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Abstract: The hidden on-shell E7(7) symmetry of maximal super-
gravity is usually discussed in a truncation from D = 11 to four dimen-
sions. In this article, we reverse the logic and start from a theory with
manifest off-shell E7(7) symmetry inspired by West’s coset construction.
Following de Wit’s and Nicolai’s idea that a 4 + 56 dimensional “ex-
ceptional geometry” underlies maximal supergravity, we construct the
corresponding Lagrangian and the supersymmetry variations for the 56
dimensional subsector. We prove that both the dynamics and the super-
symmetry coincide with D = 11 supergravity in a truncation to d = 7
in the expected way.

1 Introduction

Soon after the construction of the maximally supersymmetric D = 11 grav-
ity theory [6], it was realized that this theory exhibits an exceptional hidden
symmetry E7(7) upon dimensional reduction from D = 11 to d = 4 [7].
Much work has been devoted to reveal the origin of this hidden symmetry,
which has e.g. led to the E10(10)- and E11(11)-conjectures [9, 26] for symme-
tries of M-theory. The dynamical origin of E7(7) has remained mysterious
however. Another source of interest for E7(7) is its possible link to the im-
proved ultraviolet properties ofN = 8 supergravity in d = 4 [1, 2, 11, 12, 19].

‡E-mail: hillmann@ihes.fr
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In this article, the conventional logic is reversed: Instead of starting with
a diffeomorphism covariant theory in eleven dimensions exhibiting a hidden
E7(7)-symmetry upon a reduction to d = 4, the starting point will be a
manifestly E7(7)-invariant theory in sixty dimensions with a hidden diffeo-
morphism symmetry in a reduction to D = 11. This 4 + 56 dimensional
setting is already hinted at by the local SO(3, 1)× SU(8)/Z2 covariance of
D = 11 supergravity [28] and by BPS-extended supergravity [29].

The dynamics will be fixed by group theoretical requirements. The gen-
eralized coset dynamics à la West [25] will provide a general multi-parameter
class of Lagrangians with manifest E7(7)-invariance in 4 + 56 dimensions.
Then, we will uniquely fix a specific Lagrangian within this E7(7)-invariant
class by requiring the symmetry group Gl(7) ⊂ E7(7) to be enlarged to
Diff(7) in a truncation to 4 + 7 dimensions. The resulting theory will be
shown to completely agree with the truncation of the bosonic part of D = 11
supergravity to seven dimensions, if Cremmer & Julia’s identification of the
E7(7)/(SU(8)/Z2) coset [7] with fields of supergravity is used and if we re-
strict supergravity to these degrees of freedom.

A similar analysis can be performed for fermions. In a first step, the
introduction of an SU(8) covariant derivation δ with a 32 dimensional Graß-
mann valued parameter ε on the bosonic degrees of freedom in 4 + 56 di-
mensions leads to Majorana fermions χ. As for the bosonic Lagrangian, the
general SU(8) covariant derivation δ of the fermions χ is not unique a priori.
Requiring Diff(7) to appear as a hidden symmetry completely fixes this arbi-
trariness however. Using Cremmer & Julia’s redefinition of the gravitino ψ
[7], these transformations are then found to agree with the supersymmetry
transformations of D = 11 supergravity subject to the same restrictions as
used for the bosonic sector. Furthermore, the fermionic dynamics of D = 11
supergravity can also be reproduced in the same way.

The geometrical setting for this generalized coset dynamics consists of
a vector bundle E with a 56 dimensional fibre Ex over a four-dimensional
manifold with structure group E7(7). Following de Wit & Nicolai [29], it
will be referred to as “exceptional geometry”. Hence, it is obvious that the
comparison with D = 11 supergravity in the truncation to seven dimensions
is the complicated part. The way how to compare the dynamics in the
four base dimensions of exceptional geometry to supergravity is uniquely
determined. It will be discussed elsewhere. The results of the present article
hence provide only a partial proof of the statement that all solutions of D =
11 supergravity form the subset of solutions of sixty dimensional exceptional
geometry with 49 independent Killing vectors.
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The motivation for this construction is the following: The supersym-
metry of 60 dimensional exceptional geometry would immediately provide
a Lagrangian of N = 8 d = 4 supergravity with manifest off-shell E7(7)-
invariance by dimensional reduction. It would also be interesting to further
investigate the relation to Hull’s and Waldram’s constructions with vector
bundles of E7(7)-structure [15, 24].

The article is organized as follows: We will start with a brief introduction
to the hidden symmetries of maximal supergravity in section 2 that serve
as a motivation for the 4 + 56 dimensional setting as explained in section 3.
In section 4, the generalized coset dynamics is introduced and a symmetry
enlargement is illustrated by the familiar example of the Einstein–Hilbert ac-
tion. We will focus on the E7(7)/(SU(8)/Z2) coset in section 5 and compare
the bosonic Lagrangian with supergravity before discussing supersymmetry
transformations and the fermionic dynamics in section 6. Finally, the gen-
eralized coset dynamics will be related to the sixty dimensional exceptional
geometry in section 7.

2 Supergravity in eleven dimensions

2.1 Conventions

Following Nahm’s result [22], N = 8 supergravity is referred to as maximal
supergravity in d = 4. This theory was first constructed from a Kaluza–
Klein reduction of Cremmer, Julia & Scherk’s supergravity in D = 11 [6],
which is provided by the following action with α̃i = 0, . . . , 10

S =
∫

M11

d11xdet(E)
(

1
4
R̃11 −

1
2
ψ̄α̃1Γ̃

α̃1...α̃3∇α̃2ψα̃3 −
1
48
Fα̃1...α̃4F

α̃1...α̃4

− 1
96

(
ψ̄α̃5Γ̃

α̃1...α̃6ψα̃6 + 12ψ̄α̃1Γ̃α̃2α̃3ψα̃4

)
Fα̃1...α̃4

+
2

124
εα̃1...α̃11Fα̃1...α̃4Fα̃5...α̃8Aα̃9...α̃11

)
. (2.1)

To simplify the notation, we have absorbed the gravitational constant κ in
the fields as suggested in [7] and neglected both quartic terms in fermions
and the quadratic ones that arise from the non-vanishing torsion of super-
gravity throughout the paper.
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The metric degrees of freedom are encoded in the repère mobile or viel-
bein Eµ̃

α̃ by the standard identification

g = gµ̃ν̃ dx
µ̃ ⊗ dxν̃

gµ̃ν̃ =: Eµ̃
α̃Eν̃

β̃ηα̃β̃ (2.2)

with the signature (−,+, . . . ,+) of η. This is always possible given a ma-
nifold M11 having vanishing first and second Stiefel–Whitney class and the
metric g being non-degenerate, what we henceforth assume. The definition
of the vielbein (2.2) introduces an additional symmetry: a local Lorentz
symmetry O ∈ SO(10, 1)1

E′
µ̃

α̃ = Eµ̃
β̃Oβ̃

α̃. (2.3)

The local Lorentz (“flat”) indices α̃i = 0, . . . , 10 in the action S (2.1) are
hence raised and lowered with the flat Minkowski metric η, because we have
transformed the three-form potential A, its corresponding field strength

Fα̃1...α̃4 := 4∇[α̃1
Aα̃2...α̃4] (2.4)

and the gravitino ψ into the vielbein frame by contraction with the inverse
vielbein Eα̃

µ.2 Since torsion terms have been neglected, the covariant deriv-
ative ∇ in the action (2.1) is the standard Levi–Civita connection in the
vielbein frame, sometimes referred to as spin connection.3 The Ricci scalar
R̃11 is composed of the vielbein E by the following formulæ:

R̃11 := ηα̃β̃
(
2∂[α̃ωγ̃]β̃

γ̃ + 2ω[α̃γ̃]
δ̃ωδ̃β̃

γ̃ + 2ω[α̃|β̃|
δ̃ωγ̃]δ̃

γ̃
)

(2.5a)

ωα̃β̃γ̃ := (Qα̃)β̃γ̃ − 2(P[β̃)γ̃]α̃ (2.5b)

(Qα̃)β̃γ̃ := ηδ̃[γ̃Eβ̃]
µ∂α̃Eµ

δ̃ (2.5c)

(Pα̃)β̃γ̃ := ηδ̃(γ̃Eβ̃)
µ∂α̃Eµ

δ̃. (2.5d)

Furthermore, we use the real matrix representation Γ̃α̃ ∈ R32×32 of the
Clifford algebra {Γ̃α̃, Γ̃β̃} = 2ηα̃β̃ with normalization Γ̃α̃1...α̃11 = εα̃1...α̃111l32
and ε0 1 2 3 4 5 6 7 8 9 10 = 1. We have suppressed the spinor indices of ψ and Γ̃
and introduced the standard abbreviation for the real Majorana conjugate
spinor

ψ̄α̃ :=
(
ψα̃
)tΓ0.

1Groups will be denoted by capital letters and their associated algebras by gothic ones.
2Following the standard convention, we denote the inverse vielbein by a simple change

of the indices δβ̃
α̃ = Eµ̃

β̃Eα̃
µ̃ and introduce the abbreviation ∂α̃ := Eα̃

µ ∂
∂xµ .

3We emphasize that the “covariant derivative” D[α̃2ψα̃3] in [6, 10] only differs from
∇[α̃2ψα̃3] by the torsion tensor that is not discussed in this article.
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In this paper, we will discuss theories on the level of the Lagrangian. The
only equation of motion that will be necessary is the one of the four-form
field strength F , which, to zeroth order in fermions, reads

∇α̃0F
α̃0...α̃3 = − 1

242
εα̃1...α̃11Fα̃4...α̃7Fα̃8...α̃11 .

In a first order formalism, it is equivalent [25] to the two equations

F α̃1...α̃4 =:
1
7!
εα̃1...α̃11F̃α̃4...α̃11 (2.6a)

F̃α̃1...α̃7 = 7
(
∇[α̃1

Ãα̃2...α̃7] + 5A[α̃1...α̃3
Fα̃4...α̃7]

)
, (2.6b)

with a dual six-form potential Ã and its corresponding seven-form field
strength F̃ . The set of solutions of the equations of motion is invariant
under the following supersymmetry transformations that are modulo non-
linear terms in fermions:

Eα̃
µ̃δεEµ̃

β̃ = ε̄Γ̃β̃ψα̃ (2.7a)

δεψβ̃ = ∇β̃ε+
1

144

(
Γ̃α̃1...α̃4

β̃ − 8δα̃1

β̃
Γ̃α̃2...α̃4

)
εFα̃1...α̃4 (2.7b)

δεAα̃1...α̃3 = −3
2
ε̄Γ̃[α̃1α̃2

ψα̃3]. (2.7c)

All fields (E,A, ψ, ε) are manifestly real in the present conventions. We want
to close this section with the well-known fact [6] that the supersymmetry
algebra only closes on-shell. This is encoded in the following equivalence
relation modulo the equations of motion:

[δε1 , δε2 ] ∼ δε3 + δdiff11 + δso(10,1)
+ δ3-form gauge.

Neither an off-shell formulation of the supersymmetry algebra acting on the
fields (E,A, ψ) nor an unconstrained superspace formulation of D = 11 su-
pergravity has been constructed so far.4 In particular, a combination of the
so(10,1) representations (E,A, ψ) into independent representations of some
superalgebra that is a symmetry of the equations of motion has not been
achieved yet. We will not use these concepts in this article, but rather focus
on the hidden symmetries. We shall see that E7(7) suggests a complementary
way to discuss the independent degrees of freedom of supergravity.

4Constraints are an essential ingredient in Cremmer & Ferrara’s construction [8]. An-
other interesting formulation is the light-cone approach [4].
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2.2 Hidden symmetries

A Kaluza–Klein reduction5 of D = 11 supergravity on a flat spacelike hyper-
torus Tn for n = 1, . . . , 9 is equivalent to restricting the set of solutions to
the ones with n independent, spacelike, commuting Killing vectors. These
sets of solutions are orbits of the symmetry groups En(n) [17, 18, 23] that
are called “hidden symmetries”, because their origin is not obvious from the
action of D = 11 supergravity in the form stated in (2.1). It is remarkable
that even for the reduced supergravity to four space time dimensions, it has
not been possible to construct an action with manifest E7(7)-invariance so
far.

In this article, we will focus on the role of the 133 dimensional symme-
try group E7(7) with its maximal compact subgroup SU(8)/Z2 [7] in the
unreduced D = 11 supergravity. From the dynamical point of view, a very
interesting result addressing this question was established by de Wit & Nico-
lai in 1986:

SO(3, 1)× SU(8)/Z2 is a local symmetry of the equations of motion of
D = 11 supergravity [28].

Guided by the discovery of the global E7(7) symmetry in d = 4 N = 8
supergravity [7], their ansatz reduced the manifest local Lorentz symmetry
SO(10, 1) (2.3) to SO(3, 1) × SO(7) by fixing a particular matrix form for
the vielbein:

Eµ̃
α̃ =:

(
∆− 1

2 eµ
α Bµ

a

0 em
a

)
µ̃

α̃

(2.8)

with ∆ := det (ema) (2.9)
and µ, α = 0, . . . , 3,

m, a = 4, . . . , 10,
µ̃, α̃ = 0, . . . , 10.

Then they combined the degrees of freedom of the vielbein and of the three-
form potential into SO(3, 1)×SU(8)/Z2 representations in such a way that
both the supersymmetry variations and the equations of motion of D = 11
supergravity exhibit manifest local Spin(3, 1)× SU(8) covariance.6

5For this article, a “Kaluza–Klein reduction” implies a truncation of the massive modes.
6Due to the presence of the fermions it is necessary to pass to the covering group as

usual. De Wit & Nicolai used the same redefinition for the fermions as Cremmer & Julia
in [7] that we will also use in section 6.
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3 Motivation from Kaluza–Klein theory

In this article, we would like to present a different interpretation of this
SO(3, 1) × SU(8)/Z2 symmetry of D = 11 supergravity. This is related to
the following observation in Kaluza–Klein theory:

In d+1 dimensional pure gravity, the metric or equivalently, the vielbein
E (2.2) is the only independent field. The action is provided by the standard
Einstein–Hilbert action

SEH =
∫

Md+1

dd+1xdet(E)
1
4
R̃d+1 (3.1)

with the obvious generalization of (2.5) to the Ricci scalar R̃d+1 in d + 1
dimensions. Substituting these explicit expressions in terms of the vielbein
E produces a Lagrangian that only contains the vielbein, its inverse, the
Minkowski metric η and partial derivatives ∂

∂xm̃ with m̃ = 0, . . . , d in the
coordinate induced frame. In this notation, the symmetry of the theory
under the following two transformations is obvious:

1. General coordinate transformations ϕ ∈ Diff(d+ 1) and

2. local Lorentz transformations O ∈ SO(d, 1)

that act as follows:

∂ϕm̃

∂xñ
E′

m̃
ã = Eñ

b̃Ob̃
ã. (3.2)

The indices m̃, ñ, ã, b̃ take values in 0, . . . , d. A reduction à la Kaluza–Klein
d + 1 → d amounts to choosing one coordinate on which the field does not
depend. Since the vielbein Eµ

a is the only dynamical field in d + 1 pure
gravity, we can without loss of generality impose that it does not depend on
the dth coordinate, i.e.

∂

∂xd
(Eµ

a) = 0. (3.3)

Since all coordinate indices must be contracted with partial derivatives ∂
∂xm̃ ,

the constraint (3.3) reduces the effective range of the indices in the La-
grangian to

1. coordinate indices: m̃ = 0, . . . , d− 1 and

2. vielbein indices: ã = 0, . . . , d.
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The symmetries that keep the reduction (3.3) invariant are

1. General coordinate transformations Diff(d)×Gl(1) and

2. local Lorentz transformations SO(d, 1).

The important fact is that the local Lorentz transformations SO(d, 1) are not
affected by a Kaluza–Klein reduction a priori. It is possible and conventional
to also reduce SO(d, 1) to SO(d − 1, 1) by fixing a particular matrix form
of the vielbein in d + 1 dimensions similarly to the reduction of SO(10, 1)
to SO(3, 1) × SO(7) in (2.8), but this is not compulsory. Hence, it is per-
fectly consistent to discuss a d dimensional theory with general coordinate
symmetry Diff(d) and enlarged local Lorentz symmetry SO(d, 1).

To establish the connection to D = 11 supergravity, we should recall
that de Wit & Nicolai in fact enlarged the remaining local Lorentz sym-
metry SO(3, 1) × SO(7) to SO(3, 1) × SU(8)/Z2 in [28]. Hence, D = 11
supergravity can be viewed as an eleven dimensional theory with enlarged
local Lorentz-like symmetry SO(3, 1) × SU(8)/Z2. In this article, we shall
investigate the consequences of interpreting SO(3, 1)×SU(8)/Z2 as the local
Lorentz symmetry of a higher dimensional space that leads to supergravity
in a reduction to D = 11 dimensions.

Thus, we are led to the question of finding the lowest dimensional Lorentz
group SO(d− 1, 1) with the property

SO(3, 1)× SU(8)/Z2 ⊂ SO(d− 1, 1).

The answer is provided by representation theory. Due to the division by Z2,
only su8-representation vector spaces with an even number of su8 indices also
are representations of SU(8)/Z2. Furthermore, these are complex vector
spaces, which leads to an additional factor 2 for the real dimension:

d ≥ 4 + 2 ·
(

8
2

)
= 60.

This indicates that a 60-dimensional structure may be relevant for maximal
supergravity. However, it is well-known that there are two severe problems
with discussing a sixty dimensional supergravity theory in the conventional
setting:

1. The supersymmetry parameter ε would have to transform as a repre-
sentation of Spin(59, 1) which would lead to more than 32 supercharges
in a compactification to d = 4.
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2. The minimal number of off-shell degrees of freedom of a conventional
gravitational theory in d = 60 would be 1

260(60 + 1), much more than
in D = 11 supergravity.

To sum up, there is little hope to match the dynamics ofD = 11 supergravity
in a Kaluza–Klein reduction of an arbitrary sixty dimensional geometry.
However, there is a way around these problems if an “exceptional geometry”
is adapted. Using the tool of generalized coset dynamics, we will make this
more precise in the following sections.

4 Coset dynamics

We will start by reviewing the conventional coset dynamics, before proposing
its extension that will prove to be relevant for supergravity.

4.1 Conventional coset dynamics

The dynamical degrees of freedom in these theories are parametrized by a
symmetric space, which is without loss of generality a right group coset

V ∈ G/K (4.1)

for a real, finite dimensional Lie group G and its maximal compact subgroup
K. A priori, there are independent left and right actions by g ∈ G and k ∈ K
respectively:

V ′ = g · V · k. (4.2)

Note that this transformation (4.2) shows great similarity to the law of trans-
formation of a vielbein under a combined Diff × SO action (3.2). Passing
to a matrix representation R of G with R(g) ∈ Rd×d, equation (4.2) reads
with m̃, ñ, ã, b̃ = 1, . . . , d

R(V ′)m̃
ã = R(g)m̃

ñ R(V)ñ
b̃ R(k)b̃

ã.

The coset element V (4.1) then corresponds to the vielbein by R(V)m̃
ã =

Em̃
ã, the left action to the Jacobi matrix by R(g−1)ñ

m̃ = ∂ϕm̃

∂xñ and the right
action to the local Lorentz rotation R(k)b̃

ã = Ob̃
ã in (3.2). This correspon-

dence will be essential for the generalized coset dynamics of section 4.2.

In complete analogy to fixing the local Lorentz symmetry by decreeing
a particular matrix form for the vielbein (2.8), it is possible to link the right
K-action to the left G-action on V by fixing the presentation of V, e.g. by
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a triangular gauge choice that is equivalent to decreeing that the matrix
representation of V be of triangular shape. Since a left G-action perturbs
this setting in general, a compensating kg(V) ∈ K is needed to restore the
shape of the matrix:

V ′ = g · V · kg(V). (4.3)

This is referred to as a non-linear realization of the symmetry G on the
symmetric space parametrized by the dim(g) − dim(K) degrees of freedom
of V ∈ G/K. It is important to keep in mind that the uniquely determined
compensating rotation kg depends on V in general.

As a next step, assume that V depends on some coordinates xm̃ with
m̃ = 1, . . . , d. Denoting the corresponding Lie algebræ by g and k, the
Maurer–Cartan form allows for the decomposition

V−1 · dV = P +Q (4.4)

with one-form valued objects

P =: Pm̃dx
m̃ ∈ g	 k

Q =: Qm̃dx
m̃ ∈ k.

The transformation of the gauged fixed coset element V under a left global
action g ∈ G (4.3) dictates the induced transformation of P and Q:

P ′ = k−1
g · P · kg (4.5a)

Q′ = k−1
g · Q · kg + k−1

g · dkg. (4.5b)

Due to its transformation, Q defines a covariant derivative ∇ acting on
K-representation spaces ψ in a representation R:

Dψ := dψ −R(Q)ψ. (4.6)

The one form P however, transforms as a tensor (4.5a). It is therefore the
basic building block of Lagrangians, such as

L = gµν 〈Pµ,Pν〉 . (4.7)

Here, gµν is the inverse of the relevant space-time metric g (2.2) and 〈·, ·〉
the Cartan–Killing metric of the Lie algebra g that is proportional to the
trace for the matrix representation of g. For G = E7(7) and four dimensional
space-time µ, ν = 0, . . . , 3, the Lagrangian (4.7) describes the dynamics of
the scalar sector of N = 8 d = 4 supergravity [7].
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It is obvious that the set of possible Lagrangians that are quadratic in
derivatives is quite restricted. For Lie groups with traceless matrix repre-
sentations such as G = E7(7), the Lagrangian (4.7) in fact is unique. The
generalized coset dynamics of the next section will provide a wider choice of
Lagrangians with G = E7(7)-invariance.

4.2 Generalized coset dynamics

Inspired by the pioneering work of Borisov & Ogievetsky [3] and West [25],
we would like to discuss the following extension. Assume that the coordi-
nates xm̃ the coset element V depends on, form a representation space of
G of dimension d. Introducing a matrix representation R(g) ∈ Rd×d for
g ∈ G, one can without loss of generality define an action of g ∈ G on the
coordinates xm̃ with m̃, ñ = 1, . . . , d

x′m̃ = R(g−1)ñ
m̃xñ. (4.8)

As in section 4.1, we insist that g ∈ G does not depend on the coordinates
xm̃, i.e. it is a global symmetry. Then the partial derivatives transform in
the dual representation:(

∂

∂xñ

)′
= R(g)ñ

m̃ ∂

∂xm̃
. (4.9)

Hence, it is possible to define a derivative by multiplying with V−1 that
transforms by the induced kg ∈ K action under a global G action (4.3):

∂ã := R(V−1)ã
m̃ ∂

∂xm̃
(4.10)

with ∂′ã = R(k−1
g )ã

b̃ ∂ b̃. (4.11)

The names of the indices of the matrix representations R are completely
arbitrary a priori. It is only to emphasize the different transformation be-
haviour that we will follow the convention to use indices from the middle
of the alphabet for objects that transform as G-representations (4.9) and
indices from its beginning for K ⊂ G-representations such as (4.11).

The definition of the derivative ∂ is the main ingredient of generalized
coset dynamics: A short look at the transformation of P (4.5) shows that
it is consistent in this setting to contract the indices of ∂ with the coset
indices of P in a K-covariant way in order to construct a Lagrangian with
G-invariance.
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This construction seems to suffer from one drawback. If derivative in-
dices are contracted with coset indices, the symmetry of general coordinate
transformations Diff(d) is broken in general to the subgroup G ⊂ Gl(d),
because global transformations of the coordinates correspond to the Gl(d)
subgroup of Diff(d) [14].7 Keeping in mind the discussion at the end of
section 3, this exactly is what we want: An unbroken Diff(d)-symmetry for
d = 60 would be inconsistent with maximal supergravity.

However, we want to establish contact with D = 11 supergravity in the
end, whose symmetry group contains Diff(11). Therefore, the constraint on
the coupling of the Lagrangians must be that in a Kaluza–Klein reduction to
eleven dimensions, the diffeomorphism covariance must be restored. Before
discussing the rather complicated model suitable for D = 11 supergravity,
we will illustrate this procedure in two simpler models.

4.2.1 G = Gl(d)

For the group of invertible d×d matrices Gl(d), we choose the minimal non-
trivial representation for the coordinates that is Rd. If we use the Lorentz
group SO(d− 1, 1) instead of the compact subgroup K, the coset is without
loss of generality [14] parametrized by (4.1)

V ∈ Gl(d)/SO(d− 1, 1). (4.12)

The Maurer–Cartan form (4.4) again decomposes into

V−1 · dV =: (Pã +Qã)R(V)m̃
ã dxm̃ ∈ gld (4.13)

with the one-form valued Lie algebra elements P ∈ gld 	 so(d−1,1), Q ∈
so(d−1,1) and m̃, ã = 0, . . . , d− 1.

In order not to overburden the notation, the matrix representation R of
the (g = gld)-elements P and Q will be simply denoted by adding indices
ã, b̃, . . . = 0, . . . , d − 1 to P and Q. Then, it is an immediate corollary of
the theorem 3.2 in [14] that the general action S, being at most quadratic

7To be precise, it is broken to the affine group A(d) being the semidirect product
of Gl(d) with the abelian group of translations whose Jacobi matrix is trivial, however.
Hence, their induced kg ∈ K action is trivial, too.
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in derivatives, for this coset (4.12) is of the form

S =
∫
Rd

det(V)ddx
(
r0η

ãb̃Dã

(
Pb̃

)
c̃

c̃ + r1Dc̃(Pã)
ãc̃ (4.14)

+r2(Pã)
ãc̃(Pd̃

)
c̃

d̃ + r3
(
Pd̃

)ãc̃(Pã)c̃
d̃ + r4η

ãb̃(Pã)d̃
c̃(Pb̃

)
c̃

d̃

+r5(Pã)
ãc̃(Pc̃)d̃

d̃ + r6η
b̃c̃
(
Pb̃

)
ã

ã(Pc̃)d̃
d̃
)

with r0, . . . , r6 ∈ R, the invariant tensor of SO(d−1, 1) or Minkowski metric
η and the covariant derivative D (4.6) acting on the SO(d− 1, 1)-tensor P:

Dã

(
Pb̃

)
c̃

d̃ = ∂a(Pb)c
d + (Qã)b̃

ẽ(Pẽ)c̃
d̃ + (Qã)c̃

ẽ(Pb̃

)
ẽ

d̃ − (Qã)ẽ
d̃(Pb̃

)
c̃

ẽ
.

This is a seven parameter family of actions with manifest Gl(d) invariance.8

There is one particular choice

r0 = −1
2
, r1 =

1
2
, r2 = −1

2
, r3 =

1
2
, (4.15)

r4 = −1
4
, r5 =

1
2
, r6 = −1

4
,

with the property that the symmetry Gl(d) is enlarged to Diff(d). This im-
mediately follows from the fact that the action S (4.14) with the constants
(4.15) is a different way of writing the Einstein–Hilbert action SEH (3.1).

The independent degrees of freedom of the coset element V (4.12) exactly
match the ones of the symmetric G-tensor

gm̃ñ = R(V)m̃
ãR(V)ñ

b̃ηãb̃. (4.16)

Note that this notation allows to rewrite the entire formalism of generalized
coset dynamics in the G-covariant frame by substituting

(Pc̃)ãb̃ =
1
2
R(V−1)ã

m̃R(V−1)b̃
ñ ∂ c̃gm̃ñ

in the Lagrangian (4.14). For the choice of constants (4.15), it is obvious
that the symmetric G-tensor g can be identified with the metric g (2.2)
what justifies using the same symbol for both objects. We will stick to the
K-covariant frame however, because it allows to discuss the induced action
on representations of the covering group of K ⊂ G, on which there is no
direct action of G in general.

8This could be reduced to a five-parameter family by isolating total derivative terms.
In order to match the Einstein–Hilbert action in the form (3.1), we dispense with this
simplification.
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One might argue that G = Gl(d) is a quite trivial example, because the
coset element V ∈ G/K merely is the vielbein introduced in (2.2), but it
provides the general idea. This interpretation of V as the vielbein allows to
replace the domain of integration Rd in the action (4.14) by an unrestricted
manifold Md in the usual sense for the choice of constants (4.15).

4.2.2 G = Sp(2n)

In a next step towards supergravity, we would like to consider the symplectic
Lie group G = Sp(2n) with compact subgroup K = U(n).9 Since the matrix
representation of the group Sp(2n) is of unit determinant and since Sp(2n)
is a subgroup of Gl(2n), the general action S being at most quadratic in
derivatives, is immediately deduced from the action S of the G = Gl(d) case
(4.14) with indices ã, b̃, . . . = 1, . . . , 2n:

S =
∫

R2n

d2nx
(
r1Dc̃(Pã)

ãc̃ (4.17)

+r2(Pã)
ãc̃(Pd̃

)
c̃

d̃ + r3
(
Pd̃

)ãc̃(Pã)c̃
d̃ + r4η

ãb̃(Pã)d̃
c̃(Pb̃

)
c̃

d̃
)
.

Hence, there only is a four-parameter family of actions for the case of a
symplectic coset element. Which symmetry enlargement can we expect in
this case?

It is obvious that the coset element V ∈ Sp(2n) cannot be identified
with a general vielbein any more and hence Diff(2n) symmetry is ruled out.
However, the lower dimensional symmetry Diff(n) can be obtained for spe-
cific choices of r1, r2, r3. This can be seen as follows.

Assume that a theory is Diff(m)-invariant for some m ∈ N. Then the
subgroup Gl(m) ⊂ Diff(m) with constant Jacobian matrix ∂ϕ

∂x must be a
symmetry. The transformation (4.3) implies that this Gl(m) further has
to be a subgroup of Sp(2n). Therefore, a necessary condition for Diff(m)
symmetry is that Gl(m) is a subgroup of Sp(2n). The solution to this rep-
resentation theoretical problem obviously leads to m ≤ n [14].

The proof that the maximal diffeomorphism symmetry Diff(n) can be
realized, is not too complicated. Start with the well-known observation that
Diff(n) is a subgroup of the group of symplectomorphisms Symp(2n). This
is the subgroup of Diff(2n) that preserves a non-degenerate symplectic form.

9In the matrix representation of Sp(2n) as 2n× 2n matrices, the subgroup of antisym-
metric matrices forms a representation of U(n) [14].
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On the other hand, it is clear that the action S (4.14) with the constants
(4.15) has the symmetry group Diff(2n) for 2n = d. Hence, it is in particular
invariant under its subgroup Symp(2n). Furthermore, the latter symmetry
respects the choice V ∈ Sp(2d). Therefore, the constants in the action S
(4.17) to obtain Diff(n)-invariance have to be the same as in (4.15):

r1 =
1
2
, r2 = −1

2
, r3 =

1
2
, r4 = −1

4
. (4.18)

The interpretation of the coset V ∈ Sp(2n)/U(n) as a vielbein on a mani-
fold would only be consistent, if the transition matrices of coordinate charts
were also in Sp(2n). This is the case for a symplectic manifold (M2n,Ω),
a 2n dimensional manifold M2n with a non-degenerate closed symplectic
form Ω. Darboux’s theorem guarantees the existence of an atlas of coor-
dinate charts whose transition matrices are symplectic and in which the
symplectic form has constant canonical form [21]. Hence, it is possible to
replace the domain of integration R2n in the action S (4.17) for the choice
of constants (4.18) by any symplectic manifold (M2n,Ω).

This is a first example of a constrained geometry: It is consistent to
restrict the degrees of freedom of the vielbein on a symplectic manifold with
a metric of Euclidean signature to Sp(2n)/U(n).10

4.2.3 G =
(
Gl(4)×E7(7)

)
nN(4,56)

The group that will prove to be relevant for D = 11 supergravity is G =(
Gl(4) × E7(7)

)
n N(4, 56), the semi-direct product of the product of the

classical groups Gl(4) and E7(7) with the nilpotent group N(4, 56), which is
the tensor product of the lowest possible representations 4 of Gl(4) and
56 of E7(7). G is best understood by its matrix representation as 60 × 60
matrices:

V ∈
(
Gl(4) ∗4x56

0 E7(7)

)
. (4.19)

This structure is obviously tailored for a coset construction V ∈ G/K with
the de Wit–Nicolai group

K = SO(3, 1)× SU(8)/Z2.

10Keeping in mind that the names of the indices are arbitrary, the statement V ∈ Sp(2n)

is equivalent to R(V)m̃
ã = Ωm̃ñR(V−1)b̃

ñΩb̃ã with the canonical symplectic form Ωãb̃ and

Ωãb̃Ωb̃c̃ := δb̃
c̃. The definition of the metric gm̃ñ = R(V)m̃

ãR(V)ñ
b̃ηãb̃ (4.16) is however

equivalent to R(V)m̃
ã = gm̃ñR(V−1)b̃

ñηb̃ã. More details and further references can be
found in [14].
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In particular, any Lagrangian necessarily has the local covariance group
SO(3, 1) × SU(8)/Z2 of D = 11 supergravity, if it is constructed from V
(4.19) using the generalized coset dynamics. We have shown in section 3
that the Lorentz covariance group is not affected by a dimensional reduc-
tion a priori. Hence, reducing from the sixty dimensional setting to D = 11
does not affect the SO(3, 1)× SU(8)/Z2 covariance. A further reduction to
d = 4 trivially provides a theory with global manifest E7(7)-invariance.

To prove that there is an action with 60 coordinates that reduces to
D = 11 supergravity amounts to showing that the general class of La-
grangians with G-invariance contains one with the particular property that
the diffeomorphism symmetry of D = 11 supergravity is restored, at least
for a subset of solutions with 49 independent Killing vectors.

The last subclause is essential: For the cases G = Gl(d) and G = Sp(2n),
there existed extensions to infinite dimensional groups Diff(d) and Symp(2n)
respectively. Cartan’s theorem [5] implies that this can be ruled out for E7(7),
because there is no infinite dimensional subgroup H of Diff(56) containing
E7(7) with the property that for every ϕ ∈ H, the Jacobian matrix ∂ϕ

∂x is
an E7(7) element. Hence, G cannot be extended to a symmetry group that
contains Diff(4)×Diff(7) ⊂ Diff(11) without violating V ∈ G/K [14].

The crucial observation is that we do not have to require this at all.
Since D = 11 supergravity does not know anything about the remaining
49 coordinates, it is completely sufficient that a subset of solutions with 49
independent Killing vectors forms an orbit of Diff(11).

This is to be understood in complete analogy to the space of solutions
of the wave equation in d = 4 dimensional flat Minkowski space. The set
of solutions depending on all spacetime dimensions forms an orbit of the
finite dimensional conformal symmetry group SO(4, 2)/Z2. The subspace of
solutions that depend on two spacetime dimensions however forms an orbit
of the infinite dimensional symmetry group of conformal transformations in
two dimensions.

In this article, we will not construct the complete generalized coset dy-
namics in sixty dimensions that is expected to have a hidden Diff(11) sym-
metry in its reduction to D = 11. We will content ourselves with the 56-
dimensional sector that corresponds to the E7(7) part of the group G (4.19).

In the next section, we will prove that there is a Lagrangian in 56 dimen-
sions that exactly reproduces the dynamics of D = 11 supergravity upon
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dimensional reduction to the seven common dimensions, if only the degrees
of freedom that are encoded in the E7(7)-valued 56×56 submatrix of V (4.19)
are taken into account. Furthermore, we will explain with mere group the-
oretical arguments in section 5.5 why adding four additional dimensions
appears to be preferred.

5 Bosonic dynamics

5.1 G = E7(7)

The discussion in the previous section indicates that the investigation of the
generalized coset dynamics for the Lie group G = E7(7) may be interesting
for supergravity. Hence, we focus on the coset

V ∈ E7(7)/(SU(8)/Z2). (5.1)

The lowest dimensional, non-trivial representation space of E7(7) is R56,
on which the group acts as prescribed in (4.8). Since E7(7) also preserves
a symplectic form, it is a subgroup of Sp(56). Hence, the action (4.17)
from section 4.2.2 provides the general ansatz to construct the dynamics.
The general action with E7(7)-invariance that is of at most second order in
derivatives and exclusively depends on the coset element V (5.1) reads

S =
∫

R56

d56x
(
r1Dc̃(Pã)

ãc̃ (5.2)

+r2(Pã)
ãc̃(Pd̃

)
c̃

d̃ + r3
(
Pd̃

)ãc̃(Pã)c̃
d̃ + r4η

ãb̃(Pã)d̃
c̃(Pb̃

)
c̃

d̃
)
.

The objects P and Q follow the definition (4.13). The matrix representation
of E7(7) as 56 × 56-matrices provides the canonical embedding of E7(7) in
Gl(56). Therefore, the indices ã, c̃, . . . in the action S (5.2) take the values
1, . . . , 56.

The maximal compact subgroup of E7(7) is K = SU(8)/Z2 (5.1). In
the matrix representation of E7(7) as 56 × 56 matrices, the corresponding
compact group elements are presented as real orthogonal matrices due to
the embedding SU(8)/Z2 ⊂ SO(56). This implies that it does not matter
if the indices ã, c̃, . . . in the action (5.2) are raised or lowered, because their
position can be freely adjusted with the symmetric invariant tensor ηãb̃ of
SO(56) in complete analogy to the Gl(d)-case from section 4.2.1.11

11Since SU(8)/Z2 also is a subgroup of Sp(56), it is of course equivalently possible to
raise and lower the K-indices ã, b̃, . . . with the symplectic form Ω.
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In a further step, we adapt the notation to the symmetry structure.
This is achieved by observing that the 56 dimensional representation space
of E7(7) splits into two irreducible representations of SU(8)/Z2:

56 = 28 + 28. (5.3)

It is important to note that the real Lie group SU(8)/Z2 necessitates a com-
plex 28 dimensional vector space to act on. Hence, it is natural to introduce
28 holomorphic coordinates instead of 56 real ones. The contragredient or
dual representation 28 in (5.3) then simply corresponds to the antiholomor-
phic coordinates, i.e. a complex conjugation. Since the groupK is SU(8)/Z2

and not U(28), it is furthermore appropriate to label these holomorphic co-
ordinates by the antisymmetric pair [AB] with A,B = 1, . . . , 8. Hence, the
one-form P (4.13) decomposes into

P =: PABR(V)m̃
ABdxm̃ + c.c. (5.4)

with m̃ = 1, . . . , 56 and the abbreviation c.c. for complex conjugation.
In contrast to the SO(56) indices ã, the position of the SU(8)/Z2 indices
AB is not arbitrary: Lowering or raising indices is equivalent to a complex
conjugation. We make use of the standard convention to distinguish complex
conjugated objects only by the position of their SU -indices, e.g. PAB =
P∗

AB. In this notation, equation (5.4) reads

P =:
(
PABR(V)m̃

AB + PABR(V)m̃,AB

)
dxm̃

Relabelling the indices, the action (5.2) takes the form

S =
∫

R56

d56x
(
r1

(
DAB(PCD)ABCD + c.c.

)
+ r2 (PAB)ABCD (PEF

)
CDEF

+r3 (PAF )ABCD (PEF
)
EBCD

+ r4 (PEF )ABCD (PEF
)
ABCD

)
. (5.5)

The strong restriction V ∈ E7(7)/(SU(8)/Z2) is the reason why not more
terms appear in this expansion. The one forms P ∈ e7(7) 	 su8 and Q ∈ su8

form the irreducible
(
8
4

)
= 70 and 63 dimensional su8-representation spaces

respectively. The ε-tensor in eight dimensions links the one form PEFGH to
its complex conjugated PEFGH = P∗

EFGH in an su8-covariant way:

PABCD =
1
4!
εABCDEFGHPEFGH . (5.6)

We refrain from calling the one-form P with four completely antisymmetrized
su8-indices “selfdual”, because the ε tensor relates complex conjugated ob-
jects in this case. To conclude this section, we remark that the complex
conjugate only has to be added to the first term in the action S (5.5). Due
to the relation (5.6), the other three contributions are real on their own.
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5.2 The hidden symmetry Diff(7)

As explained in section 4.2.3, we will fix the constants r1, . . . , r4 ∈ R in the
action S (5.5) such that some diffeomorphism symmetry is restored. Due to
Cartan’s theorem [5], this can only be possible for a subset of solutions with
49 independent Killing vectors or equivalently, in a Kaluza–Klein reduction.

In complete analogy to the argument for the case of G = Sp(2n) in sec-
tion 4.2.2, a necessary criterion for Diff(m) to be a symmetry group is that
Gl(m) be a subgroup of E7(7). The maximal solution to this representa-
tion theoretical problem is Gl(7) ⊂ E7(7). Therefore, we will try to choose
r1, . . . , r4 ∈ R such that Diff(7) is a hidden symmetry of the action S (5.5).
To achieve this, it is natural to first parametrize the Lie algebra e7(7) by
gl7-representations:

133 = 49 ⊕
(
35⊕ 35

)
⊕

(
7⊕ 7

)
.

As a next step, recall from section 4.2.1 that the Lagrangian can be
written purely in terms of the symmetric G-tensor g (4.16). Hence, it is
obvious that only the 133 − 63 = 70 degrees of freedom of the completely
gauge fixed coset element V ∈ E7(7)/(SU(8)/Z2) appear in the action S
(5.5). Therefore, we can without loss of generality partly fix the SU(8)/Z2-
symmetry to SO(7) by requiring that the coset follows the block-triangular
decomposition

V =: eha
b M̂

a
beAabcÊabc

eAa1...a6 Êa1...a6 (5.7)

with the indices a, b, . . . = 4, . . . , 10, the matrix exponential e and the e7(7)-
generators M̂ and Ê in their representation as 56 × 56 matrices, whose
non-vanishing commutation relations are [14][

M̂
e
f , M̂

g
h

]
= δg

f M̂
e
h − δe

h M̂
g
f (5.8a)[

M̂
e
f , Ê

abc
]

= 3δ[af Ê
bc]e (5.8b)[

M̂
a
b, Ê

e1...e6

]
= 6δ[e6

b Êe1...e5]a (5.8c)[
Êefg, Êabc

]
= 40Êefgabc. (5.8d)

Since we have not fixed the SO(7) in the SU(8)/Z2 symmetry, the Gl(7)
part in (5.7) in fact is a coset

eha
b M̂

a
b ∈ Gl(7)/SO(7). (5.9)

As soon as the Diff(7) symmetry is established, the Gl(7)/SO(7) will be
parametrized by an unrestricted vielbein in seven dimensional Euclidean
space.
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The decomposition of E7(7) into Gl(7) representations also uniquely in-
duces a decomposition of the 56 dimensional representation space into Gl(7)
representation spaces:

56 = 7⊕ 21⊕ 21⊕ 7. (5.10)

Contragredient representations of Gl(7) appear in this decomposition of 56.
This is of course expected due to the fact that E7(7) is a subgroup of Sp(56).
Hence, there is a preserved symplectic structure Ω which is the reason why
we will denote the variables in dual representations by momenta p instead
of coordinates x. Therefore, one can without loss of generality arrange the
labelling of the 56 coordinates so as to make manifest the decomposition
(5.10) namely

∂
∂xm := δm̃

m−3
∂

∂xm̃ ,
∂

∂pmn
:= δm̃−7, [mn] ∂

∂xm̃ ,
∂

∂xmn := δm̃−28
[mn]

∂
∂xm̃ ,

∂
∂pm

:= δm̃−49, m−3 ∂
∂xm̃

with the range of the indices m̃ = 1, . . . , 56, m,n = 4, . . . , 10 and δ1[4 5] = 1
et cetera. We will use the same labelling for the derivatives ∂ (4.10)

∂a := δã
a−3∂ã, ∂ab := δã−7, [ab]∂ã,

∂ab := δã−28
[ab] ∂ã, ∂a := δã−49, a−3∂ã

with ã = 1, . . . , 56 and a, b = 4, . . . , 10 respectively. Then, the relation
∂

∂xm̃ = R(V)m̃
ã ∂ã (4.10) can be written in the matrix formalism with the

obvious contraction of indices:
∂

∂xm

∂
∂pmn

∂
∂xmn

∂
∂pm

 =

 R(V)m
a R(V)m,ab R(V)m

ab R(V)m,a

R(V)mn,a R(V)mn
ab R(V)mn,ab R(V)mn

a

R(V)mn
a R(V)mn,ab R(V)mn

ab R(V)mn,a

R(V)m,a R(V)m
ab R(V)m,ab R(V)m

a


 ∂a

∂ab

∂ab

∂a


It follows from the commutation relations (5.8) that the parametrization of
the coset V (5.7) really is block-triangular. This is equivalent to stating
that the generators Ê are represented by nilpotent upper triangular 56× 56
matrices. Hence, the top left corner of the matrix representation of V may
only depend on the Gl(7)/SO(7)-degrees of freedom (5.9). Therefore, these
can be parametrized by

R(V)m
a =: ∆

1
2 em

a (5.11)

with ∆ := det(ema) as in (2.9). It should be noted that the Gl(7) embedding
in E7(7) is unique only modulo a rescaling by the Gl(1) factor corresponding
to ∆ [14]. The choice (5.11) will prove appropriate to uncover the hidden
Diff(7) symmetry.
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With this definition and the convention to denote the inverse “sieben-
bein” ea

m simply by a different naming of indices, i.e. em
aea

n = δn
m, the

gauged fixed coset element V ∈ E7(7)/(SU(8)/Z2) is represented as a 56×56
matrix in the following way [14]

R(V) =

 ∆
1
2 em

a −
√

2∆
1
2 em

cAabc

√
2∆

1
2 em

cUc
ab
+ −∆

1
2 em

cUac

0 ∆
1
2 ea

meb
n −1

6∆
1
2 ec

med
nAa1...a3ε

cda1...a3ab
√

2∆
1
2 ec

med
nUa

cd
−

0 0 ∆− 1
2 em

aen
b −

√
2∆− 1

2 em
cen

dAcda

0 0 0 ∆− 1
2 ea

m


with the abbreviations

Ud
jk
− :=

1
12
AabcAghdε

jkghabc − 1
360

Aa1...a6ε
a1...a6[jδ

k]
d , (5.12a)

Ud
jk
+ :=

1
12
AabcAghdε

jkghabc +
1

360
Aa1...a6ε

a1...a6[jδ
k]
d , (5.12b)

Uad :=
1

180
Aa1...a6Aabdε

ba1...a6 +
1
18
AarsAghiAkldε

rsghikl. (5.12c)

5.3 Connecting Gl(7)- and SU(8)/Z2-representations

In order to be able to decide, whether there are constants r1, . . . , r4 ∈ R for
the action S (5.5) such that a hidden Diff(7) symmetry appears in a Kaluza–
Klein reduction, the Gl(7) representations of section 5.2 have to be linked to
the SU(8)/Z2 representations that were used in the action S (5.5). This is
done by first splitting the Gl(7) representations into SO(7) representations
and recombine them afterwards into SU(8)/Z2 representations. For the last
step, one has to introduce the Clifford algebra with the seven dimensional
Euclidean metric η and a, b = 4, . . . , 10

{Γa,Γb} = 2ηab. (5.13)

It is well known that it has a representation in terms of purely imaginary
matrices Γa ∈ iR8×8.12

The transformation between the holomorphic cooordinate frame defined
by the decomposition (5.3) and the one of Gl(7) (5.10) is provided by the
following identification, e.g. for the derivative ∂ (4.10) with a, b = 4, . . . , 10
and A,B = 1, . . . , 8 [14]

∂AB = 6iΓa
AB (∂a − iηac∂

c)− 2
√

2Γab
AB

(
∂ab − iηacηbd∂

cd
)
.(5.14)

12Furthermore, we define Γa1...an := Γ[a1 · · ·Γan] with antisymmetrization of strength
one and we fix the normalization Γa1...a7 = −iεa1...a71l8 with ε1 2 3 4 5 6 7 = 1.

21



With these definitions, it is a straightforward computation [14] to arrive
at the following identifications for the components Pα and Qα (4.13):

(Qã)A
B :=

1
3
R(V−1)AC

m̃∂ãR(V)m̃
BC

=
1
4
(Qã)e

fΓe
f A

B +
1
12

(Pã)a1...a3
Γa1...a3

A
B

− i

1440
(Pã)a1...a6

εa1...a6cΓcA
B (5.15a)

(Pã)
ABCD := R(V−1)AB,m̃∂ãR(V)m̃

CD

= −3
4
(Pã)e

fΓe[ABΓf
CD]

−1
4

(Pã)a1...a3
Γ[a1a2

[AB
Γa3]CD]

+
i

2880
(Pã)a1...a6

εa1...a6cΓec
[ABΓeCD] (5.15b)

with m̃, ã = 1, . . . , 56 and the abbreviations

(Pã)c
d := eg

m∂ãem
(dηf)gηcf (5.16a)

(Qã)c
d := eg

m∂ãem
[dηf ]gηcf (5.16b)

(Pã)a1...a3
:= ∂ãAa1...a3 + 3Af [a1a2

ea3]
m∂ãem

f (5.16c)

(Pã)a1...a6
:= ∂ãAa1...a6 − 6Af [a1...a5

ea6]
m∂ãem

f (5.16d)
−20A[a1...a3

(Pã)a4...a6] .

The definitions of the first two objects in (5.16) coincide with the ones (2.5)
that have already been used for supergravity in section 2.1. The factor
1
3 in (5.15a) guarantees the standard normalization of the associated su8

generators [14].

5.4 The bosonic Lagrangian

This parametrization of P and Q in terms of Gl(7) representations ema, Aabc

and Aa1...a6 allows to decide whether the constants r1, . . . , r4 in the action S
(5.5) can be chosen in such a way that the global Gl(7) ⊂ E7(7) symmetry of
the space of solutions with 49 independent Killing vectors can be enlarged
to a local symmetry of the type of Diff(7). We find that there is a unique
choice of r1, . . . , r4 leading to such an enlarged local symmetry:

L =
(
DAB(PCD)ABCD + c.c.

)
(5.17)

−8
3

(PAF )ABCD (PEF
)
EBCD

+
1
6

(PEF )ABCD (PEF
)
ABCD

.
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However, we only obtain a subgroup of Diff(7), namely the volume preserv-
ing diffeomorphisms, as a hidden symmetry. To prove this statement, we
perform a Kaluza–Klein reduction of the Lagrangian (5.17) to the seven co-
ordinates that correspond to the 7 coordinates in the decomposition (5.10),
which leads to

LKK = 279∆−1

(
1
4
R̃7 −

1
48
Fb1...b4F

b1...b4 − 4!
7!248

F̃ 2

)
(5.18)

+279
[
3
4
ηab∆−2∂a∆ ∆−1∂b∆ +

3
4
ηab ∂

∂xm

(
∆−1ea

m ∆−1∂b∆
)]

with the Ricci scalar R̃7 (2.5) in d = 7 and the abbreviations

Fabcd := 4(P[a)bcd] (5.19a)

F̃ := F̃a1...a7ε
a1...a7 (5.19b)

= 7(Pa1)a2...a7ε
a1...a7 ,

where we use the frame derivative ∂a := ea
m ∂

∂xm in (5.18), in R̃7 (2.5) and
in the definitions (5.16) instead of ∂a.

The parenthesis in the first line of the Lagrangian LKK (5.18) obvi-
ously is Diff(7) invariant, but the terms involving the determinant ∆ do not
match. (Note however that the last term is a total derivative.) A differ-
ent parametrization of the Gl(7)/SO(7)-coset than (5.11), which would be
equivalent to a Weyl rescaling in seven dimensions, does not cure this prob-
lem. Hence, one does not obtain Diff(7) as a hidden symmetry, but only
its infinite dimensional subgroup of volume preserving diffeomorphisms that
are characterized by a unimodular Jacobian matrix ∂ϕ

∂x [5]. This problem
can be cured by coupling additional dimensions to the setting, what we shall
show next.13

5.5 Restoring Diff(7)

Since the problematic terms in the Lagrangian LKK (5.18) only depend
on the determinant ∆, a Weyl rescaling of d additional dimensions may
provide the solution. Hence, one should investigate whether a Lagrangian in
7 + d dimensions with symmetry group Diff(7 + d) leads to the Lagrangian
LKK (5.18) after a Weyl rescaling by ∆z for z ∈ R of the vielbein that
corresponds to the other d dimensions. Fixing the SO(6+d, 1) symmetry to

13Furthermore, the Lagrangian LKK (5.18) reveals that the symmetries associated to
the nilpotent generators Êabc and Êa1...a6 (5.7) (part of the Borel subgroup of E7(7)) have
been promoted to the two- and five-form gauge symmetries of supergravity.
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SO(d−1, 1)×SO(7), we can without loss of generality assume the following
shape for the vielbein E in 7 + d dimensions:

E7+d =
(

∆zeµ
α Bµ

a

0 em
a

)
. (5.20)

The range of the indices is µ, α = 0, . . . , d− 1 and m,a = d, . . . , d+6. From
the group theory point of view, this amounts to defining an action of the
Gl(1)[x] part of Diff(7) on the additional d coordinates. Hence, the d × d-
part of the vielbein has to contain the corresponding factor of ∆. Next,
observe that the simplifying assumptions

eµ
α = δα

µ and (5.21a)
Bµ

a = 0 (5.21b)

do not affect the contributions of the Ricci scalar R̃7+d that exclusively
depend on ∆. In this truncation, we obtain

det(E7+d)R̃7+d = ∆zd+1
(
R̃7 − zd[z(d+ 1)− 4]ηab∆−1∂a∆ ∆−1∂b∆

)
−2zd

∂

∂xm

(
∆−1ea

m∆−1∂b∆
)
ηab.

The second line is a total derivative contribution, which does not alter the
dynamics prescribed by the Lagrangian. Comparing this equation to the
reduced Lagrangian LKK (5.18) leads to the unique solution

d = 4 (5.22a)

z = −1
2
. (5.22b)

This is a remarkable fact. The unique possibility to enlarge the Gl(7) sym-
metry acting on the solutions of the action S (5.17) that only depend on
the 7 coordinates in (5.10) to Diff(7) is to consider a generalized coset that
contains d = 4 further directions, if one starts with Einstein–Hilbert actions
in 7 + d dimensions. The necessary Weyl rescaling by ∆z is uniquely fixed
by (5.22), too.

5.6 Comparison to D = 11 supergravity

The conclusion of our study so far is that it appears to be “natural” from
a pure E7(7) point of view to discuss a 56 + 4 dimensional setting and the
hidden symmetries in a truncation to 7 + 4 dimensions. A comparison of
the Weyl rescaling (5.22) with (2.8) furthermore shows that this exactly is
the one used for D = 11 supergravity to reveal the E7(7) symmetry in the
truncation to four dimensions [7].
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Therefore, it looks promising to try to establish a link between the para-
metrization of the coset element V (5.7) and the fields of D = 11 supergrav-
ity. For the G = E7(7) case discussed in this section, the Lagrangian LKK

(5.18) only contains the siebenbein ema, the four-form field strength Fb1...b4

and the seven-form field strength F̃a1...a7 . Since the relations (5.19) com-
pletely agree with the definitions of F (2.4) and of F̃ (2.6b) in supergravity,
one can identify these objects as already anticipated by using the same no-
tation. Substituting a four form field strength F in four dimensions for the
seven-form field strength F̃ in seven dimensions by the standard definition
of supergravity (2.6a)

Fα1...α4 :=
1
7!
εα1...α4a1...a7F̃a1...a7 , (5.23)

the Lagrangian LKK (5.18) with the Weyl rescaling and the truncation (5.21)
of section 5.5 takes the form modulo total derivative terms and modulo a
constant rescaling

LKK = det(E11)
(

1
4
R̃11 −

1
48

(
Fb1...b4F

b1...b4 − Fα1...α4F
α1...α4

))
. (5.24)

A comparison with the Lagrangian of D = 11 supergravity shows exact
agreement modulo total derivative terms, which are also needed to trans-
form the Chern–Simons term into a contribution to the term Fα1...α4F

α1...α4

that effectively flips the sign. It is important to note that all the other
terms of D = 11 supergravity cannot be expected to appear in this gener-
alized coset model, because they are not contained in the coset V ∈ E7(7).
After discussing fermions in the next section, we will comment on the re-
maining fields in section 7.1.14

The important result of this section is that the mere quest for an E7(7)-
invariant theory with hidden Diff(7)-symmetry upon dimensional reduction
unambiguously leads to the dynamics of D = 11 supergravity in the trunca-
tion to the fields and dimensions common to both theories. Note in particu-
lar that our E7(7)-based interpretation of a part of the D = 11 supergravity
Lagrangian is different and, so to say, complementary to the one of Cremmer
& Julia [7]: The global E7(7)-symmetry of d = 4 N = 8 supergravity does
not act on the coordinates and hence, these four dimensions are orthogonal
to the seven dimensions discussed in this section.

14For the extraction of the equations of motion, one has to keep in mind that the
independent off-shell degrees of freedom are Aabc and Aa1...a6 in this formulation.
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6 Supersymmetry and fermionic dynamics

In section 5, we have constructed a Lagrangian from the coset degrees of
freedom V ∈ E7(7)/(SU(8)/Z2). As a next step, we will address the question,
whether it is possible to extend the bosonic dynamics discussed above by
other fermionic fields such that there is a Graßmann valued supersymmetry
transformation linking the solutions of the existing bosonic theory to the
fermionic dynamics, which also exhibits a hidden Diff(7) symmetry.

6.1 Definition of the variation δ

We start by recalling that any symmetry transformation is uniquely defined
by a derivation δ. Its action on the coset element V (5.1) can be decomposed
in two parts in complete analogy to the Maurer–Cartan form V−1 · dV (4.4)

V−1 · δV ∈
(
e7(7) 	 su8

)
⊕ su8. (6.1)

As in (4.5), the su8-part of this coset

Λ := prsu8

(
V−1δV

)
(6.2)

does not transform as a tensor, but as a connection. This leads to the
definition of a covariant supersymmetry transformation δ acting on K-
representation spaces ψ in a representation R in complete analogy to the
definition of the covariant derivative D (4.6):

δψ := δψ −R(Λ)ψ. (6.3)

Thus, both ψ and δψ are su8-tensors with respect to the SU(8)/Z2-action
induced by a global E7(7)-transformation (4.3). In contradistinction, δψ is
not a tensor, because the compensating kg(V) ∈ SU(8)/Z2 transformation
depends on the coset field V in general. The definition (6.3) also implies

V−1 · δV ∈ e7(7) 	 su8. (6.4)

As a next step, we want to specify the variation (6.4). We begin by
recalling that for any continuous supersymmetry transformation, there has
to be a Graßmann valued symmetry parameter ε, in which the variation is
linear [14]. In order to preserve covariance under the global E7(7) action, ε
must form a representation on which at least the induced K-action is de-
fined. It is obvious that the minimal dimension for a non-trivial action is 8C,
if representations of the double cover SU(8) of K = SU(8)/Z2 are included.

In this setting, we have to introduce fermions χ that link the varia-
tion

(
V−1δV

)[ABCD] (6.4) to the symmetry parameter εA with A,B, . . . =
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1, . . . , 8. By SU(8) covariance, the Graßmann valued fields χ must furnish
the 56C-dimensional representation χ[ABC], if derivatives of fermions are
excluded. The unique symmetry transformation possible then has the form(

V−1δV
)ABCD =: ε[AχBCD] +

1
4!
εABCDEFGHεEχFGH . (6.5)

Adding the second term on the right hand side of (6.5) is necessary to guar-
antee that V−1δV ∈ e7(7) 	 su8 (6.4) is real, in complete analogy to the
equation (5.6). Again, we use the convention that changing the position of
the SU(8) index corresponds to a complex conjugation, e.g. εA = ε∗A.

Furthermore note that passing to the double cover SU(8) of SU(8)/Z2

does not pose any problems. The kg ∈ SU(8)/Z2 action induced by g ∈ E7(7)

is well-defined on any product of SU(8) representations with an even number
of SU(8) indices. The induced SU(8) action on ε and χ hence is in complete
analogy to the Spin(d−1, 1)-actions on fermionic matter in general relativity
that are induced by general coordinate transformations using the vielbein
formalism.

6.2 Fermionic δ-variations and Diff(7)

In order to complete the definition of the variation δ, we have to fix its
action on the fermion χ. The requirements are linearity in the transforma-
tion parameter ε and that it should map to the degrees of freedom of the
coset V in an SU(8)-covariant way. Modulo nonlinear terms in either χ or
derivatives, the general ansatz for this transformation is a three-parameter
family with c0, c1, c2 ∈ R:

δχABC = c0D[ABεC] + c1(PEF )EF [ABεC] + c2(PEF )EABCεF . (6.6)

In complete analogy to the discussion of the bosonic dynamics in section
5, the constants c0, c1, c2 ∈ R in the variation (6.6) will be fixed in such a
way that the hidden Diff(7) symmetry is respected in a reduction to seven
dimensions. In contradistinction to the variation to the bosons (6.5), this
requirement is non-trivial due to the appearance of derivatives in (6.6) that
are not Diff(7)-covariant in general.

At first, we use the decomposition of P and Q into SO(7) representa-
tions (5.15). Substituting these formulæ into the variation δχ (6.6), we have
to look for non-trivial constants c0, c1, c2 such that all derivatives along the
7 directions of Aabc and of Aa1...a6 combine into the Diff(7)-covariant field
strengths F and F̃ (5.19) respectively. This is not possible a priori.
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However, it should be kept in mind that the explicit parametrization
(5.7) of the coset V ∈ E7(7)/(SU(8)/Z2) reduces the SU(8)/Z2 covariance
to SO(7), as we have explained in section 5.2. In particular, the SO(7)
covariance is completely sufficient for the Diff(7) covariance in the reduction
56 → 7. Hence, it is admissible to use the SO(7) covariant intertwiners Γa

(5.13), the Γ-matrices, to rearrange the degrees of freedom of the SU(8)-
representation χ into a Spin(7)-representation by

(χa)C :=
i

9

(
δb
aδ

C
D +

1
8
Γa

b
D

C
)

ΓbABχ
ABD (6.7a)

⇒ χABC = 3!iΓa[AB(χa)C] (6.7b)

with a, b = 4, . . . , 10 and A,B,C = 1, . . . , 8. It is clear that this is no
truncation, because the degrees of freedom of χABC and (χa)C match(

8
3

)
= 56 = 7 · 8.

With this rearrangement of degrees of freedom and with the choice

c0 = 1, c1 = −1
2
, c2 =

2
3

(6.8)

for the constants in (6.6), we obtain after dropping all terms that contain
partial derivatives ∂

∂xmn , ∂
∂pmn

or ∂
∂pm

[14]:

∆
1
4 δ(χd)C

∣∣∣
∂

∂xm

= ∂d

(
∆− 1

4 εC
)

+
1
4
ωde

fΓe
f

C
D

(
∆− 1

4 εD
)

+
1

144
Fa1...a4

(
Γa1...a4

d
C

D − 8δa1
d Γa2...a4C

D

)(
∆− 1

4 εD
)

− i

7!6
F̃Γd

C
D

(
∆− 1

4 εD
)
. (6.9)

In this formula, we used the abbreviations ω (2.5), ∆ (2.9), F and F̃ (5.19).
To obtain a Diff(7) covariant transformation, the fields ε and χ are rescaled
by the determinant factors ∆ of ema in analogy to a Weyl rescaling (5.20).
This is possible due to the following equality modulo quadratic terms in χ
that were neglected in the definition of the variation δχ (6.6) anyway:

∆
1
4 δ(χd)C = δ

(
∆

1
4 (χd)C

)
+O(χ2) (6.10)

The statement (6.10) follows from the fact that ∆ is part of the coset V (5.7)
and hence its variation under δ can be deduced from (6.5). We will provide
explicit formulæ for the rescaling of χ and ε in section 6.4.
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6.3 δ and the additional four dimensions

In the end, we should be interested in a complete picture of the generalized
coset dynamics. In particular, we want to discuss a theory that contains the
coset V ∈ E7(7)/(SU(8)/Z2)-coset, but whose reduction is Diff(7) invariant
by itself. The result of section 5.5 was that this requirement naturally leads
to four additional dimensions with the additional fields eµα and Bµ

a (5.20).
The minimal E7(7)-covariant extension that allows to include eµα and Bµ

a

in a coset description is the group presented in section 4.2.3

G =
(
Gl(4)× E7(7)

)
nN(4, 56). (6.11)

This ansatz is promising, because it allows to construct a coset with the de
Wit–Nicolai covariance group SO(3, 1)×SU(8)/Z2 of D = 11 supergravity:

V ∈ G/
(
SO(3, 1)× SU(8)/Z2

)
. (6.12)

The additional degrees of freedom of the four dimensional vielbein eµα (5.20)
parametrize the top left block of the matrix representation of V in (4.19)
and the field Bµ

a (5.20) is contained in the top right block of (4.19). The
complete parametrization of the coset V (6.12) in terms of Gl(7) represen-
tations will be provided in section 7.1.

The definition of the variation δ from section 6.1 has to be adapted to
this extended setting. At first, the relation (6.4) is replaced by

V−1δV ∈
(
e7(7) 	 su8

)
⊕
(
gl4 	 so(3,1)

)
⊕ n(4,56). (6.13)

As before, we want to assume a non-trivial realization of the covari-
ance group on the continuous symmetry parameter ε. Then, the lowest
real dimension is 32 due to the following reason: Passing to the covering
Spin(3, 1)× SU(8) of the de Wit–Nicolai group, a Spin(3, 1)-representation
is constructed from the Clifford algebra (5.13)

{γα, γβ} = ηαβ (6.14)

with the Minkowksi metric η = diag(−1, 1, 1, 1) that has a representation as
real matrices γα ∈ R4×4. It is a standard observation that the real matrix

γ5 := γ0γ1γ2γ3 (6.15)

squares to −1l4.15 This is the reason why the vector space

4R ⊗ 8R (6.16)
15With the definition ε0 1 2 3 = 1, the definition (6.15) implies γ5ε

α1...α4 = γα1...α4 .
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forms a representation space of Spin(3, 1) × SU(8), with Spin(3, 1) acting
irreducibly on the first factor 4R and the so-called “chiral” SU(8) [7] acting
on both factors in (6.16) making use of γ5 as the imaginary unit

γ5ε = iε. (6.17)

To put it in other words, this identification of γ5 with the imaginary
unit i provides an embedding of C in R4. Following the lines of section
6.1, ε ∈ 4R ⊗ 8R implies that the 56C-dimensional representation of the
fermions χ now has to be extended to the real representation 4R ⊗ 56R of
Spin(3, 1)× SU(8), on which SU(8) acts in a chiral way with (6.17) again.

Next, we introduce the Majorana conjugate of ε ∈ 4R ⊗ 8R in order to
keep the notation as simple as possible:

ε̄A := (εt)Aγ0. (6.18)

This allows to suppress the spinor indices of 4R, e.g. the matrix indices of
γα, in the following. It should be noted that the position of the SU(8) index
is not affected by the four-dimensional transposition t.

It is obvious from equation (6.13) that the definition (6.5) is to be under-
stood as a projection of V−1δV (6.13) on e7(7) 	 su8. Due to the extension
of ε ∈ 8C to ε ∈ 4R ⊗ 8R (6.16), the equation (6.5) now takes the form(

V−1δV
)ABCD = ε̄[AχBCD] +

1
4!
εABCDEFGH ε̄AχBCD. (6.19)

Raising or lowering the SU(8) indices of the fermions is hence equivalent to
replacing γ5 by −γ5 in accordance with (6.17).

Before comparing these formulæ to supergravity, we extract the varia-
tions of the Gl(7) representations ema, Aabc and Aa1...a6 (5.7) from the one
of the coset V (6.19). A short calculation [14] leads to

eb
mδ em

c = iε̄CΓc
CD(χb)D + c.c. (6.20a)

ea1
m1 · · · ea3

m3δAm1...m3 = −3i
2
ε̄CΓ[a1a2CD

(χa3])
D + c.c. (6.20b)

ea1
m1 · · · ea6

m6δAm1...m6 = −3iε̄CΓ[a1...a5CD
(χa6])

D + c.c. (6.20c)
+20ea1

m1 · · · ea6
m6A[m1...m3

δAm4...m6]

with the definitions for i = 3, 6

Am1...mi := em1
a1 · · · emi

aiAa1...ai . (6.21)
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6.4 Second comparison to D = 11 supergravity

After having established a connection between the coset degrees of freedom
of V ∈ E7(7)/(SU(8)/Z2) and the bosonic fields of supergravity in section
5.6, it is natural to identify the variation δ (6.3) with the supersymmetry
variation δε (2.7) of supergravity. Its 32 real dimensional transformation
parameter ε is linked to the transformation parameter ε ∈ 4R⊗56R following
Cremmer & Julia [7]:

εC =
1
2
√
−γ5∆+ 1

4 (1l4 − iγ5) εC (6.22a)

(χa)C =
1
2
√
−γ5∆− 1

4 (1l4 − iγ5) (ψa)C (6.22b)

with
√
−γ5 :=

1√
2

(1l4 − γ5) .

Furthermore, the fermion χ ∈ 56R ⊗ 4R is identified with the gravitino ψ
of supergravity for the vector indices a = 4, . . . , 10 by (6.22b). It is nice
to observe that the same rescaling with the determinant ∆ (2.9) used by
Cremmer & Julia [7] also is the correct choice in order to obtain Diff(7)-
covariance in the variation δχ (6.9).16

The identification (6.22) finally allows to compare the variations of the
coset V (6.20, 6.19) and of χ (6.9) to the ones of D = 11 supergravity (2.7).
In the truncation defined by (5.20, 5.21), these exactly match keeping in
mind the standard decomposition of Γ̃-matrices in eleven dimensions [14]

Γ̃α = γα ⊗ 1l8 for α = 0, . . . , 3, (6.23a)

Γ̃a =
γ5

i
⊗ Γa for a = 4, . . . , 10. (6.23b)

Note in particular that the normalizations of the coset fields Aabc and Aa1...a6

are fixed by the comparison of the bosonic actions in section 5.6. Then it
is a non-trivial result that the numerical constants in the supersymmetry
variations of the fermions (6.9) and of the bosons (6.20) exactly agree with
the ones of D = 11 supergravity (2.7) in the present truncation [14].

Together with the group theoretical argument from section 5.5, this is a
strong indication that the generalized coset dynamics of E7(7) is related to
D = 11 supergravity.

16We emphasize again that the present discussion of the seven dimensional reduction of
D = 11 supergravity is complementary to the four dimensional one of Cremmer & Julia
discussed in [7]. Relations without derivatives such as (6.5) can also be found in their
article, of course, in contrast to most of the terms in e.g. the variation δχ (6.9), however.
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There is one additional fermion in supergravity whose counterpart in
the generalized coset dynamics has not been discussed so far, the gravitino
ψα with the vector index α = 0, . . . , 3. Splitting the 32 dimensional spinor
representation space of ψα into the product 4R × 8R as in section 6.3, it is
natural to use the same definition as Cremmer & Julia [7]

(χα)C :=
1
2
√
−γ5∆− 1

4 (1l4 − iγ5)
(

(ψα)C +
i

2
γ5γαΓaC

D(ψa)D

)
. (6.24)

The matrix γ5 obviously serves as a complex structure γ5(χα)C = i(χα)C as
in (6.17). Hence, (χα)C forms a representation space of Spin(3, 1)× SU(8).
It remains to check whether the SU(8)-covariant variation of this additional
field allows for a hidden symmetry Diff(7) upon a Kaluza–Klein reduction
56 → 7. This will be proved next.

6.5 Variation of χα

The procedure to obtain the symmetry transformation δ of (χα)C is com-
pletely analogous to the one used for the field χABC in (6.6). By SU(8)-
covariance and neglecting derivatives along the additional four directions,
the general Ansatz (modulo non-linear terms in derivatives or χ) is with
e1, e2 ∈ R

δ(χα)A = γα

(
e1DABε

B + e2
(
PCD

)
ABCD

εB
)
. (6.25)

This equation exhibits Diff(7)-covariance in the reduction 56 → 7 for the
constants

e2 = −1
2
e1.

Setting e1 = 1
12 fixes the normalization of (χα)C in a suitable way for a

comparison to D = 11 supergravity. In a final step to simplify the notation,
we suppress the SU(8) indices of χ, ε and of the matrices Γ, if the way
to contract them is unambiguous. Adding a star to fermions with lowered
SU(8) indices in order to distinguish them from the ones with raised indices,
we obtain for (6.25) with the formulæ for P and Q (5.15) in the same
truncation as in (6.9):

δχ∗α| ∂
∂xm

=
i

2
γα∆− 1

2

[
Γa

{
∂aε+

1
4
ωab

cΓb
cε−

3
4
e−1∂aeε

}
− 1

48
Fa1...a4Γ

a1...a4ε− i

7!2
F̃ ε

]
This variation exactly agrees with the supersymmetry transformation of the
remaining gravitino degrees of freedom of D = 11 supergravity (2.7) in the
present truncation.

32



6.6 Fermionic Dynamics

After having defined an SU(8)-covariant variation that links the degrees of
freedom of the coset V to the fermions χ (6.6, 6.19, 6.25), we will investigate
whether their dynamics can be defined in such a way that a hidden Diff(7)
symmetry appears in the Kaluza–Klein reduction 56 → 7 again.

We will follow the same pattern used for the action S of the coset degrees
of freedom (5.5) in section 5.4: At first, we construct the general SU(8)-
covariant Lagrangian in 56 dimensions that is linear in derivatives and at
most quadratic in χ, where derivatives along the additional four directions
are neglected as before. Then, we fix the constants by requiring the hidden
Diff(7) symmetry to appear in the Kaluza–Klein reduction 56 → 7, taking
into account the Weyl rescaling of the additional four dimensions (5.20).
Thus, one is led to the following Lagrangian:17

Lfermions = − 1
12
χ̄ABC

[
DDEχFGH − 3

2
(PJK)DEJK χFGH

+2 (PJK)DEJF χKGH
]
εABCDEFGH

+
1
96
χ̄ABCγ

α

[
DAB(χα)C − 1

2
(PJK)ABJK (χα)C

+
2
3

(PJK)JABC (χα)K

]
+

1
12

(χ̄α)Aγαβ

[
DAB(χβ)B − 1

2
(
PJK

)
ABJK

(χβ)B

]
+

1
96

(χ̄α)Aγ
α

[
DBCχ

ABC − 11
6
(
PJK

)
JKBC

χABC

−2
(
PJ [A

)
JKBC

χBC]K
]

+ c.c.

To prove the hidden Diff(7)-symmetry, we perform the Kaluza–Klein
reduction 56 → 7 (5.10) of this Lagrangian. After substituting the so7 de-
compositions of the bosonic fields (5.15) and of the fermions (6.7) we obtain
without dropping total derivative terms nor making use of the anticommu-
tativity of χ:

17It is clear that only the constants inside the square brackets are fixed by requiring a
hidden Diff(7) covariance. The numerical factors linking the square brackets to each other
are fixed by a comparison to D = 11 supergravity. We will comment on a possible group
theoretic origin of these constants at the end of section 8.
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Lfermions|KK

= ∆− 1
2

[
χ̄k

(
3
2i

Γ(jηdk)

){
∂dχj +

1
4
ωde

fΓe
fχj + ωdj

fχf −
3
4
χf∆−1∂d∆

}
+

1
72
Fb1...b4χ̄k

{
εb2...b4(j

rstη
k)b1 − 1

8
εb1...b4

rstη
jk

}
Γrstχj

− 1
2i
F b1...b4χ̄b4Γb1b2χb3 +

1
7!
F̃ χ̄k

(
Γjk − 3

4
ηjk

)
χj

]
+∆− 1

2 χ̄∗kγ
γ

[(
3
4
ηkc +

1
4
Γkc

){
∂cχγ +

1
4
ωce

fΓe
fχγ −

1
4
χγ∆−1∂c∆

}
− 1

64

(
ΓkΓb1...b4 − 2

3
Γb1...b4k

)
χγFb1...b4 −

3i
7!8

ΓkχγF̃

]
+∆− 1

2 χ̄βγ
βγ

[
i

2
Γc

{
∂cχγ +

1
4
ωce

fΓe
fχγ −

3
4
χγ∆−1∂c∆

}
− i

96
Γb1...b4χγFb1...b4 +

1
7!4

χγF̃

]
+∆− 1

2 χ̄∗βγ
β

[(
3
4
ηcj +

1
4
Γcj

){
∂cχj +

1
4
ωce

fΓe
fχj + ωcj

fχf

−5
4
χj∆−1∂c∆

}
+

1
64

(
Γb1...b4Γj − 2

3
Γb1...b4j

)
χjFb1...b4 −

3i
7!8

ΓjχjF̃

]
+c.c.

In order to simplify the notation, the SU(8) indices of χ and Γ have
been dropped, which is possible with the star notation introduced in section
6.5. The important result is that Lfermions|KK exactly coincides with the
Kaluza–Klein reduction of the fermionic part of the D = 11 supergravity
Lagrangian (2.1) from section 2

Lfermions = det(E)
(
−1

2
ψ̄α̃1Γ̃

α̃1...α̃3∇α̃2ψα̃3

− 1
96

(
ψ̄α̃5Γ̃

α̃1...α̃6ψα̃6 + 12ψ̄α̃1Γ̃α̃2α̃3ψα̃4

)
Fα̃1...α̃4

)
,

if we firstly split the summations α̃ = 0, . . . , 10 into α = 0, . . . , 3 and
a = 4, . . . , 10, secondly use the decomposition of Γ̃-matrices (6.23), thirdly
substitute χ for ψ (6.22, 6.24), fourthly drop all derivatives ∂

∂xα with α =
0, . . . , 3 and finally use the simplifying assumptions (5.21) for the vielbein
E in eleven dimensions (5.20). This completes the proof that a hidden sym-
metry Diff(7) also appears in the fermionic dynamics, if the Weyl rescaling
of the additional four dimensions (5.20) is taken into account.
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7 Exceptional geometry

The hidden Diff(7)-symmetry of the bosonic and the fermionic dynamics
in sections 5.5 and 6.6 respectively provided evidence that adding four di-
mensions to the 56 dimensional generalized coset dynamics may result in an
interesting structure. In this section, the generalized coset picture will be
completed with the bosonic fields that are naturally linked to the additional
four dimensions following the discussion of section 6.3. We will conclude
with the geometric interpretation and comments on the literature.

7.1 A glance at the complete theory

Up to now, we have only motivated the Minkowskian signature for the addi-
tional four dimensions by a comparison with D = 11 supergravity. However,
this also is preferred from a pure group theoretical point of view, if we re-
quire the dimension of the supersymmetry parameter ε to be minimal.

This is due to the fact that for the other two independent signatures
(+ + ++) and (+ + −−), there either is no Majorana representation of the
Clifford matrices γα in R4×4, or γ5 (6.15) would square to +1l4 implying that
the real matrix γ5 would not provide a complex structure (6.17). Therefore,
the minimal real dimension of the non-trivial representation space of both
Spin(4)×SU(8) and Spin(2, 2)×SU(8) would be 4R× 2 ·8R > 32R, which
would be in contradiction to the maximality of d = 4 N = 8 supergravity.
The Minkowskian choice for the signature then leads to the coset (6.12)

V ∈ G/
(
SO(3, 1)× SU(8)/Z2

)
(7.1)

of the group G =
(
Gl(4)×E7(7)

)
nN(4, 56) (6.11), whose matrix representa-

tion as 60× 60 matrices is (4.19):(
Gl(4) ∗4x56

0 E7(7)

)
As explained in section 6.3, the vierbein eµ

α parametrizes the coset
Gl(4)/SO(3, 1). The Gl(4) × Gl(7)-decomposition of the 4R × 56R addi-
tional off-shell degrees of freedom in the coset V (7.1) suggests an identifi-
cation with the following supergravity fields:

1. 4× 7-part Bµ
a of the vielbein E (2.8),

2. 4× 21-part Aµab of the three-form potential A (2.4),

3. 4× 21-part Ãµa1...a5 of the dual six-form potential Ã (2.6b)

4. and an additional field Cµ
a.
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The duality relation (2.6a) guarantees that the three- and the six-form
potentials Aµab and Ãµa1...a5 are independent variables in a Lagrangian, but
what is the counterpart of Cµ

a in D = 11 supergravity?

In a Kaluza–Klein reduction of the complete generalized coset dynamics
in sixty dimensions down to eleven dimensions, the 4× 7 degrees of freedom
of Cµ

a apparently rule out an off-shell Diff(11)-covariance. It is however not
unlikely that Diff(11) is an on-shell symmetry of the reduced theory. This
possibility is backed up by the similar properties of the generalized coset dy-
namics and D = 11 supergravity: Apart from their identical dynamics and
supersymmetry variations in the seven dimensional sector, which was dis-
cussed in this article, both theories exhibit a global on-shell E7(7)-invariance
upon a Kaluza–Klein reduction to four dimensions. The unique way to set-
tle this issue appears to be a comparison of the complete generalized coset
dynamics to D = 11 supergravity, which is beyond the scope of the present
article, however.

7.2 Geometric interpretation

At the end of section 3, we explained that an “exceptional geometry” would
be necessary to consistently define the theory on more general spaces than
the vector space R56 ⊕ R4 of section 4.2.3. A first example of such a con-
strained geometry was provided by symplectic geometry in section 4.2.2: It
is consistent (though not general) to assume that the vielbein V on a sym-
plectic manifold (M2n,Ω) is parametrized by the degrees of freedom of the
coset Sp(2n)/U(n).

Let us discuss this example in more detail. It is well known that any sym-
plectic manifold (M2n,Ω) has a Lagrangian submanifold Mn

L of dimension
n [21]. Furthermore, the cotangent bundle over the Lagrangian submani-
fold T ∗Mn

L is diffeomorphic to an open neighbourhood of the Lagrangian
submanifold Mn

L in (M2n,Ω). Therefore, it is clear that from a local point
of view, the vielbein V ∈ Sp(2n)/U(n) or the corresponding metric g (4.16)
can equivalently be defined on the 2n-dimensional cotangent bundle T ∗Mn

L,
i.e. for every x ∈Mn

L and v ∈ T ∗xMn
L, g is the mapping

g(x, v) : T(x,v) (T ∗xMn
L)⊗ T(x,v) (T ∗xMn

L) −→ R. (7.2)

This is the setting that we want to generalize. Instead of the cotangent
bundle T ∗Mn

L over the Lagrangian submanifold, consider a vector bundle E
over a four dimensional manifold M4 with 56 dimensional fibre Ex for any
x ∈M4 and with the canonical projection

π : E −→ M4. (7.3)
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Furthermore, endow this vector bundle E with an E7(7)-structure. For
every x ∈M4, this effectively reduces the group Gl(56) of endomorphisms

ϕx : Ex −→ Ex

to E7(7) [16].18 Next, we define a metric for every x ∈ M4 and v ∈ Ex by
the non-degenerate symmetric mapping

g(x, v) : T(x,v)E ⊗ T(x,v)E −→ R. (7.4)

As for the symplectic case, we want to make use of the geometric struc-
ture to consistently reduce the off-shell degrees of freedom of the associated
vielbein V (2.2, 4.16). Due to the E7(7)-structure of E, the vector bundle
morphisms ϕ : E → E do not violate the following restriction on the vielbein
V, presented in its representation R as a 60× 60 matrix (4.19):

R(V) ∈
(
Gl(4) ∗4x56

0 E7(7)

)
.

This exactly is the ansatz used for the generalized coset dynamics in the
sections 4.2.3, 6.3 and 7.1. Finally, the signature of the metric g (7.4) is
fixed to be Minkowksian, as well as the one of its canonical restriction to
TxM4 ⊗ TxM4. This completes the geometric setting for the generalized
coset dynamics of section 5.

The fermions χ and ε can also be encoded in the geometrical picture.
They parametrize sections of vector bundles over the sixty dimensional ma-
nifold E (7.3). A general vector bundle morphism ϕ : E → E respecting the
E7(7) structure induces a Spin(3, 1)× SU(8) action on χ and ε in complete
analogy to the standard Spin(3, 1)-action on the spin bundle induced by a
coordinate transformation Diff(4) in general relativity [14].

7.3 Exceptional geometry and comments on the literature

The idea to add more dimensions to D = 11 supergravity has been discussed
before. To our knowledge, the number 60 appeared for the first time in de
Wit & Nicolai’s review as a conjecture for a “BPS-extended supergravity”
[29]. In analogy to the discussion of the E8(8)-case [20], they baptized the
underlying hypothetical geometrical structure exceptional geometry .

18An equivalent way to restrict the morphisms ϕ : E → E is to require that the maps
ϕx : Ex → Ex preserve a symplectic form Ω and the quartic symmetric tensor Q which is
the invariant tensor of E7(7) [14].
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Since the generalized coset dynamics in sixty dimensions with hidden
Diff(7) symmetry perfectly agrees with D = 11 supergravity for the com-
parable fields so far, we will henceforth adopt this name and define the
dynamics of exceptional geometry to be described by the extensions of the
Lagrangians of the sections 5.4 and 6.6 to the entire sixty dimensional set-
ting.

Before concluding, we would like to emphasize the difference of the
present exceptional geometry to Hull’s definition of an “M-geometry on a
seven dimensional manifold H” [15] or Pacheco & Waldram’s “exceptional
generalized geometry” (EGG) [24] à la Hitchin. All settings contain a vec-
tor bundle with structure group E7(7), but the base manifold is of different
dimension. In particular, “M-geometries”, EGGs and “U-folds” by defini-
tion [15, 24] possess a manifest diffeomorphism symmetry Diff(7) ⊂ Diff(11)
in contradistinction to the exceptional geometry in sixty dimensions, whose
hidden symmetry Diff(7) only appears in a truncation to eleven dimensions.
However, it would be interesting to check whether these constructions are
related.

8 Conclusion and outlook

The logic of this paper has been the following:

1. In section 5, we have applied the generalized coset dynamics of section
4 to the Lie group G = E7(7). It turns out that there is a Lagrangian
depending on 56 dimensions whose Kaluza–Klein reduction to seven
dimensions can be made Diff(7)-covariant, if and only if d = 4 addi-
tional dimensions are coupled to the system in the sense explained in
section 5.5. A first comparison with the bosonic part of the Lagrangian
of D = 11 supergravity in section 5.6 shows perfect agreement for the
fields under consideration.

2. The section 6 discussed the possibility of an E7(7)-covariant variation
δ on the coset degrees of freedom V ∈ E7(7)/(SU(8)/Z2) which results
in the definition of the fermions χABC (6.5). To lowest order in deriv-
atives and fermions, δχ was uniquely fixed by requiring the hidden
Diff(7)-covariance of the bosonic part to persist. The same is true for
the fermionic dynamics, if the Weyl rescaling of the additional four
dimensions is taken into account again. A second comparison with the
supersymmetry variation of D = 11 supergravity and its fermionic La-
grangian also shows perfect agreement, even if the degrees of freedom
of the gravitino ψα with α = 0, . . . , 3 are included.
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3. Section 7 finally provided a glance at the complete theory in sixty di-
mensions and its geometrical interpretation in terms of an exceptional
geometry.

The agreement with D = 11 supergravity in the compared sector together
with the manifest E7(7)-invariance of sixty dimensional exceptional geometry
leads to the suspicion that its equations of motion could be preserved under
the 32R dimensional supersymmetry variation δ of section 6. Hence, its trun-
cation to four dimensions would immediately provide a Lagrangian formu-
lation of N = 8 d = 4 supergravity with manifest, off-shell E7(7)-invariance.
This would also be a strong argument in favour of a hidden symmmetry
Diff(11) of the sixty dimensional exceptional geometry in a truncation to
eleven dimensions as discussed in section 7.1.

Following the same line of argumentation, it would then also be likely
that Diff(10)×Sl(2) is a hidden symmetry of exceptional geometry and that
the dynamics of IIB supergravity are contained in the ones of exceptional
geometry, too. This possibility is linked to the observation that not all Gl
subgroups of E7(7) are contained in its Gl(7) subgroup. This is in particular
the case for Gl(6)× Sl(2).

We want to emphasize that the closure of the supersymmetry algebra
has not been used for the construction of the dynamics in this article. Nev-
ertheless, it is an important task to check the on-shell consistency of the
supersymmetry algebra in the sixty dimensional exceptional geometry. Note
however that the complete dynamics of exceptional geometry will have to
be established in order to be able to decide this question.

If the agreement of D = 11 supergravity with a truncation of excep-
tional geometry is complete, then the rich symmetry structure of the former
requires an explanation. The first example would be the hidden E8(8) sym-
metry of the truncated D = 11 supergravity, which could either be related
to the conformal realization of E8(8) [13] on the 3 + 57 dimensional excep-
tional geometry or to a generalized coset dynamics in 3 + 248 dimensions.
The latter would suggest an immediate extension to West’s l1-representation
[27]. Hence, this construction will probably provide further insights in the
dynamics of the E10(10)- and E11(11)-conjectures [9, 26]. These additional
structures may also fix the other numerical factors in the Lagrangian of ex-
ceptional geometry in section 6.6, which have been chosen so far in order to
match the dynamics of D = 11 supergravity.
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Finally, exceptional geometry confirms the well known statement that
the link between diffeomorphism-, exceptional- and supersymmetry is very
tight. Therefore, exceptional geometry may possibly serve as a selection
criterion for (hypothetical) supersymmetric higher curvature extensions of
d = 4 N = 8 supergravity.
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