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Abstract

In this note we propose a new way of constructing compact 7-
manifolds with a closed G2-structure. As a result we find a first
example of a closed G2-structure on S3 × S4. We also prove that
any integral closed G2-structure on a compact 7-manifold M7 can be
obtained by embedding M7 to a universal space (W 3(80+8.C3

8 ), h).
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1 Introduction.

Let ΛkV n be the space of k-linear anti-symmetric forms on a given
linear space V n. For each ω ∈ Λk(V n) we denote by Iω the linear map

Iω : V n → Λk−1(V n), x 7→ (xcω) := ω(x, · · · ).

A k-form ω is called multi-symplectic, if Iω is a monomorphism.
The classification (under the action of Gl(V n)) of multi-symplectic

3-forms in dimension 7 has been done by Bures and Vanzura [B-
V2002]. There are together 8 types of these forms, among them there
two generic classes of G2-form ω3

1 and G̃2-form ω3
2. They are generic in
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the sense of Gl(V 7)-action, more precisely the orbits Gl(V 7)(ω3
i ), i =

1, 2, are open sets in Λ3(V 7). The corresponding isotropy groups are
the compact group G2 and its dual non-compact group G̃2.

We shall write here a canonical expression of the G2-form ω3
1 (see

e.g. [B-V2002] or [Joyce1996])

(1.1) ω3
1 = θ1 ∧ θ2 ∧ θ3 + α1 ∧ θ1 + α2 ∧ θ2 + α3 ∧ θ3.

Here αi are 2-forms on V 7 which can be written as

α1 = y1 ∧ y2 + y3 ∧ y4, α2 = y1 ∧ y3 − y2 ∧ y4, α3 = y1 ∧ y4 + y2 ∧ y3

and (θ1, θ2, θ3, y1, y2, y3, y4) is an oriented basis of (V 7)∗.
A 7-dimensional manifold M7 is said to be provided with a G2-

structure, if there is given differential 3-form φ3 on it such that at
every point x ∈M7 the form φ3(x) is of G2-type.

- A G2-structure φ is called closed, if dφ = 0. The closedness of a
G2-structure φ is a necessary condition for aG2-structure to be flat, i.e.
the Ricci curvature of the associated Riemannian metric g(φ) (via the
canonical embedding G2 → SO(7)) vanishes (see e.g. [Bryant2005]).
We notice that the first examples of a Riemannian metric with G2

holonomy has been constructed by Joyce [Joyce1996] by deforming
certain closed G2-structures. Closed 3-forms have been also used by
Severa and Weinstein to deform Poisson structures [V-W2001].

- We shall call that a closed structure G2 integral, if the cohomol-
ogy of the G2-form φ is an integral class in H3(M7,Z) ⊂ H3(M7,R).

Without additional conditions the existence of a G2-structure is
a purely topological question (see [Gray1969]). On the other hand
the existence of a flat G2-structure is really “exceptional” in the sense
that this structure is a solution to an overdetermined PDE (see e.g.
[Bryant2005]). The intermediate class of closed G2-structures is never-
theless has not been investigated in deep. We know only few examples
of these structures on homogeneous spaces [Fernandez1987], and their
local geometry [C-I2003]. The examples of flat G2-structures on M7

obtained by Joyce [Joyce1996] and Kovalev [Kovalev2001] have a com-
mon geometrical flavor, that they begin with M7 with simple (or well
understood) holonomy and then modify topologically these manifolds.

In this note we propose a new way to construct a closed G2-
structure by embedding a closed manifoldM7 into a semi-simple group
G. The motivation for this construction is the fact that there exists a
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closed multi-symplectic bi-invariant 3-form on G, so “generically” the
restriction of this 3-form to any 7-manifold in G must be a G2-form.
We shall show different ways to get a closed G2-structure on S3 × S4

by this method (Theorem 2.2 and Theorem 2.10). In Theorem 3.6 we
prove that any closed integral G2-structure φ on a compact M7 can be
“multi-embedded” in a finite product of S3 = SU(2) with a canonical
closed 3-form h such that the pull-back of h is equal to φ. This theo-
rem is close to the Tits theorem on the embedding of compact integral
symplectic manifold to CPn. We prove theorem 3.6 by using Gromov
H-principle. We also showed in Theorem-Remark 3.15 that the ex-
istence of a closed G2-structure on an open manifold M7 is purely a
topological question. This can be done in the same way as Gromov
proved the analogous theorem for open symplectic manifolds. Theo-
rem 3.15 is also called a remark, because it is a direct consequence of
the Eliashberg-Mishachev holonomy appoximation theorem.

2 Two ways to get a closed G2-structure

on S3 × S4.

Our examples (Theorem 2.2 and Theorem 2.10) are closed subman-
ifolds S3 × S4 in semi-simple Lie groups SU(3) and G × (SU(2))N ,
N = 80 + 8 × C3

8 . On each semi-simple Lie group G there exists
a natural bi-invariant 3-form φ3

0 which is defined at the Lie algebra
g = TeG as follows

φ3
0(X,Y, Z) =< X, [Y, Z] >,

where <,> denotes the Killing form on g.

2.1. Lemma. The form φ3
0 is multi-symplectic.

Proof. We need to show that Iφ3
0

is monomorphism. We notice
that if X ∈ ker Iφ3

0
then

< X, [Y, Z] >= 0 for all Y, Z ∈ g.

But this condition contradicts the semi-simplicity of g. 2

Let us consider the group G = SU(3). For each 1 ≤ i ≤ j ≤ 3 let
gij(g) be the complex function on SU(3) induced from the standard
unitary representation ρ of SU(3) on C3: gij(g) :=< ρ(g) ◦ ei, ēj >.
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Here {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} is a unitary basis of
C3. Now we denote by X7 the co-dimension 1 subset in SU(3) which
is defined by the equation Im(g11(g)) = 0.

2.2. Theorem. The subset X7 is diffeomorphic to the manifold
S3 × S4. Moreover X7 is provided with a closed G2-form ω3 which is
the restriction of φ3

0 to X7.

Proof. Let SU(2) be the subgroup in SU(3) consisting of all g ∈
SU(3) such that ρ(g)◦e1 = e1. We denote by π the natural projection

π : SU(3) → SU(3)/SU(2).

We identify SU(3)/SU(2) with the sphere S5 ⊂ C3 via the standard
representation ρ of SU(3) on C3. This identification denoted by ρ̃ is
expressed as follows.

ρ̃(g · SU(2)) = g ◦ e1.

We denote by Π the composition ρ̃◦π : SU(3) → SU(3)/SU(2) →
S5. Let S4 ⊂ S5 be the great circle which consists of points v ∈ S5

such that Ime1(v) = 0. Here {ei, i = 1, 2, 3} are the complex 1-forms
on C3 which are dual to {ei}. The pre-image Π−1(S4) consists of all
g ∈ SU(3) such that

Ime1(g ◦ e1) = 0.

⇐⇒ Im (g11) = 0.

SoX7 is SU(2)-fibration over S4. But this fibration is the restriction of
the SU(2)-fibration Π−1(D5) over the half-sphere D5 to the boundary
∂D5 = S4. So it is a trivial fibration. This proves the first statement
of Theorem 2.2.

We fix now a subgroup SO(2)1 in SU(3) where SO(2)1 is the
orthogonal group of the real space R2 ⊂ C3 such that R2 is the span
of e1 and e2 over R.

We denote by mL(g) (resp. mR(g)) the left multiplication (resp.
the right multiplication) by an element g ∈ SU(3).

2.3. Lemma. X7 is invariant under the action of mL(SU(2)) ·
mR(SU(2)). For each v ∈ S4 there exist an element α ∈ SO(2)1 and
an element g ∈ SU(2) such that Π(g · α) = v. Consequently for any
point x ∈ X7 there are g1, g2 ∈ SU(2) and α ∈ SO(2)1 such that

(2.3.1) x = g1 · α · g2,
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Proof. The first statement follows from straightforward calcu-
lations, (our realization that X7 = Π−1(S4) implies that the or-
bit of mR(SU(2))-action on X7 are the fiber Π−1(v)). Let v =
(cosα, z2, z3) ∈ S4, where zi ∈ C. We choose α ∈ SO(2)1 so that

(2.4) ρ(α) ◦ e1 = (cosα, sinα) ∈ R2.

Clearly α is defined by v uniquely up to sign ±. We set

w := (sinα, 0) ∈ C2 =< e2, e3 >⊗C .

We notice that
|z2|2 + |z3|2 = sin2 α.

Since SU(2) acts transitively on the sphere S3 of radius | sinα| in
C2 =< e2, e3 >⊗C, there exists an element g ∈ SU(2) such that
ρ(g) ◦ w = (z2, z3). Clearly

Π(g · α) = v.

The last statement of Lemma 2.3 follows from the second statement
and the fact that X7 = Π−1(S4) 2

Using (2.3.1) to complete the proof of Theorem 2.2 it suffices to
check that the value of ω at any α ∈ SO(2)1 ⊂ X7 is a G2-form,
since φ3

0 is a bi-invariant form on SU(3). We divide the remaining
part of the proof of Theorem 2.2 into two steps. In the first step we
shall compute that value ω3 at α = e and in the second step we shall
compute the value ω3 at any α ∈ SO(2)1.

Step 1. Let us first compute the value ω3(e) ∈ X7. We shall use
the Killing metric to identify the Lie algebra su(3) with its co-algebra
g. Thus in what follows we shall not distinguish co-vectors and vectors,
poly-vector and exterior forms on su(3). Clearly we have

TeX
7 = {v ∈ su(3) : Img11(v) = 0}.

Now we identify gl(C3) with C3 ⊗ (C3)∗ and we denote by eij the
element of gl(C3) of the form ei ⊗ (ej)∗.

A straightforward calculation gives us

(2.5) ω3(x0) =
√

2δ1 ∧ δ2 ∧ δ3 +
1√
2
ω1 ∧ δ1 +

1√
2
ω2 ∧ δ2 +

1√
2
ω3 ∧ δ3,
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where δi are 1-forms in TeX
7 which are defined as follows:

δ1 =
i√
2
(e22 − e33), δ2 =

1√
2
(e23 − e32), δ3 =

i√
2
(e23 + e32).

Furthermore, ωi are 2-forms on TeX
7 which have the following expres-

sions:

2ω1 = −(e12 − e21) ∧ i(e12 + e21) + (e13 − e31) ∧ i(e13 + e31),

2ω2 = −(e12 − e21) ∧ (e13 − e31)− i(e12 + e21) ∧ i(e13 + e31),

2ω3 = −(e12 − e21) ∧ i(e13 + e31) + i(e12 + e21) ∧ (e13 − e31).

Now compare (2.5) with (1.1) we observe that these two 3-forms
are Gl(R7) equivalent (e.g. by rescaling δi with factor (1/2)). This
proves that ω3(x0) is a G2-form. This completes the step 1.

Step 2. Using step 1 it suffices to show that

(2.6) DmL(α−1)(TαX
7) = TeX

7

for any α ∈ SO(2)1 ⊂ X7, α 6= e.
Since X7 ⊃ α · SU(2), we have

(2.7) su(2) ⊂ DmL(α−1)(TαX
7).

Denote by SO(3) the standard orthogonal group of R3 ⊂ C3. Since
α ∈ SO(3) ⊂ X7, we haveDmL(α−1)(TαSO(3)) ⊂ DmL(α−1)(TαX

7).
In particular we have

(2.8) < (e12 − e21), (e13 − e31) >⊗R⊂ DmL(α−1)(TαX
7).

Since SU(2) · α ⊂ X7, we have

(2.9) Ad(α−1)su(2) ⊂ DmL(α−1)(TαX
7).

Using the formula

Ad(α−1) = exp(−ad(t · e12 − e21√
2

)), t 6≡ 0

we get immediately from (2.7), (2.8), (2.9) the following inclusion

< i(e12 + e21), i(e13 + e31) >⊗R⊂ DmL(α−1)(TαX
7))
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which together with (2.7), (2.8) imply the desired equality (2.6). 2

This completes the proof of Theorem 2.2. 2

Our constructed subsmanifold S3×S4 in SU(3) is quite symmetric.
The symmetry of a submanifold helps us to compute a lot of things
on it easily. On the other side, the notion of symmetry is quite far
from the notion of genericity. That is why it takes a lot of time for me
in searching another nontrivial (that means not via a representation
of SU(3) into another compact Lie group) example of a submanifold
M7 with a closed (and induced) G2-structure in a Lie group G which
has a lot of symmetries. The idea is how to integrate the G2-structure
distribution to a compact submanifold. It is not hard to find that
distribution in the Lie algebra g, but is is hard (like in calibration
geometry) to integrate that distribution to an explicit symmetric and
compact submanifold.

So we chose another way to construct a closed G2-structure on
S3×S4 by combining Theorem 2.2 with the technique of our proof of
Theorem 3.6.

Theorem 2.10. For any given simply-connected compact semi-
simple Lie group G, and any given integral closed G2-structure φ on
S3×S4 (e.g. that from Theorem 2.2) there exists an embedding f : S3×
S4 → G′ = G×(SU(2))80+4·C3

8 such that the restriction of the standard
bi-invariant form φ3

0 from G′ to f(S3 × S4) is equal to φ. Moreover
we can require that the pull-back (via the projection) of a given non-
decomposable element α ∈ H3(M,Z) to the image f(S3× S4) is equal
to [φ] ∈ H3(M,Z).

Proof. Using the fact that H3(S3 × S4,Z) = π3(S3) = Z, and
taking into account for a Lie group G as in Theorem 2.10 the following
identity: H3(G,Z) = π3(G) we can find a map f1 : M7 → G such that
the second condition in Theorem 2.10 holds. Now I shall modify this
map f1 to the required embedding f by using the same H-principle as
in our proof of Theorem 3.6. The only thing we can improve in this
proof is the dimension of the target manifold. Instead of number 8 of
special coverings on M7 (using in the step 2 of the proof of Theorem
3.6) we can chose 4 open disks which cover S3 × S4. 2

2.11. Remark. It remains also an interesting question, if we can
deform closed G2-structures on S3 × S4 to a flat one.
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3 Universal space for closed G2-structures.

In this section we shall show that any integral closed G2-structure φ
on a compact 7-dimensional smooth manifold M7 can be induced from
an embedding M7 to a universal space (W̄ , h̄), see Theorem 3.6.

Our definition of the universal space (W̄ , h̄) is based on the work
of Dold and Thom [D-T1958].

Let SP q(X) be the q-fold symmetric product of a locally compact,
paracompact Hausdorff pointed space (X, 0) , i.e. SP q(X) is the quo-
tient space of the q-fold Cartesian (Xq, 0) over the permutation group
σq. We shall denote by SP (X, 0) the inductive limit of SP q(X) with
the inclusion

X = SP 1(X) i1→ SP 2(X) i2→ · · · → SP q(X)
iq→ · · · ,

where

SP q(X)
iq→ SP q+1(X) : [x1, x2, · · · , xq] 7→ [0, x1, x2, . . . , xq].

Equivalently we can write

SP (X, 0) =
∑

q

SP q(X)/([x1, x2, · · · , xq] ∼ [0, x1, x2, · · · , xq]).

So we shall also denote by iq the canonical inclusion SP q(X) →
SP (X, 0).

3.1. Theorem (see [D-T1958, Satz 6.10]). There exist natural
isomorphisms j : Hq(X,Z) → πq(SP (X, 0)) for q > 0.

3.2. Corollary. ([D-T1958]) The space SP (Sn, 0) is the Eilenberg-
McLane complex K(Z, n).

3.3. Lemma. Any continuous map f from M7 to SP (S3, 0) is ho-
motopic equivalent to a continuous map f̃ from M7 to i3(SP 3(S3)) ⊂
SP (S3, 0).

Proof. We fix the following simplicial decomposition: S3 = R3 ∪
{0}. Then SP q(S3) has the following simplicial decomposition

(3.3.1) SP q(S3) = {0} ∪q
p=1 (R3)p.

It follows that

(3.3.2) SP (S3, 0) = {0} ∪∞p=1 (R3)p.
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Denote by Σ7(SP (S3, 0)) the 7-dimensional skeleton of SP (X3, 0).
Clearly any continuous map f : M7 → SP (S3, 0) is homotopic to
a map f̃ : M7 → Σ7(SP (S3, 0)). Now using the canonical inclusion
i3 : SP 3(S3) → SP (S3, 0) we get Lemma 3.3 immediately from (3.3.1)
and (3.3.2). 2

Using the diffeomorphism S3 = SU(2) we choose a canonical par-
allelization of TS3 by the left multiplication on S3. Let dxi

j , i = 1, 2, 3
denote the left invariant 1-forms on S3

j dual to δ1, δ2, δ3 in section 2,
see (2.5). Then

(3.4) dx1
j =

√
2dx2

j ∧ dx3
j , dx

2
j = −

√
2dx1

j ∧ dx3
j , dx

3
j =

√
2dx1

j ∧ dx2
j .

Let πj : Πk
j=1S

3
j → S3

j = S3 denote the canonical projection. We shall
abbreviate Π∗

i (dx
i
j) also by dxi

j .

3.5. Lemma. The differential form h =
∑k

j=1 dx
1
j ∧ dx2

j ∧ dx3
j is

closed. It descends to a differential form h̄ on SP k(S3). This form h̄
is the generator of H3(SP k(S3),R) = H3(SP k(S3),Z) = Z.

Proof. Clearly h is closed. Furthermore the form h is invariant
under the action of the permutation group σk on Πk

i=jS
3
j . This proves

the second statement.
To prove the last statement we notice that the integration of h̄

over the image of ik−1 ◦ · · · ◦ i1(S3 = SP 1(S3)) ⊂ SP k(S3) is equal to
1. 2

Now we state the main theorem of this section. Put N = 80+8·C3
8 .

Set W = ΠN
i=1S

3
i and W̄ = SPN (S3).

3.6. Theorem. Suppose that φ is a closed integral G2-form on a
compact smooth manifold M7. Then there is an embedding f : M7 →
(W̄ , h̄) such that f∗(h̄) = φ.

Proof of Theorem 3.6. The proof of Theorem 3.6 is based on the
Gromov H-principle.1 Let us quickly recall several notions introduced
by Gromov in [Gromov1986].

Let V and W be smooth manifolds. We denote by (V,W )(r), r ≥ 0,
the space of r-jets of smooth mappings from V toW . We shall think of
each map f : V →W as a section of the fibration V ×W = (V,W )(0)

1to avoid confusing between the original notion h-principle of Gromov and his notion
of h as a differential form, we decide to use the capital H for H-principle.
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over V . Thus (V,W )(r) is a fibration over V , and we shall denote by
pr the canonical projection (V,W )(r) to V , and by ps

r the canonical
projection (V,W )(s) → (V,W )(r).

We also say that a differential relation R ⊂ (V,W )(r) satisfies the
H-principle near a map f0 : V → W , if every continuous section
φ0 : V → R which lies over f0, (i.e. pr

0 ◦ φ0 = f0) can be brought
to a holonomic section φ1 by a homotopy of sections φt : V → RU ,
t ∈ [0, 1], for an arbitrary small neighborhood U of f0(V ) in V ×W
[Gromov1986, 1.2.2]. Here for an open set U ⊂ V ×W , we write

RU := (pr
0)
−1(U) ∩R ⊂ (V,W )r.

The H-principle is called C0-dense, if it holds true C0-near every
map f : V →W .

Let h be a smooth differential k-form on W . A subspace T ⊂ TwW
is called h(w)-regular, if the composition of Ih(w) with the restriction
homomorphism Λk−1TwW → Λk−1T sends TwW onto Λk−1T .

An immersion f : V →W is called h-regular, if for all v ∈ V the
subspace Df(TvV ) is h(f(v))-regular.

Let G be a finite group acting effectively on W . It is well-known
(see e.g. [Pflaumen2001]) that the deRham complex on an orbifold
W̄ = W/G can be identified with the complex of G-invariant differen-
tial forms onW . Furthermore the cohomology of the deRham complex
on W̄ coincides with the singular cohomology of W̄ with coefficients
in R.

Any map f̄ : V → W̄ can be seen (or lifted to) as a G-invariant
multi-map f : V → W . Conversely, any G-invariant multi-map f :
V → W descends to a map f̄ : V → W̄ . We say that a G-invariant
multi-map f : V → W is a h-regular multi-immersion, if it is a
h-regular immersion at every branch of f . This definition descends
to W̄ and gives us the notion of h̄-regular immersion. In the same
way we define the notion of H-principle for G-invariant multi-maps
V → W which is equivalent to the notion of H-principle for a map
f̄ : V → W̄ . For treating general stratified spaces W̄ we refer the
reader to [Pflaumen2001].

We also use the notions of a flexible sheaf and a microflexible sheaf
introduced by Gromov in order to study the H-principle.

Suppose we are given a differential relation R ⊂ (V,W )(r). Fix an
integer k ≥ r and denote by Φ(U) the space of Ck-solution of R over
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U for all open U ⊂ V . This set equipped with the natural restriction
Φ(U) → Φ(U ′) for all U ′ ⊂ U makes Φ a sheaf. We shall say that Φ
satisifes the H-principle, if R satisfies the H-principle. 2

A sheaf Φ is called flexible (microflexible), if the restriction map
Φ(C) → Φ(C ′) is a fibration (microfibration) for all pair of compact
subsets C and C ′ ⊂ C in M . We recall that the map α : A →
A′ is called microfibration, if the lifting homotopy property for a
homotopy ψ : P × [0, 1] → A′ is valid only “micro”, e.g. there exists
ε > 0 such that ψ can lift to a ψ̄ : P × [0, ε] → A.

Now we suppose that M7 is a compact manifold with a closed
G2-form φ. Because φ is nowhere vanishing, [φ] represents a non-
trivial cohomology class in H3(M7,R). Let us consider a manifold
M8 = M7 × (−1, 1) provided with a form g = φ ⊕ 0. Denote by
Φreg the sheaf of h̄-regular immersion f̄ of M8 to (W̄ , h̄) such that
f̄∗[h̄] = [g].

3.7. Proposition. The sheaf Φreg is microflexible.

Proof. Let f̄0 be a h̄-regular immersion from M8 to W̄ such that
f̄∗0 [h̄] = [g]. We denote by F̄0 the corresponding section of M8×W̄ →
M8, i.e. F̄0(v) = (v, f̄0(v)). Denote by Γ0 ⊂M8 × W̄ the graph of f̄0

(i.e. it is the image of F̄0), and let p(g) and p(h̄) be the pull-back of the
forms g and h̄ to M8× W̄ under the obvious projection. Take a small
neighborhood Ȳ ⊃ Γ0 in M8 × W̄ . Using the Whitney local triviality
property of the orbifolds (see e.g. [Pflaum2001]) we get immediately

3.8. Lemma. The graph Γ0 is a deformation retract of Ȳ .

Thus we can write

p(h̄)− p(g) = dĥ

for some smooth 2-form ĥ on Ȳ . Alternatively by working on the
covering space Y , we notice that, if p(g) and p(h) are G-invariant
cohomologuous differential forms, then p(g)− p(h) = dh1, where h1 is
a G-invariant differential form on Y . In our case G is the permutation
group Σk.

Our next observation is

3.9. Lemma. Suppose a map F̄ : M8 → Ȳ corresponds to a h̄-
regular immersion f̄ : M8 → W̄ . Then F̄ is a dĥ-regular immersion.

2The reader can look at [Gromov 1986, 2.2.1] for a more general definition.
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Proof. We work now on the covering space Y . We need to show
that for all y ∈ {F (z)} ⊂ Y , z ∈M8, the composition ρ of the maps

TyY
Ip(h)−p(g)→ Λ2TyY → Λ2(dF y(T(z)(M

8))

is onto, where F y is a branch of F such that F y(z) = y. This follows
from the consideration of the restriction of ρ to the subspace S ⊂ TyY
which is tangent to the fiber W in M8 ×W ⊃ Y . 2

Now for a map F̄ : M8 → Ȳ and 1-form φ on M8 we set

D(F̄ , φ) := F̄ ∗(ĥ) + dφ.

Since the lifted form ĥ1 is invariant under the action of G = Σk

we see easily that F̄ ∗(ĥ) is a smooth differential form on M8.
With this notation the maps f̄ : M8 → W̄ corresponding to F̄ :

M8 → Y satisfy

f̄∗(h̄) = F̄ ∗(p(h̄)) = g + F̄ ∗(dĥ) = g + dD(F̄ , φ),

for any φ. Hence follows that the space of sections F̄ : M8 → Y for
which f̄∗(h̄) = g + dg1 for a given 2-form g1 has the same homotopy
type as the space of solutions to the equation

D(F̄ , φ) = g̃1.

In particular the equation f̄∗(h̄) = g reduces to the equation
D(F̄ , φ) = 0 in so far as the unknown map f̄ is C0-close to f̄0 (so
that its graph lies inside Y ).

3.10. Lemma. The differential operator D is infinitesimal invert-
ible at those pairs (F̄ , φ) for which the underlying map f̄ is a h̄-regular
immersion.

Proof. First we shall show that the fibration (F̄ ∗(TW̄ , h̄)) is a
smooth vector fibration over manifold M8 provided with a smooth
form h. In our notation F̄ ∗(TW̄ ) denotes the Σk-invariant multi-
(vector) bundle {F ∗(TW )} provided with Σk-invariant form F ∗(h).
We define an action ν of g ∈ G = Σk on this multi-bundle as follows.
For each z ∈ M8 the fiber of this multi-bundle consists of the set
{(Fwk)∗(Twk

W ), wk ∈ F (z)}. We set

if g(wk) = wk, then g(V ) = V for V ∈ Twk
W,
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if wk 6= g(wk) = ws, then g(V ) = g∗(V ) ∈ TwsW for V ∈ Twk
W.

This action of g is smooth. The quotient of this multi- (vector) bundle
over Σk is clearly a smooth vector bundle over M8 provided with h.
Any section s̄ of this smooth vector bundle can be lifted to the ν(Σk)-
invariant section s of the above Σk-invariant multi-bundle. It is easy
to see that the space of ν(Σk)-invariant sections corresponding to the
space of infinitesimal variations (or tangent bundle) of the Σk-invariant
multi-section F .

Now we shall work on the covering space. The linearized operator
Lf̄ := LF̄D applies to the pairs (∂, φ̃) where ∂ is a ν(Σk)-invariant
section of the bundle f∗(TW ) over M8 and φ̃ is a 1-form on M8.
Downstairs we shall identify ∂ with its image denoted by ∂̄ which is a
(local) vector field in Y along F̄ (M8). To prove Lemma 3.10 it suffices
to show that the equation

(3.10.1) Lf̄ (∂̄, φ̃) = g̃

has a solution (∂̄, φ̃) for any given smooth differential 2-form g̃ on M8.
Clearly

Lf̄ (∂̄, φ̃) = F̄ ∗((∂̄cdĥ) + d(∂̄cĥ)) + dφ̃.

By Lemma 3.9 the map F̄0 is a dĥ-regular immersion. Hence the
system

(3.10.2) F̄ ∗(∂̄cdĥ) = g̃,

(3.10.3) F̄ ∗(∂̄cĥ) + φ̃ = 0

is solvable for all 2-form g̃ on M8. Clearly every solution (∂̄, φ̃) of
(3.10.2) and (3.10.1) satisfies (3.10.1). 2

Now using A.4 and Lemma 3.10 we complete the proof of Lemma
3.9. 2

Completion of the proof of Theorem 3.6.
Using Corollary 3.2, Lemma 3.3 and Lemma 3.4 we can find a map

f̄ : M7 → W̄ such that f̄∗([h̄]) = [φ] ∈ H3(M7,Z). Since M7 is a
deformation retract of M8 the map f extends to a map F̄ : M8 → W̄
such that F̄ ∗[h̄] = [g].

For each z ∈ M8 we denote by Mono((TzM
8, g), (TF (z)W,h)) the

set of all monomorphisms ρ : TzM
8 → TF (z)W such that the re-

striction of h(F (z)) to dF (TvM
8) is equal to (dF−1)∗g. To save the
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notation, whenever we consider the restriction of the form g to an
open subset U ⊂ M8 we shall denote also by g this restriction. The
following Proposition is crucial in our proof in order to use the H-
principle.

3.11. Proposition. There exists a section s of the fibration
Mono((TM8, g), (F̄ ∗(TW̄ , h)) such that s(z)(TzM

8) is h-regular sub-
space for all z ∈M8.

In our case W = (S3)N . The tangential bundle TS3 is paralelliz-
able, hence F̄ ∗(TW̄ ) = M × R3N .

Proof of Proposition 3.11. The proof of Proposition 3.11 consists
of 3 steps.

Step 1. In the first step we show the existence of a section s1 ∈
Mono(TM8,M × R3N0) such that the image of s1 is h-regular sub-
bundle of dimension 8 in M ×R3N0 . To save notation we also denote
by h the following 3-form on R3N0

h =
N0∑
j=1

dx1
j ∧ dx2

j ∧ dx3
j .

It is easy to see that h is multi-symplectic. Furthermore we shall
assume that (wi

j), 1 ≤ i ≤ 3, is some fixed vector basis in R3
i .

3.12. Lemma. For each given k ≥ 3 there there exists a k-
dimensional subspace V k in R3N0 such that V k is h-regular subspace,
provided that N0 ≥ 5 + (k/2 − 2)(3 + k/2), if k is even, and N0 ≥
6 + ([k/2]− 2)(3 + [k/2]) + [k/2], if k is odd.

Proof. We shall construct a linear embedding f : V k → R3N0

whose image satisfies the condition of Lemma 3.12. Each linear map
f can be written as

f = (f1, f2, · · · , fN ), fi : V k → R3
i , i = 1, N0.

Now we can assume that V 3 ⊂ V 4 ⊂ · · · ⊂ V k is a chain of subspaces
in V k which is generated by some vector basis (e1, · · · ek) in V k. We
denote by (e∗1, · · · , e∗k) the dual basis of (V k)∗. By construction, the
restriction of (e∗1, · · · , e∗i ) to V i is the dual basis of (e1, ·s, ei) ∈ V i.
For the simplicity we shall denote the restriction of any v∗j to these
subspaces also by v∗j ( if the restriction is not zero). We shall con-
struct fi inductively on the dimension k of V k such that the following
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condition holds for all 3 ≤ i ≤ k

(3.13) < f∗1 (Λ2(R3
1)), f

∗
2 (Λ2(R3

2)), · · · , f∗δ(i)(Λ
2(R3

δ(i)) >⊗R= Λ2(V i).

The condition (3.13) implies that f(V i) is h-regular, since the image

Ih(R3
1 × · · · × R3

δ(i)) = ⊕δ(i)
j=1Λ

2(R3
j ).

For i = 3 we can take f1 = Id, and δ(1) = 1. Suppose that fδ(i) is
already constructed. To find fj , δ(i) + 1 ≤ j ≤ δ(i + 1), we need to
find a linear embeddings fδ(i)+1, · · · , fδ(i+1) such that
(3.14)
< f∗δ(i)+1Λ

2(R3
δ(i)+1), · · · , f

∗
δ(i+1)Λ

2(R3
δ(i+1)) >⊗R⊃ e∗i+1 ∧ Λ1(V i).

We can proceed as follows. We let

fj(ei+1) = w1
j ∈ R3

j , if j ≥ δ(i) + 1, fj(ei+1) = 0, if j ≤ δ(i).

To complete the construction of fj we need to specify fj(el), for 1 ≤
l ≤ i and j ≥ δ(i) + 1. For such l and j we shall define fj(el) = 0 or
fj(el) = w2

j or fj(el) = w3
j so that (3.14) holds. A simple combinatoric

calculation shows that the most economic “ distribution” of fj(el)
satisfies the estimate for δ(i) as in Lemma 3.12. 2

Now once we have chosen a h-regular subspace V 17 in R80 by
Lemma 3.12, we shall find a section s1 for the step 1 by require that
s1 is a section of Mono(TM8,M × V 17). This section exists, since
the fiber Mono(TxM

8,R17) is homotopic equivalent to SO(17)/SO(9)
which has all homotopy groups πj vanishing, if j ≤ 8. This completes
the step 1.

Step 2. Once a section s1 in Step 1 is specified we put the following
form g1 on TM8:

g1 = g − s∗1(h).

In this step we show the existence of a section s2 of the fibration
End((TM8, g1), (M×R3N1 , h)) (we do not require that s2 is a monomor-
phism).

Using the Nash trick [Nash1956] we can find a finite number of open
coverings U j

i , j = 1, 8 of M8 which satisfy the following properties:

(3.14) N j
i ∩N

j
k = ∅, ∀j = 1, 8 and i 6= k,
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and moreover U j
i is diffeomorphic to an open disk for all i, j. Since

U j
i satisfy the condition (3.14), for a fixed j we can embed the union
∪iU

j
i into R8. Thus for each j on the union ∪iU

j
i we have local coor-

dinates xr
j , r = 1, 8, j = 1, 8. Using partition of unity functions fj(z)

corresponding to ∪iU
j
i we can write

g1(z) =
8∑

j=1

fj(z) · µr1r2r3
j (z) · dxr1

j ∧ dxr2
j ∧ dxr3

j , ri ∈ (1, · · · , 8).

We numerate (i.e. find a map θ to N+) the set (j, r1r2r3). Let N1 =
8 · C3

8 . Next we find the section s2 of form

s2(z) = (s1(z), · · · , sN1(z)), sq(z) ∈ End(TzM
8,R3

q)

such that

sθ(j,r1r2r3)(z) = fj(z) · µr1r2r3
j (z) ·Ar1,r2,r3 , where A(∂xrl

) = δi
lei.

Here (e1, e2, e3) is a vector basis in R3
q for q = θ(j, r1r2r3). Clearly the

map s2 satisfies the condition s2(h) = g1. This completes the second
step.

Step 3. We put
s = (s1, s2),

where s1 is constructed in Step 1 and s2 is constructed in Step 2.
Clearly s satisfies the condition of Lemma 3.11. 2

Theorem 3.6 now follows from Proposition 3.7, Proposition 3.11,
Appendix A.2 and the following observation [Gromov1986, 3.4.1.B’]
thatM7 is a sharply movable submanifold by strictly exact diffeotopies
in M8. 2

3.15. Theorem-Remark. It follows directly from the Eliashberg-
Mishachev Theorem on the approximation of given differential form
by a closed form [E-M2002,10.2.1] and form the openess and invari-
ance of the space of G2 structures, that any G2 structure on an open
manifold M7 is homotopic to a closed G2-structure on M7.
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4 Appendix: Flexibility, microflexibil-

ity and Nash-Gromov implicit function

theorem.

In this appendix we recall Gromov theorems on the relation between
flexibility as well as microflexibility and H-principle.

A1. H-principle and flexibility[ Gromov1986, 2.2.1.B].If V is a
locally compact countable polyhedron (e.g.) manifold, then every flex-
ible sheaf over V satisfies the H-principle. (Actually the parametric
H-principle which implies the H-principle.)

To formulate the relation between the flexibility and microflexi-
bility (of solution sheafs) under certain conditions in [A2] we need to
describe these conditions with the notion of acting in (solution) sheaf
diffeotopies, which move sharply a set.

Suppose that U ⊂ U ′ ⊂ V are open subsets in V . We say that
diffeotopies δt : U → U ′, t ∈ [0, 1], δ0 = Id, act in a sheaf Φ on
subset Φ′ ⊂ Φ(U ′), if δt assigns each section φ ∈ Φ′ a homotopy
of sections in Φ(U) which we shall call δ∗t φ such that the following
conditions hold

• δ∗0φ = φ|U

• If two sections φ1, φ2 ∈ Φ′ coincide at some point u′0 ∈ U ′

and if δt0(u0) = u′0 for some u0 ∈ U and t0 ∈ [0, 1], then
(δ∗t0φ1)(u) = (δt0φ2)(u0). This allows us to write φ(δt(u)) in-
stead of (δ∗t φ)(u), u ∈ U .

• Let U0 ⊂ U be the maximal open subset where (δt)|U = Id.
Then The homotopy δ∗t (φ) is constant in t over U0.

• If the diffeotopy δt is constant in t for t ≥ t0 over all U , then
the homotopy δ∗t φ is also constant in t for t ≥ t0.

• If φp ∈ Φ′, p ∈ P is a continuous family of sections, then the
family δtφp is jointly continuous in t and p.

Let V0 be a closed subset of the above U ′ ⊂ V . Suppose that V
is provided with some metric. Let A be a set of diffeotopies δt : U ′ ⊃
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OpV0 → U ′. We call A strictly moving a given subset S ⊂ V0, if
dist(δt(S), V0) ≥ µ > 0 for t ≥ 1/2 and for all δt ⊂ A.

Further we call A sharp at S, if for every µ > 0 there exists
δt ∈ A such that

• (δt)|Op(v) = Id, t ∈ [0, 1] for all points v ∈ V0 such that dist(v, S) ≥
µ, where Op(v) is an (arbitrary) small neighborhood of v

• δt = δ1/2 for t ≥ 1/2.

For a given sheaf Φ on V and for a given action of the set Ã of
diffeotopies δt on subset Φ′

δt
⊂ Φ(U ′), we say that acting diffeotopies

sharply move V0 at S ⊂ V0, if for each compact family of sections
Φp ∈ Φ(U ′) there exists a subset A ⊂ Ã which is strictly moving S
and sharp at S such that φp ∈ Φ′

δt
for all δt ∈ A.

We say that acting in Φ diffeotopies sharply moves a subman-
ifold V0 ⊂ V , if each point v ∈ V0 admits a neighborhood U ′ ⊂ V
such that acting diffeotopies δt : V ′

0 = V0 ∩ U ′ → U ′ sharply move V ′
0

at any given closed hypersurface S ⊂ V ′
0 .

A.2. A criterion on flexibility.[Gromov1986, 2.2.3.C”] Let Φ be
a microflexible sheaf over V and let a submanifold V0 ⊂ V be sharply
movable by acting in Φ diffeotopies. Then the sheaf Φ0 = Φ|V0

is
flexible and hence it satisfies the h-principle.

Before stating the Nash-Gromov implicit Function Theorem in A2
we need to introduce several new notions. Let X be a C∞-fibration
over an n-dimensional manifold V and let G→ V be a smooth vector
bundle. We denote by Xα and Gα respectively the spaces of Cα-
sections of the fibrations X and G for all α = 0, 1, · · · ,∞. Let D :
X r → G0 be a differential operator of order r. In other words the
operator D is given by a map 4 : X(r) → G, namely D(x) = 4 ◦ Jr

x,
where Jr

x(v) denotes the r-jet of x at v ∈ V . We assume below that
D is a C∞-operator and so we have continuous maps D : Xα+r → Gα

for all α = 0, 1, · · · ,∞.
We say that the operator D is infinitesimal invertible over a

subset A in the space of sections x : V → X if there exists a family of
linear differential operators of certain order s, namely Mx : Gs → Y0

x,
for x ∈ A, such that the following three properties are satisfied.

1. There is an integer d ≥ r, called the defect of the infinites-
imal inversion M , such that A is contained in X d, and fur-
thermore, A = Ad consists (exactly and only) of Cd-solutions
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of an open differential relation A ⊂ X(d). In particular, the
sets Aα+d = A ∩ Xα+d are open in Xα+d in the respective fine
Cα + d-topology for all α = 0, 1, · · · ,∞.

2. The operator Mx(g) = M)x, g) is a (non-linear) differential op-
erator in x of order d. Moreover the global operator

M : Ad × Gs → J 0 = T (X 0)

is a differential operator, that is given by a C∞-map A⊕G(s) →
Tvert(X).

3. Lx ◦Mx = Id that is

L(x,M(x, g)) = g for all x ∈ Ad+r and g ∈ Gr+s.

Now let D admit over an open set A = Ad ⊂ X dan infinitesimal
inversion M of order s and of defect d. For a subset B ⊂ X 0 × G0 we
put Bα,β := B∩ (Xα×Gβ). Let us fix an integer σ0 which satisfies the
following inequality

(∗) σ0 > s̄ = max(d, 2r + s).

Finally we fix an arbitrary Riemannian metric in the underlying
manifold V .

A.3. Nash-Gromov implicit function theorem.[Gromov1986,
2.3.2]. There exists a family of sets Bx ⊂ Gσ0+s for all x ∈ Aσ0+r+s,
and a family of operators D−1

x : Bx → A with the following five prop-
erties.

1. Neighborhood property: Each set Bx contains a neighborhood of
zero in the space Gσ0+s. Furthermore, the union B = {x} ×
Bx where x runs over Aσ0+r+s, is an open subset in the space
Aσ0+r+s × Gσ0+s.

2. Normalization Property: D−1
x (0) = x for all x ∈ Aσ0+r+s.

3. Inversion Property: D ◦D−1
x −D(x) = Id, for all x ∈ Aσ0+r+s,

that is
D(D−1

x (g)) = D(x) + g,

for all pairs (x, g) ∈ B.

19



4. Regularity and Continuity: If the section x ∈ A is Cη1+r+s-
smooth and if g ∈ Bx is Cσ1+s-smooth for σ0 ≤ σ1 ≤ η1, then
the section D−1

x (g) is Cσ-smooth for all σ < σ1. Moreover the
operator D−1 : Bη1+r+s,σ1+s → Aσ, D−1(x, g) = D−1

x (g), is
jointly continuous in the variables x and g. Furthermore, for
η1 > σ1, the section D−1 : Bη1+r+s,σ1+s → Aσ1 is continuous.

5. Locality: The value of the section D−1
x (g) : V → X at any

given point v ∈ V does not depend on the behavior of x and g
outside the unit ball Bv(1) in V with center v, and so the equality
(x, g)|Bv(1) = (x′, g′)|Bv(1) implies D−1

x (g))(v) = (D−1
x′ (g′))(v).

A.3’. Corollary. Implicit Funtion Theorem. For every x0 ∈
A∞ there exists fine C s̄+s+1-neighborhood B0 of zero in the space of
Gs̄+ s+ 1, where s̄ = max(d, 2r+ s), such that for each Cσ+s-section
g ∈ B0, σ ≥ s̄+1, the equation D(x) = D(x0 = +g has a Cσ-solution.

Finally we shall define the solution sheaf Φ whose flexibility is a
consequence of the Nash-Gromov implicit function theorem.

Let us fix a C∞-section g : V → G and call a C∞-germ x : Op(v) →
X, v ∈ V , an infinitesimal solution of order α of the equation
D(x) = g, if at the point v the germ g′ = g − D(x) has zero α-jet ,
i.e. Jα

g′(v) = 0. We denote by Rα(D, g) ⊂ X(r+α) the set of all jets
represented by these infinitesimal solutions of order α over all points
v ∈ V . Now we recall the open set A ⊂ X(d) defining the set A ⊂ X(d)

and for α ≥ d− r we put

Rα = Rα(A,D, g) = Ar+α−d ∩Rα(D, g) ⊂ X(r+α),

where Ar+α−d = (pr+α
d )−1(A) for pr+α

d : Xr+α → Xd.
A Cr+α-section x : V → X satisfies Rα, iff D(x) = g and x ∈ A.
Now we set R = Rd−r and denote by Φ = Φ(R) = Φ(A,D, g) the

sheaf of C∞-solutions of R.

A.4. Microflexibility of the sheaf of solutions and Nash-
Gromov implicit functions.[Gromov1986 2.3.2.D”] The sheaf Φ is
microflexible.
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