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ABSTRACT. We prove a hyperbolic analogue of the Bloch-Ochiai
theorem about the Zariski closure of holomorphic curves in abelian
varieties.

RESUME. On démontre un analogue hyperbolique du théoréme de
Bloch-Ochiai sur I'adhérence de Zariski d’une courbe holomorphe
dans une variété abélienne.
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1. INTRODUCTION.

The following theorem of Bloch-Ochiai (see Chapter 9, theorem 3.9.19
of [3]) is proved using Nevanlinna theory.

Theorem 1.1 (Bloch-Ochiai). Let A be an abelian variety and f: C —
A be a non-constant holomorphic map. Then the Zariski closure of
f(C) is a translate of an abelian subvariety.

In this paper we formulate and prove an analogue of this theorem
for a certain type of locally symmetric varieties, namely the compact
Shimura varieties.

For notations and facts about Shimura varieties and weakly special

subvarieties, we refer to [9] and references therein. Recall that any
1
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hermitian symmetric domain X, admits a realisation X C C" (with
n = dim(X)) as a bounded symmetric domain. See [5], Chapter 4 for
details.

Recall also that given an arithmetic lattice I' € Aut(X)™, such that
the quotient I'\ X is compact, there exists a fundamental domain F
for the action of I' on X which is an open subset of X such that F
is compact. For a bounded hermitian symmetric domain X C C", we
denote by 0X the boundary of X, i.e. X = X\X where X denotes
the topological closure of X in C".

For notions of Shimura data, Shimura varieties and their weakly
special subvarieties we refer to [2], [9] and references contained therein.
We just recall that weakly special subvarieties are defined in terms
of Shimura subdata, but as shown in [6], they are exactly the totally
geodesic subvarieties of '\ X and terms ‘weakly special’ and ‘totally
geodesic’ are used in the literature interchangeably.

Let (G, X) be a Shimura datum with G anisotropic over Q, let X*
be a connected component of X and K a compact open subgroup of
G(Ay). As above, X* C C" is a bounded symmetric domain.

We let I' be the intersection of K with the stabiliser of X in G(Q).
Then I' is an arithmetic congruence group acting on X+.

Then S =T'\X™" is compact. Let m: X — I'\ X" be the quotient
map.

Theorem 1.2. Let f: C — C™ be a holomorphic map such that C =
F(C)NXT is non-empty.

The components of the Zariski closure Zar(m(C)) of 7(C') are weakly
special subvarities of S.

This result is partly inspired by the following so-called hyperbolic Ax-
Lindemann theorem whose slightly different but equivalent formulation
is proven in [9], Théoréme 1.3 in the co-compact case and in [4] for all
Shimura varietes.

Theorem 1.3. With the notations of theorem 1.2, let Y be an algebraic
subset of X (i.e. a component of an intersection of an algebraic subset
of C™ with X ).

The components of the Zariski closure of m(Y') are weakly special
subvarieties of S.

The proof of 1.2 relies on the theory of o-minimality and the Pila-
Wilkie theorem and is inspired by the proof of the hyperbolic Ax-
Lindemann theorem in the co-compact case as in [9]. The proof also
uses in an essential way the hyperbolic Ax-Lindemann theorem itself
and the results of [8].
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An analogous question in the context of abelian varieties has been
investigated in [10]. In that paper we have not been able to re-prove
Bloch-Ochiai theorem using o-minimal techniques. We however ob-
tained a result analogous to 1.2 in the abelian context for certain sets
definable in the usual o-minimal structures. Our result in [10] is in some
ways more general than the Bloch-Ochiai theorem. It is surprising and
interesting that the obstructions to prove the Bloch-Ochiai theorem
using o-minimality do not occur in the hyperbolic case we consider
here, however additional serious difficulties arise which we overcome in
section 3.

The strategy of the proof is as follows. We start by decomposing
F~Hf(C)Nn XT) as a union of connected components U; C C. For a
given i we prove that for some R; > 0, it is in fact enough to prove
the conclusion for wo f(U; N B(0, R;)) where B(0, R;) is the open ball
centered at the origin of radius R;. This is done in section 2.

We now set C; = f(U;NB(0, R;)). Section 3 is the technical heart of
the proof. The analytic curve C; in X is definable in the o-minimal
structure Ry, (here C" is identified with R?"). For o-minimality, related
notions and results we refer to [11]. We fix a fundamental domain F
for the action of I' on X . _

We let V; be the Zariski closure of 7(C;) and V; be #=1(V;) N F. We
associate to C; a certain definable (in R,,) set ¥ C G(R) and show
that X - C; C XN/Z The main technical work is to prove that X contains
a lot of points of G(Q) of height up to T. Pila-Wilkie theorem then
allows us to conclude that ¥ contains a positive dimensional semi-
algebraic subset W and the hyperbolic Ax-Lindemann theorem allows
us to conclude that V; contains a Zariski dense set of weakly special
subvarieties. Using results from [8] and some additional arguments, we
conclude the proof of theorem 1.2.
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2. PRELIMINARIES.

Keep notations as in Theorem 1.2. For simplicity of notation, we
write X for XT. Let

;U nx) =Iu

el
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be the decomposition of f~!(f(C) N X) into connected components.
By definition of the U;, for each 7, we have

f(U)NIX # 0.
For R; > 0 large enough, we have
f(B(O,R)NU)NIX #£

(where B(0, R;) is the open ball of radius R; centered at the origin).
For each i, we fix an R; with this property.

Proposition 2.1. We have
Zar(mo f(U;)) = Zar(mwo f(B(0, R;)) NU;).

Proof. One inclusion is obvious. Write Zar(mo f(B(0, R;) NU;)) C P™
for some m and let s € HO(P™, O(l)) for [ > 1 such that s is zero on
mo f(B(0,R;) N U;). Then the function so fomw: U; — C is zero
on B(0, R;) NU;). Since U; is connected, by analytic continuation, the
function s o f o7 is zero on U;. It follows that s is zero on wo f(U;).
This proves the other inclusion. U

In this paper we will prove the following:

Theorem 2.2. The Zariski closure of wo f(B(0, R;) NU;) contains a
Zariski dense subset of weakly special subvarieties.

Let V' =V, be the Zariski closure of mo f(B(0, R;)NU;). The theorem
2.2 will be deduced form the following;:

Theorem 2.3. There exists a positive dimensional semialgebraic set

W in G(R) such that

To deduce 2.2 from 2.3, let P € f(B(0,R;) NU;). For the notion
of algebraic subset of X, we refer to Appendix B of [4]. There exists
a complex algebraic subset Yp C 7 1(V) such that W - P C Yp (see
[4], Lemma B.3). By Ax-Lindemann theorem 1.3, the Zariski closure
of m(Yp) C V is weakly special. Therefore, through each point of
wf(B(0, R;) N U;) there passes a weakly special subvariety and hence
V' contains a dense set of weakly special subvarieties.

We will now prove that theorem 1.2 follows from theorem 2.2. Let V/
now be a component of the Zariski closure of 7(f(C)NX). By theorem
2.2, V contains a Zariski dense set of weakly special subvarieties.

If V' is a special subvariety, then we are done. Assume that V' is not
special. By the main theorem of [8], there exists a special subvariety
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S’ C S containing V' and such that S” = S; x Sy (S; special and positive
dimensional) and such that

V:Slx‘//

where V' is a subvariety of S,.
There exists a sub-Shimura datum (G’, X’) of (G, X) and a decom-
position
(G/ad,X/ad) = <G1>X1) X (GQ,XQ)

such that S; = I'1\ X7 and Sy = ')\ X, (where as usual we omit the
superscript 4+) and I'; and T'y are suitable arithmetic lattices in G1(Q)*
and Go(Q)™.

Let p; = C™ and py = C™ be the holomorphic tangent spaces to X,
and X5. Then p; X ps is a subspace of the holomorphic tangent space

p=C"to X. Let
e nx) =11 o
iel

be as before, the connected component decomposition. There exists a
U; such that the restriction, f: U; — C" factors through C™ x C'.
By analytic continuation f: C — C™ factors through C™ x C",

Let f; and fy be the holomorphic functions from C to C™ and C™
respectively such that f = (fi, fo).

Similarly, write

£ (RC)NX) =]V
jeJ

the connected component decomposition.

For any i € I, there exists an j € J such that U; C V; because both
f2(U;) are contalned in X, respectively.

It follows that for any ¢ € I, there exists j € J,

Zar(my o fo(Us)) = Zar(ma o f2(V})).

Note that V' is the Zariski closure of the union of the my o fo(U;).
Therefore V is the Zariski closure of

| Zar(mz 0 f2(U))).
iel
By theorem 2.2, Zar(my 0 fo(U;)) = Zar(my o fo(V;)) contains a Zariski
dense set of weakly special subvarieties.
It follows that V' contains a Zariski dense set of weakly special sub-
varieties of S;. An inductive argument finishes the proof theorem 1.2
assuming theorem 2.2.
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3. COUNTING LATTICE ELEMENTS.

In this section we show that f(U;) (as in the previous section) in X
intersects “exponentially many” (in a suitable sense) I'-translates of a
fixed fundamental domain. This section constitutes the technical heart
of the paper.

Recall the following notations from [9]. Let X be a connected Her-
mitian symmetric domain (as usual we omit the superscript +), re-
alised as a bounded symmetric domain in some C". We let C to be
f(B(0, R;) NU;) with R; and U; as in the previous section.

Let I" be a cocompact arithmetic lattice in the group G of holomor-
phic isometries of X. For a point zq € X, we let F be a fundamental
domain for the action of I' on X such that xy € F. We assume that F
is an open connected set such that F is compact. The set

Sr={yel v FNF#0}

is finite and generates T'.

The “word metric” [: I' —> N with respect to S is defined as follows
[(1) = 0 and for v # 1, I(7y) is the minimal number of elements of Sx
needed to write v as their product.

We also let K(Z, W) be the Bergmann kernel on X and we let

w=+V—100K(Z,2)

be the associated Kéhler form. We refer to [5] 4.1 for details on this.
We define the following functions:

Ne(n) = |[{y €'t dim(yF N C) = 1,1(y) < n}

and

Ni(n)=[{y €T :dim(vFNC)=1,l(y) =n}.

The main result of this section is the following theorem:

Theorem 3.1. There is a positive constant ¢ such that for all n > 0,
we have

Nc<n) > e,

Let b be a point of the boundary of C NdX and a neighbourhood V;
of b such that C' N dX NV is a real analytic curve.

We parametrise C' N X NVj as follows. For 0 < o, 8 < 27, let A, 4
be the sector of the unit disc A defined as follows:

Aaﬁ:{Z:rew:()Srgl,ozg@gﬁ}.
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Let C, g be the subset of 0A, g defined as
C’aﬂ:{z:ew:agﬁgﬁ}.

We can find «, § and a real analytic map v from a neignbourhood of
A, to C" such that ¥(A,5) C CNX and ¥(Chp) C CNIX.

Let A be the open unit disk. We let wa be the usual Poincaré (1, 1)-
form on A (wa = \/—_1%) By lemma 2.8 of [9], there exists a
smooth (1,1)-form 7 on A, 3 such that

Y'w = swa + 1

for some integer s > 0.
Let v € I" be such that dim(yF N C) =1 and v F N C C ¥(Asp),
then

(1) / w= s/ WA —I—/ n
~yFNC Y= (vFNC) P~ (yvFNC)

Proposition 3.2. There exists a constant B such that for any v € T’
such that dim(yF N C) = 1, we have

/ w < B.
yFNC

Proof. We consider the compact dual X, of X which is a projective
algebraic variety. Let £ be the dual of the canonical line bundle en-
dowed with a G(C)-invariant metric ||.||rs. We let wpg the associated
(1,1)-form: wps = c1(L, ||.||rs)-

By Harish-Chandra embedding theorem, there is a biholomorphism
A from p = C™ to an open dense subset of X.. For details, see Theorem
1, section 5.2 of [5].

Let v € T be such that v F N C # (). Since w is [-invariant, we have

/ w— / o
~yFNC =1 (yvFNC)

On the compact set F, the two forms w and A\*(wgg) are positive holo-
morphic forms, therefore there is a constant B; such that on F, we
have

w < Bl)\*(wFs).

/ w < Bl/ A (wrs)-
~yFNC ¥~ 1(yvFNC)

/ N (wrg) < / WrS.
Y~ (yFNC) Y~IAC)

We have

Furthermore,
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The conclusion of proposition 3.2 follows from the following lemma that
will be proven in the following section. :

Lemma 3.3. There is a constant By such that for all v € T', we have

/ wrs < DBs.
TIN©)
O

3.1. Proof of lemma 3.3. The volume of the analytic curve \(C') is
defined as

Vol(\(C)) = /A oS

Let P™V be the dual projective space, the set of hyperplanes in P".
Let dJ be the invariant volume element on P"V normalised to have
total mass one.

By Generalised Crofton’s formula (see [1] and references therein), we
have

Vol(y'\(C)) = a/ Ny-1xc)(J)dJ.
I[D’VL\/

where « is a uniformisation constant and n,-1y¢y(J) is the number of
points (counted with multiplicity) of the intersection of y~'A\(C') with
J. Note that the function n,-15)(J) is a function defined on the
open subset of P™V consisting of hyperplanes J such that v~ *\(C) is
not contained J. The complement of this open set is of measure zero,
therefore the integral is well defined.

Lemma 3.4. Let J be a hyperplane in P* and v € I'. There exists a
hyperplane J' such that
7%771)\((;)@]) = n,\(c)(J/).

Proof. Recall that £ is I'-invariant and £ is very ample i.e. £ =
O(1)|x,. Write s the section of £ such that J N X, = div(s). Let
s’ = ~*s. Then s’ is a restriction of a section of O(1) corresponding to
some hyperplane J’ and we thus have

YJINX)=JnNX.
Therefore
AMCO)YNy(JNX)=XC)n(J NX,).
We also have
AC)NA(INXe) =7(yAC) N ).
We conclude using the fact that

(Y IAC) N T)] = g1y ()
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We finish by proving a general lemma:

Lemma 3.5. Let f: C — P*(C) be a holomorphic map. Let R > 0.
There ezists a constant © = O(R, f) such that for any hyperplane H
of P"(C) such that f(C) is not contained in H,

{f(B(0,R)) N H}| < ©.

Proof. A reference for notions of Nevanlinna-Cartan theory is [3], Chap-
ter 3, Section B. We use notations from this reference.
Let N(R, f, H) be the counting function associated to f, R and H.
Let aq,...,a; € B(0, R) be complex numbers such that f(«;) € H.
Let v(f, a;, H) be the multiplicity of f in H at «;. We have

t

N(R.JH) = 3 v(f, o H) log(1 7).

i=1 o

Therefore

2R
= |

We have log( ) > log(2), therefore a bound on N (2R, f, H) implies
a bound on Zzzl I/(f, a;, H) = [{f(B(0, R)) N H}|. It is hence enough
to bound N (2R, f, H).

The first main theorem of Cartan-Nevanlinna theory ([3], 3.B.16),
we have

N(2R, f,H) > Z (f, o, H) log(—).

NQ2R,f,H) <TQ2R, f)+c

where ¢ is a uniform constant and T'(2R, f) is the order function defined
n [3], 3.B.2.
Since T'(2R, f) does not depend on H, this concludes the proof. [

3.2. End of proof of theorem 3.1. As 7 is smooth on A, g, the inte-
gral [ w1 (vFney 1 is bounded independently of 4. Equation 1 and lemma
3.2 imply that fw,
of .

Recall the following lemma (Lemma 2.1) from [9]. Note that this
lemma is proved in [9] for C' algebraic but the algebraicity assumption
is not used, the statement and proof remain the same in our situation.
In fact the proof is a combination of some general facts about hermitian
symmetric domains and word metrics.

Ly Fre) WA is bounded by a constant B’, independent
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Lemma 3.6. There exist positive constants Ay and Ay and D such that
for all z € A, g with z € v~ (vFNCO),

AMl(y) < —log(1 —2z) < \ol(y) + D.

We now follow the end of section 2 of [9].
For n > 0, let

Li={z€ M, p5e ™D <1 —[z2<e™)

The hypebolic volume of I, satisfies

Vol(I,,) > §,e”
where d; is a positive constant.

The set I, is covered by the ¢~1(vF N C). For each n large enough
and for all z € I,,, by lemma 3.6, there exists a 7 such that ¢(z) € yF
with v satisfying

an <I(y) <en
with uniform constants ¢; and cs.

On the other hand, for all z € A, g, such that ¢(z) € vF for some
vel,

Vol(p ' (vFNC)) < B
Therefore, by the computation of Vol(1,,) above, there exists a §; > 0

such that

cin<k<can

This finishes the proof of theorem 3.1.

4. A DEFINABLE SET AND APPLICATION OF PILA-WILKIE
THEOREM.

In this section we prove theorem 2.3 and hence our main theorem.
We follow section 5 of [9] with appropriate modifications.

Let U be as before a connected component of f~(f(C)N X) and R
such that f(U N B(0,R)) NIdX # (. Note that C' = f(B(0,R) NU) is
definable in R,,. Let F be as in the previous section. Recall (see [9],
Proposition 4.2) that 7 restricted to F is definable in R,,.

Consider

Y(C) ={g € GR) : dim(gC N7 (V)NF) =1}

The set ¥(C') is definable in R,,,.
We prove the following.

Lemma 4.1. (1) For all g € (C), gC C 7 (V).
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(2) Define
Y(C)={g € GR): g ' FNC #0}.
Then
2(C)NT =X'(C)NT.
Proof. Let g € X(C'), then
gCNF cCr (V).
By analytic continuation, this implies that ¢gC C 7=1(V).

The proof of (2) is exactly identical to the proof of [9], Lemma 5.2
and relies on the fact that 7—!(V) is I-invariant. O
From previous lemma and theorem 3.1, we obtain the following.

Lemma 4.2. Let
Ns(e)(n) = {y € TNX(C) : U(y) < n}l.
For all n large enough,
Ny c)(n) > e

The height H(7) of an element v of I' is defined by viewing I as a
subgroup of some GL,,(Z) and taking the maximum of the absolute
values of the entries. If [(7) < n, then H(vy) < (mA)™ where A is the
maximum of heights of elements of Sx.

Let now

O(X(C),T) ={g € G@QNX(C): H(g) <T}

and

Lemma 4.3.
N((C),T) > T.

We now appeal to the Pila-Wilkie theorem (see [7], Theorem 1.8).
For a definable (in some o-minimal structure) subset © C R", we
define ©9 to be the union of all positive dimensional semi-algebraic

subsets contained in ©. We define © to be ©\O9.

Theorem 4.4 (Pila-Wilkie). Let © be a subset of R™ definable in an
o-minimal structure. Let € > 0. There exists a constant ¢ = (O, ¢)
such that for any T > 0,

Hx e ©"NQ": H(x) < T} > T
In view of lemma 4.3, by Pila-Wilkie theorem, there exists a positive

dimensional semi-algebraic subset W C 3(C) and by (1) of lemma 4.1,
we have W - C' C #!(V). This finishes the proof of theorem 2.3.
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