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Abstract. An action of a group on a set is called k-transitive if it is
transitive on ordered k-tuples and highly transitive if it is k-transitive for
every k. We show that for n ≥ 4 the group Out(Fn) = Aut(Fn)/ Inn(Fn)
admits a faithful highly transitive action on a countable set.

1. introduction

1.1. Notation. Throughout the paper G will denote a finitely generated
simple group, with d = d(G) its minimal number of generators. Given an
n-tuple g = (g1, g2, . . . , gn) ∈ Gn we denote by

〈
g
〉

= 〈g1, g2, . . . , gn〉 < G
the subgroup generated by it. Let Fn = 〈x1, x2, . . . , xn〉 be the nonabelian
free group on n generators. There is a natural identification of Gn with
Hom(Fn, G); associating the n-tuple g with the homomorphism

αg : Fn → G

αg(xi) 7→ gi.

We will use Hom(Fn, G) and Gn interchangeably. For example we will iden-
tify the set of epimorphisms Epi(Fn, G) with the set

Vn(G) = {g ∈ Gn :
〈
g
〉

= G},

of all generating n-tuples.
The group Aut(G) acts on Hom(Fn, G) (from the left) by post-composition

and Aut(Fn) acts on Hom(Fn, G) (from the right) by pre-composition. One
easily verifies that in the corresponding action of Aut(Fn) on Gn the stan-
dard Nielsen transformations act as follows:

R±i,j : (g1, . . . , gi, . . . , gn)→ (g1, . . . , gi · g±1
j , . . . , gn),

L±i,j : (g1, . . . , gi, . . . , gn)→ (g1, . . . , g
±1
j · gi, . . . , gn),

Pi,j : (g1, . . . , gi, . . . , gj , . . . , gn)→ (g1, . . . , gj , . . . , gi, . . . , gn),

Ii : (g1, . . . , gi, . . . , gn)→ (g1, . . . , g
−1
i , . . . , gn).

We denote by V̄n(G) the set of all Aut(G)-orbits on Vn(G). Given g ∈ Vn(G)
we denote by

[
g
]

the corresponding equivalence class in V̄n(G). Since the
Aut(Fn) action preserves Vn(G) and commutes with the Aut(G) action it
descends to an action of Γ := Out(Fn) = Aut(Fn)/ Inn(Fn) on V̄n(G).
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1.2. The main theorem. A Tarski monster group is a noncyclic group G,
all of whose proper subgroups are cyclic. It was shown by A. Yu. Olshanskii
that for every large enough prime p there exist uncountably many Tarski
monsters all of whose subgroups are isomorphic to Z/pZ, as well as Tarski
monsters all of whose subgroups are infinite cyclic (see [Ol′80]).

Establishing the existence of infinite Tarski monsters is difficult, but once
such a group is given many structural results follow directly from the def-
inition. A Tarski monster G is necessarily simple. For every n ≥ 2, the
collection of generating n-tuples is given by

Vn(G) = Gn \
{
g ∈ Gn |

〈
g
〉

is cyclic
}
.

Definition. An action of a group on a set Γ y Ω is called k-transitive
if it is transitive on ordered k-tuples. It is called highly transitive if it is
k-transitive for every k ∈ N.

Definition. A group G is said to satisfy a group law, if there exists some
m and some non-trivial word in the free group w ∈ Fm such that

w(g) = 1, ∀g ∈ Gm.

For example every abelian group satisfies the law given by the commutator
[x, y] ∈ F2 and every group of exponent p satisfies the word xp ∈ Z. The
goal of this paper is to prove the following

Theorem. Let G be a Tarski monster and n ≥ 4 then the action of Γ =
Out(Fn) on the character variety V̄n(G) is highly transitive. Moreover, this
action is faithful if and only if G does not satisfy a group law.

Clearly every Tarski monster of finite exponent satisfies a group law. As
for torsion free Tarski monsters, some of them do satisfy a group law while
others do not, as was recently proved by Zusmanovich [Zus10]. Combining
Zusmanovich’s theorem with our theorem, and a few well known results
concerning permutation groups we obtain the following:

Corollary. For n ≥ 4 let Γn = Out(Fn) and let Γn y Ω the faithful highly
transitive action constructed above. Let ∆ < Γn be any subgroup containing
a non-trivial subnormal subgroup. Then the following holds

(1) The action of ∆ on Ω is highly transitive,
(2) ∆ contains a maximal subgroup of infinite index,
(3) ∆ does not satisfy any group law, in particular it cannot be finite,

abelian, or even virtually solvable.
(4) If ∆′ < Γ is another group containing a non-trivial subnormal sub-

group then ∆ ∩∆′ 6= 〈e〉.

Proof. Saying that Γn y Ω is highly transitive is equivalent to saying that
the corresponding embedding Γn < Sym(Ω) has a dense image; with respect
to the pointwise convergence topology on Sym(Ω). But then N C CΓn =
Sym(Ω) for any subnormal subgroup N C CΓn and since Sym(Ω) is topo-
logically simple N is also dense, proving (1). Now (2) follows, since a highly
transitive action is automatically primitive so ∆ω < ∆ is a maximal sub-
group for every ω ∈ Ω. Since Sym(Ω) contains a free subgroup it cannot
satisfy any group law itself and this is automatically inherited by any dense
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subgroup, which establishes (3). Finally for (4) assume by way of contradic-
tion that N,N ′CCΓn are two non-trivial subnormal subgroups that intersect
trivially. We claim that there are two (possibly equal) non-trivial subnormal
subgroups M,M ′ that commute. Indeed let N = NlCNl−1C . . .CN0 = Γn
and assume first that N ′ C Γn is normal. If j is the first index such that
N ′ ∩ Nj = 〈e〉 we set M = Nj and M ′ = N ′ ∩ Nj−1. The argument is
concluded by induction on the minimal length of a subnormal series for N ′.
Now since M,M ′ are both dense in the topology induced from Sym(Ω) it
turns out that Sym(Ω) is abelian which is absurd. �

Item (2) above can be viewed as an analogue for Out(Fn) of the theorems
due to Margulis and Sŏıfer [MS79, MS81] and to Ivanov [Iva92, Theorem 5]
concerning the existence of maximal subgroups of infinite index. Margulis
and Sŏıfer prove that a finitely generated linear group admits an infinite
index maximal subgroup if and only if it is not virtually solvable. Ivanov’s
theorem states that finitely generated subgroup of the mapping class group
of a surface admits a maximal subgroup of infinite index if and only if it
is not virtually abelian. Both theorems were then generalized in [GG08] to
general countable subgroups. On a certain level our current result is much
stronger because highly transitive actions are rarer than primitive actions.
On the other hand our current method is restricted to very special classes
of subgroups of Out(Fn).

1.3. Gilman’s work on the Wiegold conjecture. Transitivity of the
action of Γ y V̄n(G), for various groups G was extensively studied in var-
ious different settings in the last few decades. We refer the readers to a
comprehensive survey article on this subject by Alex Lubotzky [Lub]. In
particular it is conjectured by Wiegold that the action of Out(F3) y V̄3(G)
is transitive for every finite simple group G.

Of particular interest from our point of view is the work of Gilman [Gil77]
who proved the Wiegold conjecture in the case G = PSL2(Fp) for every
prime p ≥ 5 and n ≥ 3. Gilman showed, in fact, that the image of Out(Fn)
in Sym(V̄n(PSL2(Fp)) is either the full symmetric group, or the alternating
group. Thus proving a much stronger statement.

Gilman has further proved that if G is a finite simple nonabelian group
and n ≥ 4 then Out(Fn) acts as a symmetric or alternating group on at
least one of its orbits in V̄n(G). This result was extended to n = 3 by Evans
[Eva93].

The current paper grew out of an attempt to find an infinite setting in
which Gilman’s proof can be implemented. Technically there is one qualita-
tive difference between the finite and the infinite case. In the former in order
to prove that a finite permutation group contains the alternating group it is
sufficient to prove primitivity and then establish the existence of one long
cycle. In the latter k-transitivity has to be verified directly, by induction,
for every k ∈ N.

1.4. A hierarchy of actions. One can define a hierarchy of transitivity
properties, for example as follows: transitive actions, quasiprimitive ac-
tions, primitive actions, 2-transitive actions, ... highly transitive actions
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etc. Where we recall that an action is called quasiprimitive if every nor-
mal subgroup acts either trivially or transitively and primitive if there is
no Γ-invariant equivalence relation on the set. In this context the following
question seems very natural.

Question. Given a group Γ, how transitively can Γ act on a set?

The few results that are known seem to hint that the existence of an action
with good transitivity properties entails non-trivial structural information
about the group. For example Margulis and Sŏıfer prove that a finitely
generated linear group admits a primitive action on an infinite set if and only
if it is not virtually solvable. A complete classification of countable linear
groups that admit a faithful primitive action on a set is obtained in [GG08].
As far as higher transitivity properties not much is known, and in particular
only few examples are known of groups that admit highly transitive actions.
Examples include non abelian free groups (see [McD77, Dix90] as well as
fundamental groups of surfaces of genus at least 2 (see [Kit09]).

There is a big gap between our understanding of primitive permutation
representations, such as these achieved in [MS81, GG08] and highly tran-
sitive representations constructed in [McD77, Dix90, Kit09]. The former
use structural properties of linear groups, while the latter rely on the great
flexibility available in constructing representations of free groups, or more
generally of limit groups. It seems that a key example that should be con-
sidered is that of arithmetic groups such as PSL3(Z). While this group does
admit a faithful primitive action, it usually exhibits a very rigid behavior
which might hint that it does not admit actions with higher transitivity prop-
erties. In this context it came to us as a surprise that the group Out(Fn),
which is sometimes considered as a non-abelian version of PSLn(Z), admits
such a nice highly transitive permutation representation.

Acknowledgement. We would like to thank Dawid Kielak for his helpful
comments.

This joint work was initiated following the Lis Gaines Workshop “Action
of Aut(Fn) on representation varieties”, that was held in January 2009 at
Sde-Boker, Israel.

2. Preliminary results

2.1. Generation of powers. We denote by Mn,k(G) the collection of n×k
matrices with entries taken from the group G. Let

(1) A =


g1

1 . . . gk1

g1
2

. . . gk2
...

...
g1
n . . . gkn

 =


− g

1
−

− g
2
−

...
− g

n
−

 =

 | |
g1 . . . gk

| |

 ,

be such a matrix, with g
1
, . . . , g

n
∈ Gk and g1, . . . gk ∈ Gn denoting the

corresponding row and column vectors respectively. The following result
was originally used by P. Hall [Hal36] in the realm of finite simple groups.
Compare for example [KL90, Prop. 6]. For the convenience of the reader
we add a proof.
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Proposition. Let G be a nonabelian simple finitely generated group, k ≥
d(G) and A ∈ Mn,k(G) a matrix as above, all of whose columns gener-
ate: gi ∈ Vn(G), ∀1 ≤ i ≤ k. Denote by α1, . . . , αk ∈ Hom(Fn, G) the
corresponding epimorphisms, by K1, . . . ,Kk their respective kernels and by
A = (α1, α2, . . . , αk) the combined homomorphism defined by

A : Fn → Gk

w 7→ (w(g1), w(g2), . . . , w(gk)).

Then the following are equivalent
(1) {[gi] | 1 ≤ i ≤ k} are all different as elements of V̄n(G).
(2) αj

(
∩i 6=jKi

)
= G, for every 1 ≤ j ≤ k.

(3) A : Fn → Gk is surjective.

Proof. (2) =⇒ (3): is obvious.
(3) =⇒ (1): Assume (1) fails. By definition this means that there is some
σ ∈ Aut(G) and indices i, j such that σ ◦ αj = αi. But then A(Fn) <
{(g1, . . . , gk) | gi = σ(gj)} contradicting (3).
(1) =⇒ (2). By symmetry we argue for j = k. Since αk : Fn → G is
surjective and ∩k−1

i=1 (Ki)CFn is normal, it follows that αk
(
∩k−1
i=1 (Ki)

)
CG.

By simplicity of G we need only rule out the possibility that the latter
group is trivial. If k = 2 this implies that K1 < K2 and hence there is a
commutative diagram:

Fn
α1
//

α2

  A
AA

AA
AA

G

η

��
G

Since G is simple η must be an isomorphism, contradicting (1).
We proceed by induction on k. Recall that by assumption, G is non-

abelian and let x, y ∈ G be two elements with [x, y] 6= e. By our induction
assumption we can find x̃, ỹ ∈ Fn such that

A(x̃) = (∗, e, e, . . . , e, x),
A(ỹ) = (e, ∗, e, . . . , e, y).

It follows that A ([x̃, ỹ]) = (e, e, . . . , e, [x, y]), contradicting the triviality of
αk
(
∩k−1
i=1 (Ki)

)
. �

Note. We assumed implicitly in the above proposition that k is finite. If
k = ∞ is infinite it is no longer possible for A to be surjective, but the
above proposition remains correct upon replacing (3) by the assumption
that A(Fn) = G×∞ where the closure is taken with respect to the product
topology.

2.2. Powers of Tarski monsters. Applying the proposition above in the
specific case of Tarski monsters we obtain the following:

Corollary. Let G be a Tarski monster then Gk is 3-generated for every
k ∈ N.
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Remark. In other words for every k ∈ N there exists a matrixA ∈M3×k(G)
satisfying the equivalent conditions of Proposition 2.1.

Proof. Indeed let x, y ∈ G be a generating tuple, and consider the matrix:

A =

x x . . . x
y y . . . y
z1 z2 . . . zk


Clearly every column generates. But if two columns, say g1 and g2 are in
the same Aut(G) orbit then we have an automorphism σ ∈ Aut(G) such
that σ(x) = x;σ(y) = y;σ(z1) = z2. Since x, y generate this implies that
z1 = z2. Thus condition (1) of Proposition 2.1 will be satisfied if all zi are
different. �

2.3. Spread.

Definition. We say that a 2-generated group G has spread greater or equal
to k if for every g = (g1, g2, . . . , gk) ∈ Gk there exists some h ∈ G such that

G = 〈h, gi〉 ∀1 ≤ i ≤ k.

Lemma. A Tarski monster group G has spread greater or equal to k for
every k ∈ N.

Proof. Let k ∈ N and g = (g1, g2, . . . , gk) ∈ Gk be as above. Since G is
finitely generated, it follows from Zorn’s lemma that every gi is contained
in a maximal proper subgroup gi ∈ Hi � G. By the definition of a Tarski
monster every Hi is cyclic and hence of infinite index. But an infinite group
is never a union of a finite number of subgroups of infinite index. Thus, any
h ∈ G \ ∪ki=1Hi will satisfy the condition required in the definition of the
spread. �

2.4. Stronger generation properties. In order to prove Corollary 2.2 we
constructed a matrix 3×k all of whose columns represent different elements
of V̄n(G). In the sequel we will need a matrix satisfying a stronger condition,
which is somewhat technical but useful.

Lemma. For any k, n ∈ N with n ≥ 4 there exists a matrix A ∈Mn×k(G),
as in Equation (1) in Section 2.1, with the following properties:

(1) Every pair of entries generates G:

(i, j) 6= (l,m)⇒ 〈gij , glm〉 = G,

(2) Every three rows generate Gk:

1 ≤ i < j < l ≤ n⇒ 〈g
i
, g
j
, g
l
〉 = Gk.

(3) The following configuration will never appear as a 4×4 minor of the
matrix, for any σ, τ, η, θ ∈ Aut(G) and p, q, r, s ∈ G.

· pτ pη pθ

qσ · qη qθ

rσ rτ · rθ

sσ sτ sη ·


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Proof. We construct the matrix entries one by one according to the following
order

g1
1, g

1
2, g

1
3, . . . , g

2
1, g

2
2, . . . , g

k
n−1, g

k
n,

namely column by column. Making sure in the process that all three desired
properties hold:
(1) Every pair of elements generates: Upon adding the element gml
one can make sure that it generates G with every previous entry by Lemma
2.3. In fact the proof of that lemma makes it clear that there are infinitely
many possible choices of an element that will satisfy this condition. Thus
we can guarantee the validity of (1) even if we require later in the proof to
exclude finitely many possibilities at every stage.
General discussion: Assuming from now on that (1) is indeed satisfied
we notice that for a given 2× 2 minor(

gis gjs
git gjt

)
there is at most one σ ∈ Aut(G) such that gjs =

(
gis
)σ and gjt =

(
git
)σ. If

this holds for a given 1 ≤ i < j ≤ k and for some choice of 1 ≤ s < t ≤ n
we say that the columns i, j are σ-near. Next we extend the notion of near
columns to be an equivalence relation - declaring two columns (i, j) to be
σ-related if there is a sequence of distinct columns i = i0, i1, i2, . . . , ir = j
such that iα and iα+1 are σα-near and σ = σ0σ1σ2 . . . σr−1. We will denote
the set of all automorphisms relating two columns 1 ≤ i < j ≤ k by:

Ξi,j := {σ ∈ Aut(G) | j is σ-related to i} ,

it is clear from the definition, and from the fact that any two matrix elements
generate G that this set is finite. Finally let us note that these relations can
be defined even for matrices that are only partially defined, namely for
matrices with some missing entries.

Assume that we are now adding the element gml namely that we have
already constructed the matrix

g1
1 g2

1 . . . gm−1
1 gm1 �

...
...

. . .
...

... �

g1
l−1

... . . . gm−1
l−1 gml−1 �

...
...

. . .
... � �

g1
n g2

n . . . gm−1
n � �


We choose an element gml which will satisfy condition (1) while excluding
the finite set of possibilities:

m−1⋃
i=1

⋃
σ∈Ξi,m

(
gil
)σ

(2) Every three rows generate Gk: By Proposition 2.1 all we have to
do in order to prove that Gk = 〈g

i
, g
j
, g
l
〉, is to exclude the possibility that
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for some 1 ≤ s < m ≤ k and some σ ∈ Aut(G) we havegsigsj
gsl

 =

gmigmj
gml

σ

,

where the automorphism applied to the vector just means that it is applied
to each entry separately. But such a configuration is not possible by con-
struction because at the time of the choice of the element gml , the columns
s,m are already σ-related (in fact they are even σ-near) and thus the choice
of gml = (gsl )

σ is ruled out.
(3) Excluding cyclic configurations: A configuration such as the one
appearing in (3) is excluded because at the time construction of the element
labeled rθ this choice is in fact invalid. Indeed at that time the first and
the last column are already σ−1θ = (σ−1η)(η−1θ) related so that the choice
rθ = (rσ)σ

−1θ is invalid. Equivalently, the same choice can be ruled out, by
the fact that the second and fourth columns are τ−1θ-related. �

3. Highly transitive actions.

Let G be a Tarski monster and n ≥ 4. We argue by induction on k that
the action of Γ = Out(Fn) on V̄n(G) is k-transitive.

3.1. The induction basis.

Proposition. For every n ≥ 3, Aut(Fn) acts transitively on Vn(G), where
G is a Tarski monster group.

Proof. Let us fix a basepoint g = (g1, g2, . . . , gn) ∈ Vn(G). We are at liberty
to choose a convenient base point - and using Lemma 2.3 repeatedly we im-
pose the condition 〈gi, gj〉 = G ∀i 6= j. Now given any h = (h1, h2, . . . , hn) ∈
Vn(G) we have to exhibit a sequence of Nielsen transformations taking g to
h. Since any generating set contains a generating pair we may assume, after
renumbering the indices, that 〈h1, h2〉 = G. Since G has spread greater or
equal to 2 there exists some z ∈ G such that

(2) 〈g2, z〉 = 〈h1, z〉 = G.

We proceed with the following sequence of Nielsen transformations:

(3) g =


g1

g2

g3
...
gn

#

g1

g2

z
...
gn

#

h1

g2

z
...
gn

#

h1

h2

z
...
gn

#

h1

h2

h3
...
hn

 = h.

The first # stands for a sequence of Nielsen transformations of the form
w(R3,1, R3,2) where w is any free word on two generators satisfying w(g1, g2) =
g−1

3 z. The existence of such a word is guaranteed by the fact that 〈g1, g2〉 =
G. The next three# use the exact same argument, but instead of using the
fact that 〈g1, g2〉 = G they appeal in turn to the two parts of Equation (2)
and then to our assumption that 〈h1, h2〉 = G. �

Since Aut(Fn) y Vn(G) is transitive, so is the quotient action Γ y V̄n(G),
which is exactly what we require for the basis of our induction.
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3.2. The induction step. We choose a base k-tuple

(
[g1], [g2], [g3], . . . , [g] = [gk]

)
of distinct elements in V̄n(G). In order to establish the induction step we
have to show that for any [h] 6∈ {[g1], [g2], [g3], . . . , [gk−1]} there is a group
element γ ∈ Γ such that γ[gi] = [gi], ∀1 ≤ i ≤ k − 1 and γ[g] = [h].

Again we have a lot of freedom in the choice of our basis k-tuple. We
make our choice by picking a matrix

A =


g1

1 . . . gk1

g1
2

. . . gk2
...

...
g1
n . . . gkn

 =


− g

1
−

− g
2
−

...
− g

n
−

 =

 | |
g1 . . . gk

| |

 ,

satisfying the conditions guaranteed by Lemma 2.4, and taking its columns
as representatives. The element h = (h1, h2, . . . , hn) ∈ Vn(G) on the other
hand is dictated to us. But, since 〈h〉 = G we may assume, after possibly
reordering the indices that 〈h1, h2〉 = G.

We wish to proceed in much the same way as we did in Equation (3),
taking g to h, but this time we have to be careful not to touch the elements
{gi | 1 ≤ i ≤ k − 1}. Let us find an element z ∈ G such that all the 3 × k
matrices A2, A3, A4 below satisfy the equivalent conditions of Proposition
2.1

A2 =

− − g
2

− −
− − g

3
− −

g1
4 g2

4 . . . gk−1
4 z



A3 =

g1
1 g2

1 . . . gk−1
1 h1

− − g
3

− −
g1

4 g2
4 . . . gk−1

4 z



A4 =

g1
1 g2

1 . . . gk−1
1 h1

g1
2 g2

2 . . . gk−1
2 h2

g1
4 g2

4 . . . gk−1
4 z


For the matrices A2, A4 this can be achieved by avoiding finitely many bad
values of z, by an argument identical to that used in the proof of Lemma 2.4.
For the matrix A3 we can use the same argument assuming 〈h1, g3〉 = G.
On the other hand if 〈h1, g3〉 is a cyclic subgroup then the desired condition
[h1, g3, z] 6= [gi1, g

i
3, g

i
4] ∀1 ≤ i < k is satisfied automatically, for any choice

of z which makes (h1, g3, z) into a generating set, just because all the other
columns satisfy the condition that every pair of elements generates G and
the last column does not.
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We now proceed by applying the following sequence of Nielsen transfor-
mations:

g =



g1

g2

g3

g4
...
gn


#



g1

g2

g3

z
...
gn


#



h1

g2

g3

z
...
gn


#



h1

h2

g3

z
...
gn


#



h1

h2

h3

z
...
gn


#



h1

h2

h3

h4
...
hn


= h.

This time the first # corresponds to w(R4,1, R4,2, R4,3), where w is chosen
so as to satisfy the two conditions:

• w(g1, g2, g3) = g−1
4 z,

• w(gi1, g
i
2, g

i
3) = Id, ∀1 ≤ i < k.

The existence of such a word follows directly from condition (2) of Propo-
sition 2.1, combined with our assumptions on the matrix A. The exis-
tence of Nielsen transformations realizing the next three #, while fixing
gi ∀1 ≤ i < k follows, in the exact same way using our assumptions on the
matrices A2, A3, A4 respectively.

The last # can be treated in a similar fashion as long as the matrix:

A5 =

g1
1 g2

1 . . . gk−1
1 h1

g1
2 g2

2 . . . gk−1
2 h2

g1
3 g2

3 . . . gk−1
3 h3


satisfies the conditions of Proposition 2.1.

Note that if there is a pair of indices such that 〈hi, hj〉 6= G these condi-
tions are automatically satisfied, perhaps after rearrangement of the indices.
Indeed after rearranging the indices so that

〈h2, h3〉 6= G

the last column is the only one in A5 with this property and thus it cannot
be in the Aut(G) orbit of any of the other columns. Thus we can assume
that every pair of h entries generates the entire group.

Finally if the conditions of Proposition 2.1 are not satisfied for A5. Not
even after we change the order of the indices, by making arbitrary permu-
tations of the first four rows of A. This means that there are four auto-
morphisms σ, τ, η, θ ∈ Aut(G) and four columns 1 ≤ i < j < l < m ≤ k
such that the corresponding 4× 4 minor admits the forbidden configuration
described in condition (3) of Lemma 2.4

gi1 gj1 gl1 gm1
gi2 gj2 gl2 gm2
gi3 gj3 gl3 gm3
gi4 gj4 gl4 gm4

 =


· (h1)τ (h1)η (h1)θ

(h2)σ · (h2)η (h2)θ

(h3)σ (h3)τ · (h3)θ

(h4)σ (h4)τ (h4)η ·

 ,

contradicting our construction of the matrix A.

4. Concerning faithfulness of the action

4.1. A theorem of Magnus. We will require the following, well known,
theorem of Wilhelm Magnus from 1930:
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Theorem. [MKS76, Theorem N5 page 172]. Let a, b ∈ Fm be elements of
the free group and assume that they generate the same normal subgroup

〈a〉Fm = 〈b〉Fm ,

then a = gbεg−1 for some g ∈ Fm and some ε ∈ {±1}.

Namely the normal closure of a cyclic group, determines the generator up
to conjugation and inversion.

4.2. The action Out(Fn) on the redundant locus of Fn−1.

Definition. If n > d(G) the redundant locus of Vn(G) is defined as:

Rn(G) = {φ ∈ Vn(G) | 〈φ(x1), . . . , φ(xn−1)〉 = G, for some basis x1, . . . , xn < Fn}

and R̄n(G) < V̄n(G) is the image of this (invariant) set, modulo Aut(G).

Lemma. For every n ≥ 3, Out(Fn) acts faithfully on R̄n(Fn−1).

Proof. It is easy to verify that φ : Fn → Fn−1 corresponds to an element
of Rn(Fn−1) if and only if it is surjective and the kernel is generated, as a
normal subgroup, by a primitive element of Fn.

Let α ∈ Aut(Fn) represent an element of Out(Fn) that is in the kernel of
the action on R̄n(Fn−1). Thus by definition for every φ ∈ Rn(Fn−1) there
exists some σ ∈ Aut(Fn−1) such that φ ◦ α = σ ◦ φ, and in particular

α−1(ker(φ)) = ker(φ ◦ α) = ker(σ ◦ φ) = ker(φ).

So α acts trivially on the collection of normal subgroups generated by a
primitive element. By Magnus’ theorem stated above, for every primitive
element x ∈ Fn there exist gx ∈ Fn, εx ∈ {±1} such that

(4) αx = gxx
εg−1
x .

In particular setting gi = gxi , εi = εxi for some basis x = {x1, x2, . . . , xn} we
have:

α(x) =


α1(x)
α2(x)

...
αn(x)

 =


xε11

g2x
ε2
2 g
−1
2

...
gnx

εn
n g
−1
n

 .

Here, since to begin with, α is defined only up to inner automorphisms, we
have assumed without loss of generality that g1 = 1.

Let Y be the 2n-regular Cayley tree of Fn with respect to the given
set of generators. We label the oriented edges of Y by elements of the
corresponding symmetric generating set {x1, x

−1
1 , x2, . . . , x

−1
n } in such a way

that Fn is identified with the group of color preserving automorphisms of the
tree. Every element x ∈ Fn acts on Y as a hyperbolic automorphism with
translation length `(x) := min{d(v, xv) | v ∈ Y } > 0 and axis Xx = {v ∈
Y | d(v, xv) = `(x)}. Equation (4) implies that α(xi) is a hyperbolic element
of translation length 1 whose axis is giXxi (with either of its two possible
orientations). In particular the axis of α(xi) is labeled either . . . xi, xi, xi, . . .
or with the inverse of this sequence. Similarly the translation length and
axis labeling is preserved for any primitive element of Aut(Fn).
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We claim that Xα(xi) ∩ Xα(xj) = giXi ∩ gjXj 6= ∅, ∀i 6= j. Indeed,
assuming the contrary, since α preserves the translation length of primitive
elements we have

2 = `(xixj) = `(α(xi)α(xj)) = 2 + 2d(Xα(xi), Xα(xj));

so d(Xα(xi), Xα(xj)) = 0 which is a contradiction. Now, by the version of
Helly’s theorem for trees (see for example [Ser80, I.6.5 Lemma 10]) this
implies that there is a point o ∈ ∩i=1...nXα(xi). After conjugation by an
appropriate power of x1 = α(x1) we may assume that

o = ∩i=1...nXα(xi) = ∩i=1...nXi.

But now Xi = Xα(xi) since these two axes share a point and, up to ori-
entation, they have the same coloring; hence upon replacing gi by gix

mi
i

for an appropriate choice of power mi, we can assume that gio = o. This
immediately implies that gi = 1 ∀i.

We still have to show that εi = 1 ∀i. But if, say, ε1 = −1 then the
primitive element x1x2x3 will map to x−1

1 xε22 x
ε3
3 . A short verification will

show that, regardless of the values of ε2, ε3, this element is neither conjugate
to x1x2x3 nor to (x1x2x3)−1. This completes the proof of the lemma. �

4.3. Group laws on two letters are universal.

Lemma. Assume that G is a finitely generated group that satisfies a group
law. Then G already satisfies a non-trivial group law on two letters.

Proof. Assume that G satisfies a group law w ∈ Fm for some m > 2. By
[BG09, Corollary 3.3] there is a homomorphism φ = (φ1, φ2, . . . , φn) : Fm →
F2 such that φ(w) 6= 1. Now G satisfies the non-trivial group law φ(w) as

φ(w)(g, h) = w(φ1(g, h), φ2(g, h), . . . , φn(g, h)) = 1, ∀g, h ∈ G.

�

4.4. When G satisfies a group law the action is not faithful.

Proposition. If G is any finitely generated group which satisfies a group
law, then for any n > max{3, d(G)}, the action of Out(Fn) on V̄n(G) is not
faithful.

Proof. As we saw in Section 4.3 we may assume that G satisfies a group law
on two letters, i.e. there exists a word w ∈ F2 such that w(g, h) = 1, ∀g, h ∈
G.

Consider the automorphism α = w(Rn,1, Rn,2) given explicitly by

α(x1, . . . , xn) = (x1, . . . , xn−1, xn · w(x1, x2)).

α is not the trivial automorphism because, by assumption w is a non-trivial
word in F2 and Rn,1, Rn,2 generate a free subgroup of Out(Fn). But by
construction α acts trivially on Gn. �
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4.5. When the action is not faithful G satisfies a group law. The
following completes the proof of our main theorem.

Proposition. Let G be a Tarski monster and n ≥ 3. Then the action of
Out(Fn) on V̄n(G) is faithful if and only if G satisfies no group law.

Proof. The if part is treated in Proposition 4.4. Assume that G is a Tarski
monster group and that the action of Out(Fn) on V̄n(G) is not faithful. We
will show that G satisfies a group law.

It is enough to show that there exists some non-trivial word w = w(x, y) ∈
F2 such that w(a, b) = 1 for any (a, b) ∈ V2(G). Indeed, assume that w can
be written in reduced form as w = z1 . . . zn, where z1, . . . , zn ∈ {x±1, y±1},
and let

v = wzw−1z−1 = z1 . . . znzz
−1
n . . . z−1

1 z−1,

where z ∈ {x±1, y±1} satisfies that z 6= z−1
1 , zn, z

−1
n . Then v = v(x, y) is a

non-trivial word in F2. Moreover, if (a, b) ∈ V2(G) then v(a, b) = 1 since
w(a, b) = 1. If a and b do not generate G, then they belong to the same
cyclic group, and so there exist some c ∈ G and i, j ∈ Z s.t. a = ci and
b = cj . In this case, w(a, b) = w(ci, cj) = ck for some k ∈ Z, and so
v(a, b) = v(ci, cj) = ckclc−kc−l = 1 (where l ∈ {±i,±j}). Hence, G satisfies
a group law with the word v.

By assumption, there exists some automorphism α = (α1, α2, . . . , αn) ∈
Aut(Fn), which is not an inner automorphism, such that for any g ∈ Vn(G)
there exists some σ ∈ Aut(G) such that.

α1(g) = σ(g1),

α2(g) = σ(g2),
...

αn(g) = σ(gn).

In particular for any (a, b) ∈ V2(G) and for any word u ∈ F2, we can
apply the above to the the n-tuple (a, b, u(a, b), 1, 1, . . .) ∈ Vn(G) obtaining
the equation

α3(a, b, u(a, b)) = σ(u(a, b)) = u(σ(a), σ(b)) = u
(
α1(a, b, u(a, b)), α2(a, b, u(a, b))

)
.

Here we used α1(a, b, u(a, b)) as a short for α1(a, b, u(a, b), 1, 1, . . .).
Now consider the three words on two letters

wu3 (x, y) = u (α1(x, y, u(x, y)), α2(x, y, u(x, y))) · α3(x, y, u(x, y))−1,

wu2 (x, y) = u (α1(x, u(x, y), y), α3(x, u(x, y), y)) · α2(x, u(x, y), y)−1,

wu1 (x, y) = u (α2(u(x, y), x, y), α3(u(x, y), x, y)) · α1(u(x, y), x, y)−1.

By permuting the role of a, b, u(a, b) among the first three coordinates in the
above argument we know that wui (a, b) = 1 ∀(a, b) ∈ V2(G),∀u ∈ F2(x, y).
If one of the wui is a non-trivial word in F2 then we have our group law. But
if wui represents the trivial word in F2 for every i = 1, 2, 3 and every u ∈ F2

then α = (α1, α2, α3) gives rise to an element of Out(F3) in the kernel of the
action on R̄3(F2) and hence a contradiction to Lemma 4.2.

�
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5. Final remarks and questions

We conclude with three natural questions:

5.1. Lower rank groups.

Question. What about Out(F2) and Out(F3)? Do they admit a highly
transitive action on a set?

There is a chance that the action that we study in this paper, of Out(Fn)
on V̄n(G) still has very good transitivity properties for n = 3. Even if this
is true it seems that the proof would be much harder as it would require a
much better understanding of the Tarski monster G and its automorphisms.
A topic that we carefully avoided in this paper.

On the other hand it is plausible that one can construct completely dif-
ferent actions in this lower rank setting. For example since Out(F2) =
PSL2(Z) = Z/2Z ∗ Z/3Z, there is a good chance that one can construct a
highly transitive action for this group using the methods of [Dix90]. It is
important to note though that this is not automatic. It is not in general
true that if a finite index subgroup admits a highly transitive action then so
does the group itself. Even though the other direction is true of course.

As for n = 3. At least for the group Aut(F3) it follows from [GL09,
Corollary 1.2] that there is a finite index subgroup ∆ < Aut(F3) that maps
onto a finitely generated free group, and hence admits a (non-faithful) highly
transitive action. Again it is plausible that one might be able to construct
a highly transitive non-faithful action of Aut(F3) from this.

5.2. Mapping class groups.

Question. Does Mod(S), the mapping class group of a closed orientable
surface S of a high enough genus admit a highly transitive action on a set?
If not, how about k-transitive actions for various values of k?

Recall that from [GG08] it follows that these groups do admit faithful
primitive actions.

5.3. Faithfulness. Our proof of the faithfulness statement in section 4 gives
rise to the following general theorem:

Theorem. For any finitely generated group G, the following are equivalent:
• The action of Out(Fn) on the Aut(G)-classes of Hom(Fn, G) is faith-

ful for all large enough n.
• The group G does not satisfy a group law.

It is a very natural question if the above still holds if one replaces Hom(Fn, G)
by V̄n(G).
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