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Abstract

In this note we propose a new way of constructing compact 7-
manifolds with a closed Ga-structure. As a result we find a first
example of a closed Ga-structure on S3 x S§%. We also prove that
any integral closed Ga-structure on a compact 7-manifold M7 can be
obtained by embedding M7 to a universal space (W3B0+8-C5) ),
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1 Introduction.

Let A¥V™ be the space of k-linear anti-symmetric forms on a given
linear space V™. For each w € AF(V™) we denote by I, the linear map

LV = AL V), 2 (z]w) = w(z, ).

A k-form w is called multi-symplectic, if I, is a monomorphism.
The classification (under the action of GI(V")) of multi-symplectic
3-forms in dimension 7 has been done by Bures and Vanzura [B-
V2002]. There are together 8 types of these forms, among them there
two generic classes of Ga-form w? and Go-form w3. They are generic in
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the sense of GI(V7)-action, more precisely the orbits GL(V")(w3?),i =
1,2, are open sets in A3(V7). The corresponding isotropy groups are
the compact group Gs and its dual non-compact group Go.

We shall write here a canonical expression of the Go-form w$ (see

e.g. [B-V2002] or [Joycel996])
(1.1) w?:01/\92A03+a1/\01+a2/\02+a3/\93.
Here «; are 2-forms on V7 which can be written as

a1 =Y1 A NY2+yYsA\Nya, 2 =y1 ANyYs — Y2 Ays, a3 =y1 Nys +y2 N y3

and (01,602, 03,y1,y2,Y3,y4) is an oriented basis of (V7)*.

A 7-dimensional manifold M7 is said to be provided with a Go-
structure, if there is given differential 3-form ¢ on it such that at
every point € M the form ¢3(z) is of Ga-type.

- A Go-structure ¢ is called closed, if dp = 0. The closedness of a
Go-structure ¢ is a necessary condition for a Ge-structure to be flat, i.e.
the Ricci curvature of the associated Riemannian metric g(¢) (via the
canonical embedding Gy — SO(7)) vanishes (see e.g. [Bryant2005]).
We notice that the first examples of a Riemannian metric with Gs
holonomy has been constructed by Joyce [Joycel996] by deforming
certain closed Ga-structures. Closed 3-forms have been also used by
Severa and Weinstein to deform Poisson structures [V-W2001].

- We shall call that a closed structure G5 integral, if the cohomol-
ogy of the Go-form ¢ is an integral class in H3(M7,Z) ¢ H3(M™,R).

Without additional conditions the existence of a Gs-structure is
a purely topological question (see [Grayl969]). On the other hand
the existence of a flat Go-structure is really “exceptional” in the sense
that this structure is a solution to an overdetermined PDE (see e.g.
[Bryant2005]). The intermediate class of closed Ga-structures is never-
theless has not been investigated in deep. We know only few examples
of these structures on homogeneous spaces [Fernandez1987], and their
local geometry [C-12003]. The examples of flat G-structures on M’
obtained by Joyce [Joycel1996] and Kovalev [Kovalev2001] have a com-
mon geometrical flavor, that they begin with M” with simple (or well
understood) holonomy and then modify topologically these manifolds.

In this note we propose a new way to construct a closed Go-
structure by embedding a closed manifold M7 into a semi-simple group
G. The motivation for this construction is the fact that there exists a



closed multi-symplectic bi-invariant 3-form on G, so “generically” the
restriction of this 3-form to any 7-manifold in G must be a Go-form.
We shall show different ways to get a closed Ga-structure on S3 x S4
by this method (Theorem 2.2 and Theorem 2.10). In Theorem 3.6 we
prove that any closed integral Ga-structure ¢ on a compact M7 can be
“multi-embedded” in a finite product of S = SU(2) with a canonical
closed 3-form h such that the pull-back of h is equal to ¢. This theo-
rem is close to the Tits theorem on the embedding of compact integral
symplectic manifold to CP™. We prove theorem 3.6 by using Gromov
H-principle. We also showed in Theorem-Remark 3.15 that the ex-
istence of a closed Ga-structure on an open manifold M7 is purely a
topological question. This can be done in the same way as Gromov
proved the analogous theorem for open symplectic manifolds. Theo-
rem 3.15 is also called a remark, because it is a direct consequence of
the Eliashberg-Mishachev holonomy appoximation theorem.

2 Two ways to get a closed GG,-structure
on 5% x S4.

Our examples (Theorem 2.2 and Theorem 2.10) are closed subman-
ifolds S3 x S* in semi-simple Lie groups SU(3) and G x (SU(2))¥,
N =380+ 8 x C3 . On each semi-simple Lie group G there exists
a natural bi-invariant 3-form ng which is defined at the Lie algebra
g =T.G as follows

¢3(Xa Y7 Z) =< Xa [Yv Z] >,
where <, > denotes the Killing form on g.

2.1. Lemma. The form qbg s multi-symplectic.

Proof. We need to show that I P is monomorphism. We notice
that if X € ker I¢% then

<X, [Y,Z] >=0 forallY,Z € g.
But this condition contradicts the semi-simplicity of g. O

Let us consider the group G = SU(3). For each 1 <1i < j < 3 let
gij(g) be the complex function on SU(3) induced from the standard
unitary representation p of SU(3) on C3: g;;(g) :=< p(g) o e;,€; >.
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Here {e; = (1,0,0), e2 = (0,1,0), e3 = (0,0,1)} is a unitary basis of
C3. Now we denote by X7 the co-dimension 1 subset in SU(3) which
is defined by the equation Im(g11(g)) = 0.

2.2. Theorem. The subset X7 is diffeomorphic to the manifold
S3 x S%. Moreover X7 is provided with a closed Go-form w® which is
the restriction of ¢ to X7.

Proof. Let SU(2) be the subgroup in SU(3) consisting of all g €
SU(3) such that p(g)oe; = e;. We denote by 7 the natural projection

m:SU(3) — SU(3)/SU(2).

We identify SU(3)/SU(2) with the sphere S° C C? via the standard
representation p of SU(3) on C3. This identification denoted by j is
expressed as follows.

plg-SU2) = goer.

We denote by II the composition pon : SU(3) — SU(3)/SU(2) —
S5, Let S* € S® be the great circle which consists of points v € S°
such that Ime!(v) = 0. Here {¢',i = 1,2,3} are the complex 1-forms
on C? which are dual to {e;}. The pre-image IT1-1(S*) consists of all
g € SU(3) such that

Ime'(goer) =0.

<~ Im (gn) =0.

So X7 is SU(2)-fibration over S*. But this fibration is the restriction of
the SU (2)-fibration IT~(D?) over the half-sphere D° to the boundary
OD® = S4. So it is a trivial fibration. This proves the first statement
of Theorem 2.2.

We fix now a subgroup SO(2)! in SU(3) where SO(2)! is the
orthogonal group of the real space R?> C C? such that R? is the span
of e; and ey over R.

We denote by mp(g) (resp. mp(g)) the left multiplication (resp.
the right multiplication) by an element g € SU(3).

2.3. Lemma. X7 is invariant under the action of mr(SU(2)) -
mpg(SU(2)). For each v € S* there exist an element o € SO(2)! and
an element g € SU(2) such that II(g - ) = v. Consequently for any
point x € X' there are g1,g2 € SU(2) and o € SO(2)* such that

(2.3.1) T =g1-Q- g,
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Proof. The first statement follows from straightforward calcu-
lations, (our realization that X' = II~!(S*) implies that the or-
bit of mp(SU(2))-action on X7 are the fiber II"(v)). Let v =
(cos v, 22, 23) € S4, where z; € C. We choose a € SO(2)! so that

(2.4) pla)oe; = (cosa,sina) € R2.
Clearly « is defined by v uniquely up to sign +. We set
w = (sine, 0) € C% =< ey, e3 >gc .

We notice that

|z2]? + | 23] = sin .

Since SU(2) acts transitively on the sphere S® of radius |sina| in
C? =< eg,e3 >gc, there exists an element g € SU(2) such that
p(g) ow = (29, 23). Clearly

II(g - a) = .

The last statement of Lemma 2.3 follows from the second statement
and the fact that X7 = I171(S%) O

Using (2.3.1) to complete the proof of Theorem 2.2 it suffices to
check that the value of w at any o € SO(2)! C X7 is a Go-form,
since ¢ is a bi-invariant form on SU(3). We divide the remaining
part of the proof of Theorem 2.2 into two steps. In the first step we
shall compute that value w? at o = e and in the second step we shall
compute the value w? at any a € SO(2)!.

Step 1. Let us first compute the value w?(e) € X”. We shall use
the Killing metric to identify the Lie algebra su(3) with its co-algebra
g. Thus in what follows we shall not distinguish co-vectors and vectors,
poly-vector and exterior forms on su(3). Clearly we have

T.X" = {v € su(3) : Imgy(v) =0}

Now we identify gl(C3) with C3 @ (C3)* and we denote by e;; the
element of gI(C3) of the form e; ® (e;)*.
A straightforward calculation gives us

1 1 1
(2.5) w(z0) = V201 Ady A3+ —=wi NSy + —=wa A by + —=w3 A d3,

V2 V2 V2
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where §; are 1-forms in 7.X’ which are defined as follows:

1 1 1
o = ﬁ(ezz —€33),02 = 5(623 —e32),03 = 5(623 + e32).
Furthermore, w; are 2-forms on T, X" which have the following expres-
sions:

2wy = —(e12 — e21) ANi(e12 + e21) + (e13 —e31) Ai(eis + e31),
2wy = —(e12 —e21) A (e13 —e31) — i(e12 + e21) Ai(ers + es1),
2wz = —(e12 —e21) Nie1s +e31) +i(er2 +e21) A (e13 — e31).

Now compare (2.5) with (1.1) we observe that these two 3-forms
are GI(R") equivalent (e.g. by rescaling §; with factor (1/2)). This
proves that w?(zg) is a Ga-form. This completes the step 1.

Step 2. Using step 1 it suffices to show that
(2.6) Dmp(a ) (TpX") =T. X7

for any a € SO(2)! € X7, a # e.
Since X7 D - SU(2), we have

(2.7) su(2) € Dmp(a ) (T, X).
Denote by SO(3) the standard orthogonal group of R? C C3. Since
a € SO(3) C X7, wehave Dmyp(a ") (T,SO(3)) C Dmp(a ) (T,X7).
In particular we have
(28) < (612 — 621), (613 — 631) >eRC DmL(a_l)(TaX7).

Since SU(2) -« C X7, we have
(2.9) Ad(a™Y)su(2) € Dmp(a™)(T,X7).

Using the formula

Ad(a™") = exp(—ad(t L&;”)), t#0

we get immediately from (2.7), (2.8), (2.9) the following inclusion

< i(elz -+ 621),i(613 + 631) >orC DmL(ofl)(Ta‘Xq))



which together with (2.7), (2.8) imply the desired equality (2.6). O
This completes the proof of Theorem 2.2. O

Our constructed subsmanifold S3 x $% in SU(3) is quite symmetric.
The symmetry of a submanifold helps us to compute a lot of things
on it easily. On the other side, the notion of symmetry is quite far
from the notion of genericity. That is why it takes a lot of time for me
in searching another nontrivial (that means not via a representation
of SU(3) into another compact Lie group) example of a submanifold
M with a closed (and induced) Ga-structure in a Lie group G which
has a lot of symmetries. The idea is how to integrate the Ga-structure
distribution to a compact submanifold. It is not hard to find that
distribution in the Lie algebra g, but is is hard (like in calibration
geometry) to integrate that distribution to an explicit symmetric and
compact submanifold.

So we chose another way to construct a closed Gs-structure on
S3 x S§* by combining Theorem 2.2 with the technique of our proof of
Theorem 3.6.

Theorem 2.10. For any given simply-connected compact semi-
simple Lie group G, and any given integral closed Ga-structure ¢ on
S3xS% (e.g. that from Theorem 2.2) there exists an embedding f = S3x
54— G = Gx(SU(2))8H4C such that the restriction of the standard
bi-invariant form ¢3 from G' to f(S3 x S4) is equal to ¢. Moreover
we can require that the pull-back (via the projection) of a given non-
decomposable element o € H3(M,Z) to the image f(S3 x S*) is equal
to [¢] € H3(M,7Z).

Proof. Using the fact that H3(S3 x S* Z) = 73(S%) = Z, and
taking into account for a Lie group G as in Theorem 2.10 the following
identity: H3(G,Z) = 73(G) we can find a map f; : M” — G such that
the second condition in Theorem 2.10 holds. Now I shall modify this
map fi to the required embedding f by using the same H-principle as
in our proof of Theorem 3.6. The only thing we can improve in this
proof is the dimension of the target manifold. Instead of number 8 of
special coverings on M7 (using in the step 2 of the proof of Theorem
3.6) we can chose 4 open disks which cover S3 x S4. O

2.11. Remark. It remains also an interesting question, if we can
deform closed Go-structures on S% x S* to a flat one.



3 Universal space for closed Go-structures.

In this section we shall show that any integral closed Ga-structure ¢
on a compact 7-dimensional smooth manifold M7 can be induced from
an embedding M7 to a universal space (W, h), see Theorem 3.6.

Our definition of the universal space (W, h) is based on the work
of Dold and Thom [D-T1958].

Let SP?(X) be the g-fold symmetric product of a locally compact,
paracompact Hausdorff pointed space (X,0) , i.e. SP4(X) is the quo-
tient space of the g-fold Cartesian (X?,0) over the permutation group
oq. We shall denote by SP(X,0) the inductive limit of SP9(X) with
the inclusion

X =SPY(X) ™% SP2(X) 2 ... & spyX) % ...
where
SPUX) % SPIYX) : [z, 29, 2q] v [0, 21, 22, - . ., ).

Equivalently we can write

SP(X,0) =Y SPUX)/([w1, w2, ,2q] ~ [0, 21,29, -+ ,3,]).

So we shall also denote by i, the canonical inclusion SPI(X) —
SP(X,0).

3.1. Theorem (see [D-T1958, Satz 6.10]). There ezist natural
isomorphisms j : Hy(X,Z) — mq(SP(X,0)) for ¢ > 0.

3.2. Corollary. ([D-T1958]) The space SP(S™,0) is the Eilenberg-
McLane complex K(Z,n).

3.3. Lemma. Any continuous map f from MT to SP(S3,0) is ho-
motopic equivalent to a continuous map f from M7 to iz(SP3(S%)) C
SP(S3,0).

Proof. We fix the following simplicial decomposition: $% = R3 U
{0}. Then SPY(S?) has the following simplicial decomposition

(3.3.1) SPU(S%) = {0} Ui, (R®)”.
It follows that

(3.3.2) SP(5%,0) = {0} Uy, (R%)P.
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Denote by X7(SP(S3,0)) the 7-dimensional skeleton of SP(X?,0).
Clearly any continuous map f : M’ — SP(S3,0) is homotopic to
amap f: M7 — X7(SP(S%,0)). Now using the canonical inclusion
i3 : SP3(S3) — SP(S3,0) we get Lemma 3.3 immediately from (3.3.1)
and (3.3.2). 0

Using the diffeomorphism S3 = SU(2) we choose a canonical par-
allelization of T'S? by the left multiplication on S3. Let dxé-,z’ =1,2,3
denote the left invariant 1-forms on S]?’ dual to 1, d9, d3 in section 2,
see (2.5). Then

(3.4) dle- = ﬁdw? A da:;?, dw? = —\/§dac]1- A dx?-, dac;? = \/§dm]1 A da:?.

Let 7; : H§:1S§' — Sg’ = 53 denote the canonical projection. We shall
abbreviate H;‘(dl‘;) also by d:L‘;

3.5. Lemma. The differential form h = Z§:1 da:jl- A dm? A da;? 18
closed. It descends to a differential form h on SP*(S3). This form h
is the generator of H3(SP*(S3),R) = H3(SP*(S%),Z) = Z.

Proof. Clearly h is closed. Furthermore the form h is invariant
under the action of the permutation group o on Hf:ij?’ . This proves
the second statement.

To prove the last statement we notice that the integration of A
over the image of ix_1 o---01i1(S% = SP(S?)) C SP*(S3) is equal to
1. O

Now we state the mf_iin theorem of this section. Put N = 80+8~C§’.
Set W =1IY, S3 and W = SPY(S3).

3.6. Theorem. Suppose that ¢ is a closed integral Go-form on a
compact smooth manifold M. Then there is an embedding f : M7 —
(W, h) such that f*(h) = ¢.

Proof of Theorem 8.6. The proof of Theorem 3.6 is based on the
Gromov H-principle.! Let us quickly recall several notions introduced
by Gromov in [Gromov1986].

Let V and W be smooth manifolds. We denote by (V, W)™, r >0,
the space of r-jets of smooth mappings from V to W. We shall think of
each map f : V — W as a section of the fibration V x W = (V, W)(©

'to avoid confusing between the original notion h-principle of Gromov and his notion
of h as a differential form, we decide to use the capital H for H-principle.



over V. Thus (V,W)(") is a fibration over V, and we shall denote by
p" the canonical projection (V, W)(") to V, and by p; the canonical
projection (V, W)() — (V, W),

We also say that a differential relation R C (V, W)(") satisfies the
H-principle near a map fy : V — W, if every continuous section
¢o : V. — R which lies over fy, (i.e. pf o ¢o = fo) can be brought
to a holonomic section ¢; by a homotopy of sections ¢; : V — Ry,

€ [0,1], for an arbitrary small neighborhood U of fo(V) in V x W
[Gromov1986, 1.2.2]. Here for an open set U C V' x W, we write

Ry = (pp) " (U)NR C (V,W)".

The H-principle is called C°-dense, if it holds true C°-near every
map f:V — W.

Let h be a smooth differential k-form on W. A subspace T C T,
is called h(w)-regular, if the composition of I}, with the restriction
homomorphism A*~1T,, W — A*¥1T sends T,V onto A*~1T.

An immersion f : V — W is called h-regular, if for all v € V' the
subspace Df(T,V) is h(f(v))-regular.

Let G be a finite group acting effectively on W. It is well-known
(see e.g. [Pflaumen2001]) that the deRham complex on an orbifold
W = W/G can be identified with the complex of G-invariant differen-
tial forms on W. Furthermore the cohomology of the deRham complex
on W coincides with the singular cohomology of W with coefficients
in R.

Any map f : V — W can be seen (or lifted to) as a G-invariant
multi-map f : V — W. Conversely, any G-invariant multi-map f :
V — W descends to a map f : V — W. We say that a G-invariant
multi-map f : V — W is a h-regular multi-immersion, if it is a
h-regular immersion at every branch of f. This definition descends
to W and gives us the notion of h-regular immersion. In the same
way we define the notion of H-principle for G-invariant multi-maps
V' — W which is equivalent to the notion of H-principle for a map
f :V — W. For treating general stratified spaces W we refer the
reader to [Pflaumen2001].

We also use the notions of a flexible sheaf and a microflexible sheaf
introduced by Gromov in order to study the H-principle.

Suppose we are given a differential relation R C (V, W)(T). Fix an
integer k£ > r and denote by ®(U) the space of C*-solution of R over
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U for all open U C V. This set equipped with the natural restriction
O(U) — ®(U’) for all U' C U makes ® a sheaf. We shall say that &
satisifes the H-principle, if R satisfies the H-principle. 2

A sheaf @ is called flexible (microflexible), if the restriction map
®(C) — ®(C") is a fibration (microfibration) for all pair of compact
subsets C and C' € C in M. We recall that the map o : A —
A’ is called microfibration, if the lifting homotopy property for a
homotopy ¢ : P x [0,1] — A’ is valid only “micro”, e.g. there exists
£ > 0 such that 1 can lift to a 1 : P x [0,¢] — A.

Now we suppose that M7 is a compact manifold with a closed
Go-form ¢. Because ¢ is nowhere vanishing, [¢] represents a non-
trivial cohomology class in H3(M7,R). Let us consider a manifold
M8 = M" x (—1,1) provided with a form g = ¢ @ 0. Denote by

®;ey the sheaf of h-regular immersion f of M® to (W,h) such that
Fr[n] =1g)-
3.7. Proposition. The sheaf @,y is microflexible.

Proof. Let fy be a h-regular immersion from M?® to W such that
i [7] [g]. We denote by Fj the corresponding section of M® x W —
M8 ie. Fy(v) = (v, fo(v)). Denote by Tg C M® x W the graph of fy
(i.e. it is the image of Fo) and let p(g) and p(h) be the pull-back of the
forms g and h to M® x W under the obvious projection. Take a small
neighborhood Y D T’y in M® x W. Using the Whitney local triviality
property of the orbifolds (see e.g. [Pflaum2001]) we get immediately

3.8. Lemma. The graph Ty is a deformation retract of Y.

Thus we can write

p(h) —plg) = dh

for some smooth 2-form h on Y. Alternatively by working on the
covering space Y, we notice that, if p(g) and p(h) are G-invariant
cohomologuous differential forms, then p(g) — p(h) = dh;, where h; is
a G-invariant differential form on Y. In our case G is the permutation
group 2.

Our next observation is

3.9. Lemma. Suppose a map F : M® — Y corresponds to a h-
reqular immersion f : M® — W. Then F is a dh- reqular immersion.

2The reader can look at [Gromov 1986, 2.2.1] for a more general definition.
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Proof. We work now on the covering space Y. We need to show
that for all y € {F(2)} CY, 2z € M®, the composition p of the maps

I _
Ty p(h)=p(9) AQTyYHAQ(dFy(T(Z)(MS))

is onto, where FY is a branch of F' such that F¥(z) = y. This follows
from the consideration of the restriction of p to the subspace S C T,V
which is tangent to the fiber W in M8 x W D Y. O

Now for a map F : M® — Y and 1-form ¢ on M® we set

D(F,¢) := F*(h) + do.

Since the lifted form h; is invariant under the action of G = hIS
we see easily that F*(h) is a smooth differential form on M®.

With this notation the maps f : M® — W corresponding to F :
M?® — Y satisfy

f¥(h) = F*(p(h)) = g + F*(dh) = g + dD(F, ),

for any ¢. Hence follows that the space of sections F:M® =Y for
which f*(h) = g + dg; for a given 2-form g; has the same homotopy
type as the space of solutions to the equation

D(F7 ¢) = gl'

In particular the equation fr(h) =g reduces to the equation
D(F,$) = 0 in so far as the unknown map f is C°-close to fo (so
that its graph lies inside Y).

3.10. Lemma. The differential operator D is infinitesimal invert-
ible at those pairs (F, ¢) for which the underlying map f is a h-regular
1MMersion.

Proof. First we shall show that the fibration (F*(TW,h)) is a
smooth vector fibration over manifold M?® provided with a smooth
form h. In our notation F*(TW) denotes the ¥j-invariant multi-
(vector) bundle {F*(TW)} provided with ¥j-invariant form F™*(h).
We define an action v of g € G = ¥ on this multi-bundle as follows.
For each z € M?® the fiber of this multi-bundle consists of the set
{(F")* (T, W), wi, € F(2)}. We set

if g(wg) = wg, then g(V) =V for Ve T, W,
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if wy, # g(wg) = ws, then g(V) = g.(V) € T, ,W for V e T, W.

This action of g is smooth. The quotient of this multi- (vector) bundle
over Y, is clearly a smooth vector bundle over M?® provided with h.
Any section s of this smooth vector bundle can be lifted to the v(Xy)-
invariant section s of the above Yj-invariant multi-bundle. It is easy
to see that the space of v(Xy)-invariant sections corresponding to the
space of infinitesimal variations (or tangent bundle) of the ¥j-invariant
multi-section F'.

Now we shall work on the covering space. The linearized operator
Ly := LD applies to the pairs (9, ¢) where 9 is a v(3;)-invariant
section of the bundle f*(TW) over M® and ¢ is a 1-form on MS3.
Downstairs we shall identify 0 with its image denoted by 0 which is a
(local) vector field in Y along F'(M?®). To prove Lemma 3.10 it suffices
to show that the equation

(3.10.1) L§(0.9) =3

has a solution (8, ¢) for any given smooth differential 2-form § on M®.
Clearly o - o .
L0, $) = F*((8)dh) + d(d)h)) + d.

By Lemma 3.9 the map Fj is a dh-regular immersion. Hence the
System

(3.10.2) F*(d]dh) = g,

(3.10.3) F*(d]h)+6=0

is solvable for all 2-form § on M®. Clearly every solution (0, d~>) of
(3.10.2) and (3.10.1) satisfies (3.10.1). O

Now using A.4 and Lemma 3.10 we complete the proof of Lemma
3.9. O

Completion of the proof of Theorem 3.6.

Using Corollary 3.2, Lemma 3.3 and Lemma 3.4 we can find a map
f: M7 — W such that f*([h]) = [¢] € H}(M",Z). Since M7 is a
deformation retract of M® the map f extends to a map F : M® — W
such that F*[h] = [g].

For each z € M® we denote by Mono((T>M?®, g), (Tp,yW, h)) the
set of all monomorphisms p : T,M® — T F()W such that the re-
striction of h(F(z)) to dF(T,M?®) is equal to (dF~1)*g. To save the
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notation, whenever we consider the restriction of the form g to an
open subset U C M® we shall denote also by g this restriction. The
following Proposition is crucial in our proof in order to use the H-
principle.

3.11. Proposition. There exists a section s of the fibration
Mono((TM8, g), (F*(TW,h)) such that s(z)(T,M?) is h-reqular sub-
space for all z € MS3.

In our case W = (S%)V. The tangential bundle T'S? is paralelliz-
able, hence F*(TW) = M x R3V,

Proof of Proposition 3.11. The proof of Proposition 3.11 consists
of 3 steps.

Step 1. In the first step we show the existence of a section s; €
Mono(TM8, M x R3No) such that the image of s; is h-regular sub-
bundle of dimension 8 in M x R3No. To save notation we also denote
by h the following 3-form on R3No

No
h=Y_duj Ada? A dal.
j=1

It is easy to see that h is multi-symplectic. Furthermore we shall
assume that (w}),1 <i <3, is some fixed vector basis in R?.

3.12. Lemma. For each given k > 3 there there exists a k-
dimensional subspace VF in R3N0 such that V¥ is h-regular subspace,
provided that No > 5+ (k/2 — 2)(3 + k/2), if k is even, and Ny >
6+ ([k/2] —2)(3+ [k/2]) + [k/2], if k is odd.

Proof. We shall construct a linear embedding f : VF — R3MNo
whose image satisfies the condition of Lemma 3.12. Each linear map
f can be written as

f:(flaf27"' 7fN)7 flkaRiZzlaiNO

Now we can assume that V3 C V4 C ... € V¥ is a chain of subspaces
in V¥ which is generated by some vector basis (e1,---ex) in V. We
denote by (e}, -+ ,e}) the dual basis of (V¥)*. By construction, the
restriction of (ef,---,ef) to V' is the dual basis of (ey,-s,¢;) € V°.
For the simplicity we shall denote the restriction of any v} to these
subspaces also by v; (if the restriction is not zero). We shall con-

struct f; inductively on the dimension k of V¥ such that the following
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condition holds for all 3 < i <k

(3.13) < f7(A2RD)), F5(ARRD)), - , Fy (A2(RY ) >omm AZ(VY).

The condition (3.13) implies that f(V?) is h-regular, since the image
In(R x - x RY;)) = 650 A2 (R3).

For i = 3 we can take f; = Id, and §(1) = 1. Suppose that fs4 is
already constructed. To find f;, §(i) +1 < j < 6(i + 1), we need to
find a linear embeddings f5(;)41, -, fs(i+1) such that

(3.14)

< fg(i)+1A2(R§(i)+1)a T 7fg(i+1)A2(R§(i+1)) > @R €f+1 A Al(Vi)~
We can proceed as follows. We let
fileiyr) =wj € RY, i j > 6(i) + 1, fi(eip1) =0, if j < (i)

To complete the construction of f; we need to specify f;(e;), for 1 <
I <iandj>d(i) + 1. For such [ and j we shall define fj(e;) =0 or
filer) = wjz or fi(e) = wg»’ so that (3.14) holds. A simple combinatoric
calculation shows that the most economic “ distribution” of f;(e;)
satisfies the estimate for (¢) as in Lemma 3.12. O

Now once we have chosen a h-regular subspace V!7 in R by
Lemma 3.12, we shall find a section s; for the step 1 by require that
s1 is a section of Mono(TM®, M x V7). This section exists, since
the fiber Mono(T,, M8, R'7) is homotopic equivalent to SO(17)/SO(9)
which has all homotopy groups 7; vanishing, if 7 < 8. This completes
the step 1.

Step 2. Once a section s1 in Step 1 is specified we put the following
form g; on TM8:

g1 =g — si(h).

In this step we show the existence of a section so of the fibration
End((TM8, g1), (M xR3N1 b)) (we do not require that so is a monomor-
phism).

Using the Nash trick [Nash1956] we can find a finite number of open
coverings U/, j = 1,8 of M® which satisfy the following properties:

(3.14) N/NN] =0,Vj=T1,8 and i # k,
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and moreover Uij is diffeomorphic to an open disk for all ¢,j. Since
Uij satisfy the condition (3.14), for a fixed j we can embed the union
UiUij into R®. Thus for each j on the union UZ-Uij we have local coor-
dinates 27, r = 1,8, j = 1,8. Using partition of unity functions fi(2)
corresponding to UiUg we can write

8
g1(z) = ij(z) it (z) sdalt Nde? ANdalP i € (1,01, 8).
j=1

We numerate (i.e. find a map 6 to NT) the set (j,r172r3). Let Ny =
8- Cg. Next we find the section s, of form

s2(2) = (51(2), -+ , 5N, (2)), Sq(2) € End(T. M RY)
such that

89(j7T1T27“3)<z) = fj(z) ’ M§1T2r3 (Z) “Apiry,ry, Where A(axn) = 5liei'
Here (e1, €9, e3) is a vector basis in Rg’ for ¢ = 0(j,r17r9r3). Clearly the
map so satisfies the condition sg(h) = g1. This completes the second
step.

Step 3. We put
s = (s1,52),

where sy is constructed in Step 1 and sg is constructed in Step 2.
Clearly s satisfies the condition of Lemma 3.11. O

Theorem 3.6 now follows from Proposition 3.7, Proposition 3.11,
Appendix A.2 and the following observation [Gromov1986, 3.4.1.B’]
that M7 is a sharply movable submanifold by strictly exact diffeotopies
in M8, O

3.15. Theorem-Remark. It follows directly from the Eliashberg-
Mishachev Theorem on the approximation of given differential form
by a closed form [E-M2002,10.2.1] and form the openess and invari-
ance of the space of G2 structures, that any Go structure on an open
manifold M7 is homotopic to a closed Ga-structure on M”.
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4 Appendix: Flexibility, microflexibil-
ity and Nash-Gromov implicit function
theorem.

In this appendix we recall Gromov theorems on the relation between
flexibility as well as microflexibility and H-principle.

A1l. H-principle and flexibility[ Gromov1986, 2.2.1.B].If V is a
locally compact countable polyhedron (e.g.) manifold, then every flex-
ible sheaf over V satisfies the H-principle. (Actually the parametric
H-principle which implies the H-principle.)

To formulate the relation between the flexibility and microflexi-
bility (of solution sheafs) under certain conditions in [A2] we need to
describe these conditions with the notion of acting in (solution) sheaf
diffeotopies, which move sharply a set.

Suppose that U C U’ C V are open subsets in V. We say that
diffeotopies &, : U — U’,t € [0,1],6p = Id, act in a sheaf ® on
subset ® C ®(U’'), if §; assigns each section ¢ € &' a homotopy
of sections in ®(U) which we shall call §;¢ such that the following
conditions hold

* 059 =P

e If two sections ¢1,¢2 € P’ coincide at some point u, € U’
and if 04 (up) = ug for some uyg € U and ty € [0,1], then
(05, #1)(u) = (d4¢2)(ug). This allows us to write ¢(d¢(u)) in-
stead of (0;¢)(u),u € U.

e Let Up C U be the maximal open subset where (6;)y = Id.
Then The homotopy 6; (¢) is constant in ¢ over Uy.

e If the diffeotopy d; is constant in ¢ for ¢t > tg over all U, then
the homotopy d; ¢ is also constant in ¢ for ¢ > .

o If ¢, € @', p € P is a continuous family of sections, then the
family d;¢), is jointly continuous in ¢ and p.

Let Vj be a closed subset of the above U’ C V. Suppose that V
is provided with some metric. Let A be a set of diffeotopies d; : U’ D
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OpVy — U’'. We call A strictly moving a given subset S C Vj, if
dist(6:(S), Vo) > p> 0 for t > 1/2 and for all §; C A.

Further we call A sharp at S, if for every 4 > 0 there exists
0 € A such that

e (6)jop(w) = Id,t € [0,1] for all points v € Vj such that dist(v, S) >
i, where Op(v) is an (arbitrary) small neighborhood of v

° 515 :(51/2 fOI’tZ 1/2

For a given sheaf ® on V and for a given action of the set A of
diffeotopies d; on subset @gt C ®(U’), we say that acting diffeotopies
sharply move V) at S C Vj, if for each compact family of sections
®, € ®(U’') there exists a subset A C A which is strictly moving S
and sharp at S such that ¢, € @5 for all §; € A.

We say that acting in ® diffeotopies sharply moves a subman-
ifold V) C V, if each point v € V admits a neighborhood U’ C V
such that acting diffeotopies 0, : Vj = Vo N U’ — U’ sharply move Vj
at any given closed hypersurface S C Vj.

A.2. A criterion on flexibility.[Gromov1986, 2.2.3.C”] Let ® be
a microflexible sheaf over V. and let a submanifold Vo C V' be sharply
movable by acting in @ diffeotopies. Then the sheaf ®o = Py, is
flexible and hence it satisfies the h-principle.

Before stating the Nash-Gromov implicit Function Theorem in A2
we need to introduce several new notions. Let X be a C'°°-fibration
over an n-dimensional manifold V' and let G — V be a smooth vector
bundle. We denote by X* and G% respectively the spaces of C“-
sections of the fibrations X and G for all @« = 0,1, -+ ,00. Let D :
X" — GY be a differential operator of order r. In other words the
operator D is given by a map A : X(") — G, namely D(z) = A o J7,
where J(v) denotes the r-jet of x at v € V. We assume below that
D is a C*-operator and so we have continuous maps D : X" — G«
forall« =0,1,--- ,00.

We say that the operator D is infinitesimal invertible over a
subset A in the space of sections z : V' — X if there exists a family of
linear differential operators of certain order s, namely M, : G5 — )9,
for x € A, such that the following three properties are satisfied.

1. There is an integer d > r, called the defect of the infinites-
imal inversion M, such that A is contained in X%, and fur-
thermore, A = A% consists (exactly and only) of C-solutions
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of an open differential relation A ¢ X(@. In particular, the
sets A*td = AN X2t are open in Xt in the respective fine
C“ + d-topology for all « =0,1,--- , 0.

2. The operator M, (g) = M)z, g) is a (non-linear) differential op-
erator in x of order d. Moreover the global operator

M:AYx G* — 7% =T(x%

is a differential operator, that is given by a C®°-map A®G) —
Tvert (X) .

3. Lo M, = Id that is

L(z,M(z,g)) = g for all z € A" and g € G".

Now let D admit over an open set A = A% C X?an infinitesimal
inversion M of order s and of defect d. For a subset B C X% x G° we
put BYP := BN (X x GP). Let us fix an integer oy which satisfies the
following inequality

(%) oo > § = max(d, 2r + s).

Finally we fix an arbitrary Riemannian metric in the underlying
manifold V.

A.3. Nash-Gromov implicit function theorem.[Gromov1986,
2.3.2]. There exists a family of sets B, C G5 for all x € A0S,
and a family of operators D' : B, — A with the following five prop-
erties.

1. Neighborhood property: Each set B, contains a neighborhood of
zero in the space G7F5.  Furthermore, the union B = {x} X

B, where x runs over A%°TTTS is an open subset in the space
A00+r+s % gcro—l-s.

2. Normalization Property: D;1(0) = x for all x € A°0FTT+s,

3. Inversion Property: Do D! —D(x) = Id, for all x € A7FTFs,
that is
D(D;(9)) = D(x) + g,

for all pairs (x,g) € B.
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4. Regularity and Continuity: If the section x € A is C™MT7+s.
smooth and if g € By is C' 5-smooth for o9 < o1 < 1, then
the section D;1(g) is C7-smooth for all o < o1. Moreover the
operator D1 . BmArtsoits o A0 Dz g) = D;(g), is
jointly continuous in the variables x and g. Furthermore, for
N1 > o1, the section D1 : BMHrHsoits . A% s continuous.

5. Locality: The value of the section D;'(g) : V. — X at any
given point v € V does not depend on the behavior of x and g
outside the unit ball By (1) in V with center v, and so the equality

(,9)18,01) = (&', 9 ) B,y implies D7 (9))(v) = (D' (9))(v).

A.3’. Corollary. Implicit Funtion Theorem. For every zg €
A there exists fine C5t5T 1 neighborhood By of zero in the space of
Gs+ s+ 1, where § = max(d, 2r + s), such that for each C°*5-section
g € By, 0 > 5+1, the equation D(x) = D(xg = +g has a C?-solution.

Finally we shall define the solution sheaf ® whose flexibility is a
consequence of the Nash-Gromov implicit function theorem.

Let us fix a C*°-section g : V' — G and call a C*°-germ x : Op(v) —
X, v €V, an infinitesimal solution of order a of the equation
D(x) = g, if at the point v the germ ¢’ = g — D(z) has zero a-jet ,
ie. Jg(v) = 0. We denote by R%(D, g) C X(+2) the set of all jets
represented by these infinitesimal solutions of order o over all points
v e V. Now we recall the open set A C X (@ defining the set A C X (4
and for a > d — r we put

Ra = Ra(A,D,g) = A4 ARY(D, g) c X+,

where A"~ = (pit*)~1(A) for pi T X7t — X4,
A C"tsection z : V — X satisfies R, iff D(z) = g and z € A.
Now we set R = R4_, and denote by ® = ®(R) = ®(A, D, g) the
sheaf of C'*°-solutions of R.

A.4. Microflexibility of the sheaf of solutions and Nash-
Gromov implicit functions.[Gromov1986 2.3.2.D”] The sheaf ® is
microflexible.
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