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Abstract: We present an E7(7) invariant Lagrangian that leads to
the equations of motion of d = 4 N = 8 supergravity without using
Lagrange multipliers. The superinvariance of this new action and the
closure of the supersymmetry algebra are proved explicitly for the terms
that differ from the Cremmer–Julia formulation. After constructing the
conserved E7(7)-Noether current of maximal supergravity, we switch to
the Hamiltonian formulation and we prove the invariance of the E7(7)

invariant action under general coordinate transformations before con-
cluding with comments on the implications of this manifest off-shell
E7(7)-symmetry for quantizing d = 4 N = 8 supergravity, in particular
on the E7(7)-action on phase space.

1 Introduction

The appearance of the hidden E7(7) symmetry is one of the most remarkable
features of maximal supergravity in four dimensions [1]. Its origin is still quite
mysterious and furthermore, it was claimed that the E7(7) symmetry was bro-
ken on the level of the Lagrangian and only restored for the equations of motion
[1, 2]. This statement is based on the well-known fact that D = 11 supergravity
[3] only gives rise to 28 vector fields upon a reduction à la Kaluza–Klein on a
flat seven torus to d = 4. Since the smallest, non-trivial E7(7) representation
has dimension 56, E7(7) only becomes a manifest symmetry of the equations of
motion upon combining the field equations of the vector fields and their Bianchi
identities into one equation [1, 2]. Another possibility is to start with a man-
ifestly E7(7)-invariant Lagrangian containing 56 vector fields and to impose a
twisted self-duality constraint for the 56 vector fields on top of the equations of
motion [4].
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In this article, we shall prove that there exists an off-shell formulation of
d = 4 N = 8 supergravity that exhibits E7(7)-symmetry manifestly without
imposing a constraint nor using Lagrange multipliers.1 Our approach differs
in so far as that we start with a manifestly E7(7) invariant Lagrangian (that
contains in particular 56 vector fields). The associated equations of motion are
shown to exactly coincide with the ones of the standard formulation of maximal
supergravity without imposing any further constraint. The price to pay for this
is that we have to dispense with the usual form of manifest four-dimensional
general coordinate covariance on the level of the action, because we shall adopt
an ADM-split into time and space [6]. Nevertheless, the action will be proved
to exhibit invariance under general coordinate transformations closely following
the arguments pioneered by Henneaux and Teitelboim in [5]. Hence, it does not
come as a surprise that all the equations of motion do in fact exhibit both E7(7)-
and Diff(4)-covariance explicitly.

This paper is structured as follows: We start by discussing the part of
the bosonic Lagrangian containing the vector fields alone, before coupling it
to the other bosonic terms in the action. In order to couple consistently to
the fermions of supergravity, we shall then switch to the flat “vielbein frame”
for both the coordinate indices and the E7(7)-indices, where we use the scalars
of maximal supergravity as a “vielbein”, i.e. to intertwine between the E7(7)-
covariant and the SU(8)-covariant formulation in the standard way [1]. As a
next step, we add the fermionic part of the action, which will naturally lead
to the supercovariant extension of the vector field strengths. We verify the
closure of the supersymmetry algebra on the bosons as well as the superinvari-
ance of the action functional in our manifestly E7(7)-invariant formulation. As
a next step, we extract the conserved E7(7)-Noether current, before switching
to the Hamiltonian formulation of the theory. This allows to prove the invari-
ance of the action under general coordinate transformations and furthermore
reveals that the Noether charge of the duality symmetry E7(7) shows exactly
the same properties as the one of an ordinary global symmetry. We conclude
with a computation of the relevant Dirac brackets and with an analysis of the
phase space of maximal supergravity from the E7(7)-symmetric point of view
that is expected to improve our understanding of the quantization of maximal
supergravity in four dimensions.

2 Bosonic dynamics

The usual argument against an off-shell E7(7)-symmetry in maximal supergrav-
ity is related to the counting of the degrees of freedom. The important observa-
tion is however that the number of the on-shell degrees of freedom is intimately
linked to the form of the equations of motion. For second-order Maxwell-type

1Note that an E7(7) invariant Lagrangian with a Lagrange multiplier has been stated in eq.
(6.27) of [1], which leads to the well-known problems upon quantization [5]. What is more,
the superinvariance of this formulation has not been shown.
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ones, i.e. dF = 0 and d ∗ F = 0, it would clearly be inconsistent to keep 56
vector fields forming the lowest dimensional, non-trivial representation of E7(7),
because it would violate the equality of bosonic and fermionic degrees of free-
dom in the theory, which restricts the number of the vector fields to 28 [1]. The
key idea in this paper is that we are looking for an action involving 56 vector
fields that gives rise to a different set of equations of motion directly, namely
first-order twisted self-duality equations of motion [4] that exhibit Diff(4)- and
E7(7)-invariance at the same time. Thus, the counting of degrees of freedom
will match again and it will in particular not be necessary to impose a twisted
self-duality constraint on top of the equations of motion as was done in [4].

For a better readability of the article, we have separated the fermionic part
Sferm from the complete action S = Sbos+Sferm and we have divided the bosonic
part Sbos into three pieces

Sbos = Sgrav + Sscal + Svec.

The first term Sgrav is the usual Einstein–Hilbert action in four dimensions, to
which the scalars are coupled by the standard σ-model action Sscal. The last
term Svec in the bosonic part of the action describes the dynamics of the 56
vector fields and their coupling to the metric and to the scalars. We will start
by stating Svec and by proving that the associated equations of motion for the
56 vector fields are twisted self-duality equations of motion without imposing
further constraints, before adding the dynamics of the other fields of maximal
supergravity to the system.

2.1 Twisted self-duality in four space-time dimensions

As a first step, we want to recall some basic facts about self-dual fields. In order
for these to exist, two ingredients are necessary: Firstly, the field strength F and
its dual must have the same number of components and secondly, the square
of the operation of taking the dual should give +1. The square of the usual
Hodge dual ∗ on a two-form in four dimensional space-time, however, squares to
−1, which rules out self-duality under the standard Hodge dual. Fortunately,
maximal supergravity offers a different concept of duality that is intimately
linked to its field content, which can be thought of as a twisted Hodge dual
[4]. Since the seventy scalars can be described by an V ∈ E7(7)/(SU(8)/Z2)

coset [1], the “scalar metric” G = VTV transforms as an E7(7)-tensor. As E7(7)

furthermore is a subgroup of Sp(56), the constant symplectic form Ω of the
56-dimensional representation of E7(7) also is E7(7)-covariant. The contraction
of G with the inverse symplectic form thus defines an almost complex structure

3



J acting on the 56 dimensional fundamental representation of E7(7):
2

Jm
n := ΩmpGpn (2.1)

with Jm
pJ

p
n = −δm

n

and m, n, p = 1, . . . , 56.

Combining the Hodge dual with this scalar-dependent J-twist, we can write
down a consistent self-duality equation for the field strength Fµν

m := 2∂[µAν]
m

of the 56 vector fields Aµ
m:

Fµν
m = − 1

2e4
ǫµν

στJm
nFστ

n. (2.2)

The space-time indices µ, ν take values in 0, . . . , 3 and e4 := det(−g) 1
2 is the

standard volume element3 In the remaining part of this section, we shall con-
struct the action functional Svec whose extremization with respect to the 56
vector fields gives rise to the twisted self-dual equation (2.2). In doing so, we
can follow the construction of Henneaux and Teitelboim that is described in [5].
Their first step consists of splitting both the field strength Fµν

m and the d = 4
metric gµν into time and space in the standard way

gµν =

(

−N2 + hijN
iN j hijN

j

hijN
j hij

)

µν

(2.3)

with spatial indices i, j = 1, . . . , 3. The field strength Fµν
m is then decomposed

into electric and twisted magnetic fields

Ej
m := F0j

m −N iFij
m, (2.4a)

Bk
m :=

N

2e3
hklǫ

lijJm
nFij

n, (2.4b)

where ǫijk is normalized as ǫ123 = 1 and where e3 := det(h)
1
2 is the abbreviation

for the the spatial volume element, i.e. the square root of the determinant of
the spatial metric hij (2.3). The twisted self-duality equation (2.2) is then
equivalent to

Ek
m = Bk

m. (2.5)

It is this equation of motion that we will obtain from our E7(7)-invariant action
Svec. The action Svec is constructed from contractions of the electric with the
twisted magnetic fields E and B in a non-standard way [5]:

Svec[Aµ
m] :=

1

8

∫

d4x
e3
N

(Ei
m − Bi

m)Gmnh
ijBj

n. (2.6)

2We use Einstein’s summation conventions in this article and we denote the inverse of the
symplectic form Ωmn (of which we assume without loss of generality to have standard form
Ω =

(

0 1
−1 0

)

as in [7]) by raising the indices, i.e. ΩmpΩpn = δmn .
3Note that ǫµνστ is completely antisymmetric and it is normalized as ǫ0123 = +1. Its

indices are lowered with the 4-dimensional metric gµν .
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This action functional Svec is manifestly invariant under gauge transformations

δgAµ
m = ∂µΛm. (2.7)

The equations of motion are obtained by extremizing Svec with respect to the
56 vector fields Aµ

m. One crucial observation at this stage is that the zero-
component A0

m drops out from the action Svec, because its entire contribution
to Svec is contained in a total derivative, which can be made manifest by substi-
tuting the definition of Ej

m (2.4) into Svec and focussing on the A0
m component

for illustrational purpose (keeping in mind that Ω is a constant invariant tensor
of E7(7)):

Svec|A0
m =

1

16

∫

d4x∂kA0
mΩmnǫ

kijFij
n =

1

16

∫

d4x∂k

(

A0
mΩmnǫ

kijFij
n

)

.

In other words, we will not alter the action Svec if we replace the electric field
strength Ej

m in (2.6) by the A0
m-independent quantity

E#
j

m := Ej
m + ∂jA0

m

(2.4)
= ∂0Aj

m −N iFij
m.

Thus, the zero component A0
m has disappeared completely from the action Svec,

which now reads

Svec[Ai
m] =

1

8

∫

d4x
e3
N

(

E#
i

m − Bi
m

)

Gmnh
ijBj

n. (2.8)

Note that the action functional Svec is still gauge invariant (2.7), even though
not in a manifest way. A short computation then leads to the following equation
of motion for the remaining spatial components Ai

m:

0 =
δSvec

δAi
n

=
1

4
Ωnmǫ

ijk∂j

(

E#
k

m − Bk
m

)

. (2.9)

Since the symplectic form Ω is constant, the equation of motion is equivalent to
the statement that the differential one-form E# −B is closed. Since we assume,
as usual, trivial topology of the spatial slices of the d = 4 manifold, every closed
form is exact. Poincaré’s lemma then implies that the equations of motion (2.9)
are equivalent to

E#
k

m − Bk
m = ∂kv

m, (2.10)

where vm is an arbitary function. Since the zero component A0
m did not ap-

pear in the action Svec (2.8), it is not a dynamical field of the theory a priori.
Therefore, we can without loss of generality define A0

m as being the function
vm entering (2.10), which transforms the equation of motion (2.10) into the
expected form:

Ek
n = Bk

n. (2.11)

Hence, we have succeeded in reproducing the twisted selfduality equation of
motion (2.5), which contains the same information as the general covariant
one stated in (2.2). Before stating the complete bosonic action of maximal
supergravity, we want to make some remarks:
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• The present analysis of a twisted self-duality equation on an arbitrary,
four-dimensional Lorentzian manifold completely parallels the one of Hen-
neaux and Teitelboim in [5] in which they discussed self-dual p-forms in
a Lorentzian manifold of dimension d = 2p+ 2. Note that this result is a
non-trivial extension of their procedure, because the scalar metric Gmn(x)
(which is not constant in contradistinction to the symplectic form Ω) is
an essential ingredient in defining the twisted self-duality.

• At a first glance, the counting of degrees of freedom appears not to match
with supergravity, because a Kaluza–Klein reduction of D = 11 super-
gravity leads to 28 vector fields in d = 4, each subject to second-order

equations and each having two on-shell degrees of freedom (like a photon).
Thus, we arrive at 28× 2 degrees of freedom. In the present formulation,
the 56 vector fields obey first-order equations, however, which require the
same amount of initial data. Thus, the counting of the degrees of freedom
matches. Yet another way to explain this agreement is the observation
that the action Svec (2.8) is based on the standard description for 56 vec-
tor fields in d = 3 Euclidean dimensions (that contain 56 × 1 on-shell
degrees of freedom), which are coupled to time in a particular way.

• The advantage of our approach is that the global E7(7)-invariance is man-
ifest for both the action and the equations of motion. Note that it is the
guiding principle of this article to preserve the E7(7) symmetry. Only in
the Appendix, where we will explicitly link the fields toD = 11 supergrav-
ity, we will have to dispense with manifest E7(7)-covariance for obvious
reasons.

• It is interesting to observe that the occurrence of the potential A0
m = vm

in this procedure is completely analogous to the role played by the six-
form potential A6 in D = 11 supergravity. In order to write the four-form
equation of motion d ∗ F4 = 1

2F4 ∧ F4 in the first order form ∗F4 = F7, it
is necessary to introduce a six-form potential by F7 = dA6 + 1

2A3 ∧F4 [8].

2.2 E7(7) invariant Lagrangian - bosonic part

In the preceding section, we have used the space-time metric gµν and the scalar
metric Gmn for which we also have to specify the dynamics. Since we want
to arrive at a theory with both general coordinate covariance and global E7(7)

symmetry, it is natural to describe the dynamics of gµν by the Einstein–Hilbert
action and the one of the scalars by the usual σ-model. Thus, we are led to the
complete bosonic part of the action:4

Sbos = Sgrav + Sscal + Svec

Sgrav + Sscal =

∫

e4d
4x

[

1

4
R− 1

192
GmnGpqgµν∂µGmp∂νGnq

]

. (2.12)

4Note that the relative couplings are fixed in order to allow for a convenient comparison
with D = 11 supergravity, which is explained in detail in the Appendix.
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In order to obtain the equations of motion for the 70 scalars Gmn, we first
compute with Jm

pJ
n
qGmn = Gpq:

δSvec

δGmn

δGmn = − 1

16
e4h

i1j1hi2j2Fi1i2
mFj1j2

nδGmn. (2.13)

Since the twisted self-duality equation of motion (2.2) is not affected by the
new terms, we can substitute it into this equation of motion (2.13) to restore
general coordinate covariance. In doing so, we use the fact e4 = Ne3 and that
the scalars V ∈ E7(7) ⊂ Sp(56) form a symplectic matrix, which implies that

the “scalar metric” G = VTV fulfills the relation δGpq = −Jm
pJ

n
qδGmn:

δSvec

δGmn

δGmn

(2.2)
= − 1

32
e4g

µ1ν1gµ2ν2Fµ1µ2
mFν1ν2

nδGmn.

Thus, the complete equation of motion of the scalars indeed shows general
covariance:5

0 =
δSbos

δGmn

δGmn =
[

− 1

32
e4g

µ1ν1gµ2ν2Fµ1µ2
mFν1ν2

n

+
1

96
Gmp∂ν

(

e4g
µνGnq∂µGpq

)

]

δGmn. (2.14)

For the metric equation of motion, we face the complication that we have split
the metric gµν into lapse N , shift N j and spatial metric hij . This split (2.3)
implies the identity

δSvec

δgµν
= − 1

2N

δSvec

δN
δµ
0 δ

ν
0 +

(

γik δSvec

δNk
+
N i

N

δSvec

δN

)

δ
(µ
0 δ

ν)
i (2.15)

+
(δSvec

δγij
− γik δSvec

δNk
N j − N iN j

2N

δSvec

δN

)

δ
(µ
i δ

ν)
j .

Substituting the twisted self-duality equation of motion (2.2) in this expression
then leads again to a covariant equation:

δSvec

δgµν
=

e4
16
Gmng

ρσFµρ
mFνσ

n.

Thus, we arrive at the Einstein equation of motion

0 = e−1
4

δSbos

δgµν
=

1

4

(

1

2
gµνR−Rµν

)

+
1

16
Gmng

ρσFµρ
mFνσ

n

+
1

192
GmnGpq∂µGmp∂

νGnq

− 1

384
gµνGmnGpq∂σGmp∂

σGnq. (2.16)

Hence, all the equations of motion indeed show general covariance.

5Since the symmetric matrix Gmn with m, n = 1, . . . , 56 is a highly redundant way to
parametrize the 70 scalars contained in V ∈ E7(7)/(SU(8)/Z2), we have kept the contraction
with δGmn in eq. (2.14) which effectively enforces a projection on the terms in the parentheses.
These projections will be made explicit in the following section.
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2.3 Vielbein frame

In order to couple the bosonic fields to fermions, we have to use a vielbein
frame. The d = 4 metric gµν (2.3) is written as

gµν = eµ
αeν

βηαβ (2.17)

with the Minkowski metric η of signature (− + ++). Consistently with the
decomposition of gµν into lapse, shift and spatial metric (2.3), we shall find it
convenient to use a restricted frame of the form

e0
0 = N

ei
0 = 0

e0
a = ei

aN i

ei
a = ei

a. (2.18)

Furthermore, we want to rewrite the symmetric E7(7) tensor Gmn in all expres-
sions in terms of the coset V ∈ E7(7)/(SU(8)/Z2) using the following identifi-
cation

Gmn =: Vm
ABVn,AB + Vm,ABVn

AB = Vm
ABVn,AB + c.c. (2.19)

with Vm
AB = Vm

[AB], where the indices A,B = 1, . . . , 8 label the SU(8)/Z2-
representation of complex dimension 28. As usual, complex conjugation changes
the position of the SU(8)-indices, i.e. (vA)∗ = vA. In complete analogy to the
vielbein case, V can be used to make the E7(7)-index m “flat”, e.g.

Fµν
AB := Vm

ABFµν
m. (2.20)

This entails the following identity for the contraction of two arbitrary vectors
Xm, Y n with the “scalar metric” G:

GmnX
mY n = XABYAB + c.c. (2.21)

For the inverse V−1 of V ∈ E7(7)/(SU(8)/Z2), SU(8)-covariance implies

(V−1)mABVm
CD = δ

[C
[Aδ

D]
B] (2.22)

(V−1)mABVm,CD = 0 (2.23)

and analogous statement for the complex conjugated objects. Finally, the defi-
nition of the complex structure J in (2.1) fixes the contraction of two arbitrary
vectors Xm, Y n with the symplectic form Ω (up to a sign that we choose here):6

ΩmnX
mY n = iXABYAB + c.c. (2.24)

6Fur further details on the relation between E7(7)-indices and SU(8)-indices, we refer the
reader to [7]. An explicit example for this transformation can be found in eq. (A.6) of the
Appendix, which allows to verify the relation (2.24) for the symplectic form Ω which is of
canonical form

(

0 1
−1 0

)

[7].
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Here, i is the imaginary unit that satisfies i2 = −1. The fact that V is a group
element of E7(7) implies that its Maurer–Cartan form has the following property

(V−1)mAB∂µVm
CD =: 2(Qµ)[A

[Cδ
D]
B] (2.25a)

(V−1)mAB∂µVm,CD =: (Pµ)ABCD = (Pµ)[ABCD] (2.25b)

with (Qµ)A
A = 0.

Furthermore, the objects Q and P are linked to their complex conjugates by

(Pµ)ABCD =
1

4!
ǫABCDEFGH(Pµ)EFGH (2.26)

(Qµ)A
C = −(Qµ)C

A. (2.27)

In other words, the 133 dimensional Lie algebra e7(7) of E7(7) is split into the 63

dimensional Lie algebra su8 of SU(8)/Z2, parametrized by Qµ, and the
(

8
4

)

= 70
dimensional representation of su8. With this notation and the standard con-
vention to use indices from the beginning of the alphabet α,A, . . . for the (flat)
vielbein frame and indices from its middle µ, m, . . . for the (curved) coordinate
frame (e.g. ∂α = eα

µ∂µ), the three bosonic equations of motion (2.2), (2.14)
and (2.16) take the following form:

Fα1α2
AB = − i

2
ǫα1α2

β1β2Fβ1β2
AB (2.28a)

4

3
Dα(Pα)ABCD = Fαβ

[ABFαβ,CD] +
1

4!
ǫABCDEFGHFαβ,EFFαβ

GH(2.28b)

Rαβ − 1

2
ηαβR =

1

4

(

Fαγ
ABFβ

γ
AB + c.c.

)

+
1

6
(Pα)ABCD(Pβ)ABCD

− 1

12
ηαβ(Pγ)ABCD(Pγ)ABCD. (2.28c)

In the equation of the scalars, we have used the SO(3, 1)×SU(8)/Z2-covariant
derivative D that is defined with the usual (Levi–Civita) spin connection ω and
the su8-valued connection Q (2.25):

Dα(Pβ)ABCD = ∂α(Pβ)ABCD + ωαβ
γ(Pγ)ABCD

−4(Qα)[A
E(Pβ)BCD]E . (2.29)

It is important to note that the E7(7)-covariance is still preserved for these
equations (2.28) in the “vielbein frame”. This notation also suggest an easy
comparison to the standard formulation of d = 4 N = 8 supergravity. For this,
we violate the E7(7)-covariance by splitting the complex SU(8) representation

Fβ1β2
AB into its real and imaginary part

Fβ1β2
AB = Re

(

Fβ1β2
AB

)

+ i Im
(

Fβ1β2
AB

)

(2.30)

that constitute only SO(8) representations. The self-duality equation of motion
in the form (2.28a) then is equivalent to

Im
(

Fα1α2
AB

)

= −1

2
ǫα1α2

β1β2 Re
(

Fβ1β2
AB

)

. (2.31)
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This allows us to substitute the imaginary part in the other two equations by
the real part. The latter can be identified with the field strength of the 28 vector
fields that arise from a Kaluza–Klein reduction of D = 11 supergravity, which
form an SO(8) representation [1, 2, 4]. We have checked that the resulting
equations of motion completely coincide with the ones of maximal supergravity
[1, 2]. We will provide the explicit relations between the D = 11 quantities and
the field strengths Fα1α2

AB as well as details of this check in the Appendix.
At this point, we only want to remark that the twisted self-duality equation
of motion provides both the Bianchi identity and the (generalized) Maxwell
equation of motion for the remaining 28 vector fields.

A last comment concerns the constants of normalization. The relative cou-
pling in the action S (2.12) has been chosen in such a way that the identification
with D = 11 supergravity is as simple as possible. It is important to note how-
ever that the matching of the equations of motion for both the metric and
the scalars with supergravity is not due to a suitable choice of normalization,
but indeed contains non-trivial information. This non-trivial coupling is in fact
fixed by the Chern–Simons term of D = 11 supergravity. A full explication of
these facts can be found in the Appendix.

3 Coupling to the fermions

3.1 Fermionic action

As a next step, we will couple the bosonic action S (2.12) to fermions. As usual,
these form representations of the covering of the Lorentz group, in this case of
Spin(3, 1) × SU(8). The Weyl spinors of d = 4 N = 8 supergravity constitute
the 56 dimensional representation χABC = χ[ABC] of SU(8) and the gravitini
the 8 dimensional one denoted by (χµ)A with A,B,C = 1, . . . , 8. Since D = 11
supergravity is stated in terms of Majorana spinors, we will also adopt this
notation by using chiral Dirac spinors. In formulæ, we will use the Majorana
representation of the Clifford algebra in d = 4 with the Minkowski metric η of
signature (− + ++):

{γα, γβ} = 2ηαβ (3.1)

with γ5ǫ
αβγδ := γαβγδ = γ[αγβγγγδ].

This implies γ2
5 = −1l and that all γ-matrices are real. The chiral spinors χABC

and (χµ)A are then subject to the constraint γ5χ
ABC = iχABC and γ5(χµ)A =

i(χµ)A with the imaginary unit i already used for the symplectic form Ω in
(2.24).7 Complex conjugation of the SU(8) representation amounts to lowering
the SU(8)-indices and hence we obtain by consistency e.g. γ5χABC = −iχABC .8

With these conventions, it is straightforward to obtain the fermionic part of the

7In other words, acting with the projector P+ = 1
2
(1l + iγ5) on the chiral spinor χABC is

trivial P+χABC = 0, which is the well-known formulation used in e.g. [1, 9].
8The Majorana conjugation χ̌ABC := (iγ0χABC)T with the transposition acting on the

spinor indices does not affect the SU(8)-indices. This is why we refrain from using the no-
tation χ̄ for conjugated spinors that is conventionally understood to also include a complex
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action by a Kaluza–Klein reduction from D = 11 supergravity as we explain in
detail in the Appendix. We will state the action at first and then explain the
subtlety in the coupling to the 56 vector fields:9

Sferm =

∫

e4d
4x

{

−1

2
(χ̌β)Aγβγδeδ

µDγ(χµ)A − 1

96
χ̌ABCγγDγχABC (3.2)

− 1

12
χ̌ABCγαγβ(χα)D(Pβ)ABCD −1

4
W β1β2

AB(P−)ab
β1β2

Fab
AB + c.c.

}

with the indices a, b = 1, . . . , 3 and Fab
AB = ea

µeb
νFµν

AB = ea
ieb

jFij
AB due to

the gauge fixing (2.18). Inside the action, we have used the Spin(3, 1)×SU(8)-
covariant derivative D that follows from eq. (2.29)10

DγχABC := ∂γχABC +
1

4
ωγβ1β2γ

β1β2χABC + 3(Qγ)[A
Dχ̄BC]D (3.3a)

Dγ(χµ)A := ∂γ(χµ)A +
1

4
ωγβ1β2γ

β1β2(χµ)A + (Qγ)A
B(χµ)B. (3.3b)

Furthermore, we introduced the abbreviation W for the bifermionic quantity

Wβ1β2
AB := 4(χ̌[β1

)A(χβ2])
B − (χ̌[β2

)Cγβ1]χ
ABC

− 1

4!2
χ̌CDEγβ1β2χFGHǫ

ABCDEFGH (3.4)

as well as the projector P−:

(P±)β3β4

β1β2
:=

1

2

(

δβ3β4

β1β2
± i

2
ǫβ1β2

β3β4

)

. (3.5)

Before discussing the equations of motion for the combined system S = Sbos +
Sferm (2.8, 3.2), we want to explain why we could not use the conventional way
to couple the 28 field strengths of d = 4 N = 8 supergravity to the fermions [2].
Our new formulation is a necessary consequence in order to establish manifest
E7(7)-invariance in the Lagrangian. It is well-known in maximal supergravity
theories that the fermions do not transform under the global symmetry group
En(n) with n = 11−d in 4 < d < 11 dimensions [10], but only with respect to the
covering of its compact subgroup. Note however that any bifermionic expression
can be transformed into an En(n)-tensor by a contraction with the scalar coset
matrix V ∈ En(n)/K(En(n)). Hence, it is sufficient for our purpose of stating a
manifestly E7(7) invariant Lagrangian of maximal supergravity in d = 4 that its
fermionic part shows SU(8)-covariance. However, the field strength of the 28
vector fields in the usual formulation of d = 4 N = 8 is not a viable object on the
level of the Lagrangian, because it does not even form an SU(8) representation
off-shell. This is a first reason why we had to use the formulation involving the
projector P− inside the fermionic action Sferm (3.2).

conjugation, which is not the case here. Furthermore, we use the standard convention for the
complex conjugation of classical fermions χ1, χ2, i.e. that iχT

1 χ2 is real.
9We neglect the quartic fermionic contributions to the action at this stage. We will com-

ment on their inclusion in section 3.4.
10Following [28], the connection ω does not act on the vector index of the gravitino χµ in

eq. (3.3b). The action Sferm (3.2) is nevertheless Diff(4)-invariant due to the antisymmetry
[γδ] in the first term on the r.h.s. of (3.2).

11



Another argument in favour of our E7(7)-invariant formulation of the La-
grangian is related to supersymmetry. Given the bosonic action Sbos (2.8) that
does not depend on the zero component A0

m of the 56 vector fields, the require-
ment of superinvariance δS = 0 of the complete action S = Sbos+Sferm can only
hold if A0

m does not appear in Sferm either. This serves as a second argument
for the statement that the standard formulation of the fermionic Lagrangian is
not admissible in our case. To sum up our arguments, we are forced to break
the manifest Diff(4)-covariance in the fermionic Lagrangian as well in order to
guarantee E7(7)-invariance of the action functional S. Nevertheless, the equa-
tions of motion will show general covariance in complete analogy to the bosonic
ones, as we shall verify next.

3.2 Fermionic equations of motion

For the comparison of the fermionic dynamics with maximal supergravity, it
is important to keep in mind that we have obtained the fermionic action Sferm

(3.2) from a Kaluza–Klein reduction of D = 11 supergravity, apart from the
terms involving the field strengths. Therefore, it is sufficient to discuss the
equations that are affected by this change. We will proceed order by order
in fermions. As a first step, we observe that the bosonic equations of motion
(2.28) will only be modified by terms that are quadratic in fermions. This
implies in particular that the twisted self-duality equation for the field strength
F in (2.28a) still holds to leading order in fermions. In view of this fact, we can
substitute it again inside the equations of motion of both the gravitino (χµ)A

and the Dirac spinor χABC to restore manifest general covariance to leading
order in fermions. We will address the complete theory including all orders in
fermions χ in section 3.4, but at this point, we content ourselves with focussing
on the leading order terms. Using left derivation, we obtain the two equations

0 = e−1
4

δS

δχ̌ABC
(3.6a)

= − 1

12
γαγβ(χα)D(Pβ)ABCD − 1

4
γβ1(χ̄β2)[A(P+)ab

β1β2
FabBC]

+
1

(4!)22
γβ1β2χFGHǫABCDEFGH(P−)ab

β1β2
Fab

DE + O(χ3)

0 = e−1
4 eνβ

δS

δ(χ̌ν)A
(3.6b)

= −γβ
γδeδ

µDγ(χµ)A +
1

12
γαγβχ

BCD(vα)ABCD

+2(χα)B(P+)ab
αβFabAB +

1

4
γαχABC(P−)ab

αβFab
BC + O(χ3).

As a next step, we can insert the twisted self-duality equation of motion of F
(2.28a) in the form

(P−)ab
β1β2

Fab
AB !

=
1

2
Fβ1β2

AB + O(χ2) (3.7)

as well as its complex conjugate in the equations (3.6). Hence, the manifest
Diff(4)-covariance of the fermionic equations of motion is restored, too.
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In complete analogy to the bosonic equations of motion, we obtain perfect
agreement with the equations of motion of d = 4 N = 8 supergravity in their
usual form. To do this, we have to break the SU(8)-covariance by substituting
the imaginary part of Fβ1β2

AB by its real part as done in eq. (2.31) (which
is tantamount to imposing the twisted self-duality equation of motion). Then,
we can identify 28 field strengths with the usual ones of supergravity that
can be obtained from a Kaluza–Klein reduction from D = 11 supergravity
as explained in the Appendix. Hence, we have shown that all equations of
motion exhibit manifest general covariance and that they agree with maximal
supergravity upon breaking the SU(8) symmetry to SO(8) to leading order
in fermions χ. Before commenting on the next-to leading-order contributions
O(χ2) in section 3.4, we want to link bosons to fermions by supersymmetry and
check the supersymmetry algebra as well as the superinvariance of the complete
action S to leading order in fermions.

3.3 Supersymmetry

The supersymmetry variations of the dynamical fields can in principle be de-
rived from a Kaluza–Klein reduction of the ones of D = 11 supergravity on a
flat seven-torus (in complete analogy to the action S). With the identifications
stated in the Appendix, the supersymmetry transformations of the bosonic
fields read

eα
µδeµ

β = ǫ̌Cγβ(χα)C + c.c. (3.8a)

(V−1)AB,mδVm
CD = ǫ̌[AχBCD] +

1

4!
ǫABCDEFGH ˇ̄ǫEχ̄FGH (3.8b)

eα
µVm

ABδAµ
m = −4ǫ̌[A(χα)B] − 1

2
ǫ̌Cγαχ

ABC . (3.8c)

In this analysis, there is a subtlety with the vector fields, as expected. Since
only 28 of these can be deduced from D = 11 supergravity, we do not obtain the
complete equation (3.8c) from a simple Kaluza–Klein reduction. To be precise,
we obtain the r.h.s, which is SU(8) invariant, but on the l.h.s., the summation
over the index m is restricted to 1, . . . , 28 which reflects the lack of 28 vector
fields.11 Therefore, it is natural in our formulation to extend equation (3.8c)
to an E7(7)- or SU(8)-covariant one by adding the missing 28 vector fields to
the l.h.s. (thus completing the 56 dimensional E7(7)-representation). This is
the form of the supersymmetry variation that we shall use for proving both the
superinvariance of the action and the closure of the supersymmetry algebra.
Note that we have also defined the supersymmetry variation δ of the on-shell

field A0
m in (3.8c), although it does not appear in the action functional Svec

(2.8). We continue with defining the variations of the fermions, that read to
leading order in χ

δχABC = −4(Pβ)ABCDγβǫD + 3γabFab
[ABǫC] + O(χ2) (3.9a)

δ(χµ)A = Dµǫ
A +

1

4
Fab

ABγabγµǫB + O(χ2) (3.9b)

11This statement can be verified explicitly with the formulæ provided in the Appendix.
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with the Spin(3, 1) × SU(8)-covariant derivative D already stated in (3.3)

Dµǫ
A := ∂µǫ

A +
1

4
ωµβ1β2γ

β1β2ǫA − (Qµ)B
AǫB. (3.10)

If we impose the equations of motion, the equations (3.9) exactly agree with
the ones obtained from a Kaluza–Klein reduction of D = 11 supergravity. Off-
shell however, we have broken the manifest general covariance again in order to
preserve SU(8)-covariance. [Note that the indices a, b take the values 1, 2, 3.]
We have done this in complete analogy to the discussion of the fermionic action
Sferm for the same reasons: since the zero component A0

AB does not appear in
the bosonic action Sbos (2.8), it would be inconsistent to include it in either the
fermionic Lagrangian or the supersymmetry variations of the fermions, because
it would then prevent the complete action to be superinvariant, i.e. to fulfill
δS = 0. Nevertheless, the supersymmetry variations exhibit general covariance
manifestly on-shell, which follows from imposing the twisted self-dual equation
of motion of F in the form (3.7) and from the algebraic relations (A.14) stated
in the Appendix.

Before addressing the closure of the supersymmetry algebra, we have to
come back to the supersymmetry variation on the seventy scalars that are
parametrized by the coset V ∈ E7(7)/(SU(8)/Z2). In order for V to describe
only seventy off-shell degrees of freedom, we have to adopt some SU(8)-gauge
fixing for the coset element V. It is now one of the basic structures of non-
linear σ-models that a global left action (by E7(7)) induces a local, compen-
sating (SU(8)/Z2)-action that restores the gauge fixing of V. In general, this
SU(8)-rotation depends on the fields of the coset V. Therefore, it is neces-
sary to covariantize the supersymmetry variation. In other words, we have
to modify the supersymmetry variation δ by a “connection term” (or a local
SU(8)-transformation Σ) that exactly compensates the contribution that arises
from a V-dependent SU(8)-rotation. This necessity has already been observed
in [1] and hence, we are led to define the covariant variation

δVm
AB := δVm

AB − ΣAB
CDVm

CD (3.11)

with ΣAB
CD := (V−1)CD

nδVn
AB.

It is straightforward to verify that this covariantization δ of δ has no effect on
neither the supersymmetry variations of the bosons (3.8), nor on the ones of
the fermions (3.9) to leading order in χ, but it provides us with the further
relation12

(V−1)CD
nδVn

AB = 0. (3.12)

Note that this procedure of “covariantizing” the supersymmetry transformation
δ is well-known [9] in Kaluza–Klein reductions, what we also illustrate in eq.

12Note that for the bosonic sector, it is possible to describe the coset in terms of the “scalar
metric” Gmn alone, on which both supersymmetry variations δ and δ yield the same result.
For the coupling to the fermions however, we cannot dispense with the introduction of the
“vielbein frame” V and hence, we do have to include this additional SU(8)-rotation being the
difference between δ and δ.
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(A.15) of the Appendix. Furthermore, it is not important for the definition of
δ (3.11) to specify which SU(8)-gauge fixing is to be preserved.

Equipped with these supersymmetry variations (3.8), (3.9) and (3.12), it is a
brief computation to verify that the supersymmetry algebra closes on the bosons
to leading order in χ, if and only if we take into account the twisted self-duality
equation of motion for F (2.28a). Of particular interest is the commutator of
two (covariant) supersymmetry variations which maps to a general coordinate
transformation δDiff, a local Lorentz δso(3,1)

and a gauge transformation δgauge

(where the latter only acts on the 56 vector fields):

[

δ1, δ2
]

= δDiff + δso(3,1)
+ δgauge + O(χ2). (3.13)

It is indeed this structure that results “on-shell” from an evaluation of the
commutator of two supersymmetry variations on the bosonic fields eµ

α, Vm
AB

and Aµ
m:

[

δ1, δ2
]

eµ
α = ξν∂νeµ

α + eν
α∂µξ

ν + Σα
βeµ

β + O(χ2) (3.14a)
[

δ1, δ2
]

Vm
AB = ξν∂νVm

AB + O(χ2) (3.14b)
[

δ1, δ2
]

Aµ
m

(2.28a)
= ξν∂νAµ

m + Aν
m∂µξ

ν + ∂µΛm + O(χ2). (3.14c)

For the closure to hold on the 56 vector fields Aµ
m, it is essential to impose the

twisted self-duality equation of motion for F (2.28a). Note that in these equa-
tions (3.14), the two supersymmetry parameters ǫ1 and ǫ2 have been combined
into Diff(4) × E7(7)-representations:

ξν := eα
ν ǫ̌A2 γ

αǫ1A + c.c. (3.15a)

ξm := −4(V−1)AB
mǫ̌A2 ǫ

B
1 + c.c. (3.15b)

The second parameter ξm can be transformed into the SU(8)/Z2-frame in anal-
ogy to the procedure used for the field strength F in (2.20), i.e. ξAB = Vm

ABξm.
These bifermionic parameters ξ also appear inside the so(3,1)-parameter Σ and
the gauge parameter Λ that have the form

Σαβ = +
1

2
(P+)ab

αβFab,ABξ
AB + c.c. (3.16a)

Λm = ξm −Aν
mξν . (3.16b)

It is well-known that the commutator of two supersymmetry variations
(3.13) (inside the supersymmetry algebra) also produces a local SU(8)-rotation
δsu8 as well as a supersymmetry variation δ′ on the r.h.s. of (3.13). These
transformations are, however, of next-to-leading order O(χ2) in the fermions,
which is the reason why we have suppressed them at this point. The terms
proportional to O(χ2) also are important for the verification of the closure of
the supersymmetry algebra on the fermions: Since the terms of order O(χ2)
inside the supersymmetry variations of χ mix with the leading order ones in this
computation, we refrain from discussing this question here. Instead, we content
ourselves with pointing out that the closure of the supersymmetry algebra on
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the fermions should not deviate from the standard computation in d = 4 N = 8
supergravity [2] for two reasons: Firstly, the present formulation of supergravity
completely agrees with the standard one in the fermionic sector and secondly,
our off-shell modifications inside the supersymmetry variation of the fermions
(3.9) were uniquely fixed by the requirement of manifest SU(8)-covariance.

An aspect that does not immediately follow from a comparison with the
Kaluza–Klein reduction of D = 11 supergravity is the question whether our
modification of the bosonic action is compatible with the requirement of super-
invariance of the action δS = 0. Due to the superinvariance of d = 4 N = 8
supergravity [2], it is in fact sufficient to check the terms that we have modi-
fied, i.e. all the terms that contain the vector fields Aµ

m. Inside the variation
δS = δS, there are contributions linear in A and others that are quadratic in
A. We have checked explicitly to leading order in fermions that both type of
terms cancel, hence implying δS = 0. To see this, we note that the terms inside
δS, which are linear in A, arise in the contributions

δS|linear in A =

(

δχ̌ABC δSferm

δχ̌ABC
+ δ(χ̌ν)

A δSferm

δ(χ̌ν)A
+ c.c.

)

+
δSvec

δAi
m
δAi

m

∣

∣

∣

∣

linear in A

It is a straightforward computation to arrive at

δχ̌IJK δSferm

δχ̌IJK
+ δ(χ̌ν)

G δSferm

δ(χ̌ν)G
|linear in A + c.c.

=
e4
2

(P+)ab
β1β2

FabABe
µβ2Vm

AB∂β1δAµ
m + c.c.

that completely agrees with − δSvec
δAi

m δAi
m|linear in A up to a total derivative term,

which guarantees the superinvariance of the action S to linear order in A. To
quadratic order in A, we can without loss of generality focus on the terms

δS|quadratic in A =

(

δχ̌ABC
∣

∣

A

δS

δχ̌ABC

∣

∣

∣

∣

A

+ δ(χ̌ν)
A
∣

∣

A

δS

δ(χ̌ν)A

∣

∣

∣

∣

A

+ c.c.

)

+
δSvec

δeαµ
δeα

µ +
δSvec

δVm
AB

δVm
AB.

After some computation, we obtain modulo next-to-leading order terms O(χ2)
in fermions:

δχ̌ABC
∣

∣

A

δS

δχ̌ABC

∣

∣

∣

∣

A

+ δ(χ̌ν)
A
∣

∣

A

δS

δ(χ̌ν)A

∣

∣

∣

∣

A

+ c.c.

= e4(P
+)ab

γ1γ2
ηγ2β1(P−)cd

β1β2
FabABFcd

ABeµβ2δeµ
γ1

+
e4
8

(

Fab,CDFab
AB(V−1)AB

mδVm,CD + c.c.
)

+ O(χ2).

The first line agrees with − δSvec
δeα

µ |Aδeαµ and the second one with − δSvec

δVm
AB |AδVm

AB,

which implies that the terms in δS that are quadratic in A also vanish.13 Hence,

13In order to check the agreement of the first line with − δSvec

δVm
AB |AδVm

AB , it is easiest to

use the identity (2.15) in order not to break the SO(3, 1)-covariance for the supersymme-
try algebra. Otherwise, one is forced to introduce a compensating SO(3, 1)-rotation to the
supersymmetry generator δ in view of the gauge fixing of the vielbein (2.18).
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we have succeeded to prove the superinvariance of the action S to leading order
in fermions. We will address the next-to-leading order terms in fermions in the
following section.

3.4 Non-linear contributions in fermions

Summarizing our results so far, we have shown that it is possible to construct an
E7(7)-invariant action S = Sbos + Sferm (2.12, 3.2) together with E7(7)- or resp.
SU(8)-covariant supersymmetry variations (3.8, 3.9) for which the supersymme-
try algebra (3.13) closes and that leave the action S invariant, i.e. δS = δS = 0,
to leading order in fermions χ. Furthermore, our E7(7)-covariant formulation of
d = 4 N = 8 supergravity is completely equivalent to the standard approach,
because both the supersymmetry variations and the equations of motion agree
upon an (“on-shell”) elimination of 28 vector fields (2.31). Therefore, it is nat-
ural to expect that the given theory coincides with maximal supergravity in
d = 4, including the next-to-leading order contributions in fermions that ap-
pear in both the action and the supersymmetry variations of the fermions of
maximal supergravity [2].

In particular, given the closure of the supersymmetry algebra in d = 4
N = 8 supergravity and the supercovariance of its action [2], it is completely
sufficient for the proof to focus again on the terms that we have modified in
order to obtain manifest E7(7)-covariance. In this context, an immediate ques-
tion that arises concerns the possibility of a bifermionic coupling to the twisted
self-duality equation of motion of the field strengths F (2.28a). This will how-
ever not lead to any complications, on the contrary, it leads to the most natural
generalization of this equation of motion, namely to a twisted self-duality of
the supercovariant field strength F̂ that we shall define in (3.20) below.

To show this, we can largely follow the procedure of section 2.1 that led to
the twisted selfduality equation of motion. The fact that the time component
A0

m of the vector fields appears in the action S = Sbos + Sferm (2.12, 3.2) only
as a total derivative is not altered by the inclusion of the fermions. Hence, A0

m

does not provide an equation of motion. Therefore, it is sufficient to focus on
the spatial components Ai

m as in eq. (2.9). It is a straightforward exercise to
include the contribution from the fermionic action Sferm (3.2) in the variation
with respect to Ai

m, which generalizes eq. (2.9) to

0 =
δS

δAi
m

=
1

4
Ωmnǫ

ijk∂j

(

E#
k

n − Bk
n − Tk

n

)

, (3.17)

where the bifermionic quantity Tk
n is linked to the expression W from (3.4) by

Tk
n := Nekcǫ

abcΩnmVm
AB(P−)β1β2

ab W β1β2AB + c.c.

Using exactly the same analysis as in section 2.1, we can transform the second
order equation of motion (3.17) into a first order one by identifying the resulting
exact form (arising in the integration) with the time component of the 56 vector
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fields. Thus, we arrive at the following generalization of (2.11):

Bk
n = Ek

n − Tk
n. (3.18)

The bifermionic expression T on the r.h.s. does precisely have the correct shape
to restore general covariance. After reexpressing the electric and the twisted
magnetic field strengths E and B by the ordinary one F (2.4), we can state
the generalization of the twisted self-duality equation of motion (2.2), using the
SU(8)-frame for convenience:

F̂α1α2
AB = − i

2
ǫα1α2

β1β2F̂β1β2
AB. (3.19)

We are using the abbreviation

F̂α1α2
AB := Fα1α2

AB +Wα1α2
AB (3.20)

which can be checked with the supersymmetry variations of bosons and fermions
(3.8, 3.9) to be supercovariant. The latter fact could have been expected, be-
cause the superinvariance of the action guarantees that a supersymmetry vari-
ation of the bosonic equations of motion is proportional to the fermionic ones
and vice versa.

We want to continue with a further statement concerning the next-to-leading
order terms in fermions χ inside the supersymmetry algebra. We have checked
explicitly that the supersymmetry algebra closes on the bosons to all orders in
fermions, if and only if the first order equation F̂α1α2

AB = − i
2ǫα1α2

β1β2F̂β1β2
AB

(3.19) is imposed. As we have already hinted at above, the commutator of two
supersymmetry variations δ1 and δ2 generates another supersymmetry variation
δ′ and an SU(8)-rotation δsu8 . This modifies the algebra (3.13) to the standard
form for supergravity theories

[

δ1, δ2
]

= δ′ + δDiff + δso(3,1)
+ δsu8 + δgauge (3.21)

which only closes “on-shell”, i.e. modulo terms proportional to the equations
of motion. The additional supersymmetry variation δ′ on the r.h.s. has already
been defined in [2]. In our conventions, it is determined by the parameter

ǫ′A := −ξν(χν)
A +

1

8
ξBCχ

ABC . (3.22)

This directly extends all the three equations (3.14) to all orders in χ in such
a way as to match the algebraic structure (3.21), given the supersymmetry
variations of the fermions χ (3.9) are modified in the standard way [2]:

δχABC = −4(P̂β)ABCDγβǫD + 3γabF̂ab
[ABǫC] (3.23a)

− 1

48
ǫABCDEFGHǫI

(

χ̌DEFχGHI

)

eα
µδ(χµ)A = D̂αǫ

A +
1

4
F̂ab

ABγabγαǫB (3.23b)

− 1

4!48
ǫABCDEFGHγβǫH

(

χ̌BCDγαβχEFG

)

+
1

32
γβγαǫ

D
(

χ̌ABCγβχBCD

)

− 1

4
γβǫC

(

(χ̌α)Bγ
βχABC

)

,
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where we have used the supercovariant quantity P̂
(P̂β)ABCD := (Pβ)ABCD (3.24)

−
(

(χ̌β)[AχBCD] +
1

4!
ǫABCDEFGH(χ̌β)EχFGH

)

and where the connection ω̂ in the supercovariant derivative D̂ differs from the
one of D (3.10) by a bifermionic contorsion contribution, namely

ω̂αβ1β2 := ωαβ1β2 +Kαβ1β2

Kαβ1β2 :=
1

2
(χ̌β1)

Cγα(χβ2)C + (χ̌α)Cγ[β1
(χβ2])C − 1

192
χ̌ABCγαβ1β2χABC + c.c.

We want to emphasize again that the closure of the supersymmetry algebra of
maximal supergravity on the fermions should not be affected by our modifica-
tions to the theory that only involved bosonic fields. We hence conclude that
the consistency of the supersymmetry algebra of d = 4 N = 8 supergravity, as
stated in [2], implies the consistency of the supersymmetry algebra (3.21) in
the fully E7(7)-covariant form to all orders in fermions.

We close this section with a final remark on the proof of the superinvari-
ance of the action S to all orders in fermions. Given the superinvariance of
the Kaluza–Klein reduction of D = 11 supergravity and the agreement of the
theories to leading order in fermions χ, the non-linear terms in χ are uniquely
fixed and can e.g. be taken from [2]. As before, a possible subtlety may arise in
the coupling to the vector fields Aµ

m. Since D = 11 supergravity is not stated
in a second-order formalism [3], the torsionful connection ω̂ is an independent
degree of freedom that cannot be substituted by its equations of motion in view
of the coupling to the fermions.14 Performing a reduction à la Kaluza–Klein
from D = 11 to d = 4, one has to keep in mind that the field strengths of the
graviphotons were originally part of the spin connection in D = 11. Therefore,
it is expected that the field strength F̂ might have to be considered as an in-
dependent degree of freedom in the d = 4 action, too, in order to give rise to
fully Diff(4) × E7(7) equations of motion of maximal supergravity. A further
investigation of this issue is beyond the scope of this article, however.

4 Conserved Noether current

After having constructed an E7(7)-invariant Lagrangian that reproduces the
equations of motion of maximal supergravity, it is a natural step to compute
the conserved Noether current of the theory that is associated to this global
symmetry. For the purely bosonic part of the theory defined by the action Sbos

(2.12), the standard procedure defines a conserved current for any constant Λ
in the matrix representation R

56×56 of the Lie algebra e7(7) as follows:

jµ
bos :=

(

2
δSbos

δ(∂µGmn)
Gmp −

δSbos

δ(∂µAν
p)
Aν

n

)

Λn
p (4.1)

14It is possible to consider the torsion tensor as an independent degree of freedom instead,
but it is impossible to write the action with only the metric, the three-form and the gravitino
being independent degrees of freedom.
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with m, n, p = 1, . . . , 56. Since the bosonic action Sbos (2.12) does not depend on
the zero-component A0

m, we could without loss of generality restrict in the def-
inition of the current jµ

bos (4.1) the summation over ν = 0, . . . , 3 to j = 1, . . . , 3.
This implies that all A0

m-dependences drop out of jµ
bos. For the discussion of

symmetries however, the following form of the A0
m-independent current will

prove convenient:

jµ
bos =

(

− e4
48
Gnm∂µGmp +

1

16
ǫµνρσFνρ

mΩpmAσ
n (4.2)

+
1

8
δµ
k ǫ

ijk∂i

(

ΩpmAj
mA0

n
)

− 1

4
δµ
k ǫ

ijkAi
nΩpm (Ej

m − Bj
m)

)

Λn
p.

The first line in (4.2) exhibits manifest general covariance, while the terms
in the second line also have a special form: one is a curl and the other is
proportional to the twisted self-dual equation of motion in the form Ej

m = Bj
m

(2.11). Therefore, it is an easy exercise to verify explicitly that the divergence
of jµ

bos vanishes on-shell for any Λ ∈ e7(7). In other words, the equations of
motion of the 56 vector fields Aµ

m (2.2) and the ones for the scalars Gmn (2.14)
guarantee that the e7(7)-valued Noether current jµ

bos (4.2) for the purely bosonic
theory defined by the action Sbos (2.12) is conserved:

∂µj
µ
bos = 0. (4.3)

In order to couple the bosonic theory to fermions as performed in section 3, it
was of crucial importance to switch to the vielbein frame for both the space-
time metric gµν (2.17) and the “scalar metric” Gmn (2.19). This implies that
we have to substitute Gmn for Vm

AB in the definition of the Noether current
(4.1). Hence, for the complete theory defined by the action S = Sbos + Sferm

(2.12, 3.2), the Noether current for any constant Λ ∈ e7(7) reads:

jµ :=

((

δS

δ(∂µVn
AB)

Vp
AB + c.c.

)

− δS

δ(∂µAν
p)
Aν

n

)

Λn
p. (4.4)

With the abbreviations (2.25) and (3.3), it is a straightforward computation to
arrive at

jµ = jµ
bos + jµ

ferm (4.5)

with the bifermionic contribution

jµ
ferm = e4

{

1

6
eγ

µ

[

(χ̌β)Aγβγδ(χδ)E(V−1)nFA +
1

16
χ̌ABCγγχBCE(V−1)nFA

−1

2
χ̌[ABEγ

αγγ(χα)F ](V−1)n,AB

]

Vp
EF

+
1

2
W β1β2

AB(P−)ab
β1β2

ea
µeb

jVp
ABAj

n + c.c.

}

Λn
p.

The parametrization of the e7(7) valued constant Λ by a 56×56-matrix is highly
redundant, in complete analogy with the description of the 70 scalars by the
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symmetric matrix Gmn in eq. (2.14). The separation of the constant 133-
dimensional parameter Λ ∈ e7(7) from the current jµ hence also implies that the
coefficients (jµ)np in jµ =: (jµ)npΛn

p are subject to various projection identities.
The standard way to make these projections manifest would be to decompose
Λn

p into its linearly independent degrees of freedom in analogy to the treatment
of the “scalar metric” Gmn in section 2.3. Since this does not provide any new
insights at this point, we refrain from stating the explicit formulæ. Following
the Noether theorem, the complete Noether current is conserved:

0 = ∂µ(jµ)np.

It is also interesting to observe that the quartic terms in fermions that we ne-
glected in the fermionic part of the action Sferm do not provide any contribution
to the Noether current, because these do neither contain the vectors Aν

m nor
the scalars Gmn [2]. Therefore, we may conclude that the conserved current jµ

(4.5) is exact to all orders in fermions χ.

It has already been noticed by Gaillard and Zumino [11] that an E7(7)-
current jµ cannot be invariant under gauge transformations δgAµ

m = ∂µΛm, but
that it has to transform in a slightly more general way, namely by the divergence
of an antisymmetric tensor M [µν]:

jµ 7→ jµ + ∂µM
[µν]. (4.6)

This transformation does not alter the fact that the corresponding charge

Q :=

∫

d3x j0 (4.7)

is gauge invariant, i.e. Q 7→ Q. In our case, the property (4.6) of the current
jµ (4.4) is obvious, once the equations of motion are imposed. For the charge
Q however, a stronger statement follows from the associated current jµ (4.4):
Q exhibits gauge invariance independently of the equations of motion. In or-
der to show that Q generates e7(7)-transformations, we will have to pass to the
Hamiltonian formalism.

Before performing this step in the next section, we acknowledge that a
first result for the E7(7)-Noether current jµ was obtained in [12] by using the
Gaillard–Zumino approach, which consists of the following a posteriori proce-
dure (without the complete knowledge of an E7(7)-invariant action): Given the
scalar and bifermionic contributions to the Noether current, the vector part of
jµ is defined in such a way that the resulting current is conserved. It is clear
however that this approach can only reproduce an on-shell equivalent version
of the Noether current jµ

bos stated in eq. (4.2) up to an exact form, but not the
complete object that is also defined off-shell in the present case. In particular,
the Gaillard–Zumino approach is not satisfactory for the Hamiltonian analysis
that we shall perform in the next section.
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5 Hamiltonian formulation and general covariance

In this section, we want to follow the analysis of Henneaux and Teitelboim to
prove the general covariance of our system [5]. To do this, we first switch to the
Hamiltonian formalism and then we verify the hypersurface deformation algebra
or Dirac algebra [13] between energy and momentum densities, which guaran-
tees that the evolution from a given initial spacelike surface to a given final one
is independent of the sequence of intermediate surfaces (employed to calculate
the evolution). Furthermore, the gauge transformations corresponding to the
(secondary) first-class constraints of vanishing energy and momentum densities
will define the action of a diffeomorphism on the vector fields. Equipped with
these transformations, we will finally verify that the action Sbos (2.12) is invari-
ant under a general coordinate transformation. Since the vector part Svec (2.8)
of the bosonic action is the one that does not show manifest Diff(4)-covariance,
we will focus on this first, before addressing the complete bosonic system.15

5.1 Vector part of the Hamiltonian

In order to obtain the Hamiltonian associated to the vector part Svec (2.8) of
the bosonic action, we start from its Lagrangian density Lvec

Lvec :=
1

8

e3
N

(

E#
i

m − Bi
m

)

Gmnh
ijBj

n. (5.1)

It is straightforward to compute the conjugate momenta to the dynamical vari-
ables Ai

m, where we will be using the standard abbreviation ḟ for a time deriva-
tive ∂0f :

πi
m

:=
∂Lvec

∂Ȧk
m

= − 1

16
Ωmnǫ

kijFij
n (5.2)

The momenta πi
m

cannot be expressed as functions of the velocities Ȧk
m on any

spacelike surface due to the vanishing of the second derivative

∂2Lvec

∂Ȧk
m∂Ȧi

n
= 0.

Following the terminology of Dirac [13], we are left with the primary constraints
relating the variables Ai

m to their conjugate momenta πi
m

on any spacelike sur-
face:

Φi
m

:= πi
m
+

1

8
Ωmnǫ

kij∂iAj
n. (5.3)

The existence of these constraints implies that the Legendre transformation
is singular in the following sense: A Hamiltonian H uniquely determines a

15We do not expect any complications to arise from the inclusion of the fermions in this
analysis.
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Lagrangian but not vice versa, because all Hamiltonians that differ by a linear
combination of the constraints Φi

m
(x) lead to the same Lagrangian. In other

words, the Hamiltonian is only uniquely defined on the constraint hypersurface
Φi
m

= 0, for which we shall use the abbreviation Φ = 0. There is however a way
to solve this ambiguity and to single out a preferred Hamiltonian, which Dirac
called the “total Hamiltonian” Hvec

tot , defined as follows in our case:

Hvec
tot (A, π) := Hvec(A)|Φ=0 +

∫

d3xU(A, π)mi (x)Φ
i
m
(x). (5.4)

The function U(A, π)mi will be completely determined by requiring the primary
constraints Φi

m
(5.3) to be preserved under the time evolution. The Hamilto-

nian Hvec(A)|Φ=0 is constructed from the usual Legendre tranformation of the
Lagrangian Lvec (5.1), in which we also impose the constraint Φ = 0. This
provides us with a function that turns out not to depend on the momenta π
any more:16

Hvec(A)|Φ=0 :=

∫

d3xπi
m
(x)∂0Ai

m(x) − Lvec(x) (5.5)

=

∫

d3xN(x)H(x)|Φ=0 +NkHk(x)|Φ=0 (5.6)

where the two densities Hvec and Hvec
k are defined on the constraint hypersurface

Φ = 0 by

Hvec|Φ=0 :=
e3
16
hi1j1hi2j2GmnFi1i2

mFj1j2
n (5.7a)

Hvec
k |Φ=0 := − 1

16
Fki

mFj1j2
nǫij1j2Ωmn. (5.7b)

In order to fix the function U(A, π) in Hvec
tot (5.4), we first define the equal

time Poisson bracket for arbitrary functions f, g of the variables A, π in the
standard way:

{f, g}p :=

∫

d3x

(

∂f

∂Ai
m(x)

∂g

∂πi
m
(x)

− ∂g

∂Ai
m(x)

∂f

∂πi
m
(x)

)

. (5.8)

The Euler–Lagrange equations can then be stated as follows for any function g
of A and π on the constraint hypersurface Φ = 0 [13]:

ġ = {g,Hvec
tot }p. (5.9)

In particular, this equation determines the function U by requiring

0 = Φ̇i
m

= {Φi
m
, Hvec

tot }p (5.10)

16Note that for a more general system, the first term in (5.4) may also depend on the
momenta [13].
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which can be evaluated using the Poisson bracket (5.8).17 A special solution to
this equation is

(U s)mi = Nk
(

Fki
m − 2ǫijkΩ

mnΦj
n

)

(5.11)

+
N

2 det(h)
1
2

hij

(

Jm
nǫ

ji1i2Fi1i2
n + 4GmnΦj

n

)

.

The general solution of the equation (5.10) then is the sum of the special solution
U s and the general solution V of the associated homogeneous equation

0 =

∫

d3xV n

j (x){Φi
m
(y),Φj

n
(x)}p (5.12)

=
1

4
Ωmnǫ

ijk∂jVk
n,

whose general solution is Vk
n = ∂kv

n with arbitrary functions vn(x) [13]. Thus,
we have succeeded to construct the total Hamiltonian Hvec

tot (5.4), which takes
the form

Hvec
tot =

∫

d3xNHvec +NkHvec
k + vm∂iΦ

i
m
. (5.13)

The extension of the two densities Hvec and Hvec
k (5.7) beyond the constraint

hypersurface Φ = 0 is hence uniquely fixed by eq. (5.10) to

Hvec =
1

e3
hijG

mn
(

πi
m
Ωpnǫ

ji1i2∂i1Ai2
p + 2Φi

m
Φj
n

)

(5.14a)

Hvec
k = 2πi

m
∂[kAi]

m − 2ǫkijΩ
mnΦi

m
Φj
n
. (5.14b)

To put this analysis in different words, the equation (5.10) guarantees that
the primary constraints Φi

m
(5.3) do not lead to secondary constraints. As a next

step, we will explain why the functions vm in the total Hamiltonian Hvec
tot (5.13)

are related to gauge transformations. This follows from the observation that not
all the (primary) constraints Φi

m
(5.3) are second-class, using Dirac’s terminology

from [13]. The functions ∂iΦ
i
m

form a subset of first-class constraints. Hence,
these generate gauge transformations δg of any function of phase space by taking
the Poisson bracket. For the vector fields Ai

m this implies in particular with
the definition of the constraints Φi

m
(5.3) and the Poisson bracket (5.8):

δgAi
m(x) =

∫

d3yΛn(y){∂jΦ
j
n
(y),Ai

m(x)}p

= ∂iΛ
m(x). (5.15)

This is the transformation that we have introduced in eq. (2.7) as an invariance
of the action S. Furthermore, note that the link between first-class constraints
and gauge tranformations (5.15) together with the relation {Φi

m
, Hvec

tot }p = 0
(5.10) also proves the statement that the Hamiltonian is invariant under gauge
transformations, a fact already mentioned in [11].

17Note that we require this Poisson bracket (5.8) to vanish independently of the constraint
hypersurface Φ = 0. Otherwise the function U would only be determined up to a linear
combination of the constraints Φi

m.
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We want to phrase the gauge arbitrariness that we encountered in the def-
inition of the total Hamiltonian in a different way in order to make contact to
the Lagrangian analysis of section 2.1. Given any initial data (A, π) on a spatial
hypersurface t = t0, the values of (A, π)(t) for t > t0 are only determined up to
gauge transformations, which correspond to different choices of the functions
vm(x) in the Hamiltonian Hvec

tot (5.13) for t = t0. In view of the Diff(4)-covariant
formulation of the equations of motion, it is natural to identify the functions
vm(x) in the Hamiltonian with the zero-component A0

m, which did not appear
in the action S nor the Hamiltonian a priori. Note that this procedure is in
complete analogy to the analysis of the equations of motion that follow from the
Lagrangian in (2.10). Furthermore, this choice is natural, because the first-class
constraint ∂jΦ

j
n has the same form as the one for classical electrodynamics [13].

This analogy to electrodynamics will also prove to be useful for the verification
of the invariance of our theory under general coordinate transformations. For
this, we will also need some further ingredients from the standard Hamiltonian
formulation of general relativity that we shall summarize in the next section.

5.2 Coupling the system to gravity

We will prove the general covariance of our system by checking the hypersurface
deformation algebra or Dirac algebra [13]. However, we have to keep in mind
that it is inconsistent for the check of the algebra to restrict to the Hamiltonian
densities Hvec and Hvec

k (5.14), because these were computed from the vector
part Svec (2.8) of the bosonic action alone. Since both the scalars Gmn as well
as the space-time metric gµν appear in these densities (5.14) explicitly, we have
to include their corresponding Hamiltonians in the analysis.18

Hence, we have to combine the vector Lagrangian Lvec (5.1) with the terms
describing the proper dynamics of the metric and the scalars, which are fixed
by the action (2.12), or equivalently by its Lagrangian density:

Lbos = Lvec +
e4
4
R− e4

192
GmnGpqgµν∂µGmp∂νGnq. (5.16)

The conjugate momenta πµν and πmn of the metric gµν and of the scalars Gmn

are defined in the standard way:

πµν :=
∂L
∂ġµν

(5.17a)

πmn :=
∂L
∂Ġmn

(5.17b)

and we have to generalize the Poisson bracket defined for the vector system in
(5.8) to also yield the canonical equal time relations

{gµν(x), π
στ (y)}p = δ(σµ δ

τ)
ν δ

(3)(x− y) (5.18a)

{Gmn(x), π
pq(y)}p = δ(p

m
δq)
n
δ(3)(x− y). (5.18b)

18The fermions, on the contrary, can be consistently dropped in the analysis of general
covariance.
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It is a standard exercise to compute the Hamiltonian of the Einstein–Hilbert
Lagrangian [6]. Before stating the result, we want to emphasize some char-
acteristic features of this computation that will be of crucial importance for
our purpose. The first observation is that the Legendre transformation of the
Einstein–Hilbert Lagrangian is singular as for the case of the vectors in the
preceding section. The gravity system is constrained by the vanishing of the
momenta π and πi conjugate to the lapse N and the shift N i (2.3). The only
momenta that appear in the Hamiltonian after imposing the constraints are the
momenta πij of the spatial metric gij = hij (2.3) and the ones πmn of the scalars
Gmn. Hence, in principle, we would have to repeat the analysis of the preceding
section to find the total Hamiltonian that preserves all the constraints of the
combined system. However, we can use a short-cut, which will greatly simplify
our analysis. This is due to the following observation: the combined system of
metric, scalars and vectors contains two kinds of constraints that are decoupled

from each other, the standard ones of general relativity π = 0 and πi = 0 on the
one hand, and the ones on the vector field Φi

m
= 0 (5.3) on the other hand. The

decoupling is due to the fact that the former constraints do not depend on the
matter fields nor their momenta, and that the latter constraints Φi

m
(5.3) are

independent of both the metric and the scalar fields as well as their momenta.
Hence, we can conclude that the total Hamiltonian of the combined system is
determined by adding the three (total) Hamiltonians, the one of vacuum general
relativity, the one of the scalars and the vector Hamiltonian defined in (5.13).
In particular, it is of the same shape as the total Hamiltonian of the vector
system (5.13)

Htot =

∫

d3xNH +NkHk + A0
m∂iΦ

i
m
+ λπ + λiπi (5.19)

with further Lagrange multiplier fields λ and λi enforcing the primary con-
straints π = 0 and πi = 0.19 The complete energy and momentum densities
H and Hk in the total Hamiltonian Htot (5.19) contain the contributions Hvec

and Hvec
k (5.14) (from the Lagrangian Lvec) as well as both the scalar and the

pure gravity contributions Hscal,Hscal
k and Hgrav,Hgrav

k respectively:

H := Hgrav + Hvec + Hscal (5.20a)

Hk := Hgrav
k + Hvec

k + Hscal
k . (5.20b)

From the standard Legendre transformation of the third term in the Lagrangian
Lbos (5.16), we obtain the scalar part of the Hamiltonian:

Hscal =
48

e3
πmpπnqGmnGpq +

e3
192

hijGmnGpq∂iGmp∂jGnq (5.21a)

Hscal
k = πmn∂kGmn. (5.21b)

The pure gravity part of the Hamiltonian has the form [6]

Hgrav =
1

e3

(

πijπklhikhjl −
1

2
(πijhij)

2

)

− e3R
(h) (5.22a)

Hgrav
k = −2hki∇(h)

j πij (5.22b)

19A good review for this topic is [14].
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with the spatial covariant derivative ∇(h)
j Ci = ∂jC

i+(Γ(h))i
jkC

k and the spatial

curvature scalar R(h) constructed from the spatial metric hij [6]. Furthermore,
the definition of the momenta (5.17) leads to the relations

πij = e4h
ikhjl[(Γ(g))0kl − hkl(Γ

(g))0rsh
rs] (5.23a)

πmn = − e4
96
gµ0GmpGnq∂µGpq. (5.23b)

Thus, we have collected all ingredients to check general covariance, what we
shall do in the next section.

5.3 Dirac algebra and Diff(4)-action on vector fields

It is well-known [5, 13] that the invariance of a theory under general coordinate
reparametrization is equivalent to the requirement that the evolution do not
depend on the path that links a given initial spacelike hypersurface to a given
final one. This independence is guaranteed, if the energy and momentum den-
sity satifies the hypersurface deformation algebra [13], which reads in our case
(for equal times and x, y being coordinates on the spatial slice):

{H(x),H(y)}p =
(

hij(x)Hi(x) + hij(y)Hi(y)
) ∂

∂xj
δ(3)(x− y)(5.24a)

{Hi(x),H(y)}p = H(x)
∂

∂xi
δ(3)(x− y) +

δH(y)

δπi
m
(x)

∂jΦ
j
m
(x) (5.24b)

{Hi(x),Hj(y)}p = Hi(y)
∂

∂xj
δ(3)(x− y) + Hj(x)

∂

∂xi
δ(3)(x− y)

+
δHj(y)

δπi
m
(x)

∂jΦ
j
m
(x) (5.24c)

Note that we have to expect the two terms proportional to the first-class con-
straints ∂jΦ

j
m to appear in the relations {Hi(x),H(y)}p and {Hi(x),Hj(y)}p in

complete analogy to classical electrodynamics coupled to general relativity, in
which case the algebra exactly has the shape (5.24) [the index m being trivial].
Enhanced with the Poisson algebra relations (5.8) and (5.18), it is a straightfor-
ward, but tedious exercise to verify the relations (5.24) for the complete energy
and momentum densities H and Hk (5.20). We have used a short-cut for this
computation, however, which comes about as follows: Due to the equivalence
of the closure of the energy-momentum algebra (5.24) to general covariance, it
is guaranteed that it holds for the metric-scalar system, whose action (2.12) ex-
hibits manifest Diff(4)-invariance, before coupling it to the vectors. Therefore,
it turns out to be sufficient to verify the following algebraic relations:

{Hvec(x),Hvec(y)}p =
(

hij(x)Hvec
i (x) + hij(y)Hvec

i (y)
) ∂

∂xj
δ(3)(x− y)

{Hi(x),Hvec(y)}p = Hvec(x)
∂

∂xi
δ(3)(x− y) +

δHvec(y)

δπi
m
(x)

∂jΦ
j
m
(x)

{

Hvec
i (x),Hvec

j (y)
}

p
= Hvec

i (y)
∂

∂xj
δ(3)(x− y) + Hvec

j (x)
∂

∂xi
δ(3)(x− y)

+
δHvec

j (y)

δπi
m
(x)

∂jΦ
j
m
(x).
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Here, we have used the fact that the vector part Hvec
k (5.14) of the momentum

density does not depend on the metric nor on the scalars and hence, its Poisson
brackets with Hgrav and Hscal vanish trivially. Therefore, we only have to keep
the complete Hamiltonian on the l.h.s. of the second equation. In this way, we
have proved that the hypersurface deformation algebra or Dirac algebra [13] is
fulfilled in our case. Thus, the complete bosonic action exhibits general covari-
ance [5]. The inclusion of the fermions is not expected to modify this behaviour.

The construction of the Hamiltonian provides us with a further insight,
namely the action of an infinitesimal diffemorphism ξν on the fields of our
theory. The preservation of the two primary constraints of (vacuum) general
relativity π = 0 and πi = 0 in the evolution entails the vanishing of the energy
and the momentum density H = 0 and Hk = 0 as secondary constraints.
Since the Hamiltonian is first-class, these two constraints give rise to gauge
transformations, which turn out to be space-time diffeomorphisms [14]. In
complete analogy to the gauge transformations that correspond to the first-
class constraints ∂jΦ

j
n (5.15), the diffeomorphism action on any function f on

phase space is hence generated by the Poisson bracket, i.e.20

δξf(x) := −
∫

d3y {ξ⊥(y)H(y) + ξ̃k(y)Hk(y), f(x)}p (5.25)

with ξ⊥ := Nξ0 and ξ̃k := ξk + ξ0Nk.

For the (spatial) metric gij = hij and the scalars Gmn, this formula reproduces
the standard Diff(4)-actions (where we use the expression (5.23) for πij)

δξgij = ξµ∂µgij + 2gµ(i∂j)ξ
µ (5.26a)

δξGmn = ξµ∂µGmn. (5.26b)

For the vector potential Ai
m, we obtain on the (primary) constraint hypersurface

Φ = 0:

δξAi
m = ξ0Bi

m + 2ξ̃k∂[kAi]
m (5.27)

= ξµ∂µAi
m + Aµ

m∂iξ
µ − ∂i (ξ

µAµ
m) + ξ0 (Bi

m − Ei
m) .

The important observation is that this definition of a general coordinate trans-
formation only agrees with the standard transformation of a vector field after
imposing the equation of motion Ei

n = Bi
n (2.5) and upon adding a gauge

transformation δgAi
m = ∂i(ξ

µAµ
m).21

Finally, we can check the invariance of the action Svec (2.8) under gen-
eral coordinate transformations. With the standard extension of the metric

20The transformation of the vector field components ξν into ξ⊥ and ξ̃j follows the standard
decomposition of a vector into components normal and perpendicular to the spatial slices.

Starting from nνdx
ν = −Ndx0, we obtain the vector nµ := gµνnν , i.e. nµ∂µ = 1

N
∂0 − Nj

N
∂j

with (2.3). The identity ξν∂ν = ξ⊥nν∂ν + ξ̃j∂j then fixes the relations between ξµ and (ξ⊥, ξ̃k)
in (5.25). Further details can be found in [15].

21The entanglement of the Diff(4)-action with a gauge transformation in Einstein-Yang-
Mills theories has already been observed in [16].
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transformation δξg (5.26) to also include the lapse N and the shift Nk, i.e.
δξgνρ = ξµ∂µgνρ + 2gµ(ν∂ρ)ξ

µ, we have verified the relation

δξSvec = 0. (5.28)

Due to the manifest Diff(4)-invariance in the other parts of the bosonic action
Sbos (2.12), we can therefore conclude δξSbos = 0. Thus, we have shown that
the theory is invariant under general coordinate transformations. We want to
emphasize again that we have to use the diffeomorphism action δξAi

m in the
form (5.27) in order to prove the Diff(4)-invariance of the action. This is not
equivalent to the standard form as far as this computation is concerned, because
one must not use the equations of motion within the action. In other words, we
had to use the diffeomorphism action on the vector potentials Ai

m prescribed by
the Hamiltonian formalism in order to guarantee the general covariance of the
theory. In contradistinction to a theory with manifest general coordinate invari-
ance, this action differs from the standard vector-field transformation off-shell.
This fact has already been observed by Henneaux and Teitelboim in [5, 17].

The inclusion of the fermions is not expected to lead to any complications.
First, one has to extend the bifermionic contribution to the Hamiltonian in-
volving the vector field beyond the constraint hypersurface Φ = 0. This has to
be done again in such a way that the constraints Φi

m
(5.3, 5.10) are conserved.

Then, one can completely follow the analysis used for the bosonic case to prove
the general covariance of the complete theory.

5.4 Conserved Noether charge

In order to complete the analysis of the E7(7)-covariant formulation of d = 4
N = 8 supergravity in the Hamiltonian formalism, we want to address the
Noether charge Q. This is defined from the conserved current jµ (4.5) in the
usual way by Q =

∫

d3x j0 (4.7). As before, we want to focus on the purely
bosonic part in this section, whose form can be taken from eq. (4.2) after
substituting πmn (5.23):

Q =

∫

d3x
(

2Gpmπ
mn +

1

16
ǫijkFij

mΩpmAk
n + Fi p

nm(A, π)Φi
m

)

Λn
p.(5.29)

Due to the singular nature of the Legendre transformation, the charge is only
well-defined on the (primary) constraint hypersurface Φ = 0 a priori. In analogy
to the construction of the total Hamiltonian (5.4), we had to include a function
Fi p

nm(A, π) in the expression for the conserved charge Q (5.29) that is fixed by
the requirement that Q preserve the (primary) constraint hypersurface Φ = 0.
In other words, F is determined by the equation

{Q,Φi
m
}p = 0 (5.30)

that only has to hold on the hypersurface Φ = 0. Its general solution is provided
by the sum of a special solution and the solution of the associated homogeneous
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problem as in the construction of the total Hamiltonian in eq. (5.12). Thus,
we arrive at the standard form of a conserved charge:

Q =

∫

d3x
(

2Gpmπ
mn − πk

p
Ak

n + fp
nm∂iΦ

i
m

)

Λn
p. (5.31)

where fp
nm(x) is an arbitrary function of space-time. Q then satisfies the ex-

pected extension of eq. (5.30) beyond the constraint hypersurface

{Q,Φi
m
}p = −Λm

pΦi
p
. (5.32)

The third term on the r.h.s of eq. (5.31) is a gauge transformation δg generated
by the first-class constraints ∂iΦ

i
m

(5.15). Since ∂iΦ
i
m

has vanishing Poisson
bracket with both the Hamiltonian (5.10) and with itself (5.12), we can without
loss of generality drop this term in the charge Q (5.31) by setting fp

nm = 0.
Thus, we can without loss of generality define the Noether charge Q in phase
space as follows:

Q =

∫

d3x
(

2Gpmπ
mn − πk

p
Ak

n

)

Λn
p. (5.33)

It is a straightforward exercise using Poisson brackets to verify that the
Noether charge Q (5.33) commutes with the energy and momentum densities
H and Hk (5.20):

{Q,H(x)}p = 0 (5.34a)

{Q,Hk(x)}p = 0. (5.34b)

Together with a corollary of the relation (5.32) being

{Q, ∂iΦ
i
m
}p = −Λm

p∂iΦ
i
p
, (5.35)

the Poisson bracket of Q with all the first-class constraints is first-class and
hence, the charge Q is first-class itself [13] (as expected). Its associated gauge
transformations are the global e7(7) transformations that are generated by tak-
ing Poisson brackets with any function on phase space as in (5.15). For the
scalars Gmn and the vectors Ai

m, we obtain in particular

δΛGmn := {Q,Gmn}p = −2Λ(m
pGn)p (5.36a)

δΛAi
m := {Q,Ai

m}p = Λn
mAi

n. (5.36b)

To summarize our findings, the Noether charge Q (5.33) of the E7(7) transfor-
mations in d = 4 N = 8 supergravity shows all the properties as for an ordinary
global symmetry group. Apart from being conserved (5.34), Q generates infin-
tesimal E7(7) transformations (5.36) (satisfying [δΛ1 , δΛ2 ] = δ[Λ1,Λ2]) and Q is
invariant under the gauge transformations δg (5.15), which follows from the
relation (5.35).
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5.5 Quantization and Dirac brackets

In this section, we shall briefly comment on the particularities the second-class
constraints among Φi

m
= 0 (5.3) impose on the canonical quantization procedure.

Following Dirac’s standard analysis [13], we have to solve for these constraints
by replacing the Poisson brackets by Dirac brackets prior to quantization. Since
the treatment of the pure gravity and the scalar part is fairly standard, we will
focus on the vector fields Ai

m. We emphasize that it is consistent to separate the
discussion of the constraints Φi

m
of the vector fields from the pure gravity ones,

because the former exclusively depend on the vector field degrees of freedom
(Ai

m, πj
n). In order to define Dirac brackets for Ai

m and their conjugate momenta
πj
n, we have to invert the “matrix” C defined by the Poisson bracket of the

second-class constraints with each other:

Cij
mn

(x, y) :=
{

Φi
m
(x),Φj

n
(y)

}

p

∣

∣

∣

second-class
(5.37)

The Dirac bracket of any two functions X,Y of Ai
m and πj

n is then defined in
the standard way [13, 17]:

{X(x), Y (y)}D := {X(x), Y (y)}p (5.38)

−
∫

d3vd3w
{

X(x),Φi
m
(v)

}

p
(C−1)mnij (v, w)

{

Φj
n
(w), Y (y)

}

p
.

At a first glance, it looks as if we had arrived at a dead-end, because we cannot
separate the second-class constraints from the first-class ones within Φi

m
(x) = 0

(5.3). However, it will not be necessary for the quantization of our system to
perform this step explicitly as we shall show next. In order to examine the
implications of the Dirac procedure, let us assume for a while that we can
eliminate the second-class constraints from our system in the standard way.
This would imply that we could then without loss of generality impose these
constraints also beyond the constraint hypersurface, since the Dirac bracket
of any function ξ of phase space with the second-class constraints vanishes by
construction [13]. In particular, we could substitute the vector part of the
Hamiltonian densities Hvec and Hvec

k (5.14) by the expressions

Hvec =
8

e3
hijG

mnπi
m
πj
n

(5.39a)

Hvec
k = −8ǫkijΩ

mnπi
m
πj
n
. (5.39b)

The important observation is that the phase space variables Ai
m have completely

disappeared from the Hamiltonian densities. This statement trivially extends
to the total Hamiltonian Htot (5.19) of the entire system, because the first class
constraints ∂iΦ

i
m

do not depend on them either. Therefore, we do not need to
know the explicit expression for the Dirac bracket {Ai

m(x),Aj
n(y)}D in order to

describe the evolution of the system. It is sufficient to know {Ai
m(x), πj

n(y)}D

and {πi
m(x), π

j
n(y)}D, and these can be computed explicitly with the following

identity of Poisson brackets:

{

Φi
m
(x), πj

n
(y)

}

p
=

1

2

{

Φi
m
(x),Φj

n
(y)

}

p
. (5.40)
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Therefore, we do not have to compute the inverse of C (5.37) in a closed form in
order to obtain the Dirac brackets that are necessary for the description of our
system. Hence, we can in fact perform the Dirac procedure. The relevant Dirac
brackets can then be obtained from their definition (5.38) with the standard
Poisson bracket (5.8) and the constraints Φi

m
(5.3):

{

Ai
m(x), πj

n
(y)

}

D
=

1

2
δj
i δ

m

n
δ(3)(x− y) (5.41a)

{

πi
m
(x), πj

n
(y)

}

D
=

1

16
ǫijkΩmn

∂

∂xk
δ(3)(x− y) (5.41b)

It is no surprise that the Dirac algebra of section 5.3 can also be reproduced
using these Dirac brackets and the Hamiltonian densities in the form (5.39).
Note that this is the formulation that has been chosen in the Henneaux’s and
Teitelboim’s article on “chiral p-forms” [5]. For the classical analysis, the Dirac
procedure is completely equivalent to the canonical description. However, in
order to quantize the theory, it is important to elevate the Dirac brackets (5.41)
[and not the Poisson brackets (5.8)] to commutators of operators in order to
avoid inconsistencies [13]. Furthermore, let us remark that the treatment of
the gauge invariance δg (5.15) should not involve any particular complications:
it must be handled according to the usual Faddeev-Popov or BRST methods,
including ghosts of ghosts [5].

Before concluding, we want to briefly comment on the implications of the
elimination of the second-class constraints on phase space. The constraint
Φi
m
(x) = 0 (5.3) implies that the curl of the vector field A can be identified

with the associated momentum π. Due to the gauge arbitrariness of A however,
the complete information of the vector fields A is encoded in their momenta
π. Therefore, the elimination of the second-class constraints effectively halves

this part of the phase space by eliminating the variables Ai
m, which strongly

reminds of the quantization of fermions.

The standard formulation of the phase space of maximal supergravity (which
violates the E7(7)-symmetry) can also be linked to this formulation quite easily.
Given 28 vector fields Ai and their conjugate momenta πi (being subject to the
constraint ∂iπ

i = 0), it is straightforward to relate the latter to the so-called
28 dual potentials by the constraint Φ = 0 (5.3) because of the canonical form
of the symplectic form Ω =

(

0 1
−1 0

)

[7].

In other words, the E7(7)-symmetry acts on the 56 dimensional space built
up from all vector fields A and functions of their momenta π in any formulation
of maximal supergravity. In particular, the dual potentials are no extraneous
new objects, they have to be thought of as functions of the momenta of the
ordinary 28 vector fields. A further investigation of the implications for the
quantization of maximal supergravity along these lines is beyond the scope of
this article, but it is strongly expected that this approach will contribute to
a better understanding of the quantization of maximal supergravity in four
dimensions.
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6 Conclusion and outlook

In this article, we have constructed a Lagrangian of d = 4 N = 8 super-
gravity that exhibits manifest E7(7)-invariance off-shell without the necessity
of introducing a Lagrange multiplier as in [1]. The key ingredient was that we
dispensed with the usual form of manifest Diff(4)-covariance for the term in the
Lagrangian density involving the 56 vector fields. Nonetheless, we have proved
that the corresponding action functional S is invariant under general coordinate
transformations

δξS = 0.

We have also proved that this ‘hidden’ form of Diff(4)-covariance is manifest
in the standard energy-momentum algebra [13] and that the Hamiltonian for-
mulation of the theory shows exactly the same form as the one of a manifestly
covariant theory (like electrodynamics). This analogy extends to the gauge
transformations of all the 56 vector fields. We have also computed the con-
served E7(7) Noether charge Q from first principles, which shows exactly the
same properties as for the case of an ordinary global symmetry.

In our E7(7)-invariant formulation of supergravity, we have furthermore veri-
fied that the action functional is invariant under supersymmetry transforma-
tions and that the supersymmetry algebra closes on the bosons. We have also
shown explicitly that the equations of motion deduced from the E7(7)-invariant
Lagrangian agree with the ones of the standard formulation of d = 4 N = 8 su-
pergravity. To establish the contact to maximal supergravity in its conventional
form (i.e. as a Kaluza–Klein reduction on a seven torus of D = 11 supergravity
[3] that contains only 28 vector potentials), it is necessary to break the mani-
fest E7(7) symmetry by eliminating 28 field strengths from the theory as shown
in the Appendix. The crucial point is that this procedure does not affect the
on-shell field content of the theory due to the nature of the twisted self-duality
equation of motion for the 56 vector fields (2.31, 3.19).

Concerning the issue of quantization, we have shown that the E7(7) invari-
ant system is subject to second-class constraints that reduce the dimension of
phase space. In view of the on-shell equivalence to d = 4 N = 8 supergravity (a
theory with 28 vector fields without secondary constraints), this result did not
come as a surprise. However, the present analysis offers the possibility of keep-
ing the E7(7) symmetry manifest thoughout the quantization procedure which
may turn out to be an important tool for an improved understanding of the
quantization of maximal supergravity. In particular, our formulation reveals
the precise way the E7(7) symmetry acts on the phase space of d = 4 N = 8
supergravity for any formulation of the theory.

Furthermore, the possible UV-finiteness of N = 8 supergravity as a quan-
tum field theory [18] has been conjectured to be linked to the E7(7) symmetry
[19]. The present off-shell formulation of the E7(7)-symmetric theory may serve
as a tool to check these conjectures and to eventually decide whether maximal

33



supergravity is finite as a quantum field theory or not. As a starting point
for such an investigation, it looks promising to follow and to possibly extend
the analysis of Kallosh and Kugo [20] that was aimed at establishing a direct
link between the computation of scattering amplitudes on the one hand and
the Noether current of the E7(7)-symmetry on the other hand. Furthermore,
it would be interesting to investigate whether it is possible to construct fully
E7(7)-invariant higher curvature corrections, keeping in mind that the proposals
using superfield techniques [21] do not match the field content correctly a priori:
In view of their manifest SU(8)-covariance, one has to deal with 56 independent
vector fields in d = 4 that have to be restricted by an additional (twisted self-
duality) constraint as in the formulation of [4]. For d = 4 N = 8 supergravity,
this constraint has been shown to be expressible as an equation of motion, but
it is unclear whether this possibility persists for higher curvature corrections to
the theory.

Our complementary formulation of maximal supergravity in a manifestly
E7(7) covariant way may also open the door to a better understanding of dual-
ity symmetries of supergravity in general. Even for the classical theory, some
questions still remain open. Apart from relating the present analysis to the
light-cone formulation of E7(7) in [22], it looks promising to investigate whether
addressing the classification of gauged supergravities [23, 24] from this point of
view leads to new insights.

Finally, we want to remark that this formulation of supergravity fulfills all
the requirements to be compatible with the conjectures for extended symme-
try groups of M-theory, notably E10(10) [25] and E11(11) [26]. In particular, it
naturally connects to the analysis in [27], where it was shown that D = 11
supergravity can partially be derived from a reduction à la Kaluza–Klein from
a D = 4 + 56 dimensional exceptional geometry. This geometry is restricted in
such a way that the original D = 4 + 56 dimensional theory exhibits only an
Diff(4) × E7(7)-covariance, but no Diff(11)-covariance. The latter can only be
expected to appear as a “hidden symmetry” in the reduction to eleven dimen-
sions. Our present formulation of maximal d = 4 supergravity with off-shell
E7(7)-symmetry was in fact a missing ingredient for the completion of the proof
that D = 11 supergravity arises from this 4 + 56 dimensional exceptional ge-
ometry by a simple Kaluza–Klein reduction on a 49-torus as explained in [27].
Therefore, we naturally expect that the combination of the present results with
the ones of [27] will also shed some new light on the E10 and E11 conjectures
[25, 26]. These are particular cases of the most interesting interplay between
the exceptional symmetries, supersymmetry and general covariance, of which
our understanding is still inadequate and which promises many valuable new
insights into the structures of supergravity.
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Appendix: Relation to D = 11 supergravity

We use the same conventions as in [27]. In particular, our signature in D =
11 is mostly plus (− + · · ·+) and we normalize the representation matrices
Γ̃A ∈ R

32×32 of the D = 11 Clifford algebra {Γ̃A, Γ̃B} = 2ηAB by ΓA0...A10 =
ǫA0...A101l32 with ǫ0 1...10 = +1. As in the main text, indices from the middle of
the alphabet M,N will denote curved or coordinate indices and the ones from
its beginning A,B = 0, . . . , 10 will dress flat objects, i.e. whose curved indices
have been contracted with the elfbein EM

A. In this convention, the action of
D = 11 supergravity to leading order in fermions takes the form

S =

∫

d11xdet(E)

(

1

4
R̃− 1

2
ψ̌BΓ̃BCD∇CψD − 1

48
FB1...B4F

B1...B4

− 1

96

(

ψ̌B5Γ̃
B1...B6ψB6 + 12ψ̌B1Γ̃B2B3ψB4

)

FB1...B4

+
2

124
ǫB1...B11FB1...B4FB5...B8AB9...B11

)

. (A.1)

The bosonic fields being the elfbeinEM
A and the three-formAMNP are linked to

the Majorana fermions ψM by the following supersymmetry transformations22

δ(11)EM
A = ε̌Γ̃AψM (A.2a)

δ(11)ψM = ∇Mε+
1

144

(

Γ̃N1...N4
M − 8δN1

M Γ̃N2...N4

)

εFN1...N4(A.2b)

δ(11)AN1...N3 = −3

2
ε̌Γ̃[N1N2

ψN3] (A.2c)

with the usual D = 11 spin connection ∇. In performing the Kaluza–Klein
reduction from D = 11 to d = 4 on a flat seven-torus, we choose without loss of
generality an upper triangular gauge for the elfbein and thus establish contact
to the vierbein eµ

α (2.17) of d = 4 supergravity:

Eν
α = ∆− 1

2 eν
α (A.3a)

Eν
a = Bν

nen
a (A.3b)

En
α = 0 (A.3c)

En
a = en

a. (A.3d)

The indices have the range µ, α = 0, . . . , 3 and n, a = 4, . . . , 10 and we have used
the abbreviation ∆ := det(em

a) [9]. It is well-known that the field content of
the resulting four dimensional theory consists of 28 vector fields and 70 scalars
apart from the metric gµν . The proof that the seventy scalars form a non-
linear σ-model based on the coset space E7(7)/(SU(8)/Z2) is standard [1] and
it will not be repeated here. Instead, we focus on the 28 vectors, being the 7
graviphotons Bν

m and the 21 vectors Aνmn, and link these to the 56 vector
fields Ai

m that we have used in the E7(7)-invariant action S (2.8, 2.12, 3.2) of

22The Majorana conjugate ψ̌M of the anticommuting gravitino ψM is defined by multiplying
the transposed spinor ψM by iΓ0 such that the action S is real as in [28].
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N = 8 d = 4 supergravity. With the inverse elfbein

Eα
ν = ∆

1
2 eα

ν (A.4a)

Eα
n = −∆

1
2 eα

νBν
n (A.4b)

Ea
ν = 0 (A.4c)

Ea
n = ea

n (A.4d)

we switch to flat coordinates by defining

Aα
a := Eα

νEm
aBν

m (A.5a)

Aα,cd := −
√

2Eα
νEc

m1Ed
m2Aνm1m2 . (A.5b)

These are then related to the 56 vector fields in the vielbein frame Aα
AB :=

eα
µVm

ABAµ
m (2.20) in the following way:

Aα
AB =:

1

4i
Γa

AB (Aα
a + iηacAα,c) (A.6)

+
1

4
√

2
Γab

AB
(

Aα
ab + iηacηbdAα,cd

)

.

Here, we are using purely imaginary Γ-matrices satisfying the Euclidean Clifford
algebra in d = 7 {Γa,Γb} = 2ηab with η = diag(+ + + + + + +). We use the
normalizations Γa1...a7 = −iǫa1...a71l and ǫ1 2 3 4 5 6 7 = +1 [9, 27]. These relations
enable us to relate 28 field strengths among Fαβ

AB (2.20) to the four-form Fαβcd

and to the graviphoton field strenghths Fαβ
a:

Fαβ
a := 2E[α

µEβ]
νEm

a∂µBν
m = 2E[α

µEβ]
N∂µEN

a

= − i∆
1
2

2
Γa

AB Re
(

Fαβ
AB

)

(A.7a)

Fαβcd := 2E[α
µEβ]

M1Ec
M2Ed

M3∂µAM1...M3

=
∆

1
2

4
ΓcdAB Im

(

Fαβ
AB

)

. (A.7b)

Note that the curved indices have the range N,Mi = 0, . . . , 10, whereas A,B =
1, . . . , 8 are Γ-matrix indices. Furthermore, we want to emphasize that we had
to associate the field strength Fαβ

a to the real part of Fαβ
AB and Fαβcd to

its imaginary part (or vice versa), because both the field strengths and their
corresponding potentials Bν

m and Aνmn cannot be combined into a common
Sl(8) ⊂ E7(7) representation 28. This is due to their different position of the
curved indices m,n = 4, . . . , 10 indicating contragredient representations of
Gl(7). Note that this subtlety is the reason why the original three-form com-
ponents Aνmn have to be dualized in order for d = 4 N = 8 supergravity to
exhibit a global Sl(8)-invariance [1, 4].

We want to make use of this Sl(8)-covariance for the comparison of the
equations of motion of the truncation of D = 11 supergravity to the version
with manifest E7(7)-covariance. In particular, this guarantees that it is sufficient
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to verify either the coefficient of the Fαβcd-coupling or the one of the Fαβ
a-

coupling in both the Einstein equation and the scalar equation of motion. We
can hence without loss of generality focus on the Fαβcd-coupling. The relevant
terms in the Einstein equation (in the vielbein frame) immediately follows from
the action S (A.1):

0 =
1

4

(

1

2
ηαβR−Rαβ

)

+
1

2∆

(

Fα
δcdF

βδcd − 1

4
ηαβFγδcdF

γδcd

)

+further terms.

This coupling is then reproduced by a substitution of the twisted self-dual
equation of motion (2.31) together with the identification (A.7) in the E7(7)-
covariant form of the Einstein equation (2.16). Hence, the Einstein equations
of both theories agree. Since this coupling can be used to normalize the vector
part Svec (2.8) in the action Sbos (2.12), a non-trivial statement is only obtained
if the coupling in the scalar equations of motion coincide, too. This is indeed
the case. To show this, we first link the Maurer–Cartan form of the scalars
(Pα)ABCD := eα

µ(Pµ)ABCD (2.25) to parts of the spin connection ω and the
four-form field strength F of D = 11 supergravity by

(Pα)ABCD := −3

4
∆− 1

2ωefαΓe
[ABΓf

CD] (A.8)

+
1

4
∆− 1

2Fαa1...a3Γ
[a1a2

[ABΓa3]
CD]

+
i

2880
∆− 1

2

(

− 1

3!
ǫαa1...a6β1...β3cF

β1...β3c

)

ǫa1...a6cΓbc[ABΓb
CD].

Then, we verify that this normalization of P reproduces the numerical factor
in the coupling of the scalars to the Ricci tensor within the Einstein equation
(2.16), if we start from the action S (A.1) of D = 11 supergravity. As a next
step, it is straightforward to check that the coupling of the vectors to the scalars
arises from the three-form equation of motion of D = 11 supergravity (that is
also derived from S (A.1))

∇B1F
B1...B4 = − 1

242
ǫB2...B4A1...A8FA1...A4FA5...A8 . (A.9)

Finally, we observe that this coupling of the vectors to the scalars agrees with
the scalar equation of motion (2.28c) upon a substitution of the twisted self-
dual equation of motion (2.31) together with the identification (A.7). This
proves that the equations of motion of the Kaluza–Klein reduction of D = 11
supergravity on a flat seven-torus completely agree with the ones of the E7(7)-
covariant theory for the bosonic sector. Furthermore note that the coefficient
linking the l.h.s. to the r.h.s. in the 3-form equation of motion (A.9) is directly
derived from the constant of the Chern–Simons term within the D = 11 action
S (A.1). This is another proof of the well-known statement that the global
E7(7)-symmetry of maximal supergravity would be absent for a different choice
of Chern–Simons term coupling, as we have already mentioned at the end of
section 2.3.
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Before addressing the fermions, we want remark that the other two Gl(7)-
representations Aα,a and Aα

cd within the 56 vector potentials Aα
AB (A.6)

correspond to the so-called dual potentials. Given a field configuration of D =
11 supergravity with 28 vector potentials, the twisted self-duality equation of
motion (2.31) then enables us to determine these dual potentials as “non-local”
expressions of the 70 scalars Gmn, the space-time metric gµν and the given 28
vector fields. In view of the Hamiltonian analysis presented in this article, it
is important to point out that we only have to relate the spatial components
Ai of the dual vector potentials to the given field configuration, because the
zero component A0 is not part of the action S. One can verify that these have
the nice property to be expressible as spatial integrals on a constant time-slice
only. For the particularly simple case of a configuration with constant almost
complex structure Jm

n of canoncial form J =
(

0 1
−1 0

)

and vanishing shift N i

(2.3), the twisted self-dual equation of motion (2.2) leads e.g. to the relation

Fij
m1m2 = − 1

e4
hij1hjj2ǫ

j1j2kηm1n1ηm2n2F0k,m1m2 . (A.10)

Since this form is closed ∂[kFij]
m1m2 = 0 by the equations of motion, the dual

potential Aj
m1m2 in the curved frame (A.4) would for this case be uniquely

defined by this equation (A.10) as a spatial integral on a constant time-slice of
the metric gµν and the usual 21 four-form field strengths Fαβcd (A.7).

The statement of equivalent dynamics of the reduction of D = 11 super-
gravity and our E7(7)-invariant theory extends to the fermionic sector. To show
this, we relate the supersymmetry parameter ε and the gravitino ψM of D = 11
supergravity to the fermions ǫ, χ used in the action Sferm (3.2) in the standard
way [1, 9]:

ǫA :=
1

2

√−γ5∆
1
4 (1l4 − iγ5) ε

A (A.11)

(χa)
A :=

1

2

√−γ5∆
− 1

4 (1l4 − iγ5) (ψa)
A

(χα)A :=
1

2

√−γ5∆
− 1

4 (1l4 − iγ5)

(

(ψα)A +
i

2
γ5γαΓaA

B(ψa)
B

)

with
√−γ5 :=

1√
2

(1l4 − γ5)

and with the vector indices ranging over α = 0, . . . , 3 and a = 4, . . . , 10 and
the spinor indices A,B = 1, . . . , 8 that arise from writing the 32 dimensional
spinors ε, ψM in D = 11 as 8 four-dimensional spinors. The 7 × 8 fermions
(χa)

C are then combined into an SU(8)-representation by

χABC := 3!iΓa[AB(χa)
C]. (A.12)

The Clifford algebra representation matrices Γ̃ ∈ R
32×32 in eleven dimensions

can be decomposed into the ones of d = 4 γα ∈ R
4×4 and the d = 7 ones

Γa ∈ iR8×8 in the standard way

Γ̃α = γα ⊗ 1l8 for α = 0, . . . , 3 (A.13a)

Γ̃a =
γ5

i
⊗ Γa for a = 4, . . . , 10. (A.13b)
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Here, we should keep in mind that the 8 × 8 matrices Γa are purely imaginary
and γ2

5 = −1l4 (3.1). The fact that we are using the Majorana spinor formalism
for the d = 4 spinors implies that εC , (ψa) are real quantities. Following the con-
vention introduced for the scalar sector of the bosons in (2.19), a complex con-
jugation changes the position of the SU(8)-indices A,B,C. Together with the

definition (A.11), this leads e.g. to the identity ǫA = 1
2

√−γ5∆
1
4 (1l4 + iγ5) εA

where the position of the index A for the real Majorana spinor ε is arbi-
trary, of course. Furthermore, the definition (A.11) immediately satisfies the
identities P+ǫA = 0, P+(χα)A = 0 and P+χABC = 0 with the projector
P+ := 1

2(1l4 + iγ5).

The reader may have noticed that we are using the same notation P± for
the projectors P± = 1

2(1l4± iγ5) and for (P±)β3β4

β1β2
= 1

2(δβ3β4

β1β2
± i

2ǫβ1β2
β3β4) (3.5).

This should not come as a surprise due to the following identity for γ-matrices
in d = 4:

γ5γβ1β2 =
1

2
ǫβ1β2

β3β4γβ3β4 .

For the proof of the agreement of the bifermionic coupling to the vector fields
that is provided by Wβ1β2

AB (3.4) in our case and by O+ (2.22) in [2], the
following identities for “holomorphic” or “chiral” spinors χ, i.e. for the ones
with raised SU(8) index, have been useful:

(P+)β3β4

β1β2
γβ3β4χ = 0 (A.14a)

(P−)β3β4

β1β2
γβ3β4χ = γβ1β2χ (A.14b)

(P+)β1β2

β3β4
γβ3β4γβ5χ = 4(P+)β1β2

β3β4
γβ3ηβ4β5χ. (A.14c)

In the same way as the equations of motion, the supersymmetry varia-
tions (3.8, 3.9) can be obtained from the ones (A.2) of D = 11 supergravity
by a Kaluza–Klein reduction on T 7. There is however a subtlety to keep in
mind concerning this procedure. It is crucial to impose a block-diagonal matrix
form for the elfbein E (A.3) by fixing the local Lorentz symmetry SO(10, 1) to
SO(3, 1)×SO(7) [1, 9]. This in particular implies Em

α = 0 for α = 0, . . . , 3 and
m = 4, . . . , 10. In order for this to be consistent with the supersymmetry varia-
tion δ(11) of the elfbein E, one has to modify the definition of the supersymmetry
variation in such a way that δ(4)Em

α = 0. This is obtained by relating the two
supersymmetry variations δ(11) and δ(4) by a compensating so(10,1)-rotation Σ

with the only non-vanishing components Σαb := Embδ(11)Em
α = −Σbα [9]:

δ(4)EM
A := δ(11)EM

A − ΣABEMB (A.15)

with M,A,B = 0, . . . , 10.

It is clear that this definition is completely analogous to the introduction of the
covariant supersymmetry variation δ in eq. (3.11).
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