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Summary. In this paper, we review a number of basic results about so-called Hopf
algebras. We begin by giving a historical account of the results obtained in the
1930’s and 1940’s about the topology of Lie groups and compact symmetric spaces.
The climax is provided by the structure theorems due to Hopf, Samelson, Leray
and Borel. The main part of this paper is a thorough analysis of the relations be-
tween Hopf algebras and Lie groups (or algebraic groups). We emphasize especially
the category of unipotent (and prounipotent) algebraic groups, in connection with
Milnor-Moore’s theorem. These methods are a powerful tool to show that some alge-
bras are free polynomial rings. The last part is an introduction to the combinatorial
aspects of polylogarithm functions and the corresponding multiple zeta values.
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1 Introduction

1.1. After the pioneer work of Connes and Kreimer1, Hopf algebras have be-
come an established tool in perturbative quantum field theory. The notion of
Hopf algebra emerged slowly from the work of the topologists in the 1940’s
dealing with the cohomology of compact Lie groups and their homogeneous
spaces. To fit the needs of topology, severe restrictions were put on these Hopf
algebras, namely existence of a grading, (graded) commutativity, etc. . . The
theory culminated with the structure theorems of Hopf, Samelson, Borel ob-
tained between 1940 and 1950. The first part of this paper is devoted to a
description of these results in a historical perspective.

1.2. In 1955, prompted by the work of J. Dieudonné on formal Lie groups
[34], I extended the notion of Hopf algebra, by removing the previous restric-
tions2. Lie theory has just been extended by C. Chevalley [25] to the case of
algebraic groups, but the correspondence between Lie groups and Lie alge-
bras is invalid in the algebraic geometry of characteristic p 6= 0. In order to
bypass this difficulty, Hopf algebras were introduced in algebraic geometry by
Cartier, Gabriel, Manin, Lazard, Grothendieck and Demazure, . . . with great
success3. Here Hopf algebras play a dual role: first the (left) invariant differ-
ential operators on an algebraic group form a cocommutative Hopf algebra,
which coincides with the enveloping algebra of the Lie algebra in character-
istic 0, but not in characteristic p. Second: the regular functions on an affine
algebraic group, under ordinary multiplication, form a commutative Hopf al-
gebra. Our second part will be devoted to an analysis of the relations between
groups and Hopf algebras.

1.3. The previous situation is typical of a general phenomenon of duality be-
tween algebras. In the simplest case, let G be a finite group. If k is any field,
let kG be the group algebra of G: it is a vector space over k, with G as a
1 See [26] in this volume.
2 See my seminar [16], where the notions of coalgebra and comodule are introduced.
3 The theory of Dieudonné modules is still today an active field of research, together

with formal groups and p-divisible groups (work of Fontaine, Messing, Zink. . .).
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basis, and the multiplication in G is extended to kG by linearity. Let also kG

be the set of all maps from G to k; with the pointwise operations of addition
and multiplication kG is a commutative algebra, while kG is commutative if,
and only if, G is a commutative group. Moreover, there is a natural duality
between the vector spaces kG and kG given by〈∑

g∈G

ag · g, f

〉
=

∑
g∈G

ag f(g)

for
∑
ag ·g in kG and f in kG. Other instances involve the homology H•(G; Q)

of a compact Lie group G, with the Pontrjagin product, in duality with the
cohomology H•(G; Q) with the cup-product4. More examples:

• a locally compact group G, where the algebra L1(G) of integrable func-
tions with the convolution product is in duality with the algebra L∞(G)
of bounded measurable functions, with pointwise multiplication;
• when G is a Lie group, one can replace L1(G) by the convolution alge-

bra C−∞c (G) of distributions with compact support, and L∞(G) by the
algebra C∞(G) of smooth functions.

Notice that, in all these examples, at least one of the two algebras in duality is
(graded) commutative. A long series of structure theorems is summarized in
the theorem of Cartier-Gabriel on the one hand, and the theorems of Milnor-
Moore and Quillen on the other hand5. Until the advent of quantum groups,
only sporadic examples were known where both algebras in duality are non-
commutative, but the situation is now radically different. Unfortunately, no
general structure theorem is known, even in the finite-dimensional case.

1.4. A related duality is Pontrjagin duality for commutative locally compact
groups. Let G be such a group and Ĝ its Pontrjagin dual. If 〈x, x̂〉 describes
the pairing between G and Ĝ, we can put in duality the convolution algebras
L1(G) and L1(Ĝ) by

〈f, f̂〉 =
∫

G

∫
Ĝ

f(x) f̂(x̂) 〈x, x̂〉 dx dx̂

for f in L1(G) and f̂ in L1(Ĝ). Equivalently the Fourier transformation F
maps L1(G) into L∞(Ĝ) and L1(Ĝ) into L∞(G), exchanging the convolution
product with the pointwise product F(f ∗ g) = Ff · Fg. Notice that in this
case the two sides L1(G) and L∞(G) of the Hopf algebra attached to G are
commutative algebras. When G is commutative and compact, its character
group Ĝ is commutative and discrete. The elements of Ĝ correspond to con-
tinuous one-dimensional linear representations of G, and Ĝ is a basis of the
4 Here, both algebras are finite-dimensional and graded-commutative.
5 See subsection 3.8.
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vector space Rc(G) of continuous representative functions6 on G. This algebra
Rc(G) is a subalgebra of the algebra L∞(G) with pointwise multiplication. In
this case, Pontrjagin duality theorem, which asserts that if Ĝ is the dual of
G, then G is the dual of Ĝ, amounts to the identification of G with the (real)
spectrum of Rc(G), that is the set of algebra homomorphisms from Rc(G) to
C compatible with the operation of complex conjugation.

1.5. Assume now that G is a compact topological group, not necessarily com-
mutative. We can still introduce the ring Rc(G) of continuous representative
functions, and Tannaka-Krein duality theorem asserts that here also we re-
cover G as the real spectrum of Rc(G).

In order to describe Rc(G) as a Hopf algebra, duality of vector spaces is
not the most convenient way. It is better to introduce the coproduct, a map

∆ : Rc(G)→ Rc(G)⊗Rc(G)

which is an algebra homomorphism and corresponds to the product in the
group via the equivalence

∆f =
∑

i

f ′i ⊗ f ′′i ⇔ f(g′g′′) =
∑

i

f ′i(g
′) f ′′i (g′′)

for f in Rc(G) and g′, g′′ in G.
In the early 1960’s, Tannaka-Krein duality was understood as meaning

that a compact Lie group G is in an intrinsic way a real algebraic group,
or rather the set Γ (R) of the real points of such an algebraic group Γ . The
complex points of Γ form the group Γ (C), a complex reductive group of which
G is a maximal compact subgroup (see [24], [72]).

1.6. It was later realized that the following notions:

• a group Γ together with a ring of representative functions, and the corre-
sponding algebraic envelope,
• a commutative Hopf algebra,
• an affine group scheme,

are more or less equivalent. This was fully developed by A. Grothendieck and
M. Demazure [31] (see also J.-P. Serre [72]).

The next step was the concept of a Tannakian category, as introduced
by A. Grothendieck and N. Saavedra [69]. One of the formulations of the
Tannaka-Krein duality for compact groups deals not with the representative
ring, but the linear representations themselves. One of the best expositions
is contained in the book [24] by C. Chevalley. An analogous theorem about
semisimple Lie algebras was proved by Harish-Chandra [44]. The treatment
of these two cases (compact Lie groups/semisimple Lie algebras) depends
6 That is, the coefficients of the continuous linear representations of G in finite-

dimensional vector spaces.
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heavily on the semisimplicity of the representations. P. Cartier [14] was able
to reformulate the problem without the assumption of semisimplicity, and to
extend the Tannaka-Krein duality to an arbitrary algebraic linear group.

What Grothendieck understood is the following: if we start from a group
(or Lie algebra) we have at our disposal various categories of representations.
But, in many situations of interest in number theory and algebraic geometry,
what is given is a certain category C and we want to create a group G such
that C be equivalent to a category of representations of G. A similar idea
occurs in physics, where the classification schemes of elementary particles rest
on representations of a group to be discovered (like the isotopic spin group
SU(2) responsible for the pair n− p of nucleons7).

If we relax some commutativity assumptions, we have to replace “group”
(or “Lie algebra”) by “Hopf algebra”. One can thus give an axiomatic char-
acterization of the category of representations of a Hopf algebra, and this is
one of the most fruitful ways to deal with quantum groups.

1.7. G.C. Rota, in his lifelong effort to create a structural science of combi-
natorics recognised early that the pair product/coproduct for Hopf algebras
corresponds to the use of the pair

assemble/disassemble

in combinatorics. Hopf algebras are now an established tool in this field. To
quote a few applications:

• construction of free Lie algebras, and by duality of the shuffle product;
• graphical tensor calculus à la Penrose;
• trees and composition of operations;
• Young tableaus and the combinatorics of the symmetric groups and their

representations;
• symmetric functions, noncommutative symmetric functions, quasi-symme-

tric functions;
• Faa di Bruno formula.

These methods have been applied to problems in topology (fundamental
group of a space), number theory (symmetries of polylogarithms and multizeta
numbers), and more importantly, via the notion of a Feynman diagram, to
problems in quantum field theory (the work of Connes and Kreimer). In our
third part, we shall review some of these developments.

1.8. The main emphasis of this book is about the mathematical methods at
the interface of theoretical physics and number theory. Accordingly, our choice
of topics is somewhat biased. We left aside a number of interesting subjects,
most notably:
7 For the foundations of this method, see the work of Doplicher and Roberts [35, 36].
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• finite-dimensional Hopf algebras, especially semisimple and cosemisimple
ones;
• algebraic groups and formal groups in characteristic p 6= 0 (see [16, 18]);
• quantum groups and integrable systems, that is Hopf algebras which are

neither commutative, nor cocommutative.

Acknowledgments. These notes represent an expanded and improved ver-
sion of the lectures I gave at les Houches meeting. Meanwhile, I lectured at
various places (Chicago (University of Illinois), Tucson, Nagoya, Banff, Berti-
noro, Bures-sur-Yvette) on this subject matter. I thank these institutions for
inviting me to deliver these lectures, and the audiences for their warm re-
sponse, and especially Victor Kac for providing me with a copy of his notes. I
thank also my colleagues of the editorial board for keeping their faith and ex-
erting sufficient pressure on me to write my contribution. Many special thanks
for my typist, Cécile Cheikhchoukh, who kept as usual her smile despite the
pressure of time.

2 Hopf algebras and topology of groups and H-spaces

2.1 Invariant differential forms on Lie groups

The theory of Lie groups had remained largely local from its inception with
Lie until 1925, when H. Weyl [73] succeeded in deriving the characters of
the semi-simple complex Lie groups using his “unitarian trick”. One of the
tools of H. Weyl was the theorem that the universal covering of a compact
semi-simple Lie group is itself compact. Almost immediately, E. Cartan [11]
determined explicitly the simply connected compact Lie groups, and from
then on, the distinction between local and global properties of a Lie group
has remained well established. The work of E. Cartan is summarized in his
booklet [13] entitled “La théorie des groupes finis et continus et l’Analysis
situs” (published in 1930).

The first results pertained to the homotopy of groups:

• for a compact semi-simple Lie group G, π1(G) is finite and π2(G) = 0;
• any semi-simple connected Lie group is homeomorphic to the product of

a compact semi-simple Lie group and a Euclidean space.

But, from 1926 on, E. Cartan was interested in the Betti numbers of such
a group, or what is the same, the homology of the group. He came to this
subject as an application of his theory of symmetric Riemannian spaces. A
Riemannian space X is called symmetric8 if it is connected and if, for any
point a in X, there exists an isometry leaving a fixed and transforming any
8 An equivalent definition is that the covariant derivative of the Riemann curvature

tensor, namely the five indices tensor Ri
jk`;m, vanishes everywhere.
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oriented geodesic through a into the same geodesic with the opposite orien-
tation. Assuming that X is compact, it is a homogeneous space X = G/H,
where G is a compact Lie group and H a closed subgroup. In his fundamental
paper [12], E. Cartan proved the following result:

Let Ap(X) denote the space of exterior differential forms of degree p on
X, Zp(X) the subspace of forms ω such that dω = 0, and Bp(X) the sub-
space of forms of type ω = dϕ with ϕ in Ap−1(X). Moreover, let T p(X)
denote the finite-dimensional space consisting of the G-invariant forms on
X. Then Zp(X) is the direct sum of Bp(X) and T p(X). We get therefore a
natural isomorphism of T p(X) with the so-called de Rham cohomology group
Hp

DR(X) = Zp(X)/Bp(X).

Moreover, E. Cartan gave an algebraic method to determine T p(X), by
describing an isomorphism of this space with the H-invariants in Λp(g/h)∗

(where g, resp. h is the Lie algebra of G resp. H).

We use the following notations:

• the Betti number bp(X) is the dimension of Hp
DR(X) (or T p(X));

• the Poincaré polynomial is

P (X, t) =
∑
p≥0

bp(X) tp . (1)

E. Cartan noticed that an important class of symmetric Riemannian spaces
consists of the connected compact Lie groups. If K is such a group, with
Lie algebra k, the adjoint representation of K in k leaves invariant a positive
definite quadratic form q (since K is compact). Considering k as the tangent
space at the unit e of K, there exists a Riemannian metric on K, invariant
under left and right translations, and inducing q on TeK. The symmetry sa

around the point a is given by sa(g) = a g−1 a, and the geodesics through e
are the one-parameter subgroups of K. Finally if G = K ×K and H is the
diagonal subgroup of K×K, then G operates on K by (g, g′) ·x = g x g′−1 and
K is identified to G/H. Hence T p(K) is the space of exterior differential forms
of degree p, invariant under left and right translations, hence it is isomorphic
to the space (Λp k∗)K of invariants in Λp k∗ under the adjoint group.

Calculating the Poincaré polynomial P (K, t) remained a challenge for 30
years. E. Cartan guessed correctly

P (SU(n), t) = (t3 + 1)(t5 + 1) . . . (t2n−1 + 1) (2)

P (SO(2n+ 1), t) = (t3 + 1)(t7 + 1) . . . (t4n−1 + 1) (3)

as early as 1929, and obtained partial general results like P (K, 1) = 2` where
` is the rank9 of K; moreover P (K, t) is divisible by (t3 + 1)(t+ 1)`−1. When
9 In a compact Lie group K, the maximal connected closed commutative sub-

groups are all of the same dimension `, the rank of K, and are isomorphic to the
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` = 2, E. Cartan obtained the Poincaré polynomial in the form (t3+1)(tr−3+1)
if K is of dimension r. This settles the case of G2. In 1935, R. Brauer [10]
proved the results (2) and (3) as well as the following formulas

P (Sp(2n), t) = (t3 + 1)(t7 + 1) . . . (t4n−1 + 1) (4)

P (SO(2n), t) = (t3 + 1)(t7 + 1) . . . (t4n−5 + 1)(t2n−1 + 1) . (5)

The case of the exceptional simple groups F4, E6, E7, E8 eluded all efforts until
A. Borel and C. Chevalley [5] settled definitely the question in 1955. It is now
known that to each compact Lie group K of rank ` is associated a sequence
of integers m1 ≤ m2 ≤ . . . ≤ m` such that m1 ≥ 0 and

P (K, t) =
∏̀
i=1

(t2mi+1 + 1) . (6)

The exponents m1, . . . ,m` have a wealth of properties10 for which we refer
the reader to N. Bourbaki [7].

Here we sketch R. Brauer’s proof11 for the case of SU(n), or rather U(n).
The complexified Lie algebra of U(n) is the algebra gln(C) of complex n× n
matrices, with the bracket [A,B] = AB−BA. Introduce the multilinear forms
Tp on gln(C) by

Tp(A1, . . . , Ap) = Tr(A1 . . . Ap) . (7)

By the fundamental theorem of invariant theory12, any multilinear form on
gln(C) invariant under the group U(n) (or the group GL(n,C)) is obtained
from T1, T2, . . . by tensor multiplication and symmetrization. Hence any in-
variant antisymmetric multilinear form is a linear combination of forms ob-
tained from a product Tp1 ⊗ . . .⊗ Tpr

by complete antisymmetrization. If we
denote by Ωp the complete antisymmetrization of Tp, the previous form is
Ωp1 ∧ . . . ∧Ωpr . Some remarks are in order:

torus T` = R`/Z`. For instance, among the classical groups, SU(n+ 1), SO(2n),
SO(2n+ 1) and Sp(2n) are all of rank n.

10 For instance, the dimension of K is `+2
P̀
i=1

mi, the order of the Weyl group W is

|W | =
Q̀
i=1

(mi + 1), the invariants of the adjoint group in the symmetric algebra

S(k) form a polynomial algebra with generators of degrees m1 + 1, . . . ,m` + 1.
Similarly the invariants of the adjoint group in the exterior algebra Λ(k) form an
exterior algebra with generators of degrees 2m1 + 1, . . . , 2m` + 1.

11 See a detailed exposition in H. Weyl [74], sections 7.11 and 8.16. It was noticed
by Hodge that T p(X), for a compact Riemannian symmetric space X, is also
the space of harmonic forms of degree p. This fact prompted Hodge to give in
Chapter V of his book [45] a detailed account of the Betti numbers of the classical
compact Lie groups.

12 See theorem (2.6.A) on page 45 in H. Weyl’s book [74].
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• if p is even, Tp is invariant under the cyclic permutation γp of 1, . . . , p,
but γp has signature −1; hence by antisymmetrization Ωp = 0 for p even;
• by invariant theory, Ωp for p > 2n is decomposable as a product of forms

of degree ≤ 2n− 1;
• the exterior product Ωp1 ∧ . . . ∧Ωpr is antisymmetric in p1, . . . , pr.

It follows that the algebra T •(U(n)) = ⊕
p≥0
T p(U(n)) possesses a basis of the

form
Ωp1 ∧ . . . ∧Ωpr , 1 ≤ p1 < · · · < pr < 2n , pi odd.

Hence it is an exterior algebra with generators Ω1, Ω3, . . . , Ω2n−1. To go from
U(n) to SU(n), omit Ω1. Then, remark that if T •(X) is an exterior algebra
with generators of degrees 2mi + 1 for 1 ≤ i ≤ `, the corresponding Poincaré

polynomial is
∏̀
i=1

(t2mi+1 + 1). Done!

On the matrix group U(n) introduce the complex coordinates gjk by g =
(gjk), and the differentials dg = (dgjk). The Maurer-Cartan forms are given
by

dgjk =
∑
m

gjm ωmk (8)

or, in matrix form, by Ω = g−1 dg. Introducing the exterior product of ma-
trices of differential forms by

(A ∧B)jk =
∑
m

ajm ∧ bmk , (9)

then we can write

Ωp = Tr (Ω ∧ . . . ∧Ω︸ ︷︷ ︸
p factors

) =
∑

i1...ip

ωi1i2 ∧ ωi2i3 ∧ . . . ∧ ωipi1 . (10)

Since ω̄jk = −ωkj , it follows that the differential forms imΩ2m−1 (for m =
1, . . . , n) are real.

2.2 de Rham’s theorem

In the memoir [12] already cited, E. Cartan tried to connect his results about
the invariant differential forms in T p(X) to the Betti numbers as defined in
Analysis Situs by H. Poincaré [61]. In section IV of [12], E. Cartan states three
theorems, and calls “very desirable” a proof of these theorems. He remarks in
a footnote that they have just been proved by G. de Rham. Indeed it is the
subject matter of de Rham’s thesis [33], defended and published in 1931. As
mentioned by E. Cartan, similar results were already stated (without proof
and in an imprecise form) by H. Poincaré.
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e0

e1
e2

Fig. 1. e0, e1, e2 positively oriented on V in R3, V the ball, bV the sphere, e1, e2
positively oriented on bV .

We need a few definitions. Let X be a smooth compact manifold (without
boundary) of dimension n. We consider closed submanifolds V of dimension p
in X, with a boundary denoted by bV . An orientation of V and an orientation
of bV are compatible if, for every positively oriented frame e1, . . . , ep−1 for bV
at a point x of bV , and a vector e0 pointing to the outside of V , the frame
e0, e1, . . . , ep−1 is positively oriented for V . Stokes formula states that

∫
bV
ϕ

is equal to
∫

V
dϕ for every differential form ϕ in Ap−1(X). In particular, if V

is a cycle (that is bV = 0) then the period
∫

V
ω of a form ω in Ap(X) is 0 if

ω is a coboundary, that is ω = dϕ for some ϕ in Ap−1(X).
de Rham’s first theorem is a converse statement:

A. If ω belongs to Ap(X), and is not a coboundary, then at least one period∫
V
ω is not zero.

As before, define the kernel Zp(X) of the map d : Ap(X)→ Ap+1(X) and the
image Bp(X) = dAp−1(X). Since dd = 0, Bp(X) is included in Zp(X) and
we are entitled to introduce the de Rham cohomology group

Hp
DR(X) = Zp(X)/Bp(X) .

It is a vector space over the real field R, of finite dimension bp(X). According
to Stokes theorem, for each submanifold V of X, without boundary, there is a
linear form IV on Hp

DR(X), mapping the coset ω+Bp(X) to
∫

V
ω. According

to theorem A., the linear forms IV span the space HDR
p (X) dual to Hp

DR(X)
(the so-called de Rham homology group). More precisely

B. The forms IV form a lattice HDR
p (X)Z in HDR

p (X).

By duality, the cohomology classes ω+Bp(X) of the closed forms with integral
periods form a lattice Hp

DR(X)Z in Hp
DR(X).

We give now a topological description of these lattices. Let A be a com-
mutative ring; in our applications A will be Z, Z/nZ, Q, R or C. Denote by
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Cp(A) the free A-module with basis [V ] indexed by the (oriented13) closed
connected submanifolds V of dimension p. There is an A-linear map

b : Cp(A)→ Cp−1(A)

mapping [V ] to [bV ] for any V . Since bb = 0, we define Hp(X;A) as the

V

bV

bV

bV

Fig. 2.

quotient of the kernel of b : Cp(A)→ Cp−1(A) by the image of b : Cp+1(A)→
Cp(A). By duality, Cp(A) is the A-module dual to Cp(A), and δ : Cp(A) →
Cp+1(A) is the transpose of b : Cp+1(A)→ Cp(A). Since δδ = 0, we can define
the cohomology groups Hp(X;A). Since X is compact, it can be shown that
both Hp(X;A) and Hp(X;A) are finitely generated A-modules.

Here is the third statement:

C. Let Tp be the torsion subgroup of the finitely generated Z-module Hp(X; Z).
Then HDR

p (X)Z is isomorphic to Hp(X; Z)/Tp. A similar statement holds for
Hp

DR(X)Z and Hp(X; Z). Hence, the Betti number bp(X) is the rank of the
Z-module Hp(X; Z) and also of Hp(X; Z).

If the ring A has no torsion as a Z-module (which holds for A equal to Q,
R or C), we have isomorphisms

Hp(X;A) ∼= Hp(X; Z)⊗Z A , (11)

Hp(X;A) ∼= Hp(X; Z)⊗Z A . (12)

Using Theorem C., we get isomorphisms

Hp(X; R) ∼= HDR
p (X), Hp(X; R) ∼= Hp

DR(X) ; (13)

13 If V̄ is V with the reversed orientation, we impose the relation [V̄ ] = −[V ]: notice
the integration formula

R
V̄
ω = −

R
V
ω for any p-form ω. The boundary bV is not

necessarily connected (see fig. 2). If B1, . . . , Br are its components, with matching
orientations, we make the convention [bV ] = [B1] + · · ·+ [Br].
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moreover, we can identify Hp(X; Q) with the Q-subspace of Hp
DR(X) consist-

ing of cohomology classes of p-forms ω all of whose periods are rational. The
de Rham isomorphisms

Hp
DR(X) ∼= Hp(X; R) ∼= Hp(X; Q)⊗Q R

are a major piece in describing Hodge structures.
To complete the general picture, we have to introduce products in coho-

mology. The exterior product of forms satisfies the Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)deg α α ∧ dβ , (14)

hence14 Z•(X) is a subalgebra of A•(X), and B•(X) an ideal in Z•(X);
the quotient space H•

DR(X) = Z•(X)/B•(X) inherits a product from the
exterior product in A•(X). Topologists have defined a so-called cup-product
in H•(X;A), and the de Rham isomorphism is compatible with the products.
Here is a corollary:

D. If α, β are closed forms with integral (rational) periods, the closed form
α ∧ β has integral (rational) periods.

The next statement is known as Poincaré duality:

E. Given any topological cycle V of dimension p in X, there exists a closed
form ωV of degree n− p with integral periods such that∫

V

ϕ =
∫

X

ωV ∧ ϕ (15)

for any closed p-form ϕ.

The map V 7→ ωV extends to an isomorphism of HDR
p (X) with Hn−p

DR (X),
which is compatible with the lattices HDR

p (X)Z and Hn−p
DR (X)Z, hence it de-

fines an isomorphism15

Hp(X; Q) ∼= Hn−p(X; Q)

known as Poincaré isomorphism. The cup-product on the right-hand side de-
fines a product (V,W ) 7→ V ·W from16 Hp⊗Hq to Hp+q−n, called intersection
product [61]. Here is a geometric description: after replacing V (resp. W ) by
a cycle V ′ homologous to V (resp. W ′ homologous to W ) we can assume that

14 We follow the standard practice, that is Z•(X) is the direct sum of the spaces
Zp(X) and similarly in other cases.

15 This isomorphism depends on the choice of an orientation of X; going to the
opposite orientation multiplies it by −1.

16 Here Hp is an abbreviation for Hp(X; Q).
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V ′ and W ′ are transverse17 to each other everywhere. Then the intersection
V ′ ∩ W ′ is a cycle of dimension p + q − n whose class in Hp+q−n depends
only on the classes of V in Hp and W in Hq. In the case p = 0, a 0-cycle z
is a linear combination m1 · x1 + · · ·+mr · xr of points; the degree deg(z) is
m1 + · · ·+mr. The Poincaré isomorphism H0(X; Q) ∼= Hn(X; Q) satisfies the
property

deg(V ) =
∫

X

ωV (16)

for any 0-cycle V . As a corollary, we get

deg(V ·W ) =
∫

X

ωV ∧ ωW (17)

for any two cycles of complementary dimension.

2.3 The theorems of Hopf and Samelson

Between 1935 and 1950, a number of results about the topology of compact
Lie groups and their homogeneous spaces were obtained. We mention the
contributions of Ehresmann, Hopf, Stiefel, de Siebenthal, Samelson, Leray,
Hirsch, Borel,. . . They used alternatively methods from differential geometry
(through de Rham’s theorems) and from topology.

Formula (6) for the Poincaré polynomial is “explained” by the fact that
the cohomology H•(K; Q) of a compact Lie group K is an exterior algebra
with generators of degrees 2m1+1, . . . , 2m` +1. Hence we get an isomorphism

H•(K; Q) ∼= H•(S2m1+1 × . . .× S2m`+1; Q) . (18)

The same statement is valid for Q replaced by any Q-algebra (for instance R or
C), but it is not true for the cohomology with integral coefficients: it was quite
complicated to obtain the torsion of the groups Hp(K; Z), an achievement due
essentially to A. Borel [3].

It is well-known that SU(2) is homeomorphic to S3, that U(1) is homeo-
morphic to S1, hence U(2) is homeomorphic to S1×S3 [Hint: use the decom-
position

g =
(

1 0
0 eiθ

) (
x+ iy z + it
−z + it x− iy

)
(19)

with x2 + y2 + z2 + t2 = 1]. In general U(n) and S1 × S3 × · · · × S2n−1 have
the same cohomology in any coefficients, but they are not homeomorphic for
n ≥ 3. Nevertheless, U(n) can be considered as a principal fibre bundle with

17 Transversality means that at each point x in V ′ ∩W ′ we can select a coordinate
system (x1, . . . , xn) such that V ′ is given by equations x1 = . . . = xr = 0 and W ′

by xr+1 = . . . = xr+s = 0. Hence dimx V
′ = n − r =: p, dimx W

′ = n − s =: q
and dimx(V ′ ∩W ′) = n− r − s = p+ q − n.
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group U(n−1) and a base space U(n)/U(n−1) homeomorphic to S2n−1. Using
results of Leray proved around 1948, one can show that the spaces U(n) and
U(n − 1) × S2n−1 have the same cohomology, hence by induction on n the
statement that U(n) and S1 × S3 × · · · × S2n−1 have the same cohomology.
Similar geometric arguments, using Grassmannians, Stiefel manifolds,. . . have
been used by Ch. Ehresmann [40] for the other classical groups. The first
general proof that (for any connected compact Lie group K) the cohomology
H•(K; Q) is an exterior algebra with generators of odd degree was given by H.
Hopf [47] in 1941. Meanwhile, partial results were obtained by L. Pontrjagin
[63].

We have noticed that for any compact manifold X, the cup-product in
cohomology maps Hp ⊗Hq into Hp+q, where Hp := Hp(X; Q). If X and Y
are compact manifolds, and f is a continuous map from X to Y , there is a
map f∗ going backwards (the “Umkehrungs-Homomorphisms” of Hopf) from
H•(Y ; Q) into H•(X; Q) and respecting the grading and the cup-product. For
homology, there is a natural map f∗ from H•(X; Q) to H•(Y,Q), dual to f∗

in the natural duality between homology and cohomology. We have remarked
that, using Poincaré’s duality isomorphism

Hp(X; Q) ∼= Hn−p(X; Q)

(where n is the dimension of X), one can define the intersection product map-
ping Hp⊗Hq into Hp+q−n. In general, the map f∗ from H•(X; Q) to H•(Y ; Q)
respects the grading, but not the intersection product18.

What Pontrjagin noticed is that when the manifold X is a compact Lie
group K, there is another product in H•(K; Q) (now called Pontrjagin’s prod-
uct) mapping Hp ⊗Hq into Hp+q. It is defined as follows: the multiplication
in K is a continuous map m : K × K → K inducing a linear map for the
homology groups (with rational coefficients)

m∗ : H•(K ×K)→ H•(K) .

Since H•(K ×K) is isomorphic to H•(K)⊗H•(K) by Künneth theorem, we
can view m∗ as a multiplication in homology, mapping Hp(K)⊗Hq(K) into
Hp+q(K). Hence both H•(K; Q) and H•(K; Q) are graded, finite-dimensional
algebras, in duality. H. Samelson proved in [70] the conjecture made by Hopf
at the end of his paper [47] that both H•(K; Q) and H•(K; Q) are exterior
algebras with generators of odd degree. In particular, they are both graded-
commutative19. It is a generic feature that the cohomology groups of a com-
pact space X with arbitrary coefficients form a graded-commutative algebra
18 Here is a simple counterexample. Assume that Y is a real projective space of

dimension 3, X is a plane in Y , and f : X → Y the inclusion map. If L and L′

are lines in X, their intersections L · L′ in X is a point (of dimension 0). But
their images in Y have a homological intersection product which is 0, because it
is allowed to move L in Y to another line L1 not meeting L′.

19 This means that any two homogeneous elements a and b commute ab = ba, unless
both are of odd degree and we have then ab = −ba
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for the cup-product. But for the Pontrjagin product in homology, there are
exceptions, for instance H•(Spin(n); Z/2Z) for infinitely many values of n (see
A. Borel [3]).

In his 1941 paper [47], H. Hopf considered a more general situation. He
called20 H-space any topological space X endowed with a continuous multi-
plication m : X ×X → X for which there exist two points a, b such that the
maps x 7→ m(a, x) and x 7→ m(x, b) are homotopic21 to the identity map of
X. Using the induced map in cohomology and Künneth theorem, one obtains
an algebra homomorphism

m∗ : H•(X)→ H•(X ×X) = H•(X)⊗k H
•(X)

where the cohomology is taken with coefficients in any field k. Assuming X
to be a compact manifold, the k-algebra H•(X) is finite-dimensional, and in
duality with the space H•(X) of homology. The multiplication in X defines a
Pontrjagin product in H•(X) as above. By duality22, the maps

m∗ : H•(X)→ H•(X)⊗H•(X)

m∗ : H•(X)⊗H•(X)→ H•(X)

are transpose of each other. So the consideration of the Pontrjagin product
in H•(X), or of the coproduct m∗ in H•(X), are equivalent. Notice that
the product m in the H-space X is neither assumed to be associative nor
commutative (even up to homotopy).

The really new idea was the introduction of the coproductm∗. The existence
of this coproduct implies that H•(K; Q) is an exterior algebra in a number of
generators c1, . . . , cλ of odd degree. Hence if X is a compact H-space, it has
the same cohomology as a product of spheres of odd dimension Sp1×· · ·×Spλ .
As proved by Hopf, there is no restriction on the sequence of odd dimensions
p1, . . . , pλ. The Poincaré polynomial is given by

P (X, t) =
λ∏

i=1

(1 + tpi)

20 His terminology is “Γ -Mannigfaltigkeit”, where Γ is supposed to remind of G
in “Group”, and where the german “Mannigfaltigkeit” is usually translated as
“manifold” in english. The standard terminology H-space is supposed to be a
reminder of H(opf).

21 It is enough to assume that they are homotopy equivalences.
22 We put H• ⊗H• and H• ⊗H• in duality in such a way that

〈a⊗ b, α⊗ β〉 = (−1)|b| |α| 〈a, α〉 〈b, β〉

for a, b, α, β homogeneous. In general |x| is the degree of a homogeneous element
x. The sign is dictated by Koszul’s sign rule: when you interchange homogeneous
elements x, y, put a sign (−1)|x| |y|.
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and in particular the sum P (X, 1) =
∑
p≥0

bp(X) of the Betti numbers is equal

to 2λ. To recover E. Cartan’s result P (K, 1) = 2` (see [12]), we have to prove
` = λ. This is done by Hopf in another paper [48] in 1941, as follows. Let K
be a compact connected Lie group of dimension d; for any integer m ≥ 1, let
Ψm be the (contravariant) action on H•(K; Q) of the map g 7→ gm from K to
K. This operator can be defined entirely in terms of the cup-product and the
coproduct m∗ in H•(K; Q), that is in terms of the Hopf algebra H•(K; Q) (see
the proof of Theorem 3.8.1). It is easy to check that Ψm multiplies by m every
primitive element in H•(K; Q). According to Hopf [47] and Samelson [70],
the algebra H•(K; Q) is an exterior algebra generated by primitive elements
c1, . . . , cλ of respective degree p1, . . . , pλ. Then p1 + · · ·+ pλ is the dimension
d of K, and c = c1 . . . cλ lies in Hd(K; Q). The map Ψm respects the cup-
product and multiply c1, . . . , cλ by m. Hence Ψm(c) = mλ c. This means that
the degree of the map g 7→ gm from K to K is mλ. But according to the
classical topological results obtained in the 1930’s by Hopf and others, this
means that the equation gm = g0 has mλ solutions g for a generic g0. Using
the known structure theorems for Lie groups, if g0 lies in a maximal torus
T ⊂ K, of dimension `, the m-th roots of g0 are in T for a generic g0, but
in a torus of dimension `, each generic element has m` m-th roots. that is
mλ = m` for m ≥ 1, hence ` = λ.

Hopf was especially proud that his proofs were general and didn’t depend
on the classification of simple Lie groups. More than once, results about Lie
groups have been obtained by checking through the list of simple Lie groups,
and the search for a “general” proof has been a strong incentive.

2.4 Structure theorems for some Hopf algebras I

Let us summarize the properties of the cohomology A• = H•(X; k) of a
connected H-space X with coefficients in a field k.

(I) The space A• is graded A• = ⊕
n≥0

An, and connected A0 = k.

(II) A• is a graded-commutative algebra, that is there is given a multiplication
m : A• ⊗A• → A• with the following properties23

|a · b| = |a|+ |b| (homogeneity)
(a · b) · c = a · (b · c) (associativity)
b · a = (−1)|a| |b| a · b (graded commutativity),

for homogeneous elements a, b, c.

(III) There exists an element 1 in A0 such that 1 · a = a · 1 = a for any a in
A• (unit).
23 We write a · b for m(a⊗ b) and |a| for the degree of a.
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(IV) There is a coproduct ∆ : A• → A• ⊗ A•, which is a homomorphism of
graded algebras, such that ∆(a)− a⊗ 1− 1⊗ a belongs to A+ ⊗A+ for any
a in A+. Here we denote by A+ the augmentation ideal ⊕

n≥1
An of A•.

Hopf’s Theorem. (Algebraic version.) Assume moreover that the field k is
of characteristic 0, and that A• is finite-dimensional. Then A• is an exterior
algebra generated by homogeneous elements of odd degree.

Here is a sketch of the proof. It is quite close to the original proof by Hopf,
except for the introduction of the filtration (Bp)p≥0 and the associated graded
algebra C. The idea of a filtration was introduced only later by J. Leray [52].

A. Besides the augmentation ideal B1 = A+, introduce the ideals B2 =
A+ ·A+, B3 = A+ ·B2, B4 = A+ ·B3 etc. We have a decreasing sequence

A• = B0 ⊃ B1 ⊃ B2 ⊃ . . .

with intersection 0 since Bp is contained in ⊕
i≥p

Ai. We can form the corre-

sponding (bi)graded24 algebra

C =
⊕
p≥0

Bp/Bp+1 .

It is associative and graded-commutative (with respect to the second degree
q in Cp,q). But now it is generated by B1/B2 that is C1,• = ⊕

q≥0
C1,q.

B. The coproduct∆ : A• → A•⊗A• maps Bp in
p∑

i=0

Bi⊗Bp−i. Hence the filtra-

tion (Bp)p≥0 is compatible with the coproduct ∆ and since Cp,• = Bp/Bp+1,
∆ induces an algebra homomorphism δ : C → C ⊗ C. The assumption
∆(a) − a ⊗ 1 − 1 ⊗ a in A+ ⊗ A+ for any a in A+ amounts to say that
any element in C1,• is primitive, that is

δ(x) = x⊗ 1 + 1⊗ x . (20)

C. Changing slightly the notation, we consider an algebra D• satisfying the
assumptions (I) to (IV) and the extra property that D• as an algebra is
generated by the space P • of primitive elements. First we prove that P • has
24 Each Bp is a graded subspace of A•, i.e. Bp = ⊕

q≥0
(Bp∩Aq). Hence C = ⊕

p,q≥0
Cp,q

with
Cp,q = (Bp ∩Aq)/(Bp+1 ∩Aq) .
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no homogeneous element of even degree. Indeed let x be such an element of
degree 2m. In D• ⊗D• we have

∆(xp) = xp ⊗ 1 + 1⊗ xp +
p−1∑
i=1

(p
i

)
xi ⊗ xp−i . (21)

Since D• is finite-dimensional, we can select p large enough so that xp =
0. Hence we get ∆(xp) = 0 but in the decomposition (21), the various
terms belong to different homogeneous components since xi ⊗ xp−i is in
D2mi ⊗D2m(p−i). They are all 0, and in particular px⊗ xp−1 = 0. We are in
characteristic 0 hence x ⊗ xp−1 = 0 in D2m ⊗ D2m(p−1) and this is possible
only if x = 0.

D. By the previous result, P • possesses a basis (ti)1≤i≤r consisting of homo-
geneous elements of odd degree. To show that D• is the exterior algebra built
on P •, we have to prove the following lemma:

Lemma 2.4.1. If t1, . . . , tr are linearly independent homogeneous primitive
elements of odd degree, the products

ti1 . . . tis

for 1 ≤ i1 < · · · < is ≤ r are linearly independent.

Proof by induction on r. A relation between these elements can be written
in the form a + b tr = 0 where a, b depend on t1, . . . , tr−1 only. Apply ∆ to
this identity to derive ∆(a) +∆(b) (tr ⊗ 1 + 1 ⊗ tr) = 0 and select the term
of the form u⊗ tr. It vanishes hence b = 0, hence a = 0 and by the induction
hypothesis a linear combination of monomials in t1, . . . , tr−1 vanishes iff all
coefficients are 0.

E. We know already that the algebra C in subsection B. is an exterior algebra
over primitive elements of odd degrees. Lift the generators from C1,• to B1

to obtain independent generators of A• as an exterior algebra.

2.5 Structure theorems for some Hopf algebras II

We shall relax the hypotheses in Hopf’s theorem. Instead of assuming A• to be
finite-dimensional, we suppose that each component An is finite-dimensional.

A. Suppose that the field k is of characteristic 0. Then A• is a free graded-
commutative algebra.

More precisely, A• is isomorphic to the tensor product of a symmetric
algebra S(V •) generated by a graded vector space V • = ⊕

n≥1
V 2n entirely
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in even degrees, and an exterior algebra Λ(W •) where W • = ⊕
n≥0

W 2n+1 is

entirely in odd degrees.

B. Assume that the field k is perfect of characteristic p different from 0 and
2. Then A• is isomorphic to S(V •)⊗Λ(W •)⊗B•, where B• is generated by
elements u1, u2, . . . of even degree subjected to relations of the form upm(i)

i = 0
for m(i) ≥ 1.

Equivalently, the algebra A• is isomorphic to a tensor product of a family
(finite or infinite) of elementary algebras of the form k[x], Λ(ξ), k[u]/(upm

)
with x, u of even degree and ξ of odd degree.

C. Assume that the field k is perfect of characteristic 2. Then A• is isomor-
phic to a tensor product of algebras of the type k[x] or k[x]/(x2m

) with x
homogeneous.

All the previous results were obtained by Borel in his thesis [1].
We conclude this section by quoting the results of Samelson [70] in an

algebraic version. We assume that the field k is of characteristic 0, and that
each vector space An is finite-dimensional. We introduce the vector space
An dual to An and the graded dual A• = ⊕

n≥0
An of A•. Reasoning as in

subsection 2.3, we dualize the coproduct

∆ : A• → A• ⊗A•

to a multiplication
m̃ : A• ⊗A• → A• .

D. The following conditions are equivalent:

(i) The algebra A• is generated by the subspace P • of primitive elements.
(ii) With the multiplication m̃, the algebra A• is associative and graded-

commutative.

The situation is now completely self-dual. The multiplication

m : A• ⊗A• → A•

dualizes to a coproduct
∆̃ : A• → A• ⊗A• .

Denote by P• the space of primitive elements in A•, that is the solutions of
the equation ∆̃(x) = x⊗1+1⊗x. Then there is a natural duality between P•
and P • and more precisely between the homogeneous components Pn and Pn.
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Moreover A• is the free graded-commutative algebra over P • and similarly for
A• and P•.

In a topological application, we consider a compact Lie group K, and
define

A• = H•(K; k) , A• = H•(K; k)

with the cup-product in cohomology, and the Pontrjagin product in homology.
The field k is of characteristic 0, for instance k = Q,R or C. Then both algebras
H•(K; k) and H•(K; k) are exterior algebras with generators of odd degree.
Such results don’t hold for general H-spaces. In a group, the multiplication is
associative, hence the Pontrjagin product is associative. Dually, the coproduct

m∗ : H•(K; k)→ H•(K; k)⊗H•(K; k)

is coassociative (see subsection 3.5). Hence while results A., B., C. by Borel
are valid for the cohomology of an arbitrary H-space, result D. by Samelson
requires associativity of the H-space.

3 Hopf algebras in group theory

3.1 Representative functions on a group

Let G be a group and let k be a field. A representation π of G is a group
homomorphism π : G→ GL(V ) where GL(V ) is the group of invertible linear
maps in a finite-dimensional vector space V over k. We usually denote by Vπ

the space V corresponding to a representation π. Given a basis (ei)1≤i≤d(π) of
the space Vπ, we can represent the operator π(g) by the corresponding matrix
(uij,π(g)). To π is associated a vector space C(π) of functions on G with values
in k, the space of coefficients, with the following equivalent definitions:

• it is generated by the functions uij,π for 1 ≤ i ≤ d(π), 1 ≤ j ≤ d(π);
• it is generated by the coefficients

cv,v∗,π : g 7→ 〈v∗, π(g) · v〉

for v in Vπ, v∗ in the dual V ∗
π of Vπ;

• it consists of the functions

cA,π : g 7→ Tr (A · π(g))

for A running over the space End (Vπ) of linear operators in Vπ.

The union R(G) of the spaces C(π) for π running over the class of represen-
tations of G is called the representative space. Its elements u are characterized
by the following set of equivalent properties:
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• the space generated by the left translates

Lg′u : g 7→ u(g′−1g)

of u (for g′ in G) is finite-dimensional;
• similarly for the right translates

Rg′u : g 7→ u(gg′) ;

• there exists finitely many functions u′i, u
′′
i on G (1 ≤ i ≤ N) such that

u(g′g′′) =
N∑

i=1

u′i(g
′)u′′i (g′′) . (22)

An equivalent form of (22) is as follows: let us define

∆u : (g′, g′′) 7→ u(g′g′′)

for any function u on G, and identify R(G) ⊗ R(G) to a space of functions
on G × G, u′ ⊗ u′′ being identified to the function (g′, g′′) 7→ u′(g′)u′′(g′′).
The rule of multiplication for matrices and the definition of a representation
π(g′g′′) = π(g′) · π(g′′) imply

∆uij,π =
∑

k

uik,π ⊗ ukj,π . (23)

Moreover, for ui in C(πi), the sum u1 + u2 is a coefficient of π1 ⊕ π2 (direct
sum) and u1u2 a coefficient of π1 ⊗ π2 (tensor product). We have proved the
following lemma:

Lemma 3.1.1. For any group G, the set R(G) of representative functions on
G is an algebra of functions for the pointwise operations and ∆ is a homo-
morphism of algebras

∆ : R(G)→ R(G)⊗R(G) .

Furthermore, there exist two algebra homomorphisms

S : R(G)→ R(G) , ε : R(G)→ k

defined by
Su(g) = u(g−1) , ε u = u(1) . (24)

The maps ∆,S, ε are called, respectively, the coproduct, the antipodism25

and the counit.
25 The existence of the antipodism reflects the existence, for any representation π

of the contragredient representation acting on V ∗
π by π∨(g) = tπ(g−1).
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3.2 Relations with algebraic groups

Let G be a subgroup of the group GL(d, k) of matrices. We say that G is an
algebraic group if there exists a family (Pα) of polynomials in d2 variables γij

with coefficients in k such that a matrix g = (gij) in GL(d, k) belongs to G iff
the equations Pα(. . . gij . . .) = 0 hold. The coordinate ring O(G) of G consists
of rational functions on G regular at every point of G, namely the functions
of the form

u(g) = P (. . . gij . . .)/(det g)N , (25)

where P is a polynomial, and N ≥ 0 an integer. The multiplication rule
det(g′g′′) = det(g′) det(g′′) implies that such a function u is in R(G) and
Cramer’s rule for the inversion of matrices implies that Su is in O(G) for any
u in O(G). Hence:

Lemma 3.2.1. Let G be an algebraic subgroup of GL(d, k). Then O(G) is a
subalgebra of R(G), generated by a finite number of elements26. Furthermore
∆ maps O(G) into O(G) ⊗ O(G) and S maps O(G) into O(G). Finally, G
is the spectrum of O(G), that is every algebra homomorphism ϕ : O(G) → k
corresponds to a unique element g of G such that ϕ is equal to δg : u 7→ u(g).

This lemma provides an intrinsic definition of an algebraic group as a
pair (G,O(G)) where O(G) satisfies the above properties. We give a short
dictionary:

(i) If (G,O(G)) and (G′,O(G′)) are algebraic groups, the homomorphisms
of algebraic groups ϕ : G → G′ are the group homomorphisms such that
ϕ∗(u′) := u′ ◦ ϕ is in O(G) for every u′ in O(G′).

(ii) The product G × G′ is in a natural way an algebraic group such that
O(G × G′) = O(G) ⊗ O(G′) (with the identification (u ⊗ u′)(g, g′) =
u(g)u′(g′)).

(iii) A linear representation u : G → GL(n, k) is algebraic if and only if
u = (uij) with elements uij in O(G) such that

∆uij =
n∑

k=1

uik ⊗ ukj . (26)

More intrinsically, if V = Vπ is the space of a representation π of G,
then V is a comodule over the coalgebra O(G), that is there exists a map
Π : V → O(G)⊗ V given by

Π(ej) =
d(π)∑
i=1

uij,π ⊗ ei (27)

26 Namely the coordinates gij and the inverse 1/det g of the determinant.
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for any basis (ei) of V and satisfying the rules27

(∆⊗ 1V ) ◦Π = (1O(G) ⊗Π) ◦Π , (28)

π(g) = (δg ⊗ 1V ) ◦Π . (29)

3.3 Representations of compact groups

The purpose of this subsection is to show that any compact Lie group G is
an algebraic group in a canonical sense. Here are the main steps in the proof:

(A) Schur’s orthogonality relations.
(B) Peter-Weyl’s theorem.
(C) Existence of a faithful linear representation.
(D) Algebraicity of a compact linear group.
(E) Complex envelope of a compact Lie group.

We shall consider only continuous complex representations of G. The corre-
sponding representative algebra Rc(G) consists of the complex representative
functions which are continuous. We introduce in G a Haar measure m, that
is a Borel measure which is both left and right-invariant:

m(gB) = m(Bg) = m(B) (30)

for any Borel subset B of G and any g in G. We normalize m by m(G) = 1,
and denote by

∫
G
f(g) dg the corresponding integral. In the space L2(G) of

square-integrable functions, we consider the scalar product

〈f | f ′〉 =
∫

G

f(g) f ′(g) dg ; (31)

hence L2(G) is a (separable) Hilbert space.
Let π : G → GL(V ) be a (continuous) representation of G. Let Φ be any

positive-definite hermitian form on Vπ = V and define

〈v | v′〉 =
∫

G

Φ(π(g) · v, π(g) · v′) dg (32)

for v, v′ in Vπ. This is a hermitian scalar product on Vπ, invariant under G.
Hence the representation π is semisimple, that is Vπ is a direct sum V1⊕· · ·⊕Vr

of subspaces of Vπ invariant under G, such that π induces an irreducible (or
simple) representation πi of G in the space Vi. Hence the vector space C(π) is
the sum C(π1) + · · ·+ C(πr).

(A) Schur’s orthogonality relations.
They can be given three equivalent formulations (π is an irreducible rep-

resentation):
27 In any vector space W , we denote by λW the multiplication by the number λ

acting in W .
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• the functions d(π)1/2 uij,π form an orthonormal basis of the subspace28

C(π) of L2(G);
• given vectors v1, . . . , v4 in Vπ, we have∫

G

〈v1 |π(g)| v2〉 〈v3 |π(g)| v4〉 dg = d(π)−1 〈v1 | v3〉 〈v2 | v4〉 ; (33)

• given two linear operators A,B in Vπ, we have

〈cA,π | cB,π〉 = d(π)−1 Tr(A∗B) . (34)

The (classical) proof runs as follows. Let L be any operator in Vπ. Then
L\ =

∫
G
π(g) · L · π(g−1) dg commutes to π(G), hence by Schur’s lemma, it is

a scalar cV . But obviously Tr(L\) = Tr(L), hence c = Tr(L)/d(π) and

L\ = d(π)−1 Tr(L) · 1V . (35)

Multiplying by an operator M in Vπ and taking the trace, we get∫
G

Tr(π(g)Lπ(g−1)M) dg = d(π)−1 Tr(L) Tr(M) . (36)

Formula (33) is the particular case29

L = |v4〉〈v2| , M = |v1〉〈v3| (37)

of (36), since 〈v |π(g−1)| v′〉 = 〈v′ |π(g)| v〉 by the unitarity of the operator
π(g). Specializing v1, . . . , v4 to basis vectors ei, we derive the orthonormality
of the functions d(π)1/2 uij,π. Notice also that (34) reduces to (33) for

A = |v2〉〈v1| , B = |v4〉〈v3| (38)

and the general case follows by linearity.
Let now π and π′ be two irreducible (continuous) non isomorphic repre-

sentations of G. If L : Vπ → Vπ′ is any linear operator define

L\ =
∫

G

π′(g) · L · π(g)−1 dg . (39)

An easy calculation gives the intertwining property

π′(g)L\ = L\ π(g) for g in G. (40)

Since π and π′ are non isomorphic, we obtain L\ = 0 by Schur’s lemma. Hence
〈v′ |L\| v〉 = 0 for v in Vπ and v′ ∈ Vπ′ and specializing to L = |w′〉〈w|, we
obtain the orthogonality relation
28 The functions in C(π) being continuous, and G being compact, we have the in-

clusion C(π) ⊂ L2(G).
29 Here we use the bra-ket notation, hence L is the operator v 7→ 〈v2 | v〉 · v4.
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〈v |π(g)|w〉 〈v′ |π′(g)|w′〉 dg = 0 . (41)

That is the spaces C(π) and C(π′) are orthogonal in L2(G).

(B) Peter-Weyl’s theorem.
We consider a collection Ĝ of irreducible (continuous) representations of

G, such that every irreducible representation of G is isomorphic to one, and
only one, member of Ĝ. We keep the previous notations Vπ, d(π), C(π), . . .

Theorem of Peter-Weyl. The family of functions d(π)1/2 uij,π for π in Ĝ,
1 ≤ i ≤ d(π), 1 ≤ j ≤ d(π) is an orthonormal basis of the Hilbert space L2(G).

From the results in (A), we know already that the functions d(π)1/2 uij,π

form an orthonormal system and an algebraic basis of the vector space Rc(G)
of (continuous) representative functions. It suffices therefore to prove that
Rc(G) is a dense subspace of L2(G). Here is a simple proof30.

For any continuous function f on G, define the convolution operator Rf

in L2(G) by

(Rf ϕ)(g′) =
∫

G

ϕ(g) f(g−1 g′) dg . (42)

This is an integral operator with a kernel f(g−1 g′) which is continuous on
the compact space G×G, hence in L2(G×G). The operator Rf is therefore
a Hilbert-Schmidt operator. By an elementary proof ([9], chapter 5), there
exists an orthonormal basis (ϕn) in L2(G) such that the functions Rf ϕn are
mutually orthogonal. If we set λn = 〈Rf ϕn | Rf ϕn〉, it follows that λn ≥ 0,∑
n
λn < +∞ (since Rf is Hilbert-Schmidt) and31

R∗f Rf ϕn = λn ϕn . (43)

From the relation
∑
n
λn < +∞, it follows that for each λ 6= 0 the space Cλ,f

of solutions of the equation

R∗f Rf ϕ = λϕ (44)

is finite-dimensional. It is invariant under the left translations Lg since Rf

commutes to Lg, and R∗f Rf transforms square-integrable functions into con-
tinuous functions by well-known properties of convolution. Hence Cλ,f is a
subspace of Rc(G). If I(f) := ImR∗f Rf is the range of the operator R∗f Rf , it
suffices to prove that the union of the ranges I(f) for f continuous is dense in

30 All known proofs [24], [55] rely on the theory of integral equations. Ours uses only
the elementary properties of Hilbert-Schmidt operators.

31 We denote by T ∗ the adjoint of any bounded linear operator T in L2(G).
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L2(G). Choose a sequence (fn) of continuous functions approximating32 the
Dirac “function” δ(g). Then for every continuous function ϕ in G, we have

ϕ = lim
n→∞

R∗fn
Rfn

ϕ (45)

uniformly on G, hence in L2(G). Moreover, the continuous functions are dense
in L2(G). Q.E.D.

(C) Existence of a faithful linear representation.
Let g be the Lie algebra of G, and exp : g → G the exponential map. It

is known that there exists a convex symmetric open set U in g (containing
0) such that exp |U is a homeomorphism of U onto an open subset V of G.
Let U1 = 1

2 U and V1 = exp(U1). I claim that V1 contains no subgroup H of
G, except H = {1}. Indeed, for h ∈ H, h 6= 1 we can write h = expx, with
x ∈ U1, x 6= 0, hence h2 = exp 2x belongs to V but not to V1, hence not to
H.

Since the Hilbert space L2(G) is separable, it follows from Peter-Weyl’s
theorem that we can enumerate Ĝ as a sequence (πn)n≥1. Denote by Gn

the closed subgroup of G consisting of the elements g such that π1(g) = 1,
π2(g) = 1, . . . , πn(g) = 1. Denote by H the intersection of the decreasing
sequence (Gn)n≥1. For h in H, it follows from Peter-Weyl’s theorem that the
left translation Lh in L2(G) is the identity, hence for any continuous function
f on G, we have

f(h) = Lh−1 f(1) = f(1) , (46)

hence h = 1 since the continuous functions on a compact space separate the
points.

Hence
⋂

n≥1

Gn = {1} and since V1 is a neighborhood of 1, it follows from the

compactness of G that V1 contains one of the subgroups Gn, hence Gn = {1}
for some n by the first part of this proof. Otherwise stated, π := π1⊕· · ·⊕πn

is a faithful representation.

(D) Algebraicity of a compact linear group.

Lemma 3.3.1. Let m ≥ 1 be an integer, and K ⊂ GL(m,R) a compact
subgroup. Then K is a real algebraic subgroup.

Indeed, let g be a matrix33 in Mm(R), not in K. The closed subsets K
and Kg of Mm(R) are disjoint, hence there exists a continuous function ϕ on
K ∪Kg taking the value 0 on K and 1 on Kg. By Weierstrass’ approximation
32 That is, each fn is continuous, non negative, normalized

R
G
fn(g) dg = 1, and

there exists a basis (Vn) of the neighborhoods of 1 in G, such that fn vanishes
outside Vn.

33 We denote by Mm(R) the space of square matrices of size m×m, with real entries.
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theorem, we find a real polynomial in m2 variables such that |ϕ− P | ≤ 1
4 on

K ∪Kg. Average P :

P \(h) =
∫

K

P (kh) dk . (47)

Then P \ is an invariant polynomial hence take constant values a on K, b on
Kg. From |ϕ − P | ≤ 1

4 one derives |a| ≤ 1
4 , |1 − b| ≤ 1

4 , hence b 6= a. The
polynomial P \ − a is identically 0 on K, and takes a non zero value at g.
Conclusion: K is a real algebraic submanifold of the space Mm(R) of square
real matrices of order m.

(E) Complex envelope of a compact Lie group.
We can repeat for the real representations of G what was said for the

complex representations: direct sum, tensor product, orthogonality, semisim-
plicity. For any complex representative function u, its complex conjugate ū is
a representative function, hence also the real and imaginary part of u. That
is

Rc(G) = Rc,real(G)⊕ i Rc,real(G) (48)

where Rc,real(G) is the set of continuous representative functions which take
real values only. Moreover Rc,real(G) is the orthogonal direct sum

⊕
π
C(π)R

extended over all irreducible real representations π of G, where C(π)R is the
real vector space generated by the coefficients πij for π given in matrix form

π = (πij) : G→ GL(m,R) .

Since any complex vector space of dimension n can be considered as a real
vector space of dimension m = 2n, and since G admits a faithful complex
representation, we can select a faithful real representation ρ given in matrix
form

ρ = (ρij) : G→ GL(m; R) .

Theorem 3.3.1. (i) Any irreducible real representation π of G is isomorphic
to a subrepresentation of some ρ⊗N with N ≥ 0.

(ii) The algebra Rc,real(G) is generated by the functions ρij for 1 ≤ i ≤ m,
1 ≤ j ≤ m.

(iii) The space G is the real spectrum34 of the algebra Rc,real(G).

Let I be the set of irreducible real representations π of G which are con-
tained in some tensor representation ρ⊗N . Then, by the semisimplicity of real
representations of G, the subalgebra of Rc,real(G) generated by C(ρ)R is the
direct sum A =

⊕
π∈I

C(π)R. Since the continuous real functions ρij on G sepa-

rate the points, it follows from the Weierstrass-Stone theorem that A is dense
34 That is, for every algebra homomorphism ϕ : Rc,real(G)→ R there exists a unique

point g in G such that ϕ(u) = u(g) for every u in Rc,real(G).
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in the Banach space C0(G; R) of real continuous functions on G, with the
supremum norm. Hence

A ⊂ Rc,real(G) ⊂ C0(G; R) .

If there existed an irreducible real representation σ not in I, then C(σ)R would
be orthogonal to A in L2(G; R) by Schur’s orthogonality relations. But A is
dense in the Banach space C0(G; R), continuously and densely embedded in
the Hilbert space L2(G; R), and its orthogonal complement reduces therefore
to 0. Contradiction! This proves (i) and (ii).

The set Γ = ρ(G) is real algebraic in the space Mm(R), (by (D)), hence it
is the real spectrum of the algebra O(Γ ) generated by the coordinate functions
on Γ . The bijection ρ : G→ Γ transforms Rc,real(G) into O(Γ ) by (ii), hence
G is the real spectrum of Rc,real(G). Q.E.D.

Let G(C) be the complex spectrum of the algebra Rc(G). By the previ-
ous theorem and (48), the complex algebra Rc(G) is generated by the ρij ’s.
Furthermore as above, we show that ρ extends to an isomorphism ρC of
G(C) onto the smallest complex algebraic subgroup of GL(m,C) containing
ρ(G) ⊂ GL(m,R). Hence G(C) is a complex algebraic group, and there is an
involution r in G(C) with the following properties:

(i) G is the set of fixed points of r in G(C).
(ii) For u in Rc(G) and g in G(C), one has

u(r(g)) = ū(g) (49)

and in particular u(r(g)) = u(g) for u in Rc,real(G).

The group G(C) is called the complex envelope of G. For instance if G =
U(n), then G(C) = GL(n,C) with the natural inclusion U(n) ⊂ GL(n,C)
and r(g) = (g∗)−1.

3.4 Categories of representations

We come back to the situation of subsection 3.1. We consider an “abstract”
group G and the algebra R(G) of representative functions on G together with
the mappings ∆,S, ε.

Let L be a sub-Hopf-algebra of R(G), that is a subalgebra such that
∆(L) ⊂ L ⊗ L, and S(L) = L. Denote by CL the class of representations
π of G such that C(π) ⊂ L. We state the main properties:

(i) If π1 and π2 are in the class CL, so are the direct sum π1 ⊕ π2 and the
tensor product π1 ⊗ π2.

(ii) For any π in CL, every subrepresentation π′ of π, as well as the quotient
representation π/π′ (in Vπ/Vπ′) are in CL.
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(iii) For any representation π in CL, the contragredient representation35

π∨ is in CL; the unit representation 1 is in CL.
(iv) L is the union of the spaces C(π) for π running over CL.

Hints of proof:

• For (i), use the relations

C(π1 ⊕ π2) = C(π1) + C(π2) , C(π1 ⊗ π2) = C(π1) C(π2) .

• For (ii) use the relations

C(π′) ⊂ C(π) , C(π/π′) ⊂ C(π) .

• For (iii) use the relations

C(π∨) = S(C(π)) , C(1) = C .

• To prove (iv), let u in L. By definition of a representative function, the
vector space V generated by the right translates of u is finite-dimensional,
and the operators Rg define a representation ρ in V . Since u is in V , it
remains to prove V = C(ρ). We leave it as an exercise for the reader.

Conversely, let C be a class of representations of G satisfying the properties
analogous to (i) to (iii) above. Then the union L of the spaces C(π) for π
running over C is a sub-Hopf-algebra of R(G). In order to prove that C is the
class CL corresponding to L, one needs to prove the following lemma:

Lemma 3.4.1. If π and π′ are representations of G such that C(π) ⊂ C(π′),
then π is isomorphic to a subquotient of π′N for some integer N ≥ 0.

Proof left to the reader (see [72], page 47).

Consider again a sub-Hopf-algebra L of R(G). Let GL be the spectrum of
L, that is the set of algebra homomorphisms from L to k. For g, g′ in GL, the
map

g · g′ := (g ⊗ g′) ◦∆ (50)

is again in GL, as well as g ◦ S. It is easy to check that we define a multipli-
cation in GL which makes it a group, with g ◦ S as inverse of g, and ε|L as
unit element. Furthermore, there is a group homomorphism

δ : G→ GL

35 The contragredient π∨ of π acts on the dual V ∗
π of Vπ in such a way that

〈π∨(g) · v∗, v〉 = 〈v∗, π(g−1) · v〉

for v in Vπ, v∗ in V ∗
π and g in G. Equivalently π∨(g) = tπ(g)−1.
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transforming any g in G into the map u 7→ u(g) from L to k. The group GL

is called the envelope of G corresponding to the Hopf-algebra L ⊂ R(G), or
equivalently to the class CL of representations of G corresponding to L.

We reformulate these constructions in terms of categories. Given two rep-
resentations π, π′ of G, let Hom(π, π′) be the space of all linear operators
T : Vπ → Vπ′ such that π′(g)T = T π(g) for all g in G (“intertwining opera-
tors”). With the obvious definition for the composition of intertwining oper-
ators, the class CL is a category. Furthermore, one defines a functor Φ from
CL to the category Vectk of finite-dimensional vector spaces over k: namely
Φ(π) = Vπ for π in CL and Φ(T ) = T for T in Hom(π, π′). This functor is
called the forgetful functor. Finally, the group Aut(Φ) of automorphisms of
the functor Φ consists of the families g = (gπ)π∈CL

such that gπ ∈ GL(Vπ)
and

gπ′ T = T gπ (51)

for π, π′ in CL and T in Hom(π, π′). Hence Aut(Φ) is a subgroup of
∏

π∈CL

GL(Vπ).

With these definitions, one can identify GL with the subgroup of Aut(Φ)
consisting of the elements g = (gπ) satisfying the equivalent requirements:
(i) For any π in CL, the operator gπ in Vπ belongs to the smallest algebraic
subgroup of GL(Vπ) containing the image π(G) of the representation π.
(ii) For π, π′ in CL, the operator gπ⊗π′ in Vπ⊗π′ = Vπ⊗Vπ′ is equal to gπ⊗gπ′ .

Examples. 1) Let G be an algebraic group, and O(G) its coordinate ring.
For L = O(G), the class CL of representations of G coincides with its class
of representations as an algebraic group. In this case δ : G → GO(G) is an
isomorphism.

2) Let G be a compact Lie group and L = Rc(G). Then the class CL
consists of the continuous complex representations ofG, andGL is the complex
envelope G(C) of G defined in subsection 3.3(E). Using the semisimplicity of
the representations of G, we can reformulate the definition of GL = G(C): it is
the subgroup of the product

∏
π irred.

GL(Vπ) consisting of the families g = (gπ)

such that gπ1⊗ gπ2⊗ gπ3 fixes any element of Vπ1⊗ Vπ2⊗ Vπ3 which is invariant
under G (for π1, π2, π3 irreducible). In the embedding δ : G → G(C), G is
identified with the subgroup of G(C) ⊂

∏
π irred.

GL(Vπ) where each component

gπ is a unitary operator in Vπ. In this way, we recover the classical Tannaka-
Krein duality theorem for compact Lie groups.

3) Let Γ be a discrete finitely generated group, and let C be the class of its
unipotent representations over the field Q of rational numbers (see subsection
3.9). Then the corresponding envelope is called the unipotent (or Malcev)
completion of Γ . This construction has been extensively used when Γ is the
fundamental group of a manifold [21, 29].



A primer of Hopf algebras 31

Remark 3.4.1. If C is any k-linear category with an internal tensor prod-
uct, and Φ : C → Vectk a functor respecting the tensor products, one can
define the group Aut(Φ) as above, and the subgroup Aut⊗(Φ) of the elements
g = (gπ) of Aut(Φ) satisfying the condition (ii) above. It can be shown that
Γ = Aut⊗(Φ) is the spectrum of a Hopf algebra L of representative functions
on Γ ; there is a natural functor from C to CL. Grothendieck, Saavedra [69]
and Deligne [30] have given conditions ensuring the equivalence of C and CL
(“Tannakian categories”).

3.5 Hopf algebras and duality

(A) We give at last the axiomatic description of a Hopf algebra. Take for
instance a finite group G and a field k, and introduce the group algebra kG in
duality with the space kG of all maps from G to k (see subsection 1.3). The
coproduct in kG is given by

∆

∑
g∈G

ag · g

 =
∑
g∈G

ag · (g ⊗ g) (52)

and the bilinear multiplication by

m(g ⊗ g′) = g · g′ . (53)

Hence we have maps (for A = kG)

∆ : A→ A⊗A , m : A⊗A→ A

which satisfy the following properties:

Associativity36 of m : m ◦ (m⊗ 1A) = m ◦ (1A ⊗m).
Coassociativity of ∆ : (∆⊗ 1A) ◦∆ = (1A ⊗∆) ◦∆.
Compatibility of m and ∆: the following diagram is commutative

A⊗2 m−−−−→ A
∆−−−−→ A⊗2y∆⊗2

xm⊗2

A⊗4 σ23−−−−→ A⊗4 ,

where A⊗2 = A⊗ A and σ23 is the exchange of the factors A2 and A3 in the
tensor product A⊗4 = A1 ⊗A2 ⊗A3 ⊗A4 (where each Ai is equal to A).

Furthermore the linear maps S : A → A and ε : A → k characterized by
S(g) = g−1, ε(g) = 1 satisfy the rules

m ◦ (S ⊗ 1A) ◦∆ = m ◦ (1A ⊗ S) ◦∆ = η ◦ ε , (54)
36 In terms of elements this is the law (a1 a2) a3 = a1(a2 a3).
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(ε⊗ 1A) ◦∆ = (1A ⊗ ε) ◦∆ = 1A , (55)

and are uniquely characterized by these rules. We have introduced the map
η : k → A given by η(λ) = λ · 1 satisfying the rule37

m ◦ (η ⊗ 1A) = m ◦ (1A ⊗ η) = 1A . (56)

All these properties give the axioms of a Hopf algebra over the field k.
A word about terminology38. The map m is called the product, and η the

unit map. An algebra is a triple (A,m, η) satisfying the condition of associativ-
ity for m and relation (56) for η, hence an algebra (A,m, η) is associative and
unital. A coalgebra is a triple (A,∆, ε) where ∆ is called the coproduct and
ε the counit. They have to satisfy the coassociativity for ∆ and relation (55)
for ε, hence a coalgebra is coassociative and counital. A bialgebra is a system
(A,m, η,∆, ε) where in addition of the previous properties, the compatibility
of m and ∆ holds. Finally a map S satisfying (54) is an antipodism for the
bialgebra, and a Hopf algebra is a bialgebra with antipodism.
(B) When A is finite-dimensional, we can identify A∗ ⊗ A∗ to the dual of
A⊗A. Then the maps ∆,m,S, ε, η dualize to linear maps

∆∗ = tm, m∗ = t∆ , S∗ = tS , ε∗ = tη , η∗ = tε

by taking transposes. One checks that the axioms of a Hopf algebra are
self-dual, hence (A∗,m∗,∆∗, S∗, ε∗, η∗) is another Hopf algebra, the dual of
(A,m,∆, S, ε, η). In our example, where A = kG, A∗ = kG, the multipli-
cation in kG is the pointwise multiplication, and the coproduct is given by
∆∗u(g, g′) = u(gg′). Since G is finite, every function on G is a representative
function, hence A∗ is the Hopf algebra R(G) introduced in subsection 3.1.

In general, if (A,∆, ε) is any coalgebra, we can dualize the coproduct in
A to a product in the dual A∗ given by

f · f ′ = (f ⊗ f ′) ◦∆ . (57)

The product in A∗ is associative39, and ε acts as a unit

ε · f = f · ε = f . (58)

Hence, the dual of a coalgebra is an algebra.
The duality for algebras is more subtle. Let (A,m, η) be an algebra, and

define the subspace R(A) of the dual A∗ by the following characterization:

An element f of A∗ is in R(A) iff there exists a left (right, two-sided) ideal
I in A such that f(I) = 0 and A/I is finite-dimensional.
37 In terms of elements it means 1 · a = a · 1 = a.
38 Bourbaki, and after him Dieudonné and Serre, say “cogebra” for “coalgebra” and

“bigebra” for “bialgebra”.
39 This condition is equivalent to the coassociativity of ∆.
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Equivalently f ◦ m : A⊗2 → A → k should be decomposable, that is there
exist elements f ′i , f

′′
i in A∗ such that

f(a′a′′) =
N∑

i=1

f ′i(a
′) f ′′i (a′′) (59)

for any pair of elements a′, a′′ of A. We can then select the elements f ′i , f
′′
i in

R(A) and define a coproduct in R(A) by

∆(f) =
N∑

i=1

f ′i ⊗ f ′′i . (60)

Then R(A) with the coproduct ∆, and the counit ε defined by ε(f) = f(1),
is a coalgebra, the reduced dual of A.

If (A,m,∆, S, ε, η) is a Hopf algebra, the reduced dual R(A) of the algebra
(A,m, η) is a subalgebra of the algebra A∗ dual to the coalgebra (A,∆, ε).
With these definitions, R(A) is a Hopf algebra, the reduced dual of the Hopf
algebra A.

Examples. 1) If A is finite-dimensional, R(A) is equal to A∗, and the reduced
dual Hopf algebra R(A) coincides with the dual Hopf algebra A∗. In this case,
the dual of A∗ as a Hopf algebra is again A, but R(R(A)) is different from A
for a general Hopf algebra A.

2) Suppose A is the group algebra kG with the coproduct (52). We don’t
assume that the group G is finite. Then R(A) coincides with the algebra
R(G) of representative functions, with the structure of Hopf algebra defined
in subsection 3.1 (see Lemma 3.1.1).

Remark 3.5.1. If (C,∆, ε) is a coalgebra, its (full) dual C∗ becomes an alge-
bra for the product defined by (57). It can be shown (see [34], Chapter I) that
the functor C 7→ C∗ defines an equivalence of the category of coalgebras with
the category of so-called linearly compact algebras. Hence, if (A,m,∆, S, ε, η)
is a Hopf algebra, the full dual A∗ is a linearly compact algebra, and the mul-
tiplication m : A⊗A→ A dualizes to a coproduct m∗ : A∗ → A∗⊗̂A∗, where
⊗̂ denotes the completed tensor product in the category of linearly compact
algebras.

3.6 Connection with Lie algebras

Another important example of a Hopf algebra is provided by the enveloping
algebra U(g) of a Lie algebra g over the field k. This is an associative unital
algebra over k, containing g as a subspace with the following properties:

• as an algebra, U(g) is generated by g;
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• for a, b in g, the bracket in g is given by [a, b] = ab− ba;
• if A is any associative unital algebra, and ρ : g→ A any linear map such

that ρ([a, b]) = ρ(a) ρ(b) − ρ(b) ρ(a), then ρ extends to a homomorphism
of algebras ρ̄ : U(g)→ A (in a unique way since g generates U(g)).

In particular, taking for A the algebra of linear operators acting on a vector
space V , we see that representations of the Lie algebra g and representations
of the associative algebra U(g) coincide.

One defines a linear map δ : g→ U(g)⊗ U(g) by

δ(x) = x⊗ 1 + 1⊗ x . (61)

It is easily checked that δ maps [x, y] to δ(x) δ(y)− δ(y) δ(x), hence δ extends
to an algebra homomorphism ∆ from U(g) to U(g)⊗ U(g). There exists also
a homomorphism S from U(g) to U(g)op with the opposite multiplication
mapping x to −x for every x in g, and a homomorphism ε : U(g) → k
vanishing identically on g (this follows from the universal property of U(g)).
Then U(g) with all its structure, is a Hopf algebra.

Theorem 3.6.1. Suppose that the field k is of characteristic 0. Then the Lie
algebra g can be recovered as the set of primitive elements in the Hopf algebra
U(g), that is the solutions of the equation ∆(x) = x⊗ 1 + 1⊗ x.

By (61), every element in g is primitive. To prove the converse, assume for
simplicity that the vector space g has a finite basis (x1, . . . , xN ). According
to the Poincaré-Birkhoff-Witt theorem, the elements

Zα =
N∏

i=1

xαi
i /αi ! (62)

for α = (α1, . . . , αN ) in ZN
+ form a basis of U(g). The coproduct satisfies

∆(Zα) =
∑

β+γ=α

Zβ ⊗ Zγ , (63)

sum extended over all decompositions α = β + γ where β and γ are in ZN
+

and the sum is a vector sum. Let u =
∑
α
cα Zα in U(g). We calculate

∆(u)− u⊗ 1− 1⊗ u = −c0 · 1 +
∑
β 6=0
γ 6=0

cβ+γ Zβ ⊗ Zγ ;

if u is primitive we have therefore c0 = 0 and cβ+γ = 0 for β, γ 6= 0. This leaves
only the terms cα Zα where α1 + · · · + αN = 1, that is a linear combination
of x1, . . . , xN . Hence u is in g. Q.E.D.
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Remark 3.6.1. Let A be a Hopf algebra with the coproduct ∆. If πi is a
linear representation of A in a space Vi (for i = 1, 2), then we can define a
representation π1 ⊗ π2 of A in the space V1 ⊗ V2 by

(π1 ⊗ π2)(a) =
∑

i

π1(ai,1)⊗ π2(ai,2) (64)

if ∆(a) =
∑
i

ai,1⊗ai,2. If A is of the form kG for a group G, or U(g) for a Lie

algebra g, we recover the well-known constructions of the tensor product of
two representations of a group or a Lie algebra. Similarly, the antipodism S
gives a definition of the contragredient representation, and the counit ε that
of the unit representation (in both cases, G or g).

3.7 A geometrical interpretation

We shall now discuss a theorem of L. Schwartz about Lie groups, which is an
elaboration of old results of H. Poincaré [62]. See also [43].

Let G be a Lie group. We denote by C∞(G) the algebra of real-valued
smooth functions on G, with pointwise multiplication. The multiplication in
G corresponds to a comultiplication

∆ : C∞(G)→ C∞(G×G)

given by
(∆u)(g1, g2) = u(g1 g2) . (65)

The algebra C∞(G×G) is bigger than the algebraic tensor product C∞(G)⊗
C∞(G), but continuity properties enable us to dualize the coproduct ∆ to a
product (convolution) on a suitable dual of C∞(G).

If we endow C∞(G) with the topology of uniform convergence of all deriva-
tives on all compact subsets of G, the dual is the space C−∞c (G) of distribu-
tions on G with compact support40. Let T1 and T2 be two such distributions.
For a given element g2 of G, the right-translate Rg2u : g1 7→ u(g1 g2) is in
C∞(G); it can therefore be coupled to T1, giving rise to a smooth function
v : g2 7→ 〈T1, Rg2u〉. We can then couple T2 to v and define the distribution
T1 ∗ T2 by

〈T1 ∗ T2, u〉 = 〈T2, v〉 . (66)

Using the notation of an integral, the right-hand side can be written as∫
G

T2(g2) dg2
∫
T1(g1)u(g1 g2) dg1 . (67)

40 If T is a distribution on a manifold M , its support Supp(T ) is the smallest closed
subset F of M such that T vanishes identically on the open subset U = M\F .
This last condition means 〈T, f〉 = 0 if f is a smooth function vanishing off a
compact subset F1 of M contained in U .



36 Pierre Cartier

With this definition of the convolution product, one gets an algebra C−∞c (G).

Theorem 3.7.1. (L. Schwartz) Let G be a Lie group. The distributions sup-
ported by the unit 1 of G form a subalgebra C−∞{1} (G) of C−∞c (G) which is
isomorphic to the enveloping algebra U(g) of the Lie algebra g of the Lie
group G.

Proof. It is a folklore theorem in mathematical physics that any generalized
function (distribution) which vanishes outside a point is a sum of higher-order
derivatives of a Dirac δ-function.

More precisely, choose a coordinate system (u1, . . . , uN ) on G centered at
the unit 1 of G. Use the standard notations (where α = (α1, . . . , αN ) belongs
to ZN

+ as in the Theorem 3.6.1):

∂j = ∂/∂ uj , uα =
N∏

j=1

u
αj

j , ∂α =
N∏

j=1

(∂j)αj

and α! =
N∏

j=1

αj !. If we set

〈Zα, f〉 = (∂αf)(1)/α! , (68)

the distributions Zα form an algebraic basis of the vector space C := C−∞{1} G

of distributions supported by 1.
We proceed to compute the convolution Zα ∗Zβ . For this purpose, express

analytically the multiplication in the group G by power series ϕj(x,y) =
ϕj(x1, . . . , xN ; y1, . . . , yN ) (for 1 ≤ j ≤ N) giving the coordinates of the
product z = x · y of a point x with coordinates x1, . . . , xN and a point y with
coordinates y1, . . . , yN . Since 〈Zα, f〉 is by definition the coefficient of the
monomial uα in the Taylor expansion of f around 1, to calculate 〈Zα ∗Zβ , f〉
we have to take the coefficient of xαyβ in the Taylor expansion of

f(x · y) = f(ϕ1(x,y), . . . , ϕN (x,y)) .

If we develop ϕγ(x,y) =
N∏

j=1

ϕj(x,y)γj in a Taylor series

ϕγ(x,y) ∼=
∑
α,β

cγαβ x
α yβ , (69)

an easy duality argument gives the answer

Zα ∗ Zβ =
∑

γ

cγαβ Zγ . (70)
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In the vector space C = C−∞{1} (G) we introduce a filtration C0 ⊂ C1 ⊂
C2 ⊂ . . . ⊂ Cp ⊂ . . ., where Cp consists of the distributions T such that
〈T, f〉 = 0 when f vanishes at 1 of order ≥ p+ 1. Defining the order

|α| = α1 + · · ·+ αN (71)

of an index vector α = (α1, . . . , αN ), the Zα’s with |α| ≤ p form a basis of
Cp. Moreover, since each series ϕj(x,y) is without constant term, the series
ϕγ(x,y) begins with terms of order |γ|, hence by (69) we get

cγαβ = 0 for |α|+ |β| < |γ| , (72)

hence Zα ∗ Zβ belongs to C|α|+|β| and we conclude

Cp ∗ Cq ⊂ Cp+q . (73)

Since 1 is a unit of the group G, that is 1 · g = g · 1 = g for any g in G,
we get ϕj(x,0) = ϕj(0,x) = xj , hence ϕj(x,y) − xj − yj is a sum of terms
of order ≥ 2. It follows that ϕγ(x,y) − (x + y)γ is of order > |γ| and by a
reasoning similar to the one above, we derive the congruence

α!Zα ∗ β!Zβ ≡ (α+ β)!Zα+β mod C|α|+|β|−1 . (74)

The distributions Dj defined by 〈Dj , f〉 = (∂jf)(1) (for 1 ≤ j ≤ N)
form a basis of the Lie algebra g of G. If we denote by Dα the convolution
D1 ∗ . . . ∗D1︸ ︷︷ ︸

α1

∗ . . . ∗DN ∗ . . . ∗DN︸ ︷︷ ︸
αN

, an inductive argument based on (74) gives

the congruence
α!Zα ≡ Dα mod C|α|−1 (75)

and since the elements Zα form a basis of C, so do the elements Dα.
Let now U(g) be the enveloping algebra of g. By its universal property41

there exists an algebra homomorphism Φ : U(g) → C inducing the identity

on g. Hence Φ maps the product D̄α =
N∏

j=1

(Dj)αj calculated in U(g) to the

product Dα calculated in C. Since [Dj , Dk] = DjDk−DkDj is a sum of terms
of degree 1, a standard argument shows that the elements D̄α generate the
vector space U(g), while the elements Dα form a basis of C. Since Φ maps
D̄α to Dα, we conclude:

• Φ is an isomorphism of U(g) onto C = C−∞{1} (G);
• the elements D̄α form a basis of U(g) (theorem of Poincaré-Birkhoff-Witt).

41 Here we use the possibility of defining the Lie bracket in g by [X,Y ] = X ∗ Y −

Y ∗ X, after identifying g with the set of distributions X of the form
NP

j=1

cj Dj ,

that is X ∈ C1 and 〈X, 1〉 = 0.
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Q.E.D.

Remark 3.7.1. The previous proof rests on the examination of the power se-
ries ϕj(x,y) representing the product in the group. These power series satisfy
the identities

ϕ(ϕ(x,y),z) = ϕ(x,ϕ(y,z)) , (associativity)
ϕ(x,0) = ϕ(0,x) = x . (unit)

A formal group over a field k is a collection of formal power series satisfying
these identities. Let O be the ring of formal power series k[[x1, . . . , xN ]], and
let Zα be the linear form on O associating to a series f the coefficient of
the monomial xα in f . The Zα’s form a basis for an algebra C, where the
multiplication is defined by (69) and (70). We can introduce the filtration
C0 ⊂ C1 ⊂ C2 ⊂ . . . ⊂ Cp ⊂ . . . as above and prove the formulas (72) to
(75). If the field k is of characteristic 0, we can repeat the previous argument
and construct an isomorphism Φ : U(g)→ C. If the field k is of characteristic
p 6= 0, the situation is more involved. Nevertheless, the multiplication in
O = k[[x]] dualizes to a coproduct ∆ : C → C ⊗ C such that

∆(Zα) =
∑

β+γ=α

Zβ ⊗ Zγ . (76)

Then C is a Hopf algebra which encodes the formal group in an invariant way
[34].

Remark 3.7.2. The restricted dual of the algebra C∞(G) is the space
H(G) = C−∞finite(G) of distributions with a finite support in G. Hence H(G)
is a coalgebra. It is immediate that H(G) is stable under the convolution
product of distributions, hence is a Hopf algebra. According to the previous
theorem, U(g) is a sub-Hopf-algebra of H(G). Furthermore, for every element
g of G, the distribution δg is defined by 〈δg, f〉 = f(g) for any function f
in C∞(G). It satisfies the convolution equation δg ∗ δg′ = δgg′ and the co-
product rule ∆(δg) = δg ⊗ δg. Hence the group algebra RG associated to G
considered as a discrete group is a sub-Hopf-algebra of H(G). As an algebra,
H(G) is the twisted tensor product GnU(g) where G acts on g by the adjoint
representation (see subsection 3.8(B)).

Remark 3.7.3. Let k be an algebraically closed field of arbitrary character-
istic. As in subsection 3.2, we can define an algebraic group over k as a pair
(G,O(G)) where O(G) is an algebra of representative functions on G with
values in k satisfying the conditions stated in Lemma 3.2.1. Let H(G) be the
reduced dual Hopf algebra of O(G). It can be shown that H(G) is a twisted
tensor product G n U(G) where U(G) consists of the linear forms on O(G)
vanishing on some power mN of the maximal ideal m corresponding to the
unit element of G (m is the kernel of the counit ε : O(G) → k). If k is of
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characteristic 0, U(G) is again the enveloping algebra of the Lie algebra g of
G. For the case of characteristic p 6= 0, we refer the reader to Cartier [18] or
Demazure-Gabriel [32].

3.8 General structure theorems for Hopf algebras

(A) The theorem of Cartier [16].
Let (A,m,∆, S, ε, η) be a Hopf algebra over a field k of characteristic 0.

We define Ā as the kernel of the counit ε, and the reduced coproduct as the
mapping ∆̄ : Ā→ Ā⊗ Ā defined by

∆̄(x) = ∆(x)− x⊗ 1− 1⊗ x (x in Ā) . (77)

We iterate ∆̄ as follows (in general ∆̄n maps Ā into Ā⊗n):

∆̄0 = 0
∆̄1 = 1Ā

∆̄2 = ∆̄

. . . . . .

∆̄n+1 = (∆̄⊗
n−1︷ ︸︸ ︷

1Ā ⊗ . . .⊗ 1Ā) ◦ ∆̄n for n ≥ 2. (78)

Let C̄n ⊂ Ā be the kernel of ∆̄n+1 (in particular C̄0 = {0}). Then the filtration

C̄0 ⊂ C̄1 ⊂ C̄2 ⊂ . . . ⊂ C̄n ⊂ C̄n+1 ⊂ . . .

satisfies the rules

C̄p · C̄q ⊂ C̄p+q , ∆(C̄n) ⊂
∑

p+q=n

C̄p ⊗ C̄q . (79)

We say that the coproduct ∆ is conilpotent if Ā is the union of the C̄n,
that is for every x in Ā, there exists an integer n ≥ 0 with ∆̄n(x) = 0.

Theorem 3.8.1. Let A be a Hopf algebra over a field k of characteristic 0.
Assume that the coproduct ∆ is cocommutative42 and conilpotent. Then g =
C̄1 is a Lie algebra and the inclusion of g into A extends to an isomorphism
of Hopf algebras Φ : U(g)→ A.

Proof.43 a) By definition, g = C̄1 consists of the elements x in A such that
ε(x) = 0, ∆(x) = x ⊗ 1 + 1 ⊗ x, the so-called primitive elements in A. For
x, y in g, it is obvious that [x, y] = xy − yx is in g, hence g is a Lie algebra.

42 This means σ◦∆ = ∆ where σ is the automorphism of A⊗A defined by σ(a⊗b) =
b⊗ a.

43 Our method of proof follows closely Patras [60].
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By the universal property of the enveloping algebra U(g), there is an algebra
homomorphism Φ : U(g) → A extending the identity on g. In subsection 3.6
we defined a coproduct ∆g on U(g) characterized by the fact that g embedded
in U(g) consists of the primitive elements. It is then easily checked that Φ is
a homomorphism of Hopf algebras, that is the following identities hold

(Φ⊗ Φ) ◦∆g = ∆ ◦ Φ , ε ◦ Φ = εg , (80)

where εg is the counit of U(g).
We shall associate to g a certain coalgebra Γ (g) and construct a commu-

tative diagram of coalgebras, namely

(D)

U(g)

Φ

��

Γ (g)

eg

<<xxxxxxxx

eA
##GGGGGGGG

A.

Then we shall prove that eA is an isomorphism of coalgebras. The Hopf algebra
U(g) shares with A the properties that the coproduct is cocommutative and
conilpotent. Hence eg is also an isomorphism44. The previous diagram then
shows that Φ is an isomorphism of coalgebras, and since it was defined as a
homomorphism of algebras, it is an isomorphism of Hopf algebras.

b) In general let V be a vector space (not necessarily finite-dimensional).
We denote by Tn(V ) (or V ⊗n) the tensor product of n copies of V (for n ≥ 0),
and by T (V ) the direct sum

⊕
n≥0

Tn(V ). We denote by [v1| . . . |vn] the tensor

product of a set of vectors v1, . . . , vn in V . We define a coproduct ∆T in T (V )
by

∆T [v1| . . . |vn] = 1⊗ [v1| . . . |vn] + [v1| . . . |vn]⊗ 1 (81)

+
n−1∑
p=1

[v1| . . . |vp]⊗ [vp+1| . . . |vn] .

Let Γn(V ) ⊂ Tn(V ) be the set of tensors invariant under the natural
action of the symmetric group Sn. For any v in V , put

γn(v) = [v| . . . |v︸ ︷︷ ︸
n factors

] . (82)

44 This follows also from the Poincaré-Birkhoff-Witt theorem. Our method of proof
gives a proof for this theorem provided we know that any Lie algebra embeds into
its enveloping algebra.
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The standard polarization process shows that Γn(V ) is generated by the ten-
sors γn(v). For example, when n = 2, using a basis (eα) of V , we see that the
elements

[eα|eα] = γ2(eα) , [eα|eβ ] + [eβ |eα] = γ2(eα + eβ)− γ2(eα)− γ2(eβ)

(for α < β) form a basis of Γ 2(V ). I claim that the direct sum Γ (V ) :=⊕
n≥0

Γn(V ) is a subcoalgebra of T (V ). Indeed, with the convention γ0(v) = 1,

formula (81) implies

∆T (γn(v)) =
n∑

p=0

γp(v)⊗ γn−p(v) . (83)

c) I claim that there exists45 a linear map eA : Γ (g)→ A such that

eA(γn(x)) = xn/n! (84)

for x in g, n ≥ 0. Indeed since g is a vector subspace of the algebra A, there
exists, by the universal property of tensor algebras, a unique linear map EA

from T (g) to A mapping [x1| . . . |xn] to 1
n! x1 . . . xn. Then we define eA as the

restriction of EA to Γ (g) ⊂ T (g). By a similar construction, we define a map

eg : Γ (g)→ U(g)

such that eg(γn(x)) = xn/n! for x in g, n ≥ 0. Since Φ is a homomorphism
of algebras it maps xn/n! calculated in U(g) to xn/n! calculated in A. The
commutativity of the diagram (D), namely eA = Φ ◦ eg, follows immediately.
Moreover, for x in g, we have ∆(x) = x⊗ 1 + 1⊗ x, hence

∆(xn/n!) = (x⊗ 1 + 1⊗ x)n/n! =
n∑

p=0

xp

p!
⊗ xn−p

(n− p)!
(85)

by the binomial theorem. Comparing with (83), we conclude that eA (and
similarly eg) respects the coproducts ∆Γ = ∆T |Γ (g) in Γ (g) and ∆A = ∆ in
A.

d) We introduce now a collection of operators Ψn (for n ≥ 1) in A, rem-
iniscent of the Adams operators in topology46. Consider the set E of linear
45 This map is unique since the elements γn(x) generate the vector space Γ (g).
46 To explain the meaning of Ψn, consider the example of the Hopf algebra kG

associated to a finite group (subsection 3.5). Then

Ψn

 X
g∈G

ag · g

!
=
X
g∈G

ag · gn .
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maps in A. We denote by u ◦ v (or simply uv) the composition of operators,
and introduce another product u ∗ v by the formula

u ∗ v = mA ◦ (u⊗ v) ◦∆A , (86)

where mA is the product and ∆A the coproduct in A. This product is asso-
ciative, and the map ι = η ◦ ε given by ι(x) = ε(x) · 1 is a unit

ι ∗ u = u ∗ ι = u . (87)

Denoting by I the identity map in A, we define

Ψn = I ∗ I ∗ . . . ∗ I︸ ︷︷ ︸
n factors

(for n ≥ 1) . (88)

We leave it as an exercise for the reader to check the formulas47

(Ψm ⊗ Ψm) ◦∆A = ∆A ◦ Ψm , (89)

Ψm ◦ Ψn = Ψmn , (90)

while the formula
Ψm ∗ Ψn = Ψm+n (91)

follows from the definition (88).
So far we didn’t use the fact that ∆A is conilpotent. Write I = ι+ J , that

is J is the projection on Ā in the decomposition A = k · 1 ⊕ Ā. From the
binomial formula one derives

Ψn = I∗n = (ι+ J)∗n =
n∑

p=0

(
n
p

)
J∗p . (92)

But J∗p annihilates k · 1 for p > 0 and coincides on Ā with mp ◦ (∆̄A)p

where mp maps ā1 ⊗ . . . ⊗ āp in Ā⊗p to ā1 . . . āp (product in A). Since ∆A

is conilpotent, for any given x in Ā, there exists an integer P ≥ 0 depending

on x such that J∗p(x) = 0 for p > P . Hence Ψn(x) =
P∑

p=0

(
n
p

)
J∗p(x) can be

written as a polynomial in n (at the cost of introducing denominators), and
there are operators πp (p ≥ 0) in A such that

Ψn(x) =
∑
p≥0

np πp(x) (93)

for x in A, n ≥ 1, and πp(x) = 0 for p > P .

47 Hint: prove (89) by induction onm, using the cocommutativity of∆A and Ψm+1 =
mA ◦ (I ⊗ Ψm) ◦∆A. Then derive (90) by induction on m, using (89).



A primer of Hopf algebras 43

e) From the relations (90) and (93), it is easy to derive that the subspace
πp(A) consists of the elements a in A such that Ψn(a) = npa for all n ≥ 1,
and that A is the direct sum of the subspaces πp(A).

To conclude the proof of the theorem, it remains to establish that eA

induces an isomorphism of Γ p(g) to πp(A) for any integer p ≥ 0.
To prove that eA maps Γ p(g) into πp(A), it is enough to prove that xp

belongs to πp(A) for any primitive element x in g. Introduce the power series
etx =

∑
p≥0

tpxp/p! in the ring A[[t]]. Then etx is group-like, that is

∆A(etx) = etx ⊗ etx . (94)

From the inductive definition

Ψn+1 = mA ◦ (I ⊗ Ψn) ◦∆A , (95)

one derives Ψn(etx) = (etx)n = etnx, that is

Ψn

∑
p≥0

tp

p!
xp

 =
∑
p≥0

tp

p!
(nx)p (96)

and finally Ψn(xp) = npxp, that is xp ∈ πp(A).
From the relations (93) and (91), one derives

πp ∗ πq =
(p+ q)!
p! q!

πp+q (97)

by the binomial formula, hence πp = 1
p! π

∗p
1 for any p ≥ 0. Moreover, from

(93) and (89), one concludes

∆A(πm(A)) ⊂
m⊕

i=0

πi(A)⊗ πm−i(A) (98)

form ≥ 0. Hence π1(A) = g and (∆̄A)p maps πp(A) into π1(A)⊗p = g⊗p. Since
∆A is cocommutative, the image of πp(A) by (∆̄A)p consists of symmetric
tensors, that is

(∆̄A)p (πp(A)) ⊂ Γ p(g) .

Since eA maps γp(x) into xp/p!, the relation πp = 1
p! π

∗p
1 together with the

definition of the ∗-product by (86) shows that eA and (∆̄A)p induce inverse
maps

Γ p(g)
eA

�
(∆̄A)p

πp(A) .

Q.E.D.
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As a corollary, let us describe the structure of the dual algebra of a Hopf
algebra A, with a cocommutative and conilpotent coproduct. For simplicity,
assume that the Lie algebra g = C̄1 of primitive elements is finite-dimensional.
Then each subcoalgebra Cn = k ·1⊕C̄n is finite-dimensional. In the dual alge-
bra A∗, the set m of linear forms f on A with 〈f, 1〉 = 0 is the unique maximal
ideal, and the ideal mn is the orthogonal of Cn−1. Then A∗ is a noetherian
complete local ring, that is it is isomorphic to a quotient k[[x1, . . . , xn]]/J
of a power series ring. When the field k is a characteristic 0, it follows from
Theorem 3.8.1 that A∗ is isomorphic to a power series ring: if D1, . . . , Dn is
a basis of g the mapping associating to f in A∗ the power series

F (x1, . . . , xn) :=

〈
f,

n∏
i=1

expxiDi

〉

is an isomorphism of A∗ to k[[x1, . . . , xn]]. When the field k is of characteristic
p 6= 0 and perfect, it has been shown in [16] and [34], Chap. II, 2, that A∗ is
isomorphic to an algebra of the form

k[[x1, . . . , xn]]/(xpm1

1 , . . . , xpmr

r )

for 0 ≤ r ≤ n and m1 ≥ 0, . . . ,mr ≥ 0. This should be compared to theorems
A., B. and C. by Borel, described in subsection 2.5.

(B) The decomposition theorem of Cartier-Gabriel [34].
Let again A be a Hopf algebra. We assume that the ground field k is

algebraically closed of characteristic 0 and that its coproduct ∆ = ∆A is
cocommutative. We shall give a complete structure theorem for A.

Let again g be the set of primitive elements, that is the elements x in A
such that

∆(x) = x⊗ 1 + 1⊗ x , ε(x) = 0 . (99)

Then g is a Lie algebra for the bracket [x, y] = xy− yx, and we can introduce
its enveloping algebra U(g) viewed as a Hopf algebra (see subsection 3.6).

Let Γ be the set of group-like elements, that is the elements g in A such
that

∆(g) = g ⊗ g , ε(g) = 1 . (100)

For the multiplication in A, the elements of Γ form a group, where the inverse
of g is S(g) (here S is the antipodism in A). We can introduce the group
algebra kΓ viewed as a Hopf algebra (see beginning of subsection 3.5).

Furthermore for x in g and g in Γ , it is obvious that gx := g x g−1 belongs
to g. Hence the group Γ acts on the Lie algebra g and therefore on its en-
veloping algebra U(g). We define the twisted tensor product Γ n U(g) as the
tensor product U(g)⊗ kΓ with the multiplication given by

(u⊗ g) · (u′ ⊗ g′) = u · gu′ ⊗ gg′ . (101)
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There is a natural coproduct, which together with this product gives the
definition of the Hopf algebra Γ n U(g).

Theorem 3.8.2. (Cartier-Gabriel) Assume that the field k is algebraically
closed of characteristic 0 and that A is a cocommutative Hopf algebra. Let
g be the space of primitive elements, and Γ the group of group-like elements
in A. Then there is an isomorphism of Γ n U(g) onto A, as Hopf algebras,
inducing the identity on Γ and on g.

Proof. a) Define the reduced coproduct ∆̄, the iterates ∆̄p and the filtration
(Cp) as in the beginning of subsection 3.8(A). Define Ā1 =

⋃
p≥0

Cp and A1 =

Ā1 + k · 1. Then A1 is, according to the properties quoted there, a sub-Hopf-
algebra. It is clear that the coproduct of A1 is cocommutative and conilpotent.
According to Theorem 3.8.1, we can identify A1 with U(g). If we set Ag :=
A1 · g for g in Γ , Theorem 8.3.2 amounts to assert that A is the direct sum of
the subspaces Ag for g in Γ .

b) Let g in Γ . Since ∆(g) = g⊗ g, and ε(g) = 1, then A = Ā⊕ k · g where
Ā is again the kernel of ε. Define a new reduced coproduct ∆̄(g) in Ā by

∆̄(g)(x) := ∆(x)− x⊗ g − g ⊗ x (x in Ā) , (102)

mapping Ā into Ā⊗2. Iterate ∆̄(g) in a sequence of maps ∆̄(g)p : Ā → Ā⊗p.
From the easy relation

∆̄(g)p (xg) = ∆̄p(x) · (g ⊗ . . .⊗ g︸ ︷︷ ︸
p

) , (103)

it follows that Ā1 · g is the union of the kernels of the maps ∆̄(g)p.

c) Lemma 3.8.1. The coalgebra A is the union of its finite-dimensional
sub-coalgebras.

Indeed, introduce a basis (eα) of A, and define operators ϕα, ψα in A by

∆(x) =
∑
α

ϕα(x)⊗ eα =
∑
α

eα ⊗ ψα(x) (104)

for x in A.
From the coassociativity of ∆, one derives the relations

ϕα ϕβ =
∑

γ

cγαβ ϕγ (105)

ψα ψβ =
∑

γ

cγβα ψγ (106)
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ϕα ψβ = ψβ ϕα (107)

with the constants cγαβ defined by

∆(eγ) =
∑
α,β

cγαβ e
α ⊗ eβ . (108)

For any x in A, the family of indices α such that ϕα(x) 6= 0 or ψα(x) 6= 0
is finite, hence for any given x0 in A, the subspace C of A generated by the
elements ϕα(ψβ(x0)) is finite-dimensional. By the property of the counit, we
get

x0 =
∑
α,β

ϕα(ψβ(x0)) ε(eα) ε(eβ) (109)

hence x0 belongs to C. Obviously, C is stable under the operators ϕα and ψα,
hence by (104) one gets

∆(C) ⊂ (C ⊗A) ∩ (A⊗ C) = C ⊗ C

and C is a sub-coalgebra of A.
d) Choose C as above, and introduce the dual algebra C∗. It is a com-

mutative finite-dimensional algebra over the algebraically closed field k. By a
standard structure theorem, it is a direct product

C∗ = E1 × . . .× Er , (110)

where Ei possesses a unique maximal ideal mi, such that Ei/mi is isomorphic
to k, and mi is nilpotent: mN

i = 0 for some large N . The algebra homomor-
phisms from C∗ to k correspond to the group-like elements in C.

By duality, the decomposition (110) corresponds to a direct sum decom-
position C = C1 ⊕ . . .⊕Cr where each Ci contains a unique element gi in Γ .
Furthermore, from the nilpotency of mi, it follows that Ci ∩ Ā is annihilated
by ∆̄(gi)N for large N , hence Ci ⊂ Agi

and

C =
r⊕

i=1

(C ∩Agi) . (111)

Since A is the union of such coalgebras C, the previous relation entails A =⊕
g∈Γ

Ag, hence the theorem of Cartier-Gabriel.

Q.E.D.

When the field k is algebraically closed of characteristic p 6= 0, the previous
proof works almost unchanged, and the result is that the cocommutative Hopf
algebra A is the semidirect product ΓnA1 where Γ is a group acting on a Hopf
algebraA1 with conilpotent coproduct. The only difference lies in the structure
of A1. We refer the reader to Dieudonné [34], Chapter II: in section II,1 there
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is a proof of the decomposition theorem and in section II,2 the structure of a
Hopf algebra with conilpotent coproduct is discussed. See also [18] and [32].

Another corollary of Theorem 3.8.2 is as follows:
Assume that k is algebraically closed of characteristic 0. Then any finite-
dimensional cocommutative Hopf algebra over k is a group algebra kG.

(C) The theorem of Milnor-Moore.
The results of this subsection are dual of those of the previous one and

concern Hopf algebras which are commutative as algebras.

Theorem 3.8.3. Let A =
⊕
n≥0

An be a graded Hopf algebra48 over a field k of

characteristic 0. Assume:
(M1) A is connected, that is A0 = k · 1.
(M2) The product in A is commutative.
Then A is a free commutative algebra (a polynomial algebra) generated by
homogeneous elements.

A proof can be given which is a dual version of the proof of Theorem 3.8.1.
Again, introduce operators Ψn in A by the recursion Ψ1 = 1A and

Ψn+1 = mA ◦ (1A ⊗ Ψn) ◦∆A . (112)

They are endomorphisms of the algebra A and there exists a direct sum decom-
position A =

⊕
p≥0

πp(A) such that Ψn(a) = np a for a in πp(A) and any n ≥ 1.

The formula πp(A) · πq(A) ⊂ πp+q(A) follows from Ψn(ab) = Ψn(a)Ψn(b) and
since A is a commutative algebra, there is a well-defined algebra homomor-
phism49

Θ : Sym (π1(A))→ A

mapping Symp(π1(A)) into πp(A). Denote by Θp the restriction of Θ to
Symp(π1(A)). An inverse map Λp to Θp can be defined as the composition
of the iterated coproduct ∆̄p which maps πp(A) to π1(A)⊗p with the nat-
ural projection of π1(A)⊗p to Symp(π1(A)). Hence Θ is an isomorphism of
algebras.
48 That is, the product mA maps Ap ⊗ Aq into Ap+q, and the coproduct ∆A maps
An into

N
p+q=n

Ap ⊗ Aq. It follows that ε annihilates An for n ≥ 1, and that the

antipodism S is homogeneous S(An) = An for n ≥ 0.
49 For any vector space V , we denote by Sym (V ) the symmetric algebra built over
V , that is the free commutative algebra generated by V . If (eα) is a basis of V ,
then Sym (V ) is the polynomial algebra in variables uα corresponding to eα.
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We sketch another proof which makes Theorem 3.8.3 a corollary of The-
orem 3.8.1, under the supplementary assumption (valid in most of the appli-
cations):
(M3) Each An is a finite-dimensional vector space.
Let Bn be the dual of An and let B =

⊕
n≥0

Bn. The product mA : A⊗A→ A

dualizes to a coproduct ∆B : B → B ⊗ B, and similarly the coproduct ∆A :
A→ A⊗A dualizes to a product mB : B⊗B → B. Since mA is commutative,
∆B is cocommutative. Moreover the reduced coproduct ∆̄B maps Bn (for
n ≥ 1) into

∑
i,j

Bi ⊗Bj where i, j runs over the decompositions50

i ≥ 1 , j ≥ 1 , i+ j = n .

Hence (∆̄B)p maps Bn into the direct sum of the spaces Bn1⊗ . . .⊗Bnp where

n1 ≥ 1, . . . , np ≥ 1 , n1 + . . .+ np = n .

It follows (∆̄B)p(Bn) = {0} for p > n, hence the coproduct ∆B is conilpotent.
Let g be the Lie algebra of primitive elements in the Hopf algebra B. It is

graded g =
⊕
p≥1

gp and [gp, gq] ⊂ gp+q. From (the proof of) Theorem 3.8.1, we

deduce a natural isomorphism of coalgebras eB : Γ (g) → B. By the assump-
tion (M3), we can identify An to the dual of Bn, hence the algebra A to the
graded dual51 of the coalgebra B. We leave it to the reader to check that the
graded dual of the coalgebra Γ (g) is the symmetric algebra Sym(g∨), where
g∨ is the graded dual of g. The dual of eB : Γ (g)→ B is then an isomorphism
of algebras

Θ : Sym(g∨)→ A .

Notice also the isomorphism of Hopf algebras

Φ : U(g)→ B

where the Hopf algebra B is the graded dual of A. Q.E.D.

Remark 3.8.1. By the connectedness assumption (M1), the kernel of the
counit ε : A → k is A+ =

⊕
n≥1

An. From the existence of the isomorphism Θ,

one derives that g as a graded vector space is the graded dual of A+/A+ ·A+.

Remark 3.8.2. The complete form of Milnor-Moore’s Theorem 3.8.3 deals
with a combination of symmetric and exterior algebras, and implies the the-
orems of Hopf and Samelson, described in subsections 2.4 and 2.5. Instead
50 Use here the connectedness of A (cf. (M1)).
51 The graded dual of a graded vector space V =

L
n

Vn is W =
L
n

Wn where Wn is

the dual of Vn.
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of assuming that A is a commutative algebra, we have to assume that it is
“graded-commutative”, that is

aq · ap = (−1)pq ap · aq (113)

for ap in Ap and aq in Aq.
The graded dual g of A+/A+ · A+ is then a super Lie algebra (or graded

Lie algebra), and A as an algebra is the free graded-commutative algebra
generated by A+/A+ ·A+.

Remark 3.8.3. In Theorem 3.8.3, assume that the product mA is commu-
tative and the coproduct ∆A is cocommutative. Then the corresponding Lie
algebra g is commutative [x, y] = 0, and U(g) = Sym(g). It follows easily that
A as an algebra is the free commutative algebra Sym(P ) built over the space
P of primitive elements in A. A similar result holds in the case where A is
graded-commutative, and graded-cocommutative (see subsection 2.5).

3.9 Application to prounipotent groups

In this subsection, we assume that k is a field of characteristic 0.

(A) Unipotent algebraic groups.
An algebraic group G over k is called unipotent if it is geometrically con-

nected52 (as an algebraic variety) and its Lie algebra g is nilpotent53. A typical
example is the group Tn(k) of strict triangular matrices g = (gij) with entries
in k, where gii = 1 and gij = 0 for i > j. We depict these matrices for n = 4

g =


1 g12 g13 g14
0 1 g23 g24
0 0 1 g34
0 0 0 1

 .

The corresponding Lie algebra tn(k) consists of the matrices x = (xij) with
xij = 0 for i ≥ j, example

x =


0 x12 x13 x14

0 0 x23 x24

0 0 0 x34

0 0 0 0

 .

The product of n matrices in tn(k) is always 0, and Tn(k) is the set of
matrices In +x, with x in tn(k) (and In the unit matrix in Mn(k)). Hence we
get inverse maps
52 An algebraic variety X over a field k is called geometrically connected if it is

connected and remains connected over any field extension of k.
53 That is, the adjoint map adx : y 7→ [x, y] in g is nilpotent for any x in g.
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Tn(k)
log

�
exp

tn(k) ,

where log, and exp, are truncated series

log(In + x) = x− x2

2
+ · · ·+ (−1)n−1 xn−1/(n− 1) , (114)

exp x = In + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!
. (115)

Hence log and exp are inverse polynomial maps. Moreover, by the Baker-
Campbell-Hausdorff formula, the product in Tn(k) is given by

exp x · exp y = exp
n−1∑
i=1

Hi(x, y) , (116)

where Hi(x, y) is made of iterated Lie brackets of order i− 1, for instance

H1(x, y) = x+ y

H2(x, y) =
1
2

[x, y]

H3(x, y) =
1
12

[x, [x, y]] +
1
12

[y, [y, x]] .

From these properties, it follows that the exponential map from tn(k) to
Tn(k) maps the Lie subalgebras g of tn(k) to the algebraic subgroups G of
Tn(k). In this situation, the representative functions in O(G) correspond to
the polynomial functions of g, hence O(G) is a polynomial algebra.

Let now G be any unipotent group, with the nilpotent Lie algebra g.
According to the classical theorems of Ado and Engel, g is isomorphic to a
Lie subalgebra of tn(k) for some n ≥ 1. It follows that the exponential map is
an isomorphism of g with G as algebraic varieties, and as above, O(G) is a
polynomial algebra.

(B) Infinite triangular matrices.
We consider now the group T∞(k) of infinite triangular matrices g =

(gij)i≥1,j≥1 with gii = 1 and gij = 0 for i > j. Notice that the product

of two such matrices g and h is defined by (g · h)im =
m∑

j=i

gij hjm for i ≤ m,

a finite sum!! For such a matrix g denote by τN (g) its truncation: the finite
matrix (gij) 1≤i≤N

1≤j≤N
. An infinite matrix appears therefore as a tower of matrices

τ1(g) , τ2(g), . . . , τN (g) , τN+1(g), . . .

that is T∞(k) is the inverse limit of the tower of groups
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T1(k)←− T2(k)←− · · · ←− TN (k) τN←− TN+1(k)←− .

By duality, one gets a sequence of embeddings for the rings of representative
functions

O(T1(k)) ↪→ O(T2(k)) ↪→ . . .

whose union we denote O(T∞(k)). Hence a representative function on T∞(k)
is a function which can be expressed as a polynomial in a finite number of
entries.

A subgroup G of T∞(k) is called (pro)algebraic if there exists a collection
of representative functions Pα in O(T∞(k)) such that

g ∈ G⇔ Pα(g) = 0 for all α ,

for any g in T∞(k). We denote by O(G) the algebra of functions on G obtained
by restricting functions in O(T∞(k)) from T∞(k) to G. It is tautological that
O(G) is a Hopf algebra, and that G is its spectrum54. A vector subspace V of
t∞(k) will be called linearly closed if it is given by a family of linear equations
of the form

∑
1≤i≤N
1≤j≤N

λij xji = 0 (with a suitable finite N ≥ 1 depending on the

equation). Notice also, that for any matrix x = (xij) in t∞(k), its powers
satisfy (xN )ij = 0 for N ≥ max(i, j), hence one can define the inverse maps

T∞(k)
log

�
exp

t∞(k) .

The calculation of any entry of log(I + x) or exp x for a given x in t∞(k)
requires a finite amount of algebraic operations.

From the results of subsection 3.9(A), one derives a bijective correspon-
dence between the proalgebraic subgroups G of T∞(k) and the linearly closed
Lie subalgebras g of t∞(k). Moreover, if J ⊂ O(G) is the kernel of the counit,
then g is naturally the dual of55 J/J · J =: L. Finally, the exponential map
exp : g→ G transforms O(G) into the polynomial functions on g coming from
the duality between g and L, hence an isomorphism of algebras

Θ : Sym(L)→ O(G) .

If G is as before, let GN := τN (G) be the truncation of G. Then GN is
an algebraic subgroup of TN (k), a unipotent algebraic group, and G can be
recovered as the inverse limit (also called projective limit) lim←−GN of the tower

54 Here the spectrum is relative to the field k, that is for any algebra homomorphism
ϕ : O(G) → k, there exists a unique element g in G such that ϕ(u) = u(g) for
every u in O(G).

55 Hence L is a Lie coalgebra, whose dual g is a Lie algebra. The structure map of
a Lie coalgebra L is a linear map δ : L → Λ2L which dualizes to the bracket
Λ2g→ g.
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G1 ← G2 ← · · · ← GN ← GN+1 ← · · ·

It is therefore called a prounipotent group.

(C) Unipotent groups and Hopf algebras.
Let G be a group. We say that a representation π : G→ GL(V ) (where V

is a vector space of finite dimension n over the field k) is unipotent if, after the
choice of a suitable basis of V , the image π(G) is a subgroup of the triangular
group Tn(k). More intrinsically, there should exist a sequence {0} = V0 ⊂ V1 ⊂
· · · ⊂ Vn−1 ⊂ Vn = V of subspaces of V , with dimVi = i and (π(g)− 1)Vi ⊂
Vi−1 for g in G and 1 ≤ i ≤ n. The class of unipotent representations of G is
stable under direct sum, tensor products, contragredient, subrepresentations
and quotient representations.

Assume now that G is an algebraic unipotent group. By the results of
subsection 3.9(A), there exists an embedding of G into some triangular group
Tn(k), hence a faithful unipotent representation π. Since the determinant
of any element in Tn(k) is 1, the coordinate ring of G is generated by the
coefficients of π, and according to the previous remarks, any algebraic linear
representation of the group G is unipotent.

Let f be a function in the coordinate ring of G. Then f is a coefficient of
some unipotent representation π : G → GL(V ); if n is the dimension of V ,

the existence of the flag (Vi)0≤i≤n as above shows that
n∏

i=1

(π(gi)− 1) = 0 as

an operator on V , hence56, for any system g1, . . . , gn of elements of G,〈
f,

n∏
i=1

(gi − 1)

〉
= 0 . (117)

A quick calculation describes the iterated coproducts ∆̄p in O(G), namely

(∆̄p f)(g1, . . . , gp) =

〈
f,

p∏
i=1

(gi − 1)

〉
(118)

when ε(f) = f(1) is 0. Hence the coproduct ∆ in O(G) is conilpotent. Notice
that O(G) is a Hopf algebra, and that as an algebra it is commutative and
finitely generated.

The converse was essentially proved by Quillen [65], and generalizes
Milnor-Moore theorem.

Theorem 3.9.1. Let A be a Hopf algebra over a field k of characteristic 0
satisfying the following properties:
56 To calculate this, expand the product and use linearity, as for instance in

〈f, (g1 − 1)(g2 − 1)〉 = 〈f, g1 g2 − g1 − g2 + 1〉 = f(g1 g2)− f(g1)− f(g2) + f(1) .
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(Q1) The multiplication mA is commutative.
(Q2) The coproduct ∆A is conilpotent.

Then, as an algebra, A is a free commutative algebra.

The proof is more or less the first proof of Milnor-Moore theorem. One
defines again the Adams operators Ψn by the induction

Ψn+1 = mA ◦ (1A ⊗ Ψn) ◦∆A . (119)

The commutativity of mA suffices to show that Ψn is an algebra homomor-
phism

Ψn ◦mA = mA ◦ (Ψn ⊗ Ψn) (120)

satisfying Ψm ◦ Ψn = Ψmn. The formula

Ψm ∗ Ψn = Ψm+n (121)

is tautological. Furthermore, since ∆A is conilpotent one sees that for any
given x in A, and p large enough, one gets J∗p(x) = 0 (where J(x) = x −
ε(x) · 1). This implies the “spectral theorem”

Ψn(x) =
∑
p≥0

np πp(x) (122)

where πp(x) = 0 for given x and p ≥ P (x). We leave the rest of the proof to
the reader (see first proof of Milnor-Moore theorem). Q.E.D.

If A is graded and connected, with a coproduct ∆ = ∆A satisfying
∆(An) ⊂

⊕
p+q=n

Ap ⊗Aq, one gets

∆̄p(An) ⊂ ⊕An1 ⊗ . . .⊗Anp (123)

with n1 ≥ 1, . . . , np ≥ 1, n1+· · ·+np = n, hence ∆̄p(An) = 0 for p > n. Hence
∆A is conilpotent and Milnor-Moore theorem is a corollary of Theorem 3.9.1.

As a consequence of Theorem 3.9.1, the unipotent groups correspond to the
Hopf algebras satisfying (Q1) and (Q2) and finitely generated as algebras. For
the prounipotent groups, replace the last condition by the assumption that
the linear dimension of A is countable57.

Remark 3.9.1. Let A be a Hopf algebra satisfying (Q1) and (Q2). Let A∗ be
the full dual of the vector space A. It is an algebra with multiplication dual to
the coproduct ∆A. The spectrum G of A is a subset of A∗, and a group under
the multiplication of A∗. Similarly, the set g of linear forms f on A satisfying
57 Hint: By Lemma 3.8.1, A is the union of an increasing sequence C1 ⊂ C2 ⊂ . . . of

finite-dimensional coalgebras. The algebra Hr generated by Cr is a Hopf algebra
corresponding to a unipotent group Gr, and A = O(G) where G = lim←−Gr.
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f(1) = 0 , f(xy) = ε(x) f(y) + f(x) ε(y) (124)

for x, y in A is a Lie algebra for the bracket [f, g] = fg − gf induced by the
multiplication in A∗. From the conilpotency of ∆A follows that any series∑
n≥0

cn〈fn, x〉 (with cn in k, x in A, f in A∗ with f(1) = 0) has only finitely

many nonzero terms. Hence for any f in g, the exponential exp f =
∑
n≥0

fn/n!

is defined. Furthermore, the map f 7→ exp f is a bijection from g to G. This
remark gives a concrete description of the exponential map for unipotent (or
prounipotent) groups.

4 Applications of Hopf algebras to combinatorics

In this section, we give a sample of the applications of Hopf algebras to vari-
ous problems in combinatorics, having in mind mainly the relations with the
polylogarithms.

4.1 Symmetric functions and invariant theory

(A) The Hopf algebra of the symmetric groups.
We denote by Sn the group consisting of the n! permutations of the set

{1, 2, . . . , n}. By convention S0 = S1 = {1}. For σ in Sn and τ in Sm, denote
by σ × τ the permutation ρ in Sn+m such that{

ρ(i) = σ(i) for 1 ≤ i ≤ n
ρ(n+ j) = n+ τ(j) for 1 ≤ j ≤ m.

The mapping (σ, τ) 7→ σ×τ gives an identification of Sn×Sm with a subgroup
of Sn+m.

Let k be a field of characteristic 0. We denote by Chn the vector space
consisting of the functions f : Sn → k such that f(στ) = f(τσ) for σ, τ in Sn

(central functions). On Chn, we define a scalar product by

〈f | g〉 =
1
n!

∑
σ∈Sn

f(σ) g(σ−1) . (125)

It is known that the irreducible characters58 of the finite group Sn form an
orthonormal basis of Chn. We identify Ch0 to k, but not Ch1.

If n = p + q, with p ≥ 0, q ≥ 0, the vector space Chp ⊗ Chq can be
identified with the space of functions f on the subgroup Sp×Sq of Sn satisfying
f(αβ) = f(βα) for α, β in Sp × Sq. We have therefore a restriction map

58 We remind the reader that these characters take their values in the field Q of
rational numbers, and Q is a subfield of k.
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∆p,q : Chn → Chp ⊗ Chq

and taking direct sums a map ∆n from Chn to
⊕

p+q=n
Chp ⊗ Chq. Defining

Ch• =
⊕
n≥0

Chn, the collection of maps ∆n defines a map

∆ : Ch• → Ch• ⊗ Ch• .

Define also ε : Ch• → k by ε(1) = 1, and ε|Chn
= 0 for n > 0. Then Ch• is a

coalgebra, with coproduct ∆ and counit ε.
Using the scalar products, ∆p,q has an adjoint

mp,q : Chp ⊗ Chq → Chp+q .

Explicitly, if u is in Chp ⊗ Chq, it is a function on Sp × Sq that we extend to
Sp+q as a function u0 : Sp+q → k which vanishes outside Sp × Sq. Then

mp,q u(σ) =
1
n!

∑
τ∈Sn

u0(τστ−1) . (126)

Collecting the maps mp,q we define a multiplication

m : Ch• ⊗ Ch• → Ch•

with the element 1 of Ch0 as a unit.
With these definitions, Ch• is a graded Hopf algebra which is both com-

mutative and cocommutative. According to Milnor-Moore’s theorem, Ch• is
therefore a polynomial algebra in a family of primitive generators. We proceed
to an explicit description.

(B) Three families of generators.
For each n ≥ 0, denote by σn the function on Sn which is identically

1. In particular σ0 = 1, and Ch1 = k · σ1. It can be shown that Ch• is a
polynomial algebra in the generators σ1, σ2, . . . and a trivial calculation gives
the coproduct

∆(σn) =
n∑

p=0

σp ⊗ σn−p . (127)

Similarly, let λn : Sn → k be the signature map. In particular λ0 = 1 and
λ1 = σ1. Again, Ch• is a polynomial algebra in the generators λ1, λ2, . . . and

∆(λn) =
n∑

p=0

λp ⊗ λn−p . (128)

The two families are connected by the relations
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n∑
p=0

(−1)p λp σn−p = 0 for n ≥ 1 . (129)

A few consequences:

σ1 = λ1 λ1 = σ1

σ2 = λ2
1 − λ2 λ2 = σ2

1 − σ2

σ3 = λ3 − 2λ1 λ2 + λ3
1 λ3 = σ3 − 2σ1 σ2 + σ3

1 .

A third family (ψn)n≥1 is defined by the recursion relations (Newton’s
relations) for n ≥ 2

ψn = λ1 ψn−1−λ2 ψn−2+λ3 ψn−3−. . .+(−1)n λn−1 ψ1+n(−1)n−1 λn (130)

with the initial condition ψ1 = λ1. They can be solved by

ψ1 = λ1

ψ2 = λ2
1 − 2λ2

ψ3 = λ3
1 − 3λ1 λ2 + 3λ3 .

Hence Ch• is a polynomial algebra in the generators ψ1, ψ2, . . .

To compute the coproduct, it is convenient to introduce generating series

λ(t) =
∑
n≥0

λn t
n , σ(t) =

∑
n≥0

σn t
n , ψ(t) =

∑
n≥1

ψn t
n .

Then formula (129) is equivalent to

σ(t)λ(−t) = 1 (131)

and Newton’s relations (130) are equivalent to

λ(t)ψ(−t) + t λ′(t) = 0 , (132)

where λ′(t) is the derivative of λ(t) with respect to t. Differentiating (131),
we transform (132) into

σ(t)ψ(t)− t σ′(t) = 0 , (133)

or taking the coefficients of tn,

ψn = −(σ1 ψn−1 + σ2 ψn−2 + · · ·+ σn−1 ψ1) + nσn . (134)

This can be solved
ψ1 = σ1

ψ2 = −σ2
1 + 2σ2

ψ3 = σ3
1 − 3σ1 σ2 + 3σ3 .

We translate the relations (127) and (128) as
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∆(σ(t)) = σ(t)⊗ σ(t) (135)

∆(λ(t)) = λ(t)⊗ λ(t) . (136)

Taking logarithmic derivatives and using (133) into the form59 ψ(t)= t d
dt log σ(t),

we derive
∆(ψ(t)) = ψ(t)⊗ 1 + 1⊗ ψ(t) . (137)

Otherwise stated, the ψn’s are primitive generators of the Hopf algebra Ch•.

(C) Invariants.
Let V be a vector space of finite dimension n over the field k of charac-

teristic 0. The group GL(V ) of automorphisms of V is the complement in
the algebra End (V ) (viewed as a vector space of dimension n2 over k) of the
algebraic subvariety defined by detu = 0. The regular functions on the alge-
braic group GL(V ) are then of the form F (g) = P (g)/(det g)N where P is a
polynomial function60 on End(V ) and N a nonnegative integer. We are inter-
ested in the central functions F , that is the functions F on GL(V ) satisfying
F (g1 g2) = F (g2 g1). Since

det(g1 g2) = (det g1) · (det g2) = det(g2 g1) ,

we consider only the case where F is a polynomial.
If F is a polynomial on End(V ), homogeneous of degree d, there exists by

polarization a unique symmetric multilinear form Φ(u1, . . . , ud) on End(V )
such that F (u) = Φ(u, . . . , u). Furthermore, Φ is of the form

Φ(u1, . . . , ud) = Tr (A · (u1 ⊗ · · · ⊗ ud)) , (138)

where A is an operator acting on V ⊗d. On the tensor space V ⊗d, there are
two actions of groups:

• the group GL(V ) acts by g 7→ g ⊗ · · · ⊗ g (d factors);
• the symmetric group Sd acts by σ 7→ Tσ where

Tσ(v1 ⊗ · · · ⊗ vd) = vσ−1(1) ⊗ . . .⊗ vσ−1(d) . (139)

Hence the function F on GL(V ) defined by

F (g) = Tr(A · (g ⊗ · · · ⊗ g︸ ︷︷ ︸
d

)) (140)

59 Equivalent to

1 +
X
n≥1

σn t
n = exp

X
n≥1

ψn t
n/n .

It is then easy to give an explicit formula for the σn’s in terms of the ψn’s.
60 That is a polynomial in the entries gij of the matrix representing g in any given

basis of V .
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is central iff A commutes to the action of the groupGL(V ), and by Schur-Weyl
duality, A is a linear combination of operators Tσ. Moreover the multilinear
form Φ being symmetric one has ATσ = Tσ A for all σ in Sd. Conclusion:

The central function F on GL(V ) is given by

F (g) =
1
d!

∑
σ∈Sd

Tr(Tσ · (g ⊗ · · · ⊗ g)) · f(σ) (141)

for a suitable function f in Chd.

We have defined an algebra homomorphism

TV : Ch• → OZ(GL(V )) ,

where OZ(GL(V )) denotes the ring of regular central functions on GL(V ).
We have the formulas

TV (λd)(g) = Tr(Λd g) , (142)

TV (σd)(g) = Tr(Sd g) , (143)

TV (ψd)(g) = Tr(gd) . (144)

Here Λd g (resp. Sd g) means the natural action of g ∈ GL(V ) on the exterior
power Λd(V ) (resp. the symmetric power Symd(V )). Furthermore, gd is the
power of g in GL(V ).

Remark 4.1.1. From (144), one derives an explicit formula for ψd in Chd,
namely

ψd/d =
∑

γ cycle

γ , (145)

where the sum runs over the one-cycle permutations γ.

Remark 4.1.2. Since Λd(V ) = {0} for d > n, we have TV (λd) = 0 for d > n.
Recall that Ch• is a polynomial algebra in λ1, λ2, . . .; the kernel of TV is then
the ideal generated by λn+1, λn+2, . . . Moreover OZ(GL(V )) is the polynomial
ring

k [TV (λ1), . . . , TV (λn−1), TV (λn), TV (λn)−1] .

(D) Relation with symmetric functions [20].
Choose a basis (e1, . . . , en) in V to represent operators in V by matrices,

and consider the “generic” diagonal matrix Dn = diag(x1, . . . , xn) in End(V ),
where x1, . . . , xn are indeterminates. Since the eigenvalues of a matrix are de-
fined up to a permutation, and u and gug−1 have the same eigenvalues for g in
GL(V ), the map F 7→ F (Dn) is an isomorphism of the ring of central polyno-
mial functions on End(V ) to the ring of symmetric polynomials in x1, . . . , xn.
In this isomorphism TV (λd) goes into the elementary symmetric function
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ed(x1, . . . , xn) =
∑

1≤i1<...<id≤n

xi1 . . . xid
, (146)

TV (σd) goes into the complete monomial function

hd(x1, . . . , xn) =
∑

α1+···+αn=d

xα1
1 . . . xαn

n , (147)

and TV (ψd) into the power sum

ψd(x1, . . . , xn) = xd
1 + · · ·+ xd

n . (148)

All relations derived in subsection 4.1(A) remain valid, but working in a space
of finite dimension n, or with a fixed number of variables, imposes en+1 =
en+2 = · · · = 0. At the level of the algebra Ch•, no such restriction occurs.

(E) Interpretation of the coproduct.
Denote byX an alphabet x1, . . . , xn, similarly by Y the alphabet y1, . . . , ym

and by X + Y the combined alphabet x1, . . . , xn, y1, . . . , ym. Then

er(X + Y ) =
∑

p+q=r

ep(X) eq(Y ) , (149)

hr(X + Y ) =
∑

p+q=r

hp(X)hq(Y ) , (150)

ψr(X + Y ) = ψr(X) + ψr(Y ) . (151)

Alternatively, by omitting TV in notations like TV (λd)(g), one gets

λr(g ⊕ g′) =
∑

p+q=r

λp(g)λq(g′) , (152)

σr(g ⊕ g′) =
∑

p+q=r

σp(g)σq(g′) , (153)

ψr(g ⊕ g′) = ψr(g) + ψr(g′) . (154)

Here g acts on V , g′ on V ′ and g⊕ g′ is the direct sum acting on V ⊕ V ′. For
tensor products, one has

ψr(g ⊗ g′) = ψr(g)ψr(g′) ,

or in terms of alphabets

ψr(X · Y ) = ψr(X) · ψr(Y )

where X ·Y consists of the products xi ·yj . It is a notoriously difficult problem
to calculate λd(g ⊗ g′) and σd(g ⊗ g′). The usual procedure is to go back to
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the ring Ch• and to use the transformation formulas λ ↔ ψ or σ ↔ ψ (see
subsection 4.1(B)).

(F) Noncommutative symmetric functions.
In subsection 4.1(A) we described the structure of the Hopf algebra Ch•.

This can be reformulated as follows: let C be the coalgebra with a basis
(λn)n≥0, counit ε given by ε(λ0) = 1, ε(λn) = 0 for n > 0, coproduct given
by (128). Let C̄ be the kernel of ε : C → k, and A = Sym(C̄) the free
commutative algebra over C̄. We embed C = C̄ ⊕ k · λ0 into A by identifying
λ0 with 1 ∈ A. The universal property of the algebra A enables us to extend
the map ∆ : C → C ⊗C to an algebra homomorphism ∆A : A→ A⊗A. The
coassociativity is proved by noticing that (∆A⊗1A)◦∆A and (1A⊗∆A)◦∆A

are algebra homomorphisms from A to A⊗3 which coincide on the set C of
generators of A, hence are equal. Similarly, the cocommutativity of C implies
that of A.

We can repeat this construction by replacing the symmetric algebra
Sym(C̄) by the tensor algebra T (C̄). We obtain a graded Hopf algebra NC•
which is cocommutative. It is described as the algebra of noncommutative
polynomials in the generators Λ1, Λ2, Λ3, . . . satisfying the coproduct relation

∆(Λn) =
n∑

p=0

Λp ⊗ Λn−p , (155)

with the convention Λ0 = 1. We introduce the generating series Λ(t) =∑
n≥0

Λn t
n and reformulate the previous relation as

∆(Λ(t)) = Λ(t)⊗ Λ(t) . (156)

By inversion, we define the generating series Σ(t) =
∑
n≥0

Σn t
n such that

Σ(t)Λ(−t) = 1. It is group-like as Λ(t) hence the coproduct

∆(Σn) =
n∑

p=0

Σp ⊗Σn−p . (157)

We can also define primitive elements Ψ1, Ψ2, . . . in NC• by their generating
series

Ψ(t) = tΣ′(t)Σ(t)−1 . (158)

The algebra NC• is the algebra of noncommutative polynomials in each of
the families (Λn)n≥1, (Σn)n≥1 and (Ψn)n≥1. The Lie algebra of primitive ele-
ments in the Hopf algebra NC• is generated by the elements Ψn, and coincides
with the free Lie algebra generated by these elements (see subsection 4.2).

We can call Ch• the algebra of symmetric functions (in an indeterminate
number of variables, see subsection 4.1(D)). It is customary to call NC• the
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Hopf algebra of noncommutative symmetric functions. There is a unique ho-
momorphism π of Hopf algebras from NC• to Ch• mapping Λn to λn, Σn to
σn, Ψn to ψn. Since each of these elements is of degree n, the map π from NC•
to Ch• respects the grading.

(G) Quasi-symmetric functions.
The algebra (graded) dual to the coalgebra C is the polynomial algebra Γ =
k[z] in one variable, the basis (λn)n≥0 of C being dual to the basis (zn)n≥0

in k[z]. This remark gives us a more natural description of C as the (graded)
dual of Γ . Define Γ̄ ⊂ Γ as the set of polynomials without constant term, and
consider the tensor module T (Γ̄ ) =

⊕
m≥0

Γ̄⊗m. We use the notation [γ1| . . . |γm]

to denote the tensor product γ1⊗· · ·⊗γm in T (Γ̄ ), for the elements γi of Γ̄ . We
view T (Γ̄ ) as a coalgebra, where the coproduct is obtained by deconcatenation

∆ [γ1| . . . |γm] = 1⊗ [γ1| . . . |γm] (159)

+
m−1∑
i=1

[γ1| . . . |γi]⊗ [γi+1| . . . |γm] + [γ1| . . . |γm]⊗ 1 .

We embed Γ = Γ̄⊕k ·1 into T (Γ̄ ) by identifying 1 in Γ with the unit [ ] ∈ Γ̄⊗0.
By dualizing the methods of the previous subsection, one shows that there is
a unique multiplication61 in T (Γ̄ ) inducing the given multiplication in Γ , and
such that ∆ be an algebra homomorphism from T (Γ̄ ) to T (Γ̄ )⊗T (Γ̄ ). Hence
we have constructed a commutative graded Hopf algebra.

It is customary to denote this Hopf algebra by QSym•, and to call it
the algebra of quasi-shuffles, or quasi-symmetric functions. We explain this
terminology. By construction, the symbols

Z(n1, . . . , nr) = [zn1 | . . . |znr

] (160)

for r ≥ 0, n1 ≥ 1, . . . , nr ≥ 1 form a basis of QSym•. Explicitly, the product
of such symbols is given by the rule of quasi-shuffles:

• consider two sequences n1, . . . , nr and m1, . . . ,ms;
• in all possible ways insert zeroes in these sequences to get two sequences

ν = (ν1, . . . , νp) and µ = (µ1, . . . , µp)

of the same length, by excluding the cases where µi = νi = 0 for some i
between 1 and p;
• for such a combination, introduce the element Z(ν1 +µ1, . . . , νp +µp) and

take the sum of all these elements as the product of Z(n1, . . . , nr) and
Z(m1, . . . ,ms).

61 For details about this construction, see Loday [53].
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We describe the algorithm in an example: to multiply Z(3) with Z(1, 2){
ν = 30
µ = 12

{
ν = 03
µ = 12

{
ν = 300
µ = 012

−−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
Z(3 + 1, 0 + 2) Z(0 + 1, 3 + 2) Z(3 + 0, 0 + 1, 0 + 2)

{
ν = 030
µ = 102

{
ν = 003
µ = 120

−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
Z(0 + 1, 3 + 0, 0 + 2) Z(0 + 1, 0 + 2, 3 + 0)

hence the result

Z(3) · Z(1, 2) = Z(4, 2) + Z(1, 5) + Z(3, 1, 2) + Z(1, 3, 2) + Z(1, 2, 3) .

The sequences (3, 1, 2), (1, 3, 2) and (1, 2, 3) are obtained by shuffling the se-
quences (1, 2) and (3) (see subsection 4.2). The other terms are obtained by
partial addition, so the terminology62 “quasi-shuffles”.

The interpretation as quasi-symmetric functions requires an infinite se-
quence of commutative variables x1, x2, . . .. The symbol Z(n1, . . . , nr) is then
interpreted as the formal power series∑

1≤k1<...<kr

xn1
k1
. . . xnr

kr
= z(n1, . . . , nr) . (161)

It is easily checked that the series z(n1, . . . , nr) multiply according to the rule
of quasi-shuffles, and are linearly independent.

Recall that Ch• is self-dual. Furthermore, there is a duality between NC•
and QSym• such that the monomial basis (Λn1 . . . Λnr

) of NC• is dual to the
basis (Z(n1, . . . , nr)) of QSym•. The transpose of the projection π : NC• →
Ch• is an embedding into QSym• of Ch• viewed as the algebra of symmetric
functions in x1, x2, . . ., generated by the elements z(1, . . . , 1︸ ︷︷ ︸

r

) = er.

4.2 Free Lie algebras and shuffle products

Let X be a finite alphabet {xi|i ∈ I}. A word is an ordered sequence w =
xi1 . . . xi`

of elements taken from X, with repetition allowed. We include the
empty word ∅ (or 1). We use the concatenation product w ·w′ and denote by
X∗ the set of all words. We take X∗ as a basis of the vector space k〈X〉 of
noncommutative polynomials. The concatenation of words defines by linearity
a multiplication on k〈X〉.
62 Other denomination:“stuffles”. See also [19] for another interpretation of quasi-

shuffles.
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It is an exercise in universal algebra that the free associative algebra k〈X〉
is the enveloping algebra U(Lie(X)) of the free Lie algebra Lie(X) on X. By
Theorem 3.6.1, we can therefore identify Lie(X) to the Lie algebra of primitive
elements in k〈X〉, where the coproduct ∆ is the unique homomorphism of
algebras from k〈X〉 to k〈X〉 ⊗ k〈X〉 mapping xi to xi ⊗ 1 + 1 ⊗ xi for any i
(“Friedrichs criterion”). This result provides us with a workable construction
of Lie(X).

To dualize, introduce another alphabet Ξ = {ξi|i ∈ I} in a bijective
correspondence with X. The basis X∗ of k〈X〉 and the basis Ξ∗ of k〈Ξ〉
are both indexed by the same set I∗ of finite sequences in I, and we define a
duality between k〈X〉 and k〈Ξ〉 by putting these two basis in duality. More
precisely, we define a grading in k〈X〉 and in k〈Ξ〉 by giving degree ` to both
xi1 . . . xi`

and ξi1 . . . ξi`
. Then k〈Ξ〉 is the graded dual of k〈X〉, and conversely.

The product in k〈X〉 dualizes to a coproduct in k〈Ξ〉 which uses decon-
catenation, namely63

∆(ξi1 . . . ξi`
〉 = ξi1 . . . ξi`

⊗ 1 + 1⊗ ξi1 . . . ξi`

+
`−1∑
j=1

ξi1 . . . ξij
⊗ ξij+1 . . . ξi`

. (162)

To compute the product in k〈Ξ〉 we need the coproduct in k〈X〉. For any
i ∈ I, put

x
(1)
i = xi ⊗ 1 , x

(2)
i = 1⊗ xi . (163)

Then ∆(xi) = x
(1)
i + x

(2)
i , hence for any word w = xi1 . . . xi`

we get

∆(w) = ∆(xi1) . . .∆(xi`
) = (x(1)

i1
+ x

(2)
i1

) . . . (x(1)
i`

+ x
(2)
i`

) (164)

=
∑

α1...α`

x
(α1)
i1

. . . x
(α`)
i`

.

The sum is extended over the 2` sequences (α1, . . . , α`) made of 1’s and 2’s.
Otherwise stated

∆(w) =
∑

w(1) ⊗ w(2) , (165)

where w(1) runs over the 2` subwords of w (obtained by erasing some letters)
and w(2) the complement of w(1) in w. For instance

∆(x1 x2) = x1 x2 ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1 + 1⊗ x1 x2 . (166)

By duality, the product of u = ξi1 . . . ξi`
and v = ξj1 . . . ξjm

is the sum utt v
of all words of length ` +m in Ξ∗ containing u as a subword, with v as the
complementary subword. This product is called “shuffle product” because of
63 Compare with formulas (81) and (159).
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the analogy with the shuffling of card decks. It was introduced by Eilenberg
and MacLane in the 1940’s in their work on homotopy. We give two examples:

ξ1 tt ξ2 = ξ1 ξ2 + ξ2 ξ1 , (167)

ξ1 tt ξ2 ξ3 = ξ1 ξ2 ξ3 + ξ2 ξ1 ξ3 + ξ2 ξ3 ξ1 . (168)

Notice that k〈Ξ〉 with the shuffle product and the deconcatenation coprod-
uct is a commutative graded Hopf algebra. Hence, by Milnor-Moore theorem,
as an algebra, it is a polynomial algebra. A classical theorem by Radford gives
an explicit construction64 of a set of generators. Take any linear ordering on
I, and order the words in Ξ according to the lexicographic ordering u ≺ u. By
cyclic permutations, a word w of length ` generates ` words w(1), . . . , w(`),
with w(1) = w. A Lyndon word is a word w such that w(1), . . . , w(`) are all
distinct and w ≺ w(j) for j = 2, . . . , `. For instance ξ1 ξ2 is a Lyndon word,
but not ξ2 ξ1, similarly ξ1 ξ2 ξ3 and ξ1 ξ3 ξ2 are Lyndon words, but the 4 others
permutations of ξ1, ξ2, ξ3 are not.

Radford’s theorem. The shuffle algebra k〈Ξ〉 is a polynomial algebra in the
Lyndon words as generators.

4.3 Application I: free groups

We consider a free group Fn on a set of n generators g1, . . . , gn. We want to
describe the envelope of Fn corresponding to the class of its unipotent repre-
sentations (see subsection 3.4).

Let π : Fn → GL(V ) be a unipotent representation. It is completely
characterized by the operators γi = π(gi) in V (for i = 1, . . . , n). Hence γi

is unipotent (that is, γi − 1 is nilpotent) and there exists a unique nilpotent
operator ui in V such that γi = expui. By choosing a suitable basis (e1, . . . , ed)
of V , we can assume that the ui are matrices in td(k), hence ui1 . . . uid

= 0
for any sequence (i1, . . . , id) of indices.

Conversely, consider a vector space V of dimension d and operators
u1, . . . , un such that ui1 . . . uip = 0 for some p. In particular up

i = 0 for all i,
and we can define the exponential γi = expui. Define subspaces V0, V1, V2 . . .
of V by V0 = V and the inductive rule

Vr+1 =
n∑

i=1

ui(Vr) . (169)

By our assumption on u1, . . . , un, we obtain Vp = {0}. It is easy to check that
the spaces Vr decrease

V = V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vp−1 ⊃ Vp = {0} ,
64 See the book of Reutenauer [66] for details.
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and since each ui maps Vr into Vr+1, so does γi − 1 = expui − 1. Hence we
get a unipotent representation π of Fn, mapping gi to γi.

Putting X = {x1, . . . , xn} and Ξ = {ξ1, . . . , ξn}, we conclude that the
unipotent representations of Fn correspond to the representations of the al-
gebra k〈X〉 which annihilate one of the two-sided ideals

Jr =
⊕
s≥r

k〈X〉s

(k〈X〉s is the component of degree s in k〈X〉). Using the duality between
k〈X〉 and k〈Ξ〉, the algebra of representative functions on Fn corresponding
to the unipotent representations can be identified to k〈Ξ〉. We leave it to the
reader to check that both the product and the coproduct are the correct ones.

To the graded commutative Hopf algebra k〈Ξ〉 corresponds a prounipotent
group Φn, the sought-for prounipotent envelope of Fn. Explicitly, the points of
Φn with coefficients in k correspond to the algebra homomorphisms k〈Ξ〉 → k;
they can be interpreted as noncommutative formal power series g =

∑
m≥0

gm

in k�X�, with gm in k〈X〉m, satisfying the coproduct rule

∆(gm) =
∑

r+s=m

gr ⊗ gs , (170)

or in a shorthand notation ∆(g) = g⊗ g. The multiplication is inherited from
the one in k�X�, that is the product of g =

∑
r≥0

gr by h =
∑
s≥0

hs is given

by the Cauchy rule
(gh)m =

∑
r+s=m

gr hs . (171)

The group Φn consists also of the exponentials

g = exp(p1 + p2 + · · · ) , (172)

where pr is primitive of degree r, that is an element of degree r in the free Lie
algebra Lie(X). Otherwise stated, the Lie algebra of Φn is the completion of
Lie(X) with respect to its grading.

Finally, the map δ : Fn → Φn defined in subsection 3.4 maps gi to expxi.

4.4 Application II: multiple zeta values

We recall the definition of Riemann’s zeta function

ζ(s) =
∑
k≥1

k−s , (173)

where the series converges absolutely for complex values of s such that
Re s > 1. It is well-known that (s − 1) ζ(s) extends to an entire function,
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giving a meaning to ζ(0), ζ(−1), ζ(−2), . . . It is known that these numbers are
rational, and that the function ζ(s) satisfies the symmetry rule ξ(s) = ξ(1−s)
with ξ(s) = π−s/2 Γ

(
s
2

)
ζ(s). As a corollary, ζ(2k)/π2k is a rational number

for k = 1, 2, . . .. Very little is known about the arithmetic nature of the num-
bers ζ(3), ζ(5), ζ(7), . . .. The famous theorem of Apéry (1979) asserts that ζ(3)
is irrational, and it is generally believed (as part of a general array of conjec-
tures by Grothendieck, Drinfeld, Zagier, Kontsevich, Goncharov,. . .) that the
numbers ζ(3), ζ(5), . . . are transcendental and algebraically independent over
the field Q of rational numbers.

Zagier introduced a class of numbers, known as Euler-Zagier sums or mul-
tiple zeta values (MZV). Here is the definition

ζ(k1, . . . , kr) =
∑

1≤n1<···<nr

n−k1
1 . . . n−kr

r , (174)

the series being convergent if kr ≥ 2. It is just the specialization of the
quasi-symmetric function z(k1, . . . , kr) obtained by putting xn = 1/n for
n = 1, 2, . . .. Since the quasi-symmetric functions multiply according to the
quasi-shuffle rule, so do the MZV. From the example described in subsec-
tion 4.1(G) we derive

ζ(3) ζ(1, 2) = ζ(4, 2) + ζ(1, 5) + ζ(3, 1, 2) + ζ(1, 3, 2) + ζ(1, 2, 3) . (175)

In general
ζ(a) ζ(b) = ζ(a+ b) + ζ(a, b) + ζ(b, a) (176)

and the previous example generalizes to

ζ(c) ζ(a, b) = ζ(a+ c, b) + ζ(a, b+ c) + ζ(c, a, b) + ζ(a, c, b) + ζ(a, b, c) . (177)

If we exploit the duality between NC• and QSym•, we obtain the following
result:

It is possible, in a unique way, to regularize the divergent series ζ(k1, . . . , kr)
when kr = 1, in such a way that ζ∗(1) = 0 and that the regularized values65

ζ∗(k1, . . . , kr) and their generating series

Z∗ =
∑

k1,...,kr

ζ∗(k1, . . . , kr) yk1 . . . ykr
(178)

in the noncommutative variables y1, y2, . . . satisfy

∆∗(Z∗) = Z∗ ⊗ Z∗ , (179)

as a consequence of the coproduct rule ∆∗(yk) = yk⊗1+1⊗yk +
k−1∑
j=1

yj⊗yk−j.

65 Of course, for kr ≥ 2, the convergent series ζ(k1, . . . , kr) is equal to its regularized
version ζ∗(k1, . . . , kr).
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Remark 4.5.1. It is possible to give a direct proof of the quasi-shuffle rule
by simple manipulations of series. For instance, by definition

ζ(a) ζ(b) =
∑
m,n

m−a n−b , (180)

where the summation is over all pairs m,n of integers with m ≥ 1, n ≥ 1. The
summation can be split into three parts:

• if m = n, we get
∑
m−a−b = ζ(a+ b),

• if m < n, we get ζ(a, b) by definition,
• if m > n, we get ζ(b, a) by symmetry.

Hence (176) follows.

4.5 Application III: multiple polylogarithms

The values ζ(k) for k = 2, 3, . . . are special values of functions Lik(z) known
as polylogarithm functions66. Here is the definition (for k ≥ 0)

Lik(z) =
∑
n≥1

zn/nk . (181)

The series converges for |z| < 1, and one can continue analytically Lik(z) to
the cut plane C\[1,∞[. For instance

Li0(z) =
z

1− z
, Li1(z) = − log(1− z) . (182)

These functions are specified by the initial value Lik(0) = 0 and the differential
equations

dLik(z) = ω0(z)Lik−1(z) for k ≥ 1 (183)

and in particular (k = 1)
dLi1(z) = ω1(z) . (184)

The differential forms are given by

ω0(z) = dz/z , ω1(z) = dz/(1− z) . (185)

We give two integral representations for Lik(z). First

Lik(z) =
∫

[0,1]k
z dkx/(1− z x1 . . . xk) , (186)

where each variable x1, . . . , xk runs over the closed interval [0, 1] and dkx =
dx1 . . . dxk. To prove (186), expand the geometric series 1/(1− a) =

∑
n≥1

an−1

66 The case of Li2(z) was known to Euler (1739).
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and integrate term by term by using
∫ 1

0
xn−1 dx = 1/n. Putting z = 1, we

find (for k ≥ 2)

ζ(k) = Lik(1) =
∫

[0,1]k

dkx

1− x1 . . . xk
. (187)

The second integral representation comes from the differential equations
(183) and (184). Indeed

Li1(z) =
∫ z

0

ω1(t1)

Li2(z) =
∫ z

0

ω0(t2)Li1(t2) =
∫ z

0

ω0(t2)
∫ t2

0

ω1(t1) ,

and iterating we get

Lik(z) =
∫

∆k(z)

ω1(t1)ω0(t2) . . . ω0(tk) , (188)

where the domain of integration ∆k(z) consists of systems of points t1, . . . , tk
along the oriented straight line67

−→
0z such that 0 < t1 < t2 < · · · < tk < z. As

a corollary (z = 1):

ζ(k) =
∫

∆k

ω1(t1)ω0(t2) . . . ω0(tk) (189)

where ∆k is the simplex {0 < t1 < t2 < · · · < tk} in Rk.

Exercise 4.5.1. Deduce (188) from (186) by a change of variables of integra-
tion.

To take care of the MZV’s, introduce the multiple polylogarithms in one
variable z

Lin1,...,nr
(z) =

∑
zkr/(kn1

1 . . . knr
r ) , (190)

with the summation restricted by 1 ≤ k1 < . . . < kr. Special value for z = 1,
and nr ≥ 2

ζ(n1, . . . , nr) = Lin1,...,nr (1) . (191)

By computing first the differential equations satisfied by these functions, we
end up with an integral representation

Lin1,...,nr
(z) =

∫
∆p(z)

ωε1(t1) . . . ωεp
(tp) (192)

with the following definitions:
67 For z in the cut plane C\[1,∞[, the segment [0, z] does not contain the singularity
t = 1 of ω1(t) and since ω1(t1) is regular for t1 = 0, the previous integral makes
sense and gives the analytic continuation of Lik(z).
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• p = n1 + · · ·+ nr is the weight;
• the sequence ε = (ε1, . . . , εp) consists of 0 and 1 according to the rule

1 0 . . . 0︸ ︷︷ ︸
n1−1

1 0 . . . 0︸ ︷︷ ︸
n2−1

1 . . . 1 0 . . . 0︸ ︷︷ ︸
nr−1

.

This is any sequence beginning with 1, and the case nr ≥ 2 corresponds to
the case where the sequence ε ends with 0.

Exercise 4.5.2. Check that the condition ε1 = 1 corresponds to the con-
vergence of the integral around 0, and εp = 0 (when z = 1) guarantees the
convergence around 1.

The meaning of the previous encoding

n1, . . . , nr ↔ ε1, . . . , εp

is the following: introduce the generating series

Li(z) =
∑

n1,...,nr

Lin1,...,nr
(z) yn1 . . . ynr

(193)

in the noncommutative variables y1, y2, . . . Introduce other noncommutative
variables x0, x1. If we make the substitution yk = x1 x

k−1
0 , then

yn1 . . . ynk
= xε1 . . . xεp

. (194)

This defines an embedding of the algebra k〈Y 〉 into the algebra k〈X〉 for the
two alphabets

Y = {y1, y2, . . .} , X = {x0, x1} .

In k〈Y 〉, we use the coproduct ∆∗ defined by68

∆∗(yk) = yk ⊗ 1 + 1⊗ yk +
k−1∑
j=1

yj ⊗ yk−j , (195)

while in k〈X〉 we use the coproduct given by

∆tt(x0) = x0 ⊗ 1 + 1⊗ x0 , ∆tt(x1) = x1 ⊗ 1 + 1⊗ x1 . (196)

They don’t match!

The differential equations satisfied by the functions Lin1,...,nr (z) are en-
coded in the following

dLi(z) = Li(z)Ω(z) (197)
Ω(z) = x0 ω0(z) + x1 ω1(z) (198)

68 See subsection 4.1(F).
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with
ω0(z) = dz/z , ω1(z) = dz/(1− z) (199)

as before. The initial conditions are given by Lin1,...,nr (0) = 0 for r ≥ 1, hence
Li(0) = Li∅(0) · 1 = 1 since Li∅(z) = 1 by convention. The differential form
ω0(z) has a pole at z = 0, hence the differential equation (197) is singular at
z = 0, and we cannot use directly the initial condition Li(0) = 1. To bypass
this difficulty, choose a small real parameter ε > 0, and denote by Uε(z) the
solution of the differential equation

dUε(z) = Uε(z)Ω(z) , Uε(ε) = 1 . (200)

Then
Li(z) = lim

ε→0
exp(−x0 log ε) · Uε(z) . (201)

We are now in a position to compute the product of multiple polyloga-
rithms. Indeed, introduce the free group F2 in two generators g0, g1, and its
unipotent envelope Φ2 realized as a multiplicative group of noncommutative
series in k�x0, x1�. Embed F2 into Φ2 by the rule g0 = expx0, g1 = expx1

(see subsection 4.3). Topologically, we interpret F2 as the fundamental group
of C\{0, 1} based at ε, and gi as the class of a loop around i ∈ {0, 1} in coun-
terclockwise way. The Lie algebra f2 of the prounipotent group Φ2 consists of
the Lie series in x0, x1 and since the differential form Ω(z) takes its values in
f2, the solution of the differential equation (200) takes its values in the group
Φ2, and by the limiting procedure (201) so does Li(z). We have proved the
formula

∆tt(Li(z)) = Li(z)⊗ Li(z) . (202)

This gives the following rule for the multiplication of two multiple polyloga-
rithm functions Lin1,...,nr

(z) and Lim1,...,ms
(z):

• encode

n1, . . . , nr ↔ ε1, . . . , εp

m1, . . . ,ms ↔ η1, . . . , ηq

by sequences of 0’s and 1’s;
• take any shuffle of ε1, . . . , εp with η1, . . . , ηq, namely θ1, . . . , θp+q and de-

code θ1, . . . , θp+q to r1, . . . , rt;
• take the sum of the (p+q)!

p! q! functions of the form Lir1,...,rt
(z) corresponding

to the various shuffles.

We want now to compute the product of two MZV’s, namely ζ(n1, . . . , nr)
and ζ(m1, . . . ,ms). When nr ≥ 2, we have ζ(n1, . . . , nr) = Lin1,...,nr (1) but
Lin1,...,nr

(z) diverges at z = 1 when nr = 1. By using the differential equation
(197), it can be shown that the following limit exists

Ztt = lim
ε→0

Li(1− ε) exp(x1 log ε) . (203)
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If we develop this series as

Ztt =
∑

n1,...,nr

ζtt(n1, . . . , nr) yn1 . . . ynr
, (204)

we obtain ζtt(n1, . . . , nr) = ζ(n1, . . . , nr) when nr ≥ 2, together with reg-
ularized values ζtt(n1, . . . , nr−1, 1). By a limiting process, one derives the
equation

∆tt(Ztt) = Ztt ⊗ Ztt (205)

from (202). We leave it to the reader to explicit the shuffle rule for multiplying
MZV’s.

Remark 4.5.1. The shuffle rule and the quasi-shuffle rule give two multipli-
cation formulas for ordinary MZV’s. For instance

ζ(2) ζ(3) = ζ(5) + ζ(2, 3) + ζ(3, 2) (206)

by the quasi-shuffle rule, and

ζ(2) ζ(3) = 3 ζ(2, 3) + 6 ζ(1, 4) + ζ(3, 2) (207)

by the shuffle rule. By elimination, we deduce a linear relation

ζ(5) = 2 ζ(2, 3) + 6 ζ(1, 4) . (208)

But in general, the two regularizations ζ∗(n1, . . . , nr) and ζtt(n1, . . . , nr) differ
when nr = 1. We refer the reader to our presentation in [22] for more details
and precise conjectures about the linear relations satisfied by the MZV’s.

Remark 4.5.2. From equation (192), one derives the integral relation

ζ(n1, . . . , nr) =
∫

∆p

ωε1(t1) . . . ωεp
(tp) (209)

with the encoding n1, . . . , nr ↔ ε1, . . . , εp (hence p = n1 + . . . + nr is the
weight) and the domain of integration

∆p = {0 < t1 < · · · < tp < 1} ⊂ Rp .

When multiplying ζ(n1, . . . , nr) with ζ(m1, . . . ,ms) we encounter an integral
over ∆p ×∆q. This product of simplices can be subdivided into a collection
of (p+q)!

p! q! simplices corresponding to the various shuffles of {1, . . . , p} with
{1, . . . , q}, that is the permutations σ in Sp+q such that σ(1) < . . . < σ(p)
and σ(p + 1) < . . . < σ(p + q). Hence a product integral over ∆p × ∆q can
be decomposed as a sum of (p+q)!

p! q! integrals over ∆p+q. This method gives
another proof of the shuffle product formula for MZV’s.
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4.6 Composition of series [27]

The composition of series gives another example of a prounipotent group. We
consider formal transformations of the form69

ϕ(x) = x+ a1 x
2 + a2 x

3 + · · ·+ ai x
i+1 + · · · , (210)

that is transformations defined around 0 by their Taylor series with ϕ(0) = 0,
ϕ′(0) = 1. Under composition, they form a group Comp(C), and we proceed
to interpret it as an algebraic group of infinite triangular matrices.

Given ϕ(x) as above, develop

ϕ(x)i =
∑
j≥1

aij(ϕ)xj , (211)

for i ≥ 1, and denote by A(ϕ) the infinite matrix (aij(ϕ))i≥1,j≥1. Since ϕ(x)
begins with x, then ϕ(x)i begins with xi. Hence aii(ϕ) = 1 and aij(ϕ) = 0 for
j < i: the matrix A(ϕ) belongs to T∞(C). Furthermore, since (ϕ◦ψ)i = ϕi ◦ψ,
we have A(ϕ ◦ ψ) = A(ϕ)A(ψ). Moreover, a1,j+1(ϕ) is the coefficient aj(ϕ)
of xj+1 in ϕ(x), hence the map ϕ 7→ A(ϕ) is a faithful representation A
of the group Comp(C) into T∞(C). By expanding ϕ(x)i by the multinomial
theorem, we obtain the following expression for the aij(ϕ) = aij in terms of
the parameters ai

aij =
∑

(i!/n0!)(an1
1 /n1!)(an2

2 /n2!) . . . (a
nj−1
j−1 /nj−1!) (212)

where the summation extends over all system of indices n0, n1, . . . , nj−1, where
each nk is a nonnegative integer and

{
n0 + · · ·+ nj−1 = i , (213)
1 · n0 + 2 · n1 + . . .+ j · nj−1 = j . (214)

Since a1 = a12, a2 = a13, a3 = a14, . . . the formulas (212) to (214) give an
explicit set of algebraic equations for the subgroup A(Comp(C)) of T∞(C).
The group Comp(C) is a proalgebraic group with O(Comp) equal to the poly-
nomial ring C [a1, a2, . . .]. For the group T∞(C), the coproduct in O(T∞) is
given by ∆(aij) =

∑
i≤k≤j

aik ⊗ akj . Hence the coproduct in O(Comp) is given

by

∆(ai) = 1⊗ ai +
i−1∑
j=1

aj ⊗ aj+1,i+1 + ai ⊗ 1 , (215)

69 The coefficients ai in the series ϕ(x) are supposed to be complex numbers, but
they might be taken from an arbitrary field k of characteristic 0.
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where we use the rule (212) to define the elements aj+1,i+1 in C [a1, a2, . . .].
This formula can easily be translated in Faa di Bruno’s formula giving the
higher derivatives of f(g(x)).

Exercise 4.6.1. Prove directly the coassociativity of the coproduct defined
by (212) and (215)!

Remark 4.6.1. If we give degree i to ai, it follows from (212), (213) and (214)
that aij is homogeneous of degree j− i. Hence the coproduct given by (215) is
homogeneous and O(Comp) is a graded Hopf algebra. Here is an explanation.
We denote by Gm(C) the group GL1(C), that is the nonzero complex numbers
under multiplication, with the coordinate ring O(Gm) = C [t, t−1]. It acts
by scaling Ht(x) = tx, and the corresponding matrix A(Ht) is the diagonal
matrix Mt with entries t, t2, . . .. For t in Gm(C) and ϕ in Comp(C), the
transformation H−1

t ◦ϕ◦Ht is given by t−1 ϕ(tx) = x+ t a1 x
2 + t2 a2 x

3 + · · ·
and this scaling property (ai going into ti ai) explains why we give the degree i
to ai. Furthermore, in matrix terms, M−1

t AMt has entries aij of A multiplied
by tj−i, hence the degree j − i to aij !

To conclude, let us consider the Lie algebra comp of the proalgebraic group
Comp(C). In O(Comp) the kernel of the counit ε : O(Comp)→ C is the ideal
J generated by a1, a2, . . ., hence the vector space J/J2 has a basis consisting
of the cosets āi = ai + J for i ≥ 1. The dual of J/J2 can be identified with
comp and consists of the infinite series u1D1+u2D2+ · · · where 〈Di, āj〉 = δij .

To compute the bracket in comp, consider the reduced coproduct ∆̄ defined
by ∆̄(x) = ∆(x)−x⊗1−1⊗x for x in J , mapping J into J⊗J . If σ exchanges
the factors in J ⊗ J , then ∆̄ − σ ◦ ∆̄ defines by factoring mod J2 a map δ
from L := J/J2 to Λ2L. Hence L is a Lie coalgebra and comp is the dual Lie
algebra of L. Explicitly, to compute δ(āi), keep in ∆(ai) the bilinear terms in
ak’s and replaces ak by āk. We obtain a map δ1 from L to L⊗L, and δ is the
antisymmetrisation of δ1. We quote the result

δ1(āi) =
i−1∑
j=1

(j + 1) āj ⊗ āi−j (216)

hence

δ(āi) =
i−1∑
j=1

(2j − 1) āj ⊗ āi−j . (217)

Dually, δ1 defines a product in comp, defined by

Dj ∗Dk = (j + 1)Dj+k (218)

and the bracket, defined by [D,D′] = D ∗ D′ − D′ ∗ D, is dual to δ and is
given explicitly by

[Dj , Dk] = (j − k)Dj+k . (219)
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Remark 4.6.2. Dj corresponds to the differential operator −xj+1 d
dx and the

bracket is the Lie bracket of first order differential operators.

Exercise 4.6.2. Give the matrix representation of Di.

For a general algebraic group (or Hopf algebra), the operation D ∗ D′

has no interesting, nor intrinsic, properties. The feature here is that in the
coproduct (215), for the generators ai of O(Comp), one has

∆(ai) = 1⊗ ai +
∑

j

aj ⊗ uji

where uji belongs to O(Comp) (linearity on the left). The ∗-product then
satisfies the four-term identity

D ∗ (D′ ∗D′′)− (D ∗D′) ∗D′′ = D ∗ (D′′ ∗D′)− (D ∗D′′) ∗D′

due to Vinberg. From Vinberg’s identity, one derives easily Jacobi identity
for the bracket [D,D′] = D ∗D′ −D′ ∗D. Notice that Vinberg’s identity is a
weakening of the associativity for the ∗-product.

4.7 Concluding remarks

To deal with the composition of functions in the many variables case, one needs
graphical methods based on trees. The corresponding methods have been de-
veloped by Loday and Ronco [54, 67]. There exists a similar presentation of
Connes-Kreimer Hopf algebra of Feynman diagrams interpreted in terms of
composition of nonlinear transformations of Lagrangians (see a forthcoming
paper [23]).
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6. N. Bourbaki, Groupes et algèbres de Lie, Chap. 1, and Chap. 2, 3, Hermann,
Paris (1971 and 1972).
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181-225. Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 1081-1126,
Gauthier-Villars, Paris (1952).
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ment compact et d’une application continue, J. Math. Pures Appl. 29 (1950),
1-139. Reprinted in Œuvres scientifiques, vol. I, pp. 261-401, Springer, Berlin
(1998).

53. J.-L. Loday, On the algebra of quasi-shuffles, to appear.
54. J.-L. Loday and M. Ronco, Hopf algebra of the planar binary trees, Adv.

Math. 139 (1998), 293-309.
55. L. Loomis, An introduction to abstract harmonic analysis, van Nostrand Co,

Princeton (1953).
56. M. Lothaire, Algebraic combinatorics on words, Cambridge Univ. Press,

Cambridge (2002).
57. I.G. MacDonald, Symmetric functions and Hall polynomials (2nd edition),

Oxford Univ. Press, New York (1995).
58. C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric func-

tions and the Solomon descent algebra, J. Algebra 177 (1995), 967-982.
59. J.W. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of

Math. 81 (1965), 211-264.
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