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Abstract
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1 Introduction

The aim of this article is to give a brief account of a method that helps us
to find a closed formula of highest weight vectors in the branching laws of
certain generalized Verma modules, or equivalently, to construct explicitly
equivariant differential operators from generalized flag varieties to subvari-
eties.

This method, which we call the F -method, transfers an algebraic problem
of finding explicit highest weight vectors to an analytic problem of solving
differential equations (of second order) via the algebraic Fourier transform of
operators (Definition 3.1). A part of the ideas of the F -method has grown in
a detailed analysis of the Schrödinger model of the minimal representation
of indefinite orthogonal groups [8].

The F -method provides a conceptual understanding of some natural dif-
ferential operators which were previously found by a combinatorial approach
based on recurrence formulas. Typical examples that we have in mind are
the Rankin–Cohen bidifferential operators

Rk1,k2
n (f1, f2) = n∑

j=0

(−1)j (n
j
) (k1 + n − 1)!(k2 + n − 1)!(k1 + n − j − 1)!(k2 + j − 1)!

∂n−jf1

∂xn−j
∂jf2

∂yj
∣
x=y

in automorphic form theory [2, 3, 11], and Juhl’s conformally equivariant
operators [4] from C∞(Rn) to C∞(Rn−1):

Tλ,ν = ∑
2j+k=ν−λ

1

2jj!(ν − λ − 2j)!(
ν−λ

2
−j

∏
i=1

(λ + ν − n − 1 + 2i))∆j

Rn−1( ∂

∂xn
)k.

These examples can be reconstructed by the F -method by using a special
case of the fundamental differential operators , which are commuting family
of second order differential operators on the isotropic cone, see [8, (1.1.3)].

In recent joint works with B. Ørsted, M. Pevzner, P. Somberg and V. Souček
[9, 10], we have developed the F -method to more general settings, and have
found new explicit formulas of equivariant differential operators in parabolic
geometry, and also have obtained a generalization of the Rankin–Cohen op-
erators. To find those nice settings where the F -method works well, we
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can apply the general theory [6, 7] that assures discretely decomposable and
multiplicity-free restrictions of representations to reductive subalgebras.

The author expresses his sincere gratitude to the organizers, J. Chris-
tensen, F. Gonzalez and T. Quinto, for their warm hospitality during the
conference in honor of Professor Helgason for his 85th birthday in Boston
2012. The final manuscript was prepared when the author was visiting IHES.

2 Preliminaries

2.1 Induced modules

Let g be a Lie algebra over C, and U(g) its universal enveloping algebra.
Suppose that h is a subalgebra of g and V is an h-module. We define the
induced U(g)-module by

indg

h(V ) ∶= U(g) ⊗U(h) V.

If h is a Borel subalgebra and if dimC V = 1, then indg

h(V ) is the standard
Verma module.

2.2 Extended notion of differential operators

We understand clearly the notion of differential operators between two vector
bundles over the same base manifold. We extend this notion in a more general
setting where there is a morphism between two base manifolds.

Definition 2.1. Let VX → X and WY → Y be two vector bundles with a
smooth map p ∶ Y → X between the base manifolds. Denote by C∞(X,VX)
and C∞(Y,WY ) the spaces of smooth sections to the vector bundles. We say
that a linear map T ∶ C∞(X,VX) → C∞(Y,WY ) is a differential operator if
there exists a differential operator Q acting on sections of the vector bundle
over Y such that the following diagram commutes:

C∞(Y, p∗VX)
Q

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

C∞(X,VX)
p∗

OO

T // C∞(Y,WY ).
We write Diff(VX ,WY ) for the vector space of such differential operators.
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2.3 Equivariant differential operators

Let G be a real Lie group, g(R) = Lie(G) and g = g(R) ⊗ C. Analogous
notations will be applied to other Lie groups denoted by uppercase Roman
letters.

Let dR be the representation of U(g) on the space C∞(G) of smooth
complex-valued functions on G generated by the Lie algebra action:

(2.1) (dR(A)f)(x) ∶= d

dt
∣
t=0
f(xetA) for A ∈ g(R).

Let H be a closed subgroup of G. Given a finite dimensional representa-
tion V of H we form a homogeneous vector bundle VX ∶= G ×H V over the
homogeneous space X ∶= G/H. The space of smooth sections C∞(X,VX) can
be seen as a subspace of C∞(G) ⊗ V .

Let V ∨ be the (complex linear) dual space of V . Then the (G × g)-
invariant bilinear map C∞(G) ×U(g) → C∞(G), (f, u) ↦ dR(u)f induces a
commutative diagram of (G × g)-bilinear maps:

C∞(G) ⊗ V ×U(g) ⊗C V ∨ Ð→ C∞(G)
1 ↡ ∥

C∞(X,VX) × indg

h(V ∨) Ð→ C∞(G).
In turn, we get the following natural g-homomorphism:

(2.2) indg

h(V ∨)Ð→ HomG(C∞(X,VX), C∞(G)).
Next, we take a connected closed subgroup H ′ of H. For a finite di-

mensional representation W of H ′ we form the homogeneous vector bundle
WZ ∶= G ×H′W over Z ∶= G/H ′. Taking the tensor product of (2.2) with W ,
and collecting all h′-invariant elements, we get an injective homomorphism:
(2.3)

Homh′(W ∨, indg

h(V ∨))Ð→ HomG(C∞(X,VX), C∞(Z,WZ)), ϕ↦Dϕ.

Finally, we take any closed subgroup G′ containing H ′ and form a homo-
geneous vector bundle WY ∶= G′ ×H′W over Y ∶= G′/H ′. We note that WY is
obtained from WZ by restricting the base manifold Z to Y .

Let RZ→Y ∶ C∞(Z,WZ)→ C∞(Y,WY ) be the restriction map. We set

(2.4) DX→Y (ϕ) ∶= RX→Y ○Dϕ.
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Since there is a natural (G′-equivariant but not necessarily injective) mor-
phism Y →X, the extended notion of differential operators between VX and
WY makes sense (see Definition 2.1). We then have:

Theorem 2.2. The operator DX→Y (see (2.4)) induces a bijection:

DX→Y ∶ Homh′(W ∨, indg

h(V ∨)) ∼
Ð→ DiffG′(VX ,WY ).(2.5)

Remark 2.3. We may consider a holomorphic version of Theorem 2.2 as fol-
lows. Suppose GC, HC, G′C and H ′

C
are connected complex Lie groups with

Lie algebras g, h, g′ and h′, and VXC
and WYC

are homogeneous holomor-
phic vector bundles over XC ∶= GC/HC and YC ∶= G′C/H ′C, respectively. Then
Theorem 2.2 implies that we have a bijection:

(2.6) DXC→YC
∶ Homh′(W ∨, indg

h(V ∨)) ∼
Ð→ Diffhol

G′
C

(VXC
,WYC

).
Here Diffhol

G′
C

denotes the space of G′
C
-equivariant holomorphic differential op-

erators with respect to the holomorphic map YC → XC. By the universality
of the induced module, (2.6) may be written as

(2.7) DXC→YC
∶ Homg′(indg′

h′(W ∨), indg

h(V ∨)) ∼
Ð→ Diffhol

G′
C

(VXC
,WYC

).
The isomorphism (2.7) is well-known when XC = YC is a complex flag

variety. The proof of Theorem 2.2 is given in [10] in the generality that
X ≠ Y .

2.4 Multiplicity-free branching laws

Theorem 2.2 says that if Homh′(W ∨, indg

h(V ∨)) is one-dimensional then G′-
equivariant differential operators from VX to WY are unique up to scalar.
Thus we may expect that such unique operators should have a natural mean-
ing and would be given by a reasonably simple formula. Then we may be in-
terested in finding systematically the examples where Homh′(W ∨, indg

h(V ∨))
is one-dimensional. This is a special case of the branching problems that
asks how representations decompose when restricted to subalgebras. In the
setting where h is a parabolic subalgebra (to be denoted by p) of a reductive
Lie algebra g, we have the following theorem:

Theorem 2.4. Assume the nilradical n+ of p is abelian and τ is an invo-
lutive automorphism of g such that τp = p. Then for any one-dimensional
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representation Cλ of p and for any finite dimensional representation W of
pτ ∶= {X ∈ p ∶ τX =X}, we have

dimHompτ (W ∨, indg
p(C∨λ)) ≤ 1.

There are two known approaches for the proof of Theorem 2.4. One
is geometric — to use the general theory of the visible action on complex
manifolds [5, 6], and the other is algebraic — to work inside the universal
enveloping algebra [7].

Remark 2.5. Branching laws in the setting of Theorem 2.4 are explicitly
obtained in terms of ‘relative strongly orthogonal roots’ on the level of the
Grothendieck group, which becomes a direct sum decomposition when the
parameter λ of V is ‘generic’ or sufficiently positive, [6, Theorems 8.3 and 8.4]
or [7]. The F -method will give a finer structure of branching laws by finding
explicitly highest weight vectors with respective reductive subalgebras. The
two prominent examples in Introduction, i.e. the Rankin–Cohen bidifferential
operators and the Juhl’s conformally equivariant differential operators, can
be interpreted in the framework of the F -method as a special case of Theorem
2.4.

3 A recipe of the F -method

The idea of the F -method is to work on the branching problem of represen-
tations by taking the Fourier transform of the nilpotent radical. We shall
explain this method in the complex setting where HC is a parabolic sub-
group PC with abelian unipotent radical (see Theorem 2.2 and Remark 2.3)
for simplicity. A detaild proof will be given in [10] (see also [9] for a somewhat
different formulation and normalization).

3.1 Weyl algebra and algebraic Fourier transform

Let E be an n-dimensional vector space over C. TheWeyl algebraD(E) is the
ring of holomorphic differential operators on E with polynomial coefficients.

Definition 3.1 (algebraic Fourier transform). We define an isomorphism of
two Weyl algebras on E and its dual space E∨:

(3.1) D(E)→ D(E∨), T ↦ T̂ ,
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which is induced by

(3.2)
∂̂

∂zj
∶= −ζj, ẑj ∶= ∂

∂ζj
(1 ≤ j ≤ n),

where (z1, . . . , zn) are coordinates on E and (ζ1, . . . , ζn) are the dual coordi-
nates on E∨.

Remark 3.2. (1) The isomorphism (3.1) is independent of the choice of coor-
dinates.

(2) An alternative way to get the isomorphism (3.1) or its variant is to
use the Euclidean Fourier transform F by choosing a real form E(R) of E.
We then have

∂̂

∂z
= √−1F ○ ∂

∂x
○F−1, ẑ = −√−1F ○ z ○F−1

as operators acting on the space S ′(E∨) of Schwartz distributions. This was
the approach taken in [9]. In particular, T̂ ≠ F ○ T ○ F−1 in our normaliza-
tion here. The advantage of our normalization (3.2) is that the commutative
diagram in Theorem 3.5 does not involve any power of

√−1 that would oth-
erwise depend on the degrees of differential operators. As a consequence, the
final step of the F -method (see Step 5 below) as well as actual computations
becomes simpler.

3.2 Infinitesimal action on principal series

Let p = l + n+ be a Levi decomposition of a parabolic subalgebra of g, and
g = n− + l+ n+ the Gelfand–Naimark decomposition. Since the following map

n− × l × n+ → GC, (X,Z,Y )↦ (expX)(expZ)(expY )
is a local diffeomorphism near the origin, we can define locally the projections
p− and po from a neighbourhood of the identity to the first and second factors
n− and l, respectively. Consider the following two maps:

α ∶ g × n− → l, (Y,X)↦ d

dt
∣
t=0
po (etY eX) ,

β ∶ g × n− → n−, (Y,X)↦ d

dt
∣
t=0
p− (etY eX) .
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We may regard β(Y, ⋅) as a vector field on n− by the identification β(Y,X) ∈
n− ≃ TXn−.

For l-module λ on V , we set µ ∶= λ∨ ⊗ Λdimn+. Since Λdimn+n+ is one-
dimensional, we can and do identify the representation space with V ∨. We
inflate λ and µ to p-modules by letting n+ act trivially. Consider a Lie algebra
homomorphism

(3.3) dπµ ∶ g→ D(n−)⊗End(V ∨),
defined for F ∈ C∞(n−, V ∨) as
(3.4) (dπµ(Y )F ) (X) ∶= µ(α(Y,X))F (X) − (β(Y, ⋅ )F )(X).
If (µ,V ∨) lifts to the parabolic subgroup PC of a reductive group GC with
Lie algebras p and g respectively, then dπµ is the differential representation
of the induced representation IndGC

PC
(V ) (without ρ-shift). We note that the

Lie algebra homomorphism (3.4) is well-defined without integrality condition
of µ. The F -method suggests to take the algebraic Fourier transform (3.1)
on the Weyl algebra D(n−). We then get another Lie algebra homomorphism

(3.5) d̂πµ ∶ g→ D(n+)⊗End(V ∨).
Then we have (see [10])

Proposition 3.3. There is a natural isomorphism

Fc ∶ ind
g
p(λ∨) ∼

Ð→ Pol(n+)⊗ V ∨
which intertwines the left g-action on U(g)⊗U(p) V

∨ with d̂πµ.

3.3 Recipe of the F -method

Our goal is to find an explicit form of a G′-intertwining differential operator
from VX to WY in the upper right corner of Diagram 3.1. Equivalently,
what we call the F -method yields an explicit homomorphism belonging to
Homg′(indg′

p′(W ∨), indg
p(V ∨)) ≃ Homp′(W ∨, indg

p(V ∨)) in the lower left corner
of Diagram 3.1 in the setting that n+ is abelian.

The recipe of the F -method in this setting is stated as follows:

Step 0. Fix a finite dimensional representation (λ,V ) of p = l + n+.
8



Step 1. Consider a representation µ ∶= λ∨ ⊗ Λdimn+n+ of the Lie algebra p.
Consider the restriction of the homomorphisms (3.3) and (3.5) to the
subalgebra n+:

dπµ ∶ n+ → D(n−)⊗End(V ∨),
d̂πµ ∶ n+ → D(n+)⊗End(V ∨).

Step 2. Take a finite dimensional representation W of the Lie algebra p′. For
the existence of nontrivial solutions in Step 3 below, it is necessary and
sufficient for W to satisfy

(3.6) Homg′(indg′

p′(W ∨), indg
p(V ∨)) ≠ {0}.

Choose W satisfying (3.6) if we know a priori an abstract branching
law of the restriction of indg

p(V ∨) to g′. See [6, Theorems 8.3 and 8.4]
or [7] for some general formulae. Otherwise, we take W to be any
l′-irreducible component of S(n+)⊗ V ∨ and go to Step 3.

Step 3. Consider the system of partial differential equations for ψ ∈ Pol(n+)⊗
V ∨ ⊗W which is l′-invariant under the diagonal action:

d̂πµ(C)ψ = 0 forC ∈ n′+.(3.7)

Notice that the equations (3.7) are of second order. The solution space
will be one-dimensional if we have chosen W in Step 2 such that

(3.8) dimHomg′(indg′

p′(W ∨), indg
p(V ∨)) = 1.

Step 4. Use invariant theory and reduce (3.7) to another system of differential
equations on a lower dimensional space S. Solve it.

Step 5. Let ψ be a polynomial solution to (3.7) obtained in Step 4. Compute(Symb⊗ Id)−1(ψ). Here the symbol map

Symb ∶ Diffconst(n−) ∼→ Pol(n+)
is a ring isomorphism given by the coordinates

C[
∂

∂z1
,⋯,

∂

∂zn
]→ C[ξ1,⋯, ξn],

∂

∂zj
↦ ξj.
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In case the Lie algebra representation (λ,V ) lifts to a group PC, we form a
GC-equivariant holomorphic vector bundle VXC

over XC = GC/PC. Likewise,
in case W lifts to a group P ′

C
, we form a G′

C
-equivariant holomorphic vector

bundle WYC
over YC = G′C/P ′C. Then (Symb⊗ Id)−1(ψ) in Step 5 gives an

explicit formula of a G′
C
-equivariant differential operator from VXC

to WYC
in

the coordinates of n− owing to Theorem 3.5 below. This is what we wanted.

Remark 3.4. In Step 2 we can find all such W if we know a priori (abstract)
explicit branching laws. This is the case, e.g., in the setting of Theorem 2.4.
See Remark 2.5.

Conversely, the differential equations in Step 3 sometimes give a useful
information on branching laws even when the restrictions are not completely
reducible, see [9].

For concrete constructions of equivariant differential operators by using
the F -method in various geometric settings, we refer to [9, 10]. A further
application of the F -method to the construction of non-local operators will
be discussed in another paper.

The key tool for the F-method is summarized as:

Theorem 3.5 ([10]). Let P ′
C
be a parabolic subgroup of G′

C
compatible with

a parabolic subgroup PC of GC. Assume further the nilradical n+ of p is
abelian. Then the following diagram commutes:

HomC(W ∨, indg
p(V

∨)) ≃ Pol(n+)⊗HomC(V,W )
Symb⊗Id
∼
←Ð Diffconst(n−)⊗HomC(V,W )

∪ ↻ ∪

Homp′(W ∨, indg
p(V

∨))
DXC→YC

Ð→ DiffG′
C
(VXC

,WYC
).

Diagram 3.1
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