HIGHLY TRANSITIVE ACTIONS OF Out(F,)

SHELLY GARION AND YAIR GLASNER

ABSTRACT. An action of a group on a set is called k-transitive if it is
transitive on ordered k-tuples and highly transitive if it is k-transitive for
every k. We show that for n > 4 the group Out(F,) = Aut(F,)/Inn(F,)
admits a faithful highly transitive action on a countable set.

1. INTRODUCTION

1.1. Notation. Throughout the paper G will denote a finitely generated
simple group, with d = d(G) its minimal number of generators. Given an
n-tuple g = (g1,92,...,9n) € G™ we denote by (g) = (g1,92,...,9n) < G
the subgroup generated by it. Let F,, = (z1,x2,...,zy) be the nonabelian
free group on n generators. There is a natural identification of G™ with
Hom(F,, G); associating the n-tuple g with the homomorphism

ag b, — G

ag(xi) = g;.

We will use Hom(F,, G) and G" interchangeably. For example we will iden-
tify the set of epimorphisms Epi(F},, G) with the set

Vo(G) ={g € G": {g) =G},

of all generating n-tuples.

The group Aut(G) acts on Hom(F,,, G) (from the left) by post-composition
and Aut(F),) acts on Hom(F),, G) (from the right) by pre-composition. One
easily verifies that in the corresponding action of Aut(F,) on G" the stan-
dard Nielsen transformations act as follows:

R (91,3 Gise o5 9n) = (gl,...,gi-gfl,...,gn),
(g1 oy Giv ey Gn) — (gl,...,g]j-ﬂ~gz-,...,gn),

Pij:(gis-- 1 Gir- s Gjres9n) = (913 Gjse s Gis-- v Gn)s

2 (G1y ey iy Gn) — (gl,...,gi_l,...,gn).

We denote by V,,(G) the set of all Aut(G)-orbits on V,,(G). Given g € V,,(G)
we denote by @] the corresponding equivalence class in V,,(G). Since the

Aut(F,) action preserves V,,(G) and commutes with the Aut(G) action it
descends to an action of I' := Out(F,,) = Aut(F},)/Inn(F),) on V,(G).
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1.2. The main theorem. A Tarski monster group is a noncyclic group G,
all of whose proper subgroups are cyclic. It was shown by A. Yu. Olshanskii
that for every large enough prime p there exist uncountably many Tarski
monsters all of whose subgroups are isomorphic to Z/pZ, as well as Tarski
monsters all of whose subgroups are infinite cyclic (see [O1'80]).

Establishing the existence of infinite Tarski monsters is difficult, but once
such a group is given many structural results follow directly from the def-
inition. A Tarski monster G is necessarily simple. For every n > 2, the
collection of generating n-tuples is given by

Vo(G) =G™\ {g € G" | (g) is cyclic} .

Definition. An action of a group on a set I' ~ Q is called k-transitive
if it is transitive on ordered k-tuples. It is called highly transitive if it is
k-transitive for every k € N.

Definition. A group G is said to satisfy a group law, if there exists some
m and some non-trivial word in the free group w € F,, such that

w(g) =1, Vg € G™.

For example every abelian group satisfies the law given by the commutator
[x,y] € Fy and every group of exponent p satisfies the word P € Z. The
goal of this paper is to prove the following

Theorem. Let G be a Tarski monster and n > 4 then the action of I' =
Out(F,,) on the character variety V,(G) is highly transitive. Moreover, this
action is faithful if and only if G does not satisfy a group law.

Clearly every Tarski monster of finite exponent satisfies a group law. As
for torsion free Tarski monsters, some of them do satisfy a group law while
others do not, as was recently proved by Zusmanovich [Zus10]. Combining
Zusmanovich’s theorem with our theorem, and a few well known results
concerning permutation groups we obtain the following:

Corollary. Forn >4 let T',, = Out(F),) and let Ty, ~ Q the faithful highly
transitive action constructed above. Let A < Ty, be any subgroup containing
a non-trivial subnormal subgroup. Then the following holds

(1) The action of A on  is highly transitive,

(2) A contains a mazximal subgroup of infinite indez,

(3) A does not satisfy any group law, in particular it cannot be finite,
abelian, or even virtually solvable.

(4) If A" < T is another group containing a non-trivial subnormal sub-

group then AN A" # (e).

Proof. Saying that I'), ~  is highly transitive is equivalent to saying that
the corresponding embedding I',, < Sym(2) has a dense image; with respect
to the pointwise convergence topology on Sym(Q2). But then N < <, =
Sym(2) for any subnormal subgroup N < <I';, and since Sym(§2) is topo-
logically simple N is also dense, proving (1). Now (2) follows, since a highly
transitive action is automatically primitive so A, < A is a maximal sub-
group for every w € €. Since Sym({2) contains a free subgroup it cannot
satisfy any group law itself and this is automatically inherited by any dense
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subgroup, which establishes (3). Finally for (4) assume by way of contradic-
tion that NV, N’<q<I',, are two non-trivial subnormal subgroups that intersect
trivially. We claim that there are two (possibly equal) non-trivial subnormal
subgroups M, M’ that commute. Indeed let N = N;<iN;_1<...<A<Nyg =T,
and assume first that N’ < T, is normal. If j is the first index such that
N' N N; = (e) we set M = N; and M' = N’ N N;j_;. The argument is
concluded by induction on the minimal length of a subnormal series for N'.
Now since M, M’ are both dense in the topology induced from Sym((Q) it
turns out that Sym(Q) is abelian which is absurd. O

Item (2) above can be viewed as an analogue for Out(F},) of the theorems
due to Margulis and Soifer [MS79, MS81] and to Ivanov [Iva92, Theorem 5]
concerning the existence of maximal subgroups of infinite index. Margulis
and Soifer prove that a finitely generated linear group admits an infinite
index maximal subgroup if and only if it is not virtually solvable. Ivanov’s
theorem states that finitely generated subgroup of the mapping class group
of a surface admits a maximal subgroup of infinite index if and only if it
is not virtually abelian. Both theorems were then generalized in [GGO8] to
general countable subgroups. On a certain level our current result is much
stronger because highly transitive actions are rarer than primitive actions.
On the other hand our current method is restricted to very special classes
of subgroups of Out(F},).

1.3. Gilman’s work on the Wiegold conjecture. Transitivity of the
action of I' ~ V,,(G), for various groups G was extensively studied in var-
ious different settings in the last few decades. We refer the readers to a
comprehensive survey article on this subject by Alex Lubotzky [Lub]. In
particular it is conjectured by Wiegold that the action of Out(F3) ~ V3(G)
is transitive for every finite simple group G.

Of particular interest from our point of view is the work of Gilman [Gil77]
who proved the Wiegold conjecture in the case G = PSLy(F,) for every
prime p > 5 and n > 3. Gilman showed, in fact, that the image of Out(F,,)
in Sym(V,(PSLy(F})) is either the full symmetric group, or the alternating
group. Thus proving a much stronger statement.

Gilman has further proved that if G is a finite simple nonabelian group
and n > 4 then Out(F),) acts as a symmetric or alternating group on at
least one of its orbits in V,(G). This result was extended to n = 3 by Evans
[Eva93].

The current paper grew out of an attempt to find an infinite setting in
which Gilman’s proof can be implemented. Technically there is one qualita-
tive difference between the finite and the infinite case. In the former in order
to prove that a finite permutation group contains the alternating group it is
sufficient to prove primitivity and then establish the existence of one long
cycle. In the latter k-transitivity has to be verified directly, by induction,
for every k € N.

1.4. A hierarchy of actions. One can define a hierarchy of transitivity
properties, for example as follows: transitive actions, quasiprimitive ac-
tions, primitive actions, 2-transitive actions, ... highly transitive actions
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etc. Where we recall that an action is called quasiprimitive if every nor-
mal subgroup acts either trivially or transitively and primitive if there is
no I'-invariant equivalence relation on the set. In this context the following
question seems very natural.

Question. Given a group I', how transitively can I' act on a set?

The few results that are known seem to hint that the existence of an action
with good transitivity properties entails non-trivial structural information
about the group. For example Margulis and Soifer prove that a finitely
generated linear group admits a primitive action on an infinite set if and only
if it is not virtually solvable. A complete classification of countable linear
groups that admit a faithful primitive action on a set is obtained in [GGOS].
As far as higher transitivity properties not much is known, and in particular
only few examples are known of groups that admit highly transitive actions.
Examples include non abelian free groups (see [McD77, Dix90] as well as
fundamental groups of surfaces of genus at least 2 (see [Kit09]).

There is a big gap between our understanding of primitive permutation
representations, such as these achieved in [MS81, GGO8] and highly tran-
sitive representations constructed in [McD77, Dix90, Kit09]. The former
use structural properties of linear groups, while the latter rely on the great
flexibility available in constructing representations of free groups, or more
generally of limit groups. It seems that a key example that should be con-
sidered is that of arithmetic groups such as PSL3(Z). While this group does
admit a faithful primitive action, it usually exhibits a very rigid behavior
which might hint that it does not admit actions with higher transitivity prop-
erties. In this context it came to us as a surprise that the group Out(F),),
which is sometimes considered as a non-abelian version of PSL, (Z), admits
such a nice highly transitive permutation representation.

Acknowledgement. We would like to thank Dawid Kielak for his helpful
comments.
This joint work was initiated following the Lis Gaines Workshop “Action

of Aut(F},) on representation varieties”, that was held in January 2009 at
Sde-Boker, Israel.

2. PRELIMINARY RESULTS

2.1. Generation of powers. We denote by M, 1(G) the collection of n x k
matrices with entries taken from the group G. Let

g\
| k - g —

(1) A= 9.2 9.2 = =2 =g ... ¢,
Gn - O T 9 T

be such a matrix, with 9;---»9, € G* and gl,...gk € G" denoting the
corresponding row and column vectors respectively. The following result
was originally used by P. Hall [Hal36] in the realm of finite simple groups.
Compare for example [KL90, Prop. 6]. For the convenience of the reader
we add a proof.
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Proposition. Let G be a nonabelian simple finitely generated group, k >
d(G) and A € M, (G) a matriz as above, all of whose columns gener-
ate: g € Vo(G), V1 < i < k. Denote by o!,...,a* € Hom(F,,G) the

corresponding epimorphisms, by K1, ..., K* their respective kernels and by
A= (al,a?,..., a") the combined homomorphism defined by
A:F, — G*

w = (w(gh),wigh), .. w(gh).
Then the following are equivalent
(1) {[g"] | 1 <i <k} are all different as elements of Vy,(G).

(2) o (Nix; K*) = G, for every 1 < j <k.
(3) A: F, — G* is surjective.

Proof. (2) = (3): is obvious.

(3) = (1): Assume (1) fails. By definition this means that there is some
o € Aut(G) and indices i,j such that 0 o @/ = o'. But then A(F,) <
{(91,---,9x) | 9i = o(g;)} contradicting (3).

(1) = (2). By symmetry we argue for j = k. Since o : F, — G is
surjective and N~ (K") <1 F,, is normal, it follows that o (ﬂ;:ll (K")) <G.
By simplicity of G we need only rule out the possibility that the latter
group is trivial. If k& = 2 this implies that K! < K? and hence there is a
commutative diagram:

Since G is simple n must be an isomorphism, contradicting (1).

We proceed by induction on k. Recall that by assumption, G is non-
abelian and let z,y € G be two elements with [z,y] # e. By our induction
assumption we can find z,y € F, such that

Alz) = (xe,e,...,6,1),
A = (exe....6y).

It follows that A ([Z,9]) = (e,e,...,e,[x,y]), contradicting the triviality of
ok (mf;f(Ki)>. O

Note. We assumed implicitly in the above proposition that k is finite. If
k = oo is infinite it is no longer possible for A to be surjective, but the
above proposition remains correct upon replacing (3) by the assumption
that A(F,,) = G**° where the closure is taken with respect to the product
topology.

2.2. Powers of Tarski monsters. Applying the proposition above in the
specific case of Tarski monsters we obtain the following:

Corollary. Let G be a Tarski monster then G* is 3-generated for every
ke N.
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Remark. In other words for every k € N there exists a matrix A € M3y (G)
satisfying the equivalent conditions of Proposition 2.1.

Proof. Indeed let z,y € G be a generating tuple, and consider the matrix:

A=y v ... y
zZ1 22 ... Zk

Clearly every column generates. But if two columns, say g' and g2 are in
the same Aut(G) orbit then we have an automorphism o € Aut(G) such
that o(z) = x;0(y) = y;0(z1) = 2z2. Since z,y generate this implies that
z1 = z3. Thus condition (1) of Proposition 2.1 will be satisfied if all z; are
different. (]

2.3. Spread.

Definition. We say that a 2-generated group G has spread greater or equal
to k if for every g = (91,92,.--,9%) € G* there exists some h € G such that

G=(hg) V1<i<k.

Lemma. A Tarski monster group G has spread greater or equal to k for
every k € N.

Proof. Let k € N and g = (g1,92,...,9%) € G*¥ be as above. Since G is
finitely generated, it follows from Zorn’s lemma that every g; is contained
in a maximal proper subgroup g; € H; S G. By the definition of a Tarski
monster every H; is cyclic and hence of infinite index. But an infinite group
is never a union of a finite number of subgroups of infinite index. Thus, any
h e G\ UleHl- will satisfy the condition required in the definition of the
spread. O

2.4. Stronger generation properties. In order to prove Corollary 2.2 we
constructed a matrix 3 x k all of whose columns represent different elements
of V,,(G). In the sequel we will need a matrix satisfying a stronger condition,
which is somewhat technical but useful.

Lemma. For any k,n € N with n > 4 there exists a matriz A € My«k(G),
as in Equation (1) in Section 2.1, with the following properties:

(1) Every pair of entries generates G:
(i,4) # (ILm) = (g}, gh,) = G,
(2) Ewvery three rows generate G*:
1<i<j<li<n= <gi,gj,gl>:(;k.

(3) The following configuration will never appear as a 4 x 4 minor of the
matriz, for any o,7,m,0 € Aut(G) and p,q,7,s € G.

- opm pn P
q° q" q¢°
ro  pT X TG
o T ST]
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Proof. We construct the matrix entries one by one according to the following
order

1 1 1 2 2 k k
91:925935---5,91:925- - - s9n—159n>

namely column by column. Making sure in the process that all three desired
properties hold:

(1) Every pair of elements generates: Upon adding the element g;"
one can make sure that it generates G with every previous entry by Lemma
2.3. In fact the proof of that lemma makes it clear that there are infinitely
many possible choices of an element that will satisfy this condition. Thus
we can guarantee the validity of (1) even if we require later in the proof to
exclude finitely many possibilities at every stage.

General discussion: Assuming from now on that (1) is indeed satisfied
we notice that for a given 2 x 2 minor

(gé gé)

9 9

there is at most one o € Aut(G) such that g2 = (¢¢)” and g/ = (g})°. If
this holds for a given 1 < i < j < k and for some choice of 1 < s <t <n
we say that the columns i, j are o-near. Next we extend the notion of near
columns to be an equivalence relation - declaring two columns (i, j) to be
o-related if there is a sequence of distinct columns i = ig,41,492,...,4 = j

such that i, and i, are on-near and ¢ = ggo103...0,-1. We will denote
the set of all automorphisms relating two columns 1 < ¢ < j < k by:

Zij = {0 € Aut(G) | j is o-related to i},

it is clear from the definition, and from the fact that any two matrix elements
generate GG that this set is finite. Finally let us note that these relations can
be defined even for matrices that are only partially defined, namely for
matrices with some missing entries.

Assume that we are now adding the element g;" namely that we have
already constructed the matrix

gt gt ... gt gr O
‘ 0

1
911 g9 g% U
: O O
9% g2 gr-t O O

We choose an element g;" which will satisfy condition (1) while excluding
the finite set of possibilities:

m—1 '
U U @)’
=1 0€5;m

(2) Every three rows generate GX: By Proposition 2.1 all we have to
do in order to prove that G* = <g 959, ), is to exclude the possibility that
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for some 1 < s < m < k and some o € Aut(G) we have

g

gi gi"
g 1=19"1
I a"

where the automorphism applied to the vector just means that it is applied
to each entry separately. But such a configuration is not possible by con-
struction because at the time of the choice of the element g;", the columns
s,m are already o-related (in fact they are even o-near) and thus the choice
of g" = (g;) is ruled out.

(3) Excluding cyclic configurations: A configuration such as the one
appearing in (3) is excluded because at the time construction of the element
labeled r? this choice is in fact invalid. Indeed at that time the first and

the last column are already o160 = (07 0)(n~10) related so that the choice

rf = (r")flg is invalid. Equivalently, the same choice can be ruled out, by

the fact that the second and fourth columns are 7~ 10-related. O

3. HIGHLY TRANSITIVE ACTIONS.

Let G be a Tarski monster and n > 4. We argue by induction on k that
the action of I' = Out(F},) on V,,(G) is k-transitive.

3.1. The induction basis.

Proposition. For every n > 3, Aut(F,,) acts transitively on V,,(G), where
G is a Tarski monster group.

Proof. Let us fix a basepoint g = (g1, 92, ---,9n) € Va(G). We are at liberty
to choose a convenient base point - and using Lemma 2.3 repeatedly we im-
pose the condition (g;, g;) = G Vi # j. Now given any h = (hq, ha, ..., h,) €
Vo (G) we have to exhibit a sequence of Nielsen transformations taking g to
h. Since any generating set contains a generating pair we may assume, after
renumbering the indices, that (hi, hg) = G. Since G has spread greater or
equal to 2 there exists some z € GG such that

(2) (92,2) = (h1,2) = G.
We proceed with the following sequence of Nielsen transformations:
g1 g1 hi hy h1
92 92 g2 ha ho
sl |2 |le |2l 2| =h

(3) g=17
g In In In hn

The first 3 stands for a sequence of Nielsen transformations of the form
w(R3,1, R32) where w is any free word on two generators satisfying w(gi, g2) =
g5 12, The existence of such a word is guaranteed by the fact that (g1, go) =
G. The next three & use the exact same argument, but instead of using the

fact that (g1, g2) = G they appeal in turn to the two parts of Equation (2)
and then to our assumption that (hi, ho) = G. O

3

Since Aut(F,) ~ V,,(G) is transitive, so is the quotient action T' ~ V,,(G),
which is exactly what we require for the basis of our induction.
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3.2. The induction step. We choose a base k-tuple

of distinct elements in V,,(G). In order to establish the induction step we
have to show that for any [h] & {[g"],[g°]. [¢%]-...[g*"']} there is a group

element v € T such that v[¢'] = [¢/], V1 <i <k — 1 and v[g] = [A].

Again we have a lot of freedom in the choice of our basis k-tuple. We
make our choice by picking a matrix

A
1. k - 9y —

A= g? 9.2 = ; = gl Qk ,
Gn - O = 9 -

satisfying the conditions guaranteed by Lemma 2.4, and taking its columns
as representatives. The element h = (hy,ha,...,hy,) € V,(G) on the other
hand is dictated to us. But, since (h) = G we may assume, after possibly
reordering the indices that (hi, ha) = G.

We wish to proceed in much the same way as we did in Equation (3),
taking g to h, but this time we have to be careful not to touch the elements
{g" |1 <i<k—1}. Let us find an element z € G such that all the 3 x k
matrices Ao, Az, Ay below satisfy the equivalent conditions of Proposition
2.1

4 = (- — g - -
9 g gt 2
g gt ... gt M
Ay = |- - g5 - -
g 9 ... &t 2
g g ... g'g” hy
Ay = g% g% g%_i ho
9i 91 --- g = =z

For the matrices As, A4 this can be achieved by avoiding finitely many bad
values of z, by an argument identical to that used in the proof of Lemma 2.4.
For the matrix A3 we can use the same argument assuming (hj, g3) = G.
On the other hand if (hq, g3) is a cyclic subgroup then the desired condition
[h1, g3, 2] # [9%, 65 9] V1 < i < k is satisfied automatically, for any choice
of z which makes (hi, g3, z) into a generating set, just because all the other
columns satisfy the condition that every pair of elements generates G and
the last column does not.
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We now proceed by applying the following sequence of Nielsen transfor-
mations:

g1 g1 ha hi h1 ha
g2 92 92 ha ho ha
93 g3 g3 93 hs3 hs3
9=l | Tz 2|F| 2| T2z T || =l
gn 9n 9n 9n 9n hn,

This time the first & corresponds to w(Ry 1, Ra2, Ra3), where w is chosen
so as to satisfy the two conditions:

o w(g1,92,93) = g5 ' %

o w(gi,gh,95) =1Id, V1<i<k.
The existence of such a word follows directly from condition (2) of Propo-
sition 2.1, combined with our assumptions on the matrix A. The exis-
tence of Nielsen transformations realizing the next three 3-, while fixing
g V1 <i < k follows, in the exact same way using our assumptions on the
matrices As, As, Ay respectively.

The last 3~ can be treated in a similar fashion as long as the matrix:

g g o9 M
As = g% gg g%_1 ho
9 95 ... g5 ' hs

satisfies the conditions of Proposition 2.1.

Note that if there is a pair of indices such that (h;, h;) # G these condi-
tions are automatically satisfied, perhaps after rearrangement of the indices.
Indeed after rearranging the indices so that

(h2, h3) # G
the last column is the only one in A5 with this property and thus it cannot
be in the Aut(G) orbit of any of the other columns. Thus we can assume
that every pair of h entries generates the entire group.

Finally if the conditions of Proposition 2.1 are not satisfied for As. Not
even after we change the order of the indices, by making arbitrary permu-
tations of the first four rows of A. This means that there are four auto-
morphisms o, 7,7m,0 € Aut(G) and four columns 1 <i < j<l<m<k
such that the corresponding 4 x 4 minor admits the forbidden configuration
described in condition (3) of Lemma 2.4

g g 4 o (h1)™ (h)"  (hy)?
h

g g g 95| _ | ()7 - (h2)" (z)z
95 g g5 95 (h3)” (ha)™ - (ha)" )"
9 g1 b 9" (ha)” (ha)™ (ha)"

contradicting our construction of the matrix A.

4. CONCERNING FAITHFULNESS OF THE ACTION

4.1. A theorem of Magnus. We will require the following, well known,
theorem of Wilhelm Magnus from 1930:
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Theorem. [MKS76, Theorem N5 page 172]. Let a,b € F,, be elements of
the free group and assume that they generate the same normal subgroup
(@) = (o),
then a = gbq~! for some g € F,, and some € € {£1}.

Namely the normal closure of a cyclic group, determines the generator up
to conjugation and inversion.

4.2. The action Out(F,,) on the redundant locus of F),_;.

Definition. If n > d(G) the redundant locus of V,,(G) is defined as:

R, (G) ={p € Vo, (G) | (¢(21),...,0(xn-1)) = G, for some basis x1,...,x, < F,}
and R, (G) < V,(G) is the image of this (invariant) set, modulo Aut(G).
Lemma. For every n > 3, Out(F,) acts faithfully on R, (F,—_1).

Proof. 1t is easy to verify that ¢ : F, — F,_1 corresponds to an element
of R, (F,—1) if and only if it is surjective and the kernel is generated, as a
normal subgroup, by a primitive element of F,.

Let a € Aut(F,,) represent an element of Out(F),) that is in the kernel of

the action on R, (F,,—1). Thus by definition for every ¢ € R, (F,,—1) there
exists some o € Aut(F,,_1) such that ¢ oo = o 0 ¢, and in particular

a L (ker(¢)) = ker(¢ o o) = ker(o o ¢) = ker(¢).

So « acts trivially on the collection of normal subgroups generated by a
primitive element. By Magnus’ theorem stated above, for every primitive
element = € F,, there exist g, € F,, €, € {£1} such that

(4) oar = ggcxeg;l.
In particular setting ¢; = gx,, €; = €, for some basis x = {1, x2,..., 25} we
have:
o (z) af!
az(z) 927525
a(z) = . = )
an(z) gnx;"ggl

Here, since to begin with, « is defined only up to inner automorphisms, we
have assumed without loss of generality that g; = 1.

Let Y be the 2n-regular Cayley tree of F, with respect to the given
set of generators. We label the oriented edges of Y by elements of the
corresponding symmetric generating set {z1, :cl_l, T2,...,x, '} in such a way
that F), is identified with the group of color preserving automorphisms of the
tree. Every element x € F), acts on Y as a hyperbolic automorphism with
translation length ¢(z) := min{d(v,zv) | v € Y} > 0 and axis X, = {v €
Y | d(v,zv) = £(z)}. Equation (4) implies that «(z;) is a hyperbolic element
of translation length 1 whose axis is ¢;X,, (with either of its two possible
orientations). In particular the axis of a(x;) is labeled either ... x;, z;, x;, . ..
or with the inverse of this sequence. Similarly the translation length and
axis labeling is preserved for any primitive element of Aut(F},).
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We claim that X, N Xa@,) = 9:Xi N g;X; # 0, Vi # j. Indeed,
assuming the contrary, since a preserves the translation length of primitive
elements we have

2= e(mlmj) = g(a<xl)a('x])) =2+ Qd(Xa(zi)a Xa(a@))?

0 d(Xa(z;), Xa(z;)) = 0 which is a contradiction. Now, by the version of
Helly’s theorem for trees (see for example [Ser80, 1.6.5 Lemma 10]) this
implies that there is a point 0 € Ni=1. nXq(,). After conjugation by an
appropriate power of 1 = a(x1) we may assume that

0 = Ni=1.nXa(z;) = Ni=1..nXi-

But now X; = X,(,,) since these two axes share a point and, up to ori-
entation, they have the same coloring; hence upon replacing g; by giz;"
for an appropriate choice of power m;, we can assume that g;o = o. This
immediately implies that g; =1 Vi.

We still have to show that ¢, = 1 Vi. But if, say, e = —1 then the
primitive element x1z923 will map to z; 252z A short verification will
show that, regardless of the values of €3, €3, this element is neither conjugate

to x122w3 nor to (r1woz3) L. This completes the proof of the lemma. O

4.3. Group laws on two letters are universal.

Lemma. Assume that G is a finitely generated group that satisfies a group
law. Then G already satisfies a non-trivial group law on two letters.

Proof. Assume that G satisfies a group law w € F,, for some m > 2. By
[BG09, Corollary 3.3] there is a homomorphism ¢ = (¢1, ¢2,...,0n) : Fry —
F5 such that ¢(w) # 1. Now G satisfies the non-trivial group law ¢(w) as

¢(w)(g>h) = w((bl(.g? h)>¢2(.g>h)a .- -ad)n(gvh)) =1, Vg,hedG.

4.4. When G satisfies a group law the action is not faithful.

Proposition. If G is any finitely generated group which satisfies a group
law, then for any n > max{3,d(G)}, the action of Out(F,) on V,(G) is not
faithful.

Proof. As we saw in Section 4.3 we may assume that G satisfies a group law
on two letters, i.e. there exists a word w € Fj such that w(g,h) =1, Vg,h €
G.

Consider the automorphism a = w(Ry, 1, Ry 2) given explicitly by

a1, xy) = (X1, ..oy Tp1, Ty - w(x1, 22)).

« is not the trivial automorphism because, by assumption w is a non-trivial
word in Fy and R, 1, R, 2 generate a free subgroup of Out(F;,). But by
construction « acts trivially on G". O
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4.5. When the action is not faithful G satisfies a group law. The
following completes the proof of our main theorem:.

Proposition: Let G be a Tarski monster and n > 3. Then the action of
Out(Fy,) on Vi (Q) is faithful if and only if G satisfies no group law.

Proof. The if part is treated in Proposition 4.4. Assume that G is a Tarski
monster group and that the action of Out(F,) on V,,(G) is not faithful. We
will show that GG satisfies a group law.

It is enough to show that there exists some non-trivial word w = w(z,y) €
F; such that w(a,b) =1 for any (a,b) € Vo(G). Indeed, assume that w can
be written in reduced form as w = z1 ... z,, where z1,..., 2, € {a™ yT'},

and let

v=wzw 27l = A znzz,zl . zl_lzfl,

where z € {zT!, yT!} satisfies that z # zfl,zn,zgl. Then v = v(x,y) is a
non-trivial word in F,. Moreover, if (a,b) € V5(G) then v(a,b) = 1 since
w(a,b) = 1. If a and b do not generate GG, then they belong to the same
cyclic group, and so there exist some ¢ € G and 4,j € Z s.t. a = ¢' and
b = ¢J. In this case, w(a,b) = w(c',¢?) = ¥ for some k € Z, and so
v(a,b) = v(d, ) = e et =1 (where | € {£i,+75}). Hence, G satisfies
a group law with the word v.

By assumption, there exists some automorphism o = (a1, aq,...,ay) €
Aut(F},), which is not an inner automorphism, such that for any g € V;,(G)
there exists some o € Aut(G) such that.

a1(g) = o(q1),

az(g) = o(g2),

an(g) = o(gn)-

In particular for any (a,b) € V2(G) and for any word u € Fy, we can
apply the above to the the n-tuple (a,b,u(a,b),1,1,...) € V,,(G) obtaining
the equation

as(a,b,u(a,b)) = o(u(a,b)) = u(o(a),o(b)) = u(a(a,b,u(a,b)), az(a,b,u(a,b))).

Here we used «;(a,b,u(a,b)) as a short for oy (a,b,u(a,b),1,1,...).
Now consider the three words on two letters

w"g‘(ﬂc,y) = u(al(a:,y,u(:z:,y)),ag(x,y,u(aj,y)))-ag(:v,y,u(:v,y))_l,
w%(m,y) = u(al(x,u(w,y),y),ag(x,u(x,y),y))-ag(as,u(:n,y),y)_l,
w%(x,y) = u(ag(u(x,y),x,y),ag(u(x,y),a;,y))-al(u(:c,y),x,y)fl.

By permuting the role of a, b, u(a, b) among the first three coordinates in the
above argument we know that w}*(a,b) =1 V(a,b) € Vo(G),Vu € Fr(z,y).
If one of the w;' is a non-trivial word in F5 then we have our group law. But
if w} represents the trivial word in F3 for every i = 1,2,3 and every u € F»
then a = (a1, ag, ag) gives rise to an element of Out(F3) in the kernel of the
action on R3(F) and hence a contradiction to Lemma 4.2.

O
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5. FINAL REMARKS AND QUESTIONS
We conclude with three natural questions:
5.1. Lower rank groups.

Question. What about Out(Fy) and Out(F3)? Do they admit a highly
transitive action on a set?

There is a chance that the action that we study in this paper, of Out(F;,)
on V,(G) still has very good transitivity properties for n = 3. Even if this
is true it seems that the proof would be much harder as it would require a
much better understanding of the Tarski monster G and its automorphisms.
A topic that we carefully avoided in this paper.

On the other hand it is plausible that one can construct completely dif-
ferent actions in this lower rank setting. For example since Out(Fh) =
PSLo(Z) = Z/2Z x Z/3Z, there is a good chance that one can construct a
highly transitive action for this group using the methods of [Dix90]. It is
important to note though that this is not automatic. It is not in general
true that if a finite index subgroup admits a highly transitive action then so
does the group itself. Even though the other direction is true of course.

As for n = 3. At least for the group Aut(F3) it follows from [GLO09,
Corollary 1.2] that there is a finite index subgroup A < Aut(F3) that maps
onto a finitely generated free group, and hence admits a (non-faithful) highly
transitive action. Again it is plausible that one might be able to construct
a highly transitive non-faithful action of Aut(F3) from this.

5.2. Mapping class groups.

Question. Does Mod(S), the mapping class group of a closed orientable
surface S of a high enough genus admit a highly transitive action on a set?
If not, how about k-transitive actions for various values of k7

Recall that from [GGOS] it follows that these groups do admit faithful
primitive actions.

5.3. Faithfulness. Our proof of the faithfulness statement in section 4 gives
rise to the following general theorem:

Theorem. For any finitely generated group G, the following are equivalent:

e The action of Out(F,) on the Aut(G)-classes of Hom(F,, G) is faith-
ful for all large enough n.
o The group G does not satisfy a group law.

It is a very natural question if the above still holds if one replaces Hom(F,,, G)

by Vi (G).
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