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Abstract: This past year has seen major progress in the study of tree-level supergrav-

ity amplitudes with zero cosmological constant using twistor methods. In this paper, we

study amplitudes of conformal gravity and use these to deduce formulae for ‘scattering

amplitudes’ on backgrounds with non-zero cosmological constant. Our approach is based

firstly on the embedding of Einstein gravity into conformal gravity and secondly the twistor

action for conformal gravity and its minimal N = 4 supersymmetric extension. We de-

rive conformal gravity amplitudes from the twistor action and show how they can then

be restricted to Einstein states to give Einstein amplitudes. We employ a perturbative

expansion to derive a new formula for the gravitational MHV amplitude with cosmological

constant. We show that this formula is well-defined (i.e., is independent of certain gauge

choices) and that it reproduces Hodges’ formula for the MHV amplitude in the flat-space

limit. We also discuss the possibility of a twistor-string origin for this formula, as well

as more general properties of conformal (super-)gravity in twistor space. We also give a

preliminary discussion of a possible MHV formalism for more general amplitudes obtained

by reduction of one for conformal gravity obtained from the twistor action.
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1 Introduction

Witten’s twistor-string theory and related models [1–3] have inspired an extensive list of

recent developments in our understanding of maximally supersymmectic (N = 4) super-

Yang-Mills (SYM) theory, particularly with respect to scattering amplitudes in the planar
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sector. While these original twistor-string theories were limited in their applicability to per-

turbative gauge theory due to unwanted contributions from conformal gravity [4], twistor

actions for Yang-Mills theory were discovered which isolated the gauge theoretic degrees

of freedom [5, 6]. With the imposition of an axial gauge on twistor space, these twistor

actions can be used to derive a particularly efficient Feynman diagram formalism, the MHV

formalism, that had originally been suggested from twistor-string considerations [7]. In this

formalism, the MHV amplitudes are extended off-shell to provide the vertices and can be

used also for loop calculations [8]. These twistor actions have now been applied to study a

wide variety of physical observables in N = 4 SYM, including scattering amplitudes, null

polygonal Wilson loops, and correlation functions (c.f., [9] for a review).

Currently, there is no twistor action for Einstein gravity, although there is one for con-

formal gravity [5]. This is the conformally invariant theory of gravity whose Lagrangian

is the square of the Weyl tensor. It has fourth-order equations of motion so its quantum

theory is non-unitary and is widely believed not to be suitable for a physical theory. Nev-

ertheless, conformal gravity has many interesting mathematical properties: for instance, it

can be extended to supersymmetric theories for N ≤ 4, and the maximally supersymmetric

theory (N = 4) comes in several variants which are finite and power-counting renormaliz-

able (c.f., [10] for a review). Furthermore, solutions to Einstein gravity form a subsector of

solutions to the field equations of conformal gravity. Maldacena has shown that evaluated

on a de Sitter background, the tree-level S-matrix for conformal gravity reduces to that

for Einstein gravity when Einstein states are inserted [11]. Thus we can hope to study the

Einstein tree-level S-matrix using the conformal gravity twistor action, which is the goal

of this paper.

Progress on understanding the scattering amplitudes of (super-)gravity in twistor

space–even at tree-level–was elusive until Hodges’ discovery of a manifestly permutation

invariant and compact formula for the maximal-helicity-violating (MHV) tree amplitude

of Einstein gravity [12]. This led to the development of the Cachazo-Skinner expression

for the entire tree-level S-matrix of N = 8 supergravity in terms of an integral over holo-

morphic maps from the Riemann sphere into twistor space [13, 14]. Perhaps most exciting

of all is Skinner’s development of a new twistor-string theory which produces this formula

as a worldsheet correlation function of vertex operators; in other words, a twistor-string

theory for N = 8 Einstein supergravity [15].

Parallel work sought to derive Einstein amplitudes from Witten and Berkovits’ origi-

nal twistor-string formula for conformal gravity amplitudes by restricting to Einstein states

[16, 17] and appealing to the Maldacena argument to obtain Einstein amplitudes. Although

the correct amplitudes are obtained at three points, the relationship between Einstein and

conformal gravity amplitudes requires minimal conformal supergravity rather than the

non-minimal version arising from the Berkovits-Witten twistor-string. Nevertheless, in

[17] it was shown that the correct Hodges formula is obtained at n-points when a tree

ansatz is imposed on the worldsheet correlation function required in the Berkovits-Witten

twistor-string formula. Although there is no clear motivation for the tree ansatz within
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the Berkovits-Witten twistor-string,1 it is natural in the context of the Maldacena argu-

ment applied to the twistor action for conformal gravity [5], which does give the minimal

conformal gravity. Part of the purpose of this paper is to give a complete presentation of

that argument. It also allows us to provide a generalization of the Hodges formula for the

MHV amplitude to the case of non-vanishing cosmological constant which is the regime in

which the Maldacena argument is most straightforwardly applicable.

In this paper, we study conformal (super-)gravity on twistor space using the afore-

mentioned twistor action and its generalization to N = 4 supersymmetry. By exploiting

the conformal/Einstein gravity correspondence, we obtain a twistor formula for the MHV

amplitude on a background with non-vanishing cosmological constant. We check that this

formula is independent of gauge choices made during its derivation, and also that it pro-

duces Hodges’ formula in the flat-space limit.

For a cosmological constant Λ 6= 0, the traditional definition of a scattering amplitude

for asymptotically flat space-times no longer applies. When Λ > 0, one can still define

mathematical quantities corresponding to scattering from past infinity to future infinity,

but these are not physical observables because no observer has access to the whole space-

time. These mathematical analogues of scattering amplitudes have become known as meta-

observables [18]: the theory allows them to be computed, even if no single physical observer

can ever measure them. Actual physical observables can still be given in terms of the in-in

formalism, where the observer only integrates over the portion of space-time containing his

or her history. When Λ < 0, this situation is improved and the natural objects to compute

are correlation functions in the conformal field theory on the boundary via the AdS/CFT

correspondence (although mathematically the integration regions are not so dissimilar and

indeed the formulae will be polynomial in Λ so that the analytic continuation from positive

to negative Λ will be trivial).

For the remainder of this paper, we will refer only to ‘scattering amplitudes’ in (anti-)

de Sitter space, trusting the reader to keep the implicit subtleties in mind. In the end,

we will obtain a formula on twistor space, which is written in terms of arbitrary external

states and a freely specified contour of integration in complexified space-time (see (1.1)

below); the ambiguity in defining what observable we are computing can be absorbed into

this choice of contour. Furthermore, although we will focus on the case of Λ > 0 de Sitter

space in this paper, most of our arguments (and certainly the final formula) apply to anti-

de Sitter space with trivial changes of sign and can therefore be applied to the AdS/CFT

correspondence.

We begin in Section 2 with an exposition of the conformal/Einstein gravity correspon-

dence. This includes a brief overview of different action principles for conformal gravity, as

well as the relationship with general relativity on an asymptotically de Sitter background.

From this, we derive a precise version of the correspondence for generating functionals of

MHV amplitudes. Since we will be interested in scattering amplitudes, we also discuss the

relationship between polarization states for conformal and Einstein gravity. Finally, we

1In Skinner’s N = 8 twistor-string the tree ansatz can be understood as arising from cancellation of the

loops due to worldsheet supersymmetry.
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consider maximally supersymmetric N = 4 conformal supergravity; as we shall see, the

conformal/Einstein correspondence can be extended only to the minimal version of this

theory.

In Section 3, we study the twistor action for minimal N = 4 conformal supergravity.

After a brief review of some relevant aspects of twistor theory, we recall the definition

of the twistor action for N = 0 conformal gravity, and argue that its straightforward

generalization to N = 4 produces the minimal supersymmetric theory. By applying the

conformal/Einstein gravity correspondence, we show how this twistor action can be re-

stricted to Einstein states, thereby leading to a twistorial expression for the generating

functional of MHV amplitudes in Einstein (super-)gravity.

We derive the new formula for the scattering amplitude with Λ 6= 0 in Section 4. This

entails developing a Feynman diagram calculus on CP1 to operationalize the perturbative

expansion of the generating functional on twistor space. As we shall see, this leads to a

tree formalism for computing the Einstein amplitude within minimal N = 4 conformal

supergravity. A closely related formalism was recently used to extract Hodges’ formula

from the non-minimal conformal supergravity of the Berkovits-Witten twistor-string [17];

hence, we confirm that the tree formalism isolates the minimal sector in the twistor-string

(at MHV).

By applying the diagram calculus we are able to derive an expression for the MHV

amplitude in the presence of a cosmological constant. Explicitly, we will show that

Mn,0 =
1

Λ

∫
d8|8X

vol GL(2,C)

(X2)2
∣∣H12

12

∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏
m=1

h(Z(σm)) Dσm ,

(1.1)

where XI
A are coordinates on the moduli space of degree one holomorphic maps Z(σ) from

CP1 (with homogeneous coordinates σA) to twistor space; h(Z(σi)) are twistor represen-

tatives for the external states; H is the Hodges matrix2

Hij =


1

(ij)

[
∂

∂Z(σi)
, ∂
∂Z(σi)

]
if i 6= j

−∑k 6=iHik
(ξk)2

(ξi)2
if i = j

,

and the quantities ω1
ij are given by

ω1
ij = −Λ

(1ξ)4(ij)

(1i)2(1j)2(ξi)2(ξj)2

[
∂

∂Z(σi)
,

∂

∂Z(σj)

]
.

The notation |H12
12| indicates the determinant of H with the row and columns corresponding

to h(Z(σ1)) and h(Z(σ2)) removed, and ξ ∈ CP1 is an arbitrary reference spinor. We prove

that (1.1) is independent of the choice of ξ, and limits smoothly onto Hodges’ formula when

2Here, and throughout the paper, we denote the SL(2,C)-invariant inner product on CP1 coordinates by

(ij) = εABσ
A
i σ

B
j . The notation [ , ] stands for a contraction with a skew bi-twistor IIJ called the infinity

twistor which is introduced in Section 3. Similarly, 〈 , 〉 denotes a contraction with the inverse infinity

twistor IIJ .
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Λ→ 0. We also show how it can be manipulated into a form which is highly suggestive of

a twistor-string origin and is the natural generalization of Hodges’ formula to Λ 6= 0.

Section 5 concludes with a discussion of interesting future directions following on from

this work. Most enticing is the possibility that the twistor action studied here could be

used to define a MHV formalism [7] for conformal gravity, and in turn Einstein gravity.

Indeed, the twistor action approach for N = 4 SYM is one way of deriving this formalism

in the gauge theory setting [19, 20] and other techniques such as Risager recursion fail in

the gravitational context [21, 22]. We also discuss the possibility of defining twistor actions

for non-minimal N = 4 conformal supergravity, as well as how the twistor formula (1.1)

could be converted into a meaningful physical observable in de Sitter space.

It also worth noting that a priori one could hope to derive a formula for Mn,0 from

Skinner’s N = 8 twistor-string [15]. Unfortunately, although this twistor-string theory

has been shown to give the correct tree-level amplitudes at Λ = 0, it has so far not been

possible to make sense of the worldsheet correlations functions for the Λ 6= 0 regime. It is

to be hoped that knowing the answer (1.1) will also allow us to understand how to make

the Skinner twistor-string work for Λ 6= 0.

Notation

Throughout this paper, we use the following index conventions: space-time tensor indices

are Greek letters from the middle of the alphabet (µ, ν = 0, · · · , 3); positive and negative

chirality Weyl spinor indices are primed and un-primed capital Roman letters respectively

(A,B = 0, 1 or A′, B′ = 0′, 1′); R-symmetry indices are lower-case Roman indices from

the beginning of the alphabet (a, b = 1, . . . ,N ). We will also use bosonic twistor indices,

denoted by Greek letters from the beginning of the alphabet (α, β), as well as supersym-

metric twistor indices, denoted by capital Roman letters from the middle of the alphabet

(I, J).

We denote the space of smooth n-forms on a manifold M by Ωn
M ; in the presence of

a complex structure we denote the space of smooth (p, q) forms by Ωp,q
M . If we want to

consider these spaces twisted by some sheaf V , then we write Ωn
M (V ) for ‘the space of

smooth n-forms on M with values in V ,’ and so forth. Dolbeault cohomology groups on

M with values in V are denoted by Hp,q(M,V ). The complex line bundles O(k) denote

the bundles of functions homogeneous of weight k on a (projective) manifold, and we make

use of the abbreviation Ωn
M (O(k)) ≡ Ωn

M (k), and so on.

2 Einstein and Conformal Gravity on Asymptotically de Sitter Spaces

We will work on a 4-dimensional space-time M with metric g. Conformal gravity is the

theory obtained from the action

SCG[g] =
1

ε2

∫
M

dµ CµνρσCµνρσ =
1

ε2

∫
M

dµ
(

ΨABCDΨABCD + Ψ̃A′B′C′D′Ψ̃A′B′C′D′

)
,

(2.1)

where ε2 is a dimensionless coupling constant, dµ = d4x
√
g is the volume element, Cµνρσ

is the Weyl curvature tensor of g, and ΨABCD, Ψ̃A′B′C′D′ are the anti-self-dual (ASD) and
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self-dual (SD) Weyl spinors respectively [23]. This theory is conformally invariant and

hence only depends upon (and constrains) the conformal structure [g] underlying g. The

field equations are the vanishing of the Bach tensor, Bµν , which can be written in a variety

of different forms thanks to the Bianchi identities:

Bµν = 2∇ρ∇σCρµνσ + CρµνσR
ρσ

=

(
2∇ρ∇(µR

ρ
ν) −2Rµν −

2

3
∇µ∇νR− 2RρµR

ρ
ν +

2

3
RµνR

)
0

= 2(∇CA′∇DB′ + ΦCD
A′B′)ΨABCD = 2(∇C′A ∇D

′
B + ΦC′D′

AB )Ψ̃A′B′C′D′ , (2.2)

where the subscript in the second line denotes ‘trace-free part.’ These imply that the field

equations are satisfied whenever M is conformal to Einstein (i.e., gµν ∝ Rµν), or when its

Weyl curvature is either self-dual or anti-self-dual.

The twistor actions for gauge theory start in space-time with the Yang-Mills La-

grangian in a format which explicitly gives a perturbative expansion around the self-dual

sector. This is accomplished by using a ‘BF ,’ or Chalmers-Siegel, action functional (c.f.,

[24, 25]). The field equations of conformal gravity can be understood as the Yang-Mills

equations of the Cartan conformal connection (also known as the local twistor connection)

on a SU(2, 2) (or in the complex, PSL(4,C)) bundle [26], so it is natural to expect analogous

actions to exist for conformal gravity.

First, note that we can use a complex chiral action

SCG[g] =
2

ε2

∫
M

dµ ΨABCDΨABCD, (2.3)

which differs from (2.1) by

1

ε2

∫
M

dµ
(

ΨABCDΨABCD − Ψ̃A′B′C′D′Ψ̃A′B′C′D′

)
.

This is a topological term, equal to 12π2

ε2
(τ(M)− η(∂M)), where τ(M) is the signature of

M and η(∂M) is the η-invariant of the conformal boundary [27]. Hence, (2.3) is equivalent

to the full action (2.1) up to terms which are irrelevant in perturbation theory.

To expand around the SD sector, we introduce the totally symmetric spinor field

GABCD as a Lagrange multiplier, and write the action as [4]:

SCG[g,G] =

∫
M

dµ
(
GABCDΨABCD − ε2GABCDGABCD

)
. (2.4)

This has field equations [5]

ΨABCD = ε2GABCD,
(
∇CA′∇DB′ + ΦCD

A′B′
)
GABCD = 0, (2.5)

so integrating out G returns (2.3). But now ε2 becomes a parameter for expanding about

the SD sector: when ε = 0, the field equations yield a SD solution and GABCD is a linear

ASD solution propagating on the SD background.
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Q

t = 0

I +

I −

Figure 1. De Sitter space as the quadric Q ⊂ RP5 and the identification of infinity.

We now review the geometry of de Sitter space and the relationship between confor-

mal gravity and Einstein gravity. We pay particular attention to how this relationship

is manifested at the level of generating functionals for scattering amplitudes following an

argument due to Maldacena [11]. Similar ideas hold for anti-de Sitter space with some sign

changes and in that form these ideas can be applied to AdS/CFT duality.

2.1 The conformal geometry of de Sitter space

De Sitter, anti-de Sitter, and flat space-times in n-dimensions possess only scalar curvature

and are hence conformally flat. Each is a dense open subset in the conformal compactifica-

tion which is a projective quadric of signature (2, n) in RPn+1 of topology S1 × Sn−1/Z2.

The infinite points are respectively a space-like, time-like or null hypersurface (in fact a

lightcone) in the conformal compactification obtained as the intersection of a hyperplane

of appropriate signature in RPn+1. In four dimensions, de Sitter space (dS4) is topolog-

ically R × S3, and can be realized as the pseudosphere in R1,4 with coordinates (w, xµ),

µ = 0, . . . , 3 via the embedding [28]:

ηµνx
µxν − w2 = x2 − w2 = − 3

Λ
, ηµν = diag(1,−1,−1,−1) .

This makes manifest the isometry group SO(1, 4), the Lorentz group inherited from the

embedding space.

The embedding as a projective quadric in RP5 can be realized with homogeneous

coordinates (t, w, xµ) as the t 6= 0 portion of:

2Q ≡ t2 − w2 + x2 = 0,

with scale-invariant metric

ds2 =
3

Λ

dt2 − dw2 + ηµνdxµdxν

t2
. (2.6)

The intersection of Q with the plane t = 0 corresponds to the spatial S3 at infinity, and

is the identification of the past (I −) and future (I +) infinities (ordinarily, we will not

make this identification); see Figure 1. The description of dS4 as the pseudosphere in R1,4

is recovered by taking the patch t =
√

3/Λ.
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t > 0

t < 0

(a.) (b.)

Figure 2. De Sitter space on the affine Minkowski slicing (a.), and the traditional Poincaré slicing

(b.)

There are two useful coordinate patches: the affine and Poincaré patches. The distinc-

tion between the two corresponds to choosing the point defining the light cone at infinity

for some affine coordinates to be at a finite point of de Sitter space or at infinity, respec-

tively. The former case corresponds to t + w = 1; after re-scaling the affine Minkowski

coordinates xµ the metric becomes

ds2 =
ηµνdxµdxν

(1− Λx2)2
. (2.7)

Most of de Sitter infinity is then located at finite points in the affine space where x2 = Λ−1,

although this obviously has an S2 intersection with the affine (Minkowski) infinity. This

has a straightforward Λ → 0 limit whereupon (2.7) becomes the Minkowski metric (see

Figure 2, (a.)).

The Poincaré patch, which is more familiar in the physics literature, corresponds to

x0 + w = 1, with metric:

ds2 =
3

Λ

dt2 − δijdxidxj
t2

. (2.8)

The t = 0 slice is infinity minus a point whose light cone divides de Sitter space into two

halves (t > 0 and t < 0), demonstrating that a physical observer at I ± has access to at

most half of the space-time. The Poincaré patch manifests the three-dimensional rotation

and translation symmetries of dS4, but is not so well-behaved in the Λ → 0 limit; see

Figure 2, (b.).

2.2 Einstein gravity amplitudes inside the conformal gravity S-matrix

We have seen from the definition of the Bach tensor that solutions to the Einstein gravity

field equations are also solutions to those of conformal gravity. However, in order to show

that Einstein tree amplitudes can be obtained from those of conformal gravity we need

to relate the actions of the two theories. That is because we can define the tree-level S-

matrix (or at least its phase) to be the value of the Einstein action evaluated on a classical

solution to the Einstein equations that has been obtained perturbatively from the given

fields involved in the scattering process. More formally, given n solutions gi, i = 1, . . . , n to

the linearized field equations and a classical background gcl, we construct the solution g to
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the field equations whose asymptotic data is
∑

i εigi. We can then–at least formally–define

the amplitude to be

M(1, . . . , n) = coefficient of

n∏
i=1

εi in S[gcl + g] .

Thus, if the conformal gravity action of a solution to the Einstein equations yields the

Einstein-Hilbert action of that same solution, then the tree-level conformal gravity S-

matrix can be used to compute that for general relativity. We will see that this is the case

up to a factor of Λ.

The Einstein-Hilbert action in the presence of a cosmological constant is

SEH[g] =
1

κ2

∫
M

dµ(R− 2Λ),

where κ2 = 16πGN . On a de Sitter space, the field equations are Rµν = Λgµν , so the action

reads

SEH[dS4] =
2Λ

κ2

∫
dS4

dµ =
2Λ

κ2
V (dS4),

where V (M) is the volume of M . For any asymptotically de Sitter manifold, this volume

will be infinite so the action functional must be modified by the Gibbons-Hawking boundary

term [29]. Additionally, we must include the holographic renormalization counter-terms

(which also live on the boundary) in order to render the volume finite [30, 31]. After

including these additions, one obtains the renormalized Einstein-Hilbert action [32], and if

M is asymptotically de Sitter, we have:

SEH
ren [M ] =

2Λ

κ2
Vren(M), (2.9)

where Vren is the renormalized volume of the space-time (c.f., [33]).

On the other hand, if M was a Riemannian 4-manifold which was compact without

boundary, the Chern-Gauss-Bonnet formula tells us that

χ(M) =
1

8π2

∫
M

dµ

(
CµνρσCµνρσ −

1

2
RµνR

µν +
1

6
R2

)
.

If M were additionally Einstein (Rµν = Λgµν), then we would have

SCG[M ] =
8π2χ(M)

ε2
− 2Λ2

3ε2
V (M). (2.10)

When M is (Lorentzian) asymptotically de Sitter, the Chern-Gauss-Bonnet formula re-

quires a boundary term, and the volume is renormalized. However, a theorem3 of Anderson

tells us that (2.10) continues to hold even after boundary terms for the Euler characteristic

are taken into account and the volume has been renormalized [34]. Furthermore, since M

3Note that Anderson’s theorem is actually stated for asymptotically hyperbolic Riemannian four-

manifolds; the extension to asymptotically de Sitter Lorentzian manifolds follows by analytic continuation.
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n− 1−

2+

· · ·

dS4
1−

n+

M

Figure 3. Geometric picture of MHV graviton scattering

is asymptotically de Sitter we can assume that we always perturb around the topologically

trivial case (i.e., χ(M) = 0), so comparing with (2.9) we find

SCG[M ] = −Λ κ2

3 ε2
SEH

ren [M ]. (2.11)

To relate the scattering amplitudes of the two theories, we need a way to single out

Einstein scattering states inside conformal gravity. Maldacena has shown that this can be

accomplished by employing boundary conditions on the metric [11]. We will use an equiv-

alent explicit formula in twistor space to compute the tree-level scattering amplitudes of

general relativity by using conformal gravity restricted to Einstein scattering states on a de

Sitter background. We will refer to this as the conformal/Einstein gravity correspondence.

2.3 The MHV amplitude

We will focus on the tree-level amplitudes corresponding to the scattering of two negative

helicity gravitons and n − 2 positive helicity gravitons, the MHV amplitudes of general

relativity. These are maximal because the positive and negative helicity states are dual

to each other so that an ‘all +’ amplitude would correspond to a positive helicity particle

picking up some negative helicity scattering on a positive helicity background. But this

cannot happen by virtue of the consistency of the self-duality equations for general relativ-

ity. Similarly, the one minus and rest plus amplitude vanishes because the self-dual sector

is integrable (it would correspond to the nontrivial scattering of a linear positive helicity

particle on a positive helicity background). See Appendix A, lemma A.1 for more details.

Following [35], we absorb the n − 2 SD gravitons of the MHV amplitude into a fully

nonlinear SD background space-time M , which can subsequently be perturbatively ex-

panded to recover the individual particle content. Reversing the momentum of one of the

two negative helicity gravitons, the MHV amplitude is the probability for a pure ASD state

at I − to propagate across M and evolve into a SD state at I + as illustrated in Figure 3.

In Appendix A, we derive the generating functional for these amplitudes in Einstein

gravity by working with the chiral formalism in proposition A.1. We will denote this

by IGR, and its exact form can be found in (A.16). While we don’t have a good off-

shell expression and perturbation scheme for this Einstein generating function in twistor

space, we do for the case of conformal gravity. The main point of this paper is that a
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perturbative expansion leading to the MHV amplitudes can be achieved by applying the

conformal/Einstein gravity correspondence.

The generating functional for MHV amplitudes in conformal gravity is given by the

second term in (2.4). The first term is precisely the action for the self-dual sector, so the

second term is therefore the action for the first nontrivial deformation of the SD sector that

is quadratic in the ASD part of the field. Evaluated on-shell with Einstein scattering states,

the two ASD gravitons are given by Weyl spinor perturbations ψ1, ψ2 and the generating

functional reads:

ICG[1−, 2−;M+]
∣∣
Ein

=
2i

ε2

∫
M

dµ ψABCD1 ψ2 ABCD, (2.12)

where M is again the SD background which encodes the n − 2 remaining gravitons. In

proposition A.2, we prove that this is related to IGR by

IGR[1−, 2−;M+] = − 3ε2

Λ κ2
ICG[1−, 2−;M+]

∣∣
Ein

, (2.13)

in precise accordance with (2.11).4 Note that although this correspondence appears to

degenerate for Λ→ 0, the n-particle conformal gravity amplitude is a polynomial of degree

n−1 in Λ with no O(Λ0) coefficient [17, 37]. This makes it possible to extract the flat-space

amplitude for general relativity from (2.13) as well.

We shall see that ICG has a very natural expression on twistor space which allows us

to perform a perturbative expansion of the background M in terms of a diagram calculus

on CP1. This will enable us to derive a twistorial expression for the MHV amplitudes with

a cosmological constant in Section 4. Before proceeding we first discuss polarization states

and the extension of the conformal/Einstein gravity correspondence to supersymmetric

versions of conformal gravity.

2.4 Relations between Einstein and conformal gravity polarization states

The usual strategy for calculating scattering amplitudes is to express them in terms of a

basis of momentum polarization states. We will in fact use a variety of different repre-

sentations; however, we need some understanding of the relationship between linearized

solutions to the Bach equations (2.2), spin-two fields ,and linearized Einstein solutions.

Polarization states for conformal gravity were studied in [4, 38] and were found to contain

twice as many states as for Einstein gravity.5 We use a slightly different formulation here

that allows us to retain Lorentz invariance (although not translation invariance), and will

also tie in with our focus on de Sitter gravity.

4As discussed in the introduction, the ‘scattering amplitudes’ produced by this generating functional

do not actually constitute physical observables, since the measurement is performed by integrating over all

of I +. This is a space-like hypersurface, so no physical observer can perform this measurement. Hence,

(2.13) generates a ‘meta-observable’ in the sense of the dS/CFT correspondence [18, 36], but limits nicely

to the asymptotically flat definition of a scattering amplitude as Λ→ 0. We discuss how one might obtain

physical observables in Section 5.
5On twistor space we will see three times as many conformal gravity states as for Einstein gravity

and conceivably one has simply been missed in earlier treatments, but this will not materially alter our

discussion.
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Let {ψABCD, ψ̃A′B′C′D′} be linearized spin-two fields and {ΨABCD, Ψ̃A′B′C′D′} be the

ASD and SD portions of the Weyl tensor. The key point in connecting conformal gravity

to spin-two fields is that the Weyl tensor has conformal weight zero, whereas a linearized

spin-two field has conformal weight −1 (c.f., [39]). Both fields satisfy

∇A′A Ψ̃A′B′C′D′ = ∇A′A ψ̃A′B′C′D′ = 0 = ∇AA′ΨABCD = ∇AA′ψABCD , (2.14)

in the Einstein conformal frame but the Weyl tensor only does so in its given Einstein

conformal scale and no other. Einstein conformal scales can be specified as functions Ω of

conformal weight +1 that satisfy the conformally invariant equation

(∇µ∇ν + Φµν)0Ω = 0, (2.15)

where the subscript 0 denotes ‘the trace-free part’ and Φµν is half the trace-free part of the

Ricci tensor.

In flat space, (2.15) has the general solution

Ω = a+ bµx
µ + cx2 . (2.16)

It is clear in general that given such a solution Ω, rescaling so that Ω = 1 gives a metric

satisfying Φµν = 0 from (2.15). This is the Einstein condition, and the solutions (2.16)

give metrics with cosmological constant Λ = 3(bµb
µ − ac). Upon setting

ΨABCD = ΩψABCD, (2.17)

we see that the Weyl spinor ΨABCD has conformal weight zero and satisfies the linearized

vacuum Bianchi identity (2.14) for the conformal scale in which Ω = 1. Since this is

an Einstein scale and the Bach equations are simply another derivative of this equation,

ΨABCD so defined also satisfies the linearized Bach equations. But then, by conformal

invariance of the Bach equations, it does so in any conformal scale.

We will not use momentum eigenstates much in what follows, but include the following

in order to make contact with standard calculations. Standard momentum eigenstates for

spin-two fields with 4-momentum kAA′ = pAp̃A′ are given by

ψABCD = pApBpCpDeik·x ,

where the polarization information is contained in the choice of scale of pA.

As conformal gravity has fourth-order equations of motion, we need more polarization

states and as mentioned above, it is usually thought that twice as many suffice [4, 38]

although we will present three here to line up with the counting from twistor space. The

first two arise from (2.17) as the pair

ΨABCD = pApBpCpDeik·x , Ψ′ABCD = x2pApBpCpDeik·x , (2.18)

and similarly for Ψ̃, Ψ̃′. This framework can also be used to characterize Einstein polar-

ization states inside conformal gravity. In particular, on the affine patch of de Sitter space

given by (2.7), we will have Einstein states

ΨΛ
ABCD = (1− Λx2)pApBpCpDeik·x . (2.19)
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If instead we work on the Poincaré patch of de Sitter space (2.8), we would use:

ΨΛ
ABCD =

√
Λ

3
t pApBpCpDeik·x . (2.20)

Clearly we can characterize the Einstein polarization state (2.19) as the linear combination

of the conformal gravity polarization states (2.18) that vanishes at the hypersurface IΛ =

{x|(1− Λx2) = 0} of de Sitter space.

Another linearized conformal gravity solution that is missed by the above is

ΨABCD = α(ApBpCpD)e
ik·x , (2.21)

where αA is an arbitrary constant spinor. The general solution for the spin two equation

can be expressed by Fourier transform as

ψABCD(x) =

∫
d4k δ(k2) ψ(k) pApBpCpDeik·x .

Similarly, the general solution to the linearized Bach equations can be expressed as

ΨABCD(x) =

∫
d4k

(
δ(k2)Ψ0(k)(A + p(Aδ

′(k2)Ψ1(k)
)
pBpCpD)e

ik·x . (2.22)

This can be seen by taking the Fourier transform of the Bach equations to yield

kAA
′
kBB

′
ΨABCD(k) = 0.

Multiplying by k twice more we discover that (k2)2ΨABCD(k) = 0 so that

ΨABCD(k) = Ψ0 ABCD δ(k2) + Ψ1 ABCD δ′(k2).

Introduce pA = kAA′o
A′ so that kAA

′
pA = k2

2 o
A′ . Then it is straightforward to see that

the field equations are satisfied by (2.22) and that this is the general solution. Integrating

by parts in (2.22), we can eliminate δ′(k2) in favour of δ(k2) but will then pick up explicit

dependence on xµ making contact with the polarization states (2.18).

2.5 Minimal and non-minimal conformal super-gravity

It is natural to ask if the classical correspondence between conformal and Einstein gravity

persists in the presence of supersymmetry. Analogues of conformal gravity with extended

supersymmetry were first constructed in [40], and it is believed that these theories are

well-defined for N ≤ 4 (c.f., [41, 42]). In this paper, we will be concerned primarily with

N = 4 conformal supergravities (CSGs), since this is the degree of supersymmetry that

arises most naturally in twistor theory. This N = 4 CSG comes in two basic phenotypes:

minimal and non-minimal based upon the presence of a certain global symmetry. The non-

minimal type depends essentially on a free function of one variable. Einstein supergravity

embeds into minimal CSG, but not into the non-minimal models.

The field content of N = 4 CSG consists of the spin-2 conformal gravitons along

with bosonic fields V a
µ b, anti-self-dual tensors T abµν , scalars {Eab, Dab

cd, ϕ} and fermions
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(a.) (b.)

ϕ

Figure 4. In minimal N = 4 CSG, external gravitons only couple to other gravitons in the bulk

(a.); in the non-minimal model they can couple to the scalar ϕ (b.).

{ψaµ, χabc, λa}, where a = 1, . . . , 4 is a SU(4) R-symmetry index. Minimal N = 4 CSG

is characterized by a global SU(1, 1) symmetry acting non-linearly on the complex scalar ϕ

(essentially the action of SU(1, 1) on the upper-half plane) [40]. This relates to the presence

of N = 4 Poincaré supergravity sitting inside the CSG [43]. The minimal model also has

a degenerate limit where SU(1, 1) is replaced by a linear E2 (the Euclidean symmetries of

the plane) action; once again this has an analogue in N = 4 Einstein supergravity, and

also arises in coupling N = 1 supergravity to a scalar multiplet [43–45].

A general conformally invariant theory of gravity has a Lagrangian of the form

L = f(ϕ)Ψ2 + ϕ22ϕ̄+ c.c.+ . . . ,

where we just give two indicative terms of a rather extended Lagrangian. Because the field

ϕ has conformal weight zero, we are allowed an arbitrary function of ϕ as a coefficient of

the self-dual Weyl tensor squared Ψ2. In a superfield formalism, it can bee seen that this

will have a supersymmetric extension for arbitrary analytic f .

In the minimal N = 4 case, the aforementioned SU(1, 1) symmetry leads to a unique

N = 4 CSG Lagrangian. It follows from symmetry under the U(1) subgroup of SU(1, 1)

that we must have f ≡ 1, giving the Lagrangian:

Lmin = CµνρσCµνρσ + ϕ22ϕ̄+ · · · .

Einstein supergravities at N = 4 can be constructed from minimal CSG [46] and so re-

stricting to Einstein scattering states, Maldacena’s argument should still apply and we can

extract the tree-level Einstein gravity scattering amplitudes (see Figure 4 (a)).

Without the global SU(1, 1) symmetry, we can have an arbitrary f(ϕ) and there are

couplings between the complex scalar ϕ and the Weyl curvature. Such N = 4 CSG

theories are referred to as non-minimal, and were first conjectured to exist in [10, 47].

If f ′ 6= 0, the Weyl tensor will provide a source for the scalar field, and so even if it

vanishes asymptotically it will become nontrivial in the interior. Since the scalar will then

provide a source for the Weyl curvature, Einstein gravity will not be a subset of this theory

and there will in general be no embedding of Einstein solutions into non-minimal CSG.

At the level of scattering amplitudes, conformal graviton scattering states in the non-

minimal theory can interact with the scalar in the bulk via three-point vertices of the

form ϕ(Weyl)2. This means that a tree-level scattering amplitude for conformal gravitons
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will include Feynman diagrams for which there is no analogue in Einstein supergravity, as

illustrated in Figure 4 (b). Without a consistent algorithm for subtracting these diagrams,

Maldacena’s argument can not be applied to non-minimal CSG. The theory arising from

the Berkovits-Witten twistor string is understood to be an example of non-minimal CSG,

with f(ϕ) = eϕ [4]. And indeed, spurious amplitudes related to the non-minimal coupling

between conformal gravitons and scalars were found explicitly in [16, 48].

While there is some doubt over whether non-minimal CSG is well-defined at the quan-

tum level [49, 50], minimal conformal gravity maintains some independent interest. It

has been shown that minimal N = 4 CSG interacting with a SU(2) × U(1) N = 4 SYM

theory is ultraviolet finite and power-counting renormalizable [10, 51]. This theory can be

obtained as a gauge theory of the superconformal group SU(2, 2|4). A weaker version of

the minimal Lagrangian can also be obtained by coupling abelian N = 4 SYM to a N = 4

CSG background [46, 52] and extracting the UV divergent portion of the partition function

[50, 53]. The theory has even been proposed as a basic model for quantum gravity (c.f.,

[38, 54]).

3 Twistor Action for Conformal (Super-)Gravity

In this section, we show how N = 4 CSG can be formulated in terms of a classical action

functional on twistor space. After first recalling some background material on twistor

spaces for curved space-times, we define the twistor action for N = 0 conformal gravity [5]

and then consider its natural extension to N = 4 supersymmetry.

3.1 Curved twistor theory

In flat Minkowski space M, twistor space PT is an open subset of CP3, with homogeneous

coordinates Zα = (λA, µ
A′). The standard flat-space incidence relations

µA
′

= ixAA
′
λA,

represent a point x ∈ M by a linearly embedded CP1 ⊂ PT. To study conformal gravity

and the MHV generating functional (2.13), we need twistor theory adapted to curved

space-times such as the self-dual background with cosmological constant, M .

The non-linear graviton construction is the basis for curved twistor theory. We state

the theorem in the context of N = 0, but its extension to the N = 4 context is straight-

forward.

Theorem 1 (Penrose [55], Ward [56]) There is a one-to-one correspondence between:

(a.) Space-times M with self-dual conformal structure [g], and (b.) twistor spaces PT (a

complex projective 3-manifold) obtained as a complex deformation of PT and containing at

least one rational curve X0 with normal bundle NX0
∼= O(1) ⊕ O(1). Define the complex

line bundle O(1) → PT so that Ω3
PT
∼= O(−4) (the appropriate 4th root exists on the

neighbourhood of X0 from the previous assumption).

There is a metric g ∈ [g] with Ricci curvature Rµν = Λgµν if and only if PT is equipped

with:
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• a non-degenerate holomorphic contact structure specified by τ ∈ Ω1,0
PT (2), and

• a holomorphic 3-form D3Z ∈ Ω3,0
PT (4) obeying τ ∧ dτ = Λ

3 D3Z.

Here D3Z is the tautologically defined section of Ω3
PT (4).

We define the non-projective twistor space T to be the total space of the complex line

bundle O(−1).

Thus, points x ∈ M (for M obeying the conditions of this theorem) correspond to

rational, but no longer necessarily linearly embedded, curves X ⊂ PT of degree 1. The

conformal structure onM corresponds to requiring that if two of these curvesX, Y intersect

in PT , then the points x, y ∈M are null separated. Furthermore, PT can be reconstructed

from M as the space of totally null self-dual 2-planes in the complexification of M (c.f.,

[55, 57]).

Later we will take the self-dual manifold M to correspond to the background of our

MHV generating functional (2.12), encoding the n − 2 positive helicity gravitons of the

n-particle MHV amplitude and we will want to be very explicit about the presentation

of the data and details of the construction. Theorem 1 tells us that M corresponds to a

curved twistor space PT which arises as a complex deformation of PT. We will take M to

be a finite but small perturbation away from flat space, so the deformed complex structure

on PT will be expressed as a small but finite deformation of the flat ∂̄-operator:

∂̄f = ∂̄ + f = dZ̄ᾱ
∂

∂Z̄ᾱ
+ f,

where f ∈ Ω0,1
PT(TPT) and Zα are homogeneous coordinates on PT . This induces a basis

for T 0,1
PT and Ω1,0

PT with respect to the deformed complex structure:

T 0,1
PT = span

{
∂

∂Z̄ᾱ
+ fαᾱ

∂

∂Zα

}
, (3.1)

Ω1,0
PT = span{DZα} = span {dZα − fα} , (3.2)

where we have denoted f = fα∂α = fαᾱdZ̄ᾱ∂α. The forms fα must descend from T to PT

which follows from

Z̄ᾱfβᾱ = 0 , fα(λZ) = λfα(Z) , λ ∈ C∗. (3.3)

Additionally, the vector field f on T is determined by one on PT only up to multiples of

the Euler vector field Zα∂α, and this freedom can be fixed by imposing

∂αf
α = 0 . (3.4)

As it stands, ∂̄f defines an almost complex structure. This is integrable if and only if

∂̄2
f = ∂̄fα + [f, f ]α = 0, [f, f ]α = fβ ∧ ∂βfα . (3.5)

This integrability condition can be thought of as the twistor form of the field equations

for self-dual conformal gravity. Kodaira theory implies the existence of a complex four
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parameter family of rational curves of degree one, and this family is identified with the

complexification of space-time M . Thus to reconstruct M from PT we must find a family

of holomorphic maps

Zα(xµ, σA) : PS→ PT , Zα(x, σ) =
(
λA(x, σ), µA

′
(x, σ)

)
,

where PS ∼= M × CP1 is naturally identified with the un-primed projective spinor bundle

of M and Z(x, σ) is a map of degree one parametrized by x ∈ M . We will often denote

the image of the map for x ∈M as X. The condition that these maps be holomorphic is

∂̄σZ
α(x, σ)− fα(Z(x, σ)) = 0, (3.6)

where ∂̄σ = dσ̄ ∂
∂σ̄ is the ∂̄-operator on X ⊂ PT pulled back to PS.

3.2 Twistor action

We construct a twistorial version of the chiral action (2.4) in twistor space in two parts.

The first is an action for the self-dual sector of conformal gravity. By theorem 1, this is

equivalent to a twistor space with almost complex structure ∂̄f subject to the field equation

that it be integrable. The integrability condition is the vanishing of

N =
(
∂̄fα + [f, f ]α

)
∂α ∈ Ω0,2

PT (TPT ) . (3.7)

This will follow as the field equations from the Lagrange multiplier action [4]:

S1[g, f ] =

∫
PT

D3Z ∧ gα ∧Nα, (3.8)

where g := gαDZα ∈ Ω0,1
PT (O(−4)⊗ Ω1) and is subject to Zαgα = 0 because fα is defined

modulo Zα. (If we fix this freedom in fα so that ∂αf
α = 0, then we can allow a gauge

freedom gα → gα + ∂αχ, although this makes less geometric sense as then g becomes

non-projective.) The field equations for this action are

Nα = 0, ∂̄f (gαDZα) = 0 . (3.9)

We additionally have the gauge freedom g → g + ∂̄fα for α ∈ Ω1
PT (−4) because

∂̄fN = 0 follows from a Jacobi-like identity for the almost complex structure. Thus, on-

shell at least, g defines a cohomology class in H0,1(PT ,Ω1(−4)). We can therefore apply

the Penrose transform [58] to define a space-time field GABCD by:

GABCD =

∫
X
λAλBλCλD g(Z(x, σ)). (3.10)

In Appendix B we show that GABCD satisfies the second field equation of (2.5). Thus g

gives rise to a linear ASD conformal gravity field propagating on the SD background.

The action (3.8) is therefore equivalent to the first (self-dual) part of the chiral space-

time action (2.4), i.e., with ε2 = 0. To obtain the ASD interactions of the theory, we simply
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need to express the second term in (2.4) in twistor space. The Penrose transform (3.10)

can be implemented off-shell to give:

S2[g, f ] =

∫
PS×MPS

dµ ∧ 〈λ1 λ2〉4 g1 ∧ g2, (3.11)

where PS ×M PS ∼= M × CP1 × CP1 is the fibre-wise product of PS with itself. In this

expression for S2, we implicitly assume that the SD background M is constructed via the

non-linear graviton of theorem 1. This can be made explicit by introducing a Lagrange

multiplier field Y ∈ Ω1,0

CP1(T ∗PT ) and re-writing the action as

S2[g, f ] =

∫
M

dµ

[∫
CP1

(
Yα∂̄σZ

α − fαYα
)

+

∫
(CP1)2

〈λ1 λ2〉4 g1 ∧ g2

]
. (3.12)

Integrating out the field Yα produces the constraint ∂̄σZ
α = fα, matching (3.6) and re-

turning (3.11). Note that the Lagrange multiplier Y appears in a similar fashion in the

worldsheet action of the Berkovits-Witten twistor-string [2, 4].

This gives the twistor action for the full (i.e., non-self-dual) conformal gravity of the

form:

S[g, f ] = S1[g, f ]− ε2S2[g, f ]. (3.13)

We should note that to define the action off shell, we must nevertheless solve (3.6) in order

to define the integrals in S2. This equation can be solved with the standard four complex

dimensional family of solutions irrespective of whether the almost complex structure is

integrable. However, the integral against dµ in (3.11) is over a real four-dimensional

contour and so we must also impose a reality condition on the data in order for the moduli

space of solutions to have a real four-dimensional slice. This can be done by imposing a

reality structure on the data that is adapted to either Euclidean or split signature. Thus

for Euclidean signature we have an anti-linear involution Zα → Ẑα that is quaternionic so

that
ˆ̂
Zα = −Zα and we require f̄ = f(Ẑ). This induces a conjugation on M whose fixed

points are a real slice of Euclidean signature (an ordinary conjugation yields a real slice of

split signature).

The following theorem confirms that this is equivalent to (2.4), as desired:

Theorem 2 (Mason [5]) The twistor action S[g, f ] is classically equivalent to the con-

formal gravity action (2.4) in the sense that solutions to its Euler-Lagrange equations are

in one-to-one correspondence with solutions to the field equations (2.5) up to space-time

diffeomorphisms.

3.3 The N = 4 minimal twistor action

The extension of the above construction to N = 4 supersymmetry is straightforward.

The twistor space PT becomes a projective (3|4)-dimensional supermanifold modelled on

CP3|4 with homogeneous coordinates ZI = (Zα, χa), a = 1, . . . , 4. It is super-Calabi-Yau

being equipped with a (canonical) holomorphic volume measure D3|4Z (i.e., a canonical
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holomorphic section of the Berezinian). The data naturally extends to a deformed ∂̄-

operator and (1, 1)-form on PT

∂̄f = ∂̄ + f I
∂

∂ZI
, g := gIDZ

I ∈ Ω1,1
PT , DZI = dZI − f I .

With N = 4 supersymmetry, the conditions ∂If
I = 0 and ZIgI = 0 no longer fix the

gauge freedoms of adding a multiple of ZI to f I or ∂I to g. Since ∂If
I = 0 on account of

fermionic signs, ∂If
I = 0 is compatible with adding a multiple of ZI to f I , and ZIgI = 0

is compatible with adding ∂Iα to g, as α now has homogeneity zero rather than −4.

This allows us to define (3.13) with respect to the new super-geometry by taking:

S1[g, f ] =

∫
PT

D3|4Z ∧ gI ∧N I , (3.14)

S2[g, f ] =

∫
PS×MPS

dµ ∧ g1 ∧ g2. (3.15)

Here, as we will see later in §4, dµ is a canonically defined measure on the (4|8)-dimensional

chiral space-time M , the space of degree-one rational curves in PT . As in the N = 0

setting, we can make the construction of the SD background M explicit by introducing the

Lagrange multiplier Y and writing

S2[g, f ] =

∫
M

dµ

[∫
CP1

(
YI ∂̄σZ

I − f IYI
)

+

∫
(CP1)2

g1 ∧ g2

]
. (3.16)

In the supersymmetric setting, gIDZ
I defines a chiral superfield on space-time:

G(x, θ) =

∫
X
g(Z(x, θ, σ)), (3.17)

where G has an expansion like:

G(x, θ) = ϕ+ · · ·+ θ4 ABCDΨABCD + · · · .
The Penrose transform can be used to show that the individual fields in G correspond to the

chiral (ASD) half of the N = 4 CSG field content, as desired. Heuristically, the space-time

translation of our N = 4 twistor action will look like

S[W,G] =

∫
M

dµ
(
W(x, θ) G(x, θ)− ε2G(x, θ)2

)
→
∫
M

dµW(x, θ)2, (3.18)

where W(x, θ) is the a chiral superfield which, on-shell, is a Lorentz scalar encoding the

N = 4 Weyl multiplet (c.f., [40]).

This action has the correct linear reduction for N = 4 CSG [4], and must correspond to

a minimal N = 4 CSG since the functional form prohibits any cubic couplings between ϕ

and the Weyl curvature. However, note that our twistor action only possesses the linearized

E2 global symmetry of translating the scalar ϕ rather than the fully non-linear SU(1, 1).6

Nevertheless, since Einstein supergravity still forms a subsector of this degenerate theory

[43], we are able to apply the conformal/Einstein gravity correspondence.

6The additional U(1)-symmetry of the minimal model can be seen as arising from g → e4iβg together

with χa → e−iβχa which induces a similar phase rotation for θaA. This symmetry is the key for ruling out

the ϕ (Weyl)2 couplings and hence ensuring that the conformal/Einstein gravity correspondence applies.
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3.4 The Einstein sector

We will apply Maldacena’s argument to the minimal N = 4 CSG twistor action; this entails

restricting S[g, f ] to Einstein polarization states. A conformal factor Ω from (2.16) relating

spin-two and linearized Einstein fields can be specified on twistor space by introducing an

infinity twistor IIJ , a skew bi-twistor.7

Choose I0 and I1 to be of rank-two such that

I0 IJZ
IdZJ = 〈λdλ〉, I1 IJZ

IdZJ = [µ dµ].

Then the infinity twistor appropriate to Einstein polarization states with cosmological

constant Λ on the affine de Sitter patch is given by I = I0 +ΛI1. We can define an upstairs

bosonic part by Iαβ = 1
2ε
αβγδIγδ and we will have

IαβI
βγ = Λδγα .

This relation can be extended supersymmetrically if we set:

IIJ =

 εAB 0 0

0 ΛεA′B′ 0

0 0
√

Λδab

 , IIJ =

ΛεAB 0 0

0 εA
′B′ 0

0 0
√

Λδab

 . (3.19)

Geometrically, these are encoded into a weighted contact form τ and Poisson structure on

PT :

τ = IIJZ
IDZJ , Π = IIJ∂I ∧ ∂J , {f, g} = IIJ∂If ∂Jg. (3.20)

We now require that the complex deformation ∂̄f be Hamiltonian with respect to Π

LfΠ = 0 ⇒ f = IIJ∂Ih∂J , h ∈ Ω0,1
PT (2).

Infinitesimal Hamiltonian diffeomorphisms are pure gauge and modulo such, h defines a

cohomology class in H0,1(PT ,O(2)). The Penrose transform realizes this as a N = 4

graviton multiplet of helicity +2 via the integral formula

ψ̃(x, θ)A′B′C′D′ =

∫
X

∂4h

∂µA′ · · · ∂µD′ ∧ τ.

Plugging this into (3.14), we get:

S1[g, f ]→ S1[g, h] =

∫
PT

D3|4Z ∧ gI ∧ IIJ∂J
(
∂̄h+

1

2
{h, h}

)
=

∫
PT

D3|4Z ∧ IIJ∂IgJ ∧
(
∂̄h+

1

2
{h, h}

)
, (3.21)

with the second line following via integration by parts. On-shell h̃ := IIJ∂IgJ defines

an element of H0,1(PT ,O(−2)). The Penrose transform identifies this with the N = 4

graviton multiplet of helicity −2 [37], this time starting with the scalar

φ(x, θ) =

∫
X
h̃ ∧ τ.

7In the supersymmetric case, the fermionic part of the infinity twistor corresponds to a gauging of the

N = 4 R-symmetry [59]; this will not play an important role in this paper.
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Given some h̃ ∈ H0,1(PT ,O(−2)) we can also write g = h̃ ∧ τ . With this, (3.21)

becomes:

S1[g, h]→ S1[h̃, h] =

∫
PT

D3|4Z ∧ IIJ∂I
(
IJKZ

K h̃
)
∧
(
∂̄h+

1

2
{h, h}

)
= 2Λ

∫
PT

D3|4Z ∧ h̃ ∧
(
∂̄h+

1

2
{h, h}

)
. (3.22)

This is precisely the self-dual twistor action for Einstein gravity, up to the factor of Λ

required by conformal/Einstein gravity correspondence [16, 60].

The Einstein reduction for the second term of the twistor action follows easily:

S2[g, f ]→ S2[h̃, h] =

∫
PS×MPS

dµ ∧ h̃1 τ1 ∧ h̃2 τ2. (3.23)

So the reduction of the conformal gravity twistor action to Einstein wavefunctions is simply

S[h̃, h] = S1[h̃, h]− ε2S2[h̃, h]. (3.24)

The remaining diffeomorphism freedom on PT is captured by the transformations:

Zα → Zα + {Zα, χ} , h→ h+ ∂̄χ+ {h, χ} ,

for χ a weight +2 function [60].

4 The MHV Amplitude with Cosmological Constant

We are now in a position to derive a twistorial formula for the MHV amplitude of Einstein

supergravity with a cosmological constant. By (3.23) and proposition A.2, we know that

the generating functional for these amplitudes (with N = 4 supersymmetry) is given by

1

Λ

∫
PS×MPS

dµ ∧ h̃1 τ1 ∧ h̃2 τ2, (4.1)

where the background space-time M is self dual and so can be obtained via the non-linear

graviton construction by solving the equation

∂̄σZ
I(x, σ) = f I(Z) = IIJ∂Jh(Z) (4.2)

While we will focus on Einstein states, much of our calculation is easily applicable to

conformal gravity, since polarization states for this theory can be expressed in terms of Ein-

stein states. Given the permutation symmetry of the positive helicity and negative helicity

fields amongst themselves, we can generate all conformal gravity amplitudes by considering

Einstein states with one choice of infinity twistor for the positive helicity states (upstairs

indices), and a different one for the negative helicity states (downstairs indices). Restrict-

ing to the Einstein subsector is then accomplished by requiring these infinity twistors be

compatible as in (3.19).
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Now, equation (4.2) has the four complex parameter family of solutions that defines

(complexified) space-time [55, 61].8 To obtain a formula for the n-point amplitude, we will

obtain a perturbative expansion of the generating functional to (n− 2)th order by solving

equation (4.2) peturbatively. This will lead to Feynman diagrams on the CP1 factors for

the integrand of the MHV generating function (4.1). These are then summed using the

matrix-tree theorem to give a compact formula in terms of reduced determinants for the

MHV amplitude analogous to that of Hodges [12]. This gives a clear explanation of the

use of the matrix-tree theorem for this amplitude described in [17, 65].

4.1 The measure

To start with we will first define the measure dµ used in (4.1). To this end, and for the

the later perturbation expansion, we rewrite (4.2) as an integral equation

ZI(x, σ) = XI
Aσ

A + ∂̄−1
σ

(
f I(Z)

)
, (4.3)

where XI
Aσ

A solves the homogeneous equation and XIA parametrizes its solutions. Since

f I has weight +1, there is an ambiguity in the choice of ∂̄−1
σ and we can choose ∂̄−1 to

vanishes at two points. For simplicity we will require that it vanishes at σA = ξA to second

order by setting

ZI(x, σ) = XI
Aσ

A +
1

2πi

∫
CP1

Dσ′

(σσ′)

(ξσ)2

(ξσ′)2
f I(Z(σ′)). (4.4)

Physical observables such as scattering amplitudes should be independent of ξ at the end

of our calculations and we will check this explicitly.

We now write ZI(x, σ) = X IAσA defining

X IA(x, σ) = XIA +
ξA

2πi

∫
CP1

Dσ′

(σσ′)

(ξσ)

(ξσ′)2
f I(Z(σ′)) . (4.5)

which solves

∂̄σX IA(x, σ) =
ξAf I

(ξσ)
. (4.6)

This enables us to take the exterior derivative of X with respect to the space-time coordi-

nate x, finding

∂̄σ
(
dxX IA(x, σ)

)
= ∂Jf

I ξ
AσB
(ξσ)

dxX JB(x, σ). (4.7)

Since ∂If
I = 0, this means that the top-degree form d8|8X is holomorphic in σ and of

weight zero; by Liouville’s theorem, it is therefore independent of σ. But this means that

dµ =
d8|8X

vol GL(2,C)
=

d8|8X

vol GL(2,C)
,

is an invariant volume form on the space-time M itself.9

8When Λ = 0, it is a twistorial formulation of the ‘good cut equation’ [62–64].
9Here GL(2,C) is the choice of homogeneous coordinates σA on X ∼= CP1. The division by vol GL(2,C)

is understood in the Fadeev-Popov sense: one chooses a section of the group action, and multiplies by the

appropriate Jacobian factor to obtain a well-define volume form on the (4|8)-dimensional quotient. One

can also define this form to be that obtained by contracting a basis set of the generators of GL(2,C) into

the volume form in the numerator and observing that the form is one pulled-back from the quotient.
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4.2 A Feynman diagram calculus for the perturbation theory

We now introduce a Feynman diagram calculus on CP1 for the perturbative evaluation of

the generating functional (4.1). We compute the n-point functional as a sum of diagrams

defined as follows:

• Draw a black vertex for each of h̃1, h̃2.

• Draw a grey vertex for each contact structure τ1, τ2.

• Draw a white vertex for each of the n− 2 fields hi.

• Draw an oriented edge out from each white vertex to some other vertex such that

the resulting diagram is a forest of trees rooted at the black or grey vertices.

h̃ τ h

Figure 5. Building blocks for Feynman diagrams

The computational dictionary associated to these diagrams comes directly from the

generating functional (4.1). Recall that we can make the SD background space-time M

explicit by introducing a Lagrange multiplier field YI as in (3.16); at the level of the MHV

generating functional, this takes the form:∫
M

dµ

[∫
CP1

(
YI ∂̄σZ

I − f IYI
)

+
1

Λ

∫
(CP1)2

h̃1 τ1 ∧ h̃2 τ2

]
. (4.8)

Our diagrams arise by considering the tree-level (since the curve X ⊂ PT is built by the

classical solution to (4.2)) Feynman rules on CP1.

Each diagram corresponds to an integrand to be integrated over the n-fold product of

the CP1 factor in (4.1) and then over M. The vertices are each associated to a point σi on

the ith CP1 factor. For i = 1, 2 we have a wavefunction h̃(Z(σi)) for the black vertices or

τi = IIJZ
I(σi)∂Z

J(σi) for the grey vertices. Writing

f I =

n∑
j=3

f I(Z(σj)) =

n∑
j=3

IIJ
∂h(Z(σj))

∂ZJ(σj)
,

we obtain the n − 2 white vertices of the form [Y (Z(σj)), ∂h(Z(σj))]. The kinetic term

YI ∂̄σZ
I defines a propagator in accordance with (4.4), so an edge from a white node j > 2

to a black or white node i corresponds to the differential operator

(ξσi)
2Dσj

(ξσj)2(σjσi)
IIJ

∂h(Z(σj))

∂ZJ(σj)

∂

∂ZI(σi)
(4.9)

acting on the wave function at the ith node of the diagram. We will give the formulae for

the action on the τ associated to the grey vertices below, as they require a more subtle

treatment.
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Since there is a single YI in each white vertex, there are n − 2 total edges in each

diagram, and the fact that they are forests of trees requires them to be rooted at black or

grey vertices. Additionally, since the wavefunctions h̃, h depend non-polynomially on Z,

the white and black vertices can have have an arbitrary number of incoming edges. Since

τ = 〈Z(σ), ∂Z(σ)〉 is of order two in Z, the grey vertices can absorb at most two edges.

To summarize, we represent the perturbative expansion of the MHV generating func-

tional (4.1) by using a CP1-Feynman diagram calculus, which follows naturally from the

‘explicit’ form of the generating functional (4.8). Since we work classically, each diagram

corresponds to a forest of trees on n+2 (2 τs + 2 h̃s + n−2 hs) vertices, rooted at a black

or grey vertex. Restricting to Einstein states, this perturbative expansion acts on Z(x, σ)

as

ZI(x, σ)→
∫
CP1

Dσ′

(σσ′)

(ξσ)2

(ξσ′)2
IIJ

∂h(Z(σ′)

∂ZJ(σ′)
, (4.10)

while its action on a wavefunction h or h̃ is:

h(Z(σ))→
∫
CP1

Dσ′

(σσ′)

(ξσ)2

(ξσ′)2

[
∂

∂Z(σ)
,

∂

∂Z(σ′)

]
h(Z(σ)) h(Z(σ′)). (4.11)

Note that the diagram calculus of the perturbative iteration is identical to the semi-

classical connected tree formalism which arose in the context of twistor-string theory in

[17]. There, the trees emerged in order to extract Einstein amplitudes from the Berkovits-

Witten twistor-string at degree one. Here, the trees arise naturally from the twistor action

of minimal N = 4 CSG: this proves that they are isolating the minimal content of BW-CSG

for a degree-one instanton.

4.3 The role of the contact structure

All the diagrams have two grey vertices corresponding to the contact structures τi =

〈Z(σi), ∂Z(σi)〉, i = 1, 2. These are quadratic in Z and so can have at most two incoming

arrows; higher numbers of incoming arrows will vanish. In fact, if the upstairs infinity

twistor is the inverse of the downstairs one (as in the Einstein case), other contributions

vanish as follows.

Lemma 4.1 If a Feynman diagram has a disconnected piece with just one white vertex

connected to a grey vertex we will refer to it as isolated if the corresponding white vertex

in the perturbative expansion has no incoming arrows as in (a.) of Figure 6. Such isolated

deformations of the contact structure give a vanishing contribution to the vertex generating

functional.

(a.) (b.)

Figure 6. An isolated (a.) and un-isolated (b.) deformation of τ .
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Proof: Without loss of generality, consider perturbative expansions with a single isolated

arrow from (white) vertex i to τ1. This corresponds to a contribution

〈Z(σ1), ∂Z(σ1)〉 → IIJ

∫
CP1

Dσi
(1i)2

(ξ1)

(ξi)2

[
(ξ1)(1i)∂ZJ(σ1)f I(σi) + (ξ1)(idσ1)ZI(σ1)fJ(σi)

+2(1i)(ξdσ1)ZI(σ1)fJ(σi)
]

= IIJ

∫
CP1

Dσi
(1i)2

(ξ1)

(ξi)2

[
(ξ1)(1i)∂ZJ(σ1)f I(σi) + Dσ1(ξi)ZI(σ1)fJ(σi)

+(1i)(ξdσ1)ZI(σ1)fJ(σi)
]
,

with the second expression following by the Schouten identity.

Now recall that the map to twistor space takes the form ZI(σ) = XI
Aσ

A = (Xσ)I , so

the Schouten identity gives

∂ZJ(σ1) (1i) = ZJ(σi) Dσ1 − ZJ(σ1) (idσ1),

and feeding this into the above expression leaves us with

IIJDσ1

∫
CP1

Dσi
(1i)2

(ξ1)

(ξi)2

(
2(ξi) ZI(σ1)− (ξ1) ZI(σi)

)
fJ(Z(σi)).

Using f I = IIJ∂Jh, we obtain a contraction between two infinity twistors which gives

IIJI
JK = ΛδKI and we have

ΛDσ1

∫
CP1

Dσi (ξ1)

(1i)2(ξi)2

(
2(ξi)ZI(σ1)− (ξ1)ZI(σi)

)
∂Ih(σi)

= 2ΛDσ1

∫
CP1

Dσi (ξ1)

(1i)2(ξi)2
((ξi)σ1 · ∂ih(σi)− (ξ1)h(σi))

= 2ΛDσ1σ1A

∫
CP1

∂

∂σiA

(
Dσi (ξ1)h(σi)

(1i)2(ξi)

)
= 2ΛDσ1σ1A

∫
CP1

∂i

(
σAi (ξ1)h(σi)

(1i)2(ξi)

)
.

In the second line we have used the homogeneity relation, chain rule, and the linearity of

Z(σi) in σi to deduce that σ1 · ∂ih(Z(σi)) = ZI(σ1)∂Ih(Z(σi)).

The integrand of this expression has potential poles at σi = σ1, ξ which could lead to

boundary contributions when we apply Stokes theorem. If we take σi = σ1 + zξ, then the

integral takes the form:∫
CP1

∂i

(
g(z)dz̄

z

)
=

∮
r=∞

g(z)dz̄

z
−
∮
r=0

g(z)dz̄

z
,

where g(z) is a smooth weighted holomorphic function. Writing z = reiθ, we are left with

−i
∮
r=∞

g(z)e−2iθdθ + i

∮
r=0

g(z)e−2iθdθ = 0,
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(a.)

(b.)

Figure 7. Some diagrams for the 5-point amplitude which have a non-vanishing (a.), or ex-

cluded/vanishing (b.) contribution.

so any potential boundary terms do indeed vanish. The case with two isolated contractions

into τ1 from vertices i and j follows similarly. 2

While this lemma ensures that we can neglect any isolated arrows to the contact

structures in our diagrams, it does not rule out un-isolated contributions. Indeed, if τ1 is

connected to vertex i which is in turn connected to vertex j, then additional σi-dependence

is introduced by the propagator and we do not obtain the exact derivative that was the

key to the proof of lemma 4.1. Hence, we will still need propagators for when one or two

deformations act at τ .

Since both the contact structure and the perturbative iteration involve the infinity

twistor, it is clear that these propagators will be O(Λ). After a bit of algebra, we find that

the propagator for a single deformation of a contact structure (say, τ1) is given by:

ψ1
i = Λ

(ξ1)

(1i)2(ξi)2

[
(ξi) ZI(σ1) + (1i) ZI(ξ)

] ∂

∂ZI(σi)
. (4.12)

Similarly, the propagator for two deformations of the same contact structure is given by:

ω1
ij = −Λ

(1ξ)4(ij)

(1i)2(1j)2(ξi)2(ξj)2

[
∂

∂Z(σi)
,

∂

∂Z(σj)

]
. (4.13)

Note that there are many equivalent formulae for these propagators following from the

Schouten identity; the two we have presented here are the most useful for our following

calculations.

Clearly, at any order in n there are many diagrams which can be drawn on the n+ 2

vertices which are either excluded from our diagram calculus or give a vanishing contribu-

tion to the generating functional. In Figure 7, we illustrate several examples for the case of

the 5-point amplitude. All the diagrams in (a.) give a non-vanishing contribution, while

all those in (b.) are either excluded or give a vanishing contribution. In the latter case, the

first diagram of (b.) is excluded because of the loop; the second vanishes because there are

isolated deformations of the contact structure so lemma 4.1 applies; and the third vanishes

because there are more than two deformations of a contact structure.
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4.4 The MHV Amplitude

At this point, we are ready to implement our diagram calculus by perturbatively expanding

the generating functional S2[h, h̃] and recovering the MHV amplitude. For n-points, this

involves summing all the associated CP1 Feynman diagrams; as explained before, each of

these diagrams will be a forest on n+ 2 vertices (2h̃+(n−2)h+2τ). Using some basic facts

from algebraic combinatorics, we can perform this sum of Feynman diagrams to obtain the

MHV amplitude. We then verify that this result is independent of ξ ∈ CP1 and that as

Λ→ 0 it limits onto the Hodges formula for the MHV amplitude [12].

Denote the set of all Feynman diagrams contributing to the n-point amplitude as Fn.

This set has a natural disjoint-union splitting based upon the number of arrows which are

incoming at each of the two contact structures τ1, τ2. Explicitly, we have

Fn =
4⊔

k=0

Fnk ,

where each diagram Γ ∈ Fnk is a forest on n+2 vertices which has k arrows into the contact

structures (for k > 0 all the diagrams have a vanishing contribution).

The simplest case involves no deformations of the contact structures; its contribution

to the n-point vertex can be written heuristically as:

∑
Γ∈Fn0

∫
Mn,1

dµ (X2)2 FΓ

n∏
i=1

h(Z(σi)) Dσi,

where Mn,1 is the moduli space of n-pointed holomorphic maps ZI : CP1 → PT of degree

one [66], X2 ≡ IIJX
I
AX

JA, and FΓ encodes the contribution from diagram Γ built out of

the propagators (5.2). Since there are no arrows into either of the contact structures, we

have simply written τ1,2 = X2 Dσ1,2.

Each term in this sum corresponds to a forest of trees rooted at the two black vertices

corresponding to h̃1 and h̃2. As was first illustrated in [17, 65] the sum of such forests

can be accomplished using the Matrix-Tree theorem, an analogue of Kirchoff’s theorem for

directed graphs (c.f., [67–69]). This results in the contribution∫
Mn,1

dµ (X2)2
∣∣H12

12

∣∣ n∏
i=1

h(Z(σi)) Dσi, (4.14)

where H is (up to an irrelevant conjugation) the weighted n× n Laplacian matrix for the

master graph on all black and white vertices whose entries are given by

Hij =


1

(ij)

[
∂

∂Z(σi)
, ∂
∂Z(σi)

]
if i 6= j

−∑j 6=iHij
(ξj)2

(ξi)2
if i = j

. (4.15)

The notation |H12
12| indicates the determinant of H with the row and columns corresponding

to h̃1 and h̃2 removed.
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We can now apply the Matrix-Tree theorem in a similar fashion to the other subsets

of Feynman graphs Fnk>0. For instance, consider graphs in Fn1 . The single deformation

of the contact structure may come from any white vertex i = 3, . . . , n, and results in a

propagator ψ1
i or ψ2

i from (4.12). All the remaining arrows in the graph will correspond

to propagators of the form (4.15), so once we factor out the propagator to τ we are in

the business of counting forests of trees rooted at vertices 1, 2, or i. Via the Matrix-Tree

theorem, we then have:

∑
Γ∈Fn1

∫
Mn,1

dµ X2 FΓ

n∏
i=1

h(Z(σi)) Dσi

=

∫
Mn,1

dµ X2
n∑
i=3

ψ1
i

∣∣H12i
12i

∣∣ n∏
j=1

h(Z(σj)) Dσj + (1↔ 2). (4.16)

A similar pattern follows for the remaining subsets in Fn. Adding all of them together

and including the required factor of Λ−1 from the conformal/Einstein gravity correspon-

dence gives us the following formula for the MHV amplitude:

Mn,0 =
1

Λ

∫
Mn,1

dµ

[
(X2)2

∣∣H12
12

∣∣+X2
∑
i

ψ1
i

∣∣H12i
12i

∣∣
+X2

∑
i,j

ω1
ij

∣∣∣H12ij
12ij

∣∣∣+
∑
i,j

ψ1
i ψ

2
j

∣∣∣H12ij
12ij

∣∣∣+
∑
i,j,k

ψ1
i ω

2
jk

∣∣∣H12ijk
12ijk

∣∣∣
+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏
m=1

h(Z(σm)) Dσm + (1↔ 2). (4.17)

In this expression, the sums are understood to run over all indices which are not excluded

from the determinant, and also to symmetrize on those indices. For instance, in the first

term of the second line
∑

i,j runs over all i, j = 3, . . . n with i 6= j.

This formula is a perfectly valid representation of the MHV amplitude with cosmo-

logical constant; it can be simplified substantially if we investigate its properties a bit

further, however. Each term in (4.17) takes the form of a differential operator acting

on the wavefunctions. With momentum eigenstates and a generic infinity twistor these

operators become rather complicated, involving derivatives of delta-functions. Our manip-

ulations would be considerably simpler if we could treat these terms algebraically. This

can be accomplished by working with dual twistor wavefunctions:

h(Z(σi)) =

∫
C

dti

t1+wi
i

exp (itiWi · Z(σi)) , wi =

{
−2 if i = 1, 2

2 otherwise
. (4.18)

Here Wi I = (µ̃A, λ̃A
′

i ) are coordinates on n copies of dual twistor space, PT∨. These

wavefunctions have been used before in other contexts [14, 70], and can be paired with

momentum eigenstates in an appropriate manner to obtain functionals of momenta at the

end of any calculation. Furthermore, the scaling parameters ti can be absorbed into the
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worldsheet coordinates by defining a new set of non-homogeneous coordinates: σiti → σi,

dtiDσi → d2σi.

With (4.18), all the propagators of the Feynman diagram calculus become purely

algebraic. In particular, we now have:

Hii =
∑
j 6=i

[Wi,Wj ]

(ij)

(ξj)2

(ξi)2
,

ψ1
i = Λ i

(ξ1) Wi I

(1i)2(ξi)2

[
(ξi) ZI(σ1) + (1i) ZI(ξ)

]
, ω1

ij = Λ
[Wi,Wj ] (1ξ)4(ij)

(1i)2(1j)2(ξi)2(ξj)2
.

Furthermore, the product of wavefunctions and measures can be expressed compactly as

n∏
i=1

h(Z(σi)) Dσi = eiP·X d2σ, PAI =
n∑
i=1

Wi Iσ
A
i , d2σ ≡

n∏
i=1

d2σi.

We now note that the second term in the first line of (4.17) can be written as∫
dµ X2

∑
i

ψ1
i

∣∣H12i
12i

∣∣ eiP·Xd2σ

=
1

Λ

∫
dµ X2

∑
i

∣∣H12i
12i

∣∣ ((ξ1)(ξi)σA1 + (ξ1)(1i)ξA

(1i)2(ξi)2

)
∂eiP·X

∂σAi
d2σ.

But this means that we can integrate by parts to find:

i

∫
dµ

∑
i

∣∣H12i
12i

∣∣ (ξ1) Wi I

(1i)2(ξi)2

[
(ξi)ZI(σ1) + (1i)ZI(ξ)

]
eiP·Xd2σ

= − 1

Λ

∫
dµ X2eiP·X

∑
i

∂

∂σAi

(∣∣H12i
12i

∣∣ (ξ1)(ξi)σA1 + (ξ1)(1i)ξA

(1i)2(ξi)2

)
d2σ

= − 1

Λ

∫
dµ X2eiP·X

∑
i,j

∣∣∣H12ij
12ij

∣∣∣ [Wi,Wj ](1ξ)
4(ij)

(1i)2(1j)2(ξi)2(ξj)2
d2σ

= − 1

Λ

∫
dµ X2

∑
i,j

ω1
ij

∣∣∣H12ij
12ij

∣∣∣ eiP·Xd2σ.

with the third line following after symmetrizing over (i ↔ j) and several applications of

the Schouten identity.

Hence, we see that following an integration by parts, the second term in (4.17) cancels

the third term. A similar calculation demonstrates that the fourth and fifth terms also

cancel with each other. We are therefore able to reduce our formula for the amplitude to

one with only two terms:

Mn,0 =
1

Λ

∫
Mn,1

dµ

(X2)2
∣∣H12

12

∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏
m=1

h(Z(σm)) Dσm + (1↔ 2),

(4.19)
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where we have restored arbitrary twistor wavefunctions and homogeneous coordinates.

Beyond the obvious improvement in terms of simplicity, this new representation of the

amplitude is also useful for investigating the flat space-limit of Mn,0.

A basic property that (4.17) or (4.19) must have is the correct behaviour under Λ→ 0.

In particular, Mn,0 should limit onto Hodges’ formula for the MHV amplitude in this

flat-space limit. In the language of N = 4 supergravity, Hodges’ formula is [12]10:

Mn,0(Λ = 0) =

∫
Mn,1

dµ
(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ n∏
j=1

h(Z(σj)) Dσj . (4.20)

Now, the conformal/Einstein gravity correspondence should allow us to extract the

Einstein MHV amplitude from (4.19) even in the Λ → 0 limit. If we work with the dual

twistor wavefunctions, it is easy to see that we only need to consider

lim
Λ→0
Mn,0 = lim

Λ→0

1

Λ

∫
Mn,1

dµ (X2)2
∣∣H12

12

∣∣ eiP·Xd2σ + (1↔ 2), (4.21)

since the second term in (4.19) will go like O(Λ) in the limit. However, in [17] it was shown

that (4.21) was equal to Hodges’ formula, and precisely the same methods can be used

here to give the same result. We can therefore conclude that our expression for the MHV

amplitude (4.19) has the desired behaviour:

lim
Λ→0
Mn,0 =

∫
Mn,1

dµ
(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ n∏
j=1

h(Z(σj)) Dσj . (4.22)

While the flat-space limit is an easy check on the validity of our formula, there is an-

other more non-trivial property which a correct formula must have: it must be independent

of the reference spinor ξ ∈ CP1. This entered the definition of the perturbative iteration in

(4.4) due to the ambiguity in defining ∂̄−1
σ on forms of positive degree. Hence, the choice

of ξ is equivalent to a gauge choice of propagator for our Feynman diagram formalism on

CP1; by (4.5) a variation in ξ should correspond to a diffeomorphism on the projective

spinor bundle PS. In other words, observables such as Mn,0 should be independent of the

reference spinor.

An obvious way of demonstrating this is to consider the infinitesimal variation gener-

ated by the derivative dξ = dξA ∂
∂ξA

. The calculation of dξMn,0 is a lengthy but relatively

straightforward procedure which is carried out in Appendix C; the final result is that

dξMn,0 =

∫
Mn,1

d8|8X

vol GL(2,C)

∂

∂XIA
V IA = 0, (4.23)

where V IA are the components of a smooth vector field on Mn,1. The fact that dξMn,0

vanishes as a total divergence is in accordance with the claim that a variation in ξ should

correspond to a diffeomorphism with respect to our coordinates on the spinor bundle PS,

and proves that (4.17), (4.19) is a well-defined formula for the amplitude.

10Note that there are many equivalent representations of this formula, we have simply presented the one

which connects most directly to our conformal gravity arguments.
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4.5 Twistor-string-like formula

We conclude our exposition of the twistor formula for the MHV amplitude with cosmolog-

ical constant by noting that it can be manipulated into a format which is highly suggestive

of a twistor-string origin. Skinner’s N = 8 twistor-string is the first example of a theory

which treats Einstein supergravity directly with twistor methods [15]. As a string theory,

it is anomaly free for any genus worldsheet and is known to produce the complete tree-

level S-matrix of N = 8 supergravity on a flat background. Furthermore, the worldsheet

theory is perfectly well-defined for a non-simple infinity twistor, so in principle it should

also be able to produce (after truncation to N = 4 supersymmetry) the same twistor space

formulae we have derived here.

Unfortunately, it is not currently known how to compute meaningful worldsheet corre-

lators of gravitational vertex operators with a cosmological constant in Skinner’s twistor-

string (beyond three-points). The issues which arise are the failure for the correlators to

be independent of the position of picture changing operators as well as reference spinors

(analogous to ξ ∈ CP1); this indicates that the correlators are not gauge invariant with

respect to the worldsheet degrees of freedom. These problems could stem from any number

of sources, including an incomplete understanding of the full spectrum of vertex operators

for the theory, or the worldsheet Feynman rules when Λ 6= 0. Hence, it seems natural to

ask if our formulae for Mn,0 could shed any light on this twistor-string calculation.

Initially, it appears that the structure of Mn,0 is a long way off from something we

might expect from the twistor-string. If we use dual twistor wavefunctions (4.18), then

(4.19) takes the form

Mn,0 =
1

Λ

∫
d8|8X

vol GL(2,C)

(X2)2
∣∣H12

12

∣∣+
∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 eiP·X d2σ, (4.24)

so the leading contribution (i.e., with no contact structure deformations) for the MHV

amplitude in N = 4 supergravity is a twice-reduced determinant. These two reductions

correspond to the two negative helicity graviton multiplets of the amplitude.

However, in Skinner’s twistor-string the fundamental object is a thrice reduced deter-

minant (just as it is in the Hodges formula). In the context of N = 8 supergravity, all

external states are in the same multiplet so there is no preference based on helicity; the

three reductions instead correspond to building a top-degree form on the space of fermionic

automorphisms of the worldsheet [15]. A bit of manipulation (essentially equivalent to the

computations required to extract Hodges’ formula from (4.24) in the Λ → 0 limit [17])

shows that we can also get our formula for Mn,0 into a thrice-reduced determinant form.

Focusing on the first term in (4.24), note that we can represent each factor of X2 by

a differential ‘wave operator’ acting on eiP·X :

X2 → 2 =
IIJ
(12)

∂

∂W1 I

∂

∂W2 J
. (4.25)

Doing this allows us to re-write the twice-reduced contribution to Mn,0 as

1

Λ

∫
d8|8X

vol GL(2,C)
d2σ

∣∣H12
12

∣∣ 22eiP·X =
1

Λ

∫
d2σ

vol GL(2,C)

∣∣H12
12

∣∣ 22δ8|8(P). (4.26)
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On the support of this delta-function, we know that the matrix H has co-rank three [12, 13]

so we can integrate by parts once with respect to ∂
∂W2

to give

− 1

Λ

∫
d2σ

vol GL(2,C)

∂

∂W2 J

∣∣H12
12

∣∣ IIJ
(12)

∂

∂W1 I
2δ8|8(P)

= −
∫

d2σ

vol GL(2,C)

∑
i

(ξ2)2

(12)(i2)(ξi)2

∣∣H12i
12i

∣∣ Wi ·
∂

∂W1
2δ8|8(P).

Once again, the support of the delta-function indicates that we can take Wi · ∂
∂W1

= σ1 · ∂∂σi ,
and then integrate by parts once again with respect to d2σi. This leaves us with∫

d2σ

vol GL(2,C)

∑
i

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣ 2δ8|8(P)

+

∫
d2σ

vol GL(2,C)

∑
i,j

(
(ξ2)2(1ξ)(ji) + (ξ2)2(1j)(ξi)

(12)(i2)(ji)(ξi)(ξj)2

)
Hij

∣∣∣H12ij
12ij

∣∣∣ 2δ8|8(P). (4.27)

The contribution from the second line can be further simplified by noting that the

summation entails symmetrization, term-by-term, in both 1↔ 2 and i↔ j. A straightfor-

ward calculation involving several applications of the Schouten identity allows us to reduce

this to ∫
d2σ

vol GL(2,C)

∑
i,j

(
(ξ1)2(i2)(j2) + (ξ2)2(i1)(j1)

(1i)(2i)(1j)(2j)(ξi)(ξj)

)
Hij

∣∣∣H12ij
12ij

∣∣∣ 2δ8|8(P).

Upon using the symmetry of i ↔ j and the basic properties of determinants, we are

finally left with an expression for the amplitude with thrice-reduced determinants:

Mn,0 =

∫
Mn,1

dµ

X2
∑
i,j

(
(ξ1)2(i2)(j2) + (ξ2)2(i1)(j1)

(1i)(2i)(1j)(2j)(ξi)(ξj)

) ∣∣H12i
12j

∣∣
X2
∑
i

(12)2

(1i)2(2i)2

∣∣H12i
12i

∣∣+
1

Λ

∑
i,j,k,l

ω1
ijω

2
kl

∣∣∣H12ijkl
12ijkl

∣∣∣
 n∏

m=1

h(Z(σm)) Dσm, (4.28)

where we have reverted to arbitrary twistor wavefunctions. Note that not only does (4.28)

have the desired thrice-reduced determinants, but it also features Vandermonde factors in

the coordinates σi which are known to arise in the context of twistor-string theory. Of

course, actually deriving this formula from Skinner’s twistor-string remains an important

task to which we hope to turn in future work. In particular, it is not immediately clear how

the final term (with a six-times reduced determinant) might arise from the twistor-string

theory.

5 Discussion & Conclusion

In this paper we have derived a twistorial formula for the MHV scattering amplitude of

Einstein gravity with a cosmological constant. This builds on the many recent advances in
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understanding the tree-level S-matrix of gravity on a flat background, and demonstrates yet

another application for twistor methods. The key ingredients were the conformal/Einstein

gravity correspondence, the twistor action for conformal gravity, and the CP1 Feynman

diagram calculus we used to extract the amplitude. This approach leaves many interesting

open directions for future research, and we conclude by discussing some of them here. Of

particular interest is the potential to derive a MHV formalism for conformal–and hence

Einstein–gravity using the twistor action, but we also consider the possibility of studying

non-minimal CSG on twistor space as well as how the twistorial formula presented here

could be translated into a well-defined physical observable in momentum space.

5.1 The CSW gauge and the MHV formalism

One of the important applications of the twistor action for N = 4 SYM is that it leads to

a derivation of the MHV formalism [7] for Yang-Mills by virtue of an axial gauge choice

[19, 20]. The key benefit of the gauge choice is that it exploits the integrability of the

self-dual sector, essentially trivializing it by knocking out the non-linear terms in the self-

dual part of the action so that the only vertices are those arising from the non-local part

of the action. The existence of an MHV formalism for gravity remains controversial [21,

22].11 Nevertheless, we can still carry out the axial gauge-fixing procedure for the twistor

action of conformal gravity, which leads to a twistorial definition of a MHV formalism.

Upon restricting to Einstein states, this induces a twistorial MHV formalism for Einstein

gravity. We outline this argument here, leaving a more complete treatment and (hopefully)

a translation to a momentum space formalism for the future.

Let us work with the N = 0 twistor action of (3.13). A choice of gauge in our

gravitational context is a choice of coordinates together with a choice of gauge for the

Dolbeault representative g. In order to do this, we choose a reference twistor denoted Z∗
and the key idea is to require that the lines through Z∗ in the flat background are also

holomorphic lines for the deformed twistor space PT . This implies that the (0, 1)-form

part of fα vanishes on restriction to these lines. Similarly, the gauge freedom for gα is

chosen so that the (0, 1)-form part of gα vanishes on restriction to any of these lines. This

has the effect of reducing the cubic term in the self-dual part of the twistor action (3.8)

to zero so that the only vertices are those that arise from the expansion of S2. Section 4

indicates that this will generate MHV vertices upon restricting to Einstein states.

The other simplification that arises is in the propagator ∆(Z,Z ′). After fixing the

axial gauge, the kinetic portion of the twistor action is just

Skin[g, f ] =

∫
PT

D3Z ∧ gα ∧ ∂̄fα,

so finding the propagator corresponds to inverting the ∂̄-operator on twistor space as well

as incorporating the remaining freedom in gα, fβ into its tensor structure.

For the scalar portion of the propagator serving as a Green’s current for ∂̄ on PT ,

we can take our cue from the twistor action of Yang-Mills theory [20] where the kinetic

11It is worth mentioning the recent work of [71], which proposes an MHV-like formalism based on delta-

function relaxation in a Grassmannian representation of the gravitational amplitudes [14, 72].
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operator is also ∂̄. In this case, the scalar part of the propagator is essentially a delta

function which restricts the two field points Z,Z ′ to lie on a line through the reference

twistor Z∗; on this line, it produces the Cauchy kernel for ∂̄.

In the bosonic, gravitational context at hand, the appropriate objects to consider are

∆k(Z,Z
′) ≡ δ̄2

0,k,−k−4(Z∗, Z, Z
′) =

∫
C2

ds

s1+k

dt

t−3−k δ̄
4(Z∗ + sZ + tZ ′). (5.1)

These enforce the projective collinearity of their arguments, and are of weight k and −k−4

in Z and Z ′ respectively. To see this, recall the behavior of the Cauchy kernel on C:

δ̄(z) = δ(x)δ(y) dz̄ =
1

2πi
∂̄

(
1

z

)
, z = x+ iy,

which is supported at the origin. In (5.1), we simply take

δ̄4(Z) =
1

2πi

3∧
α=0

∂̄
1

Zα
.

The parameter integrals over ds and dt reduce this to a projective current with the appro-

priate weights. It can be demonstrated that the ∆k obey the axial gauge condition up to

potential anomalies resulting from this gauge choice which can be removed by working on

an appropriate choice of PT [20].

Thus for the propagator between fα(Z) and gβ(Z ′) the scalar portion of the propagator

should be ∆1(Z,Z ′). However, we also need to fix the gauge freedoms in the fα and gβ
by imposing ∂αf

α = 0 and Zαgα = 0. Since we are on a projective twistor space and the

freedom in fα corresponds to adding multiples of Zα, we only really need to deal with the

condition on gβ. This can be accounted for with the tensor structure of the propagator,

leaving us with the full propagator

∆α
β(Z,Z ′) := δαβ∆1(Z,Z ′)− 1

4
Zα∂′β∆0(Z,Z ′), (5.2)

so that Z ′β∆α
β = 0 (up to an irrelevant anomaly proportional to the reference twistor).

The Feynman rules in twistor space are obtained by making diagrams out of the MHV

vertices for conformal gravity and gluing them together with propagators. Unlike the Yang-

Mills case, the MHV vertices are already quite complicated. For conformal gravity, they can

be obtained as above using states defined relative to the choice of infinity twistors, but where

Iαβ and Iαβ are independent. The expressions given above for the MHV vertex (before

any contraction IαβIβγ = Λδαγ is used) determine the general conformal gravity expression

by a perturbiner argument. This follows from the invariance under permutations of the

positive-helicity states and the negative-helicity states. Thus one can set Iαβ =
∑

i εiI
αβ
i ,

expand to first order in each εi and take the coefficient of
∏
εi and similarly for the two

occurrences of Iαβ. We will not develop this any further as the primary focus here is to

deduce an MHV formalism for Einstein gravity from that for conformal gravity.

The MHV formalism should reduce to one for Einstein gravity, at least at tree level,

by applying the conformal/Einstein gravity correspondence. This entails restricting to
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Einstein wave functions with cosmological constant Λ and dividing the overall expression

by Λ. In the MHV vertex, all occurrences of the infinity twistor will now be standard ones

and the Einstein formulae given above will be valid with the caveat that they are understood

in a Dolbeault format to be valid off-shell and to be compatible with the formulae for the

propagator. On reduction to Einstein forms for fα = Iαβ∂βh and gβ = IβγZ
γ h̃, we note

that the kinetic part of the twistor action reduces to∫
PT

D3Z ∧ gα ∧ ∂̄fα = 2Λ

∫
PT

D3Z ∧ h̃ ∧ ∂̄h,

using IαβI
βγ = Λδγα and the Euler homogeneity relation for h. This is in accordance with

(3.22). Thus the propagator reduces to

∆Ein(Z,Z ′) =
1

2Λ
∆2(Z,Z ′). (5.3)

At least in the first instance, this indicates that the MHV formalism for Einstein

gravity which is produced by this procedure is based on the MHV vertices for conformal

gravity Cn,0 = ΛMn,0 restricted to Einstein states. Here, Mn,0 should be understood as

(4.17) with the (0, 1)-form wavefunctions allowed to be off-shell so that Mn,0 is extended

to a vertex.12 Thus, for an NkMHV tree amplitude we will need to sum diagrams with

k + 1 such vertices and k propagators and then divide by the overall factor of Λ required

by the conformal/Einstein gravity correspondence. These diagrams will be built from k+1

Cn,0 vertices together with k ∆2 propagators and a factor of Λ−(k+1). In terms of purely

Einstein building blocks, we will have a diagrams constructed out of k+1Mn vertices and

k propagators given by ∆2.

Although this is sufficient to develop formulae for gravity amplitudes in twistor space

along the lines of [20] for Yang-Mills, there is much work to be done to make contact with

momentum space formulae particularly for Λ = 0 where the factors of Λ−(k+1) will need to

be cleared. This will of course be reasonably straightforward if we can extend the formula

(4.28) for the amplitude to one for the vertex.

5.2 Non-minimal twistor actions

The key tool in deriving (4.17) was the minimalN = 4 CSG twistor action. While we do not

expect Maldacena’s argument to apply to non-minimal N = 4 conformal supergravities, it

is nevertheless interesting to ask if a twistor action principle can be found. We outline here

a proposal for how a twistor action describing a particular version of non-minimal N = 4

CSG due to Berkovits and Witten [4]. While we do not attempt to prove that our twistor

action corresponds to this theory, we argue that its perturbation theory will produce all

of the expected tree-level scattering amplitudes. Of course, there are unresolved questions

as to whether such a theory is well-defined at the quantum level [49, 50], but all of our

considerations here will be classical.

12However, it is worth noting that the arguments which derived (4.19) from (4.17) were on-shell in

character, so it is unclear as to whether they can be extended to the off-shell context required for vertices.

This is particularly the case for the subsequent formula (4.28) based on n− 3-determinants.
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Non-minimal versions of N = 4 CSG are highly non-unique: arbitrary analytic func-

tions can couple the scalar ϕ to the conformal gravitons of the theory. This can also be

captured at the level of a chiral superspace action. In the minimal case, we saw that the

action (3.18) served to define a chiral superspace action in terms of W. However, since W
has conformal weight zero, an action of the form

S[W] =

∫
M

dµ F (W) +

∫
M̄

dµ̄ F (W),

where M̄ is the anti-chiral super-manifold, will be conformal and supersymmetric for any

holomorphic function F . While F (W) = W2 corresponds to the minimal theory, other

choices clearly lead to interactions between the scalars and conformal gravitons. For in-

stance, F (W) =W3 will clearly give a Lagrangian term ϕΨABCDΨABCD.

The twistor-string theory of Berkovits and Witten appears to correspond to a very

particular choice of non-minimal N = 4 CSG, with holomorphic function F (W) = e2W

[4]. We refer to this as Berkovits-Witten CSG, or BW-CSG for short. As a classical

N = 4 theory, it is easy to distinguish BW-CSG from the minimal theory by looking at its

scattering amplitudes. In the twistor-string theory for BW-CSG one finds a degree zero

three-point amplitude of the form [4, 16, 48]:∫
D3|4Z ∧

(
∂Kf

I
1∂If

J
2 ∂Jf

K
3 − ∂Jf I1∂KfJ2 ∂IfK3

)
. (5.4)

Applying the Penrose transform, it is easy to see that this amplitude corresponds to a term

ϕ̄Ψ̃A′B′C′D′Ψ̃A′B′C′D′ in the space-time action.

Similarly, at degree one, there are amplitudes with an arbitrary number of g-insertions;

at three-points, this provides the parity conjugate of (5.4). The n-point version of this

amplitude is clearly generated by the chiral part of the space-time action:∫
M

dµ exp (W(x, θ)) =

∞∑
n=2

∫
M0

dµ0 ϕn−2 ΨABCDΨABCD + · · · ,

where dµ0 denotes the measure on the bosonic body M0. Parity invariance demands that

we therefore have n-point analogues of (5.4), coming from the anti-chiral part of the space-

time action.

Let us try to find a corresponding twistor action: our strategy is to proceed by requiring

the twistorial theory to produce the tree-level scattering amplitudes of BW-CSG. To begin,

we note that BW-CSG still has an anti-MHV three point amplitude (like the minimal

theory); this comes from the self-dual twistor action we had before:

S1[g, f ] =

∫
PT

D3|4Z ∧ gI ∧
(
∂̄f I + [f, f ]I

)
. (5.5)

Similarly, the twistorial version of
∫

dµ eW is an easy generalization of

Schiral[g, f ] =

∫
M

dµ exp

(∫
X
g

)
. (5.6)
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If we expand in fermionic variables, it is clear that on space-time this is the chiral portion

of the action

Schiral ∼
∫

dµ0 exp(ϕ) ΨABCDΨABCD + · · · ,

as expected.

We still need to obtain the parity conjugates of the amplitudes generated by (5.6).

Consider a holomorphic Chern-Simons theory on the tangent bundle TPT :

ShCS[g, f ] =

∫
PT

D3|4Z ∧ tr

(
f ∧ ∂̄f +

2

3
f ∧ f ∧ f

)
(5.7)

Clearly, the cubic term in this action leads to the three-point amplitude (5.4) of BW-CSG.

The quadratic term in (5.5) leads to the g− f -propagator (5.2), so we can tie any number

of MHV-vertices onto (5.4) to form a n-point amplitude which has all f external states.

These all-f amplitudes form the parity-conjugate set to the all-g amplitudes generated by

(5.6).

Hence, we conjecture that the twistor action

SBW−CSG[g, f ] = S1[g, f ] + ShCS[g, f ]− ε2Schiral[g, f ], (5.8)

should be (classically) equivalent to the non-minimal N = 4 CSG of Berkovits and Witten.

Of course, our argument relies entirely upon the fact that (5.8) has the same tree amplitudes

as BW-CSG. Furthermore, it is rather unfortunate that the anti-chiral portion of the space-

time action is encoded only implicitly (i.e., we do not have an explicit exp(W̄) term on

twistor space). In a sense, this is to be expected because parity invariance is often obscured

in twistor space [73].

5.3 Physical observables

Throughout this paper, we have referred toMn,0 as a ‘scattering amplitude’ for general rel-

ativity on a background with cosmological constant. As pointed out in the introduction, we

have adopted this nomenclature for convenience only: the notion of a physically observable

scattering amplitude on de Sitter space is not even well-defined. While the final formulae

we obtain for Mn,0 in (4.17), (4.19) are on twistor space, and hence make mathematical

sense for arbitrary twistorial wavefunctions, it is useful to have a brief discussion of how

these can be interpreted as physical observables (i.e., expressions in momentum space).

In our expressions for Mn,0, there are two ingredients about which we have been

(deliberately) vague: the nature of the wavefunctions to be used, and the integration over

the moduli space Mn,1. A priori, the twistor wavefunctions are required only to be (0, 1)-

form cohomology classes with the appropriate weights as dictated by the Penrose transform.

We often utilized the dual twistor states (4.18) for calculational purposes in Section 4, but

these do not directly produce momentum space expressions. In the case of flat-space, or

in Yang-Mills theory, one obtains momentum space expressions for scattering amplitudes

by using momentum eigenstates (c.f., [9]), with a choice of four-momentum kAA′ = pAp̃A′

h(Z(σ), k) =

∫
C

dt

t1+w
δ̄(tλA − pA) et[µp̃], (5.9)
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where w = −6 for a negative helicity graviton and w = 2 for a positive helicity graviton.

Of course, these are rather un-natural from the point of view of de Sitter geometry,

since there are no four-momenta for the de Sitter group. Furthermore, these eigenstates

are singular on a finite light cone and don’t recognize the infinity of global de Sitter space.

This is because they are most natural in Minkowski space, so using them in the de Sitter

context corresponds to working with wavefunctions adapted to the affine de Sitter slicing

of (2.7).

Similarly, in (4.17), (4.19) we need to choose a contour for the integral over d8X which

corresponds to the real slice of space-time. In other words, this moduli integral can be

thought of as an integral over the scattering background itself, and after fixing the GL(2,C)-

freedom in the measure, really acts as a d4x integral. Hence, using the eigenstates (5.9)

and integrating over the full real slice in the affine coordinates corresponds to computing

a I − to I + scattering process in the affine patch (2.7). For instance, in this set-up we

would find [16]

M3,0 =
〈12〉6

〈23〉2〈31〉2 (2− Λ2k) δ
4

(
3∑
i=1

ki

)
. (5.10)

While this is not a physical observable (because no asymptotic observer can integrate over

all of de Sitter space), it is well-defined mathematically and can be classed as a ‘meta-

observable’ in the sense of [18, 36]. Further, it limits onto the definition of the scattering

amplitude when Λ → 0 and manifests the de Sitter isometries through the operator 2k

acting on the momentum-conserving delta-function. Using this prescription for Mn,0 will

produce an operator of leading order 2n−2
k .

To obtain an actual physical observable, one should use twistor eigenstates which are

explicitly adapted to de Sitter space, and choose the contour of integration in Mn,1 to

correspond to a physically observable region of dS4. These eigenstates can be defined by

using a spinor-helicity formalism adapted to the spatial three-slices of de Sitter space, and

the integration contour can be chosen in congruence with the in-in formalism prescriptions

which have been used to calculate the non-Gaussianities in the gravitational bispectrum

from inflation (c.f., [74, 75]). We hope to address these issues in much more detail in a

future work.
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A Generating Functionals for MHV Amplitudes

In this appendix, we prove a concrete example of the conformal/Einstein gravity correspon-

dence for generating functionals of tree-level MHV amplitudes. The final result amounts

to (2.13) in the text, and was first derived in [37].
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We will exploit the chiral formulation of general relativity [76]: for a general space-

time M with metric specified by a tetrad of 1-forms ds2 = εABεA′B′e
AA′ ⊗ eBB′ , the basic

variables are three ASD 2-forms:

ΣAB = eA
′(A ∧ eB)

A′ ,

and the ASD spin connection ΓAB. With a cosmological constant Λ, the action of general

relativity is:

S[Σ,Γ] =
1

κ2

∫
M

(
ΣAB ∧ FAB −

Λ

6
ΣAB ∧ ΣAB

)
, (A.1)

where

FAB = dΓAB + ΓCA ∧ ΓBC (A.2)

is the curvature of the ASD spin connection. This action produces two field equations, to

which we append a third (the condition that ΣAB be derived from a tetrad) [24]:

DΣAB = 0, (A.3)

FAB = ΨABCDΣCD +
Λ

3
ΣAB, (A.4)

Σ(AB ∧ ΣCD) = 0. (A.5)

Here, D is the covariant derivative with respect to the ASD spin connection:

DΣAB = dΣAB + 2Γ
(A
C ∧ ΣB)C .

Following [35], we can express a tree-level MHV amplitude as the classical scattering

of two negative helicity gravitons off a SD background space-time, which (perturbatively)

encodes the remaining positive helicity gravitons. For a SD background, we have ΨABCD =

0, so (A.4) can be solved for Σ in terms of F while (A.3), (A.5) result in an algebraic

condition on the curvature of the ASD spin connection. To be precise, a SD solution

(Σ0,Γ0) obeys [77]:

ΣAB
0 =

3

Λ
FAB0 , (A.6)

F0(AB ∧ F0 CD) = 0. (A.7)

Now consider small perturbations away from this SD background of the form Σ =

Σ0 + σ0, Γ = Γ0 + γ. This results in a set of linearized field equations:

D0σ
AB = −2γ

(A
C ∧ Σ

B)C
0 , (A.8)

D0γAB = ψABCDΣCD
0 +

Λ

3
σAB, (A.9)

σ(AB ∧ Σ
CD)
0 = 0, (A.10)

where D0 is the covariant derivative with respect to the background ASD spin connection

Γ0. It is fairly easy to see that the field ψABCD corresponds to a linearized ASD Weyl

spinor propagating on the SD background (Σ0,Γ0) [37].
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Our goal is now to formalize the picture of an MHV amplitude in terms of linearized

solutions propagating on a SD background. If S is the space of solutions to the full field

equations (A.3)-(A.5), then solutions to the linearized equations (A.8)-(A.10) are a vector

space V corresponding to the fiber of TS over the SD solution (Σ0,Γ0). Now, a linearized

SD solution is fully characterized by the ASD spin connection, since

σAB =
3

Λ
D0γAB, D0γ

(AB ∧ FCD)
0 = 0. (A.11)

This allows us to define the SD portion of V as

V + =
{

(σ, γ) ∈ V : D0γ
(AB ∧ FCD)

0 = 0
}
,

and a corresponding V − by the quotient map in the short exact sequence:

0 −→ V + ↪→ V −→ V − −→ 0.

In particular, this means we have

V − ≡ V/V + = {(σ, γ) ∈ V } /
{
γ : D0γ

(AB ∧ FCD)
0 = 0

}
.

The space of solutions S comes equipped with a natural symplectic form ω given by

the boundary term in the action [78]:

ω =
1

κ2

∫
C
δΣAB ∧ δΓAB, (A.12)

where C is a Cauchy surface in M (when Λ > 0, there is always a slicing where C ∼= S3

topologically) and δ is the exterior derivative on S. It is straightforward to show that

ω is independent of the choice of Cauchy surface and descends to a symplectic form on

S/Diff+
0 (M) [37].

This symplectic form induces an inner product between points in the linearized solution

space V : for hi, hj ∈ V we take

〈hi|hj〉 = − i

κ2

∫
C
σABj ∧ γi AB. (A.13)

An important fact about this inner product (which is obvious in the Λ = 0 setting, c.f.,

[35]) is that it annihilates the SD sector:

Lemma A.1 Let hi, hj ∈ V + on the SD background with (Σ0,Γ0). Then 〈hi|hj〉 = 0, or

equivalently: for all hi ∈ V +, 〈hi|·〉|V + = 0.

Proof: The inner product is skew-symmetric under interchange of hi and hj , so

〈hi|hj〉 = − i

2κ2

∫
C

(
σABj ∧ γi AB − σABi ∧ γj AB

)
.

Suppose hj ∈ V +; then (A.9) implies that D0γj AB = Λ
3 σj AB. In the Λ = 0 limit, the

ASD spin connection is trivial D0 → d, so γABj |Λ=0 = 0, and we can write γABj = ΛνABj for
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some array of space-time 1-forms νABi . With this representation, the linearized SD field

equation gives σj AB = 3D0νj AB, and the inner product becomes:

− i

2κ2

∫
C

(
3dνABj ∧ γi AB + 6Γ

(A
0 C ∧ ν

B)C
j ∧ γi AB − σABi ∧ γj AB

)
=

i

2κ2

∫
C

(
3νABj ∧D0γi AB − σABi ∧ γj AB

)
,

where the second line follows by integration by parts and a re-arranging of index contrac-

tions. Once again using γj AB = Λνj AB, we have:

〈hi|hj〉 =
i

2κ2

∫
C
νABj ∧ (3D0γi AB − Λσi AB) =

3i

2κ2

∫
C
νABj ∧ ψi ABCDΣCD

0 ,

using (A.9) for hi. Hence, if hi ∈ V + then ψi ABCD = 0 and the inner product vanishes. 2

Note that lemma A.1 confirms that the all-positive helicity and (−+ · · ·+) amplitudes

of general relativity vanish even with a cosmological constant in play. In the first case, we

see that the SD field equations are integrable since their solutions are characterized by a

single algebraic relation (A.7). In the second case, the fact that the inner product annihi-

lates the SD sector ensures that scattering with only a single negative helicity graviton is

also trivial.

We can use this inner product to define ASD solutions at the boundary of our M as

in [35]: take a one-parameter family of Cauchy hypersurfaces Ct → I ± as t→ ±∞. Then

we say that hj = (σj , γj) is ASD at I ± if

lim
t→±∞

∫
Ct

σABj ∧ γi AB = 0 for all hi = (σi, γi) ∈ V −. (A.14)

Now we want to build the generating functional for the MHV amplitudes, which mea-

sure the probability for a pure ASD state at I − to propagate across a SD background M

and evolve into a SD state at I +. Hence, we take the incoming state to be h1|I− ∈ V −.

Since the inner product annihilates the SD sector, we need to compute the inner product

between h1 and some other state h2|I + ∈ V − at the future conformal boundary I +:13

This gives the generating functional for the MHV amplitudes as

IGR[1−, 2−,M+] = 〈h2|h1〉 = − i

κ2

∫
I +

σAB1 ∧ γ2 AB. (A.15)

This form of the generating functional is not particularly illuminating because the role of

the SD background M is extremely implicit. However, we can manipulate (A.15) into a

format which is explicitly in terms of an integral over the entire background space-time.

Proposition A.1 The amplitude 〈hn|h1〉 is given by the formula:

IGR[1−, 2−,M+] =
i

κ2

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB −
Λ

3
σAB1 ∧ σ2 AB

)
, (A.16)

where M is a SD background space-time described by (Σ0,Γ0).

13As mentioned in the text, this corresponds to a ‘meta-observable’ since we integrate over the entire

space-like surface I +.
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Proof: Recall that ∂M = I + −I −, so Stokes’ theorem gives

− i

κ2

∫
I +

σAB1 ∧ γ2 AB = − i

κ2

∫
M

(
dσAB1 ∧ γ2 AB + σAB1 ∧ dγ2 AB

)
− i

κ2

∫
I−

σAB1 ∧ γ2 AB.

Now, the second term on the right vanishes, since h1 ∈ V − at I −. Using the linearized

field equations (A.8), (A.9) it follows that

dσAB1 = −2γ
(A
1 C ∧ Σ

B)C
0 − 2Γ

(A
0 C ∧ σ

B)C
1 ,

dγ2 AB = ψ2 ABCDΣCD
0 +

Λ

3
σ2 AB − 2Γ0 C(A ∧ γC2 B),

and the generating functional becomes

i

κ2

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB + σAB1 ∧ ΓC0 A ∧ γ2 CB + σAB1 ∧ Γ0 CA ∧ γC2 B

−Λ

3
σAB1 ∧ σ2 AB − σAB1 ∧ ψ2 ABCDΣCD

0

)
.

The last term vanishes due to the linearized field equation (A.10) and the fact that

ψABCD = ψ(ABCD), while the second and third terms cancel after restructuring the spinor

indices.

All that remains is to check that (A.16) has the correct gauge invariance: if one of

the ASD states is pure gauge, the amplitude must vanish. Suppose that h1 is pure gauge:

ψ1 ABCD = 0. By (A.11), we know that Λ
3 σ

AB
1 = D0γ

AB
1 , and integrating by parts in (A.16)

gives

IGR[1−, 2−,M+]|ψ1=0 =
i

κ2

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB + γAB1 ∧D0σ2 AB

)
−
∫
∂M

γAB1 ∧σ2 AB.

The boundary term vanishes at I + since h2|I + ∈ V −, and also at I − since h1 is pure

gauge. This leaves us with the bulk terms, which can be evaluated using the linearized

field equation (A.8) for h2:∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB + γAB1 ∧D0σ2 AB

)
=

∫
M

(
ΣAB

0 ∧ γC1 A ∧ γ2 CB − 2γAB1 ∧ γ2 C(A ∧ ΣC
0 B)

)
= 0,

with the final equality following after re-arranging contractions on spinor indices. 2

The final step is to obtain the conformal/Einstein gravity correspondence for this

generating functional. Upon restricting to Einstein scattering states, it is obvious that the

generating functional in conformal gravity with two negative helicity gravitons and a SD

background is given by the second term in (2.4):

ICG[1−, 2−,M+] =
2i

ε2

∫
M

dµ ψABCD1 ψ2 ABCD, (A.17)

where M is again the SD background which encodes the n − 2 remaining gravitons. By

the conformal/Einstein gravity correspondence, we should be able to relate ICG to IGR

on-shell (i.e., by apply the field equations of general relativity), and this is indeed the case

[37].
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Proposition A.2 On-shell, IGR[1−, 2−,M+] = − 3ε2

Λκ2
ICG[1−, 2−,M+].

Proof: (A.17) is equivalent to

ICG[1−, 2−,M+] =
i

ε2

∫
M
ψABCD1 Σ0 CD ∧ ψ2 ABEFΣEF

0 .

Using the linearized field equation (A.9) for h2, this becomes

i

ε2

∫
M
ψABCD1 Σ0 CD ∧

(
D0γ2 AB −

Λ

3
σ2 AB

)
.

Integrating by parts in the first term gives

−
∫
M

D0ψ
ABCD
1 Σ0 CD ∧ γ2 AB +

∫
∂M

ψABCD1 Σ0 CD ∧ γ2 AB =

∫
∂M

ψABCD1 Σ0 CD ∧ γ2 AB,

since ψ1 is a linearized Weyl spinor. In the second term, a combination of both field

equations (A.9) for h1 and (A.8) for h2 as well as integration by parts leaves

−2Λ

3

∫
M
γAB1 ∧ γ2 C(A ∧ ΣC

0 B) +
Λ2

9

∫
M
σAB1 ∧ σ2 AB −

Λ

3

∫
∂M

γAB1 ∧ σ2 AB.

Combining both terms gives:

ICG[1−, 2−,M+] =
i

ε2

(
−2Λ

3

∫
M
γAB1 ∧ γ2 C(A ∧ ΣC

0 B) +
Λ2

9

∫
M
σAB1 ∧ σ2 AB

)
− i

ε2

(∫
∂M

ψABCD1 Σ0 CD ∧ γ2 AB −
Λ

3

∫
∂M

γAB1 ∧ σ2 AB

)
= −Λκ2

3ε2
IGR[1−, 2−,M+] + boundary terms.

The proof is complete if we can show that the boundary terms vanish. Applying (A.9)

to the first of these terms leaves us

boundary terms ∼
∫
∂M

D0γ
AB
1 ∧ γn AB −

Λ

3

∫
∂M

γABn ∧ σ1 AB −
Λ

3

∫
∂M

γAB1 ∧ σn AB,

with the second and third terms cancelling due to skew symmetry in h1, hn. Finally,∫
∂M

D0γ
AB
1 ∧ γn AB =

∫
I +

D0γ
AB
1 ∧ γn AB −

∫
I−

D0γ
AB
1 ∧ γn AB

= −
∫

I +

γAB1 ∧D0γn AB −
∫

I−
D0γ

AB
1 ∧ γn AB = 0,

by the fact that h1|I− ∈ V − and hn|I + ∈ V −, as required. 2

Note that the result of this proposition is in precise agreement with the prefactors

predicted by Anderson’s theorem in (2.11).
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B Local Twistor Formalism

This appendix reviews the local twistor formalism and applies it to several issues from

the text, proving and clarifying claims made there. We set out the basic formalism in the

bosonic category; generalizations to supersymmetric twistor spaces are obvious. On PT ,

the twistor coordinates Zα(x, σ) are abstract on until they are pulled back to the spinor

bundle PS; to get a concrete coordinate basis on the curved twistor space, we must use the

local twistor bundle.

Let M be a four-manifold satisfying the conditions of theorem 1, and PT be its

associated twistor space. Local twistors are defined at points x ∈ M as the fibers of the

complex rank four bundle:

Zα = (λA, µ
A′) // LT

��
M

Let t ∈ TxM be a vector at x; then the infinitesimal variation of the local twistor bundle

in the direction of t is [39]

∇tZ
α(x) =

(
tBB

′∇BB′λA + itBB
′
PABA′B′µ

A′ , tBB
′∇BB′µA

′
+ itBA

′
λB

)
, (B.1)

where the tensor Pab is the Schouten tensor:

PABA′B′ = ΦABA′B′ − ΛεABεA′B′ ,

with ΦABA′B′ the trace-free portion of the Ricci tensor. This local twistor transport along

the vector t defines a local twistor connection on LT whose curvature can be computed by

considering

i
(
∇t∇u −∇u∇t −∇[t,u]

)
Zβ = ZαF

β
α (t,u). (B.2)

In the case where M is a SD background (as in theorem 1), this curvature is given by

[39]

F
β
α (t,u)

∣∣∣
M+

= tC
′

D u
DD′

(
0 ∇AA′Ψ̃B′A′

C′D′

0 iΨ̃B′
C′D′A′

)
,

where Ψ̃A′B′C′D′ is the SD Weyl spinor of M . Hence, we see that on a SD background M ,

the local twistor bundle LT is half-flat, so the Ward transform applies [58] to give a rank

four bundle Tα → PT on twistor space [79]. Abusing terminology, we also refer to this

bundle Tα → PT as the ‘local twistor bundle.’

By choosing a holomorphic frame H
α
α for Tα, we can assign meaning to tensors on PT

[80]. For example, consider a tensor fα···β··· ∈ H0,1(PT ,O(n − 2)) for n < 0. Contracting

with the holomorphic frame converts this to a (0, 1)-form valued section of Tα···β···⊗O(n−2),

to which we can apply the Penrose transform, obtaining a field on M :∫
X
λA1 · · ·λAnfα···β··· ∧ τ = Γ

α···
β···A1···An .
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The space-time field will obey a zero-rest-mass field equation

∇A1A′Γ
α···
β···A1···An = 0,

where the covariant derivative acts via the local twistor connection since the holomorphic

frame on Tα corresponds to a covariantly constant frame on LT → M . From now on, we

will drop the underline notation, and assume that the distinction between concrete and

local twistor indices is clear from the context.

As an example, consider how ∇ acts on a space-time field with a single twistor index,

say ΓβC = (ΦBC ,Ψ
B′
C ) From (B.1), it follows that the covariant derivative acts as

∇AA′ΓβC =

(
∇AA′ΦBC

∇AA′ΨB′
C

)
+

(
0 iPAA

′
BB′

iεABεA
′B′ 0

)(
ΦBC

ΨB′
C

)
. (B.3)

Similar rules for dual twistor indices as well as higher-rank tensors can be derived or looked

up in [39], and their space-time gauge freedom is fixed by computing the Penrose transform

of Zγfα···β··· and then imposing Zβfα···β··· = 0 [80].

From (B.3), we can see that the local twistor connection acts as ∇ = D + A , where

D is the usual space-time covariant derivative and A ∈ Ω1
M (psl(4,C)) is the connection

1-form. This suggests that we can consider the local twistor bundle as a PSL(4,C)-gauge

bundle over space-time.

Theorem 3 (Merkulov [26]) The local twistor bundle LT → M is a PSL(4,C) gauge

bundle with gauge-covariant derivative ∇ = D + A given by (B.3). Furthermore, this

connection has curvature F ∈ Ω2
M (psl(4,C)), and which is equal to (B.2) when M is self-

dual.

On twistor space, the chiral half of the fundamental fields of N = 4 CSG are meant

to be encoded in the Lagrange multiplier g ∈ H0,1(PT ,Ω1), which defines the space-time

chiral superfield G(x, θ). In particular, we want each term in the expansion

g = g0 + χag−1
a + · · · χ

4

4!
g−4,

to correspond to a space-time field with the correct conformally invariant zero-rest-mass

field equation via the Penrose transform. Since the CSG background is curved, we must

use the local twistor formalism to operationalize this Penrose transform.

We begin with the leading term in the expansion, g0 ∈ H0,1(PT ,Ω1). The Pen-

rose transform of this object was first described in [80]: write g0 = aαdZα for aα ∈
H0,1(PT ,O(−1)). Picking a particular conformal frame, the Penrose transform gives:

ΓαB′ =

(
ΨA
B′

ΦA′B′

)
=

∫
X
τ ∧ ∂aα

∂µB′
, ∇BB′ΓαB′ = 0. (B.4)

Using the local twistor connection, the z.r.m. equations of (B.4) can be written on space-

time as: {
∇BB′ΨA

B′ − iεBAΦB′
B′ = 0

∇BB′ΦA′B′ = 0
,
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while the Penrose transform of Zαaα gives the conditions ∇BB′ΨB
A′ − iεB′A′ΦB′

B′ = 0 and

ΦB′
B′ = 0. This means that we can write ΨAA′ = 2ϕ, and the content of (B.4) is reduced

to 22ϕ = 0, as desired.

Similar procedures are applied to the remaining components. For example, g−4 =

gαdZα, should encode the conformal graviton. The Penrose transform gives:

ΓδABC =

(
GDABC
γD′ABC

)
=

∫
X
τ ∧ λAλBλCgδ, ∇AA′ΓδABC = 0. (B.5)

Recalling that ∇ acts on ΓδABC via the local twistor connection,{
∇AA′GDABC − iγA

′D
BC = 0

∇AA′γD′ABC − iΦAA′
DD′G

D
ABC = 0

.

The gauge-fixing ensures that GABCD = G(ABCD), and this leaves us with(
∇AA′∇DD′ + ΦADA′

D′

)
GABCD = 0, (B.6)

which is the required Bach equation.

An identical procedure will give the following equations for the remaining components:

g−1
a ⇒ 2∇BB′ψBa − i∇AA′

(
ΦAA′
CB′ψ

C
a

)
= 0, (B.7)

g−2
ab ⇒ (∇AA′∇BB′ + ΦABA′B′)T

AB
ab = 0, (B.8)

g−3 a ⇒
(
∇BD′∇AA

′∇CC′ + ΦAA′
CC′∇BD′

)
ηa D

′
AC = 0. (B.9)

These correspond to the spinor, ASD tensor, and conformal gravitino of N = 4 CSG,

respectively.

C Independence of the Reference Spinor

In this appendix we explicitly compute the infinitesimal variation dξMn,0. This is easiest

if we use the representation of Mn,0 given by (4.17); the proof of ξ-independence can also

be accomplished using (4.19), but requires a bit more finesse.

We can compute the variation directly from (4.17) by using the basic property of

determinants: dξ|H| = tr[adj(H)dξH]. This leads to (ignoring irrelevant overall factors):

dξMn,0 =

∫
Mn,1

dµ

[∑
i

∣∣H12i
12i

∣∣ ((X2)2 dξHii +X2 dξψ
1
i

)
+
∑
i,j

∣∣∣H12ij
12ij

∣∣∣ (X2 ψ1
i dξHjj +X2 dξω

1
ij + dξψ

1
i ψ

2
j + ψ1

i dξψ
2
j

)
+
∑
i,j,k

∣∣∣H12ijk
12ijk

∣∣∣ (X2 ω1
ij dξHkk + ψ1

i ψ
2
j dξHkk + dξψ

1
i ω

2
jk + ψ1

i dξω
2
jk

)
+
∑
i,j,k,l

∣∣∣H12ijkl
12ijkl

∣∣∣ (ψ1
i ω

2
jk dξHll + dξω

1
ij ω

2
kl + ω1

ij dξω
2
kl

)

+
∑

i,j,k,l,m

∣∣∣H12ijklm
12ijklm

∣∣∣ ω1
ij ω

2
kl dξHmm

 n∏
s=1

h(Z(σs)) Dσs + (1↔ 2). (C.1)
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To study dξMn,0, we need the individual variations which appear in (C.1). These are

easily obtained by working with the dual twistor wavefunctions (4.18); after a bit of algebra

(including the Schouten identity) we find

dξHii = 2

n∑
j=1

[Wi,Wj ](jξ)

(iξ)3
Dξ = 2

[Wi,P · ξ]
(iξ)3

Dξ, (C.2)

dξψ
1
i = 2i Λ

Z(ξ) ·Wi

(iξ)3
Dξ, dξω

1
ij = 2Λ

[Wi,Wj ](ij)(1ξ)
3

(1i)2(1j)2(iξ)3(jξ)3
[(jξ)(i1) + (iξ)(j1)] Dξ.

(C.3)

We will now use these facts to show that dξMn,0 is a total divergence with respect to the

moduli coordinates XJA, and hence vanishes.

We can proceed order-by-order with respect to the sums appearing in (C.1). For

instance, the integrand of the first line is

−2i
∑
i

∣∣H12i
12i

∣∣ (i(X2)2 [Wi,P · ξ]
(iξ)3

− 2Λ X2Z(ξ) ·Wi

(iξ)3

)
eiP·X .

But upon inspection, this takes the form of a total divergence:

− 2i
∂

∂XJA

[
(X2)2 eiP·X

∑
i

∣∣H12i
12i

∣∣ IIJWi Iξ
A

(iξ)3

]
(C.4)

The key observation is that (for all terms contributing to dξMn,0) X-dependence only

appears through explicit powers of X2, the wavefunction factor of eiP·X , ψ1
i , or dξψ

1
i .

Applying this philosophy to the rest of (C.1), we can show that line-by-line it is equal to

a total divergence.

If we refer to the contribution of (C.4) as the ‘third-order’ contribution (counting the

number of rows and columns missing from the determinant factor), then divergences at

each order are given as follows: At fourth-order,

− 2i
∂

∂XJA

X2 eiP·X
∑
i,j

∣∣∣H12ij
12ij

∣∣∣ ψ1
i I

IJWj Iξ
A

(jξ)3

 + (1↔ 2). (C.5)

At fifth-order:

− 2i
∂

∂XJA

eiP·X∑
i,j,k

∣∣∣H12ijk
12ijk

∣∣∣ (X2ω1
ij − ψ1

i ψ
2
j

)
IIJ

Wk Iξ
A

(kξ)3

 (1↔ 2). (C.6)

At sixth-order:

− 2i
∂

∂XJA

eiP·X ∑
i,j,k,l

∣∣∣H12ijkl
12ijkl

∣∣∣ ψ1
i ω

2
jk I

IJWl Iξ
A

(lξ)3

 + (1↔ 2). (C.7)

At seventh-order, we only have a single term:

2

∫
dµ

∑
i,j,k,l,m

∣∣∣H12ijklm
12ijklm

∣∣∣ ω1
ij ω

2
kl

[Wm,P · ξ]
(mξ)3

eiP·Xd2σ.
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After using the GL(2,C)-freedom to fix the scale and position of σ1 and σ2, we can simply

perform the remaining d8|8X integral (since ω1,2
ij is independent of X), leaving:

2

∫
d2σ δ8|8(P)

∑
i,j,k,l,m

∣∣∣H12ijklm
12ijklm

∣∣∣ ω1
ij ω

2
kl

[Wm,P · ξ]
(mξ)3

= 0. (C.8)

So the seventh-order contribution to dξMn,0 vanishes simply due to momentum conser-

vation. Note that in the calculation of each of these divergences, care must be taken to

symmetrize over all indices in the summation as well as (1↔ 2) in order to get the correct

result.

Finally, we can combine (C.4)-(C.8) to see that

dξMn,0 =

∫
Mn,1

d8|8X

vol GL(2,C)

∂

∂XIA
V IA = 0. (C.9)

This vanishing occurs because there are no ambiguities with respect to the compactification

of the moduli space at degree one, and V IA is smooth with respect to the X coordinates.
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