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Introduction

During last decades a number of first-rate results were obtained in several branches
of mathematics, such as ordinary differential equations, dynamical systems, topol-
ogy and mathematical physics. These results already belong to History of Mathe-
matics and have greatly enriched it. But is History of Mathematics really important
for mathematics and mathematicians? Why do active mathematicians show grow-
ing interest in History of Mathematics? I will discuss these questions by examining
several historical cases. In my presentation I shall follow a wise recommendation of
Freeman Dyson who said in his 1972 Gibbs lecture Missed opportunities: ”...I have
learned from Hilbert and Minkowski that one does not influence people talking in
generalities. Hilbert and Minkowski made specific suggestions of things that math-
ematiciians and physicists could profitably think about. I shall follow their style ”
3]

Let me start with several general remarks. A historian of mathematics and
a professional mathematician have different views on the very subject of History
of Mathematics. A good historic work could consist in studying the origins of
the concept of Zero. For a practicing mathematician, such a question could be
interesting only from a general cultural point of view, like the history of building
the Egyptian pyramids. Mathematicians who are not overtly burdened with general
cultural issues are interested not in the question who proved first such and such
fact, but mainly in the result itself, particularly, in relation to their own work. Such
mathematicians think that all previously obtained valuable knowledge is contained
in textbooks, and reading original papers of classics, let alone non-classics, is simply
a waste of time.

The modern tendency of reading preprints in the arXive leads to the situation
where new generations of mathematicians are not acquainted with papers of their
predecessors and even — quite often — the results of past ten years. It is not rare
that young mathematicians coming up with emerging results are sincerely surprised
when they learn from their peers that these facts have been already proved some-
times fifty or more years ago.

Mathematics is a happy science. Here, a correct result stands forever. It’s
another thing that a theorem could be re-proven somewhat later by a different
method; the value of a theorem may also be changed in one direction or another.
However, it occurrs sometimes that a theorem is considered as proven, and people
non-critically accepted its statement for many years. Only after some time, after
inspecting the original proof, specialists discover mistakes and gaps. Sometimes it
becomes clear that the statement was actually wrong. Such examples are particulaly
interesting.

One of the examples of such type is the history of the Riemann—Hilbert problem.
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1. THE RIEMANN-HILBERT PROBLEM

The history of this problem naturally dates from the paper of Bernhard Rie-
mann: 7 two general theorems on linear differential equations with algebraic coef-
ficients”.This paper was written in 1857/1858 but published postumously [12].

In this article Riemann formulated the following problem.

Consider a system of homogenious linear differential equations in the complex
plane C:

dyi/dz = ZAij(Z)yj (1)

where A;;(z) are functions rational in z. Solutions of the system turn out to be
multivalued functions. The singularities of of each solution of Eq.(1) are determined
by the poles of the matrix A(z) : ay, ...ag,ap = co. The solution naturally changes
after a circuit about a singular point. Riemann found a condition guaranteeing
that the solution following a circuit of the singular point differs from the original
one only by a constant matrix. If after a circuit about the point a; the solution
v1 = (y11(2), ..., Yn1(z)) changes to the vector ) bg;)nj, while the solution ~; changes

to > bl(-;-n)nj after a circut about the point a,,, then the matrices B9, ..., B("™) are
nonsingular and satisfy Riemann’s relation:

BO x BM x .. . xB™ = E (2),
where F is the identity matrix.

In modern terminology, relations of type (2) define a monodromy mapping, that
is, a mapping

m(C\ {ag,...,am}) = GL(n,C), (3)
where the order n of the group GL(n,C) is defined by the dimension of the fun-
damental matrix of solutions of the system (1). Here C is the Riemann sphere (
the complex plane C completed by adjoining the point ag = 00), and 71 (X) is the
fundamental group of the set X.

The matrices B are called monodromy matrices and are generated by circuits
around the points a; over simple loops ( loops not containing other singularities).

In the same work Riemann posed the Inverse problem: Given a system of points
ag, ..., am, does there always exist a system of equations of type (1) displaying
given singularities and given transformationmatrices satisfying(2)? Riemann made
a conjecture about the form of such equations, but did not produce a general
proof. In his lectures on hypergeometric functions he considered the case, n = m =
2. Solutions of equations of type(1l) constitute a very large class of functions ,in
paricular Bessel functions, hypergeometric functions,etc. Riemann’s work remained
unpublished for almost twenty years. Ignoring Riemann’s work, another German
mathematician Lazarus Fuchs (1833-1902), set to work on this series of questions
in 1865. He gave a detailed classification of singular points of equations of type
(1). The most important class of such equations with matrixA;;(z) having simple
poles as singularities came to be called Fuchsian equations, a term casually coined
by Poincaré. Riemann’s basic problem on the existence of equations with given
monodromy matrices and singularities remained unsolved. It was considered so
difficult and important that Hilbert included it in his famous list of ” Mathematical
problems”. In his speech delivered at the Second Mathematical Congress in Paris
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in 1900, Hilbert posed twenty-three problems whose solutions he considered vital
for the future development of mathematics. The problem discussed here got the
number 21; alternatively it became known as the Riemann—Hilbert problem. The
history of its solution is very engrossing.

Untill recently it was believed that the Riemann—Hilbert problem had been solved
in 1908 by Slovenian mathematician J. Plemelj (1873-1967). Since no doubts had
been raised about Plemelj’s proof, subsequent efforts were directed mainly towards
finding effective methods of constructing equations from a given monodromy group.
In particular, a detailed analysis of branching points had been carried out by Rus-
sian mathematician Ivan Lappo-Danilevsky (1896-1931) who developed the appa-
ratus of analytic functions of matrices, specifically for this purpose. The Riemann
problem was extended to an arbitrary Riemann surface by the German mathe-
matician H. Rohrl in 1957. However, in the beginning of the 1980s some doubts
arose about the correctness of Plemelj’s proof. In the beginning, the issue was
not considered serious. But the most dramatic events occured in 1989 when Rus-
sian mathematician Andrei Bolibruch (1950-2003) constructed a conterexample to
Plemelj’s theorem [1, 2] ! It turned out that for any m points ai,....am,, m > 3
and n > 3, there exists a representation (3) not realized by any Fuchsian system.
This remarkable result forced a re-examination of this entire domain of differential
equations.

The second example concerning another classical theorem.

2. POINCARE FINITNESS THEOREM FOR LIMIT CYCLES

Henri Poincaré, in his memoir Sur les courbes définis par une équation différentielle,(1881)
posed the following problem. Consider the system of differential equations:

x = P(z,y),y = Q(z,y), where P, @ are polynomials in z,y € R. (4)

Is it true that:

1. The number of of limit cycles of equation (4) is finite?

2. The number of limit cycles of a polynomial vector field of degree n depends
only onn 7

Both problems turned out to be difficult. To my knowledge, the second problem
is still unsolved. But what happened to the first statement?

Henri Dulac (1870-1955), a student of Poincaré, developed in 1909-1923 the so
called local theory of differential equations. In 1923 he published a long paper Sur
les cycles limites (more than one hundred pages) where he presented the positive
solution to Poincaré question [6]. The proof survived for more than 60 years.
However, a serious gap was found in it in the beginning of the 1980s. About ten
years later two mathematicians, J Ecalle in France and Y. Ilyashenko in Russia,
independently proved this theorem [4, 5]. Both papers are long and very difficult.
The complexity of their proofs is related to a detail analysis of behaviour of curves
near singularity points. The fact that these two proofs were obtained independently
and bear some differences instills hope that, at least for the time being, the long

11t is curious that this striking result was publishied in the Journal with the ti-
tle“Matematicheskie Zametki (in Russian)“ — ”Mathematical notes“ , in the section: brief com-
munications and occupaied only two pages.
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history of the proof of Poincaré’s conjecture is over. ? Anyway, these concrete
and important questions stimulated the development of the theory of ordinary
differential equations.

My third example illustrates a thesis that a nice mathematical result perceived
of being of a little value or lying far from the mainstream in development of math-
ematics in one period could become very important many years after.

3. LOWNER EQUATION AND BROWNIAN MOTION

In 1923 Karl Léwner (Charles Loewner 1893— 1968), at that time Chech math-
ematician, studied the following problem [14]. 3

Consider a disk D C C and a pair of points, a, b, lying on the boundary dD.

Lowner was interested in description of curves joining a and b and lying inside D.
He gave such a description in terms of an equation involving the so-called driving
function g;. The equation (called the Léwner evolution equation) is

2
g:(2) —u(t)’

where g; is a conformal mapping D \ ¥[0,t] — D, and u(t) = ¢:(y(t)). Sometimes
it is convenient to replace D by the upper half-plane H C C.

This equation was considered as very special and consigned to oblivion for many
years. 4

However, in 2000, the Lowner equation was used in

an ingenious paper of Israeli mathematician Oded Shramm (1961-2008), devoted
to the problem of phase transitions in stochastic systems [8].

The idea of Schramm was to study the curve y(t) where u(t) is a trajectory of a
Brownian motion along 9D (or OH), with diffusion coefficient x: u(t) = /kB(t).

When we consider a random function u(t), we obtain a random curve from a to
b inside D; the probability distribution for such a curve turned out to be of a great
interest. Accordingly, the emerging equation was called by Schramm ”Stochastic
Lowner equation”, SLE,; for short (nowadays the abbreviation SLE is referred to as
the Schramm-Léwner equation or the Schramm-Lowner evolution). It is remark-
able that these equations for different « are connected with the scaling limits of
some famous two-dimensional lattice models from Statistical Physics, including the
Ising model, percolation and a number of others.

Nowadays the theory of the Stochastic Lowner equations is one of highly active
interdisciplinary fields in science, including probability, complex analysis, statistical
physics and conformal field theory.

(1) Orgi(2) =

2The best way to be sure that now we have complete proofs is to ask the authors to check the
proof of a colleague : “peculiar cross-fertillization”.

SLater, escaped from Nazis and became the professor at Stanford University he changed his
name to Charles Loewner.

4The story with the heritage of the Loewner paper is not so simple. His work [14]was very
important for the theory of analytical functions. Loewner himself applied his equation to solve a
special case of famous Biberbach problem. The general Biberbach conjecture was solved only in
1985 by de Branges elaborating different method. But some years later C.H. Fitzgerald and Ch.
Pomeranke have found some principal improvementin the de Branges theorem applying Loewner
equation. But, nevertheless, Loewner’s paper was known only for specialists in classical aspects
of the Compex analysis.
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4. DUALITY IN NON-ABELIAN GROUPS AND STATISTICAL PHYSICS

In this section I describe the final example from my collection. It illustrates
complex relations between mathematics and physics; this is especially close to my
own research.

We begin with some mathematics.

In the beginning of the 1930s, Pontryagin and van Kampen built the duality
theory for abelian groups. The main result was the following theorem.

Let G be a locally compact Abelian group. Consider the group of characters of
G, i.e. the set of mappings

x(g1 x g2) = x(g1) x x(92)

This set of mappings make up a group CA?, called the character group (or the dual

group) of G. Then é, the dual group of é, coincides with G.

It is natural for mathematicians to try to generalize this theorem to a non-
Abelian case. This is a nontrivial task, since in the non-commutative case the
product of irreducible representations is not irreducible and so the set G is not a
group. Nevertheless, this problem in some sence was solved by Japanise mathemati-
cian T.Tannaka in 1938. Idependently, it was solved by Soviet mathematician M.
Krein in 1941, who didn’t know about the work of Tannaka. The paper of Tannaka
attracted attention of von Neumann who noted the above-mentioned difficulty and
indicated several important general properties of G. A dual to a non-commutative
group is not a group but a commutative space, endowed with a multiplicative opera-
tion. The papers of Tannaka and Krein were practically forgotten for almost thirty
years, until the first papers agppeared on non-commutative integration and ring
groups. But the real value of these works has been appreciated later, in the 1980s,
when the theory of quantum groups was created. Quantum groups are closely re-
lated to integrable quantum systems. These systems appeared shortly before in
physics.

Now we turn to physics.

In Statistical physics, within the theory of phase transitions, for a long time a
number of models have been proposed and analysed, describing lattice aproximation
for vartious kinds of physical matter. One of the first such model was the one-
dimensional Ising model (1925). Ernst Ising (1900-1998), who was a student of
Wilhelm Lenz, wrote a paper were he found an analytical formula for the free
energy of the model. A generalization to the two-dimensional case led to serious
difficulties. The two-dimensional Ising model was solved only in 1944 by Onsager
and till now is a rare example of an exactly solvable model in Statistical physics.

Consequently, physicists tried to find approximate methods to identify points
of phase transitions. In 1941, two Dutch physicists Kramers and Wannier have
found a very nice method of calculating the point of phase transition in the two-
dimentional Ising model. They constructed a transformation between the low-
temperature and the high-temperature phases. It was latter called the Kramers—
Wannier duality. From the mathematical point of view it is a very interesting object:
an infinite-dimensional bundle with the structure group G = Z;. The Kramers—
Wannier duality consists in passing to the dual lattice (homological duality 4 la
Poincaré) and to the dual group G , in this case coinciding with the same Z5. Latter,
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physicists generalized the KW-duality to systems with a Z,-symmetry (so-called
Potts models).

At the end of the 1970s physicists, in connection with problems in Quantum
field theory (quark confinement), became interested in a generalization of the KW-
duality to non-Abelian groups. Just at this time there appeared a few papers
related to the KW-duality for some non-Abelian groups; I, too, became interested
in this topic (see [7]). At that time Alexander Zamolodchikov and myself (as other
physists) had no idea about the results of Tannaka—Krein.

Then, 25 years later, Victor Buchstaber and myself constructed the KW-duality
for non-commutative finite groups based on the ideas of quantum groups [9, 10]
Only later we learned about the works of Tannaka and Krein.

Although our results were not covered by Tannaka—Krein, it is evident that the
earlier knowledge of their ideas would have allowed us to complete our work much
earlier. In the course of our work we have found interesting relations with an
old (and almost forgotten) paper by Frobenius [15]. Ferdinand Gotfried Frobenius
(1849- 1917) was one of the founders of the theory of group representations (mainly
for finite groups). His famous theorems about irreducible representations of groups
are presented in all textbooks on the theory of groups representations. But one of
his papers, full of interesting ideas, was shelved for decades. For instance, Frobenius
introduced for non-commutative groups the concept of generalized characters. He
posed the question of whether generalized characters determine a group in the same
way as in the commutative case. It is well known that there exist non-isomorphic
groups with the same table of characters, viz., the group of unit quaternions @) and
the dihedral group Ds, both of order 8. Another intersting notion introduced in
the same paper is a noncommutative determinant, an important generalization of
the commutative determinant defined earlier by Dedekind. This result of Frobenius
was recently applied in the graph theory [13]. One of possible explanations of the
fate suffered by the paper of Frobenius is that his successors Issai Shur, William
Burnside and Emmy Noether found a new and more transparent way to develop
the representation theory. Consequently, a somewhat sophisticated and complex
presentation adopted in the Frobenius’ paper caused oblivion for years to come.

Two other articles of Frobenius [16, 17] related to the representation of Sym-
metric groups and rarely cited (see e.g.[18],also deserved additional study. In these
papers he developed a method parallel to the well known Young tableaux. His
method is now rediscovered and applied in the theory of the infinite symmetric
group S(oo) and in the theory of random surfaces. Similar examples can be found
in the history of modern research in such fields as the theory of knots, holomorphic
dynamics, the so-called Berry phase in quantum mechanics [11]and some others.
I would like to think that I have showed that mathematics and its history form
a unified subject; it is a growing tree with many branches. Some of them may
be provisionally abandoned or fallen in oblivion; yet they show their usefulness at
later times. The history of mathematics, particularly the history of proofs, provides
means to reveal the line of succession in the development of this science.
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