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ABSTRACT

A summary is reported on our previous publications about four-dimensional N’ = 1 su-
persymmetric Spin(10) gauge theory with chiral superfields in the spinor and vector repre-
sentations in the non-Abelian Coulomb phase. Carrying out the method of a-maximization,
we exlpored decoupling operators in the infared and the renormalization flow of the theory.
We also give a brief review on the non-Abelian Coulomb phase of the theory after recalling
the unitarity bound and the a-maximization procedure in four-dimensional conformal field
theory.
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Chapter 1

Introduction

Four-dimensional N' = 1 Spin(10) gauge theory with one chiral superfield in the spinor
representation and N chiral superfields in the vector representation has rich and intriguing
dynamics. In particular, for no vector representations, supersymmetry is dynamically
broken [1, 2]. For 7 < Ng < 21 vectors, the theory is in the non-Abelian Coulomb phase,
and has a dual description at the non-trivial fixed point [3, 4]. It also leads at some points
in the moduli space to the duality [5] between chiral and vector-like gauge theories, as well
as the one discussed in [6]. The analysis has been extended for more spinors in [7].

When a N = 1 supersymmetric theory is in the non-Abelian Coulomb phase, it must
be left invariant under conformal symmetry at a non-trivial infrared fixed point, and some
exact results can be obtained by N' = 1 superconformal symmetry. In particular, the
scaling dimension D(QO) of a gauge invariant chiral primary operator O can be determined

by its U(1)g charge R(O) as
D(O) = SR(O).

The unitarity of representations of conformal symmetry [8] requires the scaling dimension
D(0O) of a scalar field O to satisfy
D(O) > 1.

However, one sometimes encounters a gauge invariant chiral primary spinless operator O
which appears to satisfy the inequality R(O) < 2/3. It has been discussed that such an
operator decouples as a free field from the remaining interacting system, and an accidental
U(1) symmetry is enhanced in the infrared to fix the U(1)g charge of the operator O to
2/3 9, 10, 11].

One can see that one of the examples is Spin(7) gauge theory with Ny = 7 spinors
Q' (i =1,---,Ny) and with no superpotential, where electric-magnetic duality was found
for 7 < Ny < 14 in [5]. Its dual or magnetic theory is an SU(Ny — 4) gauge theory with
N; antifundamentals ¢; and a single symmetric tensor s, along with gauge singlets M"Y,
which can be identified with Q*@’ in the electric theory. The superpotential Wi, of the



magnetic theory is given by

h . 1
— Y Mg sg 4+ -
Winag ﬂ2M ¢ sq; + N det s,

where i is a dimensionful parameter to give the correct mass dimension to M%, and the
dimensionless parameter i shows up because we assume that the field M has the canonical
kinetic term.

Since the U(1)g charge of the spinors Q" is given by 1 — (5/Ny), the gauge invariant
operator M% appears to violate the unitarity bound for Ny = 7 and therefore propagates
as a free field at the infrared fixed point.

In the magnetic theory, it suggests that the coupling h in the superpotential Winag g0O€S
to zero in the infrared. Therefore, at the infrared fixed point, the superpotential of the
magnetic theory becomes

1
WIR = W det s.

Contrary to the electric theory, on the magnetic side, the gauge invariant operator M¥ is
an elementary field. Therefore, the vanishing of the coupling A implies that M% may be a
free field.

On the contrary, suppose that we start with the superpotential Wig at the infrared fixed
point. The fields ¢; and s are still interacting, and the U(1)g charge 2 — 2(1 — (5/Ny)) =
10/Ny of g; s g; is greater than 2 — (2/3) for Ny = 7. Let us introduce an elementary field
M;;, which has carries U(1)g charge 2/3, as M;; is a free field. Therefore, the interaction
M g; s @; is an irrelevant operator in the superpotential at the infrared fixed point, and it
is consistent with the implication of the unitarity bound for the operator M¥.

One thus sees that the magnetic description yields a simple explanation of the prescrip-
tion [11] for a composite operator hitting the unitarity bound, which has been explained
by using the auxiliary field method [12]. The prescription [11] and the explanation [12]
will be described in section 2.3.

Furthermore, when % vanishes, one no longer has the F-term condition

ho o Wi
FE )V

:(:]7

and thus the gauge invariant operators N;; = ¢; s ¢; becomes a non-trivial chiral primary
operator at the infrared fixed point. One can easily see that the resulting magnetic theory
at the fixed point has a different electric dual from the original electric theory with no
superpotential.

In fact, its electric dual is the same as the original electric theory except that it has the
non-zero superpotential

1 o
Wele = ;NileQ]>
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along with free singlets M%. Thus, one can conclude that these two electric theories are
identical at the infrared fixed point. It also means that the original dual pair of the Spin(7)
gauge theory with no superpotential and the magnetic theory with the superpotential Wi,,e
flows into another dual pair of the Spin(7) theory with the superpotential We and the
magnetic dual with vanishing & in the superpotential in the infrared.

We have thus seen that the U(1)g charge assignments were very important to under-
stand the decoupling operator and the renormalization flow of the theory. However, when
a superconformal field theory is also invariant under other global U(1) symmetries besides
the U(1)g symmetry, which linear combination of those U(1) generators yields the super-
conformal U (1) symmetry is dynamically determined. In [13], Intriligator and Wecht has
proposed the method of a-maximization to pick up the superconformal U(1)g among all
the linear combinations of the U(1) generators.

In this review article, we will give a summary on our previous publications [14, 15] about
the non-Abelian Coulomb phase of four-dimensional N' = 1 supersymmetric Spin(10)
gauge theories with one and two chiral superfields in the spinor representation and N chiral
fields in the vector representation. They are invariant under two global U(1) symmetries,
and one needs to apply a-maximization to determine the superconformal U(1)g symmetry.

In chapter 2, we give a brief review on N' = 1 superconformal algebra and its lowest
weight representations. We will discuss the unitarity of representations of the conformal
algebra, following [16, 17] to give the unitarity bound, although a complete derivation [§]
of it will not be given in this article. The relation of chiral primary operators and a chiral
ring will be explained. After giving the definition of the conformal anomalies or the central
charges ¢ and a in four dimensions and recalling their relation [18, 19] to the 't Hooft
anomalies, we will explain the method of a-maximization in some detail.

In chapter 3, we will review the non-Abelian Coulomb phase of the supersymmetric
Spin(10) theory with one spinor and 7 < Ng < 21 vectors [3, 4] in section 3.1 and the
one with two spinors and 6 < Ny < 19 vectors [7] in section 3.2. Their dual descriptions
[3, 4, 7] of the theories at the infrared fixed point will briefly be explained. In chapter 4,
we will describe our results obtained by the application of a-maximization to the theories.

In chapter 5, we will discuss consistency checks about our results and their implication
for the renormalization flow of the theories, as discussed above for the Spin(7) theory.
In particular, one will note in the Spin(10) theory that the decoupling meson operator is
given by an elementary field on the magnetic side, which also yields a simple explanation
for the prescription [11], as in the Spin(7) theory. In addition, we will use the auxiliary
field method on the electric side to attempt to describe the decoupling of the composite
meson operator. The flow of the electric-magnetic dual pair into another pair will also be
seen in the Spin(10) theory.

Chapter 6 will be devoted to summary and outlook.



Chapter 2

N =1 Superconformal Field Theory

2.1 AN =1 Superconformal Algebra

In this section, we will briefly review basic facts about four-dimensional N' = 1 supercon-
formal algebra. They will frequently be used in the rest of this article.

Conformal transformations are defined, upon acting on the spacetime coordinates z*,
as those preserving the metric 7,, up to an overall nowhere-zero function Q?(z). The
metric 7, thus transforms under a conformal transformation as

ds® = ndatds” — ds'? = n,,dd"dx" = QF(2)n,, da"dr”. (2.1)

They all are generated by the infinitesimal transformations

Lorentz transformation ot =at — W,
Dilatation (Dilation) st = (1—¢)ak, (2.2)
Translation e  a '
Special conformal transformation : a'* = z# — 2bVx, " + btz
and thus the generators of them can be read as
Lorentz transformation . M, =—i(x,0, — x,0,),
Dilatation (Dilation) . D =1i2"0,,
. . (2.3)
Translation . P, = —i0,,
Special conformal transformation : K, = —i(2?0, — 2z,2"9,),

as a representation on the spacetime coordinates x*. They satisfy the commutation rela-
tions

My, Mpo] =i (upMuo — o Myp — 1pMyuo + Nue M)

[

[lev Pp] = i(nuppu - anPu)a [MMW Kﬂ] = i(nszv - anKu)v (2.4)
D, P,| = —iP,, D, K,| =iK,, (D, M,,] =0,

[P/u P = [Km K,|=0, [P/n K, =—2i (77;WD + MW).
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(1)d=j1=j2=0

(2) 1 # 0,52 #0,d > j1 +jo +2
(3) jije=0,d>j1 +joa+1

(4) 1 # 0,52 #0,d=j1 +jo +2
(5) j1j2 =0,d=j1 +jo+ 1

Table 2.1: Unitary irreducible representations

They are isomorphic to the Lie algebra of SO(2,4). The generators Sap (A, B = —1,--- ,4)
of the Lie algebra satisfy

[Sas, Sep| =1 (MacSep — NapSec — NeceSap + NepSac) (2.5)
where 1y, = diag(—1,—1,1,1,1,1). With the identification

SMV:MMV’ Sﬂ—l :%(PM—'—KM)’ SM‘L:%(PN_KML 8_14:D, (26)

the algebra (2.5) retains the commutation relations (2.4) of the conformal algebra.

Considering a unitary representation of the conformal algebra (2.4) reveals a bound
on its conformal dimension d - the eigenvalue of the dilatation operator D. All unitary
irreducible representations with non-negative energy has been classified by Mack [8]. It
was shown that such a representation always has the lowest weight state, and that all the
representations are sorted into five classes, which are labeled by the conformal dimension d
and the spins (ji, j2) of the Lorentz group SL(2, C) of their lowest weight states, as listed
in Table 2.1.

One can see from Table 2.1 that apart from the trivial identity operator in (1), the
conformal dimension d of an operator should satisfy

d>1 for scalar, d> 5

for spinor, d >3 for vector, (2.7)
depending on the spin (ji, jo) of the operator. These bounds on conformal dimensions are
imposed by the unitarity of representations and are referred to as the unitarity bound. The
inequalities are saturated if and only if their fields are free for the scalar and the spinor
case. For the vector case, the field must be gauge invariant. The equality is satisfied for
the vector case by a conserving current. We will frequently use the unitarity bound for a
scalar field in our analysis in the later chapters.

We therefore will sketch a derivation of the unitary bounds. For a complete proof and
detailed discussions!, see [8, 16, 17]. The maximal compact subalgebra of the SO(2,4) is
given by SO(2) x SO(4), whose generators can be taken as S_jo for the SO(2) and S,

'Further restrictions have been discussed very recently in [20, 21]
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(a,b =1,---,4) for the SO(4). The remaining generators of the SO(2,4) are S_;, and
Soa, Which are combined to define

EF = (Se_1 FiSx), (2.8)

transforming in the representation (1, 4), respectively under the SO(2) x SO(4) rotations.
From the commutation relations (2.5), one can see that these generators ET satisfy

[E;, Ef] =2 (a5 S-10 — i Sap) - (2.9)

One thus, may regard EF and E, as a raising operator and a lowering operator, respec-
tively. Since we assume that the generators Syp are all hermitian, £ and E are adjoint
to each other; (EX)' = EF.

The SO(4) algebra is isomorphic to the Lie algebra of SU(2) x SU(2), and the generators
are given by two copies of SU(2) generators S,L»(l), 5% (i =1,2,3) defined by

)

1/1 1/1
S = 5 (§€ikl4skl — 51-4) : SP = 3 (Qﬁiklzlskl + Si4) : (2.10)

A state of a unitary irreducible representation of the SO(2)x SO(4) algebra is specified with
eigenvalue d of S_jp and two pairs of spin quantum numbers (j;,m;) and (j2,ms2), and is
denoted as |d; ji, m1; j2, ma). In particular, for the lowest weight state |d; j1, —j1; j2, —J2)
of the unitary irreducible representation, we will adopt a convention of writing simply
|d, j1, j2) as shorthand.

A unitary irreducible representation of the SO(2, 4) algebra may be given by a set of uni-
tary irreducible representations of the SO(2) x SO(4) subalgebra. The unitary irreducible
representations of the SO(2) x SO(4) can be specified by the lowest weight state |d, ji, jo)
of each of them. A unitary irreducible representation of the SO(2) x SO(4) contained in
a unitary irreducible representation of the SO(2,4) algebra may be mapped by the ladder
operators EF into another unitary irreducible representation of the SO(2) x SO(4) in the
same representation of the SO(2,4) algebra.

Among unitary irreducible representations of the SO(2) x SO(4) in a unitary irreducible
representation of the SO(2,4) algebra, let us pick up the unitary irreducible representation
of the SO(2) x SO(4) specified by the lowest weight state |d, ji, j2) with the lowest value of
d. Since the lowering operators E, carry charge —1 of the SO(2), the lowest weight state
|d, j1, jo) must be annihilated by the E_, because there are no lowest weight states with
lower eigenvalues of S_jg than d in the unitary irreducible representation of the SO(2,4).

Then the first non-trivial state one would like to study about its unitarity would be
Et1d,ji,j2). The unitarity requires the matrix

Mt by a) (mimop) = {ds J1, M3 o, m| B Ef |d; j1,ma; 2, ma)
= (d; j1,mh; jo, my| [E,, B |d; g1, mas ja, ma) (2.11)



to be positive definite, if £ |d, j1, j2) is not vanishing. The commutator gives 2 (dap S_10 — @ Sap)-
Following Minwalla’s trick [16], let us recall that —iS,, may be rewritten as

. 1 1
_ZSab = _5 (6ac(5bd - 5ad6bc> Scd = 5 (Scd)ab Scd

and that ((Scq),,) is a matrix in the representation 4 of S.q. The representation 4 of the
SO(4) algebra is the spins (j; = 1/2, jo = 1/2) of the isomorphic SU(2) x SU(2) algebra,
and the matrices (d4) and ((Seq),,) can be regarded as the matrix elements of the identity
operator and the generator S.g;

by — (o, a5 1oy, as),
(Sed)uy = (0], 0| Sea |ar, az) (2.12)

where the state |ag,as) is a shorthand for |j; = 1/2,a1;j2 = 1/2,a3), and the similar
shorthand was also used for the bra states. The matrix Mt iy, a) (ma,mab) 18 then given by
the operator 21® D + S.g ® S.q sandwiched by the bra (o, ob| ® (d; j1, m}; jo, m,| and the
ket |aq, as) @ |d; j1,m1; j2, ma). The tensor product S.q ® S.q may be rewritten as

1
Scd & Scd = 5 [(Scd K1+1® Scd)2 - (Scd X ]1)2 - (]1 X Scd>2:| )

and one thus finds that the matrix M, my.a) (m1,m».b) 18 given by
1
(o, ay,my,my2 | 1® D + 1 [(Sca® 1+ 1@ Sed)’ — (Seq®@ 1) —(1® Scd)z} |y, g, My, ma)

with a shorthand |aq, ag, mi, mo) for |ag, as) ® |d; j1, m1; ja, me) and (o}, b, m), m}| for

o, ah| @ {d; g1, mh; ja, mb|. The ket |aq, an) ® |d; ji, m1; j2, ms) is in the representation
1) X2 J 1J 2 J J

(1, 1) ® (41, j2), which is decomposed into irreducible representations as

2792
it 2dot D) B G+ mrdo— )@ (= oo 2)® (s — 2o — o)
J1 27J2 B J1 27]2 5 J1 2732 5 J1 2,]2 5

for j; > 1/2 and j» > 1/2. Using elementary facts of the SU(2) spin operators

and

(S)? [g,m) = j(j +1) [, m),

3
1=

one can see that, among the operators in the above expression of the matrix M, (m, ;mb,a) (m1,m2,b) >

only (S @ 1+1® Scd)2 depends on the above irreducible representations to give its eigen-
values. The contribution from the other operators yields

3 .. L.
2@—2x1—ﬁ@y+n—h@f+n,

9



and the operator (Seg ® 1+ 1® S.4)” takes the minimal value in (j; — 1 ja—13) forj1 > 1/2
and jo > 1/2 among the four irreducible representations to contribute

2|~ )0+ 5)+ 2= )0+ 5)

to the matrix M my a) (m1,msp)- One obtains the total contribution
2(d—=j1—ja—2)
toit. For j = j; > 1/2 and jo = 0 or j = jo > 1/2 and j; = 0, the minimal value of

(Seu@1+1® Scd>2 similarly contributes

204+

to give the total contribution

I N | . 3 .
21d+ (=)0 +5)—Jj0U+1D) -S| =2(d-j-1),
2 2 4
while it is obvious that the total contribution is 2d for a scalar j; = j5 = 0.
The requirement that the eigenvalues of the matrix M1ty a) (m1,ma,p) D€ NON-NEGAtIVE
gives the inequalities

. . . 1 1
d>ji+7j2+2 (]12§,J2Z§),
. . L. . . 1
d>j+1 G=h=>50m=00rji=0j=5h>3)
d>0 (j1 =0,j2 =0). (2.13)
The equality is satisfied by the trivial state
EaJr |d, j1, j2) = 0. (2.14)

Converting the vector index of E} to a pair of spinor indices (a1, an) of the SU(2) x SU(2),
and also |d; j1,mq; ja, ma) to |d; By, -+, Bajii71, - -+, V2jp), One can make the condition (2.14)
more precise. In fact, for j; > 1,7, > 1, since the irreducible representation (j; — 3, jo — 1)
gives the minimal eigenvalue, the condition (2.14) means the contraction of both the indices
a; and ag with the ones of the state to form the (j; — %,jg — %) appropriately. For the
remaining cases but the j; = jo = 0, the contraction is done for either of the indices.
There is no contraction for j; = j, = 0, and (2.14) means that the representation with
d = j1 = j2 = 0 must be one-dimensional.

The inequalities (2.13) are the necessary condition for the lowest weight representation
to be unitary, but it is also the sufficient condition except for the scalar case j; = j, = 0,

10



which has been proved by Mack [8]. The inequalities (2.13) for those cases are referred to
as the unitarity bounds, as mentioned before.

In order to obtain the unitarity bound for j; = jo = 0, among the next non-trivial
states, let us take the state ) EFEY |d,j1 = 0,7, = 0) to calculate the norm

Y (d,0,0] E, E; E} B |d,0,0) = 32 (d,0,0] [(5,10)2 — 5 10| |d,0,0)
a,b

=32(d* —d) (d,0,0d,0,0). (2.15)
The unitarity then requires that
d(d—1) > 0. (2.16)
Therefore, if a state |d, j; = 0, jo = 0) is not trivial, the unitarity requires that
d>1. (2.17)

It is the unitarity bound [8] for a scalar field. In particular, the equality d = 1 is satisfied
if and only if

4
> EfE[|d,0,0) =0. (2.18)

a=1

So far we have been discussing eigenvalues of the operator S_jo, as well as spins (ji, j2)
of the SO(4) subalgebra, but we would like to relate them to eigenvalue of the dilatation
generator D = S_y, of the SO(1, 1) subgroup and spins of the algebra of the Lorentz group
SO(1,3). It can be done by a similarity transformation exchanging the coordinates x° and
2%, In fact, the similarity transformation

. jus _ . jus _T
iSoy = €248, o7 250, iS4y = €210 8y 0”250,

Spy=e2510G, =350 Sgo = €290 G e7 250 ([ J=-1,1,2,3) (2.19)

relates the operators D, P, and K, to S_io, EZ* as

D — —i6§S4OS_106_§S407
7;P() — €§S4OEZ-6—§S407 -Pz — €§S4OE';‘€—§S4O7
1Ky = e§S4°E47€75540, K; = €§S4OE;€7§S4O- (2.20)

Incidentally, the spin operators Jl-(l), Ji(g) (1 = 1,2,3) of the Lorentz group SO(1,3) are
given by

1 /1 . 1/1 )
Ji(l) =5 <§€z‘klel — ZMZ‘O) ; Ji@) =3 (§€ikszl + ZMiO) ;

11



and they are related to the SO(4) spin operators Si(l), SZ.(Q) (i=1,2,3) as
JY = 635405-(1)6_%‘940, J? = 251083 =550, (2.21)

(2 3

One then finds that an eigenstate |d;j1,mq; ja, me) of the original operators can be
mapped to |d;ji,my;j2, ma) = exp((7/2)Su0) |d; 51, m1; ja, ms), which is an eigenstate 2
of D, JE and JE. In particular, one can see that the state |d;ji,my; j2, mad, j1, j2) has
Lorentz spins (ji1,ma; j2, m2), and

D |d; j1, mu; o, M) = —ie290S_ 15 |d; ji, my; ja, ma) = —id |d; j1,my; jo,ma) . (2.22)

It means that under a dilatation a# — e~ %z# = e'Px#, the state |d; ji,m1; jo, M) trans-
forms as

\d; 51, ma; o, me)  — e |d; j1,ma; ga, ma) (2.23)

which is consistent with the fact that it carries conformal dimension d in the usual sense 2.

Therefore, the conformal dimension d of a scalar state |d, j; = 0, jo = 0) must satisfy the
unitarity bound (2.17). Since the state Y+_, EX E|d,0,0) is transformed by the similarity
transformation (2.19) to be (—Fy Py + Z?Zl P,P;)|d,0,0), the condition (2.18) for d = 1
yields

n*P,p,|d,0,0) = 0. (2.24)
If one may regard the state |d, 0,0) as ¢(0) |0,0,0) with a scalar field ¢(x), it suggests that
0"0,¢(z) =0, (2.25)

which is the Klein-Gordon equation of a free scalar field. The equality of the unitarity
bound (2.17) is thus satisfied if and only if the field is free *.

Let us proceed to the superconformal algebra. Besides the generators of the conformal
algebra, there are the supersymmetry generator ), the superconformal generator S, and
the superconformal U(1)g generator R, which satisfy the commutation relations

{Qa, QL) = 20" 3P0 {Sa, S} = 20" 5K,
[Qm K“] — ngﬁ.sfﬁ [Sm pu] — Uuaﬁ.Qw’
1

. .
[D’ QO‘] = _§Qa7 [D7 SO&] = +§Som [R7 Qoa] = _Qaa [R> Soc] = +Saa

[Qa, M*] = ic"o"Qp,  [Sa, M™] = ic™" /S,

{84, Q%) = —=6,°(2iD + 3R) — 2i0™ ,* M. (2.26)

In order for the generators D, P,, K,, M,, to be hermitian, one needs to take the dual basis to be
(d; 41, m1; jo, ma| = (d; 1, m1; j2, ma| exp((7/2)S40), as explained in [17].

3Previously, we have referred to eigenvalue of the operator D not iD as conformal dimension less
rigorously. But, this is the definition of conformal dimension, which we will use henceforth.

4For (ji = 1/2,j2 = 0) or (j1 = 0, jo = 1/2), the condition (2.14) yields a free Dirac equation, while for
(j1 =1,j2=0) or (j1 = 0,72 = 1), it gives a free Maxwell equation. Finally, for (j; = 1/2,j2 = 1/2), one
finds the conservation law of a gauge invariant current.

12



The superconformal algebra is isomorphic to the Lie algebra of SU(2,2|1). In addition
to conformal dimension d and spins jj 2, the superconformal U(1)g charge r - the eigen-
value of R - is used to specify unitary irreducible representations with their lowest weight
(dajhj%r)‘

Since the superconformal algebra never closes without the superconformal U(1)z gener-
ator R, any superconformal field theory must be invariant under the superconformal U(1)g
transformation. Note that the superconformal U(1)g generator R is unambiguously deter-
mined as in the right hand side of the commutation relation {S,, @°}. Therefore, even in
a case where a superconformal field theory has more than one global U(1) symmetry, the
superconformal U(1)g charge should be single out uniquely.

When a gauge theory is conformal invariant, it resides at the infrared fixed point, where
the beta function of the gauge coupling g must be vanish. The NSVZ exact beta function
of the coupling constant g of a gauge group G is given in [22] by

g’ 3T(G) = 32, T(ri)(1 — %)
1672 1-T(G)(g%/872)

Blg) = (2.27)

where ; are the anomalous dimension of a matter fields labeled by i. T'(p;) denotes the
index of its representation p;, and T(G) is the index of the adjoint representation °. Its
vanishing at the IR fixed point implies that the anomalous dimensions should satisfy

37(G) — Z T(r;)(1 =) = 0. (2.28)

The anomalous dimension ~; at the infrared fixed point is related to the conformal dimen-
sion as D; = 1++;/2, and further can be given in terms of the U(1) charge by v; = 3R;—2,
jumping ahead to (2.33). Thus, the equation (2.28) can be rewritten as

T(G)+ Y T(ri)(Ri—1)=0. (2.29)

This is exactly the same as the anomaly free condition of the superconformal U(1)r sym-
metry. It guarantees that the superconformal U(1)r symmetry at a infrared fixed point
does not suffer from the anomalies caused by gauge interactions.

In a superconformal field theory, several fields with different Lorentz spins are trans-
formed with each other by superconformal transformations and form a superconformal
multiplet. An local operator O(z) with the lowest conformal dimension in a supercon-
formal multiplet is called a primary operator. It is known® that the other operators in
the same irreducible superconformal multiplet can be obtained by successively acting the
supersymmetry generators (), and QL on the primary operator.

Taking account of the commutation relations [D, Q.] = —Q, and [D, S,] = +18S, in
(2.26), one may regard the supersymmetry generators @), QL as raising operators to raise

°In our convention, T(G) = N for G = SU(N).

For a review of superconformal transformation, see e.g., [23].
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conformal dimension, and the superconformal generators S, SZ.Y as lowering operators. In
fact, one can confirm this for an operator O of conformal dimension d by the Jacobi identity

D.0u0}) = [D.Q.0)+1QuDOY
- —%[QQ,O}—id[Qa,O}:—z‘ <d+§) (Qa, O} (2.30)

Similarly, the commutation relations [D, Q%] = —1Q! and [D, Sl = —i—%ng suggest that
QL and Sg are raising and lowering operators, respectively.

As a primary operator has the lowest conformal dimension, it must satisfy the primary
condition

[Sas O(0)} = [S], O(0)} = 0. (2.31)
When the primary operator also satisfies the chiral condition

QL. 0(0)} =0, (2.32)

it is referred to as a chiral primary operator.
A detailed study of unitary irreducible representations of the superconformal algebra
[24, 25] shows that the inequality
D(0) = S R(O)
must be satisfied for any local scalar operator O(x), where D(O) and R(O) are the con-

formal dimension and the U(1)g charge of the operator O, respectively. It is remarkable
that the equality

D(O) = -R(0) (2.33)
is satisfied if and only if O(z) is a chiral primary operator.

Therefore, in particular, if the chiral primary operator carries no spin (ji, j2) = (0,0),
the unitarity bound (2.17) means that

R(O) > =. (2.34)

[GVIN )

In fact, one can obtain the equality (2.33) for a chiral primary operator O by calculating
{5t Q1Y, O] in two different ways. On one hand, by using the commutation relation of
the generators, one finds that

{S1%,Q41. 0 = [-6%5(2iD = 3F) - 2it,u M, O]
= —0%4(2d = 3r)0. (2.35)
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On the other hand, by using the Jacobi identity

({57, QL. 0] = {[Q}, 0], 5™} + {[s™, 0], QL}, (2.36)

one can see that it vanishes due to the chiral condition and the primary condition. Thus,
if O(z) is a chiral primary operator, the equality (2.33) is satisfied.

The relation (2.33) implies a striking fact - the additivity of the conformal dimensions
of chiral primary operators. Since the U(1)g charge of the product of operators O; and
0s) is of course the sum of the charge of each operator;

R(O10) = R(Oy) + R(Oy),
due to (2.33), their conformal dimensions must also be additive;
D(0103) = D(O1) + D(0O2).

It suggests that the product of two chiral primary operators does not cause a singularity.

Since a product of chiral primary operators at a spacetime point is well-defined without
any singularities - just a multiplication of them, all chiral primary operators can form a
ring. In a supersymmetric gauge theory with a non-trivial infrared fixed point, it is in
fact convenient to consider the set of all the chiral operators, which are not necessarily
primary, and to introduce a quotient of the set by a equivalence relation, which we will
refer to as a chiral ring. An equivalence class of the chiral ring is mapped into a chiral
primary operator, as will be seen just below.

A chiral operator O satisfies the chiral condition

QL 0} =0. (2.37)
Then, we introduce the equivalence relation
O ~0+[QL, X}, (2.38)

where X¢ is an arbitrary gauge invariant operator which satisfies

[Qf,[ L,Xd}} = 0. (2.39)

The chiral ring is the set consisting of all the gauge invariant chiral operators with the
identification (2.38).

The term [Q), X¢} in (2.38) is not primary, because its conformal dimension is greater
than that of X¢, as QL carries conformal dimension a half. Since X% and [QL, X} reside
in the same superconformal multiplet, [QL, X%} is not primary. Conversely, a chiral non-
primary operator O of conformal dimension d and the superconformal U(1)g charge r can
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be rewritten in a form [Q}, X%}. In fact, from (2.35) and (2.36) together with the chiral
condition (2.32), one can show * that

1

©= "~ 2(2d — 3r)

{Q1,[s1*, 01}, (2.40)
where we used the fact that 2d > 3r for a non-primary operator. It thus concludes that
an equivalence class of the chiral ring corresponds to a chiral primary operator 8.

The condition (2.38) can be rewritten in terms of a chiral superfield ® as

d~ o+ D7, (2.41)

with D? = D4D%/2, where the supercovariant derivative Dy is defined by using superspace
coordinates (z,6,0) as

_ 0 )

Dd = % + ZQQO"“O@&M.
This indicates that the lowest component of D? term is chiral but vanishes in the chiral
ring.

Since it is generically formidable to consider the chiral ring at a non-trivial infrared
fixed point, one often considers the chiral ring at the ultraviolet cutoff, which is referred
to as a classical chiral ring. In the classical chiral ring, one assumes that a relation among
gauge invariant operators is determined by the classical equations of motion. One can see
that the equations of motion

oW (@)

A2/ at V _
DX(®e") + — = =0, (2.42)

of the chiral superfield ® yields the F-term condition

oW (®)
0%

~ 0, (2.43)

as a defining equation of the classical chiral ring *. However, the classical defining equation
(2.43) may be modified quantum mechanically. This deformed chiral ring is called a quan-
tum chiral ring, which corresponds to the set of the chiral primary operators, as discussed
previously.

"Here, we assumed that O is a Lorentz scalar for simplicity.

8The correspondence can also be seen by explicitly constructing a representation of the superconformal
algebra on field operators. For a review, see e.g., [23].

9 Among gauge invariant operators including gaugino superfield W, o D?[e~"V D,e"], there are other
relations [26, 27] determined by

WA T4)% ¢* < D [e7V Da(e” )] ~ 0, (2.44)

where a is an index of the gauge group and T4 is the generator in the representation R.
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2.2 Central Charges in Four-Dimensional Conformal
Field Theories

In two-dimensional conformal field theories (CFTs), the central charge ¢ of the Virasoro
algebra plays an important role. In a curved background, it is related to the trace anomaly
as

c
T ,)) = ——R, 2.45
where R is the scalar curvature. In a four-dimensional conformal field theory, one also uses
the trace anomaly to define the analogs of the two-dimensional central charge c.
In four dimensions, the Weyl tensor C,,,, is given in terms of the Riemann tensor R, s

as

1 1
Chvpe = Buvps — 2 (GuoRup — GupRvo — Guo Ryp + Gupllyus) + g(guagw — GupGve) . (2.46)
Using the dual Rmwro — 5“”0‘55””:’5]%(1575 /4 of the Riemann tensor R, ,,, the Euler den-
sity is defined by (1/1672) R0 R"*°. The trace anomaly in a four-dimensional curved
background is then calculated to be

c a ~

(T",) = WCW,MC‘“’”” — WRWWRW”". (2.47)

The coefficients a and ¢ are supposed to play a similar role to the two-dimensional ¢, and
are thus called the central charges of the four-dimensional CFT.

In a four-dimensional superconformal field theory, since one has the energy-momentum
tensor T}, and the U(1)g current J4, the 't Hooft anomaly coefficients TrR? and TrR can
be defined as the coefficients of the divergence of the three-point functions (JiJ5J5) and
(JATHTP?), respectively. Interestingly, the central charges ¢ and a are related to these
coefficients TrR? and TrR [18, 19] via

a = % (3TrR* — TYR) , (2.48)
¢ = 3—12( TrR? — 5TrR) . (2.49)

When an asymptotically free gauge theory becomes strongly interacting in the infrared,
generically at a non-trivial infrared fixed point, it is difficult to calculate these coefficients
TrR? and TrR, let alone the central charges ¢ and a. However, using the 't Hooft anomaly
matching condition, the coefficients TrR* and TrR in the infrared can be obtained by
calculating them in terms of elementary fields at high energies. In fact, one can find that

TR =) (R)?, TtR=) R, (2.50)

i
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where R; is the superconformal U(1)g charge of the elementary chiral fermion ;.

In two-dimensional conformal field theory, there is Zamolodchikov’s c-theorem [28]. Let
us recall the c-theorem by considering an renormalization group (RG) flow connecting a
ultraviolet (UV) fixed point to an infrared (IR) fixed point. One has a two-dimensional
conformal field theory with the central charge cyy at the UV fixed point and also the one
with the central charge cir at the IR fixed point. The RG flow is described by the coupling
constants ¢'(t) at the energy scale e *A, and its gradient is given by their beta functions
3(g). ,

Zamolodchikov’s c-theorem then states that there exists a function ¢(g*(t)) connecting
cyv with cr, which monotonically decreases throughout the RG flow;

d . . D
et =B

where gl and gy are the values of the couplings at the UV and IR fixed point, respectively.
The inequality is saturated only at the fixed points. The existence of such a function ¢(g)
insures that the central charge at the IR fixed point is always smaller than that at the UV
fixed point;

c(guy) = cov,  c(gir) = Cr, c(g) <0, (2.51)

Cr < Cuv- (2.52)

The c-theorem is consistent with the interpretation that the central charge measures the
number of the degrees of freedom of a CFT. Through the RG flow, massive modes are
integrated out and the number of the degrees of freedom decreases.

An extension of Zamolodchikov’s c-theorem to four-dimensional CFTs has been pro-
posed in [29]. In a four-dimensional conformal theory, as the counterpart of the two-
dimensional central charge, either of the anomaly coefficients a and ¢ in (2.47) may be
chosen. The anomaly coefficient ¢ is known to violate the inequality cir < cyy in some
examples. On the other hand, it is known that ajg < ayy is satisfied in a large class of
four-dimensional field theories. Therefore, the anomaly coefficient a was expected to satisfy
a four-dimensional analog of the c-theorem, and the conjecture is called the “a-theorem
conjecture”. There has been much evidence found for the conjecture so far.

However, strikingly, a counter-example was found by [30] recently '° to rule out the
a-theorem conjecture. However, since it is known that the a-theorem conjecture is satisfied
in a quite large class of four-dimensional field theories, it is conceivable that a variant of
the a-theorem conjecture may be satisfied in four-dimensional conformal field theory *!.

2.3 a-Maximization

In section 2.1, we have explained that the conformal dimension of a chiral primary operator
is exactly determined by its U(1)g charge as in (2.33). Therefore, it is very important to

100nly one counter example is known at present.
HFor a recent overview of the subject and a-maximization, see [31].
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know the superconformal U(1)r charges of all the chiral primary operators in a four-
dimensional superconformal field theory.

Let us suppose that in a four-dimensional supersymmetric gauge theory, there is only
one global U(1) symmetry rotating the gaugino in the ultraviolet, and that the gauge theory
flows into a non-trivial fixed point in the infrared. If no additional global U(1) symmetry
is enhanced in the infrared, the global U(1) symmetry itself yields the superconformal
U(1)r symmetry at the infrared fixed point. Therefore, from the U(1) charge assignment
of the elementary fields, one can read the superconformal U(1)g charges of gauge invariant
operators.

However, besides the U(1) symmetry, if there are additional global U(1) symmetries
in the ultraviolet, one cannot a prior determine which linear combination of the global
U(1) symmetries gives the superconformal U(1)r symmetry at the infrared fixed point,
even though no U(1) symmetry enhancement occurs. Intriligator and Wecht have given
a prescription in [13] to pick up the superconformal U(1)r symmetry among all the lin-
ear combinations of the global U(1) symmetries. In this section, we will explain their
prescription i.e., a-maximization.

As mentioned above, let us suppose that the supersymmetric gauge theory with more
than one anomaly-free U(1) symmetry flows into its non-trivial infrared fixed point. Let
us denote the U(1) transformation rotating the gaugino as U(1),. One then can choose
the rest of the U(1) transformations so that the gaugino are left invariant under them. Let
us label them by I and denote them as U(1);. At the infrared fixed point, if there occurs
no additional U(1) symmetry enhancement, the superconformal U(1)g symmetry should
be a linear combination of the U(1) symmetries. In particular, the U(1)g charge Ro of an
operator O may be given by the flavor U(1); charges Fp; and the U(1), charge Ap of O
as

Ro(x) = Ao + Z 2! For, (2.53)
1

where ! taking a real value determines which linear combination of the U(1) symmetries
yields the superconformal U(1)g symmetry.

The superconformal U(1)g symmetry is distinguished from the other linear combina-
tions of the global U(1) symmetries by the fact that its U(1)g current is in the same
superconformal multiplet as the energy-momentum tensor. The fact has another conse-
quence that the 't Hooft anomaly coefficient TrF7R(z)R(z) of the three-point function
with the U(1); current inserted at one vertex and the U(1)g current at each of the two
remaining vertices is related to the one TrF; with the same U(1); current at one vertex
and the energy-momentum tensor at each of the remaining two vertices. More precisely,
one has

9TrFrR(x)R(x) = TrFy. (2.54)
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Let us briefly explain the relation (2.54). See [13] for more detail. Generically, even in
a non-supersymmetric field theory, coupling each current j! (i = 1,2) of two global U(1)
symmetries to a background gauge field A, with the field strength F;, in a background
metric g,,, causes the non-conservation of the current j! due to their 't Hooft anomalies;
for example,

v 112 v K122 v k1 ~
— FlM Fl Flﬂ F2 FQN F2 RMPO R oo
4872 wr T 1672 po 1672 po F 38472 Hrpas
where kq11, k112, k122, and Ky are the 't Hooft anomaly coefficients. Let us return to our
supersymmetric theory. Taking the current j}' to be one of the U(1) symmetries other than

U(1)g, turning off the background A}, and regarding the background A as that coupled
to the U(1)g current, one can see that

(2.55)

_ 1 -
0uf = 1oms [T R(2)R()] P Eyy + s (TR R Ry, (256)

1672
where we denoted ji' as ji, and F, was rewritten as Fj,.

In the superfield formalism, the background field strength F},, coupled to the U(1)g
current and the background curvature R, ,, forms the superWeyl tensor W,g, as compo-
nents. The current ji is also given by a component of a current superfield J; as

=ot; [Va, VB] Tty - (2.57)
In this background, it was discussed in [13] that the current superfield J; satisfies
D) =~ [TrF)] W, o (2.58)
T 3gqm2 1 g e ‘ '
Then, one can deduce that
5. it 1 5 =2 1 8 i po T
it = = V2| oy = sis [TFL) |G Fr e R Ry | (2:59)

It can be compared to (2.56), which proves (2.54).

Instead of the non-trivial background metric and gauge field coupled to the U(1)g
current, turning on background gauge fields Aﬁ with the field strength F ;{y coupled to the
rest of the global U(1) currents, the non-conservation of the U(1)g current jf is found to
be

1
1672

> [TrR(z)FFy] F"F],.

1,.J

aujlu% =

It has been discussed in [18] that the 't Hooft anomaly coefficient Tr RFTF); is proportional
to a positive definite matrix 7!/ appearing in the two-point function

1
1674

(jn()j(0)) =

x4

717 (10?0, — 0,0,) ( L )
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of the U(1); current jé and the U(1); current j;{ . More precisely, one has

1
TrR(z)FrFy = —§T”.

Regarding TrRF;F; as a matrix with indices I and J, one can see that it is negative
definite; Schematically,

TrR(z)FFy < 0. (2.60)

As we have seen so thus, the linear combination of the global U(1) symmetries giving
the superconformal U(1)g symmetry should satisfy the conditions (2.54) and (2.60). On
the contrary, if one regards the equation (2.53) as parametrizing all the combinations of the
U(1) symmetries with the parameters z/, instead of the definite values x!, the solution z’
to the equations (2.54) and (2.60) may be a candidate for giving the superconformal U(1)g
symmetry. Let us call this parametrized U (1) charge R(z) with 2!, the trial U(1)g charge.
Substituting the trial U(1)g charge R(x) into the central charge a in (2.48) formally, one
obtains

a(x) = 3—32 [3TrR(z)* — TrR(z)], (2.61)

which was called a trial a-function in [13]. It does not only give the actual value of the
central charge a with the value 2! giving the superconformal U(1)z symmetry at the
infrared fixed point, and it also yields a concise method to express the conditions (2.54)
and (2.60) as

0 o

% CL(I’) = O, W CL(I’) < O, (262)

for all I, J. Tt means that the candidate ! giving the U(1)g symmetry must be a local
maximum of the trial a-function a(z). The a-maximization procedure is thus to find local
maxima z! of the trial a-function a(z) to determine the linear combination of the U(1)
symmetries giving the superconformal U(1)g symmetry at an infrared fixed point.

In an asymptotically free gauge theory, the trial a-function can be calculated 2 in terms
of the trial U(1)g charges of elementary spinor fields in the ultraviolet to be

ao(2) = ag + 3 [3(Rifw) = 1) = (Rilz) = 1)] (2.63)

with the trial U(1)g charge R;(x) of the chiral superfield ®; whose spinor component is one
of the elementary spinor fields, where the sum runs over all the elementary matter fields,
and the contribution ag comes from the gauginos and is by definition independent of z!. If

12T this paper, we are not interested in the overall normalization of the a-function and will thus omit
it henceforth.
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no accidental U(1) symmetry is not enhanced in the infrared, thanks to 't Hooft anomaly
matching, one can use this trial a-function in (2.63) as a trial a-function in the infrared to
find the U(1)g symmetry at a infrared fixed point.

However, when the trial U(1)g charge of a gauge invariant chiral primary operator O
violates the inequality (2.34) at a point of 2/, if the point was a local maximum of the
trial a-function ag(x) in (2.63), one would encounter an inconsistency with the unitarity
of the theory; the inequality (2.34) for any gauge invariant operators should be satisfied
in a unitary theory, as explained in the previous sections. Therefore, it suggests that the
trial a-function ag(z) calculated in the ultraviolet cannot be used at the point of 2!, where
the trial U(1)g charge of any gauge invariant chiral primary operator violates the unitarity
bound (2.34), to identify the superconformal U(1)g symmetry.

For such a point of a7, it has been proposed in [11] to replace the trial a-function ag(x)
by

a(z) = ao(z) + Z {—a@i (Ro.(2)) + ao, <§)] , (2.64)

with the sum running over all the gauge invariant chiral primary operators whose trial
U(1)gr charge Rp,(x) violates the unitarity bound (2.34), where ap(R) is a function of a
parameter R;

ao (R) =do [3(R—1)° - (R-1)], (2.65)

with dp the number of the components of @. When the trial U(1)g charge of a gauge
invariant operator violates the unitarity bound (2.34), what is really happening is that the
operator become free at the infrared fixed point. Therefore, it has superconformal U(1)g
charge 2/3. Therefore, the improvement in (2.64) may be interpreted as subtracting the
individual contribution ae, (Ro,(z)) of wrongly interacting O; and adding the contribution
ap, (2/3) of free O; to the trial a-function ag(x).

Since the function ap(R) for any operator O has a critical point at R = 2/3; aj,(R =
2/3) = 0, at a point of 2! where an operator O has trial U(1)p charge just 2/3, the
trial a-function a(z) and all its first derivatives have the same value as its improvement
a(x) —ap (Ro(z)) + ap (2/3) and its corresponding first derivatives, respectively.

Within a region with the same content of gauge invariant operators apparently violating
the unitarity bound (2.34) in the whole parameter space {z’}, one uses a single trial a-
function. Let us call the trial a-function in such a region the local trial a-function. Since
the whole parameter space {x!} is covered with such regions, all the local trial a-functions
are combined into a global trial a-function, which is a continuous function of x’. Since
a local trial a-function is in fact a polynomial of degree 3 in z’s, one can find at most a
single local maximum, but in another region, one could obtain another local maximum. It
may suggest that one could find more than one local maximum over the whole parameter
space to lose definitive results on which linear combination of the U(1) symmetries is the
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superconformal U(1)r symmetry which we search for. However, we will see that it is not
the case for the theory which we will deal with in this article 3.

An explanation was given to carry out the prescription (2.64) in [12] by introducing a
Lagrange multiplier field L and a free field M. Let us suppose to turn on the superpotential

W = LO + hLM, (2.66)

with a coupling constant h. As far as the coupling h is non-zero, by shifting M — M —QO/h
and by integrating out M and L, one can return to the original theory.
In the new system, the trial a-function is given by

a(x) = a(zr) + ar(Rp(x)) + ap (R (x)), (2.67)

where a(z) is the trial a-function of the original theory. Since the U(1)g charge Rp(x) of
L is given by Ry (x) =2 — Ro(x), one can see that

ar(Rp(r)) = aL(2 — Ro(z)) = —ar(Ro(z)) = —ao(Ro(z)). (2.68)

With a non-zero h, it cancels the contribution ay (Ra(2)) in a(z) to give the original a(z).

Let us take the coupling h to zero, and assume that the resulting theory has a non-
trivial infrared fixed point. The remaining term in the superpotential gives the F-term
condition O = 0. It means that the operator O vanishes in the original interacting system,
and that the field M is propagating freely. Therefore, it describes the same low-energy
physics as when the operator O hits the unitarity bound. In fact, when the superconformal
U(1)g charge R(O) of O is less than 2/3, since the superpotential has U(1)g charge two,
the Lagrange multiplier L has U(1)g charge 2 — R(O). The free field M has U(1)g charge
2/3, and the U(1)g charge of the operator LM is more than two. Therefore, LM is an
irrelevant operator as a perturbation about the infrared fixed point. This is a consistent
result. One then finds the trial a-function

. 2
a(z) = a(z) — ao(Ro(x)) + an(Ry = g), (2.69)
which reproduces the prescription (2.64).
In [14], an extension of this argument has been discussed by using the auxiliary field
method in the Spin(10) gauge theory, where the discussion was armed with the electric-
magnetic duality, as will be explained in detail in section 5.

13In the case where more than one local maximum of a global trial a-function are found, one could invoke
a diagnostic conjectured by Intriligator [32]. The weak version of the diagnostic states that the correct
infrared phase is the one with the larger value of the conformal anomaly a. He used it and the strong
version to predict whether the phase under consideration is infrared free or interactingly conformal.
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Chapter 3

Spin(10) Theories and their
Electric-Magnetic Duals

We will explain the models which we will carry out the a-maximization procedure to study
its physics at non-trivial infrared fixed point in more detail. Therefore, we will only focus
on the non-Abelian Coulomb phase of them. For the other phases, see [3, 4, 33].

3.1 The Theory with One Spinor

In this section, we will briefly explain the non-Abelian Coulomb phase of four-dimensional
N = 1 supersymmetric Spin(10) gauge theory with a single chiral superfield ¥ in the spinor
representation and Ng chiral superfields Q" (i = 1,--- , Ng) in the vector representation.
First, we will not turn on any superpotentials, but in the next subsection, we will discuss
electric-magnetic duality of the theory with a superpotential.

The model is in the non-Abelian Coulomb phase for 7 < Ny < 21, where it has a
non-trivial infrared fixed point [3, 4]. It was discussed in [3, 4] that the dual description is
also available at the infrared fixed point.

This theory has the global symmetries SU(Ng) x U(1)r x U(1),, which are not broken
by any anomalies. Under the global symmetries, the matter fields transform as in Table 3.1.
Here, we chose a basis of the generators of the U (1) groups; under the U (1) transformation,
the gaugino W, are not rotated, while under U (1), transformation, it has charge one. There
is also an anomalous U(1) 4 symmetry. The charge of it for each field is also given in Table
3.1.

The gauge invariant generators of the classical chiral ring of this theory are given by

Mij _ QaiQaj’

Y =9TertwQ”,

Bil---is) — \IJTCFal---ag,\IJQalh . Qa5i57
Ez’1--~i9 — \I/TCFaln-ag\Ianlh . Qagig
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i, g,
Q' 10 ad -2 1 1
v 16 1 Ng -3 0
W, Adjoint 1 0 1 0
A#2~Na 1 1 0 0 2Ng

Table 3.1: The matter contents of the electric theory and their charges.

1 2 3 4 5 6 7 8 9 10
Figure 3.1: The number Ng of the vectors Q' where the gauge invariant operators exist.

Doil“'ie — gal-"aloQalil . Qaﬁiewaawg WQCLQC’JO’

Dllal-"ls — 501'"&10Qa111 o QaSZSWaanO,

Dy = 8al“-amQaru . Qamlm,

S = TeW,we. (3.1)

Here, a and ay, as, - - - are Spin(10) gauge indices. The matrix C' is the charge conjugation
matrix, and "% is defined as an antisymmetrized product of Spin(10) gamma matrices

as
1

n!

poran — —Tlor. .. panl,

Thus, a spinor bi-linear U7 CT% % is an antisymmetric tensor of rank n. Taking account
of the number of the antisymmetrized indices of the SU(Ng) global symmetry, one can see
that which operators exist depends on Ng. The values of Ny where each operator exists
are illustrated in Figure 3.1.

For 7 < Ng < 21, as mentioned above, the dual description of the original theory is
available, and we will call it the magnetic theory, while the original theory will be called
the electric theory. The magnetic theory is given by SU(Ng — 5) gauge theory with Ny
antifundamentals g;, a single fundamental ¢, a symmetric tensor s and singlets M*% and
Y?. It has the superpotential

7!

h .. oo 1
Wmag = ,l?Mqui sq; + ;?Y qq; + W det s. (32)
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SU(Ng —5) || SU(Ng) | UL)r | U(L)x
a,b, - i
Qai ] O 2 —@
q° = 1 —2Ng | R
a 2
s b (mm| 1 0 No—5
M 1 m —4 2
yi 1 o |[2Ng-2| -5
Wq Adjoint 1 0 1

Table 3.2: The matter contents of the magnetic theory.

Only for Ng = 7, one has the additional term

"
%eil...i76j1...j7M“j1 co MiSISY YT (3.3)
in the above superpotential W,,. As discussed in [3, 4], we need this extra term to
obtain the superpotential for Ng = 6 by giving mass to a vector, although its origin is not
identified clearly.

This magnetic theory is asymptotically free for Ny > 7. For Ny = 7, since the term
dets in the superpotential becomes a mass term of the symmetric tensor s, it decouples
in the infrared, where the gauge coupling becomes asymptotically free. Since the electric
theory is asymptotically free for Ng < 21, the region 7 < Ng < 21 is believed to be a
conformal window, where a non-trivial infrared fixed point exists.

This theory has the same quantum global symmetries SU(Ng) x U(1)p x U(1), as
the electric theory. The charges of the elementary fields in the magnetic theory under the
quantum global symmetry U(1) x U(1), is determined by the superpotential Wy,,s. Under
the global symmetries, the charges of the matters are summarized in Table 3.2, with the
gaugino w,. The basis of the global U(1) symmetries is chosen to be the same as in the
electric theory. The 't Hooft anomaly matching conditions are satisfied by the elementary
fields in the magnetic theory, which is one of the strongest evidences of the duality [3, 4].

The classical chiral ring of the magnetic theory is generated by the elementary singlets
M?% and Y along with the composite operators
~ 6121/1.4.(1]\7Q_5q—alil .

i1ING —5 o anQ—5iNQ757

(+B)
(*Dl)ail"'il\]QféS ~ 5a1--~aNQ,5(SCjz‘1)a1 te (SqfiNQig)aNQ—S (Swa)aNQ—mNQ_e aNQ_5’
(*D2)i1..-iNQ710 ~ 6a1"'aNQ75(S(Ii1)al e (qulNQfm)aNQ_lo

><(Swa)aNQ—gaNQ—s(Swa)aNQ_mNQ_G aNg-5

)

(*E)il'“iNQ_g ~ €a1,,.aNQ_5 (Sqil)al - (SgiNQ_g)aNQ—g

(o) 0 ()
S = Trw*w,, (3.0

ANG—69Ng—5
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Gauge Invariant Operators O Ul)p | U(1)
M~Q2 4 2
Y~ QU2 ONg—2 | -5
Br Q502 gNe 0 2N —10 | —1
E~Q%W%~ (5q)Ne(sw)? 2Ng — 18 3
D, ~QS 22~ (sq)Ne 52 (sw) g | —4n — 12 | n+ 8

Table 3.3: The charges of the gauge invariant operators with respect to the U(1) x U(1),
symietry.

where the operation % on the gauge invariant operators denotes the Hodge duality with
respect to the flavor SU(Ng) symmetry. The other conceivable gauge invariant chiral
superfields such as N;; = ¢; s g;, det s, qG; are redundant, due to the F-term condition from
the superpotential Wya.

The mapping of the gauge invariant operators between the electric theory and the
magnetic theory is shown in Table 3.3. The same symbols are used for the corresponding
operators in (3.1) and (3.4). We can check that the corresponding operators have the
same quantum numbers by using Table 3.1 and Table 3.2. It is interesting to note that
the classical moduli parameters Dy and E in the electric theory are given by the gauge
invariant operators containing the dual gaugino superfield w,,.

However, the electric gauge invariant operator Dy in (3.1) does not have its counterpart
in the classical chiral ring of the magnetic theory. This discrepancy seems to be a serious
problem. Indeed, the “quantum” chiral ring of both the theories must be identical as
long as they are dual. Since at present we do not know the precise description of the
quantum chiral rings, we cannot decide whether the discrepancy actually exists quantum-
mechanically. Therefore, there are no convincing reasons to believe that all the other
non-trivial checks discussed in [3, 4] are only accidental. Thus, in this paper, we assume
that the classical chiral rings are deformed by the quantum effects to be identical quantum-
mechanically. However, it is still unclear whether Dy is in the quantum chiral ring or not
1. For our analysis, this discrepancy causes a problem which prevents us from obtaining
the complete trial a-function defined globally, as will be discussed in the next chapter.
However, it will turns out that the local maximum of the trial a-function, which will be
found in the next chapter, is not affected by this issue.

n [3], it was discussed that the gauge invariant operator Dy in the electric theory correspond to the
operator (sq)V2~%q in the magnetic theory. Indeed, they have the same charges of all the global symmetries.
However, this operator can be rewritten as (¢g) - B- M by using F' term condition in the magnetic theory.
Furthermore, the operator ¢g is redundant from the F-term condition. Thus, the candidate D vanishes
in the classical chiral ring of the magnetic theory. If the correspondence stated in [3] is still correct, the
classical chiral ring must be modified quantum-mechanically, i.e., Dy in the electric theory vanishes or
(sq)V2~5¢ in the magnetic theory appears as a non-trivial generator in the quantum chiral ring.
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3.1.1 Turning on a Superpotential

Let us turn to the electric theory with the superpotential
1 i i
Wele = _ZNZ]Q Q .
W

by introducing the extra singlet V;; into the theory. In the next chapter, we will see that
the previous electric theory flows into this theory in the infrared for 7 < Ng < 9.
From the F-term condition

a%i'wele = %QlQJ = 07
one can see that the moduli parameter M% = Q'Q? are eliminated, and instead that the
new moduli parameter V;; shows up.

In order to obtain the dual description of this electric theory, one needs to get rid of
the gauge singlet operator M%¥ in the previous magnetic theory, and then one obtains the
superpotential Wy, without its first term M%¥g; s g; due to the absence of M% in this
case. The F-term condition from the modified magnetic superpotential does not impose
any constraints on the gauge invariant operator N;; = ¢; s q;, which was redundant in the
original theory. Although the use of NV;; seems the abuse of the notation, the two on the
both sides are in the same representation

Nij : (E 74a0>

of the global symmetries SU(Ng) x U(1)p x U(1), and can thus be identified.

We will see in the following chapter that the field N;; plays an important role, when
the gauge invariant operator M* hits the unitarity bound in the original Spin(10) theory.
Note that all the gauge invariant operators in the previous dual pair are retained except
for M¥ in this dual pair.

3.2 The Theory with Two Spinors

In this section, we will add one more spinor to the electric theory in the previous section.
More precisely, we will discuss four-dimensional N/ = 1 supersymmetric Spin(10) gauge
theory with two chiral superfields U; (I = 1,2) in the spinor representation, and Ny
chiral superfields @* (i = 1,---, Ng) in the vector representation. We will also turn on
no superpotentials. The remarkable difference from the theory with the single spinor
is that its dual magnetic theory has two gauge groups, as will be explained in detail
later. This theory is believed to be in the non-Abelian Coulomb phase for 6 < Ng < 19,
where the electric-magnetic duality is available [7]. The quantum global symmetries are
SU(Ng) x SU(2) x U(1)p x U(1),. Under the U(1)p transformation, the gaugino is not
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Spin(10) | SU(No) | SU©) | UL)r | U(1)y
Q' 10 O 1 —4 1

Table 3.4: The matter contents of the electric theory.

I
No
0 1 3 4 5 6 7 8 9 10
Figure 3.2: The number Ng of the vectors Q' where the gauge invariant operators exist.

rotated, while it has charge one under the U(1), transformation. The charges of the matters
are listed in Table 3.4.
The gauge invariant generators of the classical chiral ring of this theory are given by

Mij — QaiQaj’

Vi = W Closoy) T, Q"

Ciris = YT O (g) I Paraag ,Quin . .. Qusia

B = W] C(030x) T 50 ,Q00 - Q%5

Frit = G 0(oy) T 00, QR L Qe

By = W Clogo )T Qo i,

G = V] C(o90x)" TV ;¥ .Cloe0x ) T,

H 4 = W C(090x) T W ;W3 Cogox ) T W LQ™"2 - - Q5
Doir"ie — €a1~-~a10Qa1i1 . QaﬁiG Waaws Waaf)alO,

Dlgmis — €a1---a10Qa12'1 . Qasiswaagalo’

D2i1“~i10 — gal"'aloQalil . Qaloiw,

S = Te WW.,, (3.5)

where the gauge indices a and aj,as,--- and the charge conjugation matrix C' are the
same as in the one spinor case. The matrices ox (X = 1,2,3) are the Pauli matrices for
the flavor group of the spinors. Figure 3.2 displays what gauge invariant operators are
available at each value of Ng.
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SU(Ng —3) | Sp(1) || SUNg) | SU(2) Ul U(1),
a,b,- . Oz,ﬁ,"' i7j7"' ]7J7...

Gui a8 1 8 1 2§gj§ T
Ol . ! 2 | w5 | N
% 0 1 1 3| —2Noxis | i
s o 1 1 1 o -
¢ 1 2 1 2 2Ng —2
M 1 1 m 1 -8 2
Vi 1 1 O 3 2N, — 4 —1

Table 3.5: The matter contents of the magnetic theory.

The magnetic theory is given by an SU(Ng — 3) x Sp(1) gauge theory with matter
fields given by Table 3.5, and Its superpotential is given [7] by

Wmag - MijCjaiSaijbj + Y)i(q_aiqg( + 5aBEIJq_ aal ab ,BJ + gaﬁ(o-Xo-2)IJq aal % tﬁJ (36)

One can check that it has the same quantum global symmetries as the electric theory. The
one-loop beta functions show that the SU(Ng — 3) gauge coupling constant is asymptot-
ically free for Ng > 7, while the Sp(1) gauge coupling constant is asymptotically free for
Ng < 7. Thus, either of them is asymptotically free for arbitrary Ng. Therefore, the dual
pair does not have the free magnetic phase.

The magnetic theory has the counterpart of all the gauge invariant operators of the
electric theory. They are the fundamental singlets M% and Y% and the composites

a1 GNH -3 = =
(*C)il“'iNQ73 ~ & @ ayiy " 'qGNQ 3iNG -3
a1 AN, -3 ~ 1ol —13J
(*B)Xi1-~~iNQ_5 ~ & @ Capqari; " QaNQ 5iNG— 5an (UQUX)IJQ ang-3’

a1 AN~—3 —
(*F)i1~~~iNQ,7 ~ & Q €aBE~sYGayiy * QaNQ,ﬂNQ -

Q,SI{]Q (UQUX)IJQaNQ,5q,Z§Q,4(020X)KLCIaNQ,y
(<E) Xiring o ™ Earang-sExv2(80,) "+ (8Giyg o) V™

X(Swa)aNQfsaNQf7(Swa)aNQfeaNQ sqNQ 4qNQ -3

VA 9
G ~ €a5tal<02)jjtﬁJ,

L a Ngo-3 = . 1ol BJ
H)11-~~’LNQ74 ~ Erj€& Q saﬂQalu Q(JLNQ 4’LNQ 4q aNQ St )

an,_g ONg—5 ANg—4 ANG-3
) gy qy qz )

(
(*Do)il'“iNQ—(i ~ 5XYZ£a1--~aNQ,3 (8@'1) (SqiNQ76
( e

*Dl)ail-"iNszz ~ Carang - 35XYZ<Sq_i1)a1 T (SQZ'NQ

AN - _7aN ANG—5 GNg—4 ONo-3

X (sw®)*Ne "0 g y 4z "

— a —
(*D2)i1"'iNQ710 ~ 5a1~--aNQ,35XYZ(5q11) "'(SqZ'NQ 10) Mot

GN,—5 ONoH—4 AN,H—3
X<Swa)aNQ79¢1NQ7 (sw )&NQ 7‘1NQ q Q™ qY Q™ 7 Q™ ,
S ~ Trw,w®, S ~ Trw,w”

, (3.7)
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Gauge Invariant Operators O Ul)p | U()
M~Q? s 2

Y ~QU? ONg —4 | —1
Cro Q3T a3 ONg — 12| 1
BNQ5\I;2NqNQ75q/2 2NQ —920
FrQTU2~ gNe— gt 2N — 28 5
E~Q%W%~ (5q)Ne0(sw)?¢? 2Ng—36 | 7
G Wi 12 AN, —4
H~ Q4 W2~ gNe—4g't 4Ng — 16 0
D, ~QS 22~ (sq)Ne 6720 (sw) g3 | —8n — 24 | n+ 8

Table 3.6: The charges of the gauge invariant operators with respect to the U(1) x U(1),
symmetry.

where w, and W, are the gaugino superfields of the SU(N¢g — 3) and Sp(1) gauge interac-
tions, respectively,? and the operation * is the Hodge duality for the flavor SU(Ng) indices.
We can check that each of the operators has the same quantum numbers as that of the
electric theory, as shown in Table 3.6.

However, there exist more gauge invariant generators in the magnetic theory than in
the electric one, as we pointed out in [15]. They are given by

Uy = dets,

Uixy = €a1---aNQ_3€b1---bNQ_3S
Usxy = 5XX1X25YY1Y25a1»~-aNQ,35b1»--bNQ,3

—4 a -3 b —4 b -3
aiby an,—sbng,—5 ONQ Ng Ng Ng
XS s @ @T7gx, dx, Qy, dy, )

Us = €X1X2X3€Y1Y2Y3€a1“'aNQ—38b1"'bNQ—3

ang-3 bng-3

a1b1
. qY ,

. SaNQ74bNQ74q

an,—5 an,—4 an,—3 bn,—5 bn,—4 bn,—3
XlQ qXQQ QX?,Q qYlQ anzQ an3Q ’
_ _ Np—4 ANoH—3
(*E0>Xi1~--iNQ75 = 5XYZga1'-~aNQ73 (th)al e (SQiNszs)aNQ%qY N 4z © )
(*E1>aXi1"'iNQ—7 = 5a1,,_aNQ735XYZ(5q_Z-1)“1 T (Sq—iNQ77)aNQ77
% (Swa)aNQfﬁaNQfsq;NQ*‘quNQ*3a’
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(*[U)Xil-"iNQ—4 = gal"-aNQ—3(Sqi1)al e (SqiNQ—4)aNQ 4qX © )
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(*[1)aXi1"'iNQ—6 = 8al'“aNQ—s (S@l)al o ('S(jl'NQ—(S)CLJ\[6276 (Swa)aNQ75aNQ74qXNQ ’
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Y

2The index « on the gaugino superfields w, and W, is that of Lorentz spinors, which would not cause
any confusion.
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Up to this moment, we have not succeeded to prove after some algebra that these operators
are included in the classical chiral ring of the electric theory. We even do not know that
it should be. Similarly to the one spinor case in the previous section, we will assume that
the classical chiral ring is deformed by the quantum effects and that the quantum chiral
rings of both the theories are identical to each other.

We can check that the 't Hooft anomaly matching conditions are satisfied by the mag-
netic theory.
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Chapter 4

The Spin(10) Theories via
a-Maximization

In this chapter, we will carry out the method of a-maximization to determine the supercon-
formal U(1)g charges of all the gauge invariant chiral primary operators in the Spin(10)
gauge theories at the infrared fixed point.

In the models, at different trial superconformal U(1)g charge assignments, different
gauge invariant chiral primary operators hit the unitarity bounds. Therefore, one needs to
follow the prescription (2.64) to construct the trial a-function globally over all the U(1)g
charge assignments. This will be done for the one spinor case in section 4.1 and for the
the two spinor case in section 4.2. There will turn out to exist a local maximum of the
trial a-function for each flavor number Ny in the two case. The local maximum will be
confirmed to be the same as in the magnetic description for all the cases.

In particular, among all the cases, the cases where gauge invariant chiral primary
operators indeed hit the unitarity bounds, are interesting. In fact, it will turns out that
they are elementary fields in the magnetic theory, and one does not need the prescription
(2.64) to find the identical local maximum to the one in the electric theory. Therefore, the
magnetic description yields another support for the proposal (2.64).

For the interesting cases, furthermore in the next chapter, we will find that the electric
theory with no superpotential is identical to the one with a superpotential at the infrared
fixed point. The dual pair of the former is thus identical to that of the latter in the
infrared. The auxiliary field method in the electric theory offers a satisfying description
of the renormalization flow of the dual pairs, which is consistent with the picture in the
magnetic theory. In particular, the auxiliary field method gives a clear description of the
emergence of new massless degrees of freedom in the electric theory.

Although these results are not affected, there are however a few subtleties, due to the
mismatch of the classical chiral rings between the dual pair, and due to the lack of our
knowledge about the a-maximization procedure applied to gauge an invariant operator in
a non-trivial representation of the Lorentz group, as will be discussed later. Therefore,
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we haven’t confirmed that the local maximum was also the unique local maximum of the
global trial a-function.

4.1 The One Spinor Case

In this section, we will use a-maximization to identify the superconformal U(1)z symmetry
of the Spin(10) theory with a single spinor and Ng vectors for 7 < Ny < 21 at the non-
trivial infrared fixed point. We will find that there is a local maximum of the global trial
a-function, which is consistent with the conjectured presence of the non-trivial infrared
fixed point for 7 < Ng < 21. Furthermore, as we will see below, at the local maximum,
the meson M* hits the unitarity bound for Ng = 7,8,9, while no gauge invariant primary
operators hit the unitarity bounds for 10 < Ny < 21.

In order to construct the trial a-function in this model, assuming no accidental U(1)
symmetry ! enhanced in the infrared, one can see that a trial superconformal U(1)g sym-
metry is given by a linear combination of U(1)r and U(1), in Table 3.1 as

U()r = 2U(1)5 + U(1), (4.1)
with a real number z. Thus, the U(1)g charges of the matter fields can be expressed as
R(Q) = —2x + 1, R(¥) = Ngx — 3. (4.2)

We will determine the value of x by using a-maximization to identify the superconformal
U(1)r symmetry at the infrared fixed point. For convenience, we will use a parameter
R = R(Q) instead of = throughout this section.

At a particular value of z, if there are no gauge invariant operators hitting the unitarity
bounds, we can give the trial a-function in terms of the elementary fields as

ao(R) = 90 + 16F [R (V)] + 10NoF [R (Q)] , (4.3)

where the function F(z) was defined by F(z) = 3(z — 1) — (x — 1). The first term on
the right hand side of 4.3 comes from the contribution of the gaugino, which are forty-
five Weyl spinors of charge one with respect to the U(1)g symmetry, thus giving 45 X
[BR(N\)? — R(N\)] = 90.

When some of the gauge invariant chiral primary operators hit the unitarity bounds,
they decouple from the remaining system and become free fields of the U(1) charge 2/3.
Therefore, following the prescription (2.64) explained in section 2.3, one needs to improve
the trial a-function ao(R) as

a(R) = 90 + 16F [R (V)] + 10N F [R(Q)] = > [F[R(0:)] - Fy, (4.4)

i

'More precisely, we assume no accidental U(1) symmetry enhancement which does not accompany any
gauge invariant operators hitting the unitarity bounds.
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where O; are the gauge invariant operators hitting the unitarity bounds. However, at the
values of x with the same set of the operators hitting the unitarity bounds, one can use the
same trial a-function (4.4), and, as illustrated for Ng = 7 in Table 3.3 2, one only have to
divide all real values of R into several regions, where one can use one local trial a-function
(4.4). Indeed, the unitarity bound of each gauge invariant chiral primary operator yields
the condition on R as

R(M)=2R>?2 = R>3,
R(Y)=Ng—6—(Ng-1)R>3} = Ry (No-7%),
R(B)=Ng—6—(Ng—5R>2 = R<g=5(No-%),

R(E) =(Ng—6)— (Ng —9)R > 2 = R<g5W0Ve-3%), (4.5)
R(Dy) =6R+2>2 = R>-Z

R(Dy)=8R+1>1 = R>0,

R(D,) = 10R > 2 = R>Li

and, combining these conditions, one may divide all real values of R into several region
where one local trial a-function (4.4) can be defined, as sketched for Ny = 7 in Figure
4.1. Combining all the local trial a-functions, one thus obtain the global trial a-function
defined over all real values of = or equivalently R.

There is a subtle point, as mentioned above, about what the chiral primary operators
are quantum-mechanically at the non-trivial IR fixed point. The gauge invariant chiral
superfields M, Y, B, D,, and E parametrize the classical moduli space of the electric
theory. If we assume that the quantum moduli space is the same as the classical one, which
is believed to be the case for the conformal window of SQCD, these operators should be
chiral primary operators. However, it is not clear whether Dy is chiral primary or not, as
discussed previously. In the region R < —2/9 where Dy hits the unitarity bound, which
local trial a-function (4.4) should be used depends on whether Dy is chiral primary or
not in the infrared. Therefore, we will try a-maximization for both cases to find a local
maximum in the region R < —2/9. However, one can find there is no local maximum in
the region for the both cases.

For Ng > 8, the gauge invariant operator D; is available, as in Figure 3.1, and it is
in the spinor representation of the Lorentz group. If the operator D is a chiral primary
operator, in the region where it hits the unitarity bound, we cannot construct a local trial a-
function, because we at present do not know how to extend the a-maximization procedure
to an operator like D; in a non-trivial representation of the Lorentz group. Therefore,
assuming that the operator D; is not a chiral primary operator in the infrared, we will
proceed to construct a global trial a-function, and we will see below that the solution to

2The unitarity bound for a spin one-half field is given [8] by D > %, which gives the bound for U(1)g
charge; R > 1.
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Hitting Operators | Hitting Regions
I M, (Dy) R< -2
11 M —2<R< &
111 M,Y E<R<g
v M.,Y,B §<R<3
\Y Y, B R>:

Table 4.1: The four regions of the U(1)g charge R for Ng =7

Dy weeeeensenss B

R

I II I1T v \Y
Figure 4.1: A sketch of operators hitting the unitarity bounds for the theory with 7 vectors.
Each of the regions from I to V are separated at R(Q)) = —2/9, 1/18, 1/6, 1/3, respectively.
The arrows show the regions where the corresponding operators hit the unitarity bounds.

the a-maximization condition (2.62) is found in the other region, where D; does not hit
the bound. Therefore, the local maximum remains valid, even when the operator D; is
indeed chiral primary in the infrared. However, we never exclude the possibility that there
is another local maximum in the region where the operator D hits the unitarity bound, if
the operator Dj is chiral primary in the infrared. If this is the case, it would be interesting
to determine which the local maximum gives the superconformal U(1)z symmetry at the
infrared fixed point. In addition, there is no such a problem for Ng = 7.

We will demonstrate the a-maximization procedure for the case of Ng = 7 vectors @',
and then will report our results on the other values of Ng. Before proceeding, let us make
a comment on the structure of the divided regions of R. When one looks at the operators
hitting the unitarity bounds from a large negative value of R to a large positive value, the
order of the operators hitting the unitarity bound could change, depending on the number
Ng. It turns out from the unitarity bounds (4.5) that for the cases Ng > 10, the order
of the operators hitting the bound is the same, This greatly facilitates our study for the
cases Ng > 10 and allows us to give our results in a uniform way. However, one needs to
consider each case for Ng = 7,8,9. One also finds that, for the cases Ng > 10, there is a
region where none of the gauge invariant operators hit the unitarity bounds, but no such
regions for the cases Ng = 7,8, 9.

In the case of Ng = 7 vectors, there are five regions dividing the parameter space of
R, as can be seen from Table 4.1 and as illustrated in Figure 4.1. In each region, one finds
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the local trial a-function a(R) (4.4) as

;

777 (I:R<-2),
ao(R) + fu(R) (II:-2<R<%),
a(R) = ¢ ao(R)+ fu(R)+ fy(R) (III: L <R<1), (4.6)
ao(R) + fu(R) + fy(R) + fp(R) (IV::i<R<1),
| ao(R) + fv(R) + f5(R) (V:R>3),
where fo(R) are defined by
fulR) = LI 3 (RO~ 1 - (RO - 1)) TP L2
fe(R) = ~Ng[B(R(Y) — 1)~ (R(Y) = 1] + Ng- 2.
FalR) =~ [3(R(B) -1’ (R(B)—1)] + —— 2. 2 )
BT T (NG — 5)15! (Ng —5)!5! 9 '

Wlth NQ ="T.

For R < —2/9, where Dy hits the unitarity bound, as mentioned above, we will try
to implement the a-maximization procedure for both of the cases whether Dy is chiral
primary or not with the two functions

a(R) = ap(R) + fmu(R) + fp,(R), if Dy is chiral primary, (4.8)
a(R) = ap(R) + fu(R), if Dy is not chiral primary,
where

with Ng = 7. However, one can easily see that both the functions in (4.9) have no local
maximum in this range R < —2/9.

The global trial function a(R) is illustrated in Figure 4.2. Although it is locally a
polynomial of degree three in R for each of the five regions, it gives two local minima as a
whole. As can be seen from Figure 4.2, there is a unique local maximum, where only the
mesons M*% are free and the U(1)x charge gives R = 1/30 in the region I1. It is the local
maximum

. 3NZ — 21Ng — 12+ 2\/—(NQ — 6)(N3 — 29Ng + T3)
(@)= 3(Ng +3)(Ng — 1) ’
) 9N3 — 33N + 54 + 2Ng \/—(NQ — 6)(NZ — 29Ng + 73)

6(Ng +3)(No — 1)

(4.11)
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0.1 0.2 0.3
R

_— DO is not chiral primary
------------------ DO is chiral primary

Figure 4.2: The global trial a-function a(R) for Ny = 7. Dotted line corresponds to the
case where Dy is chiral primary while solid line corresponds to the case where Dy is not
chiral primary.

of the function ag(R) + fu(R) for Ng = 7.

Strictly speaking, the U(1)r symmetry should be expressed as U(l)g = U(1), +
2U(1)p +yU(1) ) instead of (4.1) at the local maximum because U(1); symmetry which
transforms only M% appears at the IR fixed point. Here, y is determined so that the
U(1)r charge of M becomes 2/3. However, the U(1)x charges of the other gauge invari-
ant operators, except for that of the operator M%, can be expressed as the sum of those
of the component fields given by (4.11), because they have no charges under the U(1),,
symmetry.

For Ng = 8,9, as can be seen from Table 4.2, there are also five regions on the line of
R, as in Figure 4.3. As is different from the case of Ny = 7, there is no region where the
three gauge invariant operators M, Y, and B hit the unitarity bounds at the same time,
but a new region V, where only the operator Y hits the unitarity bound, appears. Only
for Ng =9, the operator E is available, but it does not violate the unitarity bound over
all the values of R. If the spinor exotics D; are chiral primary in the infrared, our results
for the regions I and II would be incomplete. The global trial a-function a(R) is similar
to the one for Ng = 7 and have, in the region III, a single local maximum given by (4.11)
with Ng = 8,9 substituted for each case, where also only the meson MY is hitting the
unitarity bound to be free in the infrared. This result does not depend on whether Dy is
chiral primary or not. The local maximum would be retained even after taking account of
the exotics D;.

For 10 < Ng < 21, it is remarkable that there exists a region V with no gauge invariant
operators hitting the unitarity bounds, as shown in Figure 4.4. The parameter space of R
is divided into seven regions, as can be seen from Table 4.3. The regions I and II could be
incomplete due to the exotics D;. The global trial a-function a(R) has a profile similar to
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Hitting Operators Hitting Regions

I M, (Do) R< -2

II-+111 M —§ S R< 55N — %)
L M,Y 7o TNe—F) SR<3
v Y § S R< o5 (Ng— %)
VI Y, B R> 5 —(Ng— %)

! Y
Dy =-eeer ; — B
L . > R

I IT 11 v \Y% VI
Figure 4.3: The operators hitting the unitarity bounds for the theory with Ng = 8 and 9
vectors. The arrows show the regions where the corresponding operators hit the unitarity
bounds.

the one in Figure 4.2. One finds the unique local maximum at

B 3N5 —24Ng — 15+ \/2885—N629

R(Q) =

3(N2 - 5) ’
6]\% +90 — Ng, /2885 — Né
R(V) = 4.12

in the region V, where no operator hits the unitarity bound. The local maximum also
remains valid even after taking account of the unitarity bound of D;.

So far, we have determined the superconformal U(1)g charges of the gauge invariant
chiral primary operators in the electric theory. One might wonder whether the same results

M
Dy Y
Dy DR B
Dy <oy — P

: : .- P

I IT I11 v \Y% VI VII VIII
Figure 4.4: The operators hitting the unitarity bounds for the theory with 10 < Ng < 21
vectors. The arrows show the regions where the corresponding operators hit the unitarity
bounds.
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Hitting Operators Hitting Regions
I M, Dy, (Dy) R< -2

II+111 M, D, —2<R< &

v M E<R<g

\Y% no operators s <R< NQl—l(NQ -2

VI Y NQ_l(NQ - <R< NQl—s(NQ -2
VII Y, B ﬁ(]\f@ -2 <R< NQI_Q(NQ — &)
VIII Y, B, E R> 5o—5(No— %)

Table 4.3: The six regions on the line of the U(1)p charge R for 10 < Ng < 21.

could be obtained in the magnetic theory. Actually, this is automatically guaranteed by
the 't Hooft anomaly matching condition [34]. Since the magnetic theory saturates the
anomalies of all the global symmetries of the electric theory [3, 4], the a-function in the
magnetic theory is identical to the one in the electric theory, even when the gauge invariant
operators hit the unitarity bounds as long as the hitting operators are the same. By using
(4.2) and Table 3.2, the U(1)g charges of the elementary fields of the magnetic theory can
also be determined from the U(1)g charges of ) or ¥ determined above.

The U(1)g charges of the elementary fields of the electric theory and those of the
magnetic theory are plotted in Figure 4.5 and 4.6. They indicate that the U(1)g charge of
each elementary field is close to 2/3 in the electric theory for large Ng and in the magnetic
theory for small Ng. One therefore may regard that the electric theory and the magnetic
theory are weakly interacting for large and small N, respectively, which is consistent with
the conventional expectation.

In the one spinor case, we have found the unique local maximum of the a-function for
10 < Ng < 21, where there are no gauge invariant chiral primary operators hitting the
unitarity bounds. On the other hand, for 7 < Ng < 9, one also found the unique local
maximum of the a-function, but at the local maximum, one finds that the gauge invariant
operators M% are free fields at the infrared fixed point. Note that the existence of the local
maximum is consistent with the conjecture [3, 4] that this theory is in the non-Abelian
Coulomb phase for 7 < Ng < 21.

4.2 The Two Spinor Case

In this section, we will briefly give our results about the a-maximization procedure in the
Spin(10) theory with two spinors and Ng vectors for 6 < Ng < 19. Since our analysis
of this case is quite similar to that in the previous section, we will not repeat a detailed
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Figure 4.5: U(1)g charges of vectors () and spinors ¥ in the electric theory.
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Figure 4.6: U(1)g charges of antifundamentals ¢, a fundamental ¢, a symmetric tensor s,
and singlets M and Y in the magnetic theory.
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explanation about it.

However, before proceeding, let us make a comment on two points, which is distinct
from the one spinor case.

First, the magnetic theory has two gauge groups. From the one-loop beta functions of
the two gauge couplings, one can see that the SU(Ng — 3) gauge coupling is asymptotically
free for Ng > 7, while the Sp(1) coupling is asymptotically free for Ny < 7, perturbatively.
Except for Ng = 7, since there is no flavor number Ny where both of the gauge coupling
constants are asymptotically free at the one-loop level, it might happen that either of the
gauge interactions could be free at the infrared fixed point 3. However, assuming below
that both of the gauge interactions are not free at the infrared fixed point, a-maximization
will be carried out in the magnetic theory.

Second, as was discussed in the previous chapter, the classical chiral ring of the electric
theory is not identical to the one of the magnetic theory. Therefore, at some values of the
trial U(1)g charges, the set of the gauge invariant operators hitting the unitarity bounds in
the electric theory is different from the one in the magnetic theory, which prevents us from
finding the unique and correct trial a-function. This problem is parallel to the problem
concerning with the operator Dy in the one spinor case. However, there are more extra
operators as in (3.8) compared to the one spinor case, and, depending on whether each of
them is chiral primary or not, there are many possibilities to consider, if we will use the
same strategy as in the one spinor case. It is formidable for us to carry out the method of
a-maximization for each of all the possibilities. Therefore, we will pick up two of them; the
case that all the extra operators in (3.8) are not chiral primary - the classical chiral ring of
the electric theory - and the other case that they are all chiral primary - the classical chiral
ring of the magnetic theory. Thus, we will carry out the a-maximization procedure for
the electric theory and the magnetic theory with their independent classical chiral primary
operators. Although we will implement the method of a-maximizationwith the different
global trial a-function in the electric theory from the one in the magnetic theory, it will
turn out that both the global trial a-functions have the identical local maximum, which is
consistent with the duality conjecture [7].

4.2.1 On the Electric Side

Let us begin with the electric theory. Similarly to the one spinor case, the trial U(1)g
charges of the matter fields may be given by

R(Q)=—4z+1,  R(¥)= Noz —1, (4.13)

with the trial U(1)g symmetry given by a linear combination of U(1)r and U(1), in Table
3.4 as

U1)p = 2U(1)r + U(1), (4.14)
3The possibility will be discussed in detail in Chapter 6.
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Figure 4.7: The ranges of x where each operator hits the unitarity bound for Ny = 6.

with some real number x, assuming that there are no accidental global U(1) symmetries 4

in the infrared.

For Ng = 6, as can be seen from Figure 3.2, all the gauge invariant operators are M,
Y, C, B, G, H, Dy, and S in (3.5). The U(1)g charges of the gauge invariant operators
can be written in terms of = as ®
RM)=-8x+2, RY)=8x-1, R(C)=1, R(B)=-8x+3,
R(G)=24x —4, R(H)=38z, R(Dy) = —24zx+38 (4.15)

as can be seen from Table 3.6. The unitarity bound conditions of them divides all the
values of x into seven regions, as in Figure 4.7 °.
The global trial a-function is given by

([ ao(z) + fy(2) + fe(z) + fu(), (r < 3)
ao(z) + fr(2) + fa(x), (p<e<y)
ao(x) + fur(x) + fr (z) + fo(o), (<<%
a(x) = { ao(w) + fulz) + fy (o), (3% <7< 3) (4.16)
ao(z) + fu (), (31 <7< gp)
ao(z) + fu(x) + f5(2), (r<2<g)
[ ao(z) + fu(x) + [B(2) + [ (R), (55 <)

where ag(z) is the local trial a-function with no operators hitting the unitarity bounds, and
the function fo is similarly defined to the one in (4.7). The function (4.16) has a unique
local maximum at

18Ng + 6 — \/—4N}, + 143N3 — 928N, + 1824
6(Ng + 8Ng — 12) !

xr =

(4.17)

4See the footnote 1 in this chapter.

®Since the glueball S of the U(1)g charge 2 never hits the unitarity bound, we will not take account of
S.

6Since the operator C' does not hit the unitarity bound for any value of z, it does not appear in the
figure.
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Figure 4.8: The ranges of = where each operator hits the unitarity bound for Ng = 8.

with Ng = 6, where only the operator M* hits the unitarity bound and is free at the
infrared fixed point.

For Ng = 7, one can also find that only M% hits the unitarity bound at the local
maximum (4.17).

For Ng = 8, all the values of z are divided as Figure 4.8 7. The global trial a-function

has a unique local maximum at
12N — /2900 — N3
(4.18)

r = y

6(INg — 20)

where no operators hit the unitarity bounds.
For 9 < Ng < 19, a local maximum is found at (4.18), where no gauge invariant
operators hit the unitary bounds.

4.2.2 On the Magnetic Side

Let us turn to the magnetic theory. For Ng = 6, the gauge invariant operators are Uy, Uy,
Us,, Ey, Iy, I, and J; in (3.8), which exist only in the magnetic theory, besides M, Y, C,
B, G, H, Dy, and S in (3.7), with their trial U(1)g charges given by (4.15) and by

R(Uy) =24z — 2, R(U,) =4, R(U,) = —242+10, R(F,) = —8z+5,
R(I) =8z +2, R(I,)=3, R(J)=16x. (4.19)

Their unitarity bounds are illustrated in Figure 4.9 8.
For the region 1/9 < x < 7/18, where neither of the operators which exist only in the
magnetic theory hits the unitarity bound, the global trial a-function should be the same

"In this case, the subtlety arises in the region < 1/4 due to the lack of our knowledge of a-maximization
for Lorentz spinor operators like Dy,. The unitarity bound for a gauge invariant Lorentz spinor is R(O) > 1
[8]. Our strategy for the issue is exactly the same as in the one spinor case.

8Since the operators C, U; and I; do not hit the unitarity bounds for all the values of z, they do
not appear in Figure 4.9. The bold arrows correspond to the operators which exist only in the magnetic
theory. The dotted arrows correspond to the Lorentz spinor operators, which we ignore as in the previous
subsection.
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Figure 4.9: The ranges of x where each operator hits the unitarity bound for Ny = 6 in
the magnetic theory.

as the one in the electric theory, the latter of which has a local maximum in the range.
Therefore, the global trial a-function in magnetic theory has at least one local maximum
at the same value of x. One can also show that it has no local maximum outside the region
1/9 <z <7/18.

For 7 < Ng < 19, this is also the case. In the magnetic theory, we obtain the same
local maximum as in the electric theory, and there is no other local maximum of the global

trial a-function.
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Chapter 5

Discussions

We have seen so far that the meson M% = Q'Q)? has no interactions for 7 < Ng < 9 in the
one spinor case and for 6 < Ng < 7 in the two spinor case at the infrared fixed point. In
this chapter, by using the electric-magnetic duality [3, 4, 7], we will give more elaborate
discussions about what actually happens in the infrared when the meson becomes free.

The meson operator Q'@ in the electric theory corresponds to the elementary singlet
M in the magnetic theory. For 7 < Ng < 9 in the one spinor case, the singlet M% becomes
free at the infrared fixed point. Therefore, the coupling constant of the interaction term
M'g; s@; in the magnetic superpotential (3.2) must vanish at the point. It means that
the interaction term should be irrelevant at the infrared fixed point. Since we now know
the exact superconformal U(1)g charges of the chiral primary operators at the same point,
and thus the exact conformal dimensions of them, we can precisely determine whether the
interaction term MYg; s q; is irrelevant or not at the fixed point.

In fact, taking account of the charge assignments in Table 3.2, one can see that the
U(1)g charge of g; s g; is 4z, and at the infrared fixed point, R(g; s g;) > 4/3. Since the free
meson operator M*% has the U(1)x charge 2/3, the U(1)y charge of the interaction term
Mg; sg; is greater than 2. Therefore, the interaction term is irrelevant at the infrared
fixed point. This is consistent with the result that the meson M% decouple from the
remaining interacting system to be free in the infrared.

To the 6 < Ny < 7 case with the two spinors, the same argument can be applied to find
that the interaction terms of the meson M% in the magnetic superpotential is irrelevant
at the infrared fixed point.

Furthermore, let us consider another implication of the irrelevant interaction term.
Since the equation of motion gives

0 h

AT Wrnag = E

oM Nij =0,

where N;; = §; s q;, if its coupling constant h were not zero, the gauge invariant operators
N;; would be redundant. This is indeed the case for 10 < Ng < 21 with one spinor and for
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8 < Ng < 19 with two spinors. However, for 7 < Ng < 9 with one spinor and 6 < Ng <7
with two spinors, since h goes to zero', the operators N;; do not have to be redundant.
Therefore, N;; should be a new generator of the chiral ring in the magnetic theory.

Furthermore, the magnetic theory with vanishing 4 in the superpotential is dual to the
same Spin(10) theory but with the superpotential

Wele = NijQina

with the gauge singlets N;; and the free singlets M| which was explained in section 3.1.1
for the theory with one spinor but it is also the case for the theory with two spinors, though
we haven’t previously mentioned about the latter case. The singlets IV;; can be identified
with ¢; s ;. Therefore, the magnetic theory of the original dual pair flows into the magnetic
one of another dual pair at the infrared fixed point. It suggests that the original electric
theory flows into the electric theory with the superpotential W) as illustrated in Figure
5.1.

In the electric theory with the superpotential W, we can carry out the a-maximization
procedure in a similar way to what we have done in the previous sections. The values of
the trial U(1)g charge where no gauge invariant operators hit the unitarity bounds in this
theory is identical to the values where only the operators M% hit the unitarity bound in the
original electric theory. In the region of the trial U(1)g charge, the local trial a-function
can be calculated in terms of the fundamental fields in the ultraviolet in the former theory
to give
Ng(Ng +1) Ng(Ng + 1)
ANRMD ) "
where ag(R) is given in (4.3), F(z) is defined as F'(z) = 3(z — 1)3 — (x — 1), and F, is the
contribution from the free singlets M%. Since the function F'(x) satisfies the relation

ao(R) + F[R(N)] + Fy,

Flz)+ F(2—x) =0, (5.1)

one notices that F[R(N)] = —F[R(QQ)] and that the above a-function is the same as the
one in the identical region in the original electric theory. Since the latter a-function are
constructed via the prescription of [11], one finds that it is consistent with the electric-
magnetic duality.

The origin of the singlet field N;; can also be captured in the original electric theory
by using the auxiliary field method. In the original theory, let us introduce the auxiliary
fields M* and the Lagrange multipliers N;; to turn on the superpotential

W =N; (QQ" —hM7), (5.2)

with the parameter h. It does not change the original theory at all, as far as h is non-zero.
The equations of motion give the constraints

Q'Q’ = h MY, hN;; = 0. (5.3)

'For Ng = 7, the coupling constant " of the additional interaction term (3.3) also goes to zero.
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Original dual pair Another dual pair

Electric Theory Electric Theory
Wee = 0 é Wee = NQQ

Dual i i Dual

Magnetic Theory
Winag = Y qq + det s

Magnetic Theory
Winag = Mq@sq+Y qq+dets

The identical IR fixed point

Figure 5.1: Two dual pairs flow to the identical IR fixed point.

Substituting them into (5.2), one can return to the original theory.

One can conceive that when the meson operator hits the unitarity bound, the parameter
h goes to zero in the infrared, due to the consistency with the result that the singlet M%
becomes free in the magnetic theory. In this case, the first equation of motion in (5.3) gives
Q'@Q? = 0 while the second one gives the trivial identity 0 = 0. It is consistent with the
result that the composites Q'@Q)? decouple from the interacting system in the original theory
while the chiral primary operator N;; is gained. Here, the decoupled free meson operators
correspond to M%, which are not related with vectors Q¢ of the interacting system any
more. Furthermore, when h goes to zero, one obtains the superpotential Wy, of the other
electric theory introduced in subsection 3.1.1. It means that the original electric theory
flows into the other electric theory with W, and thus is consistent with the magnetic
picture.

One may raise a question whether the auxiliary field method affects our results via
a-maximization in the last section, because we introduced the auxiliary fields M* and the
Lagrange multipliers N;; charged under U(1) x U(1)g. This is however not the case, since
as has been discussed in [12], the massive fields M and N;; do not contribute to the
a-function, due to (5.1). But, once the singlet M% hits the unitarity bound, an accidental
U(1) symmetry appears to fix the U(1)g charge of M%¥ to 2/3. On the other hand, the
singlets N;; are still interacting with the vectors Q" in the superpotential, and their U(1)x
charge remains unchanged and contributes as F[R(N;;)] = F[2 — R(Q'Q?)] = —F[2R(Q)]
to the a-function;

FIR(M)| + FIR(N)] = F(2/3) + Fl2 - RQ'Q)] = ~F2R(Q)| + Fy.
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One can thus see that it gives the identical procedure to what we have done when the meson
M hits the unitarity bound. This discussion gives a strong support for the prescription
(2.64) in section 2.3.
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Chapter 6

Summary and Outlook

In this article, by using the electric-magnetic duality and a-maximization to study four-
dimensional supersymmetric NV =1 Spin(10) gauge theories with chiral superfields in the
vector and the spinor representations at the superconformal infrared fixed point, we have
discussed their low-energy physics. In particular, a-maximization allowed us to understand
it in more detail, compared to the previous results [3, 4, 7] on the theories.

In the one spinor case, among 7 < Ny < 21 in the non-Abelian Coulomb phase, for
7 < Ng <9, only the meson operator hits the unitarity bound to be free in the infrared.
At the other flavor number Ny, no gauge invariant operators hit the unitarity bound.

In the two spinor case, the results are quite parallel to that in the one spinor case.
Among 6 < Ng < 19 in the non-Abelian Coulomb phase, for Ng = 6,7, only the meson
operator also hits the unitarity bound to be free in the infrared. At the other flavor number
Ng, no gauge invariant operators hit the unitarity bound.

In both the cases, the local maximum we found was confirmed to be identical in both
of the electric theory and the magnetic theory.

We have also discussed the physical implication of the decoupling meson operator - the
renormalization flows of two electric-magnetic dual pairs into a single nontrivial infrared
fixed point - by the three steps; calculating the conformal dimension of the interaction
term of the meson in the magnetic superpotential, finding another electric-magnetic dual
pair, and using the auxiliary field method.

In our analysis, two subtle points prevents us from completing the a-maximization
procedure for the Spin(10) gauge theories, as discussed in detail. One of them is the
dismatch of the classical chiral rings of the electric-magnetic dual pairs. It means that a
gauge invariant operator does not have their counterpart in the dual description. Therefore,
at the value of the trial U(1)g charge where the operator hits the unitarity bound, the
local trial a-function differs from the one in the dual theory. Thus, the a-maximization
procedure might give different results in the electric theory from the one in the magnetic
theory. Fortunately, this was not the case for our theories. However, in order to implement
our a-maximization procedure completely, we need to understand the chiral ring of the dual
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theories more or less quantum-mechanically. It would also help to establish the electric-
magnetic duality itself of the Spin(10) gauge theories completely,

As for the other subtle point, we need to know how to extend the method of a-
maximization for Lorentz spinor operator, and also for an operator in any non-trivial
representation of the Lorentz group. In our cases, the operator D;, is such a operator.
Again, fortunately, the local maximum of the trial a-function is found to be outside the
region where the operator Dy, hits the unitarity bound. But, it does not necessarily mean
that there is no local maximum inside the region. Therefore, it would be interesting to
know the extension of a-maximization for the operator Dy,.

Besides the two subtleties, during the a-maximization procedure in the two spinor case,
we have assumed in the magnetic theory that the gauge coupling constants of the magnetic
gauge groups SU(Ng — 3) and Sp(1) both have non-zero values at the infrared fixed point.
However, from the one-loop beta functions of the two gauge couplings, one can see that
SU(Ng —3) is asymptotically free for Ng > 7 and Sp(1) is asymptotically free for Ng < 7,
perturbatively. Therefore, either of the gauge interactions could be free at the infrared
fixed point. Thus, if the perturbation of both the interactions were reliable even in the
infrared, the gauge coupling constant of SU(Ng — 3) would vanish for Ny = 6 and that of
Sp(1) would vanish for 8 < Ng < 19 at the fixed point. We will argue just below that the
method of a-maximization could also have been used to know whether this is the case or
not. Although our results suggest that this is not the case, it may offer another enjoyable
application of a-maximization [35, 36].

Let us suppose that, for Ny = 6, the coupling constant ggy of the SU(Ng — 3) gauge
interaction goes to zero in the infrared. The NVSZ beta function [22] of the gauge coupling
gsu is given by

_ 9éu 3(Ng —3) = 32 T(pi) (1 — vi(gsu, gsp))
1672 L = (Ng = 3)(950/87) ’

ﬁSU(gSUa gSp) = (6-1)

where ~; is the anomalous dimension of the matter field labeled by i and T'(p;) denotes
the usual index of its representation p;. Under our assumption, in the infrared the beta
function can be expanded in powers of the gauge coupling gsy as

Bsu(gsu 9sp) = Bo(gsp)ger + B1(9sp)giy + - (6.2)

where

50(9510) =

1617r2 3(Ng—3) - ZT(Pi)(l = %i(gsu = 0, 9sp)) | - (6.3)

Therefore, in order to reach the infrared fixed point (g5, = 0,g5,), the beta function

coefficient (3y(g%,) must be positive - the infrared fixed point (g§, = 0,gs,) must be an
attractive point of the renormalization group flow.
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It is generically difficult to calculate the beta function coefficient 3y(g5,), especially
when the gauge coupling g5, cannot be treated perturbatively. However, the anomalous
dimensions v; (g5, = 0, g5,) are related to the superconformal U(1)g charges via vi(gsy =
0,9%,) = 3R; — 2 as in (2.33). In order to obtain the superconformal U(1) charges, one
may set the gauge coupling gsy to zero at the ultraviolet cutoff and then carry out a-
maximization. If one can identify the infrared fixed point (g5, = 0, g5,) as one of the local
maxima of the global trial a-function, and if no gauge invariant composite operator hits
the unitarity bound, one can determine the U(1)g charge R; of the elementary field, and
thus the coefficient 3(g5,,).

In order to determine the coefficient fy(ggs,), let us begin with the magnetic theory
for Ng = 6 with gsy = 0 - the Sp(1) gauge theory. All the Sp(1) gauge invariant chiral
primary operators are M, Y, @, q, s, and the composites

5o¢ q/aalq,bﬁ y Z':oz q/aaltﬁja 5aﬂtaltﬁj' (64)

Since we do not impose the anomaly free condition coming from the SU(Ngy — 3) gauge
interaction for the global U(1) symmetries, one has one extra global U(1) symmetry, and
thus the trial a-function depends on two parameters. It seems formidable to obtain the
global trial a-function in the whole two-dimensional parameter space. But, we found at
least one local maximum in the range where M, Y, and ¢ hit the unitarity bounds. At the
local maximum, the U(1)g charge of each field can numerically be read as follows:

q q q s t M|Y
2/310.4858 | 0.9716 | 1.028 | 0.5426 | 2/3 | 2/3

Substituting the U(1)g charges in the above list into the coefficient

(03 = 573 | (Ve =) = S T()(R: = 1) (65
2

since one can see that [(Ng — 3) — >, T(pi) (R; — 1)] = 1, the coefficient 5y(g5,) is negative

- the infrared fixed point into which the theory with gsy # 0 at the cutoff never flows in

the infrared.

If there was no more local maximum of the global trial a-function, the above argument
would prove our assumption about the gauge couplings. Therefore, it would be interest-
ing to carry out the a-maximization procedure completely in this system to confirm the
assumption.

In the case where the gauge coupling gs, goes to zero in the infrared instead, a similar
discussion can be made for 8 < Ny < 19. The SU(Ng — 3) gauge invariant operators are
fundamental fields ¢ and the composites

a(lJK aX I1J =t |a|K
AclJK) q (JX02)( qa\ | )’
o o aiaN,—-3 =1 ol = —
(Pl) i1in,—a — € QG ar Gasit " Qan,_zin—a>
Q Q™ Q
o ) _ a1 AN, —3 =/ a1]1 —/ C¥3[3 —~ i
(P3) iing-e € G o “q ag Qasir """ Gang-sing 6> (6.6)
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8 9 10 11 12 13 14 15 16 17 18 19
0.516 | 0.482 | 0.462 | 0.440 | 0.417 | 0.396 | 0.376 | 0.357 | 0.339 | 0.323 | 0.308 | 0.295
0.8 | 0.833 | 0.857 | 0.876 | 0.891 | 0.902 | 0.911 | 0.919 | 0.925 | 0.931 | 0.935 | 0.939
0.623 | 0.555 | 0.462 | 0.395 | 0.341 | 0.297 | 0.262 | 0.233 | 0.208 | 0.187 | 0.169 | 0.154
0.4 | 0.333 | 0.285 | 0.248 | 0.219 | 0.196 | 0.178 | 0.162 | 0.150 | 0.139 | 0.129 | 0.121
2/3 2/3 1 0.680 | 0.729 | 0.769 | 0.801 | 0.827 | 0.849 | 0.867 | 0.882 | 0.895 | 0.907
2/3 | 0.704 | 0.791 | 0.873 | 0.946 | 1.012 | 1.071 | 1.124 | 1.171 | 1.214 | 1.254 | 1.289
0.861 | 0.963 | 1.076 | 1.166 | 1.242 | 1.307 | 1.362 | 1.411 | 1.453 | 1.490 | 1.522 | 1.551

<2 ~us sz

Table 6.1: The U(1)g charges under the assumption that Sp(1) gauge factor is IR free.

as well as the operators which are same as SU(Ng — 3) x Sp(1) gauge invariant operators
except for H and G, which can be expressed in this case as the product of the SU(Ng — 3)
gauge invariant operators.

We also found the local maximum of the trial a-function; for Ng = 8, in the the range
where M and ¢ hit the unitarity bounds, for Ng = 9, where ¢ hits the unitarity bound,
and for 10 < Ng < 19, no operator hits the unitarity bound. The U(1)g charges of the
fields are given in Table 6.1. Using the U(1)g charges, one can see that the NSVZ beta
function becomes negative for all 8 < Ng < 19. It implies that the system does not flow
in the infrared into the point which the above found local maximum suggests. Since the
analysis of a-maximizationin this case also is far from complete, it would be interesting to
be done thoroughly.

In our analysis, the trial a-function has a unique maximum under the assumptions
mentioned above. Within a region with the same content of decoupling gauge invariant
operators in the whole parameter space, one can find at most a single local maximum,
but in another region, one could obtain another local maximum, where one should find
the different content of interacting gauge invariant operators. It may suggest that one
could find more than one local maximum over the whole parameter space to lose definitive
results on which linear combination of the U(1) symmetries is the superconformal U(1)g
symmetry. The weak version of the diagnostic in the paper [32] could however be a way
out of this problem. It says, “the correct IR phase is the one with the larger value of the
conformal anomaly a”. It would thus be very interesting to find models with more than
one local maximum of the function a(z) and to study the renormalization group flow in
such models.
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