 2.6
with D = 0, and recall that for 0 ≤ i ≤ s + 1, let Ai (an R-Cartier divisor) denote the direct
image of A on Xi, respectively. By Proposition 2.6 (5), we know that Ai|Z ≡ 0 for every
positive-dimensional G-periodic proper subvariety Z of Xi. Replacing G by a finite-index
subgroup, we may assume that G stabilizes every irreducible component of Per+(Xi, G).

Let Z be an irreducible component of Per+(Y,G). By Proposition 2.6 (4) (with D = 0

always in the current theorem), we know that KY + AY is an ample R-Cartier divisor on Y .
Then KY |Z is also an ample R-Cartier divisor on Z since AY |Z ≡ 0. Assume further that Z is
non-uniruled. Then by Lemma 3.3 applied to H := KY |Z , we know that G|Z is finite. Hence a
finite-index subgroup of G fixes Z pointwise. So the assertion (2) holds true on Y .

By induction we assume that for any irreducible component Zi+1 of Per+(Xi+1, G), either
Zi+1 is uniruled, or a finite-index subgroup of G fixes Zi+1 pointwise. Now we choose any
irreducible component Zi of Per+(Xi, G). Assume further that this Zi is non-uniruled. Then by
Lemma 4.3, Zi is G-equivariant birational to its strict transform in Xi+1 by τi, and the latter is
also an irreducible component of Per+(Xi+1, G). By the inductive hypothesis, a finite-index
subgroup of G fixes that latter strict transform of Zi, and then it also fixes Zi pointwise. This
proves the assertion (2).
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Proof of Assertion (4). The first part of the assertion (4) has been proved by Lemma 2.9. If
ρ(X) = n, the same lemma also tells us that KX is numerically trivial. Then KX is pesedo-
effective. Thus the second part follows from [28, Theorem 2.4] (under the condition (ii) there).

Proof of Assertion (5). We first assume that the irregularity q(X) > 0. Take an Aut(X)-
equivariant resolution π : X̃ → X . Then q(X̃) = q(X) > 0 because X has only klt and hence
rational singularities (cf. [18, Theorem 5.22]). By [23, Lemma 2.13], albX̃ is a (necessarily
Aut(X̃)-equivariant) surjective birational morphism. Hence the same holds for albX because
X has only rational singularities. Next we assume that q(X) = 0. Suppose that X has s of
G-periodic prime divisors B1, . . . , Bs. Then the upper bound of s has been given by Proposition
2.10. This proves the assertion (5).

We have completed the proof of Theorem 4.1. �

The proposition below gives an affirmative answer to Question 1.4 (2).

Proposition 4.4. Suppose that (X,G) satisfies Hyp(A). Suppose further thatX isG-equivariant
birational to a quasi-étale torus quotient. Then we have:

(1) Every connected component Zk of Per+(X,G) (i.e., the union of all positive-dimensional
G-periodic proper subvarieties of X) is rationally chain connected.

(2) Every irreducible component of Per+(X,G) is uniruled. In particular, Question 1.4 (2) has
a positive answer.

Proof. Since the assertion (2) follows directly from the first one, we prove only the assertion (1).
Suppose that X is G-equivariant birational to a quasi-étale torus quotient Y := T/F for some
abelian variety T and a finite group F (note that Y is klt). Since the image of a rationally chain
connected Zariski-closed set is still rationally chain connected, we may replace X 99K Y by a
G-equivariant resolution of indeterminacy and assume that X → Y is already a G-equivariant
birational morphism (see Lemma 2.3 and [28, Lemma 3.1]). Note that the image of Zk on Y is
G-periodic and hence a point P by Lemma 2.12. By Zariski’s main theorem, the inverse image
on X of the point P on the normal variety Y is connected. This inverse of P is also G-periodic
and contains Zk, so it equals Zk, since Zk is a connected component of Per+(X,G). Then by
Lemma 3.1, Zk is rationally chain connected. �

The following is a generalization of Theorem 1.2.

Theorem 4.5. Let X be a projective variety of dimension n ≥ 2, and G ≤ Aut(X) such that
the following conditions are satisfied.

(i) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.
(ii) X contains a G-periodic non-uniruled prime divisor D such that (X,D) has at worst

Q-factorial dlt singularities.

Then after replacing G by a finite-index subgroup, we have:

(1) X is rationally connected, and the Picard number ρ(X) ≥ n+ 1.
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(2) Let Z1 ∪ Z2 ∪ · · · ∪ Zm be the irreducible decomposition of the union of all positive-
dimensional G-periodic proper subvarieties of X , with Z1 = D. Then for k ≥ 2, Zk is
uniruled. In particular, every G-periodic prime divisor, other than D, is uniruled.

(3) A finite-index subgroup of G fixes D pointwise.

Furthermore, there exists a surjective in codimension-1 G-equivariant birational map X 99K Y
with DY the strict transform of D, such that the following are true.

(4) Every positive-dimensional G-periodic proper subvariety of Y is contained in DY . In
particular, the positive-dimensional part of Sing Y is contained in DY .

(5) KY +DY ∼Q 0; both KY and DY are Q-Cartier; the pair (Y,DY ) and hence Y both have
at worst canonical singularities.

(6) DY has at worst canonical singularities and KDY
∼Q 0.

(7) −mDY |DY
is an ample Cartier divisor on DY for some integer m > 0.

Remark. The order of our proof of this theorem is (1), (3), (4), (5), (6), (7) and (2).

Proof. The assumption implies that X is also klt, so the conditions of Theorem 4.1 are satisfied
and we may apply Theorem 4.1. Replacing G by a finite-index subgroup, we may assume that D
is stabilized by G and (X,G) satisfies Hyp(A) (see Proposition 2.2). By the affirmative answer
to Question 1.4 (2) (see Proposition 4.4), X is not G-equivariant birational to a quasi-étale torus
quotient.

Proof of Assertion (1). We first show that X is rationally connected. The surface case has been
dealt with by Lemma 3.7, so we only consider the case n ≥ 3. Suppose to the contrary that X is
not rationally connected. Replacing G by a finite-index subgroup, X is G-equivariant birational
to a quasi-étale torus quotient (cf. [28, Theorem 2.4]). This contradicts Proposition 4.4.

The second part follows from Proposition 2.10 with B1 := D. The assertion (1) is proved.

The assertion (3) is a direct consequence of Theorem 4.1 (2), since D is a G-periodic non-
uniruled prime divisor.

Proof of Assertion (4). By the assertion (1) above, we can apply Lemma 3.4 and say thatKX+D

is pseudo-effective. This in turn allows us to apply Proposition 2.7 to the dlt pair (X,D). Note
that the G-equivariant birational map X 99K Y is originally constructed in Proposition 2.6 for
the pair (X, (1− ε)D) with ε > 0 sufficiently small. Then the assertion (4) comes directly from
Proposition 2.7 (3).

Proof of Assertion (5). We first prepare the following for the proof of this assertion. Note
that (X,D) is dlt, then (X,Dε) is klt, where Dε := (1 − ε)D for some 0 < ε � 1 (cf. [18,
Proposition 2.41]). So we can apply Proposition 2.6 to the klt pair (X,Dε). Then there is a
sequence τs ◦ · · · ◦ τ0 of G-equivariant birational maps:

X = X0
τ0
99K X1

τ1
99K · · ·

τs−1

99K Xs
τs−→ Xs+1 = Y (??)

such that each τj : Xj 99K Xj+1 for 0 ≤ j < s is either a divisorial contraction of a (KXj
+Dε,j)-

negative extremal ray or a (KXj
+Dε,j)-flip; the τs : Xs → Xs+1 = Y is a birational morphism
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such that

KXs +Dε,s = τ ∗s (KY +Dε,Y );

hereDε,i ⊂ Xi for 0 ≤ i ≤ s+1 denotes the direct image ofDε. It follows from [18, Corollaries
3.42 and 3.43] that each (Xi, Dε,i) for 0 ≤ i ≤ s is klt. So (Y,Dε,Y ) is also klt. In particular, by
Lemma 3.1, each Dε,i for 0 ≤ i ≤ s+ 1 is indeed a divisor since D is non-uniruled.

Now the first part of the assertion (5), i.e., KY +DY ∼Q 0, follows from Proposition 2.7 (2).
By the first part we have proved and Proposition 2.6 (4), we know that

−εDY + AY ∼Q KY + (1− ε)DY + AY

is an ample R-Cartier divisor. Note also that AY is R-Cartier by Proposition 2.6 (2), and then so
is DY . Hence by Lemma 3.2, DY is Q-Cartier, and then so is KY .

Note that Y is rationally connected (since so is X) and DY is a non-uniruled divisor. Hence
KY + DY ∼Q 0 implies that (Y,DY ) has only canonical singularities (and DY is a normal
variety) by Lemma 3.6, so does Y (cf. [18, Corollary 2.35]). This proves the assertion (5).

Proof of Assertion (6). By the adjunction theorem for dlt pair (cf. [11, Proposition 3.9.2] or [17,
§16 and §17]), there exists an effective divisor DiffDY

(0) on DY such that

KDY
+ DiffDY

(0) = (KY +DY )|DY
∼Q 0.

Note that DY itself (as a variety) is non-uniruled and normal. Then by applying Lemma 3.5 to
the pair

(
DY ,DiffDY

(0)
)
, we have DiffDY

(0) = 0 and DY has at worst canonical singularities.
Thus KDY

∼Q 0. This proves the assertion (6).

Proof of Assertion (7). By the assertion (4) we have proved, every positive-dimensional G-
periodic subvariety of Y is contained in DY , so Per+(Y,G) = DY . In particular, by Proposition
2.6 (5), we have AY |DY

≡ 0. We already see in the proof of the assertion (5) that −εDY + AY

is an ample R-Cartier divisor, and then so is (−εDY + AY )|DY
≡ −εDY |DY

. Note that by the
assertion (5), DY is Q-Cartier. The assertion (7) follows.

Proof of Assertion (2). Suppose to the contrary that some Zk with k ≥ 2 is non-uniruled.
Note that in our proof of the assertion (5), we applied Proposition 2.6 to the klt pair (X,Dε)

and produced a sequence (??) of G-equivariant birational maps. So by Lemma 4.3, such
Zk is G-equivariant birational to some irreducible component of Per+(Y,G) by τs ◦ · · · ◦ τ0,
which is isomorphic at the generic point of Zk. On the other hand, the assertion (4) says that
Per+(Y,G) = DY has only one irreducible component. So such Zk is birational to DY . By the
irreducibility of Zk we know that Zk coincides with D = Z1, which is a contradiction. This
ends the proof of the assertion (2).

We have completed the proof of Theorem 4.5. �

Remark 4.6. With the assumption and notation in Theorem 4.5, we have:
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(1) Note that the positive-dimensional part of Sing Y is contained in DY by Theorem 4.5 (4).
So we have

dim(Sing Y ) ≤ max{0, dimY − 3}.
Indeed, by Theorem 4.5 (5), (Y,DY ) is a canonical pair. After (dimY − 2)-times hy-
perplane cutting as in [18, Corollary 5.18], we reach a canonical surface pair (S,DS)

(cf. [18, Lemma 5.17 (1)]). So by [18, Theorem 4.5], DS ∩ SingS = ∅, and hence Y is
smooth at its codimension-2 points lying inside DY . This shows that dim(DY ∩ Sing Y ) ≤
max{0, dimY − 3}.

(2) Suppose dimY = 2. Then Y is smooth in a neighbourhood of DY , and DY is a (smooth)
elliptic curve, since DY is normal and KDY

∼Q 0.
(3) Suppose dimY = 3. Then Y has at worst isolated singularities. Further, KDY

∼Q 0 implies
that DY is either a smooth abelian surface or hyperelliptic surface, or a normal K3 surface
or Enriques surface with at worst Du Val singularities.

Proof of Theorem 1.2. Take a G-equivariant log resolution π : X̃ → X for the pair (X,D), and
denote by D̃ the proper transform of D. Note that D̃ is still a G-periodic non-uniruled prime
divisor. Replacing G by a finite-index subgroup, (X̃,G) satisfies the conditions (i) and (ii)
of Theorem 4.5 (see Proposition 2.2 and [28, Lemma 3.1]). Thus the assertions (1) ∼ (6) in
Theorem 4.5 holds for X̃ . This implies the corresponding assertions in Theorem 1.2, except the
assertion (2). Suppose that X has a G-periodic prime divisor D2 different from D. Then the
π-proper transform D̃2 of D2 is an irreducible component of Per+(X̃,G) different from D̃, so
it is uniruled by Theorem 4.5 (2). Hence D2 is uniruled. This proves Theorem 1.2. �

Proof of Theorem 1.5. (1) =⇒ (2) is proved by Lemma 2.12.
(2) =⇒ (1) comes from [28, Theorem 2.4] or Theorem 4.1 (3).
(1) =⇒ (3) is true by letting D′ = 0, and note that quotient singularities are Q-factorial klt,

and KX′ ∼Q 0.
(3) =⇒ (1) follows from [28, Theorem 2.4] (under the condition (ii) there).
(1) =⇒ (4) is just our Proposition 4.4 (1). �

Proof of Proposition 1.6. We may assume that the irregularity q(X) = 0 by the condition (ii)
and [23, Theorem 1.2]. This also holds for any resolution of X because X has only klt and
hence rational singularities (cf. [18, Theorem 5.22]). The surface case is well known. Actually, it
follows from the Hodge index theorem and the fact that every g-periodic curve is perpendicular
to the nef and big divisor A := Lg + Lg−1 as in the proof of Lemma 3.7, where Lg±1 are the nef
divisors corresponding to the first dynamical degree d1(g±1) of g±1. So we still have to consider
the case n = 3.

We only need to prove the claim that there are only finitely many g-periodic prime divisors Dj

with 1 ≤ j ≤ k for some k > 0. Assuming this claim for the time being, for any 1 ≤ i ≤ n− 1,
it follows from the commutativity of G that each gi(Dj) is also g-periodic. Therefore, for any
j, we know that Dj is gi-periodic for any i and hence G-periodic. Then by Proposition 2.10,
k ≤ ρ(X)− n.
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Suppose to the contrary that the above claim does not hold. Namely, there are infinitely many
distinct g-periodic prime divisors Dj with j ≥ 1. Let

κ := κ
(
X,

r∑
j=1

Dj

)
= max

{
κ
(
X,

t∑
j=1

Dj

)
: Dj is g-periodic, t ≥ 1

}
for some r ≥ 1 and denote E0 :=

∑r
j=1Dj . Replacing g by its power, we may assume that

g(Dj) = Dj for all j ≤ r. As reasoned in Proposition 2.10 we have κ ≥ 1.
For any 1 ≤ i ≤ n − 1, let Ei := g∗iE0. It is easy to see that Ei is also g-periodic since g

commutes with each gi, and hence κ(X,Ei) = κ(X,E0 + Ei) = κ by the maximality of κ.
Replacing E0 by some mE0, we may assume that the dominant rational map

Φ|Ei| : X 99K Φ|Ei|(X) ⊆ PH0
(
X,OX(Ei)

)
is an Iitaka fibration associated toEi and its image has dimension equal to κ for any 0 ≤ i ≤ n−1.
Take a g-equivariant resolution π : X ′ → X of SingX and Bs(|Ei|), such that the linear system
|π∗Ei| = |Mi| + Fi, where each Mi is base point free, Fi is the fixed component of |π∗Ei|,
and their divisor classes are g-stable. Now the morphism Φ|Mi| is birational to Φ|Ei|. Let
Yi → Φ|Mi|(X

′) be the normalization, and

φi : X ′ → Yi

the induced morphism, which is an algebraic fibre space with connected fibres. Denote by Ai the
ample divisor on Yi such thatMi = φ∗iAi. We have κ(X ′,M0+Mi) = κ(X,E0+Ei) = κ by the
maximality of κ. Thus the free divisorM0+Mi is the pullback of some ample divisor on a variety
of dimension κ, which implies that (M0 +Mi)

κ+1 = 0. In particular, Mκ
0 ·Mi = 0 = M0 ·Mκ

i .
We assert that κ ≤ n − 2 = 1. Indeed, by blowing up Yi and X ′ further, we may assume

that Yi is also smooth. Replacing φi by the new morphism, the new Ai on the new Yi is only
nef and big. Nevertheless, we obtain a g-equivariant fibration φi : X ′ → Yi of smooth varieties
such that g preserves the nef and big divisor Ai on Yi. It follows from [25, Lemma 2.5] that
κ ≤ n− 2 = 1, thus κ = 1 in the present case. (Remark: in what follows, the blowing up of
Yi is unnecessary, since Yi is a normal and hence a smooth curve. In particular, the divisor Ai
is still ample, and φi is flat and hence equidimensional; see [14, Proposition 9.7]. Indeed, the
argument below works as long as φi is equidimensional.)

For 1 ≤ i ≤ n− 1, let C be any curve in a general fibre Fi of φi. Take general ample divisors
Hj on X ′ containing C with 1 ≤ j < n− κ. Let S := H1 ∩ · · · ∩Hn−κ−1. Then

0 ≤ C ·M0 = C ·M0|S ≤Mκ
i |S ·M0|S = Mκ

i ·M0 ·H1 · · ·Hn−κ−1 = 0.

Thus A0 · (φ0)∗C = 0 by the projection formula. So φ0 contracts C (and hence the whole Fi)
by the ampleness of A0. Then by the Rigidity Lemma 3.9, φ0 = ti ◦ φi for some morphism
ti : Yi → Y0. Interchanging the role of M0 with Mi, we get another morphism si : Y0 → Yi such
that φi = si ◦ φ0. Hence φi = si ◦ ti ◦ φi. The surjectivity of φi then implies that si ◦ ti = id.
Similarly, ti◦si = id. Thus si and ti are isomorphisms and inverse to each other by the normality
of Yi. Therefore, we can write Mi = φ∗iAi = φ∗0Bi with Bi := s∗iAi an ample divisor on Y0.
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Now the automorphism gi on X descends to an isomorphism between the bases of the Iitaka
fibrations Φ|E0| and Φ|Ei|, while the latter two are birational to Φ|M0| and Φ|Mi|, respectively.
So gi induces an isomorphism from (the normalization of) Φ|A0|(Y0) to (the normalization of)
Φ|Bi|(Y0), which is an automorphism of Y0 now. Thus G acts on Y0 bi-regularly. Replacing
X 99K Y0 by a G-equivariant resolution X ′′ of the graph, we have a non-trivial G-equivariant
fibration between two smooth projective varieties. Contradicts the maximal dynamical rank
assumption on G (cf. [23, Lemma 2.10]). This ends the proof of Proposition 1.6. �
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Papers from the Second Summer Seminar on Algebraic Geometry Held at the University of Utah, Salt Lake
City, Utah, August 1991.

[18] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134,
Cambridge University Press, Cambridge, 1998.

http://arXiv.org/abs/1502.07060v3


PERIODIC SUBVARIETIES OF A PROJECTIVE VARIETY 25

[19] S. S. Y. Lu and D.-Q. Zhang, Positivity criteria for log canonical divisors and hyperbolicity, J. Reine Angew.
Math. (to appear), 2015, DOI:10.1515/crelle-2015-0013, arXiv:1207.7346.

[20] N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan,
Tokyo, 2004.

[21] N. Nakayama and D.-Q. Zhang, Building blocks of étale endomorphisms of complex projective manifolds,
Proc. Lond. Math. Soc. (3) 99 (2009), no. 3, 725–756.

[22] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300.
[23] D.-Q. Zhang, A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176 (2009), no. 3, 449–459.
[24] , Dynamics of automorphisms on projective complex manifolds, J. Differential Geom. 82 (2009), no. 3,

691–722.
[25] , The g-periodic subvarieties for an automorphism g of positive entropy on a compact Kähler manifold,

Adv. Math. 223 (2010), no. 2, 405–415.
[26] , Automorphism groups of positive entropy on minimal projective varieties, Adv. Math. 225 (2010),

no. 5, 2332–2340.
[27] , Algebraic varieties with automorphism groups of maximal rank, Math. Ann. 355 (2013), 131–146.
[28] , n-dimensional projective varieties with the action of an abelian group of rank n− 1, Trans. Amer.

Math. Soc. (to appear), 2016, DOI:10.1090/tran/6629, arXiv:1412.5779.

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE, 10 LOWER KENT RIDGE ROAD, SINGAPORE 119076
E-mail address: hf@u.nus.edu

DEPARTMENT OF MATHEMATICS

EAST CHINA NORMAL UNIVERSITY, 500 DONGCHUAN ROAD, SHANGHAI 200241, P.R. CHINA

E-mail address: sltan@math.ecnu.edu.cn

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE, 10 LOWER KENT RIDGE ROAD, SINGAPORE 119076
E-mail address: matzdq@nus.edu.sg

http://dx.doi.org/10.1515/crelle-2015-0013
http://arxiv.org/abs/1207.7346
http://dx.doi.org/10.1090/tran/6629
http://arXiv.org/abs/1412.5779
mailto:hf@u.nus.edu
mailto:sltan@math.ecnu.edu.cn
mailto:matzdq@nus.edu.sg

	1. Introduction
	2. Preliminary results
	3. Some general results from birational geometry
	4. Generalizations of Theorems 1.1 and 1.2, and their proofs
	References

