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1. Introduction

Fix p a prime number and Q, an algebraic closure of the field of p-adic numbers
Qyp. Let £ # p be another prime number and Qy an algebraic closure of Q. If F is a
field which is a finite extension of Q, and n a positive integer, the celebrated local
Langlands programme for GL,, ([48], [37], [38]) establishes a “natural” 1 — 1 cor-
respondence between certain Qy-linear continuous representations p of the Galois
group Gal(@/ F) on n-dimensional Q-vector spaces and certain Q,-linear locally
constant (or smooth) irreducible representations 7 of GL,(F") on (usually infinite
dimensional) Qg-vector spaces. This local correspondence is moreover compatible
with reduction modulo ¢ ([68]) and with cohomology ([49], [23], [37]). By “compat-
ible with cohomology”, we mean here that there exist towers of algebraic (Shimura)
varieties (S(K))k over F of dimension d indexed by compact open subgroups K
of GL,,(F') on which GL,,(F') acts on the right and such that the natural action of
GL,,(F) x Gal(Q,/F) on the inductive limit of f-adic étale cohomology groups:

lim HE (S(K) xp Qp, Qo) (1)
K

makes it a direct sum of representations m ® p where p matches 7 by the previous
local correspondence. (One can also take étale cohomology with values in certain
locally constant sheaves of finite dimensional Qg-vector spaces.)

Now GL,(F) is a topological group (even a p-adic Lie group) and by [69] one
can replace the above locally constant irreducible representations 7 of GL,,(F)
on Qg-vector spaces by continuous topologically irreducible representations 7 of
GL,(F) on ¢-adic Banach spaces (by a completion process which turns out to be
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2 C. Breuil

reversible). This is quite natural as it gives now a 1 — 1 correspondence between
two kinds of continuous ¢-adic representations. The original aim of the local p-adic
Langlands programme is to look for a possible p-adic analogue of this ¢-adic cor-
respondence, that is:

Can one match certain linear continuous representations p of the Galois group
Gal(Q,/F) on n-dimensional Q,-vector spaces to certain linear continuous repre-
sentations 7 of GL,,(F') on p-adic Banach spaces, in a way that is compatible with
reduction modulo p, with cohomology, and also with “p-adic families”?

It turns out that such a nice p-adic correspondence indeed exists between 2-
dimensional representations of Gal(Q,/Q,) and certain continuous representations
of GL2(Q,) on “unitary p-adic Banach spaces” (that is, with an invariant norm)
which satisfies all of the above requirements. Based on the work of precursors
([50], [1], [2]) and on the papers [67], [59], [60], [61], the first cases were discovered
and studied by the author in [6], [7], [8], [9], [15] and a partial programme was
stated for GL2(Q,) in [8]. The local p-adic correspondence for GL2(Q,), together
with its compatibility with “p-adic families” and with reduction modulo p, was
then fully developed, essentially by Colmez, in the papers [19], [5], [3], [20], [21]
after Colmez discovered that the theory of (¢, T")-modules was a fundamental in-
termediary between the representations of Gal(Q,/Q,) and the representations of
GL2(Q,) (see Berger’s Bourbaki talk [4] and [12] for a historical account). These
local results already have had important global applications by work of Kisin ([45])
and Emerton ([28]) as, combined with deformations techniques, they provide an
almost complete proof of the Fontaine-Mazur conjecture ([31]). Finally, the im-
portant compatibility with cohomology is currently being written in [28]. Note
that the relevant cohomology in that setting is not (1) but rather its p-adic com-
pletion, which is a much more intricate representation. Such p-adically completed
cohomology spaces were introduced by Emerton in [24] (although some cases had
been considered before, see, e.g., [51]). Their study as continuous representations
of GL,(F) x Gal(Q,/F) seems a mammoth task which is sometimes called the
“global p-adic Langlands programme” (as these cohomology spaces are of a global
nature). We sum up some of these results for GL2(Q,) in §2.

At about the same time as the p-adic and modulo p theories for GL2(Q),) were
definitely flourishing, the theory modulo p for GLy(F') and F # Q, was discovered
in [16], much to the surprise of everybody, to be much more involved. Although
nothing really different happens on the Galois side when one goes from Q, to F,
the complications on the GLg side are roughly twofold: (i) there are infinitely
many smooth irreducible (admissible) representations of GLa(F') over any finite
field containing the residue field of F' (whereas when F' = Q,, there is only a finite
number of them) and (ii) the vast majority of them are much harder to study
than for F' = Q. In particular (i) has the consequence that there is no possible
naive 1 — 1 correspondence as for the F' = Q, case and (ii) has the consequence
that no one so far has been able to find an explicit construction of one single ir-
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reducible representation of GLo(F) that isn’t a subquotient of a principal series.
The p-adic theory shouldn’t be expected to be significantly simpler ([54]). And yet,
cohomology spaces analogous to (1) are known to exist and to support interesting
representations of GL2(F) over F, (where F, is an algebraic closure of the finite
field F,) as well as related representations of Gal(Q,/F), but the representations
of GLa(F) occuring there seem to be of a very special type. We report on these
phenomena in §3.

We then conclude this non-exhaustive survey in §4 more optimistically by men-
tioning, among other scattered statements, three theorems or conjectures available
for GL,,(F') that give some kind of (p-adic or modulo p) relations between the
Gal(Q,/F) side and the GL,,(F) side. Although they are quite far from any sort
of correspondence, these statements are clearly part of the p-adic Langlands pro-
gramme and will probably play a role in the future.

One word about the title. Strangely, the terminology “p-adic Langlands corre-
spondence/programme” started to spread (at least in the author’s memory) only
shortly after preprints of [6], [7], [8], [9], [14], [19], [24], [53], [59], [60], [61], [7O]
were available (that is, around 2004), although of course p-adic considerations on
automorphic forms (e.g., congruences modulo p between automorphic forms, p-adic
families of automorphic forms) had begun years earlier with the fundamental work
of Serre, Katz, Mazur, Hida, Coleman, etc. Maybe one of the reasons was that
an important difference between the above more recent references and older ones
was the focus on (i) topological group representation theory “a la Langlands” and
(ii) purely p-adic aspects in relation with Fontaine’s classifications of p-adic Galois
representations.

The present status of the p-adic Langlands programme so far is thus the follow-
ing: almost everything is known for GL2(Q,) but most of the experts (including
the author) are quite puzzled by the apparent complexity of whatever seems to
happen for any other group. The only certainty one can have is that much remains
to be discovered!

Let us introduce some notations. Recall that Q, (resp. F,) is an algebraic
closure of Q, (resp. F,). If K is a finite extension of Q,, we denote by Ok its ring
of integers, by wx a uniformizer in Ok and by kx := Ok /(wkOk) its residue
field.

Throughout the text, we denote by F' a finite extension of QQ, inside @p, by
q = p’ the cardinality of kr and by e = [F : Q,]/f the ramification index of
F. For z € F*, we let |z| := ¢7"*#®) where valp(p) := e. The Weil group
of F is the subgroup of Gal(Q,/F) of elements w mapping to an integral power
d(w) of the arithmetic Frobenius of Gal(F,/F,) (that is, z + 2P) via the map
Gal(Q,/F) — Gal(F,/F,).
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Representations always take values either in E-vector spaces, in Og-modules
or in kg-vector spaces where E is always a “sufficiently big” finite extension of Q,,.
By “sufficiently big”, we mean big enough so that we do not have to deal with
rationality issues. For instance irreducible always means absolutely irreducible, we
always assume |Hom(F, E)| = [Hom(F,Q,)|, [Hom(kr, kg)| = |[Hom(kp,F,)|, etc.

We normalize the reciprocity map F* < Gal(Q,/F)*" of local class field the-
ory by sending inverses of uniformizers to arithmetic Frobeniuses. Via this map,
we consider without comment Galois characters as characters of F'* by restriction.
We denote by ¢ : Gal(Q,/Q,) — Z, the p-adic cyclotomic character and by w its
reduction modulo p. Seen as a character of Q;, ¢ is the identity on Z; and sends
p to 1.

If A is any Z-algebra, we denote by B(A) (resp. T(A)) the upper triangular
matrices (resp. the diagonal matrices) in GL,(A). We denote by I (resp. Iy)
the Iwahori subgroup (resp. the pro-p Iwahori subgroup) of GL,,(OF), that is, the
matrices of GL,,(Op) that are upper triangular modulo g (resp. upper unipotent
modulo wg).

A smooth representation of a topological group is a representation such that
any vector is fixed by a non-empty open subgroup. A smooth representation of
GL,,(OF) over a field is admissible if its subspace of invariant elements under any
open (compact) subgroup of GL,(Op) is finite dimensional. We recall that the
socle of a smooth representation of a topological group over a field is the (direct)
sum of all its irreducible subrepresentations.

We call a Serre weight for GL,(Or)F* any smooth irreducible representation
of GL,(Opr)F* over kg. In particular, a Serre weight is finite dimensional, F*
acts on it by a character and its restriction to GL,(Op) is irreducible. In other
references (e.g., [18] or [39]), a Serre weight is just a smooth irreducible represen-
tation of GL,(OF) over kg; however, in all representations we consider, F’* acts
by a character, and it is very convenient to extend the action to GL,(Op)F*.

2. The group GL3(Q))

We assume here F' = Q,. The p-adic Langlands programme for GL3(Q,) and
2-dimensional representations of Gal(Q,/Q,) is close to being finished. We sum
up below some of the local and global aspects of the theory.

2.1. The modulo p local correspondence. We first describe the mod-
ulo p Langlands correspondence for GL2(Q,) (at least in the “generic” case), which
is much easier than the p-adic one and which was historically found before.
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Let o be a Serre weight for GL2(Z,)Q,f and denote by:

B GL2(Qp)
c—TIndg 0

the kg-vector space of functions f : GL2(Q,) — o which have compact support
modulo Q) and such that f(kg) = o(k)(f(g)) for (k,g) € GL2(Z,)Q, x GL2(Qy).
We endow this space with the left and smooth action of GL2(Q,) defined by
(9f)(¢") == f(¢'g). By a standard result, one has ([2]):

GL(Q))
Enday(a,) (¢ — Indg 57 o) = ku[T]

for a certain Hecke operator T'. One then defines:

e (o TnaCL2(Qs) )
7(0,0) := (c Indg (%) o) /().
One can prove that the representations (o, 0) are irreducible and admissible ([6]).
The representations m(c,0) form the so-called supersingular representations of

GL?(Qp)-

Let x;: Q) — kf, i € {1,2} be smooth multiplicative characters and define:

X1®x2 : BQ,) — ky

(6 %) = @@

Denote by:
GL
nd 53" @ xe
the kg-vector space of locally constant functions f : GL2(Qp) — kg such that

f(hg) = (xa @ x2)(h)f(g) for (h,g9) € B(Qp) x GL2(Q,). We endow this space
with the same left and smooth action of GL2(Q,) as previously. The representa-
tions Indg](“&?p) X1 ® X2 are admissible. They are irreducible if x; # x2 and have
length 2 otherwise ([1], [2]). They form the so-called principal series. The super-
singular representations together with the Jordan-Holder factors of the principal
series exhaust the smooth irreducible representations of GL2(Q,) over kg with a
central character ([2], [6]).

Theorem 2.1. For x1 # X2 and x1 # xow™! the kg-vector space:

GL2(Q, _ GL2(Q, _
ExtéLZ(Qp)(IndB(@? )Xl ® Yow 1,IndB(6§ )xg ® x1w 1)

has dimension 1.

Proof. This follows for instance from [16, Cor.8.6] but other (and earlier) proofs
can be found in [27] and [21, §VII]. O
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Note that the assumptions on y; imply that both principal series in Theorem
2.1 are irreducible distinct (and hence that any extension between them has their
central character) and that Exthal(@ /0 )(XQ, X1) also has dimension 1.

P P

For g in the inertia subgroup of Gal(Q,/Q,), let:

o)

be Serre’s level 2 fundamental character (where the first map is reduction modulo
p and where we choose an arbitrary field embedding Fj > — kg). For 0 <r <p—1,
we denote by o, the unique Serre weight for GL2(Z,)Q, such that o,.(p) = 1 and
o, has dimension r + 1 (in fact o,|gr,z,) ~ Sym"(k%)). For 0 <r < p—1, we

wa(g) :== € pp2-1(Qy) = IE‘;2 — kx

denote by p, the unique continuous representation of Gal(Q,/Q,) over kg such

that its determinant is w™ ™! and its restriction to inertia is wg‘H @ w;’(” ),

The modulo p local correspondence for GLy(Q,) can be defined as follows.

Definition 2.2. (i) For 0 <r <p—1 and x : Gal(Q,/Q,) — kJ, the representa-
tion 7(o,,0) ® (x o det) corresponds to p, ® x.

(ii) For x1 ¢ {x2,xew™!'} the representation associated to the unique non-split
(resp. split) extension in:

GL _ GL _
ExtéM(Qp) (IndB(éi?”)Xl ® xow L, IndB(éi?”)Xg ® 1w 1)

corresponds to the representation associated to the unique non-split (resp. split)

. . 1
extension in EXtGal(@/Qp) (x2; X1)-

For more general 2-dimensional reducible representations of Gal(Q,/Q,), the
corresponding representations of GL2(Q,) are a bit more subtle to define and we
refer the reader to [27] or [21, §VII]. When representations (on both side) are semi-
simple, the above correspondence was first defined in [6]. Note that Definition
2.2 requires one to check that whenever there is an isomorphism between the
GL2(Qp)-representations involved, the corresponding Galois representations are
also isomorphic. The correspondence of Definition 2.2 (without restrictions on the
Xi) can now be realized using the theory of (¢, T')-modules (see §2.3), which makes
it much more natural.

2.2. Over E: first properties. We now switch to continuous represen-
tations of GL2(Qp) over E and explain the first properties of the p-adic local
correspondence for GL2(Q,).

We fix a p-adic absolute value | - | on E extending the one on F = Q, and
recall that a (p-adic) norm on an E-vector space V is a function || - || : V — Rxg
such that ||v|| = 0 if and only if v = 0, ||Av]| = [A||lv]] (A € E, v € V) and
lv +w| < Max(||v]], |w]]) (v,w € V). Any norm on V defines a metric ||v — w||
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which in turns defines a topology on V' by the usual recipe. A (p-adic) Banach
space over F is an E-vector space endowed with a topology coming from a norm
and such that the underlying metric space is complete. All norms on a Banach
space over F defining its topology are equivalent.

Definition 2.3. (i) A Banach space representation of a topological group G over
FE is a Banach space B over E together with a linear action of G by continuous
automorphisms such that the natural map G x B — B is continuous.

(ii) A Banach space representation B of G over F is unitary if there exists a norm
| - || on B defining its topology such that ||gv|| = |jv|| for all g € G and v € B.

If G is compact, any Banach space representation of G is unitary but this is
not true if G is not compact, e.g., G = GL2(Qp). Let B be a unitary Banach
space representation of G and BY := {v € B, |[v|| < 1} the unit ball with respect
to an invariant norm on B (giving its topology); then BY ®¢, kg is a smooth
representation of G over kg. A unitary Banach space representation of GL2(Q))
is said to be admissible if B ®o, kg is admissible. This does not depend on the
choice of BY ([60, §3], [8, §4.6]). The category of unitary admissible Banach space
representations of GL2(Q,) over E is abelian ([60]).

To any Banach space representation B of GL2(Q,) over E, one can associate
two subspaces B8 C B which are stable under GL2(Q,). We define B* C B
(the locally analytic vectors) to be the subspace of vectors v € B such that the
function GL2(Q,) — B, g — gv is locally analytic in the sense of [61]. We define
B¥8 C B2 (the locally algebraic vectors) to be the subspace of vectors v € B
for which there exists a compact open subgroup H C GL2(Q,) such that the H-
representation (H -v) C By is isomorphic to a direct sum of finite dimensional
(irreducible) algebraic representations of H. In general one has B = 0, but if
B is admissible as a representation of the compact group GL2(Z,) it is a major
result due to Schneider and Teitelbaum (which holds in much greater generality)
that the subspace B*" is never 0 and is even dense in B ([62]).

Inspired by the modulo p correspondence of Definition 2.2 and by lots of com-
putations on locally algebraic representations of GL2(Q,) ([7], [15]), the author
suggested in [8, §1.3] (see also [25, §3.3]) the following partial “programme”.

Fix V a linear continuous potentially semi-stable 2-dimensional representation
of Gal(Q,/Q,) over E with distinct Hodge-Tate weights wy < ws. Asin §4.1 below,
following Fontaine ([30]) one can associate to V' a Weil-Deligne representation to
which (after semi-simplifying its underlying Weil representation) one can in turn
attach a smooth admissible infinite dimensional representation m of GL2(Q)) over
E by the classical local Langlands correspondence (slightly modified as in §2.4 or
§4.1 below). We denote by V™ the semi-simplification of VO®¢ ke where VY is any
Galois Opg-lattice in V. To V one should be able to attach an admissible unitary
Banach space representation B(V) of GL2(Q),) over E satisfying the following
properties:
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(i) V =V’ if and only if B(V) ~ B(V’) if and only if B(V)*" ~ B(V')2";

(ii) if V is irreducible then B(V) is topologically irreducible; if V' is reducible
and indecomposable (resp. semi-simple) then B(V) is reducible and inde-
composable (resp. semi-simple);

(iii) for any unit ball B® C B(V) preserved by GL2(Q,), the semi-simplification
of B ®¢,, kg corresponds to V™ under the modulo p correspondence of
Definition 2.2;

(iv) the GLa(Q,)-subrepresentation B(V)# is isomorphic to:

detwl ®E Symwg—wl—l(EQ) ®E .

When V is irreducible, (ii) and (iv) imply that B(V') is a suitable completion
of the locally algebraic representation B(V)38 = det"* ®p Sym"? "' (E?) @p 7
with respect to an invariant norm. This property is the basic idea which initially
motivated the above programme: what is missing to recover V' from wy, wo and its
associated Weil-Deligne representation, or equivalently from B(V)*#, is a certain
weakly admissible Hodge filtration ([22]). This missing data should precisely cor-
respond to an invariant norm on B(V ). For instance, when V is irreducible and
becomes crystalline over an abelian extension of Q,,, such a filtration turns out to
be unique (see, e.g., [32, §3.2]). Correspondingly one finds that there is a unique
class of invariant norms on B(V)2# in that case ([5, §5.3], [55]).

The first instances of B(V) were constructed “by hand” for V semi-stable
and small values of wy — wy in [7], [8] and [9]. Shortly after these examples
were worked out, Colmez discovered that there was a way to define B(V) directly
out of Fontaine’s (p,I')-module of V' ([19], [5]), thus explaining the above basic
idea and also the compatibility (iii) with Definition 2.2 (the latter was checked in
detail by Berger [3]). Using the (¢, T')-module machinery, Colmez was ultimately
able to fulfil the above programme and even to associate a B(V) to any linear
continuous 2-dimensional representation V of Gal(Q,/Q,) over E. It was then
recently proved by Pasktunas that these B(V') and their Jordan-Hdlder constituents
essentially exhaust all topologically irreducible admissible unitary Banach space
representations of GL2(Q,) over E.

2.3. (¢, I')-modules and the theorems of Colmez and of Pasku-
nas. We first briefly recall what a (o, I')-module is ([30]) and then state the main
results on the Banach space representations B(V).

Let I' := Gal(Q,(*V1)/Q,) and note that the p-adic cyclotomic character e
canonically identifies I' with Z. If a € Z)', let 7, € I' be the unique element such
that £(va) = a. Let Og[[X]][%]" be the p-adic completion of Og[[X]][+] equipped
with the unique ring topology such that a basis of neighbourhoods of 0 is:

(7 Os[IXTNI )" + X" 0w [[X]))

n>0,m>0
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We endow Op[[X]][%]" with the unique Op-linear continuous Frobenius ¢ such
that ¢(X7) := ((1+ X)? — 1)7 (j € Z) and with the unique Og-linear continuous
action of I' such that (a € Z;):

+o0 . j
Ya(X7) == (14 X)* — 1) = (Za(a_l)”ﬁ(a_l“)xi) :

7!
i=1

We extend ¢ and I' by E-linearity to the field Op[[X]][]"[1]. Note that the
actions of ¢ and I' commute and preserve the subring Og[[X]].

A (¢, T)-module over Op[[X]][%]" (resp. Op[[X]][%]"[}]) is an Op[[X]][%]"-

module of finite type (resp. an OE[[X]][%]A[%]-Vector space of finite dimen-
sion) D equipped with the topology coming from that on OE[[X]][§]A together
with a homomorphism ¢ : D — D such that ¢(sd) = ¢(s)p(d) and with a
continuous action of T' such that y(sd) = ~(s)y(d) and yop = poy (s €
Op[[X]][%]" or OE[[X]][§]’\[%], de D,y eTl). A(p,T')-module over Op[[X]][%]"
or OE[[X]][%]A[%] is said to be étale if moreover the image of ¢ generates D, in
which case ¢ is automatically injective. There is a third important Opg-linear
map ¢ : D — D on any étale (¢,I')-module D defined by ¢(d) := do if d =
SPH(1+ X)ip(d;) € D (any d determines uniquely such d; € D as D is étale).
The map v is surjective, commutes with I and satisfies by definition (¥ o¢)(d) = d.
The main theorem is the following equivalence of categories due to Fontaine (we
won’t need more details here, see [29]).

Theorem 2.4. There is an equivalence of calegories between the category of Op-
linear continuous representations of Gal(Q,/Q,) on finite type Og-modules (resp.
on finite dimensional E-vector spaces) and étale (o, T')-modules over Og[[X]][+]"

(resp. over Op[[X]J[ 2] [1]). "

If T (resp. V) is an Op-linear continuous representation of Gal(Q,/Q,) on a
finite type Og-module (resp. on a finite dimensional E-vector space), we denote
by D(T) (resp. D(V)) the corresponding (¢, I')-module over Op[[X]][+]" (resp.
over Op([X]][%]"[;])-

Let V be any linear continuous 2-dimensional representation of Gal(Q,/Q,)
over E and x : QF — Op any continuous character. For d € D(V)¥=" := {d €
D(V), ¥(d) = 0}, one can prove that the formula:

wd) = lim 3 @ X e (e (1 X0 d))
i€Zy mod pn

converges in D(V)¥=% and that w2(d) = d ([21, §II]). One defines the following
E-vector space (recalling that (1 — ¢y)(D(V)) € D(V)¥=9):

D(V) R, P :={(d1,d2) € D(V) x D(V), (1 — ) (d1) = wy ((1 — ) (d2))}-
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Note that (di,ds) € D(V) K, P! is determined by ¢v(d;) and da, or by d; and
©1(dz). One can show that the following formulas define an action of the group
GL2(Q,) on D(V) X, P! (even if V has dimension > 2):

(i) ifa € Qy, (5 2)(di,d2) = (x(a)dy, x(a)da);

(ii) if a € Z)5, (5 9)(dr,d2) := (Ya(dr), x(a)yq-1(d2));

(iii) (Y &)(d1,d2) := (da,dy);
)

(iv) (5 9)(d1,d2) is the unique element (d}, d) of D(V )X, P! such that pi(d}) :=
¢(d1) and dj := x(p)¥(da);

(v) if b € pZy, (5 })(d1,ds) is the unique element (df,d5) of D(V) K, P! such
that d} := (1 + X)bd; and:

() = (140 130 (000 (X (L0 ) ).

All of the above mysterious formulas were first discovered in the case V crystalline,
where everything can be made very explicit ([5], [19]), and then extended more or
less verbatim to any V.

For any étale (o, T')-module D over Og[[X]][]", let D* C D be the smallest

compact Op[[X]]-submodule which generates D over Og[[X]][+]" and which is

preserved by ¢ (one can prove that such a module exists). If D is an étale (p,T)-
module over (’)E[[X]][%]’\[%], choose any lattice Dy C D, that is any étale (¢,T')-
module Dy which is free over Og[[X]][+]" and generates D, and let D := Dg[%].
Going back to our 2-dimensional V', for (di,d2) € D(V) X, P! and n € Zxo, let
(d(ln), d(Qn)) = (% V)(d1,d2) € D(V) K, P'. Note that from the iteration of (iv)
above and from 1 o ¢ = Id, one gets 1/J(dgn+1)) = dgn). One then defines the
following subspace of D(V) K, P':

D(V)!R, P! = {(dy,dy) € D(V) R, P',d\™ € D(V)! for all n € Zx(}.

Now let x(z) = xv(x) := (z[z])"*det(V)(z) (z € Q¥). It turns out that, for
such a x, D(V)? K, P! is preserved by GL3(Q,) inside D(V) K, PL. The stability
of the subspace D(V)" K. P! by GL2(Q,) is the most subtle part of the theory
and, so far, the only existing proof (following a suggestion of Kisin) is by analytic
continuation from the crystalline case (see [21, §IL1.3]).

We can now state the main theorem giving the local p-adic Langlands corre-
spondence for GL2(Q)) in the case V is irreducible ([21]).

Theorem 2.5. Assume V is irreducible. Then the quotient:

B(V) := D(V) Ry, B'/D(V)? By, P!
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together with the induced action of GLa(Q,) above is naturally an admissible uni-
tary topologically irreducible Banach space representation of GL2(Q,) over E sat-
isfying properties (i) to (iii) of §2.2. Moreover, B(V)*® % 0 if and only if V is
potentially semi-stable with distinct Hodge-Tate weights, and B(V') then satisfies
property (iv)t of §2.2.

A unit ball of B(V) is B(T) := D(T) R, P'/D(T)¢ K, P! where T C V is
any Galois Og-lattice (one can extend all the previous constructions with D(T)
instead of D(V)). For the second part of property (i) of §2.2, one has to use
that the subspace B(V)2* C B(V) of locally analytic vectors admits an analogous
construction in terms of the (¢,I")-module of V' over the Robba ring ([21, §V.2]).
When V is reducible, a reducible B(V') can also be constructed as an extension
between two continuous principal series in a way analogous to (ii) of Definition 2.2

(see [19] or [27] or [47], see also [46]).

There is a nice functorial way to recover in all cases D(T) from B(T) (and
hence D(V) from B(V)) as follows. Let n € Zsq, TV := Homp, (T, Og) and
let o € B(TV)/p"B(T"Y) be any Og-submodule of finite type that generates
B(TY)/p"B(T") as a GL(Q,)-representation (such a o exists as a consequence
of property (iii) of §2.2). Consider the O /p"Og-module:

> (% T)e oE/p"oE> 2)

m>0

HomoE/pn@E (

where the left entry is the O /p" Og-submodule of B(TV)/p" B(T") generated by
o under the matrices (”0 "{), a € Zp, m € Z>o. The natural action of ((1) Z{’)

m

(resp. of (Lg f)) on Zm,ZO (PO
gebra Og[[(s 7)]] = Ogl[Z,]] = Op[[X]] where X :=[(; 1)] — 1 (resp. endows
(2) with an action of I' ~ ZX). After tensoring (2) by Op[[X]][]" over Op[[X]],
one can moreover define a natural Frobenius ¢ coming from the action of (pgl ‘1’)

The final result turns out to be an étale (¢,I')-module over Og[[X]][%]" (killed
by p™) which is independent of the choice of o and isomorphic to D(T)/p"D(T)
([21, §IV]). One then recovers D(T') by taking the projective limit over n.

“r)o makes (2) a module over the Iwasawa al-

This last functor B(T') — D(T') has revealed itself to be of great importance.
For instance it allowed Kisin to give in many cases another construction of B(V)
more amenable to deformation theory ([46]) and it was a key ingredient in Kisin’s
or Emerton’s proof of almost all cases of the Fontaine-Mazur conjecture ([45], [28]).
Together with Kisin’s construction, it was also used by Pagktinas to recently prove
the following nice theorem ([56]):

1Some of the arguments of [21] here rely on the global results of [28], in particular on Theorem
2.7 below. Hence property (iv) might not yet be completely proven in a few cases like p = 2 or

Vo (3 0) or ((1) ?) up to twist, etc.

w
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Theorem 2.6. Assume p > 5, then the above functor B(T) — D(T) induces
(after tensoring by E) a bijection between isomorphism classes of:

(i) admissible unitary topologically irreducible Banach space representations of
GL2(Qp) over E which are not subquotients of continuous parabolic induc-
tions of unitary characters;

(ii) irreducible 2-dimensional continuous representations of Gal(Q,/Q,) over E.

Finally, let us mention that this functor has been extended to a more general
setting in [64].

2.4. Local-global compatibility. The local correspondence of §2.3 turns
out to be realized on suitable cohomology spaces of (towers of) modular curves.
This aspect, usually called “local-global compatibility” (as the cohomology spaces
have a global origin), is the deepest and most important part of the theory.

Denote by A the adeéles of Q, Ay C A the finite adeles and A’} C Ay the finite
adeles outside p. For any compact open subgroup Ky of GLa(Ay), consider the
following complex curve:

Y (K)(C) = GLy(Q)\GLa(A)/K /RSO (R).

For varying Ky, (Y (K;)(C))k, forms a projective system on which GLa(A ) natu-
rally acts on the right (g9 € GL(Af) maps Y (K;)(C) to Y (g7 'K;g)(C)). Likewise,
for each fixed compact open subgroup K 53 C GL, (A’;) and varying compact open
subgroups Ky, of GL2(Qp), (Y(K}Ky,)(C))k,, forms a projective system on
which GL2(Q,) acts on the right. One considers the following “completed coho-
mology spaces”:

iy = (timlim B (Y(K7K,)(C), Op/p"Op) ) ®0, B
n Kfyp
H = lirilﬁl(K?)
K7

where H' is usual Betti cohomology and where K, (resp. K;’) runs over the
compact open subgroups of GL(Qj) (resp. of GL(A%)). The group GL2(Qj) (resp.
GL2(Ay)) acts on ﬁl(K?) (resp. on H') and one can prove that each ﬁl(K?) is

an admissible unitary Banach space representation of GL2(Q,) over E, an open
unit ball being given by limlim H* (Y(K?Kf’p)((C),OE/p"OE) (this result, due
to Emerton, actually holds in much greater generality, see [24, §2]). Moreover, all
the Betti cohomology spaces H* (Y(Kfo,p)((C), Op/p"Og) can be identified with

étale cohomology spaces, in particular they carry a natural action of Gal(Q/Q).
We thus also have a (commuting) action of Gal(Q/Q) on H'(K%) and H'.
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Let p: Gal(Q/Q) — GLy(E) be a linear continuous representation (where Q is
an algebraic closure of Q) and for each prime number ¢ let py be the restriction of
p to a decomposition group at £. By the classical local Langlands correspondence
as in [38], if ¢ # p one can associate to p; (after maybe semi-simplifying the
action of Frobenius) a smooth irreducible representation 7, of GL2(Qg) over E.
We slightly modify 7 as follows: if 7 is infinite dimensional, we let m¢(p¢) =
7, @ |det |~2. If 7} is finite dimensional (that is, 1-dimensional), we let 7,(p¢) be
the unique principal series which has 7, ® | det |_% as unique irreducible quotient
(me(pe) is a non-split extension of 7, @ | det |2 by a suitable twist of the Steinberg
representation). For ¢ = p, recall we have the unitary admissible Banach space
representation B(p,) of §2.3. The following theorem is currently being proven by
Emerton ([28]).

Theorem 2.7. Let p : Gal(Q/Q) — GL2(E) be a linear continuous representation
which is unramified outside a finite set of primes and such that the determinant of
one (or equivalently any) complex conjugation is —1. Letp : Gal(Q/Q) — GLa(kg)
be the semi-simplification modulo p of p. Assume p > 2, ﬁ|Gal(@/Q( v1)) irreducible

*

and ﬁ|Ga1(@/Qp) % ((1] :) or (é 1) up to twist. Then the GLo(Ay)-representation

HomGal(@/@) (p, HY) decomposes as a restricted tensor product:?

Home,@q) (0, H') = Blpy) @5 ( @y melpe))-

~

Note that this theorem in particular states that Homg,, /0 (p, H) is always
non-zero. It is thus at the same time a local-global compatibility result and a mod-
ularity result! When p comes from a modular form (so that one already knows
Homg, 3,0 (p,ﬁ' 1y £ 0) and when moreover p, is semi-stable, it was proven
in [8], [5] and [13] that, for a suitable K7, one has Homg,,g,q)(p: ﬁl(Kff)) ~
B(pp). These results were the first cohomological incarnations of the representa-
tions B(V) of §2.3. Note that the case where p, is crystalline and irreducible is
easy here. Indeed, as p is modular, one knows that the locally algebraic represen-
tation det”" @z Sym"?~"“' " (E?) ®p 7, (see property (iv) of §2.2) embeds into
f[l(KJ’i) and its closure has to be B(p,) since this Banach space is its only unitary
completion (see the end of §2.2).

The proof of Theorem 2.7 uses many ingredients, such as the aforementioned
local-global compatibility in the crystalline case, the density in the space of all p of
those p such that p, is crystalline, Serre’s modularity conjecture ([44]), Colmez’s
last functor at the end of §2.3, Mazur’s deformation theory, Kisin’s construction
of D(V) ([46]), etc. In fact, Theorem 2.7 is a consequence of an even stronger
result giving a full description of the GLg(Af)-representation H, (where H is
the localization of H! at the maximal Hecke ideal defined by p) and not just of
Homg,, qg/q) (0, q') = Hom,,q/q) (0 H%) ([28]).

2Depending on normalizations, one may have to replace p, and the p, here by their duals or
their Cartier duals.
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3. The group GL2(F)

After the group GL2(Q)), it is natural to look at the group GL2(F'), where many
new phenomena appear and where the theory is thus still in its infancy. We describe
below some of these new aspects, starting with the modulo p theory.

3.1. Why the GL,(Q,) theory cannot extend directly. Let us
start with reducible 2-dimensional representations of Gal(Q,/F) over kg. One of
the first naive hopes in order to extend the modulo p Langlands correspondence
from GL2(Q,) to GLa(F') in that case (see (ii) of Definition 2.2) was the following:
since, if F' = Q,, the unique non-split (resp. split) Gal(Q,/Q,)-extension:

X1 *
0 X2
corresponds to the unique non-split (resp. split) GL2(Q,)-extension:

0— Indg%;gF)XQ ® Xlw_l — ok —— Indg%;gF)Xl & wa_l —0

(at least in “generic” cases) then for general F the space of extensions:
1
Exte @,/ m) (x2,x1)

(which has generic dimension [F' : Q,]) would hopefully be (canonically) isomorphic
to the space of extensions:

GLo(F — GLo(F _
EXt%;L2(F)(IndB(§§ X1 ® xow 17Ind3(§§ X2 ® x1w™Y)

thus yielding a nice correspondence.

Unfortunately, this turned out to be completely wrong.
Theorem 3.1. Assume F # Q. For x1 # x2 one has:

ExtGr (r) (Indg%EEF)M ® xow ™, Indg%;gm X2 @ xiw ™) = 0.

Proof. This follows from [16, Thm.8.1] together with [16, Thm.7.16(i)] and [16,
Cor.6.6]. m

Remark 3.2. In fact, at least for xy; # x2 and x1 # xaw™!, one can prove that

Extisr, () (Ind 2 x1@xaw ™, Ind G2 xa@xaw™!) = 0for 0 < < [F: Q] -1

F:Q, GLo(F _ GLy(F _ . .
and that Ext[GL?(;?) (IndB(;g )xl ® XYW 17Ind3(;§ )XQ ® x1w 1) has dimension 1.
Let us now consider irreducible 2-dimensional representations of Gal(@/F )
over kg. Just as for F' = Q,, we define the following smooth representations of
GL2 (F)

GLa (F
7(0,0) = (c = Indg* () o 0) /(T)
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where o is a Serre weight for GLy(Op)F* (the definition of T holds for any F).
Recall that for F' = Q, the representations 7 (o, 0) are all irreducible admissible.

Again, this turns out to be wrong for F' # Q,.

Theorem 3.3. Assume F' # Q,. For any Serre weight o the representation 7(c,0)
1s of infinite length and is not admissible.

Proof. When kp is strictly bigger than IF),, this can be derived from the results
of [16], in particular Theorem 3.4 below. When kp = TF,, one can prove (by

an explicit calculation) that (o, 0) contains ¢ — Indgizggl) px 0’ for some Serre
weight ¢’, which implies both statements as this representation is neither of finite
length nor admissible. O

3.2. So many representations of GLy(F'). We survey most of the
results so far on smooth admissible representations of GLy(F') over kg.

It is not known how to define an irreducible quotient of 7(o,0) by explicit
equations, although we know such quotients exist by an abstract argument using
Zorn’s lemma ([2]). The classification of all irreducible representations of GLo(F')
over kg with a central character remains thus unsettled. But one can prove that
there exist many irreducible admissible quotients of (o, 0) with, for instance, a
given GL2(Op)F*-socle (containing o). This is enough to show that irreducible
representations of GLo(F') over kg are far more “numerous” than irreducible rep-
resentations of GL2(Q)) over kg. This also turns out to be useful as the represen-
tations of GLo(F') appearing in étale cohomology groups over kg analogous to (1)
are expected to have specific GLo(Op)F*-socles (see §3.3 below).

Denote by N/ (F') the normalizer of the Iwahori subgroup I inside GLy(F'), that
is, N'(F') is the subgroup of GLy(F') generated by I, the scalars F* and the matrix
(2. 5). The following theorem was proved in [16, §9] using and generalizing con-
structions of Pagktinas based on the existence and properties of injective envelopes

of Serre weights for GL2(Op)F* ([53]).

Theorem 3.4. Assume p > 2. Let Dy be a finite dimensional smooth representa-
tion of GL2(Op)F* over kg with a central character and D1 C Dg|rpx a non-zero
subrepresentation of [F*. For each kg-linear action of N(F) on D, that induces
the IF* -action, there exists a smooth admissible representation m of GLa(F) over
kg with a central character such that the following diagram commutes:

DOCH m

]

Dit——nm

(where the two horizontal injections are respectively GLa(Op)F* and N (F)-equi-
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variant), such that w is generated by Do under GLy(F) and such that :
socle(7|qr,(0)Fx ) = socle(Dy).

In general, it is not straightforward to construct explicitly such pairs (Dg, D1)
with a compatible action of N'(F) on Dy, but there is one case where it is: the case
where the pro-p subgroup I; of I acts trivially on Dy, for instance if D, = Dél
(which is never 0 as Iy is pro-p). Indeed, in that case, D; is just a direct sum
of characters of IF* (as I/I; has order prime to p) and an action of (., ) is
then essentially a certain permutation of order 2 on these characters. Moreover for
such pairs (Dg, D7) the assumption p > 2 in Theorem 3.4 is unnecessary. These
examples are enough to show that there are infinitely many irreducible admissible
non-isomorphic quotients of the representations (o, 0), for instance because there
are infinitely many Dy containing ¢ for which there exist many non-isomorphic
compatible actions of N (F) on D(I)1 such that any 7 as in Theorem 3.4 is irre-
ducible and is not a subquotient of a principal series (see [16] when kp is not F,).

We now give two series of examples of such pairs (Do, D1).

The first examples are very explicit and arise from the generalization of Serre’s
modularity conjecture in [18] (see also [58]). For these examples we assume F'
unramified over Q,. To any linear continuous 2-dimensional representation p
of Gal(Q,/F) over kg is associated in [18] a finite set W(p) of Serre weights
which generically has 2l7:@] elements. Let Do(p) be a linear representation of
GLy(Op)F* over kg such that:

(i) socgL,(0p)FxDo(p) = Baew(p)o
(ii) the action of GL2(OF) on Dy(p) factors through GLy(OF) — GLa(kr)

(iii) Do(p) is maximal for inclusion with respect to (i) and (ii).

If p is sufficiently generic (in a sense that can be made precise, see [16, §11]), one
can prove that such a Dy(p) exists, is unique, and that D;(p) := Dy(p)’* can be
endowed with (many) compatible actions of N'(F'). For each such action of N (F),
Theorem 3.4 applied to (Do, D1) := (Do(p), D1(p)) gives a smooth admissible
representation 7 of GLy(F'). In fact, based on explicit computations in special
cases ([43]), it is expected that the number of isomorphism classes of 7 as in
Theorem 3.4 will be strictly bigger than one for each action of N'(F) on D1(p) as
soon as F' # Q,. Denote by II(p) the set of isomorphism classes of all 7 given by
Theorem 3.4 for all compatible actions of N'(F') on D;(p). The following result is
proved in [16].

Theorem 3.5. If p is (sufficiently generic and) irreducible, then any 7 in II(p)
is wrreducible. If p is (sufficiently generic and) reducible, then any m in (p) is
reductble.

Remark 3.6. When p is irreducible, one could replace Dy(p) by its subrepre-
sentation (GL2(Op) - D1(p)) as one can prove that any 7 as in Theorem 3.4 for
({(GL2(OF) - D1(p)), D1(p)) contains Dg(p) in that case, i.e., is in II(p).
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0 X2

strictly contains the representation Indg%;gF)Xg ® x1w~!. By Theorem 3.1 (which

In the case p is reducible, p ~ (Xl * ), any 7 in II(p) is reducible because it

can be applied as the genericity of p entails in particular x; # x2), it cannot be
an extension of Indg%;gF)m ® xew ™! by Indg%;gF)XQ ® x1w~!. So what could 7
look like in this case? Consider the following two propositions, the first one being

in [16, §19] and the second one being elementary.

Proposition 3.7. If p is (sufficiently generic and) reducible split, then some of
the m in I(p) are semi-simple with [F : Qp] + 1 non-isomorphic Jordan-Hélder
factors, two of them being the above two principal series (which are irreducible
for p sufficiently generic) and the others being irreducible admissible quotients of
representations w(o,0).

Proposition 3.8. If p is (sufficiently generic and) reducible, then the tensor induc-
tion of p from Gal(Q,/F) to Gal(Q,/Q,) is a successive extension of [F : Qp] +1
non-isomorphic semi-simple representations, two of them being 1-dimensional.

If p is reducible non-split, then any extension between two consecutive semi-
simple representations as in Proposition 3.8 is non-split and the two 1-dimensional
representations are the unique irreducible subobject and the unique irreducible
quotient of the tensor induction of p. If p is split, the link between the [F': Q,]+1
Jordan-Hélder factors of m in Proposition 3.7 and the [F' : Q] + 1 semi-simple
representations of the tensor induction of p in Proposition 3.8 can be made much
more convincing by using (¢, I')-modules (see [10]). In particular, the above two
propositions suggest that, among all the 7 in II(p) for p reducible and sufficiently
generic, some of them (the “good” ones) should have exactly [F : Q,] + 1 distinct
Jordan-Holder factors as in Proposition 3.7 and should be:

(i) semi-simple if p is reducible split, or

GL2(F)

(i) uniserial with Indz %) 'x2 @ xiw™! as unique irreducible subobject and
Indgl(“;()F) X1 ® xow ™! as unique irreducible quotient if p is reducible non-
split.

This gives a possible explanation for Theorem 3.1: there is no extension for
F # Q, because we are missing the “middle” Jordan-Hélder factors!

The second examples of pairs (Dg, D1) are constructed in [42] (no assumption
on F here). Let m be an irreducible not necessarily admissible representation of
GLy(F) over kg with a central character and o C 7|qp,(0,)rx a Serre weight for
GL2(Op)F* (which always exists). One first defines an N (F)-subrepresentation
D;(m) of 7 as follows (with notations analogous to (2)):

no (S (F )N (S (F %))
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(which is checked to be preserved by N(F) inside 7). One can prove that Dq ()
does not depend on the choice of the Serre weight ¢ in 7 and that it always con-
tains /1. One then considers the pair (Dg(7), D1(n)) with Dg(7) := (GLo(OF) -
Dy (m)) C 7.

Theorem 3.9. If D (w) is finite dimensional, then there is a unique representation
of GL2(F') as in Theorem 3.4 with (Do, D) := (Do(7), D1(n)) (even if p=2) and
it 1is the representation w. In particular m is then admissible.

This theorem is proved in [42]. In fact, [42] proves more: (i) without any
assumption on Dq () the pair (Dg(w), D1(7)) always uniquely determines 7 and (ii)
D1 (7) is finite dimensional if and only if 7 is of finite presentation (i.e., is a quotient
of some ¢ — Indgtiggl) px0 by an invariant subspace which is finitely generated
under GLy(F')). However, if F' # Q, it is not known in general whether Dy () is
or isn’t finite dimensional, and it seems quite hard to determine D;(7) explicitly
if 7 is not a subquotient of a principal series. For those 7 in II(p), note that one
has the inclusions D;(p) C 7ft C Dy(m) hence also (GL2(Op) - Di(p)) C Do(r)
with equalities if F' = Q,.

3.3. Questions on local-global compatibility. We conclude our dis-
cussion of the modulo p theory for GLo(F') with questions on local-global compat-
ibility.

Let L be a totally real finite extension of Q with ring of integers Or. Assume
for simplicity that p is inert in L (i.e., pOp, is a prime ideal) and let L, denote the
completion of L at p and AZ s the finite adeles of L outside p. To any quaternion
algebra D over L which splits at only one of the infinite places and which splits
at p and to any compact open subgroup KJ’Z c (D®r Ai’f)x, one can associate a
tower of Shimura algebraic curves (S(K}Ky,))k,, over L where Ky, runs over

the compact open subgroups of (D ®p, L,)* ~ GLa(L,). Analogously to the case
L =Q and D = GL; of §2.4, one would like to understand:

lim Hy, (S(K{Kf,p) x1 Q, k)
Kf,p

as a representation of GLa(L,) x Gal(Q/L) over k. Fix a linear continuous totally
odd (i.e., any complex conjugation has determinant —1) irreducible representation:

p:Gal(Q/L) — GLy(kg).

One can at least state the following conjecture which generalizes one of the
main conjectures of [18].

Conjecture 3.10. pr|Ga1(@/L,,) is sufficiently generic (in the sense of [16, §11])
then for each compact open subgroup K? C (D®p AY f)X one has:

Home,, 1) (p, lim H}, (S(KPK;,) %1, Q, kE)) ~
Kfqp
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for some integer n > 0 and some m, in the set3 H(p|Ga1(@/Lp)) (see §3.2).

Note that Conjecture 3.10 does not state that the above space of homomor-
phisms is non-zero, but that, if it is non-zero, then it is a number of copies of some
mp in H(p|Ga1(@f/Lp)). Conjecture 3.10 is known for L = Q ([28]). For L # Q,
some non-trivial evidence for this conjecture and for a variant with 0-dimensional
Shimura varieties and H° (instead of Shimura curves and H!) can be found in
[18], [57], [33] and [11] (see also [58] and [35]). If Conjecture 3.10 holds, the main
crucial questions are then (recalling from §3.2 that I(p|q. g,/ 1,)) is a huge set if

Ly, # Qp):

Question 3.11. Does m, in Conjecture 3.10 only depend on p|Ga1(@/LP) ¢ How can
one “distinguish” the m, of Conjecture 3.10 in the purely local set H(p|Gal(@/Lp)) ?

If the answer to the first question is yes, then this will enable one to define a
genuine modulo p local Langlands correspondence for GLo(F') that is compatible
with cohomology. Again, the answer is of course yes if L = Q.

3.4. Over E. The modulo p theory being so involved, it is not surprising that
very little is known in characteristic 0. We just state here the main theorem of
[64], which shows that one also has too many admissible unitary topologically
irreducible Banach space representations of GLo(F') over E when F' # Q,,.

Theorem 3.12. Let w be a smooth irreducible admissible representation of GLo(F')
over kg. Then there exists an admissible unitary topologically irreducible Banach
space representation B of GLa(F) over E and a unit ball B° C B preserved by
GL2(F) such that:

HOHIGLQ(F)(W, B Ko kE) 75 0.

In particular, because of the results of §3.2, one should not expect a naive ex-
tension of Theorem 2.6 to hold for F' # Q,. The question whether one can always
choose B above such that 7 ~ B? ®¢,, kg is open (except for F' = Q, where the
answer is yes and is already essentially in [7]). If such a B does not always exist,
maybe one should only consider those 7 for which it does, i.e., those m which lift
to characteristic 0.

All the other results concerning GLo(F') over E are very partial so far. In some
cases, one can for instance associate to a 2-dimensional semi-stable p-adic repre-
sentation of Gal(Q,/F) over E a locally Qp-analytic strongly admissible (in the
sense of [61]) representation of GLo(F') over E which generalizes the representation
from the F' = Q, case and that one would wish to find inside completed cohomol-
ogy spaces analogous to the ﬁl(K]’c’) of §2.4 (see, e.g., [65] for the non-crystalline
case). However, if this holds, it is likely that for F' # Q, this locally Q,-analytic
representation is only a strict subrepresentation of the “correct” (unknown) locally
Qp-analytic representation(s) of GLa(F).

3As in Theorem 2.7, depending on normalizations, one may have to replace p|Ga1(@/LP) here
by its dual or its Cartier dual.
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4. Other groups

If not much is known for GLy(F'), almost nothing is known for groups other than
GLy(F), even conjecturally, although some non-trivial results start to appear in
various cases like GL3(Q,) ([66]) or quaternion algebras ([36]). We content our-
selves here to mention briefly a few results and conjectures that have been stated
for GL,,(F) and that give some kind of “relations” between the Gal(Q,/F) side
and the GL,(F) side. Although these relations are very far from any kind of
correspondence, it is plausible that they will play some role in the future.

4.1. Invariant lattices and admissible filtrations. Locally alge-
braic representations of GL,,(F) over E (such as the representations B(V)#& of
§2.2) which are “related” to continuous n-dimensional representations of Gal(Q,/F)
over E (e.g., that appear as subrepresentations in completed cohomology spaces)
should have invariant Og-lattices, as is clear from the GL2(Q,) case (§2.2). It turns
out that a necessary condition for a locally algebraic representation of GL,,(F') to
have invariant lattices is essentially a well-known condition in Fontaine’s theory
called “weakly admissible”.

Let us fix (r, N, D) a Weil-Deligne representation on an n-dimensional E-vector
space D where r is the underlying representation of the Weil group of F' (which has
open kernel) and N the nilpotent endomorphism on D satisfying the usual relation
r(w)oNor(w)~! = p® N (for w in the Weil group of F, see introduction for d(w)).

To (r, N, D), one can associate a smooth irreducible representation 7’ of GL,,(F')
over E by the classical local Langlands correspondence as in [38] (after semi-

simplifying 7). (\j\fe)then slightly modify it as in §2.4: if 7’ is generic, we let

m:=n ®|det| 2z . If ' is not generic, we replace 7’ by a certain parabolic
induction 7" which has 7’ as unique irreducible quotient (see [17, §4]) and let

(d-—n)

mi=7"®|det| =2

For each embedding 7 : F' — E, let us fix n integers i1, < iz, < -+ < ip ;.
We denote by o, the algebraic representation of GL, over E of highest weight
i1 —(n—1)> —ig, — (n—2) >--- > —i, , that we see as a representation of
GL,(F) via the embedding 7 : F' < E. We then set 0 := ®,0,. This is a finite
dimensional representation of GL,,(F') over E.

Any p-adic potentially semi-stable representation of Gal(Q,/F) on an n-dimen-
sional E-vector space V gives rise to some (r, N, D) and some (i;,); - as follows
([30]). Let F' be a finite Galois extension of F' such that V|, g, ) becomes
semi-stable and set:

D := (Bst ®Q, V)Gal(@p/F/) ®F6®E FE

where By is Fontaine’s semi-stable period ring, F{ is the maximal unramified sub-
field in F’ and F} — FE is any embedding. It is an n-dimensional E-vector space
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endowed with a nilpotent endomorphism N coming from the one on By;. We define
r(w) on D by r(w) := ¢~4®) 0 where w is any element in the Weil group of F,
w its image in Gal(F’/F) and ¢ the semi-linear endomorphism coming from the
action of the Frobenius on By (as ¢~ ") o @ is F} ® E-linear, r(w) goes down to
D). Finally, the i; . are just the opposite of the various Hodge-Tate weights of V'
(n weights for each embedding 7 : F' — E).

The following conjecture was stated in [17, §4].

Conjecture 4.1. Fiz (r,N,W) and (i;,);, as above. There exists an invariant
Og-lattice on the locally algebraic GL,, (F)-representation o Qg m if and only if
the data ((7’, N, W), (ijﬁ)j,T) comes from a p-adic n-dimensional potentially semi-
stable representation of Gal(Q,/F).

The following theorem gives one complete direction in the above conjecture.
After many cases were proved in [63] and [17], its full proof was given in [41].

Theorem 4.2. If there exists an invariant Og-lattice on 0 ®g m then the data
((T, N, W), (ij77)j,7) comes from a p-adic n-dimensional potentially semi-stable rep-
resentation of Gal(Q,/F).

The proof is divided into four steps. (i) It is essentially trivial if 7 is supercus-
pidal. Hence one can restrict to the non-supercuspidal cases. (ii) Using a result of
Emerton ([26, Lem.4.4.2]), one deduces from the existence of an invariant lattice
on 0 @g 7 a finite number of inequalities relating the numbers 7; ; to the “powers
of p” in the action of r. (iii) These inequalities are just what is needed so that
there exists a weakly admissible filtration on a certain (¢, N)-module naturally
associated to (r, N,W). (iv) Such a filtration gives an n-dimensional potentially
semi-stable representation of Gal(Q,/F) by the main result of [22].

The other direction in Conjecture 4.1 is much harder. Apart from trivial or
scattered partial results, the only case which is completely known is again that of

GL2(Qp) ([5])-

4.2. Supersingular modules and irreducible Galois represen-
tations. We now state a theorem on Hecke-Iwahori modules for GL,,(F) over

kg in relation with irreducible n-dimensional representations of Gal(Q,/F) over
kg.

Let H; be the Hecke algebra of Iy over kg, that is, Hy := kg[I1\GL,(F)/L].
The usual product of double cosets makes H; a non-commutative kg-algebra of
finite type. An Hi-module M over kg is a kg-vector space endowed with a linear
right action of H;. By Schur’s lemma, the center Z; of H; acts on a simple (and
thus finite dimensional) Hj-module M by a character with values in kg called
the central character of M. The commutative kg-subalgebra Z; is generated by
(cosets of) scalars, by certain elements of kg[[1\I/I;] = kg[I/I1] and by n — 1
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cosets Z1,--+ ,Z,_1. A finite dimensional simple H;-module is said to be super-
singular if its central character sends all these Z; to 0 ([71]).

The following nice numerical coincidence was conjectured in [71] and completely
proved in [52].

Theorem 4.3. The number of simple n-dimensional supersingular Hi-modules
over kg is equal to the number of linear continuous n-dimensional irreducible rep-
resentations of Gal(Q,/F) over kg.

Let us briefly give the case n = 3 as an example. The number of (isomorphism
classes of ) continuous 3-dimensional irreducible representations of Gal(Q,/F) over
kg with determinant mapping a fixed choice of Frobenius to 1 € kg is easily checked
to be q:—_q. The number of 3-dimensional simple supersingular H;-modules over
kg with central character mapping a fixed choice of uniformizer to 1 € kg turns

out to be:
(¢—1)(g—2)(g— 3))
5 .

The reader can check that these two numbers are just the same (whence the the-
orem for n = 3 by varying the central character/determinant).

2(g-1+(@-1D(a—2)+

For (n, F) = (2,Q,), the functor m — !t induces a bijection between smooth
irreducible supersingular representations of GL2(Q,) over kg and 2-dimensional
simple supersingular H;-modules over kg ([70]), but this already completely breaks
down when n = 2 and F # Q, (see §3). The meaning of Theorem 4.3 in terms
of smooth representations of GL,,(F) over kg (if any) thus remains mysterious for

(TL,F) 7& (ZQP)

4.3. Serre weights and Galois representations. We have seen in §3
that the set of Serre weights W (p) associated in [18] and [58] to a linear continuous
2-dimensional representation of Gal(Q,/F) over kg is expected to be the set of
simple summands (forgetting possible multiplicities) of the GLy(Op)F *-socle of
some smooth admissible representation of GLy(F') over kg. (Without restrictions
on p, one may indeed have multiplicities in this socle.) This yields a non-trivial
link between the weights in Serre-type conjectures and the modulo p Langlands
programme for GLy(F).

For GL,(Q,) when n > 2 the modulo p Langlands programme is essentially
open (although there is recent progress in the classification of “non-supersingular”
smooth irreducible admissible representations of GL,,(F') over kg, see [40]). But
the set of Serre weights W(p) has been generalized by Herzig and Gee in [39] and
[34] to linear continuous n-dimensional representations of Gal(Q,/Q,) over kg.

For integers a; > as2 > --- > a, such that a; — a;4+1 < p—1 for all i we
let F(a1,--- ,a,) denote the restriction to GLy,(F,) of the GLj,-socle of the alge-
braic dual Weyl module for GL,, of highest weight (¢1,--- ,t,) > 7152 - - - 1% (see
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[39, §3.1]). The F(as,--- ,a,) exhaust the irreducible representations of GL,,(F,)
(equivalently of GL,,(Z,)) over kg.

Let p : Gal(Q,/Q,) — GL,(kg) be any linear continuous representation.
Its determinant has the form w™unr where unr is an unramified character of
Gal(Q,/Q,) and m an integer. We can see unr as a character of GL,(Z,)Q)
which is trivial on GL,,(Z,).

Definition 4.4. The set W(p) of Serre weights for GL,(Z,)Q, associated to p is
the set of F(ay, - ,a,) ® unr such that p has a crystalline lift with Hodge-Tate
weights a; +n — l,asc+n—2,-- ,ay.

Definition 4.4 is quite general but not at all explicit. When p is sufficiently
generic and semi-simple, a conjectural but much more explicit description of the
weights of W(p) has been given in [39] (which was actually written before [34]).
The method of [39] is first to associate to p (in fact to its restriction to the inertia
subgroup of Gal(Q,/Q,)) a finite dimensional “Deligne-Lusztig” representation
o(p) of GL,(F,) over E. For instance, if p = &7, x; is a direct sum of characters
of Gal(Q,/Q,), then:

Ly (Fp)

(Fp)

where x : B(F,) - T(F,) — E*, (t1,---,tn) — [x1(t1)x2(t2) - xn(tn)] (note
that xil11pz, = 1 and [] is here the multiplicative representative). If p is suf-
ficiently generic, all Jordan-Holder factors F'(aq,--- ,ay) of the modulo p semi-
simplification 7(p)® of o(p) (that is, of the semi-simplification of the reduction
modulo wg of any invariant Og-lattice in o(p)) are such that a; —a;41 < p—2 for
all 4. If p is moreover semi-simple, the set W(p) of Definition 4.4 is then expected
to be the set of Serre weights:

o(p) := Indg

F(an—i—(n— Dp—-2),an-1+n=2)(p—2), - ,a2 —|—p—2,a1) ® unr
for F(ay,--- ,a,) a Jordan-Holder factor of 7(p)™.

Changing notations, let:

p:Gal(Q/Q) — GL,(kg)

be a linear continuous irreducible odd representation, that is, either p = 2 or the
eigenvalues of the image of a complex conjugation are:

la' 71a_17"'a_1
——— ———
ny times n_ times

with —1 < ny —n_ < 1. Let N be the Artin conductor of p measuring its
ramification at primes other than p and let unr, be as above the unramified
part of det(p|g,ig,/q,))- Then the “Serre conjecture” of [39] and [33] states
that the Serre weights of W(p\Gal(@ /Qp)) should be exactly those Serre weights
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F(ay,--- ,an) ®unr, for GL,(Z,)Q) such that p “arises” from a non-zero Hecke
eigenclass in some group cohomology H*(I'1(N), F(ay,--+ ,a,)). Here I'1(N) C
SL,(Z) is the subgroup of matrices with last row congruent to (0, -- ,0,1) modulo

N (see [39, §6] for details).

The results of §3 suggest that the Serre weights of W(p\Gal(@/Qp)) may form

(up to multiplicities) the GLy(Z,)Q, -socle of interesting smooth admissible rep-
resentations of GL,(Q,) over kg (that remain to be discovered if n > 2). But
one should keep in mind the following numbers. Assuming p is semi-simple, for
n = 2 one has generically [W(p)| = 2, and for n = 3 one should have |W(p)| = 9,
but then W(p) rapidly grows: n = 4 should give |W(p)| = 88 and n = 5 should
give [W(p)| = 1640! Also, consider for instance the case n = 3 and p = @3_;x;
with p sufficiently generic. Then 6 of the 9 weights of W(p) are easily checked to
be the GL3(Z,)Q,-socle of 6 natural principal series representations of GL3(Qp)
analogous to the 2 principal series in (ii) of Definition 2.2. But there are 3 re-
maining Serre weights and their combinatorics suggests that they might form the
GL3(Z,)Q; -socle of an irreducible admissible representation of GL3(Qj) that does
not occur in any (strict) parabolic induction, i.e., of a supersingular representation
of GL3(Q,). We thus may have a phenomenon analogous to what happens with
GL2(F) (see Proposition 3.7 and the discussion that follows) except that the pos-
sible appearance here of this “extra” supersingular constituent seems now quite
mysterious.
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