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ABSTRACT: This past year has seen major progress in the study of tree-level supergrav-
ity amplitudes with zero cosmological constant using twistor methods. In this paper, we
study amplitudes of conformal gravity and use these to deduce formulae for ‘scattering
amplitudes’ on backgrounds with non-zero cosmological constant. Our approach is based
firstly on the embedding of Einstein gravity into conformal gravity and secondly the twistor
action for conformal gravity and its minimal A/ = 4 supersymmetric extension. We de-
rive conformal gravity amplitudes from the twistor action and show how they can then
be restricted to Einstein states to give Einstein amplitudes. We employ a perturbative
expansion to derive a new formula for the gravitational MHV amplitude with cosmological
constant. We show that this formula is well-defined (i.e., is independent of certain gauge
choices) and that it reproduces Hodges’ formula for the MHV amplitude in the flat-space
limit. We also discuss the possibility of a twistor-string origin for this formula, as well
as more general properties of conformal (super-)gravity in twistor space. We also give a
preliminary discussion of a possible MHV formalism for more general amplitudes obtained
by reduction of one for conformal gravity obtained from the twistor action.
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1 Introduction

Witten’s twistor-string theory and related models [1-3] have inspired an extensive list of

recent developments in our understanding of maximally supersymmectic (N = 4) super-

Yang-Mills (SYM) theory, particularly with respect to scattering amplitudes in the planar



sector. While these original twistor-string theories were limited in their applicability to per-
turbative gauge theory due to unwanted contributions from conformal gravity [4], twistor
actions for Yang-Mills theory were discovered which isolated the gauge theoretic degrees
of freedom [5, 6]. With the imposition of an axial gauge on twistor space, these twistor
actions can be used to derive a particularly efficient Feynman diagram formalism, the MHV
formalism, that had originally been suggested from twistor-string considerations [7]. In this
formalism, the MHV amplitudes are extended off-shell to provide the vertices and can be
used also for loop calculations [8]. These twistor actions have now been applied to study a
wide variety of physical observables in N' = 4 SYM, including scattering amplitudes, null
polygonal Wilson loops, and correlation functions (c.f., [9] for a review).

Currently, there is no twistor action for Einstein gravity, although there is one for con-
formal gravity [5]. This is the conformally invariant theory of gravity whose Lagrangian
is the square of the Weyl tensor. It has fourth-order equations of motion so its quantum
theory is non-unitary and is widely believed not to be suitable for a physical theory. Nev-
ertheless, conformal gravity has many interesting mathematical properties: for instance, it
can be extended to supersymmetric theories for N' < 4, and the maximally supersymmetric
theory (N = 4) comes in several variants which are finite and power-counting renormaliz-
able (c.f., [10] for a review). Furthermore, solutions to Einstein gravity form a subsector of
solutions to the field equations of conformal gravity. Maldacena has shown that evaluated
on a de Sitter background, the tree-level S-matrix for conformal gravity reduces to that
for Einstein gravity when Einstein states are inserted [11]. Thus we can hope to study the
Einstein tree-level S-matrix using the conformal gravity twistor action, which is the goal
of this paper.

Progress on understanding the scattering amplitudes of (super-)gravity in twistor
space—even at tree-level-was elusive until Hodges’ discovery of a manifestly permutation
invariant and compact formula for the maximal-helicity-violating (MHV) tree amplitude
of Einstein gravity [12]. This led to the development of the Cachazo-Skinner expression
for the entire tree-level S-matrix of N/ = 8 supergravity in terms of an integral over holo-
morphic maps from the Riemann sphere into twistor space [13, 14]. Perhaps most exciting
of all is Skinner’s development of a new twistor-string theory which produces this formula
as a worldsheet correlation function of vertex operators; in other words, a twistor-string
theory for N/ = 8 Einstein supergravity [15].

Parallel work sought to derive Einstein amplitudes from Witten and Berkovits’ origi-
nal twistor-string formula for conformal gravity amplitudes by restricting to Einstein states
[16, 17] and appealing to the Maldacena argument to obtain Einstein amplitudes. Although
the correct amplitudes are obtained at three points, the relationship between Einstein and
conformal gravity amplitudes requires minimal conformal supergravity rather than the
non-minimal version arising from the Berkovits-Witten twistor-string. Nevertheless, in
[17] it was shown that the correct Hodges formula is obtained at m-points when a tree
ansatz is imposed on the worldsheet correlation function required in the Berkovits-Witten
twistor-string formula. Although there is no clear motivation for the tree ansatz within



the Berkovits-Witten twistor-string,' it is natural in the context of the Maldacena argu-
ment applied to the twistor action for conformal gravity [5], which does give the minimal
conformal gravity. Part of the purpose of this paper is to give a complete presentation of
that argument. It also allows us to provide a generalization of the Hodges formula for the
MHYV amplitude to the case of non-vanishing cosmological constant which is the regime in
which the Maldacena argument is most straightforwardly applicable.

In this paper, we study conformal (super-)gravity on twistor space using the afore-
mentioned twistor action and its generalization to N/ = 4 supersymmetry. By exploiting
the conformal/Einstein gravity correspondence, we obtain a twistor formula for the MHV
amplitude on a background with non-vanishing cosmological constant. We check that this
formula is independent of gauge choices made during its derivation, and also that it pro-
duces Hodges’ formula in the flat-space limit.

For a cosmological constant A # 0, the traditional definition of a scattering amplitude
for asymptotically flat space-times no longer applies. When A > 0, one can still define
mathematical quantities corresponding to scattering from past infinity to future infinity,
but these are not physical observables because no observer has access to the whole space-
time. These mathematical analogues of scattering amplitudes have become known as meta-
observables [18]: the theory allows them to be computed, even if no single physical observer
can ever measure them. Actual physical observables can still be given in terms of the in-in
formalism, where the observer only integrates over the portion of space-time containing his
or her history. When A < 0, this situation is improved and the natural objects to compute
are correlation functions in the conformal field theory on the boundary via the AdS/CFT
correspondence (although mathematically the integration regions are not so dissimilar and
indeed the formulae will be polynomial in A so that the analytic continuation from positive
to negative A will be trivial).

For the remainder of this paper, we will refer only to ‘scattering amplitudes’ in (anti-)
de Sitter space, trusting the reader to keep the implicit subtleties in mind. In the end,
we will obtain a formula on twistor space, which is written in terms of arbitrary external
states and a freely specified contour of integration in complexified space-time (see (1.1)
below); the ambiguity in defining what observable we are computing can be absorbed into
this choice of contour. Furthermore, although we will focus on the case of A > 0 de Sitter
space in this paper, most of our arguments (and certainly the final formula) apply to anti-
de Sitter space with trivial changes of sign and can therefore be applied to the AdS/CFT
correspondence.

We begin in Section 2 with an exposition of the conformal/Einstein gravity correspon-
dence. This includes a brief overview of different action principles for conformal gravity, as
well as the relationship with general relativity on an asymptotically de Sitter background.
From this, we derive a precise version of the correspondence for generating functionals of
MHYV amplitudes. Since we will be interested in scattering amplitudes, we also discuss the
relationship between polarization states for conformal and Einstein gravity. Finally, we

In Skinner’s N = 8 twistor-string the tree ansatz can be understood as arising from cancellation of the
loops due to worldsheet supersymmetry.



consider maximally supersymmetric A/ = 4 conformal supergravity; as we shall see, the
conformal /Einstein correspondence can be extended only to the minimal version of this
theory.

In Section 3, we study the twistor action for minimal N = 4 conformal supergravity.
After a brief review of some relevant aspects of twistor theory, we recall the definition
of the twistor action for A/ = 0 conformal gravity, and argue that its straightforward
generalization to A" = 4 produces the minimal supersymmetric theory. By applying the
conformal /Einstein gravity correspondence, we show how this twistor action can be re-
stricted to Einstein states, thereby leading to a twistorial expression for the generating
functional of MHV amplitudes in Einstein (super-)gravity.

We derive the new formula for the scattering amplitude with A # 0 in Section 4. This
entails developing a Feynman diagram calculus on CP' to operationalize the perturbative
expansion of the generating functional on twistor space. As we shall see, this leads to a
tree formalism for computing the Einstein amplitude within minimal N' = 4 conformal
supergravity. A closely related formalism was recently used to extract Hodges’ formula
from the non-minimal conformal supergravity of the Berkovits-Witten twistor-string [17];
hence, we confirm that the tree formalism isolates the minimal sector in the twistor-string
(at MHV).

By applying the diagram calculus we are able to derive an expression for the MHV
amplitude in the presence of a cosmological constant. Explicitly, we will show that
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The notation |Hi2%| indicates the determinant of H with the row and columns corresponding

and the quantities w;, are given by

to h(Z(01)) and h(Z(02)) removed, and € € CP! is an arbitrary reference spinor. We prove
that (1.1) is independent of the choice of ¢, and limits smoothly onto Hodges’ formula when

2Here, and throughout the paper, we denote the SL(2, C)-invariant inner product on CP! coordinates by
(ij) = eapoi*af. The notation [ ,] stands for a contraction with a skew bi-twistor 1’7 called the infinity
twistor which is introduced in Section 3. Similarly, ( ,) denotes a contraction with the inverse infinity
twistor Ir;.



A — 0. We also show how it can be manipulated into a form which is highly suggestive of
a twistor-string origin and is the natural generalization of Hodges’ formula to A # 0.

Section 5 concludes with a discussion of interesting future directions following on from
this work. Most enticing is the possibility that the twistor action studied here could be
used to define a MHV formalism [7] for conformal gravity, and in turn Einstein gravity.
Indeed, the twistor action approach for N'= 4 SYM is one way of deriving this formalism
in the gauge theory setting [19, 20] and other techniques such as Risager recursion fail in
the gravitational context [21, 22]. We also discuss the possibility of defining twistor actions
for non-minimal N' = 4 conformal supergravity, as well as how the twistor formula (1.1)
could be converted into a meaningful physical observable in de Sitter space.

It also worth noting that a priori one could hope to derive a formula for M, ¢ from
Skinner’s N' = 8 twistor-string [15]. Unfortunately, although this twistor-string theory
has been shown to give the correct tree-level amplitudes at A = 0, it has so far not been
possible to make sense of the worldsheet correlations functions for the A # 0 regime. It is
to be hoped that knowing the answer (1.1) will also allow us to understand how to make
the Skinner twistor-string work for A # 0.

Notation

Throughout this paper, we use the following index conventions: space-time tensor indices
are Greek letters from the middle of the alphabet (u,v = 0,--- ,3); positive and negative
chirality Weyl spinor indices are primed and un-primed capital Roman letters respectively
(A,B =0,10r A,B" = 0,1); R-symmetry indices are lower-case Roman indices from
the beginning of the alphabet (a,b = 1,...,N'). We will also use bosonic twistor indices,
denoted by Greek letters from the beginning of the alphabet («, 3), as well as supersym-
metric twistor indices, denoted by capital Roman letters from the middle of the alphabet
(1,J).

We denote the space of smooth n-forms on a manifold M by Q%,; in the presence of
a complex structure we denote the space of smooth (p,q) forms by Qﬁ}[q . If we want to
consider these spaces twisted by some sheaf V', then we write Q7%,(V) for ‘the space of
smooth n-forms on M with values in V', and so forth. Dolbeault cohomology groups on
M with values in V' are denoted by H?9(M,V'). The complex line bundles O(k) denote
the bundles of functions homogeneous of weight k on a (projective) manifold, and we make
use of the abbreviation Q%,(O(k)) = Q},(k), and so on.

2 Einstein and Conformal Gravity on Asymptotically de Sitter Spaces

We will work on a 4-dimensional space-time M with metric g. Conformal gravity is the
theory obtained from the action

1 1 -~ !/ / ! Vg
5] = 2 /M du C*P7Clype = 2 /M dp (‘I’ABCD‘I’ABCD + pABOD ‘IJA’B/C’D/> ,
(2.1)

2 is a dimensionless coupling constant, dy = d*z,/g is the volume element, Clvpo

where ¢
is the Weyl curvature tensor of g, and W 4pcp, W a/prcrpr are the anti-self-dual (ASD) and



self-dual (SD) Weyl spinors respectively [23]. This theory is conformally invariant and
hence only depends upon (and constrains) the conformal structure [g] underlying g. The
field equations are the vanishing of the Bach tensor, B/, which can be written in a variety
of different forms thanks to the Bianchi identities:

Buy, = 2V*V°Couvo + Couo R

2 2
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0
= 2(VSVE + 05U apop = 2(VG VE + 05V o, (2.2)

where the subscript in the second line denotes ‘trace-free part.” These imply that the field
equations are satisfied whenever M is conformal to Einstein (i.e., g, oc Ry ), or when its
Weyl curvature is either self-dual or anti-self-dual.

The twistor actions for gauge theory start in space-time with the Yang-Mills La-
grangian in a format which explicitly gives a perturbative expansion around the self-dual
sector. This is accomplished by using a ‘BF',” or Chalmers-Siegel, action functional (c.f.,
[24, 25]). The field equations of conformal gravity can be understood as the Yang-Mills
equations of the Cartan conformal connection (also known as the local twistor connection)
on a SU(2,2) (or in the complex, PSL(4, C)) bundle [26], so it is natural to expect analogous
actions to exist for conformal gravity.

First, note that we can use a complex chiral action

2
Syl =5 | dp vPPIYpep, (2.3)
52 M

which differs from (2.1) by

L (0500 s, — TG ).
This is a topological term, equal to %—QQ(T(M) —n(0M)), where 7(M) is the signature of
M and n(0M) is the n-invariant of the conformal boundary [27]. Hence, (2.3) is equivalent
to the full action (2.1) up to terms which are irrelevant in perturbation theory.

To expand around the SD sector, we introduce the totally symmetric spinor field
G apcp as a Lagrange multiplier, and write the action as [4]:

SCG[Q, G] = / dp (GABCD\I’ABCD — €2GABCDGABCD) . (2.4)
M
This has field equations [5]
WYABCD _ 82GABCD7 (Vg/VD/ + (I)i%/) Gapcp =0, (2.5)

so integrating out G returns (2.3). But now £ becomes a parameter for expanding about
the SD sector: when ¢ = 0, the field equations yield a SD solution and G g4p¢p is a linear
ASD solution propagating on the SD background.



Figure 1. De Sitter space as the quadric Q C RP® and the identification of infinity.

We now review the geometry of de Sitter space and the relationship between confor-
mal gravity and Einstein gravity. We pay particular attention to how this relationship
is manifested at the level of generating functionals for scattering amplitudes following an
argument due to Maldacena [11]. Similar ideas hold for anti-de Sitter space with some sign
changes and in that form these ideas can be applied to AdS/CFT duality.

2.1 The conformal geometry of de Sitter space

De Sitter, anti-de Sitter, and flat space-times in n-dimensions possess only scalar curvature
and are hence conformally flat. Each is a dense open subset in the conformal compactifica-
tion which is a projective quadric of signature (2,n) in RP"™! of topology S* x S™~1/Z,.
The infinite points are respectively a space-like, time-like or null hypersurface (in fact a
lightcone) in the conformal compactification obtained as the intersection of a hyperplane
of appropriate signature in RP"!. In four dimensions, de Sitter space (dSy) is topolog-
ically R x S2, and can be realized as the pseudosphere in R with coordinates (w,z"),
p=0,...,3 via the embedding [28]:

3
nm,x“x”—wQ =2 —w? = X N = diag(1, -1, -1, -1).
This makes manifest the isometry group SO(1,4), the Lorentz group inherited from the
embedding space.

The embedding as a projective quadric in RP® can be realized with homogeneous
coordinates (t,w,z") as the t # 0 portion of:

2Q =t —w? + 2% =0,

with scale-invariant metric

9 édtQ — dw? + nydatdz”

ds A 2

(2.6)

The intersection of @ with the plane ¢t = 0 corresponds to the spatial S at infinity, and
is the identification of the past (.# ) and future (.#7) infinities (ordinarily, we will not
make this identification); see Figure 1. The description of dS, as the pseudosphere in R4
is recovered by taking the patch t = \/3/7



t>0 7

(a.) (b.)

Figure 2. De Sitter space on the affine Minkowski slicing (a.), and the traditional Poincaré slicing

(6.)

There are two useful coordinate patches: the affine and Poincaré patches. The distinc-
tion between the two corresponds to choosing the point defining the light cone at infinity
for some affine coordinates to be at a finite point of de Sitter space or at infinity, respec-
tively. The former case corresponds to t + w = 1; after re-scaling the affine Minkowski
coordinates x* the metric becomes

9 Nwdatdz”
ds® = (1= Aa22 (2.7)
Most of de Sitter infinity is then located at finite points in the affine space where 22 = A~
although this obviously has an S? intersection with the affine (Minkowski) infinity. This
has a straightforward A — 0 limit whereupon (2.7) becomes the Minkowski metric (see
Figure 2, (a.)).
The Poincaré patch, which is more familiar in the physics literature, corresponds to
2% +w = 1, with metric:
2 3 dt2 - 5Z]da77’dl'3
A t2 '
The t = 0 slice is infinity minus a point whose light cone divides de Sitter space into two

ds

(2.8)

halves (¢ > 0 and ¢ < 0), demonstrating that a physical observer at .#* has access to at
most half of the space-time. The Poincaré patch manifests the three-dimensional rotation
and translation symmetries of dS4, but is not so well-behaved in the A — 0 limit; see
Figure 2, (b.).

2.2 Einstein gravity amplitudes inside the conformal gravity S-matrix

We have seen from the definition of the Bach tensor that solutions to the Einstein gravity
field equations are also solutions to those of conformal gravity. However, in order to show
that Einstein tree amplitudes can be obtained from those of conformal gravity we need
to relate the actions of the two theories. That is because we can define the tree-level S-
matrix (or at least its phase) to be the value of the Einstein action evaluated on a classical
solution to the Einstein equations that has been obtained perturbatively from the given
fields involved in the scattering process. More formally, given n solutions g;, i = 1,...,n to
the linearized field equations and a classical background ¢®, we construct the solution g to



the field equations whose asymptotic data is ), €;g;. We can then-at least formally—define
the amplitude to be

M(1,...,n) = coefficient of Hei in S[g< + ¢].
i=1

Thus, if the conformal gravity action of a solution to the Einstein equations yields the
Einstein-Hilbert action of that same solution, then the tree-level conformal gravity S-
matrix can be used to compute that for general relativity. We will see that this is the case
up to a factor of A.

The Einstein-Hilbert action in the presence of a cosmological constant is

BH[ _ 1 _
S [g] - HQ /M d:u'(R 2A)a

where k%2 = 167G . On a de Sitter space, the field equations are R,, = Ag,u, so the action
reads
2A 2A
SEH[dS :/ dp = =5V (dS
[ 4] 12 454 H 12 ( 4)7
where V(M) is the volume of M. For any asymptotically de Sitter manifold, this volume
will be infinite so the action functional must be modified by the Gibbons-Hawking boundary
term [29]. Additionally, we must include the holographic renormalization counter-terms
(which also live on the boundary) in order to render the volume finite [30, 31]. After
including these additions, one obtains the renormalized Einstein-Hilbert action [32], and if
M is asymptotically de Sitter, we have:
2A

Sten M) = 5 Veen(M), (2.9)
where Ve is the renormalized volume of the space-time (c.f., [33]).

On the other hand, if M was a Riemannian 4-manifold which was compact without
boundary, the Chern-Gauss-Bonnet formula tells us that

1 1 1
M)=— [ dulC™r°C,, . — =R, R*" + -R?| .
x(M) SWQ/MM< wpo = 5B +5 )

If M were additionally Einstein (R, = Ag,.), then we would have

8w (M) 2A?

§°° [M] g2 T 3e2

V(M). (2.10)
When M is (Lorentzian) asymptotically de Sitter, the Chern-Gauss-Bonnet formula re-
quires a boundary term, and the volume is renormalized. However, a theorem?® of Anderson
tells us that (2.10) continues to hold even after boundary terms for the Euler characteristic
are taken into account and the volume has been renormalized [34]. Furthermore, since M

3Note that Anderson’s theorem is actually stated for asymptotically hyperbolic Riemannian four-
manifolds; the extension to asymptotically de Sitter Lorentzian manifolds follows by analytic continuation.
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Figure 3. Geometric picture of MHV graviton scattering

is asymptotically de Sitter we can assume that we always perturb around the topologically
trivial case (i.e., x(M) = 0), so comparing with (2.9) we find

A K2
SCEIM] = —ﬁsg}w]. (2.11)

To relate the scattering amplitudes of the two theories, we need a way to single out
Einstein scattering states inside conformal gravity. Maldacena has shown that this can be
accomplished by employing boundary conditions on the metric [11]. We will use an equiv-
alent explicit formula in twistor space to compute the tree-level scattering amplitudes of
general relativity by using conformal gravity restricted to Einstein scattering states on a de
Sitter background. We will refer to this as the conformal/Einstein gravity correspondence.

2.3 The MHYV amplitude

We will focus on the tree-level amplitudes corresponding to the scattering of two negative
helicity gravitons and n — 2 positive helicity gravitons, the MHV amplitudes of general
relativity. These are maximal because the positive and negative helicity states are dual
to each other so that an ‘all +’ amplitude would correspond to a positive helicity particle
picking up some negative helicity scattering on a positive helicity background. But this
cannot happen by virtue of the consistency of the self-duality equations for general relativ-
ity. Similarly, the one minus and rest plus amplitude vanishes because the self-dual sector
is integrable (it would correspond to the nontrivial scattering of a linear positive helicity
particle on a positive helicity background). See Appendix A, lemma A.1 for more details.

Following [35], we absorb the n — 2 SD gravitons of the MHV amplitude into a fully
nonlinear SD background space-time M, which can subsequently be perturbatively ex-
panded to recover the individual particle content. Reversing the momentum of one of the
two negative helicity gravitons, the MHV amplitude is the probability for a pure ASD state
at .#~ to propagate across M and evolve into a SD state at # 7 as illustrated in Figure 3.

In Appendix A, we derive the generating functional for these amplitudes in Einstein
gravity by working with the chiral formalism in proposition A.1. We will denote this
by ISR, and its exact form can be found in (A.16). While we don’t have a good off-
shell expression and perturbation scheme for this Einstein generating function in twistor
space, we do for the case of conformal gravity. The main point of this paper is that a

~10 -



perturbative expansion leading to the MHV amplitudes can be achieved by applying the
conformal /Einstein gravity correspondence.

The generating functional for MHV amplitudes in conformal gravity is given by the
second term in (2.4). The first term is precisely the action for the self-dual sector, so the
second term is therefore the action for the first nontrivial deformation of the SD sector that
is quadratic in the ASD part of the field. Evaluated on-shell with Einstein scattering states,
the two ASD gravitons are given by Weyl spinor perturbations 1, 12 and the generating
functional reads:

o 23
196127 MY, = > dp 8Py apep, (2.12)
M

where M is again the SD background which encodes the n — 2 remaining gravitons. In
proposition A.2, we prove that this is related to IGF by

3e2

IGR[l_,Q_;M+] = —ﬁ
K

1961127 MY, (2.13)

in precise accordance with (2.11).# Note that although this correspondence appears to
degenerate for A — 0, the n-particle conformal gravity amplitude is a polynomial of degree
n—1in A with no O(A?) coefficient [17, 37]. This makes it possible to extract the flat-space
amplitude for general relativity from (2.13) as well.

We shall see that I€C has a very natural expression on twistor space which allows us
to perform a perturbative expansion of the background M in terms of a diagram calculus
on CP'. This will enable us to derive a twistorial expression for the MHV amplitudes with
a cosmological constant in Section 4. Before proceeding we first discuss polarization states
and the extension of the conformal/Einstein gravity correspondence to supersymmetric

versions of conformal gravity.

2.4 Relations between Einstein and conformal gravity polarization states

The usual strategy for calculating scattering amplitudes is to express them in terms of a
basis of momentum polarization states. We will in fact use a variety of different repre-
sentations; however, we need some understanding of the relationship between linearized
solutions to the Bach equations (2.2), spin-two fields ,and linearized Einstein solutions.
Polarization states for conformal gravity were studied in [4, 38] and were found to contain
twice as many states as for Einstein gravity.” We use a slightly different formulation here
that allows us to retain Lorentz invariance (although not translation invariance), and will

also tie in with our focus on de Sitter gravity.

4As discussed in the introduction, the ‘scattering amplitudes’ produced by this generating functional
do not actually constitute physical observables, since the measurement is performed by integrating over all
of #*. This is a space-like hypersurface, so no physical observer can perform this measurement. Hence,
(2.13) generates a ‘meta-observable’ in the sense of the dS/CFT correspondence [18, 36], but limits nicely
to the asymptotically flat definition of a scattering amplitude as A — 0. We discuss how one might obtain
physical observables in Section 5.

50On twistor space we will see three times as many conformal gravity states as for Einstein gravity
and conceivably one has simply been missed in earlier treatments, but this will not materially alter our
discussion.
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Let {¢ABCD7 ”&A’B’C’D’} be linearized spin-two fields and {\I]ABCDv \i/A’B’C’D’} be the
ASD and SD portions of the Weyl tensor. The key point in connecting conformal gravity
to spin-two fields is that the Weyl tensor has conformal weight zero, whereas a linearized
spin-two field has conformal weight —1 (c.f., [39]). Both fields satisfy

Vﬁl‘i/A'B'C'D' = VQIQ/NJA’B’C’D’ =0=V4Ypcp = Vaiascp, (2.14)

in the Einstein conformal frame but the Weyl tensor only does so in its given Einstein
conformal scale and no other. Einstein conformal scales can be specified as functions €2 of
conformal weight +1 that satisfy the conformally invariant equation

(VuVy + @,,)00 = 0, (2.15)

where the subscript 0 denotes ‘the trace-free part” and ®,,, is half the trace-free part of the
Ricci tensor.
In flat space, (2.15) has the general solution

Q=a+bya" +ca®. (2.16)

It is clear in general that given such a solution €2, rescaling so that {2 = 1 gives a metric
satisfying ®,, = 0 from (2.15). This is the Einstein condition, and the solutions (2.16)
give metrics with cosmological constant A = 3(b,b0* — ac). Upon setting

Vapep = Wapep, (2.17)

we see that the Weyl spinor ¥ 4pcp has conformal weight zero and satisfies the linearized
vacuum Bianchi identity (2.14) for the conformal scale in which @ = 1. Since this is
an Einstein scale and the Bach equations are simply another derivative of this equation,
Wapcop so defined also satisfies the linearized Bach equations. But then, by conformal
invariance of the Bach equations, it does so in any conformal scale.

We will not use momentum eigenstates much in what follows, but include the following
in order to make contact with standard calculations. Standard momentum eigenstates for
spin-two fields with 4-momentum k44 = papas are given by

"
YaBcp = papBpcppe™ ",

where the polarization information is contained in the choice of scale of p4.

As conformal gravity has fourth-order equations of motion, we need more polarization
states and as mentioned above, it is usually thought that twice as many suffice [4, 38]
although we will present three here to line up with the counting from twistor space. The
first two arise from (2.17) as the pair

Uapcp = pappoppe™ ™, Vypep = 2°papspeppe™ ™, (2.18)

and similarly for U, U’. This framework can also be used to characterize Einstein polar-
ization states inside conformal gravity. In particular, on the affine patch of de Sitter space
given by (2.7), we will have Einstein states

Vipep = (1 Aa?)papppoppe’™™. (2.19)
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If instead we work on the Poincaré patch of de Sitter space (2.8), we would use:

A .
Uhpep = \/; t papPCPDE™ . (2.20)

Clearly we can characterize the Einstein polarization state (2.19) as the linear combination
of the conformal gravity polarization states (2.18) that vanishes at the hypersurface %y =
{z|(1 — Az?) = 0} of de Sitter space.

Another linearized conformal gravity solution that is missed by the above is

Uapep = aapspeppye’”™ ™ (2.21)

where a4 is an arbitrary constant spinor. The general solution for the spin two equation
can be expressed by Fourier transform as

wapen() = [ d% 502) w(k) papperpe™.

Similarly, the general solution to the linearized Bach equations can be expressed as

Uapop() = / d'k (8(k*)Wo(k)(a + pcad’ (k*)U1(k)) pepopp)e™™. (2.22)
This can be seen by taking the Fourier transform of the Bach equations to yield
A BB 4 pep (k) = 0.
Multiplying by k twice more we discover that (k?)?¥ apcp(k) = 0 so that

U apcp(k) = Vo apep 6(k) + W1 apcp 6 (k).

Introduce py = kga0? so that k44 py = %20’4,. Then it is straightforward to see that
the field equations are satisfied by (2.22) and that this is the general solution. Integrating
by parts in (2.22), we can eliminate §(k?) in favour of §(k?) but will then pick up explicit
dependence on xz* making contact with the polarization states (2.18).

2.5 Minimal and non-minimal conformal super-gravity

It is natural to ask if the classical correspondence between conformal and Einstein gravity
persists in the presence of supersymmetry. Analogues of conformal gravity with extended
supersymmetry were first constructed in [40], and it is believed that these theories are
well-defined for V' < 4 (c.f., [41, 42]). In this paper, we will be concerned primarily with
N = 4 conformal supergravities (CSGs), since this is the degree of supersymmetry that
arises most naturally in twistor theory. This N'= 4 CSG comes in two basic phenotypes:
mianimal and non-minimal based upon the presence of a certain global symmetry. The non-
minimal type depends essentially on a free function of one variable. Einstein supergravity
embeds into minimal CSG, but not into the non-minimal models.

The field content of N' = 4 CSG consists of the spin-2 conformal gravitons along

with bosonic fields Viip anti-self-dual tensors T ﬁfj, scalars {Eab,Dgg,w} and fermions
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((1,) (b)

Figure 4. In minimal N' = 4 CSG, external gravitons only couple to other gravitons in the bulk
(a.); in the non-minimal model they can couple to the scalar ¢ (b.).

{¥5s Xges Ao}, where @ = 1,...,4 is a SU(4) R-symmetry index. Minimal N' = 4 CSG
is characterized by a global SU(1,1) symmetry acting non-linearly on the complex scalar ¢
(essentially the action of SU(1, 1) on the upper-half plane) [40]. This relates to the presence
of N' = 4 Poincaré supergravity sitting inside the CSG [43]. The minimal model also has
a degenerate limit where SU(1,1) is replaced by a linear Ey (the Euclidean symmetries of
the plane) action; once again this has an analogue in A/ = 4 Einstein supergravity, and
also arises in coupling A/ = 1 supergravity to a scalar multiplet [43-45].
A general conformally invariant theory of gravity has a Lagrangian of the form

L= fle)¥? 4+ o0%@+cc.+...,

where we just give two indicative terms of a rather extended Lagrangian. Because the field
o has conformal weight zero, we are allowed an arbitrary function of ¢ as a coefficient of
the self-dual Weyl tensor squared ¥2. In a superfield formalism, it can bee seen that this
will have a supersymmetric extension for arbitrary analytic f.

In the minimal N = 4 case, the aforementioned SU(1, 1) symmetry leads to a unique
N = 4 CSG Lagrangian. It follows from symmetry under the U(1) subgroup of SU(1,1)
that we must have f = 1, giving the Lagrangian:

ﬁmin — C/'ngcuypg + QODQQE 4o

Einstein supergravities at A/ = 4 can be constructed from minimal CSG [46] and so re-
stricting to Einstein scattering states, Maldacena’s argument should still apply and we can
extract the tree-level Einstein gravity scattering amplitudes (see Figure 4 (a)).

Without the global SU(1,1) symmetry, we can have an arbitrary f(¢) and there are
couplings between the complex scalar ¢ and the Weyl curvature. Such N' = 4 CSG
theories are referred to as non-minimal, and were first conjectured to exist in [10, 47].
If ' # 0, the Weyl tensor will provide a source for the scalar field, and so even if it
vanishes asymptotically it will become nontrivial in the interior. Since the scalar will then
provide a source for the Weyl curvature, Einstein gravity will not be a subset of this theory
and there will in general be no embedding of Einstein solutions into non-minimal CSG.

At the level of scattering amplitudes, conformal graviton scattering states in the non-
minimal theory can interact with the scalar in the bulk via three-point vertices of the
form (Weyl)2. This means that a tree-level scattering amplitude for conformal gravitons
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will include Feynman diagrams for which there is no analogue in Einstein supergravity, as
illustrated in Figure 4 (b). Without a consistent algorithm for subtracting these diagrams,
Maldacena’s argument can not be applied to non-minimal CSG. The theory arising from
the Berkovits-Witten twistor string is understood to be an example of non-minimal CSG,
with f(¢) =¥ [4]. And indeed, spurious amplitudes related to the non-minimal coupling
between conformal gravitons and scalars were found explicitly in [16, 48].

While there is some doubt over whether non-minimal CSG is well-defined at the quan-
tum level [49, 50], minimal conformal gravity maintains some independent interest. It
has been shown that minimal N' = 4 CSG interacting with a SU(2) x U(1) N' = 4 SYM
theory is ultraviolet finite and power-counting renormalizable [10, 51]. This theory can be
obtained as a gauge theory of the superconformal group SU(2,2|4). A weaker version of
the minimal Lagrangian can also be obtained by coupling abelian N'=4 SYM to a N' = 4
CSG background [46, 52] and extracting the UV divergent portion of the partition function
[50, 53]. The theory has even been proposed as a basic model for quantum gravity (c.f.,
(38, 54]).

3 Twistor Action for Conformal (Super-)Gravity

In this section, we show how A/ = 4 CSG can be formulated in terms of a classical action
functional on twistor space. After first recalling some background material on twistor
spaces for curved space-times, we define the twistor action for A' = 0 conformal gravity [5]
and then consider its natural extension to AN/ = 4 supersymmetry.

3.1 Curved twistor theory

In flat Minkowski space M, twistor space PT is an open subset of CP3, with homogeneous
coordinates Z% = (A4, ). The standard flat-space incidence relations

’ . ’
p =izt Ny,

represent a point € M by a linearly embedded CP' ¢ PT. To study conformal gravity
and the MHV generating functional (2.13), we need twistor theory adapted to curved
space-times such as the self-dual background with cosmological constant, M.

The non-linear graviton construction is the basis for curved twistor theory. We state
the theorem in the context of N/ = 0, but its extension to the N/ = 4 context is straight-
forward.

Theorem 1 (Penrose [55], Ward [56]) There is a one-to-one correspondence between:
(a.) Space-times M with self-dual conformal structure [g], and (b.) twistor spaces P (a
complex projective 3-manifold) obtained as a complex deformation of PT and containing at
least one rational curve Xo with normal bundle Nx, = O(1) ® O(1). Define the complex
line bundle O(1) — P so that Q3, = O(—4) (the appropriate 41 root exists on the
neighbourhood of Xo from the previous assumption).

There is a metric g € [g] with Ricci curvature Ry, = Agu, if and only if P.T is equipped
with:
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e a non-degenerate holomorphic contact structure specified by T € Q%,,’%@), and
e a holomorphic 3-form D3Z € Qﬂ‘i’%(él) obeying T ANdT = %D3Z.

Here D*Z is the tautologically defined section of Q3 (4).
We define the non-projective twistor space  to be the total space of the complex line
bundle O(—1).

Thus, points * € M (for M obeying the conditions of this theorem) correspond to
rational, but no longer necessarily linearly embedded, curves X C P of degree 1. The
conformal structure on M corresponds to requiring that if two of these curves X, Y intersect
in P.7, then the points x,y € M are null separated. Furthermore, P.7 can be reconstructed
from M as the space of totally null self-dual 2-planes in the complexification of M (c.f.,
[55, 57]).

Later we will take the self-dual manifold M to correspond to the background of our
MHV generating functional (2.12), encoding the n — 2 positive helicity gravitons of the
n-particle MHV amplitude and we will want to be very explicit about the presentation
of the data and details of the construction. Theorem 1 tells us that M corresponds to a
curved twistor space P which arises as a complex deformation of PT. We will take M to
be a finite but small perturbation away from flat space, so the deformed complex structure
on P.7 will be expressed as a small but finite deformation of the flat J-operator:

0
0z

5f=5+f=d2a + f,

where f € QI%’% (Tpr) and Z“ are homogeneous coordinates on P.7. This induces a basis
for TE?:; and Q]%,’; with respect to the deformed complex structure:

01 0 o O
T]Py - Span{aZa + fo_z aZa ) (31)
QI;,% = span{DZ*} = span {dZ* — f*}, (3.2)

where we have denoted f = f*0, = f¢dZ%d,. The forms f® must descend from .7 to P.7
which follows from

Zof =0,  fUNZ) =AfYZ), AeCh (3.3)

Additionally, the vector field f on .7 is determined by one on P.Z only up to multiples of
the Euler vector field Z¢9,,, and this freedom can be fixed by imposing

Duf®=0. (3.4)
As it stands, 5f defines an almost complex structure. This is integrable if and only if
Op=0f+[f.11" =0, [f.f1"= 17 Nosr*. (3.5)

This integrability condition can be thought of as the twistor form of the field equations
for self-dual conformal gravity. Kodaira theory implies the existence of a complex four
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parameter family of rational curves of degree one, and this family is identified with the
complexification of space-time M. Thus to reconstruct M from P.7 we must find a family
of holomorphic maps

2%k, 04)  BS 5 P, Z%%@:<Muﬂmﬂ@ﬂg,

where PS 2 M x CP! is naturally identified with the un-primed projective spinor bundle
of M and Z(z,0) is a map of degree one parametrized by z € M. We will often denote
the image of the map for x € M as X. The condition that these maps be holomorphic is

0y Z2%(x,0) — f*(Z(x,0)) =0, (3.6)
where 0, = d&a% is the d-operator on X C P.7 pulled back to PS.

3.2 Twistor action

We construct a twistorial version of the chiral action (2.4) in twistor space in two parts.
The first is an action for the self-dual sector of conformal gravity. By theorem 1, this is
equivalent to a twistor space with almost complex structure 5f subject to the field equation
that it be integrable. The integrability condition is the vanishing of

N = (3f* +[f, f1*) 0o € 2(To7) . (3.7)

This will follow as the field equations from the Lagrange multiplier action [4]:

Sl[g) f] :/ Dgz/\ga AN&: (38)
PT

where g := g, DZ% € Q%;((’)(—él) ® Q) and is subject to Z%g, = 0 because f¢ is defined
modulo Z%. (If we fix this freedom in f< so that d,f* = 0, then we can allow a gauge
freedom go, — ga + OaX, although this makes less geometric sense as then g becomes
non-projective.) The field equations for this action are

N*=0,  95(guDZ%) =0. (3.9)

We additionally have the gauge freedom g — g + 5foz for a € Q]}Dy(—él) because
5fN = ( follows from a Jacobi-like identity for the almost complex structure. Thus, on-
shell at least, g defines a cohomology class in H*'(P.7,Q!(—4)). We can therefore apply
the Penrose transform [58] to define a space-time field Gapcp by:

GaBcpD =/ AaABAcAp 9(Z(z,0)). (3.10)
X

In Appendix B we show that Gapcp satisfies the second field equation of (2.5). Thus g

gives rise to a linear ASD conformal gravity field propagating on the SD background.
The action (3.8) is therefore equivalent to the first (self-dual) part of the chiral space-

time action (2.4), i.e., with €2 = 0. To obtain the ASD interactions of the theory, we simply
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need to express the second term in (2.4) in twistor space. The Penrose transform (3.10)
can be implemented off-shell to give:

S2[97f] :/ dMA<)‘1 )\2>4 g1 N g2, (311)
]P)§><]\4]P’S

where PS x 37 PS 2 M x CP! x CP! is the fibre-wise product of PS with itself. In this
expression for So, we implicitly assume that the SD background M is constructed via the
non-linear graviton of theorem 1. This can be made explicit by introducing a Lagrange

multiplier field Y € Q(lc’gl (T*P.7) and re-writing the action as

Salg, f] = /M dp

/ (YaégZa — fO‘Ya) —I—/ <)\1 )\2)4 gL Ngsal . (3.12)
Cp! (CPY)2

Integrating out the field Y, produces the constraint 9,Z% = f¢, matching (3.6) and re-
turning (3.11). Note that the Lagrange multiplier Y appears in a similar fashion in the
worldsheet action of the Berkovits-Witten twistor-string [2, 4].

This gives the twistor action for the full (i.e., non-self-dual) conformal gravity of the
form:

S[gvf]:Sl[gaf]_EQSQ[gaf]' (313)

We should note that to define the action off shell, we must nevertheless solve (3.6) in order
to define the integrals in Ss. This equation can be solved with the standard four complex
dimensional family of solutions irrespective of whether the almost complex structure is
integrable. However, the integral against du in (3.11) is over a real four-dimensional
contour and so we must also impose a reality condition on the data in order for the moduli
space of solutions to have a real four-dimensional slice. This can be done by imposing a
reality structure on the data that is adapted to either Euclidean or split signature. Thus
for chlidean signature we have an anti-linear involution Z% — Z that is quaternionic so
that Z% = —Z* and we require f = f (Z ). This induces a conjugation on M whose fixed
points are a real slice of Euclidean signature (an ordinary conjugation yields a real slice of
split signature).
The following theorem confirms that this is equivalent to (2.4), as desired:

Theorem 2 (Mason [5]) The twistor action S[g, f] is classically equivalent to the con-
formal gravity action (2.4) in the sense that solutions to its Euler-Lagrange equations are
in one-to-one correspondence with solutions to the field equations (2.5) up to space-time
diffeomorphisms.

3.3 The N =4 minimal twistor action

The extension of the above construction to N' = 4 supersymmetry is straightforward.
The twistor space P.7 becomes a projective (3]4)-dimensional supermanifold modelled on
CP?1* with homogeneous coordinates Z! = (Z%,x%), a = 1,...,4. It is super-Calabi-Yau
being equipped with a (canonical) holomorphic volume measure D314z (i.e., a canonical
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holomorphic section of the Berezinian). The data naturally extends to a deformed O-
operator and (1,1)-form on P.7

o ) )

af:a+ff@, g:=gDzZ ey, Dzl =dz! - fI.
With A/ = 4 supersymmetry, the conditions d7f! = 0 and Zlg; = 0 no longer fix the
gauge freedoms of adding a multiple of Z to f! or d; to g. Since d7f! = 0 on account of
fermionic signs, 97 f! = 0 is compatible with adding a multiple of Z! to f!, and Z'g; =0
is compatible with adding dra to g, as o now has homogeneity zero rather than —4.

This allows us to define (3.13) with respect to the new super-geometry by taking:

Silg, f1= / D3Z Agr AN, (3.14)
PT

Salg, f] = / dp A g1 A go. (3.15)
PSXMPS

Here, as we will see later in §4, dy is a canonically defined measure on the (4|8)-dimensional
chiral space-time M, the space of degree-one rational curves in P.7. As in the N = 0
setting, we can make the construction of the SD background M explicit by introducing the
Lagrange multiplier Y and writing

_ 5 I oI
Sa(g, f] —/Mdu UCP (Y10,2" — ['Y7) +/(CP1)291A92]. (3.16)

In the supersymmetric setting, g;yDZ! defines a chiral superfield on space-time:

6(2.0) = [ 9(2(2.0.0)) (3.17)
X
where G has an expansion like:
G(x,0) =@+ -+ 0 BDU pop +--- .

The Penrose transform can be used to show that the individual fields in G correspond to the
chiral (ASD) half of the N' = 4 CSG field content, as desired. Heuristically, the space-time
translation of our N = 4 twistor action will look like

SW,G] = /M dp (W(z,0) G(z,0) — *G(z,0)*) — /M dp W(z,0)?, (3.18)

where W(z, 0) is the a chiral superfield which, on-shell, is a Lorentz scalar encoding the
N = 4 Weyl multiplet (c.f., [40]).

This action has the correct linear reduction for N = 4 CSG [4], and must correspond to
a minimal N = 4 CSG since the functional form prohibits any cubic couplings between ¢
and the Weyl curvature. However, note that our twistor action only possesses the linearized
E, global symmetry of translating the scalar ¢ rather than the fully non-linear SU(1,1).%
Nevertheless, since Einstein supergravity still forms a subsector of this degenerate theory
[43], we are able to apply the conformal/Einstein gravity correspondence.

5The additional U(1)-symmetry of the minimal model can be seen as arising from g — ¢**g together
with x* — e~y which induces a similar phase rotation for #%#. This symmetry is the key for ruling out
the ¢ (VVeyl)2 couplings and hence ensuring that the conformal/Einstein gravity correspondence applies.
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3.4 The Einstein sector

We will apply Maldacena’s argument to the minimal A/ = 4 CSG twistor action; this entails
restricting S[g, f] to Einstein polarization states. A conformal factor 2 from (2.16) relating
spin-two and linearized Einstein fields can be specified on twistor space by introducing an
infinity twistor Iy, a skew bi-twistor.”

Choose Iy and I to be of rank-two such that

Io1;Z2%dz7 = (AdN), I 1;Z24z7 = [ dy).

Then the infinity twistor appropriate to Einstein polarization states with cosmological
constant A on the affine de Sitter patch is given by I = Iy+ Al;. We can define an upstairs
bosonic part by %% = %60‘575]75 and we will have

IopIP = AS) .

This relation can be extended supersymmetrically if we set:

A8 0 0 Aeap 0 0
I[J = 0 AGA/B/ 0 y IIJ = 0 GA/B/ 0 . (319)
0 0 VAdw 0 0 VA
Geometrically, these are encoded into a weighted contact form 7 and Poisson structure on
PT:
r=1I11;2'Dz7,  U=I1"70r70;, {f,g9}=1"01f ds9. (3.20)

We now require that the complex deformation 5f be Hamiltonian with respect to Il
LiT=0 = f=T1"70/hd;,  heQp,(2).

Infinitesimal Hamiltonian diffeomorphisms are pure gauge and modulo such, h defines a
cohomology class in H%'(P.7,0(2)). The Penrose transform realizes this as a N' = 4
graviton multiplet of helicity +2 via the integral formula

- ‘h

0
Y(z,0)apop :/XauA"

oD’ NT.

Plugging this into (3.14), we get:

&Mﬂ%&Msz

= 1
D3 Z A gr AT 8, <ah + = {h, h})
PT 2

= / D3 Z AT 0rg5 A <5h 41 {h, h}) . (3.21)
PT 2

with the second line following via integration by parts. On-shell h := I'/d;g; defines
an element of H*'(P.7,O(-2)). The Penrose transform identifies this with the A = 4
graviton multiplet of helicity —2 [37], this time starting with the scalar

qﬁ(:p,@):/xﬁ/\r.

"In the supersymmetric case, the fermionic part of the infinity twistor corresponds to a gauging of the

N =4 R-symmetry [59]; this will not play an important role in this paper.

—90 —



Given some h € HY'(P.Z7,0(-2)) we can also write g = h A 7. With this, (3.21)
becomes:

&MM%&WM—/

N (1
D342 A 110y <IJKZKh> A <8h + 5 {n, h})
P

A |
= 2A/ D3Z A h A <ah + = {h, h}) . (3.22)
PT 2

This is precisely the self-dual twistor action for Einstein gravity, up to the factor of A
required by conformal/Einstein gravity correspondence [16, 60].
The Einstein reduction for the second term of the twistor action follows easily:

Sg[g, f] — SQ[B, h] = / dp A iLl RIAN ]~I2 To. (323)
]PSXA[]P)S

So the reduction of the conformal gravity twistor action to Einstein wavefunctions is simply

S[h,h) = Sy[h, h] — £2Sa[h, h]. (3.24)
The remaining diffeomorphism freedom on P.7 is captured by the transformations:
Z% = Z°+{Z%x}, h— h+0x + {h,x},

for x a weight 42 function [60].

4 The MHV Amplitude with Cosmological Constant

We are now in a position to derive a twistorial formula for the MHV amplitude of Einstein
supergravity with a cosmological constant. By (3.23) and proposition A.2, we know that
the generating functional for these amplitudes (with A" = 4 supersymmetry) is given by

1 - -
X du A hy 11 A hg T2, (4.1)
PS x ]\/[]PS

where the background space-time M is self dual and so can be obtained via the non-linear

graviton construction by solving the equation
0,7 (x,0) = f1(Z2) = I'70;0(Z) (4.2)

While we will focus on Einstein states, much of our calculation is easily applicable to
conformal gravity, since polarization states for this theory can be expressed in terms of Ein-
stein states. Given the permutation symmetry of the positive helicity and negative helicity
fields amongst themselves, we can generate all conformal gravity amplitudes by considering
Einstein states with one choice of infinity twistor for the positive helicity states (upstairs
indices), and a different one for the negative helicity states (downstairs indices). Restrict-
ing to the Einstein subsector is then accomplished by requiring these infinity twistors be
compatible as in (3.19).
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Now, equation (4.2) has the four complex parameter family of solutions that defines
(complexified) space-time [55, 61].8 To obtain a formula for the n-point amplitude, we will
obtain a perturbative expansion of the generating functional to (n — 2)* order by solving
equation (4.2) peturbatively. This will lead to Feynman diagrams on the CP! factors for
the integrand of the MHV generating function (4.1). These are then summed using the
matrix-tree theorem to give a compact formula in terms of reduced determinants for the
MHV amplitude analogous to that of Hodges [12]. This gives a clear explanation of the
use of the matrix-tree theorem for this amplitude described in [17, 65].

4.1 The measure

To start with we will first define the measure du used in (4.1). To this end, and for the
the later perturbation expansion, we rewrite (4.2) as an integral equation

7Nz, 0) = Xhat + 01 (F1(2)) , (4.3)

where X I{XUA solves the homogeneous equation and X4 parametrizes its solutions. Since
f! has weight +1, there is an ambiguity in the choice of ;' and we can choose 7! to
vanishes at two points. For simplicity we will require that it vanishes at 04 = £4 to second
order by setting

I _ vI A 1 Do’ (50)2
Zw.0) = X4 H 50 e (007) (€072

Physical observables such as scattering amplitudes should be independent of £ at the end

f(Z("). (4.4)

of our calculations and we will check this explicitly.

We now write Z/(z,0) = X404 defining
&4 Do’ (¢0)
2mi Jepr (007) (§07)?

XAz, 0) = X144 fL(z(d"). (4.5)

which solves
DX _ & 4.6
g (J:)O-) - (50_) . ( . )

This enables us to take the exterior derivative of X with respect to the space-time coordi-

nate z, finding
¢lop
(§o)

Since d7f! = 0, this means that the top-degree form d®®X is holomorphic in o and of

0o (Ao X4 (2,0)) = 0 f7 d, X8 (z,0). (4.7)

weight zero; by Liouville’s theorem, it is therefore independent of o. But this means that

dsBx d¥BX

~ Vol GL(2,C) _ vol GL(2,C)’

dp

is an invariant volume form on the space-time M itself.”

$When A = 0, it is a twistorial formulation of the ‘good cut equation’ [62-64].

9Here GL(2,C) is the choice of homogeneous coordinates o4 on X = CP!. The division by vol GL(2,C)
is understood in the Fadeev-Popov sense: one chooses a section of the group action, and multiplies by the
appropriate Jacobian factor to obtain a well-define volume form on the (4|8)-dimensional quotient. One
can also define this form to be that obtained by contracting a basis set of the generators of GL(2,C) into
the volume form in the numerator and observing that the form is one pulled-back from the quotient.
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4.2 A Feynman diagram calculus for the perturbation theory

We now introduce a Feynman diagram calculus on CP! for the perturbative evaluation of
the generating functional (4.1). We compute the n-point functional as a sum of diagrams
defined as follows:

e Draw a black vertex for each of iLl, BQ.
e Draw a grey vertex for each contact structure 7, 7».
e Draw a white vertex for each of the n — 2 fields h;.

e Draw an oriented edge out from each white vertex to some other vertex such that
the resulting diagram is a forest of trees rooted at the black or grey vertices.

[ J O

h T h
Figure 5. Building blocks for Feynman diagrams

The computational dictionary associated to these diagrams comes directly from the
generating functional (4.1). Recall that we can make the SD background space-time M
explicit by introducing a Lagrange multiplier field Y7 as in (3.16); at the level of the MHV
generating functional, this takes the form:

_ 1 - -
/ dp / (Y19, 2" — Y1) + / hi T Ay T
M CP! A Jicprye

Our diagrams arise by considering the tree-level (since the curve X C P.7 is built by the

(4.8)

classical solution to (4.2)) Feynman rules on CP*.

Each diagram corresponds to an integrand to be integrated over the n-fold product of
the CP! factor in (4.1) and then over M. The vertices are each associated to a point o; on
the ith CP! factor. For i = 1,2 we have a wavefunction h(Z(o;)) for the black vertices or
7 = 11721 (0;)0Z7 (0;) for the grey vertices. Writing

n n
Oh(Z(o;
fI:ZfI(Z(O_j)):ZIIJ (J( ])),
, ; 077 (o)
Jj=3 j=3
we obtain the n — 2 white vertices of the form [Y(Z(0)),0h(Z(0;))]. The kinetic term
Y;0,Z" defines a propagator in accordance with (4.4), so an edge from a white node j > 2

to a black or white node i corresponds to the differential operator

(60i)°Do; . ;0h(Z(0;)) 0
(§05)*(ojoi) 0Z7(0;) 0Z'(03)

(4.9)

acting on the wave function at the i*® node of the diagram. We will give the formulae for
the action on the 7 associated to the grey vertices below, as they require a more subtle
treatment.
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Since there is a single Y7 in each white vertex, there are n — 2 total edges in each
diagram, and the fact that they are forests of trees requires them to be rooted at black or
grey vertices. Additionally, since the wavefunctions h, h depend non-polynomially on Z,
the white and black vertices can have have an arbitrary number of incoming edges. Since
T =(Z(0),0Z(0)) is of order two in Z, the grey vertices can absorb at most two edges.

To summarize, we represent the perturbative expansion of the MHV generating func-
tional (4.1) by using a CP'-Feynman diagram calculus, which follows naturally from the
‘explicit’ form of the generating functional (4.8). Since we work classically, each diagram
corresponds to a forest of trees on n+2 (2 7s + 2 hs +n—2 hs) vertices, rooted at a black
or grey vertex. Restricting to Einstein states, this perturbative expansion acts on Z(z,0)

" ” Do’ (60)? 11, 0(Z(0")
P02 fo e g’ 027(0) (410
while its action on a wavefunction h or h is:
Do’ (€0)? d d ,
hZ(o)) — o (007 (E0)2 [82(0)’ 8Z(a’)] h(Z(o)) h(Z(c")). (4.11)

Note that the diagram calculus of the perturbative iteration is identical to the semi-
classical connected tree formalism which arose in the context of twistor-string theory in
[17]. There, the trees emerged in order to extract Einstein amplitudes from the Berkovits-
Witten twistor-string at degree one. Here, the trees arise naturally from the twistor action
of minimal AV = 4 CSG: this proves that they are isolating the minimal content of BW-CSG
for a degree-one instanton.

4.3 The role of the contact structure

All the diagrams have two grey vertices corresponding to the contact structures 7; =
(Z(0i),0Z(0i)), i = 1,2. These are quadratic in Z and so can have at most two incoming
arrows; higher numbers of incoming arrows will vanish. In fact, if the upstairs infinity
twistor is the inverse of the downstairs one (as in the Einstein case), other contributions
vanish as follows.

Lemma 4.1 If a Feynman diagram has a disconnected piece with just one white vertex
connected to a grey vertex we will refer to it as isolated if the corresponding white vertex
in the perturbative expansion has no incoming arrows as in (a.) of Figure 6. Such isolated
deformations of the contact structure give a vanishing contribution to the vertex generating
functional.

———0O ——(O——0
(a.) ()

Figure 6. An isolated (a.) and un-isolated (b.) deformation of .
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Proof: Without loss of generality, consider perturbative expansions with a single isolated
arrow from (white) vertex ¢ to 71. This corresponds to a contribution

(@01, 02(01)) = 1y [ 5 S [€01002 (001! (0) + (€1)(idon) 2! (00) ()
+2(14)(do1) 2" (1) 7 (02)]
11 [ o e [€01002 (00 (0 + D602 () (0

(19)2 (&i)?
+(14)(¢do1) 2" (01) f 7 (03)]

with the second expression following by the Schouten identity.
Now recall that the map to twistor space takes the form Z/(0) = X404 = (Xo)!, s0
the Schouten identity gives

027 (01) (1i) = Z”(0;) Doy — Z7 (01) (idoy),

and feeding this into the above expression leaves us with

Do; (£1) N oI B I\ £2(Z (0
1Dy [ 5 165 (2160 Z1(n) = (€1) Z1() £ (Z(e).

Using f! = I'79;h, we obtain a contraction between two infinity twistors which gives
I 1K = A(S}{ and we have

M i)z (o1) — ues o
ADas /@}ﬂ (14)2(&i)? (2(¢8) 2" (1) — (§1)Z" (03)) Orh(0s)
Doi (£1)

— 9ADoy [C e (€)oo — (EDA(o:)

- o 9 (Dai (§1)h(0i)
=2ADoo14 - 5UM< (14)2(&4) )
=2ADo1014 /(C]Pl O ( (14)%(&) ) .

In the second line we have used the homogeneity relation, chain rule, and the linearity of
Z(0;) in o; to deduce that oy - O;h(Z(0;)) = Z1(01)01h(Z(0})).

The integrand of this expression has potential poles at o; = 01, £ which could lead to
boundary contributions when we apply Stokes theorem. If we take o; = o1 + 2, then the
integral takes the form:

where g(z) is a smooth weighted holomorphic function. Writing z = re

O we are left with

—ij<1§ g(z)e %940 + 2% g(z)e™2dg = 0,
r=00 r=0
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)

o

Figure 7. Some diagrams for the 5-point amplitude which have a non-vanishing (a.), or ex-
cluded /vanishing (b.) contribution.

AN
<
TN

so any potential boundary terms do indeed vanish. The case with two isolated contractions
into 71 from vertices ¢ and j follows similarly. O

While this lemma ensures that we can neglect any isolated arrows to the contact
structures in our diagrams, it does not rule out un-isolated contributions. Indeed, if 7 is
connected to vertex ¢ which is in turn connected to vertex 7, then additional o;-dependence
is introduced by the propagator and we do not obtain the exact derivative that was the
key to the proof of lemma 4.1. Hence, we will still need propagators for when one or two
deformations act at 7.

Since both the contact structure and the perturbative iteration involve the infinity
twistor, it is clear that these propagators will be O(A). After a bit of algebra, we find that
the propagator for a single deformation of a contact structure (say, 1) is given by:

L
o = Mipee

Similarly, the propagator for two deformations of the same contact structure is given by:

S
= TR E ) (0200 92(a3) )

Note that there are many equivalent formulae for these propagators following from the

0

(&) Z"(01) + (11) Z7(¢)] EYAICOR (4.12)

(4.13)

Schouten identity; the two we have presented here are the most useful for our following
calculations.

Clearly, at any order in n there are many diagrams which can be drawn on the n + 2
vertices which are either excluded from our diagram calculus or give a vanishing contribu-
tion to the generating functional. In Figure 7, we illustrate several examples for the case of
the 5-point amplitude. All the diagrams in (a.) give a non-vanishing contribution, while
all those in (b.) are either excluded or give a vanishing contribution. In the latter case, the
first diagram of (b.) is excluded because of the loop; the second vanishes because there are
isolated deformations of the contact structure so lemma 4.1 applies; and the third vanishes
because there are more than two deformations of a contact structure.

~ 96 —



4.4 The MHV Amplitude

At this point, we are ready to implement our diagram calculus by perturbatively expanding
the generating functional Ss|h, }NL] and recovering the MHV amplitude. For n-points, this
involves summing all the associated CP! Feynman diagrams; as explained before, each of
these diagrams will be a forest on n + 2 vertices (2h+(n —2)h+27). Using some basic facts
from algebraic combinatorics, we can perform this sum of Feynman diagrams to obtain the
MHV amplitude. We then verify that this result is independent of ¢ € CP! and that as
A — 0 it limits onto the Hodges formula for the MHV amplitude [12].

Denote the set of all Feynman diagrams contributing to the n-point amplitude as F".
This set has a natural disjoint-union splitting based upon the number of arrows which are
incoming at each of the two contact structures 71, 7. Explicitly, we have

4
Fr=| |
k=0

where each diagram I' € 7 is a forest on n+2 vertices which has k arrows into the contact
structures (for £ > 0 all the diagrams have a vanishing contribution).

The simplest case involves no deformations of the contact structures; its contribution
to the n-point vertex can be written heuristically as:

>/,

y w(X?)? Fr Hh 0:)) Doy,
LeFp v #n1 i=1

where .#,,1 is the moduli space of n-pointed holomorphic maps Z7 : CP! — PT of degree
one [66], X2 = I;; X4 X7 4 and Fp encodes the contribution from diagram T' built out of
the propagators (5.2). Since there are no arrows into either of the contact structures, we
have simply written 7o = X 2 Doy 2.

Each term in this sum corresponds to a forest of trees rooted at the two black vertices
corresponding to h; and hy. As was first illustrated in [17, 65] the sum of such forests
can be accomplished using the Matrix-Tree theorem, an analogue of Kirchoff’s theorem for
directed graphs (c.f., [67-69]). This results in the contribution

/ dp (X?)? [H33| Hh )) Do, (4.14)
Mn 1

where H is (up to an irrelevant conjugation) the weighted n x n Laplacian matrix for the
master graph on all black and white vertices whose entries are given by

1 d
i [62(01)7 9Z(o; ifq #J

H;; =4 @ (4.15)
— > i Hij (( ))2 ifi=j

The notation |Hi2| indicates the determinant of H with the row and columns corresponding
to h1 and hg removed.
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We can now apply the Matrix-Tree theorem in a similar fashion to the other subsets
of Feynman graphs ] . For instance, consider graphs in F7'. The single deformation
of the contact structure may come from any white vertex ¢ = 3,...,n, and results in a
propagator i} or ¥? from (4.12). All the remaining arrows in the graph will correspond
to propagators of the form (4.15), so once we factor out the propagator to 7 we are in
the business of counting forests of trees rooted at vertices 1, 2, or 7. Via the Matrix-Tree
theorem, we then have:

Z/ dp X? Fr Hh 0:)) Do;
i=1

rerp

:/ dp X2y ") |Hi3| Hh )) Doj + (1 > 2). (4.16)
M =3

A similar pattern follows for the remaining subsets in F". Adding all of them together
and including the required factor of A~! from the conformal/Einstein gravity correspon-
dence gives us the following formula for the MHV amplitude:

Ma, / du [X“\H”HX?ZwZ [

Py 2]+ M EHIEDY
i?j

blw? 1235k
1245 Wik ’HIQijk

7j7

+ ) Wi \Hiiij‘;é\ H hZ(om)) Dom + (14 2). (4.17)
i7j7k7l

In this expression, the sums are understood to run over all indices which are not excluded
from the determinant, and also to symmetrize on those indices. For instance, in the first
term of the second line Z” runs over all 4,5 = 3,...n with i #£ j.

This formula is a perfectly valid representation of the MHV amplitude with cosmo-
logical constant; it can be simplified substantially if we investigate its properties a bit
further, however. Each term in (4.17) takes the form of a differential operator acting
on the wavefunctions. With momentum eigenstates and a generic infinity twistor these
operators become rather complicated, involving derivatives of delta-functions. Our manip-
ulations would be considerably simpler if we could treat these terms algebraically. This
can be accomplished by working with dual twistor wavefunctions:

dt; —2ifi=1,2
h(Z(o;)) = | w——exp (it;W; - Z(03)), w; = DT 4.18
(Z(o3)) /ctzlﬂ”i p (it:; (03)) ! { 2 otherwise ( )
Here W;; = ([LA,S\ZA/) are coordinates on n copies of dual twistor space, PTY. These
wavefunctions have been used before in other contexts [14, 70], and can be paired with
momentum eigenstates in an appropriate manner to obtain functionals of momenta at the

end of any calculation. Furthermore, the scaling parameters ¢; can be absorbed into the
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worldsheet coordinates by defining a new set of non-homogeneous coordinates: o;t; — o,
dtiDdi — dZO'Z'.

With (4.18), all the propagators of the Feynman diagram calculus become purely
algebraic. In particular, we now have:

o W) (€9)°
=270 @

o= AW e o 4 iy 2], ol = AT ()

i
(1i)2(&i)? (10)2(15)>(§1)%(£4)?
Furthermore, the product of wavefunctions and measures can be expressed compactly as

n

n n
[[7(2(0:) Doy = ¥ %0, PP =) Wi, d’o=]]d%:.
=1

i=1 i=1

We now note that the second term in the first line of (4.17) can be written as
[ xS ol [mg] ™o
i

O'A i A ei'P-X
/d,u XQZ’H%% < )(1,1)2—25(5?(1 % > 880A d’o.

i

But this means that we can integrate by parts to find:
i [ an > ] (s (€27 (00) + (10)21(€)] €™ X
1 i i (DDt + (€1) (1)
= A/duXQ PXZ <|H%%Z| OEGIE )da

)
i il W, Wil(1 4(i
=3 [ PXZ‘ 23| )55%5% o

— 2 1
Z?]

with the third line following after symmetrizing over (i <> j) and several applications of
the Schouten identity.

Hence, we see that following an integration by parts, the second term in (4.17) cancels
the third term. A similar calculation demonstrates that the fourth and fifth terms also
cancel with each other. We are therefore able to reduce our formula for the amplitude to

iP-Xd2O_

12ij
HlQij €

one with only two terms:

12i5kl
Mo = A/, dp | (X?)? [Hi3| + Z wijwiy ’lei;‘kl‘ H hMZ(om)) Dom + (1 2),
.1 1,9,k

m=1

(4.19)
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where we have restored arbitrary twistor wavefunctions and homogeneous coordinates.
Beyond the obvious improvement in terms of simplicity, this new representation of the
amplitude is also useful for investigating the flat space-limit of M,, .

A basic property that (4.17) or (4.19) must have is the correct behaviour under A — 0.
In particular, M, o should limit onto Hodges’ formula for the MHV amplitude in this
flat-space limit. In the language of N' = 4 supergravity, Hodges’ formula is [12]°:

7

Mo o(A =0) = /ﬂ dp ) 1( |H13| H h(Z(o)) Do;. (4.20)

Now, the conformal/Einstein gravity correspondence should allow us to extract the
Einstein MHV amplitude from (4.19) even in the A — 0 limit. If we work with the dual
twistor wavefunctions, it is easy to see that we only need to consider

1 .

hrn Mpo = hn%) 2/, d,u (X?)? ‘Hg’ P X0 + (1 2), (4.21)
A—

since the second term in (4.19) will go like O(A) in the limit. However, in [17] it was shown

that (4.21) was equal to Hodges’ formula, and precisely the same methods can be used

here to give the same result. We can therefore conclude that our expression for the MHV

amplitude (4.19) has the desired behaviour:

. ( 121
}XILI%) Mo = ///1 d,u(1 121‘ H h(Z(cj)) Do;. (4.22)

Z

While the flat-space limit is an easy check on the validity of our formula, there is an-
other more non-trivial property which a correct formula must have: it must be independent
of the reference spinor & € CP'. This entered the definition of the perturbative iteration in
(4.4) due to the ambiguity in defining 9;! on forms of positive degree. Hence, the choice
of £ is equivalent to a gauge choice of propagator for our Feynman diagram formalism on
CP'; by (4.5) a variation in ¢ should correspond to a diffeomorphism on the projective
spinor bundle PS. In other words, observables such as M, o should be independent of the
reference spinor.

An obvious way of demonstrating this is to consider the infinitesimal variation gener-
ated by the derivative d¢ = §A aea-
straightforward procedure which is carried out in Appendix C; the final result is that

The calculation of deM,, o is a lengthy but relatively

a8 x )
deMuno = / /iy VoL GL(2,C) 0X14

vid =, (4.23)

where V14 are the components of a smooth vector field on .#, 1. The fact that deM,, o
vanishes as a total divergence is in accordance with the claim that a variation in £ should
correspond to a diffeomorphism with respect to our coordinates on the spinor bundle PS,
and proves that (4.17), (4.19) is a well-defined formula for the amplitude.

0Note that there are many equivalent representations of this formula, we have simply presented the one
which connects most directly to our conformal gravity arguments.
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4.5 Twistor-string-like formula

We conclude our exposition of the twistor formula for the MHV amplitude with cosmolog-
ical constant by noting that it can be manipulated into a format which is highly suggestive
of a twistor-string origin. Skinner’s N’ = 8 twistor-string is the first example of a theory
which treats Einstein supergravity directly with twistor methods [15]. As a string theory,
it is anomaly free for any genus worldsheet and is known to produce the complete tree-
level S-matrix of A/ = 8 supergravity on a flat background. Furthermore, the worldsheet
theory is perfectly well-defined for a non-simple infinity twistor, so in principle it should
also be able to produce (after truncation to N/ = 4 supersymmetry) the same twistor space
formulae we have derived here.

Unfortunately, it is not currently known how to compute meaningful worldsheet corre-
lators of gravitational vertex operators with a cosmological constant in Skinner’s twistor-
string (beyond three-points). The issues which arise are the failure for the correlators to
be independent of the position of picture changing operators as well as reference spinors
(analogous to £ € CIP’I); this indicates that the correlators are not gauge invariant with
respect to the worldsheet degrees of freedom. These problems could stem from any number
of sources, including an incomplete understanding of the full spectrum of vertex operators
for the theory, or the worldsheet Feynman rules when A # 0. Hence, it seems natural to
ask if our formulae for M,, o could shed any light on this twistor-string calculation.

Initially, it appears that the structure of M, o is a long way off from something we
might expect from the twistor-string. If we use dual twistor wavefunctions (4.18), then
(4.19) takes the form

8|8 . 4
Mo = % / vol(i}Lé,(C) (X2)2 B3| +i§lngw,§l ‘HEZ’ZH ¢PX o, (4.24)
so the leading contribution (i.e., with no contact structure deformations) for the MHV
amplitude in N/ = 4 supergravity is a twice-reduced determinant. These two reductions
correspond to the two negative helicity graviton multiplets of the amplitude.

However, in Skinner’s twistor-string the fundamental object is a thrice reduced deter-
minant (just as it is in the Hodges formula). In the context of N = 8 supergravity, all
external states are in the same multiplet so there is no preference based on helicity; the
three reductions instead correspond to building a top-degree form on the space of fermionic
automorphisms of the worldsheet [15]. A bit of manipulation (essentially equivalent to the
computations required to extract Hodges’ formula from (4.24) in the A — 0 limit [17])
shows that we can also get our formula for M,, o into a thrice-reduced determinant form.

Focusing on the first term in (4.24), note that we can represent each factor of X2 by

a differential ‘wave operator’ acting on e'”X:
Iy 0O 0
X2 0= . 4.25
(12) oWy 1 OWs 5 ( )
Doing this allows us to re-write the twice-reduced contribution to M,, o as
1 dsiex
HI2| 027X = / HI2| 0%s%8(Pp). 4.26
A/VOIGL(?C ’ | VOIGLZ(C | ’ (P) (4.26)
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On the support of this delta-function, we know that the matrix H has co-rank three [12, 13]
so we can integrate by parts once with respect to % to give

Iry 0

e (12) OW1 1

0888 (P)

A/volGL 5.C) 8W2J
- 2o (€2)? Z 0
__/Vol GL(Q,C);(B)(@'Q)(&') (B3] Wi~ g7, 00 (P).

Once again, the support of the delta-function indicates that we can take W; - BLWl =01 B%N
and then integrate by parts once again with respect to d?c;. This leaves us with

d%o 12 :
/ vol GL(2, (C)Z(M() ()2 [E3i] D8 (P)

d’o (62216 (1) + (€22(UNED 1y [ri2i
*/ volGL<2vc>;j( (12)(i2) (0) (€9) (€4)? )H L

The contribution from the second line can be further simplified by noting that the

06%8(P).  (4.27)

summation entails symmetrization, term-by-term, in both 1 <> 2 and 7 <+ j. A straightfor-
ward calculation involving several applications of the Schouten identity allows us to reduce

this to
d*o (ED)%(12)(52) + (€2°GEDED)\ 1y |ryi2i
/ >§.< 2z ) o [mi3

8|8
vol GL(2,C (10)20) (L) 2)(E0) (&) REP)-

Upon using the symmetry of ¢ <+ j and the basic properties of determinants, we are
finally left with an expression for the amplitude with thrice-reduced determinants:

_ o5 ((ED202)G2) + (€220 i
Muo= [, | x Z( (1) (20) (1) 24 (€0 (&) )‘H”J‘

2 n
i 0,5,k

where we have reverted to arbitrary twistor wavefunctions. Note that not only does (4.28)
have the desired thrice-reduced determinants, but it also features Vandermonde factors in
the coordinates o; which are known to arise in the context of twistor-string theory. Of
course, actually deriving this formula from Skinner’s twistor-string remains an important
task to which we hope to turn in future work. In particular, it is not immediately clear how
the final term (with a six-times reduced determinant) might arise from the twistor-string
theory.

5 Discussion & Conclusion

In this paper we have derived a twistorial formula for the MHV scattering amplitude of
Einstein gravity with a cosmological constant. This builds on the many recent advances in
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understanding the tree-level S-matrix of gravity on a flat background, and demonstrates yet
another application for twistor methods. The key ingredients were the conformal /Einstein
gravity correspondence, the twistor action for conformal gravity, and the CP' Feynman
diagram calculus we used to extract the amplitude. This approach leaves many interesting
open directions for future research, and we conclude by discussing some of them here. Of
particular interest is the potential to derive a MHV formalism for conformal-and hence
Einstein—gravity using the twistor action, but we also consider the possibility of studying
non-minimal CSG on twistor space as well as how the twistorial formula presented here
could be translated into a well-defined physical observable in momentum space.

5.1 The CSW gauge and the MHV formalism

One of the important applications of the twistor action for N'=4 SYM is that it leads to
a derivation of the MHV formalism [7] for Yang-Mills by virtue of an axial gauge choice
[19, 20]. The key benefit of the gauge choice is that it exploits the integrability of the
self-dual sector, essentially trivializing it by knocking out the non-linear terms in the self-
dual part of the action so that the only vertices are those arising from the non-local part
of the action. The existence of an MHV formalism for gravity remains controversial [21,
22].11 Nevertheless, we can still carry out the axial gauge-fixing procedure for the twistor
action of conformal gravity, which leads to a twistorial definition of a MHV formalism.
Upon restricting to Einstein states, this induces a twistorial MHV formalism for Einstein
gravity. We outline this argument here, leaving a more complete treatment and (hopefully)
a translation to a momentum space formalism for the future.

Let us work with the A/ = 0 twistor action of (3.13). A choice of gauge in our
gravitational context is a choice of coordinates together with a choice of gauge for the
Dolbeault representative g. In order to do this, we choose a reference twistor denoted Z,
and the key idea is to require that the lines through Z, in the flat background are also
holomorphic lines for the deformed twistor space P.7. This implies that the (0, 1)-form
part of f¢ vanishes on restriction to these lines. Similarly, the gauge freedom for g, is
chosen so that the (0, 1)-form part of g, vanishes on restriction to any of these lines. This
has the effect of reducing the cubic term in the self-dual part of the twistor action (3.8)
to zero so that the only vertices are those that arise from the expansion of S;. Section 4
indicates that this will generate MHV vertices upon restricting to Einstein states.

The other simplification that arises is in the propagator A(Z, Z"). After fixing the
axial gauge, the kinetic portion of the twistor action is just

Skinlg, f] = /P D Ao O,

so finding the propagator corresponds to inverting the d-operator on twistor space as well
as incorporating the remaining freedom in g,, f° into its tensor structure.

For the scalar portion of the propagator serving as a Green’s current for 0 on P.7,
we can take our cue from the twistor action of Yang-Mills theory [20] where the kinetic

171t is worth mentioning the recent work of [71], which proposes an MHV-like formalism based on delta-
function relaxation in a Grassmannian representation of the gravitational amplitudes [14, 72].
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operator is also 0. In this case, the scalar part of the propagator is essentially a delta
function which restricts the two field points Z, Z’' to lie on a line through the reference
twistor Z,; on this line, it produces the Cauchy kernel for 0.

In the bosonic, gravitational context at hand, the appropriate objects to consider are

_ ds dt -
N S) / 4 '
A(Z,7") = 50,k,—k—4(Z*7Za 7' = /CQ Tk k?&ké (Zi + sZ +t2"). (5.1)

These enforce the projective collinearity of their arguments, and are of weight £ and —k —4
in Z and Z’' respectively. To see this, recall the behavior of the Cauchy kernel on C:

5(2) = 8(2)8(y) dz = ——& (1) . z=x+iy,

z

which is supported at the origin. In (5.1), we simply take
3
1 1
~2m \0ze

The parameter integrals over ds and dt¢ reduce this to a projective current with the appro-
priate weights. It can be demonstrated that the Ay obey the axial gauge condition up to
potential anomalies resulting from this gauge choice which can be removed by working on
an appropriate choice of P.7 [20].

Thus for the propagator between f*(Z) and gz(Z’) the scalar portion of the propagator
should be Ay(Z,Z’). However, we also need to fix the gauge freedoms in the f* and gg
by imposing 0, f* = 0 and Z%g, = 0. Since we are on a projective twistor space and the
freedom in f¢ corresponds to adding multiples of Z¢, we only really need to deal with the
condition on gg. This can be accounted for with the tensor structure of the propagator,
leaving us with the full propagator

1
AG(2.2') = 8501(2.2') = 1 2°030(2, 2)), (5.2)

so that Z’8 Ag = 0 (up to an irrelevant anomaly proportional to the reference twistor).

The Feynman rules in twistor space are obtained by making diagrams out of the MHV
vertices for conformal gravity and gluing them together with propagators. Unlike the Yang-
Mills case, the MHYV vertices are already quite complicated. For conformal gravity, they can
be obtained as above using states defined relative to the choice of infinity twistors, but where
I%6 and I, are independent. The expressions given above for the MHV vertex (before
any contraction 1*°T gy = Ad5 is used) determine the general conformal gravity expression
by a perturbiner argument. This follows from the invariance under permutations of the
positive-helicity states and the negative-helicity states. Thus one can set I®8 = > el af ,
expand to first order in each ¢; and take the coefficient of [[¢; and similarly for the two
occurrences of I,g. We will not develop this any further as the primary focus here is to
deduce an MHV formalism for Einstein gravity from that for conformal gravity.

The MHV formalism should reduce to one for Einstein gravity, at least at tree level,

by applying the conformal/Einstein gravity correspondence. This entails restricting to
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Einstein wave functions with cosmological constant A and dividing the overall expression
by A. In the MHV vertex, all occurrences of the infinity twistor will now be standard ones
and the Einstein formulae given above will be valid with the caveat that they are understood
in a Dolbeault format to be valid off-shell and to be compatible with the formulae for the
propagator. On reduction to Einstein forms for f& = 1% dgh and gg = I, mZ”fﬁ, we note
that the kinetic part of the twistor action reduces to

/ D}ZAga ANOfY=2A | D3Z AhADh,

PT PT

using I,g1 A7 = A6} and the Euler homogeneity relation for h. This is in accordance with
(3.22). Thus the propagator reduces to

APz, 7" = iAQ(Z, 7). (5.3)
2A

At least in the first instance, this indicates that the MHV formalism for Einstein
gravity which is produced by this procedure is based on the MHV vertices for conformal
gravity C, o0 = AM,, o restricted to Einstein states. Here, M,, o should be understood as
(4.17) with the (0, 1)-form wavefunctions allowed to be off-shell so that M,, o is extended
to a verter.'> Thus, for an N*MHV tree amplitude we will need to sum diagrams with
k + 1 such vertices and k propagators and then divide by the overall factor of A required
by the conformal/Einstein gravity correspondence. These diagrams will be built from k+1

Cn, vertices together with k& Ay propagators and a factor of A~ (R+D),

In terms of purely
Einstein building blocks, we will have a diagrams constructed out of k+1 M,, vertices and
k propagators given by As.

Although this is sufficient to develop formulae for gravity amplitudes in twistor space
along the lines of [20] for Yang-Mills, there is much work to be done to make contact with

(k+1) will need to

momentum space formulae particularly for A = 0 where the factors of A~
be cleared. This will of course be reasonably straightforward if we can extend the formula

(4.28) for the amplitude to one for the vertex.

5.2 Non-minimal twistor actions

The key tool in deriving (4.17) was the minimal N' = 4 CSG twistor action. While we do not
expect Maldacena’s argument to apply to non-minimal N = 4 conformal supergravities, it
is nevertheless interesting to ask if a twistor action principle can be found. We outline here
a proposal for how a twistor action describing a particular version of non-minimal A" = 4
CSG due to Berkovits and Witten [4]. While we do not attempt to prove that our twistor
action corresponds to this theory, we argue that its perturbation theory will produce all
of the expected tree-level scattering amplitudes. Of course, there are unresolved questions
as to whether such a theory is well-defined at the quantum level [49, 50], but all of our
considerations here will be classical.

2However, it is worth noting that the arguments which derived (4.19) from (4.17) were on-shell in
character, so it is unclear as to whether they can be extended to the off-shell context required for vertices.
This is particularly the case for the subsequent formula (4.28) based on n — 3-determinants.
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Non-minimal versions of N' = 4 CSG are highly non-unique: arbitrary analytic func-
tions can couple the scalar ¢ to the conformal gravitons of the theory. This can also be
captured at the level of a chiral superspace action. In the minimal case, we saw that the
action (3.18) served to define a chiral superspace action in terms of WW. However, since W
has conformal weight zero, an action of the form

ﬂm:&wﬂm+@w<m,

where M is the anti-chiral super-manifold, will be conformal and supersymmetric for any
holomorphic function F. While F(W) = W? corresponds to the minimal theory, other
choices clearly lead to interactions between the scalars and conformal gravitons. For in-
stance, F(W) = W3 will clearly give a Lagrangian term @UABCPW 4 pop.

The twistor-string theory of Berkovits and Witten appears to correspond to a very
particular choice of non-minimal N' = 4 CSG, with holomorphic function F(W) = 2"V
[4]. We refer to this as Berkovits-Witten CSG, or BW-CSG for short. As a classical
N = 4 theory, it is easy to distinguish BW-CSG from the minimal theory by looking at its
scattering amplitudes. In the twistor-string theory for BW-CSG one finds a degree zero

three-point amplitude of the form [4, 16, 48]:

/b“zw@ﬁ&ﬁmﬁ—mﬁ%ﬁ&ﬁ% (5.4)

Applying the Penrose transform, it is easy to see that this amplitude corresponds to a term
@\’I‘}A/Blch/

W Aorgrorpr in the space-time action.

Similarly, at degree one, there are amplitudes with an arbitrary number of g-insertions;
at three-points, this provides the parity conjugate of (5.4). The n-point version of this
amplitude is clearly generated by the chiral part of the space-time action:

/ dp exp (W(x,0)) = Z/ . dp® "2 WABCDY ypop 4+,
M n=2’M

where du® denotes the measure on the bosonic body M°. Parity invariance demands that
we therefore have n-point analogues of (5.4), coming from the anti-chiral part of the space-
time action.

Let us try to find a corresponding twistor action: our strategy is to proceed by requiring
the twistorial theory to produce the tree-level scattering amplitudes of BW-CSG. To begin,
we note that BW-CSG still has an anti-MHV three point amplitude (like the minimal
theory); this comes from the self-dual twistor action we had before:

Silg, f1 = /W DMZ Agr A (O + [, f17). (5.5)

Similarly, the twistorial version of [ du eV is an easy generalization of

ehiral[g ] — /M du exp (/X g> ) (5.6)
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If we expand in fermionic variables, it is clear that on space-time this is the chiral portion
of the action

Schiral ~ /d/J,O eXp((,O) \IJABC’D\IJABCD 4+

as expected.
We still need to obtain the parity conjugates of the amplitudes generated by (5.6).
Consider a holomorphic Chern-Simons theory on the tangent bundle Tp7:

Shcs[g,f]:/ D34 Z A tr (f/\5f+2f/\f/\f) (5.7)
PT 3

Clearly, the cubic term in this action leads to the three-point amplitude (5.4) of BW-CSG.
The quadratic term in (5.5) leads to the g — f-propagator (5.2), so we can tie any number
of MHV-vertices onto (5.4) to form a n-point amplitude which has all f external states.
These all- f amplitudes form the parity-conjugate set to the all-g amplitudes generated by
(5.6).

Hence, we conjecture that the twistor action
SBW_CSG[Q) f] = Sl[ga f] + Shcs[g7 f] - 62‘S’Chiral[g> f]? (58)

should be (classically) equivalent to the non-minimal ' = 4 CSG of Berkovits and Witten.
Of course, our argument relies entirely upon the fact that (5.8) has the same tree amplitudes
as BW-CSG. Furthermore, it is rather unfortunate that the anti-chiral portion of the space-
time action is encoded only implicitly (i.e., we do not have an explicit exp(}) term on
twistor space). In a sense, this is to be expected because parity invariance is often obscured

in twistor space [73].

5.3 Physical observables

Throughout this paper, we have referred to M, o as a ‘scattering amplitude’ for general rel-
ativity on a background with cosmological constant. As pointed out in the introduction, we
have adopted this nomenclature for convenience only: the notion of a physically observable
scattering amplitude on de Sitter space is not even well-defined. While the final formulae
we obtain for M,, o in (4.17), (4.19) are on twistor space, and hence make mathematical
sense for arbitrary twistorial wavefunctions, it is useful to have a brief discussion of how
these can be interpreted as physical observables (i.e., expressions in momentum space).
In our expressions for M,, o, there are two ingredients about which we have been
(deliberately) vague: the nature of the wavefunctions to be used, and the integration over
the moduli space ., 1. A priori, the twistor wavefunctions are required only to be (0, 1)-
form cohomology classes with the appropriate weights as dictated by the Penrose transform.
We often utilized the dual twistor states (4.18) for calculational purposes in Section 4, but
these do not directly produce momentum space expressions. In the case of flat-space, or
in Yang-Mills theory, one obtains momentum space expressions for scattering amplitudes
by using momentum eigenstates (c.f., [9]), with a choice of four-momentum ks = papas
dt

hZ(0), k) = /C LB (1An — pa) (5.9)
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where w = —6 for a negative helicity graviton and w = 2 for a positive helicity graviton.

Of course, these are rather un-natural from the point of view of de Sitter geometry,
since there are no four-momenta for the de Sitter group. Furthermore, these eigenstates
are singular on a finite light cone and don’t recognize the infinity of global de Sitter space.
This is because they are most natural in Minkowski space, so using them in the de Sitter
context corresponds to working with wavefunctions adapted to the affine de Sitter slicing
of (2.7).

Similarly, in (4.17), (4.19) we need to choose a contour for the integral over d®X which
corresponds to the real slice of space-time. In other words, this moduli integral can be
thought of as an integral over the scattering background itself, and after fixing the GL(2, C)-
freedom in the measure, really acts as a d*z integral. Hence, using the eigenstates (5.9)
and integrating over the full real slice in the affine coordinates corresponds to computing
a &~ to ST scattering process in the affine patch (2.7). For instance, in this set-up we
would find [16]

M —ﬁ(z—m)a‘1 ik (5.10)
307 (23)2(31)2 b ) ‘

While this is not a physical observable (because no asymptotic observer can integrate over
all of de Sitter space), it is well-defined mathematically and can be classed as a ‘meta-
observable’ in the sense of [18, 36]. Further, it limits onto the definition of the scattering
amplitude when A — 0 and manifests the de Sitter isometries through the operator Oy
acting on the momentum-conserving delta-function. Using this prescription for M, o will
produce an operator of leading order DZ‘Q.

To obtain an actual physical observable, one should use twistor eigenstates which are
explicitly adapted to de Sitter space, and choose the contour of integration in .4, to
correspond to a physically observable region of dS4. These eigenstates can be defined by
using a spinor-helicity formalism adapted to the spatial three-slices of de Sitter space, and
the integration contour can be chosen in congruence with the in-in formalism prescriptions
which have been used to calculate the non-Gaussianities in the gravitational bispectrum
from inflation (c.f., [74, 75]). We hope to address these issues in much more detail in a
future work.
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A Generating Functionals for MHV Amplitudes

In this appendix, we prove a concrete example of the conformal /Einstein gravity correspon-
dence for generating functionals of tree-level MHV amplitudes. The final result amounts
to (2.13) in the text, and was first derived in [37].
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We will exploit the chiral formulation of general relativity [76]: for a general space-
time M with metric specified by a tetrad of 1-forms ds? = eABeA/B/eAA/ & eBB/, the basic
variables are three ASD 2-forms:

SAB _ A4 )

and the ASD spin connection I' 5. With a cosmological constant A, the action of general

relativity is:
S, T] = % /M <2AB A Fap — %EAB A EAB> : (A.1)
where
Fap=dlap+TG ATpe (A.2)

is the curvature of the ASD spin connection. This action produces two field equations, to
which we append a third (the condition that 347 be derived from a tetrad) [24]:

DxAB = 0, (A.3)
A
Fap = UapcpXP + §EAB, (A.4)
SAB A D) — . (A.5)

Here, D is the covariant derivative with respect to the ASD spin connection:
AB _ 1yv2AB (A B)C
DxAP = dx48 4 org! A BBIC

Following [35], we can express a tree-level MHV amplitude as the classical scattering
of two negative helicity gravitons off a SD background space-time, which (perturbatively)
encodes the remaining positive helicity gravitons. For a SD background, we have ¥ spop =
0, so (A.4) can be solved for ¥ in terms of F' while (A.3), (A.5) result in an algebraic
condition on the curvature of the ASD spin connection. To be precise, a SD solution
(X0,T0) obeys [77]:

3
5gP = SFP (A.6)
(A7)

Il
e

Foas N Fo cp)

Now consider small perturbations away from this SD background of the form ¥ =
>0+ 09, I' =g + . This results in a set of linearized field equations:

Doo? = —275' A 557, (A-8)
A
Dovap = YapcpE§P + 3UAB, (A.9)
oAB ARSP) — 0, (A.10)

where Dg is the covariant derivative with respect to the background ASD spin connection
['g. It is fairly easy to see that the field ¢ apcop corresponds to a linearized ASD Weyl
spinor propagating on the SD background (X, Iy) [37].
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Our goal is now to formalize the picture of an MHV amplitude in terms of linearized
solutions propagating on a SD background. If S is the space of solutions to the full field
equations (A.3)-(A.5), then solutions to the linearized equations (A.8)-(A.10) are a vector
space V' corresponding to the fiber of T'S over the SD solution (3¢,Ig). Now, a linearized
SD solution is fully characterized by the ASD spin connection, since

3 c
OAB = KDO’YAB7 Doy 48 A Fy by _ . (A.11)

This allows us to define the SD portion of V as
vt — {(a, y) €V : DoyAB A ECD) = 0},
and a corresponding V'~ by the quotient map in the short exact sequence:
0—VI—V-—V —0.

In particular, this means we have
Vo =V/vt={(o7) eV}/{y : Doy“E A FgP =0}

The space of solutions S comes equipped with a natural symplectic form w given by
the boundary term in the action [78]:

w = 12/ OXAB AT 4B, (A.12)
Kk C

where C is a Cauchy surface in M (when A > 0, there is always a slicing where C = S3
topologically) and ¢ is the exterior derivative on S. It is straightforward to show that
w is independent of the choice of Cauchy surface and descends to a symplectic form on
S/Diff§ (M) [37).

This symplectic form induces an inner product between points in the linearized solution
space V': for h;, h; € V we take

_ b AB
<hi‘hj>_ﬁ2/co-j N i AB- (A.13)

An important fact about this inner product (which is obvious in the A = 0 setting, c.f.,
[35]) is that it annihilates the SD sector:

Lemma A.1 Let hi,hj € V' on the SD background with (30,To). Then (h;|h;) = 0, or
equivalently: for all h; € V', (hi]-)|y+ = 0.
Proof: The inner product is skew-symmetric under interchange of h; and h;, so
i
(hilhj) =

AB AB
5.3 C(Uj NYi AB — O /\VjAB)-

Suppose hj € VT; then (A.9) implies that Doyj ap = %aj AB- In the A = 0 limit, the
ASD spin connection is trivial Dy — d, so 'yjAB |a=0 = 0, and we can write VJ-AB = AV]AB for
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some array of space-time 1-forms 1/{43 . With this representation, the linearized SD field
equation gives 0; o = 3Dov; o, and the inner product becomes:
i AB A . B)C AB
- M/c (3de /\’YiAB+6F(()C/\Vj N ap — o A'YjAB)
i AB AB
=22 /., (3v5"° ADovi a — 0f° A7) aB)

where the second line follows by integration by parts and a re-arranging of index contrac-
tions. Once again using v; ap = Av; 4B, we have:

) 31
(hilhj) = 2/‘GQ/CVJAB A (3Dovi ap — Aoi ap) = M/CVJAB A i aBopSG 7,

using (A.9) for h;. Hence, if h; € V' then ¢; apcp = 0 and the inner product vanishes. O

Note that lemma A.1 confirms that the all-positive helicity and (—+---+) amplitudes
of general relativity vanish even with a cosmological constant in play. In the first case, we
see that the SD field equations are integrable since their solutions are characterized by a
single algebraic relation (A.7). In the second case, the fact that the inner product annihi-
lates the SD sector ensures that scattering with only a single negative helicity graviton is
also trivial.

We can use this inner product to define ASD solutions at the boundary of our M as
in [35]: take a one-parameter family of Cauchy hypersurfaces C; — .#% as t — +00. Then
we say that h; = (0;,7;) is ASD at #* if

lim UJAB Aviap =10 for all h; = (04,7;) € V™. (A.14)
t—=+o0 Cy

Now we want to build the generating functional for the MHV amplitudes, which mea-
sure the probability for a pure ASD state at .#~ to propagate across a SD background M
and evolve into a SD state at # . Hence, we take the incoming state to be hy| - € V.
Since the inner product annihilates the SD sector, we need to compute the inner product
between h; and some other state ha| ,+ € V™ at the future conformal boundary .# +.13
This gives the generating functional for the MHV amplitudes as

o i
T9R[17,27, M™] = (hg|hy) :_,@/fleM“B' (A.15)
54

This form of the generating functional is not particularly illuminating because the role of
the SD background M is extremely implicit. However, we can manipulate (A.15) into a
format which is explicitly in terms of an integral over the entire background space-time.
Proposition A.1 The amplitude (hy|hy) is given by the formula:
i A
IR 27 M) = — / <20AB A4 N y2 0B — gfff‘B A o9 AB) , (A.16)
K= Jm

where M is a SD background space-time described by (X0,T0).

13 As mentioned in the text, this corresponds to a ‘meta-observable’ since we integrate over the entire
space-like surface & 7.
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Proof: Recall that OM = .#7 — #~ so Stokes’ theorem gives

) /)
+UiqB/\”Y2AB=—’<62/M (de‘BA’VzAB-i—Uf‘B/\d’YQAB)—KQ/ o A2 a8.

w2,
Now, the second term on the right vanishes, since hy € V™~ at #~. Using the linearized
field equations (A.8), (A.9) it follows that

A )C

dof'? = —29{¢ A %] °

— 2F§)AC Aoy
CD A C
dr2aB = Y2acpX " + 50248 = 2loca N2 By,
and the generating functional becomes

i AB AB AB
ng/ (=% A aNT2eB+ 0B ATG ANy op+ 0P AToca NS B
M

A
—50143 N oo ag — 0B Ay ABCD200D> .

The last term vanishes due to the linearized field equation (A.10) and the fact that
YaBcD = Y(aBcp), while the second and third terms cancel after restructuring the spinor
indices.

All that remains is to check that (A.16) has the correct gauge invariance: if one of
the ASD states is pure gauge, the amplitude must vanish. Suppose that hy is pure gauge:
1 apcp = 0. By (A.11), we know that %UfB = Do{*?, and integrating by parts in (A.16)
gives

~ oo i
TR, 27 M|y =0 = 2/ (288 AEa Av2 0B + {8 A Doos an) —/ BN ap.
K= M oM
The boundary term vanishes at .1 since hs|,+ € V™, and also at .#~ since hy is pure
gauge. This leaves us with the bulk terms, which can be evaluated using the linearized

field equation (A.8) for ho:
/ (88 A4 Av2 B + 712 ADoos ap)
M

:/ (2643 A4 A2 OB —27143/\720(AAE§B)) =0,
M
with the final equality following after re-arranging contractions on spinor indices. O

The final step is to obtain the conformal/Einstein gravity correspondence for this
generating functional. Upon restricting to Einstein scattering states, it is obvious that the
generating functional in conformal gravity with two negative helicity gravitons and a SD
background is given by the second term in (2.4):

_ 2%
I1°G[1 27, MT] = 52/ dp 91 PPba apen, (A.17)
M

where M is again the SD background which encodes the n — 2 remaining gravitons. By
the conformal/Einstein gravity correspondence, we should be able to relate I to IGR
on-shell (i.e., by apply the field equations of general relativity), and this is indeed the case

[37).
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Proposition A.2 On-shell, ISR[17, 27, MT] = —%Icc[l_,Q_,Mﬂ.

Proof: (A.17) is equivalent to
oA 1
1°6017,27, M1 = 52/ PP op Ao apErSeT
M

Using the linearized field equation (A.9) for hs, this becomes

i A
2/ PP ap A <D072 AB — 502 AB> :
9 M 3

Integrating by parts in the first term gives

—/ Do PPy op A e ap + /
M

YBEPSy op A Yo ap = / PBCPSy op A2 aB,
oM

oM

since v is a linearized Weyl spinor. In the second term, a combination of both field
equations (A.9) for hy and (A.8) for hy as well as integration by parts leaves

2A

A? A
—/ Vf‘B/\’YQC(A/\ZgB)+/ ot P Noyag — 5 P Nog as.
3 Ju 9 Jm 3 Jom

Combining both terms gives:

CGr= o= ap+1_ L [ _2A AB c A? AB
I [1 20, M ]_7 - " /\/}/QC(A/\EoB)—i_i 01 N02 4B
M M

T g2 3 9
) A
—2</ ¢14BCDEOCDA72AB—/ ’Yf‘B/\UzAB)
e* \Jom 3 Jom
AR? GRi— o +
=———TI""%[17,27, M "] + boundary terms.
3e2

The proof is complete if we can show that the boundary terms vanish. Applying (A.9)
to the first of these terms leaves us

boundary terms ~ /

A A
Do’hABA%AB—?)/ %f‘B/\anB—* 71AB/\UnAB,
oM oM

3 Jom

with the second and third terms cancelling due to skew symmetry in hq, hy,. Finally,

/ Doi'® Ay aB = / Doy Ay an —/ Dovi'Z A vy aB
oM I+ -
=—/ ’YfB/\DO'YnAB—/ Doy Ay ap = 0,
T+ I

by the fact that hi| .- € V~ and hy| s+ € V7, as required. O

Note that the result of this proposition is in precise agreement with the prefactors
predicted by Anderson’s theorem in (2.11).
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B Local Twistor Formalism

This appendix reviews the local twistor formalism and applies it to several issues from
the text, proving and clarifying claims made there. We set out the basic formalism in the
bosonic category; generalizations to supersymmetric twistor spaces are obvious. On P.7,
the twistor coordinates Z%(x, o) are abstract on until they are pulled back to the spinor
bundle PS; to get a concrete coordinate basis on the curved twistor space, we must use the
local twistor bundle.

Let M be a four-manifold satisfying the conditions of theorem 1, and P.7 be its
associated twistor space. Local twistors are defined at points z € M as the fibers of the
complex rank four bundle:

7% = (Mg, p) —=LT

M

Let t € T, M be a vector at x; then the infinitesimal variation of the local twistor bundle
in the direction of t is [39]

ViZ*(x) = (tBB/vBB’)\A +itPB Papapp®, tPP Vg + Z'tBA,)\B> ; (B.1)
where the tensor P, is the Schouten tensor:
Paparpr = ®apapr — Neapearp,

with ® g a/p the trace-free portion of the Ricci tensor. This local twistor transport along
the vector t defines a local twistor connection on LT whose curvature can be computed by
considering

i (VeVa — VuVi — Vi) 22 = 22F5(t, ). (B.2)

In the case where M is a SD background (as in theorem 1), this curvature is given by

[39]
C oy AgBA
= M+ 0 “I’C'D'A'

where W 4/ prorpr is the SD Weyl spinor of M. Hence, we see that on a SD background M,
the local twistor bundle LT is half-flat, so the Ward transform applies [58] to give a rank
four bundle T¢ — P.7 on twistor space [79]. Abusing terminology, we also refer to this
bundle T¢ — P.7 as the ‘local twistor bundle.’

By choosing a holomorphic frame Hg for T2, we can assign meaning to tensors on P.7
[80]. For example, consider a tensor fg~ € H 0L(PF,0O(n — 2)) for n < 0. Contracting
with the holomorphic frame converts this to a (0, 1)-form valued section of T%::: ®0(n—2),
to which we can apply the Penrose transform, obtaining a field on M:

[ A A5 AT =TS
X —_— -
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The space-time field will obey a zero-rest-mass field equation
A A/ g... _
o Fg---Al---An =0,

where the covariant derivative acts via the local twistor connection since the holomorphic
frame on T< corresponds to a covariantly constant frame on LT — M. From now on, we
will drop the underline notation, and assume that the distinction between concrete and
local twistor indices is clear from the context.

As an example, consider how V acts on a space-time field with a single twistor index,
say I‘g = (®pc, \I/g/) From (B.1), it follows that the covariant derivative acts as

yaas _ (VA s 0, ) (®se (B.3)
¢ vA4 \Ifg ieABeA'BT \I/g ’ ’

Similar rules for dual twistor indices as well as higher-rank tensors can be derived or looked
up in [39], and their space-time gauge freedom is fixed by computing the Penrose transform
of Z7fg" and then imposing A fg =0 [80].

From (B.3), we can see that the local twistor connection acts as V = D + &/, where
D is the usual space-time covariant derivative and & € Q},(psl(4,C)) is the connection
1-form. This suggests that we can consider the local twistor bundle as a PSL(4, C)-gauge
bundle over space-time.

Theorem 3 (Merkulov [26]) The local twistor bundle LT — M is a PSL(4,C) gauge
bundle with gauge-covariant derivative V. = D + & given by (B.3). Furthermore, this
connection has curvature F € Q3% (psl(4,C)), and which is equal to (B.2) when M is self-
dual.

On twistor space, the chiral half of the fundamental fields of ' = 4 CSG are meant
to be encoded in the Lagrange multiplier g € H%!'(P.7,Q'), which defines the space-time
chiral superfield G(z,0). In particular, we want each term in the expansion

4
g=g°+x“g;1+-~%g’4,
to correspond to a space-time field with the correct conformally invariant zero-rest-mass
field equation via the Penrose transform. Since the CSG background is curved, we must
use the local twistor formalism to operationalize this Penrose transform.

We begin with the leading term in the expansion, ¢° € H%'(P.7,Q!). The Pen-
rose transform of this object was first described in [80]: write ¢° = a,dZ® for a, €
HYY(P.7,0(-1)). Picking a particular conformal frame, the Penrose transform gives:

\I/A 8(1 ’
Cop = B | = A —2 VBB p =0. B4
" (@A,B,) /X " ouP b (B4

Using the local twistor connection, the z.r.m. equations of (B.4) can be written on space-
time as:

VBB w4, — ieBARE = 0
VEE'® 4 =0
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while the Penrose transform of Z%a, gives the conditions V BB/\I/i — i€pr A@g; =0 and
@gﬁ = 0. This means that we can write ¥ 44 = Oy, and the content of (B.4) is reduced
to 0%p = 0, as desired.

Similar procedures are applied to the remaining components. For example, ¢~% =
godZ“, should encode the conformal graviton. The Penrose transform gives:
G /
Lsapc = ( ABC ) :/ T A AaABACYs, VAYT 550 = 0. (B.5)
VD' ABC X
Recalling that V acts on I'sapc via the local twistor connection,
vAd GRpe — Wf}cp =0
VAA YD'ABC — Zq)é%’GgBC =0
The gauge-fixing ensures that Gapcp = G(apcp), and this leaves us with
(VAA’VB, + cbg‘PA’) Gapcp =0, (B.6)

which is the required Bach equation.
An identical procedure will give the following equations for the remaining components:

9.' = OVl —iVau (CPC %) =0, (B.7)
9 = (VaaVep +Papap) TyP =0, (B.8)
g7 = (Voo VM Voo + @44V s ) 138 = 0. (B.9)

These correspond to the spinor, ASD tensor, and conformal gravitino of N' = 4 CSG,
respectively.

C Independence of the Reference Spinor

In this appendix we explicitly compute the infinitesimal variation d¢M,, o. This is easiest
if we use the representation of M,, o given by (4.17); the proof of &-independence can also
be accomplished using (4.19), but requires a bit more finesse.

We can compute the variation directly from (4.17) by using the basic property of
determinants: d¢|H| = tr[adj(H)d¢H]. This leads to (ignoring irrelevant overall factors):

de Moo =/ du [Z [H15i| ((X?)? deHis + X2 detp})
M1

7
1245
+ § : ‘HIZU

1%‘ ? wii deHgg + 9] ¥F deHpg + detj wiy, + 9 dewy)

(X2 o) deHy; + X dew); + dewd] 92 + 9} dey?)

’.77

12ijkl
* Z ‘ngkl) v ]k d§Hu+dgw wkl+w dewpy)
1,9,k

n
+ Y ‘Hgg’;ﬁﬁ wh Wl deHlpn | [[ h(Z(04)) Doy + (14 2). (C.1)
i,7,k,l,m s=1
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To study d¢My, 0, we need the individual variations which appear in (C.1). These are
easily obtained by working with the dual twistor wavefunctions (4.18); after a bit of algebra
(including the Schouten identity) we find

Al =2 [Wi,(;/gl(jf) De = Q[Wé’;gs- 3 D, (C.2)
j=1
- W . (i1 3
devt =20 AZIDe, dly = EBEE S (G6)01) + (€)1 De.

(C.3)
We will now use these facts to show that dgM,, o is a total divergence with respect to the
moduli coordinates X74, and hence vanishes.
We can proceed order-by-order with respect to the sums appearing in (C.1). For
instance, the integrand of the first line is

oSz (s e € gy 22O WY px
2Z'Hm< wr M e > |

But upon inspection, this takes the form of a total divergence:

2@'6)?“ [(X2)2 P XN Hi3| Imeég)i ] (C.4)
7
The key observation is that (for all terms contributing to deM,, o) X-dependence only
appears through explicit powers of X2, the wavefunction factor of e/”X, w}, or dg?/)l-l.
Applying this philosophy to the rest of (C.1), we can show that line-by-line it is equal to
a total divergence.
If we refer to the contribution of (C.4) as the ‘third-order’ contribution (counting the
number of rows and columns missing from the determinant factor), then divergences at
each order are given as follows: At fourth-order,

W] Ig

1J
v (j€)?

+ (1 2). (C.5)

. 0 2 iP-X 1245
Zigsoa |[X € > ‘HHZ'
0]

At fifth-order:

.0 iP- ij 44
— 9 XN BRIk (Xl - wled) 17 L) (o)

ox74 = (k€)?
At sixth-order:
.0 P ijkl W €4
- 228)(JA P Z ‘Hgém‘ ¢z‘1 %2'1@ "’ |+ (1+2). (C.7)
i3,k (lé.)

At seventh-order, we only have a single term:

12i5klm [Wm,P {] z"P~X
/d,u Z ‘thzklm z" li(mf)?’ d20'.

7] k7l7m
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After using the GL(2, C)-freedom to fix the scale and position of o1 and o9, we can simply
perform the remaining d8/8X integral (since wl-ljfz

ijklm Wm7P£
2/ o 6"%(P Z ’ng%m Wi le (mé)? = 0. (C.8)
i,7,k,l,m

is independent of X)), leaving:

So the seventh-order contribution to d¢M,, o vanishes simply due to momentum conser-
vation. Note that in the calculation of each of these divergences, care must be taken to
symmetrize over all indices in the summation as well as (1 «» 2) in order to get the correct
result.

Finally, we can combine (C.4)-(C.8) to see that

ds8 x 0 1A
deMno = ///m1 vol GL(2,C) 0X14 =0

(C.9)

This vanishing occurs because there are no ambiguities with respect to the compactification
of the moduli space at degree one, and V4 is smooth with respect to the X coordinates.
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