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Abstract

A quantum universal enveloping algebra U, and the braid group on n
strands B,, mutually commute when acting on the n-fold tensor product
of a Ug-module. Their combined action is applied to low dimensional
systems — the only ones that admit a nontrivial monodromy and hence a
braid group (rather than a permutation group) statistics.

The lectures introduce the notions of braid group and Hopf algebra and
apply them to examples of 2-dimensional (rational) conformal field theory.
The case of the su(2) current algebra model, for which the deformation
parameter ¢ is an even root of unity, is considered in some detail. In
particular, the solution to the Schwarz problem for the su(2) Knizhnik-
Zamolodchikov equation is reviewed.
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Preface

These lectures are meant as an introduction to quantum groups (with em-
phasis on quantum universal enveloping algebras (QUEA)), braid groups and
their application to 2-dimensional conformal field theory. With a view of an
audience of mixed background they purport to introduce the basic concepts
encountered on the way: Hopf algebras, permutation and braid groups, the
conformal group in two and higher dimensions, axiomatic quantum field theory
— in various degree of detail. Thus the first four sections and Appendix A form
a minicourse on braid groups and Hopf algebras viewing them in the context of
(a deformed) Schur-Weyl duality. Section 4 and Appendix B also contain some
less standard material: the general form of n-point U, (sf2) invariants based on
joint work with P. Furlan and Ya. S. Stanev of the 1990’s. The Drinfeld double
and the universal R-matrix are treated rather schematically (in Section 5); mas-
tering this subject would require more work and further reading. This is even
more true for the sketch of Wightman axioms (Appendix C) and of the axioms
for a chiral vertex algebra (Appendix D) — subjects of monographs outlined here
on a couple of pages.

The next three sections (6, 7, 8) provide another introductory course (for
more advanced students) — on conformal field theory (CFT). We begin with the
axioms of quantum field theory (supplemented with the requirement of confor-
mal invariance) in D space-time dimension in order to stress the special features
of the case D = 2 to which the rest of the lectures is devoted. Sections 7 and
8 deal with the u(1) conformal current algebra — the simplest 2D CFT — and
its local extensions, introducing on the way fractional charge fields with any-
onic statistics. The survey of the su(2) current algebra model corresponding to
the Wess-Zumino-Novikov-Witten action (Sections 9, 10) is more schematic. A
regular basis of solutions of the Knizhnik-Zamolodchikov equation (introduced
by Ya. S. Stanev and the author) is displayed without derivation in Section 9.
Section 10 includes a survey of the U, oscillator algebra introduced by Pusz and
Woronowicz which can be viewed as a deformation of the Schwinger model for
su(2).

The two topics, braid groups and QUEA, on one hand, and 2D CFT, on
the other, are combined in Sections 11, 12 into the study of monodromy rep-
resentations of the braid group B4. As an application we survey in Section 11
the solution of the Schwarz problem for the Knizhnik-Zamolodchikov equation
(worked out by Stanev and myself). Section 12 introduces and studies the re-
stricted and the Lusztig QUEA for ¢ an even root of unity and reviews recent
work of Furlan, Hadjivanov and the author on the subject. Section 13, the last
one, contains an overview and provides references to adjacent topics (including
Chern-Simons theory) that have been left out.

I thank my long term collaborators mentioned above who contributed to the
understanding of the subject matter of these notes.



It is a common observation (see, e.g., the Introduction to [Fr]) that public
attention to fundamental physics is declining. In the light of this global phe-
nomenon it was particularly rewarding to me to witness the keen interest of
the young (and not so young) audience at the Universidade Federal do Espirito
Santo in Vitéria, Brazil, during the course of these lectures.

It is a pleasure to thank Clistenis Constantinidis, Olivier Piguet and Galen
Sotkov for their hospitality in Vitoria where these lectures were presented. The
hospitality and support of L’Institut des Hautes Etudes Scientifiques, Bures-
sur-Yvette, where these notes were written is also gratefully acknowledged. I
thank, in particular, Cécile Cheikhchoukh for her expert and expeditions typing
which allowed to produce the present version without delay. This work is sup-
ported in part by the Research Training Network of the European Commission
under contract MRTN-CT-2004-00514 and by the Bulgarian National Council
for Scientific Research under contract Ph-1406.



1 Introduction

The concept of a group seems to be tailor made to match the notion of symmetry.
It is economical and general: it just assumes that a composition of maps (or
transformations) g; and g, is again a map, g1g2 (of a set into itself), that the
product is associative, (g192)g93 = g1(g293), and that for each transformation g
there is an inverse, g~! such that gg=! = g71g = 1 (1 standing for the identity
map which has the property g-1 =1-g = g). For transformations depending
on continuous parameters (like translations and rotations) one has the powerful
concept of a Lie' group which allows to reduce in most cases the study of a
symmetry to a local problem of Lie algebra.

Why then should we look for a more general concept like Hopf? algebra or
“quantum group” (or even for some further extension thereof)?

A historical account answering this question from a mathematical point of
view can be found in the lectures of Pierre Cartier [C]. I shall single out one
aspect of his answer which also has a physical interpretation. Another view of
the history of quantum groups is provided by Ludwig Faddeev [F] starting with
integrable systems, in particular, spin chains.

A first principle of quantum theory is the principle of superposition. It tells
us that quantum states form a vector space and symmetry groups act by (linear)
representations on this space. If we assume, as usual, the standard probabilistic
interpretation of state vectors, then we have to deal with unitary representations
of the symmetry group. Furthermore, the state space of a pair of non-interacting
systems is the tensor product of the spaces of individual systems. This leads us to
considering the ring of representations closed under tensor products and direct
sums.

Consider now a system of n identical non-relativistic particles of coordinates
x; and internal quantum number s; (i = 1,...,n). Assume further, for the
sake of definiteness that each s; takes k values and that the internal symme-
try group is U(k). The state of such a system is described by a (fixed time,
in general, multicomponent) wave function v (z1,51;...;%n, 8,) (€ HY™ where
H; is the l-particle space). It possesses two types of symmetry which com-
mute with each other: (i) the internal symmetry, described by the n-fold tensor
product of fundamental representations of U(k) acting on the variables s;; (ii)
symmetry under permutation of the pairs of arguments (x;, s;), reflecting the
indistinguishability of identical particles. For l-component wave function we
have the Fermi®-Bose? alternative: 1) is either invariant or changes sign under

! Marius Sophus Lie (1812-1899) Norvegian mathematician.

2Heinz Hopf (1894-1971) introduces the concept of Hopf algebra (in a topological context)
in 1941 — see references to the original papers in [C].

3The Ttalian (later American) physicist Enrico Fermi (1901-1954) did his work on the
Fermi-Dirac statistics while in Florence (1925-26). He received the Nobel Prize in Physics in
1938 for his work on induced radioactivity.

4Satyendra Nath Bose (1894-1974) is an Indian Bengali mathematical physicist. His work
of 1922 on the Bose statistics was first rejected and then only accepted for publication after
the author sent his manuscript to Einstein who presented it together with his own paper on



transposition of two (pairs of) arguments. In general (for a multicomponent 1)),
it should transform under an irreducible representation (IR) of the permutation
groups. (This relates to the Schur-Weyl duality reviewed in Appendix A.)

All this is fine if the configuration space X, =Y, /Sy, where Y, is the space
of points (z1, ..., x,) such that z; # z; for ¢ # j, is simply connected and hence
carries single valued analytic functions. This is the case for space dimensions
larger than two. If the z; are points in a 2-dimensional plane however then the
configuration space X, is no longer simply connected. We shall see that the
natural generalization of S, in this case is the braid group B,, on n strands that
will be introduced in Section 2. What is important for us here is the realization
that when the permutation group acting on the tensor product of, say U(k),
representations is substituted by the braid group then the condition that “the
symmetry commutes with the statistics” implies that tensor product of repre-
sentations should be deformed to a coproduct (in general, not co-commutative)
meaning that the concept of a symmetry group should be substituted by the
more general notion of a Hopf algebra or quantum group.

A bibliographical note.

The relation between the possible particle statistics and the topology (in
particular, the fundamental group) of configuration space was first pointed out
by Leinaas and Myrheim [LM]. For a thought provoking recent review of spin
and quantum statistics — see [Fr].

There are, by now, a number of texts on quantum groups — see, e.g., [CP]
[FK] [K] [L] [M] [Ma].

the same subject to Zeitschrift fiir Physik in 1924.



Appendix A. Young diagrams, Young tableaux
and Schur-Weyl duality

A Young diagram® of n boxes is a graphical expression of a partition of the
natural number n into a sum of decreasing integers n; > ng > ... ng(Xn; = n).
It consists of a finite number of boxes arranged in rows of decreasing length. All
Young diagrams of three boxes are displayed on Figure Al

O
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Figure Al: Young diagrams of three boxes

Young tableauzr are Young diagrams in which each box carries a number.
Standard Young tableaux of n boxes carry the numbers 1,...,n of increasing
order along rows and columns. There are four standard Young tableaux of
three boxes displayed on Figure A2

1]12 13
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Figure A2: Standard Young tableaux of three boxes

Young diagrams Y of n boxes label the irreducible representations (IR) of the
symmetric group S, of permutations of n objects. The standard Young tableaux
Y corresponding to a given diagram Y form a basis in the representation space
of the IRY.

In general, the dimension of the representation corresponding to a Young
diagram can be computed without writing down explicitely all Young tableaux
corresponding to a given diagram Y. To this end we shall introduce the hook
length h(x) of a box x of Y. It is equal to the sum of the number of boxes to
the right of z in the same row plus the number of boxes in the same column
below x plus 1 (for z itself). In Figure A3 we give examples of hook lengths for
two different diagrams

5The English mathematician Alfred Young (1873-1940) introduced these diagrams in 1900
while in Cambridge. For a systematic survey of Young tableaux and their applications — see
[Fu].
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Figure A3: The number in each box gives its hook length

Then the dimension of Y is given by

dimY =n!/ [] h(z). (A1)

zeY

Ezercise A.1. Find the dimension d(Y") of the IRs of S5 and verify the formula

S d2(Y) = 5.
Y

To see how one reconstructs the action of the elements of S,, on a basis of
Young tableaux, we will first say something more about the structure of the
symmetric group.

S, can be defined as a (finite) group of (n—1) generators sy, ..., s$p—1 (where
s; = P;;4+1 plays the role of transposition (permutation) of the “objects” ¢ and
i+ 1), satisfying three sets of relations (the first of which tells us that the s; are
reflections):

s2=1,4i=1,...,n—1; sis; =s;8; for |i—j|>1;

Pi,i+2 = 8; Si+1 Si = Si+1 Si Si+1 1= 1, e, — 2 (AQ)

(P;; playing the role of transposition of the objects (4, ) and satisfying P2 =1
verify that indeed P2, , = 1, as a consequence of (A.2)). Iterating the last
relation (A.2) we can express any P;;, ¢ # j as a word in the generators (of
length 2|i — j| — 1. If the indices 4, j belong to a single column of the Young
tableau Y then, by definition, P;; Y = —Y. The permutation of two columns
of equal lengths in a tableau Y leaves, by definition, Y invariant. The product
of basic reflections determines the conjugacy class of the Coxeter element® of
order n; in particular

Clp i=81...8,_1= cgll (cn1 =Sn-1...51), cf,=1. (A.3)

Ezercise A.2. (i) Prove that the transposition P, has the form Py, = $1...8,-2
Sn—18n_2 - ..81; verify the relation s; P, = Pips; fori=2,...,n—1.

(ii) Prove (A.3). (Hint: use induction in n proving (sq ...5,)" = (s1...8p-1)"" "

P1n+1')

6Harold Scott MacDonald Coxeter (1907-2003) born in London but worked for 60 years at
the University of Toronto; he studied the product of generators in 1951 — see [C51].




Let us now describe, as a next exercise, the IRs of S3. The IRs Y, and Y.
being 1-dimensional are easy to describe: Y, is the trivial representation while

Y, is the alternating one: s1Y, = so Y, = —Y 4. To construct the 2-dimensional
representation Y, we first note that the generators s; are represented by 2 x 2
matrices of eigenvalues £1 (hence, det s; = det s = —1, trs; = trse = 0).

Ezercise A.3. Using the relations sp V! = Y2, 522 = Y}!, 51 Y2 = —Y}? find
S1 Yb1 and the matrix Pi3.

The IRs of the group U (k) of complex unitary k x k matrices are again labeled
by Young diagrams — of any number of boxes but of no more than & rows. The
corresponding basis vectors can be represented by semi-standard Young tableaux
in which the allowed numbers are (1, ..., k) that should increase monotoneously
along rows and strictly along columns. Thus the representation corresponding
to a single column of k boxes is 1-dimensional (given by the determinant). The
IR associated with a single box is k-dimensional (with basis 7 1=1,...,k)
and so is the representation of a single column of (k — 1)-boxes.

Ezercise A.4. Prove that the IR’s of U(k) corresponding to the 3-box diagrams
of Figure Al have dimensions d, = <I§), dy = 2 (k—?’;l), d. = <k—§2>,
respectively.

The Schur’-Weyl® theory concerns the decomposition of the n-fold tensor
product of the defining (k-dimensional) representation O of U(k) into IRs of
U(k) x S,. (The permutations s € S,, of different copies of the U (k) module C*
commute with the U(k) action.) We have

Proposition A.1. Let Y run through the n-box Young diagrams with no more
than k rows; then

Ot =D Yow ©Ys, . (A.4)
Y

In other words the representation D%?k) splits into a sum of tensor products

of IRs of U(k) ® S, the two IRs in each term corresponding to the same Young
diagram.

"Issai Schur (January 10, 1875, Mogilov, Belarus, Russian empire — January 10, 1941,
Tel Aviv, Palestine) studied and worked in Berlin; regarded himself as German and declined
invitations to leave Germany for the US and Britain in 1934; dismissed from his chair in
1935 eventually emmigrated to Palestine in 1939. He is known for Schur’s lemma and Schur’s
polynomials among many others.

8Hermann Weyl (1885, Elmshorn, near Hamburg — 1955, Ziirich) worked in Gé&ttingen,
Zirich and Princeton. The duality in question appears in Weyl’s 1928 book Gruppentheorie
und Quantenmechanik. Concerning the Schur-Weyl duality — see, e.g., [Z].



Ezxercise A.5. Using the result of Exercise A.4 verify that k% = d, + 2d, + d..
Do the same exercise for D%?k) finding first the dimensions of all IRs of &4 and

the dimensions of the IRs of U(k) labeled by Young diagrams of four boxes.

10



2 Braid groups and Hecke algebras

In order to describe the fundamental group 71 of the configuration space, we first
introduce the Artin® braid group B, onn strands. It is an infinite discrete group
which can be defined in analogy with the symmetric group S,, (¢f. Appendix A)
as a group of n — 1 generators by, ...,b,_1 (and their inverses) obeying two sets
of defining braid relations :

bibi+1 bi = bi+1 bibz’_;,_l, 1= 1,...,7’L—2; bzb] = bjbi for ‘Z—]| >1. (21)
Their intuitive meaning is illustrated on Figures. 2.1 and 2.2.

1

i,

|
, I

Figure 2.1: b;b; ' = 1

1 2 3

by \ 1\ r’/\O by
b S = < b,
b N N by

Figure 2.2: b1 bQ bl = bQ b1 b2

If we ignore the path of a braid transformation and only follow its end point
we obtain a permutation. This defines a homomorphism of B,, onto S,, whose
kernel is, by definition, the pure braid or monodromy subgroup M,,. This means
that the following sequence of group homomorphisms is exact:

1-M, —-B,—8,—1. (2.2)

We are now ready to formulate a result that goes back to Hurwitz which
has been then repeatedly rediscovered (see [M74] for a historical survey by an
active participant in this work).

9Emil Artin (1898-1962), Theorie der Zopfe (Hamburg, 1925). According to Wilhelm
Magnus [M74] braid groups were implicit in Adolf Hurwitz’s (1859-1919) work on monodromy
(1891).

11



Let (z1,...,2,) be n different points in the complex plane C and let zy be
a fixed point in C, different from (z1,...,2,). Let ¥;, = C\(z1,...,2,) be the
n-punctured plane and X,, =Y,,/S,, — the configuration space.

Theorem 2.1. [A] The fundamental group of the configuration space w1 (Xn, zo)
coincides with the braid group Byy1. The fundamental group of the n-punctured
plane coincides with its monodromy subgroup, M 41:

T (Xn7 ZO) ~Bur1, m (Yna ZO) ~ My (2-3)

We just note that a path connecting two punctures, say z; and z;41, is viewed
as a closed path in X,,.

Introduce the analogues of the Coxeter elements (A.3):
Bln = b1 A bn—l s Bnl = bn—l A b1 . (24)

The powers of By, give rise to automorphisms that intertwine the B,, generators
b; among themselves:

Bl by By, =biy1, i=1,...,n—2. (2.5)

We shall cite the following result on the structure of B,, (see [M74] for a concise
review and references to the original papers).

Proposition 2.2. The centre Z,, = Z(B,) of B, is generated by the element
(of infinite order)
0 =B, (=Bn); (2.6)
0 and
Q = By, By subject to the relation Q" = 62 (2.7)

give rise to a normal subgroup N, of B,.

The fundamental group 71 (S?,n) of the 2-sphere with n punctures can be
presented as the quotient F)¥ of the free group F,, on n generators, x1,...,Tn,
by the single relation

1.0, =1 (2.8)

(expressing the fact that a loop encircling all n points on the sphere is con-
tractible). The braid group B,, acts by automorphisms on F), and on its quotient
Ex ([M74)).

Proposition 2.3. The automorphisms

Bu(xy) =2py1, Bu(Tvi1) = x;il Ty Ty41, /Bu(zu) =x, forp #v,v+1, (2.9)

satisfy the defining relations (2.1) for the generators of B,. Moreover, B, is
isomorphic to the automorphism group of F, while its quotient with its centre
gives Aut F):

B, 2 AwF,, B :=8,/Z, > AutF . (2.10)

12



The mapping class group M(S?,n) of S*\{z1,...,2,} — i.e., the group of
(isotopy classes of) orientation preserving self-homeomorphisms of the sphere
with n-punctures — has been studied for nearly a century, starting with the work
of Fricke-Klein!® (1897 — following that of Hurwitz, mentioned above), followed
by contributions by Artin, Magnus, Fadell, Van Buskirk, Arnold [A], Birman [B]
among others. In the formulation of the main result below we follow the survey
[M74] (containing over 60 references).

Theorem 2.4. The braid group B,(S?) of the 2-sphere arises from B, by
adjoining the single relation Q = 1 (where Q is the generator of N,, defined in
(2.7)). It has a single element 0 (2.6) of order two (for n > 2) that generates
its centre Z/2. The mapping class group M(S?,n) is obtained from B, (S?) by
setting 0 = 1.

Remark 2.1. Tt follows from Theorem 2.4 that B,,(S?) is a non-splitting central
extension of M(S?,n) (just like SU(2) is of SO(3)).

For quantum deformations of unitary (say, SU(k)) 1-particle symmetry (to
be considered in Section 4, below) with deformation parameter ¢ (such that
q = 1 corresponds to the undeformed case) the group algebra of the fundamental
representation of B,, is a Hecke'! algebra characterized by the following relations

b} —(q—q Hbi—1=(bi—q)(bi+q ') =0. (2.11)

(The normalization of b; has been chosen for convenience, so that the products
of its eigenvalues is —1. Introducing in the next section a quasi-triangular
R-matrix we shall naturally come to a different normalization which involves
half-integer powers of the parameter ¢. In both cases, for ¢ — 1, Eq. (2.11)
and its counterpart in Section 11 reduce to the involutivity condition for the
reflections generating the symmetric group.)

It is convenient to express b; in terms of the (non-normalized) projectors
(antisymmetrizers) e;:

ei=q—bi, e =(q+q e, (2.12)
which, in view of the braid relations (2.1) satisfy
€;€i41€ — € = €;41€; €11 — €iy1 (2.13)

eie; =eje; for |i—j|>2. (2.14)

10Karl Emmanuel Robert Fricke (1861-1930), professor of Higher Mathematics at the Tech-
nische Hochschule in Braunschweig, and Felix Christian Klein (1849-1925) (known for his
influential Erlangen Program, 1872, and for his role in creating the model research centre at
the University of Gottingen from 1886 on) wrote a four volume treatise on automorphic and
elliptic modular functions over a period of about 20 years.

1 Erich Hecke (1887-1947) studied in Géttingen with Hilbert, worked in Hamburg.

13



We shall introduce (also for later applications) the g-numbers [n] (= [n],)
setting

qn _ q—n

=t W Rl B Rl @19

Ezercise 2.1. Verify the relations (a) [2][n] = [n— 1]+ [n+1], [3][n] = [n—2] +
[n] + [n+2]; (b) if ¢V = —1 then [N] = 0. For generic q, i.e. for ¢ not a root of
unity, [IV] # 0 for any non-zero natural number N. Define for such g, following
[GPS], the series of antisymmetrizers

1
Pl =1, P’jﬂ:m(qkﬂ—qk—lbk+...+(—1)’fb1...bk)P’j. (2.16)

It is easy to check that

pP? = m, P? = ﬁ (e1eze; —er) = ﬁ (e2e1e2 —€2) (2.17)

where [k]! is defined recursively by: [0]! = 1, [k + 1]! = [k]![k + 1] and P* =
(P )12,k

Exercise 2.2. Prove that P* are central projectors:
Ptb,=b,PF = —¢7'PF for 1<i<k-—1,

PE Pl =P PF = PF for PPy = (P)j(41). . (j+ie1)» 147 —1<k; (2.18)

furthermore,

PEka’jzfp’j— [k +1] pht1

B o (2.19)

(a relation that can be used as another recursive definition of P¥). It turns out
that in applications to 2D conformal field theory ¢ is precisely a root of 1. One
has to deal with non-normalized projectors in that case.

We shall assume that the Hecke algebra of B,, is at most n-dimensional so
that
prtl — . (2.20)

If k is the smallest positive integer for which P*™! = 0 we say that we are dealing
with an “even Hecke symmetry of rank £” in the terminology of [GPS]. Then
P* is an one-dimensional projector that can be written as a (tensor) product of
two g-deformed Levi-Civita!? tensors.

Assuming, on the other hand, that P3 = 0 for By, (i.e. that each of the
expressions (2.13) vanish) we obtain the Tempereley-Lieb algebra which plays a
prominent role in V.F.R. Jones theory of subfactors [J].

12Tullio Levi-Civita (1873-1941) published in 1900 “Méthodes de calcul différentiel absolu et
leurs applications” together with his teacher Gregorio Ricci-Curbastro (1853-1925); Einstein
used this book to master tensor calculus.

14



Here is an explicit realization of e; and ey (and hence of Bs) satisfying
e1ese; —ep =egejeg —ea =0 (€2 = [2] &) (2.21)
in the triple tensor product of 2 x 2 matrices
[N Ye %) 1203 (65]

€161 3285 = €M% ep,, 5?;7 (62),31,32,33 = 0g, €M% e5.8, (2.22)

where ¢ is the (rank 2) g-deformed Levi-Civita tensor

= (0 ) = o (229

satisfying
o o _(a O
€% o5 = —05, (€% €po) = (O ql) . (2.24)
Erercise 2.3. Verify (2.21) using (2.22) and the properties of 7.

Another solution of the braid relations of Bs, in which the expression (2.13)
is a 1-dimensional projector,

e1ege] —e] =egej ey — ey =B gy 35 (2.25)
where
E128 B2 132 213 2312 2.231 _ _ 3.821
g@h = = gofa = hac - (9BY) = (g,4,), (2.26)
is given by
b =< comm Oy CBUAE, =05 T e (227)

Ezercise 2.4. Use the identity
€010, €772 = [2] 05 (2.28)

to verify the relations e? = [2]e;, i = 1,2. Verify (2.25) for e; given by (2.27).
Note that the order of indices of the quantum Levi-Civita tensor in (2.27) is
important. It is easy to check, for instance that substituting the first product
by £127 g5 5. would violate the condition e} = [2]e;.
We end up our brief survey of the braid group with a simple application to
physically interesting new statistics in two dimensions.

The permutation group S, has exactly two 1-dimensional representations
(corresponding to the Young diagrams Y, and Y, of Figure Al for n = 3 —
see Appendix A): the fully symmetric (trivial) representation, corresponding to
bosons and the totally antisymmetric one, describing fermions. By contrast the

15



braid group B, has a l-parameter family of 1-dimensional (unitary) represen-
tations given by

mq(bi) = ¢ (mg(b; ) =7, ¢7=1). (2.29)
(Note that this representation trivially satisfy the Hecke algebra condition (2.11).)
This representation describes (according to presently accepted theoretical mod-
els — see [FKST] [FST]) the fractional quantum Hall effect. The story of how
physicists got aware of the anyonic representations is told in [BLSW].

16



3 Bialgebras and Hopf algebras: classical exam-
ples and definition

A natural way to arrive at the Hopf algebra generalization of the notion of a
group G is to study the duality between an algebra U that could be either the
group algebra, say CG, or the universal enveloping algebra (UEA) U(G) of the
Lie algebra G of G, and the algebra F(G) of functions on the group. (The
appropriate topology of F(G) depends on the class of groups one is considering
— see the introduction to [C]. As these introductory remarks are just ment as
motivation we will not burden them with topological considerations.) We shall
thus first explain why ordinary groups and Lie algebras can be viewed as Hopf
algebras and only then will give the formal definition.

Remark 3.1. Mathematicians would often replace the field C of complex numbers
in the definition of a group algebra by an arbitrary field K (having in mind,
e.g., applications to algebraic groups — see [C]). Such generality may also be
useful for some physical applications but again we refrain from complicating
excessively this introductory note. The space of functions F(G) is sometimes
denoted by CY (or K¢ — see [C]).

Usually CG and U(G) are just viewed as associative algebras. It is important,
however, that U is a bialgebra, i.e. that it is also equipped with a coalgebra
structure consisting of two algebra homomorphisms: the coproduct A : U —
U ® U and the counit € : U — C such that

(I®A)A=(A®T)A (3.1)
(Iee)AX)=(exMA(X)=X,VXeU. (3.2)

The product m : U®U — U (m(X ®Y) = X -Y) and the coproduct A
should also satisfy a compatibility condition which will be formulated later. It
is the presence of the coproduct which allows to view the tensor product of
any two representations of U again as a representation of U (rather than as a

representation of U®U which is always possible for an associative algebra). The
coproduct in U is related to the pointwise product of functions f(g) in F(G) by

(A f1£2) = (A(A), A ® f2) =Y (A1, /1)(As, f2) (3.3)
(4)

where we are using Sweedler’s notation!?

A(A):ZA1®A2 for AeU (= A1, A, €U). (3.4)
(4)

Any element of CG is, by definition a finite linear combination of elements of G
with complex coefficients:

A=Y "alg)g= (A f)=) alg) flg) (€ C). (3.5)

g

131t is a self-explaining notation introduced by Moss E. Sweedler in his book Hopf Algebras
(W.A. Benjamin, N.Y. 1969) of the pre-quantum groups’ era.
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Applying this to the left hand side of (3.3) with (f1 f2)(g9) := f1(9) f2(g), and
comparing the result with the right hand side we deduce

Agzg@g:AA:Za(g)g®g. (3.6)

g9

Both CG and F(G) are unital associative algebras; in other words, they have
unit elements: the group unit I € G C CG and the constant function fy(g) =
1 € F(G). This allows to define a counit in both CG and F, setting

e(A) = (A1) =) alg), ie elg)=1€C, ex(f)=(Lf)=f(I). (37

g

If G is a finite group we can define in this simple algebraic manner a coproduct
in F(G) as well, setting

Ar f(g1,92) = f(g192) - (3-8)

Remark 3.2. Note that for a finite group G the tensor product F(G) ® F(G) is
naturally isomorphic to the space F(G x G) of functions of two group variables.
For G infinite the tensor square of F(G) is a proper subset of F(G x G).

Ezercise 3.1. Verify that the coproducts A (3.6) and Az (3.8) and the counits
¢ and £ (3.7) satisfy the coalgebra conditions (3.1) and (3.2).

We may view CG and F(G) as Hopf algebras by introducing in each of these
bialgebras the antipode S:

S:CG—CG, Sg=g"'; Sr:F(G)— FG), (Sef)g)=rf(g""). (3.9)

In both cases S is defined as a linear antihomomorphism of algebra: S(A; Az) =
5(A2) 5(Ar).

To end up with our classical examples of a Hopf algebra we display A, ¢,
and S for the UEA U(G) of a Lie algebra G defining them for elements of G:

AX)=X®I+1I0X, ¢(X)=0, S(X)=-X,VXeg. (3.10)

We observe that the (associative) algebras CG and U(G) are, in general, non-
commutative but the coproduct in both case equals the permuted (or opposite)
one

AN(X) =) m@o =Y 21 @1 =A(X). (3.11)
@ @

We say in such a case that the algebra U is co-commutative. By contrast, the
algebra F(G) dual to CG is commutative but not co-commutative. Here is,
finally, the abstract definition of a Hopf algebra (over an arbitrary field K) in
which one demands neither commutativity nor co-commutativity.
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Definition 3.1. An associative unital algebra B with multiplication m and unit
1 is called a bialgebra if there are unital algebra homomorphisms

A:B—B®B, AX-Y)=AX)A®Y)

e:B—-C, e(XY)=¢e(X)e(Y); A(I)=1II, ¢(OI)=1€C (3.12)

such that A and € satisfy the coalgebra conditions (3.1), (3.2) and compatibility
between multiplication and co-multiplication:

m@mPay AX)®A(Y) = AX - Y), (3.13)

where Pa3 stands for the permutation of the factors 2 and 3 in the 4-fold tensor
product. In more detail, using (3.4),

m & m Pos Z (21 ® 22 @Y1 Qya) = Z Ty @2y = A(X YY)
(X,Y) (XY)

(where we identify x -y with m(z @ y)).

Definition 3.2. A Hopf algebra H is a bialgebra (over C) equipped with a
C-linear antihomomorphism of algebras S : H — H, the antipode, such that the
following diagram commutes:

S®id

HoH—>2 _HeoH (3.14)
/ X
H : C ! H
X /
HoH — HeH

Using the notation (3.4) we can translate the content of (3.14) into the relation

ZS(CIH)'.’EQ:Za)‘l'S(l‘Q):E(X)H VX eH. (315)
(X) (X)
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4 Quantum universal enveloping algebras: the
U,(A,)-case

An important example, in which neither commutativity nor co-commutativity
holds, is given by the quantum universal enveloping algebra (QUEA) U,(G) of a
(semi)simple Lie algebra G. We shall spell out its definition for G = A, = sf,.41
(the rank r Lie algebra of the special linear group of (r 4+ 1) x (r + 1) matrices)
and (complex) parameter ¢ # 0,41. It combines the properties of CG and
U,(G) being generated by a mixture of group like and Lie algebra like elements.

The QUEA U,(A,) has r group-like generators K; (and their inverses K, ')
which correspond to the Cartan torus and 2r Lie algebra-like ones (raising and
lowering operators) E; and F; corresponding to simple roots. They obey the
following commutation relations (CR):

K; E; Ki_l — q(ai\oéj) E;, K; F; Ki_l — q*(ai\a]’) Fj,
K, — K !
q—q!
and the Serre relations (that are only non-trivial for r > 1):

[Ei,Fj]:(?ij 5 i,jzl,...,T, (41)

+E? B — BB B,

EZ-(Q) Eiy1+Eiq EZ@) =EFE B, E; E® i1 Li

1+1

F® Fig1+ Fin Fi(2) =FFaF, F EFY

i i1 +F¢(i)1 Fi=FnF Fiqq,

for
1
X = WX"; [Ei,Ej] =0=[F,F;] for |i—j|>1. (4.2)

Here (in the first relation (4.1)) «; are the simple roots, normalized to have
square 2, so that ((o; | a;)) is the A, Cartan* matriz :

(a; | o) =2, (o | aig1) =—1, (i | ;) =0, for [i—j]>1. (4.3)
It is simple to display the “classical” (¢ — 1) limit of these relations. Setting
K,=¢" (K'=q¢"), i=1,...r (4.4)

we find, at least formally, that the first two CR (4.1) are equivalent to the
classical ones

[Hi, Bj] = (qi | o) By, [Hy Fy] = —(ai | a)) F
while the third one has a classical limit:

[Ei, FJ] = [H,] 51']' (H Hl 5ij fOI‘ q— 1) (45)

14The French mathematician Elie Joseph Cartan (1869-1951) has introduced the general
notion of antisymmetric differential forms (1894-1904) and the theory of spinors (1913) besides
his major contribution to Lie algebras (his doctoral thesis of 1894) in which he completed
Killing’s work on the classification of semi-simple Lie algebras over the complex field.
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where we have extended the notation [n] (2.15) for a g-number to operator valued

entries (n — H;). Note however, that Eq. (4.4) is not algebraic (it involves

) in dealing with

the exponential function). That’s why purists only use KZ-(ﬂ
Uy(A,).
We define the coproduct, the counit, and the antipode on the generators of

Uy (A,) as follows

AK)=K;,®K;, AE)=E;K;+1I®E,

AF)=Feol+K 'oF, i=1,...,r; (4.6)
e(K;) =1, e(F;)=¢(F;,)=0; (4.7
S(E)=-E;K;', S(F)=-K;F;, S(K;)=K;". (4.8)

Ezercise 4.1. Verify (2.25) which can also be written in the form
m(l®S)AX)=m(S®1)A(X)=¢e(X) I (4.9)
for the generators of Uy(A,).

Ezercise 4.2. Verify (on the generators) the relation (e ® 1) A(X) = (1 ®¢)
A(X) =X (3.15).

Remark 4.1. Tt helps understanding both the origin and the meaning of quantum
groups to observe that it is the coproduct that determines the deformation of the
Lie algebra structure. To this end we note that the fundamental (undeformed)
representation of A,, given in terms of the Weyl matrices

(el-j);f = 55 (5jg (:> €ij ek = Ojk 61[) i,j, k,f = 1, o, Tt ]., (410)

by
Ei=¢eiit1, Fi=eiq1i, Hi=eu—eiri1it1, (4.11)

is also a representation of Ug(A,); in particular,
[Ei,Fj] = 57,_][HZ] = 5ij Hz for Hl = €4 — €j414i+1 - (412)

More generally, if H is a hermitian matrix with eigenvalues 0, +1 then [H] = H.
Furthermore, the Serre relations (4.2) (which involve the deformation parame-
ter ¢) are also satisfied by the g-independent matrices of the defining (r 4+ 1)-
dimensional representation of A, since each term is separately equal to zero:

E}=0=F'=FEE . E=FF.F

for E,L = €ii+1 > Fi = €;4+14 (: Ez*) . (413)

21



It is the non-cocommutative coproduct which replaces the symmetric tensor
product of representations, that yields modified higher dimensional represen-
tations and forces us to use the g-deformed CR (4.1) (4.2). (As we shall see
below the coproduct is also directly related to the appearance of braid group
representations in the g-deformed Schur-Weyl duality.)

It is instructive to see how 2- and higher point U,(A,) invariants appear in
tensor products of finite dimensional representations. We shall work out the
solution to this problem for the simplest case of Uy(A:1) = U,.

For generic q (¢ # 0,q not a root of unity) the theory of finite dimensional
representations of Uy is essentially the same as that of the undeformed algebra
Ay =~ su(2). The irreducible representations (IRs) of U, are again labeled by
the isospin I, or by the dimension p := 2I + 1. An explicit realization of the
Uy module F,, is given in terms of the weight basis {¢®»™ | p,m)} for any choice
of the (integer) exponents cy,,. Instead of the ¢-deformed Casimir operator

C’éq) .= EF + FE + [2] [%]2 it is more convenient to use its rescaled version:
C=(a-a " C5” + 12

C:=NEF+¢i 14+ T = FE+ " ¢ Ni=qg—q ' (414)
we have, as part of the definition of the weight basis

(C =g —qP) g™ | pym) =0= (¢ — @™ P ) g% | pym).  (4.15)

Ezercise 4.3. Check that (4.14) (4.15) imply
(EF=[m|[p—m])¢*»™ | p,m) = 0 = (FE=[m+1][p—m—1]) ¢* | p,m) (4.16)
(independent of the choice of ay, ).

We shall single out the (real) canonical basis {| p, m)} by the (apm,-dependent)
relations

El|lpm)=[p-m-1]|pm+1), Flpm)=[m]|pm-1). (417

It follows, in particular, that F, has both a lowest and a highest weight vector,
| p,0) and | p,p — 1), a property that is independent of the choice of ap,:

Eg®r= [pp—1)=0=Fg™ [p,0). (4.18)

Another remarkable weight basis, that will be used shortly, is what we shall
call an E-basis, {| p,m)}, for which

E|pm)=(p-m—1); |p,m+1), F|pm)=¢*P(m)y|pm—1); (4.19)

here the (complex for ¢ g = 1) g-numbers (n) and (n)_ (that will appear later)
are defined by
on-2 _ 1~ "

(s =[] =14+ +q =T (4.20)
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(n), = [TL] ql_” = 1+q_2+...+q2—2n.

Exercise 4.4. Verify that the vectors

3
| p,m) =q%™ | p,m), with ap, = m(mf—i—) —mp (4.21)

satisfy (4.19) as a consequence of (4.17).

The E-basis allows to introduce U, coherent states [FST] which are vector
valued polynomials of degree p — 1 = 21 in a formal variable u:

Oy (u) = i (%)ﬂm |21 +1,m), (:1)+ = Mﬂm)g (4.22)

m=0
(O '=M+=1 (n+ 1) = (n)4!(n+1)4).

Ezercise 4.5. Verify the relation
(E=Dy)®r(u)=0 for (Di f)(u)= (4.23)
(Hint : use the relation Dy u™ = (m)yu™ 1))

A function JP (uy,...,u,) on the n-fold tensor product of ®;(u)’s is U,

invariant if it is homogeneous — as a consequence of K (= ¢'!) invariance,
K :q 2 J(I)(q2 Ut P u) = J(I)(ul,uQ, ceeyUn) (4.24)
and F- and F-invariant:
E: Z Dk-‘r J(I) (ulv ceey Uk, q2 Uk+1y -+ q2 un) qQI(kin) =0 (425)

k=1

Z ol QI(k 2 Dk—(UIZQI J(I)(q72’lt1,..-,q72Uk_1,Uk,...,un)):0~

= (4.26)

Ezercise 4.6. Prove using just (4.24) and (4.25) that the general 2-point invariant
is proportional to

211
1
T (uy,uz) = way (u1,u2; 2) = H (" uy — ¢ ug) (4.27)
n=0
21
— -1 21 2I—m
- Z_[m (qun)™ (—uz) ™,
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where

k—1

v=0
k k k—1
= ; = n(_y)kn = _ k—1-2v
n= e

Proposition 4.1. The space of 4-point Uy-invariants in the tensor product .7-'594
s p-dimensional and is spanned by

(I A+1 A+1
I (ury . ug) = waroy U1, Uy —5— | War—x | Us, Usi —5—
A—1 A+1
wy | ug,uz; L — —— | wx | U, ug; R
2 2
A=0,1,....2I(=p—1). (4.29)

(For a proof see Appendix B. A more general result is established in [FST].)

Clearly, the QUEA U, (A, ) is neither commutative nor co-commutative. The
violation of co-commutativity however is not arbitrary: U,(A,) is an almost co-
commutative quasi-triangular Hopf algebra.

A Hopf algebra H is called almost co-commutative if there exists an invertible
element R of H® H which intertwines the coproduct A (3.2) with its permuted
one, A’ (3.13)

RA(X) =A"(X)R, vXeH. (4.30)

It is called quasi-triangular if R satisfies, in addition
(A M)(R) = Rz Raz, (I®A)(R)= Rz Ri2. (4.31)

Here we are using Faddeev’s notation (see, e.g., [FRT]) R;; for the action of
R on the triple tensor product H ® H ® H: define the algebra morphisms
6y HOH—HQH®H (i,j = 1,2,3,i # j) by

¢12(a®b):a®b®l, ¢23(a®b):1®a®b,

¢13(a X b) =a® 1 [ b, then Rij = ¢ij R . (432)

Applying € ® I to both sides of the first equation (4.31) and I ® € to the
second one and using Eq. (3.2) we find

e®l)R=(1®e)R=1. (4.33)

Ezercise 4.7. Prove, using quasi-triangularity, the relations

R'=(S®1)R, R=(12S)R*'=(S®S)R. (4.34)
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The quasi-triangularity further implies the Yang-Baxter equation (YBE) for
the R matrix:
Ry Ri3 Raz = Rag Ri3 Rz (4.35)

A natural construction of the R-matrix, which allows to verify the above
properties, requires yet another concept, the quantum double, and is given in
Section 5 below. Here we shall reproduce instead a simple example of a space of
non-commutative matrices which allows to understand the meaning of the YBE
(4.35) and its connection to the basic relation among braid group generators.

Let T = (Tg‘, a,f =1,...,n) be an n X n matrix whose entries do not
commute but obey the RTT relation (see [FRT])

RioTh Ty =TT Ris where Th =TI, Th=1T. (436)

Natural examples of such T-matrices are provided by the Borel components of
Uy(Ay) (see Section 5). We then apply both sides of (4.35) to the triple product
Ty 15 Ts:

Rig Riz3 RosTh To T3 = Rip Ri3T1 T3 15 Ro3 =
= RippT3T1T5 Ri3 Rog = T3T5T1 Ri2 Ri3 Ros3;

Rozs Riz RiaTh To T3 = Rog Ri3 1o 11 T3 Ry =
= Ro3T5T3T1 Ri3 Rip = T3T5 T Rog Ri3 Ry, (4.37)

where we have used the relations Ro3 Ty = T1 Ro3, Ri3To = T Ri3, R1o T3 =
T3 Ri2. Thus both sides of (4.35) when commuted with T T T5 intertwine it
with T3 T5 Ty, permuting the T; in different order. Eq. (4.35) thus reflects the
associativity of multiplication (of the elements) of T-matrices. (More on this
interpretation of the YBE the reader will find in [Ma].)

Eq. (4.35) reminds us the Artin braid relation (2.1). To obtain the exact
relation between the two we multiply both sides of (4.35) by the product of
permutations P12 P23 P12 = P13 = P23 P12 P23 and set

Piiv1 Riip1 = Riip1 (= b:). (4.38)
This gives for the left hand side of (4.35)
Pa3 Pio(Pas Ria Pa3)(Pas Ris Pas) Ras = Pog Pia Riz Py Riz Ras =
= DPh3 Rog Ri2 Ra3 = Ra3 Ria Ros,

where we have used Pa3 R13 Pog3 = Rpo etc. Similarly, the right hand side of
(4.35) is reduced to Ris Rog Ris. Thus the YBE (4.15) is equivalent to the
braid relation o o

Ri2 Rog Ri2 = Ra3 Ri2 Ros (4.39)

for ]:2“-“ given by (4.38).
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Appendix B. General form of n-point U ,-invariants

We shall construct in this Appendix a privileged basis of n-point (in particu-
lar, 4-point) U,-invariants — something peculiar for the g-deformed case. We
shall provide on the way the main ingredients of the proof of Proposition 4.1.
We first comment on the meaning of the Ug-invariants (4.27)—(4.29) comparing
them with the corresponding SU(2) invariants. Then we discuss the role of the
different U,-invariance conditions (4.24)—(4.26) — proving on the way Proposi-
tion 4.1. Finally, we comment on the properties which distinguish the basis
(4.29) of 4-point invariants. The Appendix may be viewed as a pedagogical
introduction to the paper [FST] which gives a system of n-point U,-invariants
in the tensor product of irreducible U,-modules F,,, corresponding to different
isospins I; (and dimensions p; = 2I; + 1) (see Proposition B.1 below).

The basic 2-point invariant with respect to SU(2) is the skew symmetric
tensor €48 = —B4 (A B = 1,2). If we introduce the undeformed coherent
states ®7(¢) (obtained from (4.22) in the limit ¢ — 1 — ¢f. the book [P]), it
is given (for I = 1) by the difference (12 = (; — (o of formal variables. Its
generalization to higher isospins I is nothing but the power (?. The product
JD (uy,us) (4.27) is a deformation of this simple monomial and can be obtained
as follows.

K invariance (4.24) (for generic ¢) implies that J) (uy, us) is a homogeneous
polynomial in uq,us of degree 21:

21
IO (uy, up) = Z AL U (—ug) 7™

m=0
Applying to it the condition (4.25) of E invariance we find the recursive relation

21 —m + 1]
[m]

21—-2
maIm - (21_ m + 1)+ Afm—1 <= AIm =

(m)+q qarm-1 -
Solving the recurrence for ag = ¢~/ we obtain the right hand side of (4.27). In
verifying F-invariance of the 2-point function so obtained one uses the identity
(—n)- = —¢*(n)+.

A 3-point invariant in the tensor product of three U;-modules Iy, I, I5 of
isospins I, I, I3 only exists if Is enters the tensor product expansion of I ® I,

|Il_I2|§I3§]1+127 L+1,—1I3eN, (Bl)

and then it is unique (up to normalization). Similar existence conditions hold
for n-point invariants which may depend on at most n—3 (discrete) parameters.
In particular, there are p = 21 + 1 4-point invariants Jy, A =0,1,...,2] in the
4-fold tensor product I®*(= F$1). The expressions (4.29) clearly obey the
homogeneity condition (4.24). In order to verify that they are also E-invariant
one uses the relations

_ k=1 1 _,_ 1
Dy wi(q”ur, g P u2) = ¢ 7 [Klwi—1(¢"T2 w1, q P77 ug)
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—1

_ _ k=1 _1 1_
Doy wi(q” u1,q P uz) = —¢ "7 % [Klwr—1(¢"" % u1,q2 P uy). (B.2)

The following more general result is established in [FST].

Proposition B.1. There ezists a basis J{(ill’f}f’ln) of Uq-invariant monomials
ij

in the n-fold tensor product Iy @ In ® ... ® I,

Ii,....In
J{( ) T wi, wi=wk, (i, u;p;5) (B.3)

1<i<j<n

where wi(u,v; p) is defined by (4.28). The parameters k;;(= kj;) and p;; have
to satisfy (as a consequence of the invariance of (B.3)) the following conditions:

Y kij=21 (ki =0), (B.4)
J
kijkim =0 for i<l<j<m (or £<i<m<j); (B.5)
if k‘ij > 0, then
1 J
pij+§k‘ij=ZIs—‘Z‘kgm, 1<i<ji<n. (B6)
s=i+1 i<L<m<j
(Em)£G.)

There are n—3 (integer valued) parameters among the k;; (0 < k;; < min(21I;,21;))
which label the general solution of (B.3)—(B.6).

Ezercise B.1. Forn =4, I} = I, = I3 = I, =: I set k14 = A and determine the
remaining k;; that reproduce the solution (4.29).

We observe that the selection rule (B.5) has no counterpart in the unde-
formed case. There are, so to speak, fewer U,- than SU(2)-invariants. The
basis of invariant monomials expressed as products of elementary 2-point in-
variants is essentially unique. The invariants (4.29) (in contrast to other choices
used in the literature) are well defined and linearly independent also for ¢ a root
of unity.
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5 Quantum Gauss decomposition and the Drin-
feld double

Every element g of a dense open neighbourhood of the group unit of the general
linear group GL(n,C) admits a Gauss decomposition g = b- f, where b is a lower
triangular matrix while f is upper triangular with units on the diagonal. This
corresponds to splitting of the Lie algebra into a Borel subalgebra generated
(in the sf, case) by E; and H,; and a nilpotent one, generated by F;. In the
g-deformed case, we see that such a splitting does not lead to Hopf subalgebras,
since A(F;) (4.4) also involves K; *(= ¢ ). A way out is to include the
diagonal (Cartan) elements in both parts of the decomposition and then impose
a relation among them. This allows to introduce the notion of quantum double
and yields a streamlined construction of a universal quasi-triangular R-matrix.
We shall outline this construction for the rank one case, U,(A;) (the QUEA
generated by K, E, F).

We introduce a pair of quantum Borel'® subalgebras U, by of two generators
each: (k,E) and k, F, such that kk = K satisfying

kE=qFk, Fk=qkF (5.1)

and the mixed relations

- k% — k2

(5.2)

(Ultimately, we shall set k = k.)

Introduce the triangular matrices
k 0 k=1 -AFk 1
M- = ()\k_lE k_1> ) M+— < 0 ]'% ) ) )‘—q_q . (53)

Ezercise 5.1. Verify that the CR (5.1) are equivalent to the “RTT relations”
Riz (My)1 (My)2 = (My)g (Mi1) Raz (5.4)

where R is expressed in terms of the Weyl matrices, (e;;)3 = 65 6,5, as follows:

[N

_1
R = q2(enn®eir +ex®ex)+q 2(e11 ®exr+ €220 @err + Aeap ®eq2)

(5.5)

I
2

15The Swiss mathematician Armand Borel (1923-2003) is one of the creators of the theory
of linear algebraic groups.
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The coproduct in each U, by defined by
(AM)g =M, @ M5, €=+, (5.6)
is equivalent to
Ak)=k®k, AE)=EQk +1QE,

AR)=kok, AF)=Fo1+k20F. (5.7)

Similarly, the counit and the antipode acquire the form they have in the group
algebra (Section 3) when expressed in terms of the matrices (5.3):

e(Mgs) =05, S(Mp) = (M) (5:8)

The introduction of the pair of Borel Hopf algebras, U, b4, is justified by
the following two facts.

(i) There exists a unique bilinear pairing

(Y, X) (eC for XeUsb_, Y eUyby)

such that
(YY" X) = (Y @Y, AX)) = _ (¥, X1) V', Xa)
(X)
for
Y,Y' €Upby, AX)=)> X1®Xy€Upb_@U,b_, (5.9)
(X)
(AY),X@X') = (V1,X) (Y2, X') = (¥, X'X) (5.10)
()
(LX) =e(X), (S(Y),X)=(Y,57(X)), e(Y)=(Y,1). (5.11)
It is given by
“m M ! mn—p(p—1)
(™ F*, eny) = 6 [)\—i q p (5.12)
where {en,} is a Poincaré*®-Birkhoff- Witt'" (PBW) basis in U, b_:
eny = k" EV.. (5.13)

16 Jules-Henri Poincaré (1854-1912), more than anybody else may be called the prophet
of 20" century mathematics. He is the founder of topology (called by him analysis situs),
introducing, in particular, the concept of fundamental group, used in Section 2. He pre-
ceded Einstein in analyzing the relativity of time and simultaneity. Poincaré stated the PBW
theorem in 1900.

17Garrett Birkhoff (1911-1996) son of the Harvard mathematician George David Birkhoff
(1884-1944) is known for his contributions to abstract algebra. He and the German math-
ematician Ernst Witt (1911-1991) published independent proofs of Poincaré’s statement in
1937.
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The mized relations (5.2) are recovered provided the product XY is constrained
by

XY () =) Y(STH(Xs) X1) X (5.14)
(X)
for
AP(X)=(10A)AX)=(Aa)AX) =) X10X,®X;. (515)
(X)

The dot () in (5.14) stands for the argument (say Z € U, b_) of the functional
Y (Z)=(Y,Z).

(ii) The universal R-matriz of the quantum double (U by, Uy b_) is given by

R= Z eny ® fnl/ fOT’ <fmp,7 enu> = §mn 6/1,1/ . (516)

(In the case of the restricted QUEA Uq for ¢* = —1 — see Section 12 — the
double construction has been worked out in [FGST] and [FHT].)

Remark 5.1. The matrices Mfl (5.3) provide the Gauss decomposition of the
monodromy matrix M appearing in the context of the su(2) current algebra
model (Eq. (9.11))

M=q¢2M M™" for g=e 7 (5.17)
(see Section 9 below; the choice of the phase factor is dictated by the result of
Exercise 9.4).

The double cover D, of U,(A;) is obtained from the above quantum double

by setting
k=k (K=K). (5.18)

Its CR are then obtained from (5.1) and (5.2). Its significance stems from the
fact that the universal R-matrix (5.16) of U, belongs, in fact, to (a completion
of) Dy ® Dy. It plays an important role in the physically interesting case of ¢ a
root of unity — see Section 11 below.

Writing the Drinfeld-Jimbo universal R-matriz requires introducing H (in-
stead of K') and using transcendental functions, thus leaving the algebraic frame-
work. We have (see [CP])

R = ¢2HOH 2 q(fy)]!w E @ F” ((;) = '41’2_1)) . (5.19)

It turns out that an expression of the type (5.16)

R=Y e, ®f7, e €Ub_, f7€Upby, (f es) =0, (5.20)
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using a pair of dual bases of the quantum double is easier to handle (than (5.19))
for extracting properties of the R-matrix — even without knowing the explicit
form of the basis {e,} (a formula like (5.13)) of U, b_. To give an example, we
shall establish the quasi-triangularity relation (A ® I) R = Rj3 Ra3 (4.31) for R
given by (5.20).

As {e,} form a basis in the Hopf algebra U, b_ one can expand the coproduct
of e, into tensor products e, ® e, and use the first equation (5.9) to determine
the coefficients:

Aley) = Z e, @er, g7 = ([ [T eq). (5.21)
pPT

Inserting in the left side of the above quasi-triangularity relation we find

(A@D)R=Y g e,@e;@f" = e,®@e, @ f° f7=RizRoz (5.22)
p,T

a,p,T

where we have used the relation
S g =0 f (5.23)

which follows from (5.21) and the last equation (5.20). The relation
(1® A) R = Ri3 Ry is established similarly.

Remark!® 5.2. According to [CP] (p. 123) if (U, R) is a quasi-triangular Hopf
algebra so is (Uy, R) for R = Ry;'. The universal R-matrix can be obtained
from the “transposed quantum double” (U, b_,U,by) by the same procedure
which allowed us to construct R from (U, by, U, b_). The result is

R= i) WFV ® EY g 2 HOH (5.24)

We shall see in Remark 12.1 below that the 4 x 4 matrix (5.5) is related to a
finite dimensional counterpart of R(g~1).

18] owe the (closely related) Remarks 5.2 and 12.1 to Ludmil Hadjiivanov.
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6 Conformally invariant QFT in two and higher
dimensions

Historically quantum field theory (QFT) arose (in the late 1920s) in an at-
tempt to unify quantum mechanics with special relativity using the canonical
Lagrangian (or Hamiltonian) approach and perturbation theory!?. We shall
base our treatment, instead, on the axiomatic framework developed in the sec-
ond half of 20th century (see, e.g. [SW] [Jo] [BLOT] [H] [BH]) with the dual
aim (i) to separate sense from nonsense in the formal manipulations with di-
vergences and (ii) to clarify the basic principles of relativistic local quantum
theory and their general implications. Adding the requirement of conformal in-
variance to the physically justified Wightman axioms [SW] (for a summary — see
Appendix C) makes for the first time the axiomatic approach constructive (for
surveys of axiomatic conformal field theory (CFT) in two and four dimensions
— see [TMP] [FST] and [T07]).

Let us first recall the concept of conformal transformations and conformal
invariance in any number D of space-time dimensions.

A transformation g : x — y of an open set O of space-time into another open
set, gO is said to be conformal if the infinitesimal square interval dz? gets just
multiplied by a (positive) factor: if g : (€ O) — y(z, g)(€ gO) then

dz?

) w(z,g9) R, w(z,g)#0 for x€ 0. (6.1)

dy*(z,g) =

Thus a conformal transformation is a generalization of an isometry (that would
correspond to w = 1). To fix the ideas we shall consider conformal transforma-
tions of Minkowski2® space M, setting

D—1
o’ = da’® — (da°)?, da® =) (da')’. (6.2)

i=1
One should, however, keep in mind that our discussion applies equally well to
all conformally flat metrics (such that ds? = Qd%(i)) In particular, all spaces of

constant curvature — the positive curvature de Sitter?! space and the negative

19T am unable to choose a single “best” textbook on QFT. An authoritative 3-volume
treatise is Weinberg’s [We]. For a selection of original papers on quantum electrodynamics
reflecting the development up to the 1950s — see [Sc]; a clear and concise exposition of later
developments in renormalization theory including the use of Becchi-Rouet-Stora cohomology
is contained in [PS]. Different in style and purpose is the (often entertaining) book [BM]
which surveys the inter-relations between gauge theory and modern mathematics.

20Hermann Minkowski (1864-1909) introduced the 4-dimensional space-time (in 1908 in
Gottingen), thus completing the special theory of relativity of Hendrik Antoon Lorentz (1853-
1928, Nobel Prize in Physics, 1902), Henri Poincaré and Albert Einstein (1879-1955, Nobel
Prize in Physics, 1921).

21The Dutch mathematician, physicist and astronomer Willem de Sitter (1872-1934), who
was interested in the concept of inertia in general relativity, introduced (as an alternative to
Einstein’s static universe) his constant curvature space (with a zero mass density) with a pos-
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curvature anti de Sitter space (on top of the zero curvature Minkowski space) —
are conformally flat. The assumption that the choice of metric within a given
conformal class should not affect the physics in a CFT thus forces us to adopt
a more general point of view on QFT.

Typically conformal transformations develop singularities: they cannot be
defined on the whole of M. That is the reason we speak of open (sub)sets of
M in the definition (6.1). By contrast, the conformal Killing*? vector K*(z)(=
K*(z,g)) corresponding to an infinitesimal conformal transformation

y(z) = 2 + e KM (x) + O(e?), w(z)=1—¢f(z)+0(?) (6.3)
is well defined in M and satisfies the conformal Killing equation
O Ky + 0y Ky =2fnp (1 = diag (—, ++...)). (6.4)
Ezercise 6.1. Writing dz? = 1, dz# dz”, dy? = 1, dy* dy” and inserting (6.3)
in (6.1) derive (6.4) by equating the terms of order .
Ezercise 6.2. Demonstrate, using (6.4), that
0-K(=0,K")=Df, (D—2)0x0,f=0. (6.5)
Use the result to derive the following

Proposition 6.1. (Liouville?® theorem) The general form of the conformal
Killing vector for D > 2 is given by

KHM(z) =a" +azt + A2’ —2(c-x)a + 22", N =Ny (6.6)

Exercise 6.3. Verify that the conformal group C of M is spanned by Poincaré
transformations y* = A¥ x¥ + a*, uniform dilation y* = pz#, p > 0, and special

itive cosmological constant in 1917. Presently, it is believed that our universe is approaching
a de Sitter space-time. Einstein and de Sitter wrote a joint paper in 1932 on what came to
be called dark matter (whose presence is only detected by its gravitational field).

22Wilhelm Karl Joseph Killing (1847-1923), a student of Weierstrass and Kummer in Berlin,
became a professor at the seminary college in Braumsberg. He invented Lie algebras, indepen-
dently of Sophus Lie, around 1880. In 1888-1890 Killing classified (essentially) the complex
simple Lie algebras, inventing the notions of a Cartan subalgebra and a Cartan matrix. He
introduced the root systems and discovered the exceptional Lie algebra G (in 1887). For a
popular article about Killing and his work on Lie algebras, see A. John Coleman, The greatest
mathematical paper of all time, The Mathematical Intelligencer 11:3 (1889) 29-38; see also,
T. Hawkins, Wilhelm Killing and the structure of Lie algebras, Archive for History of Exact
Science 26 (1982) 126-192.

23 Joseph Liouville (1809-1882) published his theorem (for 3-dimensional Euclidean space)
in a Note to the 5th edition of Gaspard Monge (1746-1818), Application de l’analyse d la
géométrie (Paris, 1850) entitled “Extension au cas des trois dimensions de la question du
tracé géographique” (pp. 609-616).
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conformal transformations which can be defined as translations T, : x — = + ¢
X

sandwitched between two conformal inversions R : x — 25:

x+cx2

o) = RTRe = (54 [(5 )] =20

w(z,c) =142c-x+c2x?. (6.7)

Clearly, the special conformal transformations (6.7) are singular (for ¢ # 0)
on the cone w(z,c) = 0 (that degenerates into a hyperplane for ¢> = 0). One can
define, following Dirac?* [D36], the conformal compactification of space-time M
as a projective quadric in D + 2 dimensions:

D
M =Q/R* ~8P7x8! /%1, Q= {Ee RP?: 2= & -6 -¢, =0} :
a=1

R* =R\{0}. (6.8)
M is embedded in a dense open set of M in which k 1= ¢P+£71(=Ep—€1) # 0:

pole (#oS)

K K

The quadric @ (6.8) is, clearly, invariant under the full orthogonal group O(D, 2).
The reflection (—1I) : { — —E acts however as the identity transformation on
Q/R* so it is only the quotient group O(D,2)/ + 1 which acts effectively on M
and should be identified with the conformal group C' (including reflections) of
compactified Minkowski space. It is natural, following Segal®® [S], to identify
the conformal energy operator with the (hermitian) generator H of the centre of
the Lie algebra so(2) x so(D) of the maximal compact subgroup of C, i.e., with
the infinitesimal rotation in the (—1,0)-plane. It can be expressed in terms of
the Minkowski space energy operator Py (the zeroth component of the energy
momentum vector) and its conjugate by the conformal inversion R as

1
H=g (R +RRR). (6.9)

Here R Py R is a physical (hermitian) generator of the special conformal trans-
formation (6.7) (in other words, the vector field corresponding to the Lie algebra
element i R Py R is [8%)0 Y (z,c)] e—0 %). In a unitary representation of (a cov-
ering of) the conformal group H (6.9) is positive whenever the Minkowski energy
P, is positive.

The following exercise shows that for D = 2 the conformal group is infinite
dimensional.

24Paul Adrien Maurice Dirac (1902-1984), Nobel Prize in Physics 1933, known for his equa-
tion and for the prediction of antiparticles, recollects (in his Varenna 1977 lecture) of his great
appreciation of projective geometry since his student years at Bristol.

25Trving Ezra Segal (1918-1998) was a Professor in mathematics at the Massachusetts In-
stitute of Technology.
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Ezercise 6.4. Let fi(z) be a pair of (non-constant) meromorphic functions
(taking real values on the real line). Demonstrate that both changes of variables
x — y such that

vV +yt=fi@ 2, Y-y =f " Fal), (6.10)

satisfy the condition (6.1) for a conformal mapping. Show that the upper sign
in (6.10) corresponds to the connected component of the identity of the (infinite
dimensional) group of meromorphic mappings, while the lower one belongs to
the connected component of space reflections.

Ezercise 6.5. (a) Show that the only complex conformal transformations which
transform circles into circles or straight lines are the non-singular fractional
linear (also called Mébius®®) transformations

az+b

22— 7 =qgz=
- g cz+d

ad —bc# 0. (6.11)

(b) They preserve the real line if the matrix entries of the 2 x 2 matrix g =
¢ Z) are real. They preserve the upper half plane if the determinant of g
is positive (then one can set detg = ad — bc = 1, thus identifying the Mdbius

group with SL(2,R)).

(c) The transformation (6.11) preserves the unit circle iff d = @, ¢ = b. For g €
SU(1,1) (i.e. for g= (% 2), detg = |a|® — |b|*> = 1) the Mdbius transformation
(6.11) preserves the interior (as well as the exterior) of the unit circle. For

la]? — [b|> < 0 it exchanges |z| < 1 with |z| > 1.

There is a complex Mébius map g. of the upper half plane 7 (Im7 > 0)
onto the unit disk (|z| < 1) intertwining the SL(2,R) and the SU(1, 1) actions.
Choosing g.i =0, g.0 = 1 we find

1+ 1-—
Je:T — 2= +Z,T (7'—' Z) (6.12)

_Zl—l—z

It maps the real light ray 7 = ¢ (= 2% + 2!) onto the unit circle, sending the
point at infinity to —1. Thus g. plays the role of a compactification map for the
light ray.

Exercise 6.6. Demonstrate that the non-singular conformal transformation z —
f(2) is a Mdbius transformation iff the Schwarz?” derivative

M 3 ()
Uosh =" 2(f’(z)) (6.13)

26 August Ferdinand Mobius (1790-1868). The Mdobius group SL(2,C) is a double cover of
the (connected component of the) Lorentz group SOT(3,1).

27Karl Hermann Amadeus Schwarz (1843-1921) a student of Karl Weierstrass (1815-1897);
introduced his derivative in 1872.
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vanishes.

We shall now exhibit a 4-dimensional quaternionic analogue of (6.12). Con-
sider the Lie algebra u(2) of 2 x 2 anti-hermitian matrices

iz =ix"0y— il o, (e u(2))

where o; are the Pauli?® matrices, o9 = 1 is the 2 x 2 unit matrix. The Cayley?°
map from the Lie algebra u(2) to the group U(2) of 2 x 2 unitary matrices,

_1+ax
1-id

eU(2) for zMeR, (6.14)

1T —u
can be viewed as an alternative of the conformal compactification (6.8).

Ezercise 6.7. Writing u (6.14) in the form u = u? I — i/ o, prove that u® are
related to £ in (6.8) and (6.9) by

a £

4
a=1,234 () ua*=1]. (6.15)
a=1

Ezercise 6.8. Prove that the Lie algebra su(2,2) of the pseudo-unitary group
SU(2,2) coincides with the conformal Lie algebra so(4, 2).

(Hint : use the realization of Appendix C to [NT] for D = 4.)

Ezercise 6.9. Prove that SU(2,2) is a 4-fold cover of the conformal group
Co ~ S00(4,2)/ £1 of 4-dimensional Minkowski space or, equivalently, a 2-fold
cover of SOy (4,2):

S00(4,2) ~ SU(2,2)/ £1. (6.16)

Discrete masses of atoms and elementary particles violate “the great prin-
ciple of similitude”3? (i.e. scale and, a fortiori, conformal invariance). The
situation in QFT is still more involved — and more interesting: dimensional pa-
rameters arise in the process of renormalization even if they are absent in the
classical theory. Dilation and conformal invariance can only be preserved for a

28Wolfgang Ernest Pauli (born in Vienna 1900, died in 1958 in room 137 of a hospital
in Zirich). During his stay in Hamburg (1923-1928) he discovered the exclusion principle
(1925), for which he was awarded the Nobel Prize in Physics in 1945, and introduced the
Pauli matrices (in 1927).

29 Arthur Cayley (1821-1895) after studying at Trinity became (at 25) a lawyer for 14 years
in London writing during that period over 200 mathematical papers. He was first to define
the modern way the concept of a group. The Cayley transform originally appeared (1846) as
a mapping between skew symmetric and special orthogonal matrices.

30See Lord Rayleigh, The principle of similitude, Nature 95:2368 (March 1915) 66-68 and
644. John William Strutt — Lord Rayleigh (1842-1919) was awarded the 1904 Nobel Prize for
his discovery of the inert gas argon.
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renormalization group fixed point, i.e., for a critical theory, the QFT counter-
part of a point of phase transition. One may hope that the study of an idealized
critical theory with no dimensional parameters will prove to be an essential step
in understanding QFT — just as Galilei’s3! law of inertia, that neglects friction,
has been crucial in formulating and understanding classical mechanics. (For a
more comprehensive discussion of the relevance of conformal invariance see the
Introduction to [T07].)

The case of 2-dimensional conformal field theory (2D CFT), to which are
devoted the next two sections, is attractive from several points of view. It
not only provides soluble QFT models satisfying the axioms, but the euclidean
version of such models applies to 2D critical phenomena. String vacua are also
described by a class of 2D CFT. (For a survey of QFT and strings addressed to
mathematicians — see [QFS].)

Before going to the discussion of a class of 2D CFT models we shall make a
general remark pertinent to a CF'T in any even number of space-time dimensions.

It is important to distinguish in axiomatic QFT between local observables,
such as the stress-energy tensor and conserved local currents on one hand, and
gauge dependent charged fields which intertwine among different representations
(or superselection sectors) of the algebra of observables, on the other. (This
is stressed, in particular, in Haag’s approach to local quantum physics, [H], in
which a compact gauge group of the first kind is derived from intrinsic properties
of the observable algebra.) In the framework of axiomatic CFT we postulate
that local observables are globally conformal invariant (GCI) — i.e., invariant
under finite conformal transformations in Minkowski spaces, [NT01]. This is
a highly non-trivial requirement since a finite interval (x; — 22)? goes under
special conformal transformations (6.7) into
(1 —x2)?

w(z1, ) w(wa,c) (6.17)

[y1(21,¢) — ya(w2,0))* =

The product of w-factors (unlike the square in the infinitesimal law (6.1)) may
change sign. The local commutativity for space-like separations implies Huy-
gens>? locality: the commutator of local fields has support on light-like separa-
tions (it vanishes for both space-like and time-like x; — x2). Moreover, one can
express the strong (Huygens) locality between two observable Bose fields by the
algebraic relation

[(z1 — 22)*IN [¢(21), ¥(22)] =0 for N >0 (6.18)

(N > 0 meaning “for sufficiently large N”). This allows a formulation of GCI
QFT in terms of formal power series (instead of distributions), [N], [BN]. Com-
bined with the remaining Wightman axioms it implies rationality of correlation

31Galileo Galilei (1564-1642) amplified his views on mechanics in his last dialogue (1638)
written when exiled to his villa at Arcetri.

32The Dutch physicist, mathematician and astronomer Christian Huygens (1629-1695) is
the originator of the wave theory of light.
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functions of observable fields [NTO01], long believed to be a peculiarity of chiral
observable fields in 1 4+ 1 dimension (for a review — see [NT]). It should be
noted, however, that canonical free fields and the stress energy tensor in odd
space-time dimensions violate Huygens locality (and hence, GCI).

Ezercise 6.10. Use the Schwinger®® a-representation (z% = [F e’ da) to

derive for euclidean p and x in D-dimensional space-time the relation

e’ dPp L(2-1), 52

Deduce from here, using energy positivity that the Minkowski space 2-point
function w(x12) = (0 | ¢(z1) p(x2) | 0) for a free massless field in D = 3 space
1

time dimensions (with euclidean propagator p—Q) is

1
4m(x? +i020)1/2 "

w(z) = (6.20)

Thus, the GCI postulate is only appropriate for even D. A survey of both
standard (infinitesimal) and global conformal invariance in QFT in four dimen-
sions is contained in [T07] (see also the introduction to [NTO05]).

33 Julian Seymour Schwinger (1918-1994) shared the 1965 Nobel Prize in Physics with
Richard Feynman (1918-1988) and Sin-Itiro Tomonaga (1906-1979) for his work in quantum
electrodynamics.
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Appendix C. Informal summary of Wightman ax-
ioms

Pure quantum states are described by unit rays in a complex (positive metric)
Hilbert space H which carries a unitary positive energy ray representation of the
proper orthochronous Poincaré (= inhomogeneous Lorentz) group PJ_. A ray
(or projective) representation of P_L is equivalent to a single valued represen-
tation U(A,a) of its universal covering group (which is, by definition, simply
connected). For D > 2 the covering of 731 is obtained by substituting the
Lorentz group SO'(D — 1, 1) by its double cover, the spin group Spin (D —1,1).
For D = 4 this double cover is isomorphic to the group SL(2,C) of complex
2 x 2 matrices of determinant 1. We have, denoting the 2 X 2 unit matrix by
oo, Aoy atA* = o, AMa¥ for A€ SL(2,C) ~ Spin (3,1)

A=A(A) e SO'(3,1) ~ SL(2,C)/ + 1. (C.1)

Positive energy means that the hermitian generator of translation, the energy
momentum vector P, has joint spectrum in the forward light cone; moreover
the unique translation invariant state is the vacuum |0):

D-1
P> I|P|, |[P?=Y P}, P,|0)=0, p=0,1,...,D-1. (C.2)
i=1
Quantum fields ¢(x) are operator (spin-tensor) valued distributions®* which
transform covariantly under U (A, a):
U(A,a)d(x)U(A,a)* =V(A ) o(AA)x+a) (U =UY), (C.3)

V being a finite dimensional representation of the “quantum mechanical Lorentz
group” Spin (D — 1,1).

It is a consequence of energy positivity that the vector valued function
¢(x) | 0) admits analytic continuation to complex z# = z# + iy* in the forward

tube (noting that in our conventions U (a, ) = e 2):
0 . D 0
P (2)]0y=0 for z€eTi={z=z+iyeC”; 4’ >|y|}. (C.4)

Exercise C.1. Prove that 7 is invariant under the action of the connected
component Cy of the (real) conformal group. (Hint : verify that 7, is invariant
under the Weyl inversion

Iz
22

I,(2%, 2) = (Y, —2) (C.5)

Z— Wz =

34More precisely, we are dealing with tempered distributions introduced by Laurent
Schwartz (1915-2002).
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and notice that Cy is generated by w and by real translations. For a stronger
result, known to V. Glaser (1924-1984) — see [U].)

Ezercise C.2. Extend the projective quadric construction to the conformal com-
pactification of complexified Minkowski space M¢ and verify that the stabilizer
of z = (4,0) (€ 7;) is the maximal compact subgroup of Cy.

Observable (Bose) fields commute for space-like separations:
[p(21),¢(22)] =0 for (z1 —x2)® >0 (local commutativity). (C.6)

The vacuum is assumed to be a cyclic vector with respect to the set of (rela-
tivistic) local fields, so that every vector in H can be written as a strong limit of
linear combinations of vectors of the form ¢;(x1)...¢n(x,) | 0) (smeared with
test functions). It follows that the full content of the theory can be expressed
in terms of (Wightman) correlation functions — vacuum expectation values of
fields products.

Ezercise C.3. Prove that the Cayley map (6.14) extends to points z of the tube
domain 7. The image Ty of 7, under this map is given by

4
1
_ 4,2 o 2 _ 2 1 22y | _
T, {zE(C,|z|< N 3:1|za| <2(1+|z|)} (C.7)

Extend the map (6.14) (and T ) to any number D of space-time dimensions.

Remark C.1. The tube domain (C.7) is biholomorphically equivalent to the
classical Cartan domain of type IV (see e.g. [SV] pp. 182-192).
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7 Two-dimensional conformal current algebras

Basic objects in QFT are the correlation functions — vacuum expectation values
of products of local fields which satisfy certain symmetry properties and can
be viewed as boundary values of analytic functions as a consequence of the
spectral conditions (energy positivity). Conformal invariance plays the role
of a dynamical principle: it allows to determine 2-point functions (uniquely,
up to normalization) and 3-point functions (up to a few constants). (Four
point functions and higher can only be determined in a GCI QFT.) The 2-
point function of two currents j,(z) of scale dimension D — 1 in D space-time
dimensions has the form ([TMP)):

Wi (12) = (0 | j* (1) ju(w2) | 0) = Ny vl (z12) pra 7 s prz = 2, +i 02, (7.1)
where the i 0z, defines the right hand side of (7.1) as a distribution,

D-1

m
ma=wi—as, @’ =a’—(%?, @’=) o}, ) =d-27" (7.2)
i=1 P
(r? =1, rt ¥ = —a#). W} (z) satisfies the conservation law
0, Wh(z)=0 (for 9, = i) (7.3)
" v H Ok ’

implying (in view of Wightman positivity and the Reeh-Schlieder theorem [SW],
[BLOT]) that the current itself is conserved (as an operator valued distribution):

0y j*(x) = 0. (74)

For D = 2 we see, in addition, that W} is a gradient:
.’I/‘,J’
Wht(z) =9, Ny — (p=2>+1i02"), (7.5)
p

hence the curl of j is also zero:

au ]u(z) -0, Ju(x) =0, wv=0,1. (7'6)

Ezercise 7.1. Prove that Eqgs. (7.4) and (7.6) imply that the current splits into
two chiral components, depending on a single light cone variable 2° + 2! each:

1,

25 (" =) =i+ ). Loy =de-a). @

V2

As a consequence of energy positivity both vector valued function j(t) | 0)
and j(%) | 0) are boundary values of functions analytic in the upper half plane.
It is now convenient to use the compactification map g. (6.12) from the upper
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half-plane onto the unit disk Dy. It gives rise to the z-picture fields ¢(z) that are
naturally identified with their formal Laurent3® expansions yielding convergent
in D; Taylor®® series for the vector valued function ¢(z) | 0). The compact

picture current, is identified by equating the corresponding 1-forms:

J(2) % — it (7.8)
J(2) = 2mi %j(t(z)) -4 1”2)2 j (z 1 ;j) (7.9)

where we have devided by the length of the unit circle (i.e. of the compactified
light ray) with respect to the (complex) measure 2. J(z) is more convenient to
work with (than j(t)), since its mode expansion is given by the (formal) Laurent
series

J(2) =Y Jnz "' (Jo =Res.(z" J(2))) (7.10)
nez

that repalces the integral Fourier3” transform of j(t)).
g

Similarly, the conserved traceless stress energy tensor 6 for D = 2 also splits
into two chiral components,

0@’ +1') = %(@8—@5) <=2—j§<@8—@é+®?—@i)>
Oz -zt = i(@8+@3). (7.11)

V2

Ezercise 7.2. Use the conservation law, d,, 05 = 0, and the tracelessness, 6/, = 0
of 0" to prove that % =0=2fort=2"+2', T =2"—2' and 6 and § defined
by the right hand side of the first and second equation (7.11).

Ezercise 7.3. Equating the quadratic differentials

dz?

O(t)dt* =T(z) o

(7.12)

express T'(z) in terms of O(t) for ¢ =i {72

35Pierre Alphonse Laurent (Paris 1813-1854) introduced in 1843 the Laurent series in a
memoir submitted for the “Grand Prix de ’Académie des Sciences”, but the submission was
after the due date, and the paper was not published until after his death (at the age of 41).

36The English mathematician Brook Taylor (1685-1731) proved a theorem about power
series expansions (following ideas of Isaac Newton, 1642-1727) in a paper of 1715 which re-
mained unrecognized until 1772 when Joseph-Louis Lagrange (1736-1813) proclaimed it the
basic principle of differential calculus.

37The French mathematician and physicist Jean Baptiste Joseph Fourier (1768-1830) went
with Napoleon Bonaparte on his Egyptian expedition in 1798; was governor of Lower Egypt
(until 1801). In his “Théorie analytique de la chaleur” (1822) he introduced the Fourier series
(exhibiting discontinuous functions with convergent Fourier series). His claims were made
precise and proven by Johann Peter Gustav Lejeune Dirichlet (1805-1859).
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Remark 7.1. The (conserved) current j#(x) in D dimensions should have con-
formal dimension D — 1 (in mass units) in order to allow interpreting j°(z) as
the charge density of a dimensionless charge. Similarly, ©# has dimension D in
D-dimensional space-time so that one may interpret ©f as an energy density.
This accounts for the difference between (7.9) and (7.12). The factor (27r)~! in
(7.12) is chosen to simplify the 2-point function of T'(z) in the theory of a free
Weyl fermion.

Ezercise 7.4. (a) Given (7.1) for D = 2, compute the 2-point function for j(t).

(Answer :
~Ny

(t1 —ta —i0)2’
hint : use the fact that P12 = iO(tm —l-flg) —t12 t_lg, for t12 = tl —t27 ti = LL‘?-l—le)

(0] j(t) j(t2) | 0) = (7.13)

(b) Viewing the right hand side of (7.13) as a rational function of #15 (i.e.
neglecting the i 0 prescription) and setting N; = (27)~2 prove that the 2-point
function of J(z) (7.9) is

1
<0 | J(Zl) J(Zz) | 0> = ZT, Z19 = 21 — 2. (714)
12

Remark 7.2. The solution of the 2D massless Dirac equation (7° 9y + v 91) ¥ =
0 for

(0 -1 (0 1 _ (-1 0\ _ o1
Y0 = 1 0 ) "= 1 0 Yo = 0 1) — et

assumes the form ¥ = (3%) If we define j(¢) in the theory of a free Weyl

field ¢ (t) from the operator product expansion

t1 + o
2

(0" (1) ¥lta) — () " (1)) = ) ( ) o) (1)

DO =

then the 2-point function (7.13) of j will indeed involve the normalization con-
stant Ny = (2m)~2 (see [FST] Appendix C).

If we write the mode expansion of the z-picture stress-energy tensor as

T(z) =Y Lpz "2 (T(z) => L, z_"_2> (7.16)

neZ

then the conformal energy H (6.9) is the sum of the left and right mover’s zero
modes:

H=1Lo+ L. (7.17)
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We shall identify accordingly the chiral energy operator with Ly. We have

(Lo, J ()] = <z di + 1) J) = L IG) = Lo Ju] = —ndn:  (7.18)
z z

d

[Lo, T(2)] = (z o T 2) T(z) = [Lo,Ln] = —nL,. (7.19)
More generally, if W (z) is a chiral Bose field of integer dimension d,

W(z)=Y W,z (7.20)

then .
[Lo, W (2)] = <z Fi d) W(z) = [Lo,Wp] = —nW,. (7.21)

It follows from the analysis of Section 6 (see, in particular, Exercises 6.2
and 6.4) that there is an infinite parameter set of invertible local conformal
transformations z — f(z) of a neighbourhood of the origin (in which f’(z) # 0).
If the theory is assumed to be invariant under such an “infinite conformal group”
then the correlation functions would have been independent of z which would
mean that all chiral fields (including the stress-energy tensor) would vanish.
What actually happens is that the vacuum state is not invariant under the
infinite dimensional conformal group. Correlation functions of chiral fields, like
(7.14) or

(0] T(21) T(22) | 0) = (c>0) (7.22)

221y
are only invariant under the Mdbius group of fractional linear transformations
(see Exercise 6.6). Noting the Lie algebras s¢(2,R), su(1,1) and so(2,1) are
isomorphic we can say that the correlation functions of a D-dimensional CFT
are so(D,2) invariant for all D > 1. As we shall see shortly the chiral Mdbius
Lie algebra is spanned by Lo, Li1; the CR (7.19) should be completed by

[Li,L_1]=2Ly sothat [Ly,L,]=(m—n)Lpin, mn=0+1. (7.23)

The z-picture correlation functions (like (7.14) (7.22)) having the same form as
the a-space ones are, in particular, translation invariant, the (non hermitian)
generator of translations of the complex variable z being L_; which should also
annihilate the vacuum:

dW (z)

Loy |0)=0, [Loy,W(2)] = =22 = (W, L] = (nd—1) Wy - (7:24)

The upper half plane, the analyticity domain of ¢(7) | 0) for any chiral field
¢, is mapped by the complex Mobius transformation (7.8) onto the unit disk.
Thus we expect that z-picture fields applied to the vacuum give rise to Taylor
expansions convergent for |z| < 1. To formulate the precise statement we need

44



the notion of z-picture conjugate of a hermitian chiral field W(z) of dimension
d and expansion (7.20):

W) =z (%) (7.25)

z

Proposition 7.1. (a) The vector valued function W(z) | 0) for a hermitian
scalar field W (7.20) of a positive integral dimension d has the form

W(z)[0)=> W_n_a2"|0), de W,[0)=0 for n+d>0. (7.26)
n=0

(b) The norm square of this vector is given by a power series convergent for
zz < 1.

Proof. (a) Wy, | 0) = 0 for n > 0 because (Lo + n) W, | 0) = 0 and we have
assumed energy positivity. Hence W(z) | 0) may at most have a finite number
(no more than d) negative powers of z in its Laurent expansion. Hence the
formal power series

F(z,w) := e“F=1 W (2) | 0)

can be written in the form F(z,w) = %ﬂ}u) + % where vg and v; only involve

non-negative powers of z and w in their (formal) Laurent expansions. On the
other hand, Eq. (7.24) implies that %—f = g—i. This is only possible if N = 0,
implying (7.26). Thus the lowest energy state generated by the W modes is
W_g4 | 0) of energy d.

Remark 7.3. We have thus proved that, under the assumption of energy positiv-
ity, any translation covariant formal power series W (z) | 0) involves no negative
powers of z. Thus the vector W(0) | 0) is well defined (and determines W (z)
— see Appendix C). A more general result of this type, applicable to higher
dimensional GCI theories, is contained in Proposition 3.2 (a) of [NTO05].

(b) the 2-point function of W is determined from translation and dilation in-
variance to have the form

(0 W(z1)W(z2) | 0) = =7 (7.27)

(Hilbert space positivity demands Ny, > 0.) It follows from here and from the
conjugation rule (7.25) that the norm square of the vector (7.26),

WE 0 = ot = Y (T o )

n=0

indeed converges for |z]? < 1. O
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Proposition 7.1 implies that the 2-point correlator (7.27) should be viewed
as a boundary value of a function analytic in the domain |z3| < |21| where it is
defined as a (convergent) power serie in z—f The same rational function in the

domain |21] < |22| will be written as (2o — 21) 24,

Proposition 7.2. In a chiral theory satisfying both Hilbert space and energy
positivity the modes Jp, of a local current J(z) with 2-point function (7.14) satisfy
the Heisenberg CR

[Jn, Im] = N0, —m - (7.29)

Proof. Local commutativity implies

[J(Zl),J(ZQ>] = ZAn(Z2) 83(5(2:1 — ZQ) . (730)

n=0

Here the z picture d-function is given by a formal Laurent series and obeys the
defining property of a J-function when applied to an analytic function f of z:

01 —20) = 3 o (z =y 1) Res. 3(1 — 22) f(z2) = f(=1).

¥4 z
nez “1 12 21
(7.31)
1 1 00 n 1 1 o0 n
- = = Z2 - = = Z1 19101 —
(Here 2 = ng_o (Zl) ) e ng X (22) have dlSJOlIlt convergence do

mains. For a distribution F' given by a formal Laurent series F'(z) = > F,, 2",
n

we set Res, F' = F_;.) Using conservation of scale dimension and the fact that
0% §(z1 — z2) has dimension n 4+ 1 we conclude that the field A4, in (7.30) has
dimension 1 — n.

Lemma 7.1. If the dimension d of the chiral field W with 2-point function
(7.27) is a negative integer, d = —N, then W wviolates both energy and Hilbert
space positivity.

Proof (of Lemma). The 2-point function (z12)%" corresponds to a minimal
energy state Wy | 0) # 0 of energy —N. The norm square (7.28) then goes into

2N IN 2N
(=22 = S0 (V) G2 = 3 W | O 2
n=0 n=0
giving, in particular, |[Wx_1 | 0)||? = —2N||Wx | 0)]|%. O

Thus, our assumptions imply that n; = 1: only two terms — with n = 0 and
n = 1 — contribute to the sum (7.30). The uniqueness of the vacuum implies
that A;(z) is a constant multiple of the identity. Comparison with (7.14) tells
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us that this constant is 1. The antisymmetry of the commutator under the
exchange z; 2 2z implies, on the other hand, Ag = 0. Thus,

anl anl
[J(21),J(22)] = 020(21 — 22) = > _m # = [Jms Jn] Zjﬁ (7.32)
n 1 m,n 1

which yields (7.29).

Ezercise 7.5. Let T(z) (7.16) with 2-point function (7.22) satisfy locality, energy
and Hilbert space positivity. Derive the Virasoro CR:

[Ln, L] = (n—m) Ly + 1—82 (n® —n) On,—m - (7.33)

(This is the Lischer-Mack theorem — see [M88]; for a complete proof — see [FST];
for related work done in Brazil — see [Sc] [SS].)

It is the central charge ¢ in (7.33), the conformal anomaly, which expresses
the violation of the infinite dimensional conformal symmetry by the vacuum
state. Note that its coefficient vanishes for n = 0, £1, so that (7.33) reproduces
the Mobius CR (7.23) as a special case.

A field ¢ is said to be primary if it transforms homogeneously (without
anomaly) with respect to commutations with the chiral algebra A. For instance
the current J(z) is a Virasoro primary field. It is covariant under infinitesimal
reparametrizations:

(L, T2 = o (2 I() (7.34)

z

(J is however not primary with respect to the current algebra since (7.29) is
inhomogeneous). More generally, a 2D field ¢(z,2) is said to be primary of
weight (A, A) with respect to the Virasoro algebra Vir if

[Ly,¢] = 2" <z§z+(n+1)A)¢, [Lp,p] = 2" (z§Z+(n+l)A)¢.

(7.35)
The difference s = A — A is called the spin (or the helicity) of ¢. Usually only
fields with 2s € Z are encountered. Such fields live on a cylinder — i.e. their
z-space counterparts satisfy

o0, 2! +2m) = (=1)* (20, 21). (7.36)

Primary fields are relatively local to the observables. To check the locality of
¢ with respect to T' we note that (7.35) is essentially equivalent to the operator
product expansion (OPE)

d’i?) + Z—L ¢ (22) + 0(1) (7.37)

T(21) ¢(22) = A
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(O(1) standing for non-singular terms in z15). This indeed amounts to local CR
since

1 1 1 1 0
T — =9 . 7.38
212 + Z21 (212), Z%z 231 0z (z12) ( )

A 2D CFT is called rational if the chiral algebra A has a finite number
of unitary positive energy irreducible representations (UPEIR) related to the
(defining) vacuum representation of A by primary fields, relatively local to the
observables. An example of a rational conformal field theory (RCFT) is provided
by the Virasoro minimal models [BPZ] corresponding to central charge ¢ =

c(m) :1 1- m, m = 1,2,.... The first chiral theory of this Seri§:,

c(1) = 5, can be viewed as generated by a free real fermion field, the Majorana“®-
Weyl field

1
77[}(2) = Z¢7l—% 27" , [¢pa1//o]+ = 5p,—<7 s 1/); = w—p , pyoEZLA+ 5 . (7'39)

FEzxercise 7.6. Prove that

o 9? 1
T(z) = v le’lzrgz 921 07 {z129(21) ¥(22)} = 9 P'(2)P(2) : (7.40)
has all properties of the stress energy tensor with central charge ¢ = %; in
particular,
P'(21) | ¥(21) V'(z2) | 19(22)
T = 1) = = 1
() wle) = o+ o w0 = 28 o B r o)
1
(0| T(21)T(22) | 0y = PN (7.41)
212

It can be demonstrated that the Virasoro algebra has three sectors in this

case of weights A = 0, %7 % For a general study of RCFT — see [MS] (see also
the book on CFT [DMS])).

38Ettore Majorana (1906-19387), one of the “ragazzi di via Panisperna”; their leader, Enrico
Fermi, compares his genius with that of Galileo and Newton, adding: “Ettore had what nobody
else in the world has. Unfortunately, he lacked what is instead easy to find in other men: simple
common sense.” Majorana disappeared on March 25, 1938 (listed among the passengers in a
boat trip from Palermo to Napoli). The (real) 4D Majorana spinors, introduced in his last
paper (of 1937), are now used to describe a massive neutrino.
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Appendix D. Axioms for a chiral vertex algebra

Chiral CFT has become, starting with the work of Borcherds [B86], a domain in
pure mathematics under the name of verter algebras, that is already a subject
of several books — see, e.g. [FLM] [Ka] [FB-Z] [Gal]. Our brief survey, following
[DGM] and [Kal, should be viewed as a formalization and extension of the
discussion of Section 7. Accordingly, we shall formulate the axioms for bosonic
graded vertex algebras only, mentioning the fermionic (and superalgebra) case
in a subsequent remark.

A graded vertex algebra consists of a Z, graded pre-Hilbert vector space,

V=PV, dimVy=1, dimV, <oo (D.1)

n=0

equipped with a translation operator T (= L_1) and a state field correspondence
Y :V — (EndV)[[z,27Y] (read: Y is a map from V to the space of formal
Laurent series Y (v, z), v € V whose coefficients are endomorphisms — i.e. linear
operators from V to V) satisfying the following axioms.

(i) Vacuum : the 1-dimensional space Vy is spanned by the vacuum vector
| 0) such that
T|0)=0, (0]0)=1. (D.2)

(ii) Translation covariant fields : to each vector v € V there corresponds a
formal Laurent series Y (v, z) with operator valued coefficients such that (a) the
vector valued function

Y(v,2)|0)=eTw, (D.3)
is analytic (in the norm topology) for |z| < 1; furthermore
d
[T,Y(v,2)] = o Y(v,2). (D.4)
z

(b) Assuming linearity in the vector argument v, i.e. requiring

Y(civi +cave,2) =c1Y(v1,2) +caY(va,2) for wi,va €V, ¢1,c0 €C,
(D.5)
we can define Y by first displaying its properties for homogeneous elements,
vg € Vp; then

Y(ve,2) =Y Vo(ve) 2" (D.6)
where (c) Y,,(ve) changes the grading by —n:
Yn(vi) V= Vin (Vk—n = {0} for k< n) : (D7)

Eq. (D.7), together with (D.1), is our energy positivity requirement. We identify
the chiral vertex algebra Hamiltonian with the Virasoro energy Lo satisfying

(LO - n) Vn = Oa [L07T] =T. (D8)
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Formal Laurent series of different arguments, Y (v1, 21), Y (v2, 22), can be
multiplied giving a formal Laurent series Y (v1, 21) - Y (va, 22) of two variables.

(iii) Local commutativity :

(z212)N[Y (01, 21),Y (v, 22)] =0 for N > 0. (D.9)

We denote by A(V) the set of formal power series Y satisfying the axioms
(i-iii). The following Proposition, singled out by Goddard (see [DGM]), justifies
the notation Y (v, 2).

Proposition D.1. If two formal Laurent series Y1(v,z) and Ya(v, z) belong to
A(V) (and hence satisfy (D.3) with the same v) then they coincide.

Sketch of proof. Using locality one finds that the difference Y; (v, z) — Ya(v, 2)
vanishes not just on the vacuum but on any other vector v; € V. O

This uniqueness result has a number of applications. We single out the
following

Corollary D.1. It follows from Proposition D.1 that
(a) Y(|0),2) =1;
(b) Y(Tv,2) = LY (v,2).

z

Ezercise D.1. Prove, using energy positivity, that the Laurent series Y (v, 2) vg
has a finite number of negative powers of z. Demonstrate that for energy eigen-
states, (Lo — d;) v; = 0 for ¢ = 1,2, the leading negative power does not exceed
dy + ds.

Studying OPE of products of elements of A(V), it is useful to extend the
definition of Y (v,2) to v of the form Y (vy,w) vy (which is not a finite energy
state).

Ezercise D.2. Demonstrate that both sides of the equality
Y(’Ul, Zl) Y(’UQ, ZQ) | 0> = Y(Y(’Ul, 212) Va2, 22) | O> (D].O)

define analytic (in the Hilbert norm topology) vector valued functions for |z3| <
|z1] < 1 and sufficiently small |z12| and that the equality (D.10) holds.

The stress-energy tensor T'(z) can be identified with Y (L_5 | 0), 2).
A field Y (v, z) is primary of Vir (¢f. (7.35)) if v is a ground state:

L,v=0, for n>0, (Lo—d)v=0. (D.11)
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8 Extensions of the u(1) current algebra and their
representations

Given a finite dimensional Lie algebra G with (real) structure constants fa° =
—fba (satisfying the Jacobs®® identity f2° f35¢ + £ f30 + fbe f3¢ = 0), we can
define a Kac-Moody algebra generated by (hermitian) currents J*(z) given by
formal power series

JUz) =) Jiz vt (e =JY,), a=1,...,dg = dimg, (8.1)
nez

where the modes J satisfy the CR

a b - rab 7c
[‘]m7‘]n]:ch Jm+n

+kmSm —ng™ (8.2)

(g standing for a G invariant positive metric).

The representation theory of the u(1) current algebra (7.29) (which appears
as a special case of (8.2) for dg = 1 and f% = 0) is relatively simple — this is,
in fact, an infinite Heisenberg?® algebra whose positive energy representations
are labeled by the eigenvalues of the charge operator Jj.

We define the normal product: J(z1) J(22): of two u(1) currents through
their OPE

T(21) J(29) = 7%2 b T(e) J(z) ¢ (8.3)

Normal products : J"(z) : belong to the chiral algebra A(V;) where V; is the
space generated by polynomial of the current’s negative modes J_,, acting on
the vacuum.
Ezercise 8.1. The Sugawara stress tensor of A(Vy),
L 5
T(z) = 3 J(z) :, (8.4)
satisfies the defining OPEs for a J, T system (cf. (7.37)):

T(21) J(25) = 2;2 T(z1) +0(1) = % T(22) + Ziu T()+0(),  (85)

39The German mathematician Carl Gustav Jacob Jacobi (1804-1851) was considered to be
the most inspiring teacher of his time. Bourbaki, in particular, Jean Dieudonné (1906-1992),
have taken as a motto his words (from a letter to Legendre of 1830, deploring the fact that
Fourier introduces his series just as an application to the heat equation): “le but unique de la
science c’est ’honneur de l'esprit humain”. The phrase “Invert, always invert” is associated
with Jacobi who believed that many hard problems are solved when addressed backwards.
Most of his papers were published post humously.

40Werner Heisenberg (1901-1976) has been awarded in 1932 the Nobel Prize in Physics for
the creation of quantum mechanics (1925). The CR [¢,p] = ¢h first appeared in work of
Born-Jordan and of Dirac.
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11 2 J J :
12 12
- 11 T(Zg) TI(ZQ)
= g2l o). (8.6)

Deduce that for a chiral CFT generated by J(z) the Virasoro central charge is
c=1.

Ezercise 8.2. Prove that Eq. (8.4) allows to write the Virasoro modes in terms
of Jg:

1 s 1
L0:§Jg+;a]_ée]€, Ln:§ZEZZJn—€JZ for 77‘7&0 (87)

Verify the CR (7.33) (7.34) for these expressions.

Proposition 8.1. The unitary irreducible positive energy representations
(UIPERs) of A(Vy) correspond to ground states | g) labeled by a real number g
such that

(Jo—9)lg)=0=1Jnl|g) for n>0 (8.8)

(g = 0 corresponding to the defining vacuum UIPER of A(Vy)). To each g #0
corresponds a pair ¥ (z,+g) of hermitian conjugate primary fields of dimension
g2 such that for each of them

@b(z,g) | 0> = eZL71 | g>7 [J(Zl)vw(z%g)] = 95(212)1/}(22,9) . (89)

(Thus all ¥(z, g) are relatively local to the current.) ¥(z, £g) locally commute
among themselves iff g2 is an even integer; then

2

(212)9 [¢(Zlvg)7w(227 _g)] = 0(: [w(zla ig)vw(ZQv ig)D . (810)

Sketch of proof (for a comprehensive discussion — see [BMT]). Introduce the

abelian' (i.e. commutative) group {E™,n € Z} of unitary operators such that

E?[0)=|g) (B9 =E9=(E)"", [J(2),E%= g (8.11)

Introduce further the indefinite integrals of the frequency parts of the current:

pi(2) = Z

then the chiral vertex operator (CVO) 1(z,¢g) can be written in the form

Tz (8.12)

3=

anzna (P*(Z):_Z
n=1

S|

U(z,g9) = B e99+(2) 2970 o990 (2) (8.13)

4INamed after the Norwegian mathematician Niels Henrik Abel (1802-1829) who proved in
1824 the impossibility to solve the general fifth degree equation in radicals and created (in
1825, in Freiburg) the theory of elliptic, hyperelliptic (and, more generally, abelian) functions.
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To verify the current-field CR (8.9) we use (8.11) and

(a)or()] = — — 2, Ue(z=)=—.  (8.14)

212 21 221

We have (LO - %) | g) = 0 as a consequence of (8.7) and (8.8); hence, 1(z, £g)
have scale dimension %, so that the (non-vanishing) 2-point function is

2

(0] 9(21,9)P(22,—9) | 0) = (212)7 . (8.15)

As the sign of g is not fixed and g2 is even the 2-point function is symmetric
(viewed as a rational function) with respect to the exchange of factors.

Ezercise 8.3. Verify (8.15) using (8.13).

Eq. (8.15) and the remark that the singularity of the 2-point function domi-
nates those of higher point correlation functions as a consequence of Wightman
positivity imply the strong locality condition (8.10). O

Ezercise 8.4. Use the CR [Jy, E9] = g EY to prove

(0] EB9|0) =640  (ie. (0| E9|0)=0 for g#0, E°=T). (8.16)

Ezercise 8.5. Use (8.13) to compute the n-point function

O 91,91 ¥(znrga) [0) = [ (i) (8.17)

1<i<j<n

It follows from Proposition 8.1 that the CFT of the chiral algebra A(Vjy)
has a continuum of inequivalent UIPERs and hence, is not rational (recall the
definition at the end of Section 7). On the other hand, if g% is a (positive) even
integer then the algebra .A(g?) generated by the pair of oppositely charged Bose
fields 9 (z, £g) provides a local extension of A(Vy). Indeed, the current J is
contained in the OPE of the product ¥(z1, g) ¥ (22, —g) which defines a bilocal
field ([FST]):

z1
2y Y(21,9) Y(z2, —g) =t 713 T =1 1 / J(2) dz

z2

iy —2)(z—2z
I 692/ %“T(Z)dz+ggzi}’2]{3(21722;g)7
z2

(0] J(21)T(22) |0) =0 = (0| J(z1) R(21,22;9) | 0)
= (0[T(z1) R(21,22;9) | 0). (8.18)
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The following set of exercises is designed to establish (8.18) (explaining on the
way its meaning).

Exercise 8.5. Prove the equivalence of the following two definitions of the normal
exponent in the first equation (8.18):

c 95 I@dz _ g(r (1)~ (22)) Zil'gjo e9(p—(z1)—p—(22)) (8.19)

21
&9 f22 J(z)dz

L) TR (8.20)

| egf;; J(z)dz | 0) )

(Eq. (8.20) should be understood as an expansion in powers of g defining the cor-
responding normal products iteratively.) Use (8.19) to verify the first equation
(8.18).

Ezercise 8.6. Prove that the CR (8.9) is equivalent to the following CR between
the frequency parts of the current and the charged field :

[¥(21,9), J1)(22)] = —Z% Y(z1,9), [T (1), 922, 9)] = Z%w(zz?g) (8.21)

for
o] o - oo J,
J(Jr)(z) = Z Jonz t= @;(2)7 g )(Z) = Z o+l = SDL (Z) (822)
n=1 n=0
Ezercise 8.7. Use (8.21) and the vacuum conditions
T(2)[0)=0=(0] Jp(2) (8.23)

to prove the Ward*? identity for current-field correlation functions:

Of¥(z1,01) - (2k, 98) J(2) V(241 Gkt 1) - - - (20, gn) | 0)

n k

Z— Z;
j=k+1 7 =1

Thus the Ward identities allow to express current-charge fields correlation
functions in terms of charged fields correlations. We find, in particular, the
3-point function

g lfg2
212 .
%13 223

(0] 4p(z1,9) (22, —g) J(23) | 0) =

(8.25)

42John Clive Ward (1924-2000), British physicist; the Ward identity in quantum electrody-
namics relates the renormalization of the wave function of the electron to its vertex function
renormalization.
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Exercise 8.8. Derive in a similar manner the Ward-Takahashi identities for
correlation functions of v’s with the stress energy tensor; deduce from this the
expression for the 3-point function

2 2
g% 257

(0] ¥(21,9) ¥(22, —g) T(23) | 0) = =

2 92 -
2 23733

(8.26)

Ezercise 8.9. Use (8.25) (8.26) and the orthogonality relations in Eq. (8.18) to
verify the third equation (8.18).

Remark 8.1. The algebra A(g?) contains charged fields 1 (z,ng) of all charges
multiple of g (n € Z). They appear as “composite fields” in OPEs of ¢(z, £g).
We have the following iterative rule:

¥(z21,9) ¥(22.19) = 27§ {22, (n + 1)g) + O(212)} (8.27)

Thus the (isomorphic to Z) group of all powers of Uy, introduced in the “Sketch
of proof” of Proposition 8.1, is realized in the vacuum representation of A(g?).
It follows that A(m? g?) (for m > 1 integer) is a proper subalgebra if A(g?).

One can, sure, also consider the CVO 1(z, g) for any (positive) integer g;
the odd g2 then correspond to Fermi fields. The local commutativity property
(8.10), extends in this case to a graded local commutativity:

2 2
Z?Q 1/’(2179)¢(Zza—9) = Zg1 ’(/}(227_9) w(zlag) for 92 €N. (828)
The chiral algebra A(4(2v + 1)) appears as the bosonic part of the (Z graded)
chiral superalgebra A(2v +1), v =0,1,....

Ezercise 8.10. Let G*(z) = \/%¢(Z, +1/3) and normalize the associated (1)

current J(z) so that to exclude irrationalities in the OPE (8.18), setting 3 27, (0 |
J(z1) J(22) | 0) = 1. Prove the anticommutation relations

[GF(21), G (22)]+ = 2T (22) 0(212) + (J(21) + J(22)) B2 6(212) + %55 d(z12)
2
(01 e @0 - %) (5.29)
Setting further
GE(2) =) Gi_% Z L, (8.30)

deduce the modes’ (anti)commutation relations

[GE .G 4 =2LpmEm+m—1)Jop+ @@m

—m

99



n

[Jn7 Jm] = g 5n,—m7 [JnyG:pt] = :l:Gi

. (8.31)

This is the (vacuum) Neveu-Schwarz sector of the N = 2 (extended) super-
conformal model ([BFK] [G88]).

The chiral algebras A(g?) for integer g > 0 provide te simplest examples of
rational CFT.

Proposition 8.2. The algebra A(g?) for g> = 2,4,6,... has g> UIPERs gen-
erated by primary CVO ¥(z,ex), relatively local to ¥(z,g). They correspond to
gep =k, 1 — % <k< é, The fusion rules for the primary fields ¢ (z,ex) are
given by the multiplication rules of the finite cyclic group of g> elements

Z€1N Z

A (8.32)

Sketch of proof (see [BMT]). Any UIPER of A(g?) gives rise to a fully reducible
unitary positive energy representation of the u(1) current algebra A(V;) whose
spectrum of Jy is contained in the set e + Z g for some (real) e. The OPE

P(2,9)¥(0,e) [ 0) = ¥(2,9) | €) = 27°(T+ O(2)) | g +¢) (8.33)

only corresponds to a relatively local ground state | e) if it is single valued, i.e.
if the power ge of z is an integer. Noting that e is determined mod ng (n € Z)
we can choose |e| < 4. The rest is straightforward. O

The field algebra F (g%) (D A(g?)) generated by the pair of charged primary

fields v (z,:t%) admits a finite cyclic group of global gauge transformations
acting on the state space by powers of the operator

4 . (1 1
U(=Uy,,) =%, UTF (g2> —1F (92> . (8.34)

It generates an automorphism of the field algebra such that

Uip(z,e) U™t =™ ah(z,e) = UAU L =A for Ae Alg®).  (8.35)

Remark 8.2. The primary chiral vertex operator ¢(z, e) is a multivalued function
of z. In fact, the extension of the relation (8.33) to two primary charges eq, eo
(eig € Z),

Y(z,e1) | e2) =292(1+ O0(2)) | e1 + e2)
is a multivalued function of z unless ejes is also an integer. Setting z = e’ we
find a charge dependent twisted periodicity condition for ¢ as a function of ¢:

BE 1) | eg) = 2T (e e) | ea). (8.36)
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The exchange relations of 1(z, e) with itself give rise to a nontrivial one-dimensio-
nal representation of the braid group which defines for non-integer e? an anyonic
statistics. (The idea for such statistics appears already in [LM]. More on the
ancestry of the “anyon” can be found in [BLSW] — ¢f. Section 2.) For eg € Z
such an anyonic representation of By is isomorphic to a finite cyclic group. (A
bound state of g anyons obeys the Bose-Fermi alternative.) More general lat-
tice vertex algebras yielding anyonic statistics are applied to the description of
the fractional quantum Hall effect, [FKST] [FST] (see also [CGT] where the

intriguing plateau with Hall conductivity oy = % % is considered).
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9 The su(2) current algebra model. Knizhnik-
Zamolodchikov equation

The simplest models associated with a (non-abelian) braid group statistics are
the affine Kac-Moody current algebra models with a chiral algebra A (G) de-
termined by a simple Lie algebra G and an integer level*® k (= 1,2,...). The
simplest among the simple Lie algebras (corresponding to a compact Lie group)
is G = su(2) spanned by three generators J§, a = 1,2, 3 satisfying

g, J) = i g (9.1)
where £9%¢ is the totally antisymmetric Levi-Civita tensor (¢12% = 1 = 312 =
—e321 = ). The corresponding local currents are given by (8.1) (with dg,2) =

3), the current modes satisfying the CR (8.2) with
ab abc ab 1 ab
fc =£ 5 g == 5 (S . (92)
The resulting infinite dimensional Lie algebra is denoted by su(2).

Ezercise 9.1. Verify that the su(2); Sugawara chiral stress-energy tensor

T(z) =

L o» _ 1 - L[ 7a . _
E:ﬂ(z);:EaZ:l.[J (2)%:, h=Fk+2 (9.3)

gives rise to the OPE (8.5) with J(z) substituted by J*(z) while the second
equation (8.6) is replaced by

T T k
Ck4 (Zl) 'g (22) + 0(1) , cp = 37 ) (94)
221y 212

T(21)T(22) = 12

The renormalized level h = k+2 is also called the height of Ag (A1) = 5u(2).

Ezercise 9.2. Prove that for k = 1 (= ¢;) and J(2) = v/2J3(2), the stress
tensor (9.3) coincides with (8.4) while the “charged components” of the current
are reproduced by the vertex operator construction (8.13):

JE(2) =T ) £iJ?(2) = EEV2 EV201(2) jE2V2 00 (£V20-(2) (9.5)

438peaking of an associative chiral algebra Aj, characterized by a natural number k (or of
the corresponding infinite dimensional Lie algebra) we depart from the terminology of the
theory of affine Kac-Moody algebras G ([Kac]) in which the central charge, say K, is an
operator commuting with the current modes. The algebra Aj; would then correspond to a
representation of G in which we have chosen a particular eigenvalue k of the central charge K
(thus specifying the vacuum of the theory).
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with o1 given by (8.12). (Hint : verify that T(z) (8.4) (for J(z) = V2 J3(2))
and J*(z) satisfy the correct OPE (or CR); deduce furthermore the OPE

T ) = o {2 [P (T + T + 0GR |

(9.6)

h
for [J* (1), J?(22)] = J*(22) 6(212), (0 | J*(21) J*(22) | 0) 2, = 5 6°")

Exercise 9.2 demonstrates that we may only expect to encounter non-abelian
braid group statistics for k > 2.

The representation theory of affine Kac-Moody algebras [Kac] tells us that
5u(2)g admits k+1 UIPERs labeled by the values I of the isospin of the ground
states of integrable representations, such that 2I < k. We use here the physicist
terminology: a ground state is a lowest energy state with respect to the confor-
mal energy operator H. = Ly + Log. As Lo and Lo commute, it factorizes into
a product a ground states for the left and right movers’ current algebras. We
shall only mention diagonal representations (with I = I) in this brief synopsis
of the 5u(2); CFT model and will spell out the properties of the chiral (say, left
movers’) representations.

Ezercise 9.3. (a) Prove, using (7.21), that the chiral energy operator Ly com-
mutes with the currents’ zero modes: [Lg, J§] = 0, a = 1,2,3. Deduce, as a
corollary that the subspace of ground states of isospin I has dimension p = 27+1.
A basis |k, I13) of ground states in which J§ is diagonal is characterized by

J |k, II3) =0 for n>0, (J3—1I3)]|kII3)=0,

Ii=-I1—1,...,1 (2I=0,1,....k). (9.7)

(b) Prove as a consequence of (9.7) and the Sugawara formula (9.3) that

Lz, o7 7
Loh<J02+2;1J—an>» (Lo — As) [ K, IT5) =0,

AIZW (h=k+2). (9.8)

The 2D primary field ¢7(z, zZ) which intertwines the vacuum representation
of su(2) @ su(2) with the one of weight (I, 1) is thus a (27 + 1) x (21 + 1)
component isospin tensor. In particular, the step operator ¢ 1 can be viewed as
an SU(2) “group valued” field g(z,2) = {g(z, 2)a, A, B = 1,2}. The quotation
marks should remind us that the quantum field g(z, z) is actually a 2 x 2 matrix
of operator valued distributions; only its classical counterpart can be assumed
to belong to SU(2). The 2-point function of g factorizes:

(0] 9(en, 20)8 glea, )2 | 0) = - CBiB:
1 2 (212)2A (212)2A
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3

4h”

Its 4-point function, however, does not (for k£ > 1). This suggests writing g(z, z)
as a matrix product of chiral fields:

(6121612:1:7621), A:A

1
2

Q
—~
R
Y]
S~—
S
I
e}
—
oy
Qs
QI
L
—
i3]
S~—
we
/M'\

> 9= 91(2)%> ~ (9-9)

The 2D field g(z, Z) provides an example of a conformal but not GCI field,
as its correlation functions are not rational. It is also locally commuting but
violates the stronger Huygens locality (6.18). Note that for Euclidean compact-
ified space-time t — it, z and z are complex conjugate (z = e~ 1% z = e~t=i7);
locality then implies that g(z, z) should be periodic in = (i.e. single valued in
z):

e27ri(Loff‘0) 27 —2mi =

g(ZvZ :g(e z,€ z):g(z,i),

eQm'Lo g(z,z) 6727riL0 — e?wiA g<€2ﬂ'i Z,Z) ) (910)

) 627”.(507[‘0)

This only implies that the chiral components of g(z, z) appearing in the right
hand side of (9.9), should have the same monodromy M:

27k () e = TS (2 2 = (=) M (= g(2)2 M),
e R G(ze ™) = g(z2) M (9.11)
which will then cancel in the product (9.9).
Ezercise 9.4. Use (9.11) to prove (M — ¢=3/2) | 0) = 0 for g = e~ %

The chiral fields g(z) and g(z) satisfy a differential equation involving the
su(2) currents which follow from the Ward(-Takahashi) identities and from the
Sugawara formula. In order to write it down it is convenient to combine the
three components J%(z) of the current into a second degree polynomial in a
formal variable (:

J(2,0) =J (2) +2C T3 (2) =2t (2) (JE=J"+iJ?). (9.12)

We leave it to the reader to verify that then the 2- and 3-point functions of
the current assume the form:

2
(0] J(21,C1) J(22,¢2) | 0) = *k% (G2 =0 —¢2)

12

0 T(21,C1) T (o2 o) T (2, Ca) | 0) = & 912628413 (9.13)
212 223 213

A chiral su(2);, primary field ¢; (of isospin I) has both SU(2) and U, indices
(like g(2)2 for I = }) and can be viewed, alternatively, as a polynomial (of
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degree 2I) in two formal variables ¢ and u, respectively. We shall expand its
4-point function in the Uj-invariant amplitudes jfl) (ug,...,uq) (4.29):

(O] ¢r(z1,Cr3ur) dr(22, Cosuz) ¢r(z3, (35 us) dr(24, Ca;uq) | 0)

21

= Zw)\(zlv41;227C2;237<3;Z47<4) JA(I)(ulvu27u37u4)' (9]‘4)
A=0

The properties of the primary field ¢; are determined by its commutation rela-
tions with the modes J,(¢) of the current encoded in:

[T (21,1, b1(22, Co3u)] = *i (¢% 0, + 21 Cra) d1(22, Co; )

0
[pr(21, Cr5u), Iy (22,C2)] = i (C122 G 21 C12) ¢1(z1,Cr5u),  (9.15)

where the frequency parts of the current, J(=) and J(4) are defined as in (8.22);
(oo}

o)
setting similarly 7(7)(z) = 3 %, Tiy(2) = > L_p_22™ we find
0 n=0

n=

A
(7o) 01z ) = L 0nea G + é By b1 (22, ()

A
[@1(21, G u), T4y (22)] = 7%; ér(z1,Cu) — 2%2 0., ¢1(21,Cu) . (9.16)

Proposition 9.1. Let ¢;(z,(;u) be an su(2)x primary fields, that is a field
satisfying (9.15) and (9.16). Then Ay is given by (9.8) and ¢; satisfies the
Knizhnik**-Zamolodchikov (KZ) equation

ho, ¢r(z,¢u)=1:0:J(z,C) dr(z,Gu) : —: J(2,0) 0 pr(z,(u) : (9.17)

where the normal product is defined by the non-singular term in the current-field
OPE and is expressed simply in terms of the frequency parts of J:

I (2,6) 01(2,C2) = Ty (2,C) b1z, G) + d1(2,G) T T(2,¢1) . (9.18)

Sketch of proof. Eq. (9.17) folows from the known CR [L,,, ¢1(2)], [Jm, ¢1(z)]
derived from (9.15) (9.16) and from the Sugawara expression (9.3) for 7. (See
[FST] Chapter 5 for details.) O

It is instructive to display the KZ equation for the basic group valued field
g(z, Z) in a matrix form, spelling out in this case the meaning of the right hand

44Vadim Genrikhovich Knizhnik (Kiev 1962-Moscow 1987) was a student of A.M. Polyakov.
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side of (9.17). To this end we introduce the matrix valued current J(z) =

J4(2) o; related to J(z,() (9.12) by
0 =nie (L) =en (7 D) (L) e
Ezercise 9.5. Prove that Eq. (9.17) (for I = 3) is equivalent to
h%g(z,i)‘é =—: Z(z)fg‘g(zj)% D (9.20)

(Solution : setting g(z,%;¢)p = Cg(z,2)5 + g(z, 2)% we find

3 Do gz 0m s~ (2,0 e g( 5
H(J(2)9(z,2)5 — T (2)9(2,2)p — (J2(2) 9(2,2) 5 + T (2) 9(2,2)B) €) -

= —:(CJ@E+ (D) 9225 )

Proposition 9.2. The operator KZ equation (9.17) and the (operator) Ward
identities (9.15) (9.16) allow to write down the KZ equation for any correlation
function of ¢;. In particular, SU(2) and conformal invariant amplitudes fx(&,n)
of the 4-point functions wy (9.14), defined by

~ C12G34 212 234

wx(21,C15 - -5 24, Ga) = Pr(zij, Gig) fa(m), €= oo’ | Ziaza (9.21)
Pr\zij,Gij) = 219 293 234 214 13824 ) .

satisfy the KZ equation

0 Cn G\,
<h8nn+1_n>ho, (9.23)

where Csj = (I: + 1’;)2 are the Casimir invariants which can be expressed as

second order differential operators in &:

82

o€

2 O
&%

9

Cro = 2I(2I +1—2I¢) — [4I(1 — &) — €] ¢ 7€

+&(1-¢)

Cog = 2121 +1-21(1— ) + (16 +1 - £)(1- &) L +£(1-¢)

5 (9.24)

Sketch of proof. Applying Eq. (9.17) to ¢;(22, Ca;us) and moving J(7) (29, (o)
to the right and J(1)(22,(2) to the left, using in both cases Eq. (9.15) as well as
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(2,¢) | 0) =0 = (0] J4)(2,(), we find for the full 4-point function (9.14)
and hence for each w) the equation

of, - I, 26, I, 2@ I,
<h822+ 1772 ~2778 22 4) wa(z1,C15 . 524,C4) =0, (9.25)
212 223 224

where 21; - I =2 Z I 1§ is the polarized su(2) Casimir operator that can be

expressed as a dlfferentlal operator in ¢; and ¢;. Inserting (9.19) into (9.23) and
using the identity

(L + L+ L+ I)wy=0= (2L - Iy + 2@ - Iy + 2L - I; + 2I(I + 1)) wy (9.26)
we obtain (9.21). Using further the relations

for I2=1(I+1),0; = we find (9.24). O

9
9¢;?

The basis {wy (or fi)} of solutions to (9.25) (or (9.23)) is fixed by the
requirement that the full 4-point function (9.14) is invariant under the diagonal

action of the braid group B4 on wy and J ;1). We shall write down this solution

expanding w)y in a set {JK(I)} of SU(2) invariants obtained from j)fl) in the
limit ¢ — 1:

TG C) = (G2 )P (G Cos) = (G )P €170 (1 - 6. (9.28)
The result is ([STH])

Z&” =9 (1= gl(n) (9.29)

where g{ is given by the 27-fold integral

n t1 tha—1 1 1
= / dtq / dty ... / dty / dt)\+1 / dt)\+2
0 0 0 n ta+1

1
| P, (9.30)
tor—1
. A 21 ,
P(n,ti) = Ht 1=t [[n—t) " I &—m [ (enitii)®
- i=1 J=A+1 1<i<j<2l

21

> Ht—l IT a=tep)", (9.31)

oc€Syri=1 j=0+1

X
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the sum being spread over all permutations o : (1,...,2I) — (ol,...,0I). In
order to verify the braid invariance of the resulting 4-point function (9.14) one

computes separately the B4 action on the U, invariants J)EI) (U1, ...,uq) (using
the braid operator R (4.38)) and of the (analytically continued) functions (9.21)—
(9.23), (9.29)—(9.31), taking into account the transformation properties of the

SU(2) invariants Jél) (C1, ... ,¢4) under permutation:

122: 076, Gl G G) = (1) ZZ( )J(” (15 €2, G35 Ca)

(2 -0\
223: (G165, G2 ) = (= )Z(HS)JS (C1,C2:GaCa) - (9:32)
s={

We shall not work out here the details (see [STH] and [ST96] where the case of
different isospins is also outlined) but will write down the resulting lower and
upper triangular braid matrices in Section 11 below.
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10 Canonical approach; WZNW action. Quan-
tum matrix algebra

Although we are using throughout the axiomatic approach to conformal current
algebras (combined with the representation theory of affine Kac-Moody alge-
bras) we shall also give here a sketchy overview of the canonical action principle
set forth by Witten [W84] (developing ideas of [WZ] and [N82] — a few months
before the KZ equation was published).

We begin with an outlook of the first order Lagrangian (also called covariant
Hamiltonian) formalism following [G].

In general, a field theory lives on a fibre bundle locally equivalent to M x F
with a D-dimensional base space-time manifold M and a fiber F of field config-
urations. We shall use, correspondingly, two exterior differentials, a horizontal
one, d, acting on (the tangent space to) M, and a vertical one, §, acting on F,
so that the total exterior differential d on M x F appears as their sum:

d=d+0,d>=62=0=1[d,0], (=dd+dd) = d>=0. (10.1)

Whenever an action density (Lagrangian) exists it gives rise to a D-form L on
M x F that will be assumed linear in the field differentials. The (D + 1)-form

w:=dL (=dw=0) (10.2)

provides an invariant characterization of the system: the pull-back of its con-
traction with verticle vector fields % reproduces the equations of motion, while
the integral of w over a (D — 1)-dimensional space-like (say, equal time) surface
in M defines a symplectic form on the fields. Such a closed (D + 1)-form may
exist also when there is no single valued local action. This is precisely the case
with the (classical) Wess*5-Zumino-Novikov-Witten (WZNW) model which we
proceed to describe for the su(2) current algebra.

Space-time is taken to be the 2-dimensional (2D) cyclinder
M=RxS'={z:=a"%s")=(t,z), tcR, x € R/21Z}. (10.3)

In the first order formalism F is taken to consist of a pair of (periodic in x)
maps (g, J) such that

g(x) € SU(2), g(t,x+2m)=g(t, ), (10.4)

J(@) = ju@)da”, ju(z) € su2),  Jult, @ +2m) = ju(t, ®). (10.5)

(Note that the su(2)-valued 1-form J(x) is horizontal.) The basic 3-form w is
defined by

1
drw = dtr (igldg—i-%J) T+ Ek0(g), (10.6)

45 Julius Wess (1934-2007), Austrian physicist, a student of Hans Thirring (1888-1976).
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where *J is the Hodge*® dual to J,
*J(x) = j%(z) dot — jH(x) d2® = e, j*(z) dz” (10.7)

while the Wess-Zumino term 6(g) is the canonical 3-form on the group:

1 _ _ _ _ _
0(g) = 3 tr(g”"dg)* ((97'dg)’ =g 'dgAg~'dg A g~'dg). (10.8)
(We omit throughout this section the wedge product of 1-forms.)

Ezercise 10.1. The trace of the product of 1-forms a; ...a, obeys the graded
cyclic property tr(ajas...a,) = (—=1)""'tr(ana; ...a,_1). Deduce from here
that the 3-form 0 is closed,

df(g) =0, (10.9)

but not exact: there is no globally defined single valued 2-form a(g) on SU(2)
such that 6 = do.

Ezercise 10.2. Using the relation da# dz¥ = —e"” dz®dz! (e = —e,,) derive
the following expressions for J *J and its exterior differential:

J*J = j, " da’ dat (= =T J), dJ*J =2j,6"dz’dax’. (10.10)

Varying w with respect to *J and “pulling back” (i.e. projecting on horizon-
tal differentials) we find the classical KZ equation :

1
ig_ldg—l—EJ:O. (10.11)

To see the precise relation between (9.20) and (10.11) we set J = J(z)dz +
J (%) dz and multiply both sides of (10.11) by k g(z, Z). The effect of quantization

then consists in replacing operator products with normal products and the level
k with (its renormalized value) the height h.

Varying further the 3-form (10.6) with respect to g we find the second equa-
tion of motion
)

Lol (1012

* . i , , ,
d*J = —ik(g~" dg)* = EJQ 0y jt" = 0151 — 0o jo =
Taking the exterior derivative of (10.11) and comparing with (10.12) we deduce

AT+ *T) =05 0y jr=0, 8i:%(81i60); (10.13)

46The Scottish mathematician William V.D. Hodge (1903-1975) discovered topological rela-
tions between algebraic and differential geometry. (See M. Atiyah, William Valance Douglas
Hodge, Bull. London Math. Soc. 9 (1) (1977) 99-118.)
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the left- and right-movers’ currents are

. 1 . ) ) 1 o . - '
ir =53, u= 590" =% g7 (= ~ik(d: 9)g™"), - jr = 0. (10.14)

The symplectic form of the model can be written in three equivalent forms:

(" _ Cong - o0
0@ = E/ da'tr (kg™ g — %) (97" 69)* +i65° g~ og)

1 k
= dxltr<i5(jL(Sgg‘1)+26gg‘1(g‘169)’>

™ J %

1 us
= o dz' tr (ié(jRg_l 8g) + gg_l Sg(g™* 59)') (10.15)

where f(z°, 2')" stands for partial derivative of f in x!.
Exercise 10.3. Use the relations
PO =2"vikgtg =29 jrg—ikg g =jr—9 'Ly,
and
iktr(6g g~ (0g97")") = tr(8j1 97" 0g)
to verify the equivalence of the three expressions (10.15).
The general solution of the equations of motion (10.11)—(10.14),
04971 0-9) =05 0-((9+9)97") =0 (10.16)
can be written in a factorized form
gzt 27 =gr(aT) g’ (), 2F =a2'+a° (10.17)

(¢f. (9.9)). The following result of Gawedzki [G] allows to split the symplectic
form (10.15) into a left- and right-movers’ part as well.

Proposition 10.1. One can split Q2 as a sum of two chiral forms which only
differ in sign,

Q@ = Q.(g1) — Q(9r) (10.18)
Qe(9) = ftr{ de g~ g(g? (59)'+b_15b5MM_1} , (10.19)
4 -7
where
bi=g(-m) (9g=gr or gr), M=0b""g(m) (10.20)

with M independent of the chirality: M = by " gr(7) = bp' gr(n).

As we have seen in our survey of the axiomatic approach to the su(2) current
algebra model (Section 9) only the chiral components of g (¢g(z) and g(2z) in
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the z-picture, g4 (1) in the present context) give room to — indeed display
— a quantum group symmetry. In the canonical approach such a splitting is
suggested by the fact that chiral (left and right) currents jo are periodic in
their respective arguments,

jo(x +27) = jo(x) for C=L,R (10.21)
(thus appearing as chiral observables) and Poisson commute

{ic(z®),jr(y™)} =0. (10.22)

(Computing Poisson brackets from a given symplectic form Q = %wij det A ded
amounts to inverting the skew symmetric matrix (w;;):

ij af g

(F(©.90)) = @™ 55 55

In the infinite dimensional case at hand this requires, in general, some work
— see [G]. The trivial Poisson bracket relations (10.22) follow however simply
from the splitting (10.18)—(10.20) of the form Q(® into chiral parts and from
the fact that j;, and jgr are periodic and hence commute with the monodromy
M. They are also a consequence of the observation that j; and jr appear as
Noether®” currents for two commuting, left and right, symmetries.) Eq. (10.22)
is the classical counterpart of the local commutativity of observable Bose fields.

The chiral group valued fields gz (z*) and gg(z~) are determined by the
corresponding currents and the classical chiral KZ equations (the chiral coun-
terparts of (10.11)):

ko gr(@®) =ijp(a%) gr(zt), ko_gr(z™)=—ijr(z7)g(z™). (10.23)

The solution of (the quantum counterpart of) these equations involves the in-

troduction of the chiral zero modes al, of go which diagonalize the monodromy:
A A j A A ; i j

go(@)? = ul (@) al (= ui(v) al, + g (w)a2), ol Mg = (My)ial,  (10.24)

where M, is a diagonal unitary matrix depending on the operator p whose

eigenvalues are the dimensionalities, 21 + 1, of the IRs of U,. The (quantized)

zero modes a’, behave as g-deformed creation (for i = 1) and annihilation (for
i = 2) operators whose Fock space will be displayed in Section 12 below.

In summary, the canonical approach allows to reproduce the results of the
axiomatic treatment of Section 9. This is a long story with no complete peda-
gogical treatment in the literature. (Its systematic study starts with [G]; further
developments can be traced back from [FHT].) Here we shall only elaborate on
the U, properties of the above group valued zero modes al, (the “qantum oscil-
lators”) as they are related to the main topic of these lectures. Such “twisted

47(Amalie) Emmy Noether (1882-1935) became in 1919 the first woman professor at the
University of Gottingen.
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oscillators” were first considered for their own sake (with no relation to the
WZNWmodel) in [PW].

We assume that a’, (i,a = 1,2) belong to an associative algebra A, that
contains U, as a subalgebra. For any a € A, and X € U, we define the adjoint
action Adx of X on a by

Adx(a Zwl aS(xy) for AX = le ® Tg. (10.25)

In particular, for X = E and X = K we find (using (4.6) and (4.8))
Adg(a)=FaK '—-aEK™", Adg(a)=KaK'.

Let, for any X € Uy, X  be the fundamental 2 x 2 matric representation (given
by (4.11) for i = 1). We define the U, transformation law of a?, by

Adx(al) = al (X7)5. (10.26)

Exercise 10.4. Derive the CR of ai with E, F and K.
(Answer : [E, ai] =0, [E,a}) =al K, Fa! —q¢tal F =db, Fal —qal F =0,
Kai=qat K, Kab=q 'abK,i=1,2)

The U, quantum matriz algebra A, is generated by afx and ¢*P satisfying

al=al¢, Fa=al, PqP=1 (10.27)
azaﬂ—a aﬁ+[]€a5, al, agsaﬁzo, 1=1,2,
aage® =[p+1], ala}e =—p-1], (10.28)

where £*? (= ¢,4) is the g-deformed Levi-Civita tensor (2.23). The relations
(10.28) can be recast into a (quantum) determinant condition,

1 o 0 -1
— abl gl edB = ) =
dety a := B €ijagape™ =1[pl, (&)= (1 0 ) ) (10.29)

and the homogeneous R-matrix relation which allow a straightforward general-
ization to the U, (A,) case [HIOPT]

R(p)}, af af, = al,al, RES, (10.30)

m

where R = (R/7) is the 4 x4 matrix (5.5) while R(p) is the dynamical R-matriz :

jen)
o

q 0

0 [p—1] q° 0

R(p)=q 2 - . (10.31)
_a? [p+1
O =% @ O
0 0 0 ¢



Ezercise 10.5. Demonstrate that (10.27)—(10.28) imply (10.29)—(10.30) while
the determinant condition (10.29) alone yields (10.28).

Ezercise 10.6. Assuming that ¢*? commute with U, and using (10.26) and
Exercise 10.4 prove the Ug-covariance of (10.27)-(10.28).
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11 Monodromy representations of the braid group

The following braid relations have been derived in [STH] for the regular basis
(9:21) (9.29)-(9.30). Let b; stand for the exchange of the variables (z;, (;) with
(2j+1,¢j+1) along a path (in z-space) for which z; ;11 — e "™ 2;11; then

by D (Em) = (1= € (1L =)™ fP (5’51 ”177) = 1€ By,
11
b2 f;(/)(évn) = £2I 774AI f;(f) <§a 77) = ,SI)(&U) Bg\u ) (111)

where B is a lower triangular, Bs is an upper triangular matrix:

_ _ A _
Bl = (-1 P [0 g, (112)

and we have B3 = By. Here ¢ may be any primitive h-th root of —1:
=-1  ("#-1 if 0<n<h). (11.3)
It follows, in particular, that ¢ is a phase factor (¢q = 1).

Ezercise 11.1. Verify that the inverse matrices to B;(q) for ¢ satisfying (11.3)
are obtained by complex conjugation:

Biq)Bi(@) =1 for qq=1 (11.4)
(I standing for the (21 4+ 1) x (21 4+ 1) unit matrix).
Ezercise 11.2. Verify the braid relation

BiByBy =By By By = (1) @'V F, Py =6}, (11.5)

(the fusion matriz F is, thus, a permutation matrix satisfying F? = 1). Verify
that
By=FB F (Bi=FByF, F=F"). (11.6)

Remark 11.1. Tt can be demonstrated that, for ¢ satisfying (11.3), B%L:m isa
multiple of the unit matrix for 2I+1 < h but is not diagonalizable for 27+1 > h.

Exercise 11.3. Verify the statement of Remark 11.1 for small values of h and
21.

It follows from Remark 11.1 that the braid matrices B; and B, are not
diagonalizable — and hence not unitarizable for non-integrable representations
of the su(2) current algebra (i.e. for representations violating the upper bound
21 < k (9.7)). Note that the eigenvalues of B; have absolute value 1, hence
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the matrices B; are unitarizable exactly when they are diagonalizable. This
explains why the Bj-diagonal basis, used in most of the literature, is ill defined
beyond the unitarity limit, and justifies the attribute “regular” for the above
triangular basis which always makes sense.

In order to give the reader a better feeling of this monodromy representation
of the braid group By we shall consider in more detail the simplest representation
corresponding to 21 = 1 (i.e. to the braiding properties of the 4-point function
of the chiral group-valued field g(z)).

Ezercise 11.4. Verify that the normalized 2 x 2 braid matrices (of determinant
_1)

by = g} BPIY = (_lq 2) , by =q? BTV = (g lq) (11.7)

satisfy the Hecke algebra relations (2.18).

Remark 11.2. The general Hecke algebra representation of B, realized on the
4-fold tensor product (C2)®* of the space C? of 2-component isospinors is 16
dimensional. It can be constructed in terms of the Tempereley-Lieb projectors
(2.19) as follows:

bi:ql[fei, 7,:1,273, 61:(6()[1&2661[326%;53:),
€2 = (6211 g8 €823 5gf)a €3 = (6511 6522 g 55354) (11'8)

where ¢*? = ¢, is the g-deformed Levi-Civita tensor (2.23). The above 2-
dimensional representation of By is a subrepresentation of this 16-dimensional
one, spanned by the SU(2) invariant tensors in (C?)®4. We leave it to the reader
to work out the details of this projection.

We shall end up our study of the 2-dimensional representation of B; by
answering the following question.

The Schwarz problem: for which values of h (= 3,4,...) and ¢ satisfying
(11.3) is the matrix group generated by the 2 x 2 matrices b; (11.7), a finite
group?

The answer to this question determines when the KZ equation (for 27 = 1)
admits elementary (algebraic) solutions.

As 2P = b2 = 1 for h = 3,4,..., it is enough to study the commutator
subgroup, generated by the pair

—q2 _ _
b=0b7" by =byby by byt = ( ; 1_‘%) . b=by, byt (11.9)

The argument we shall present in solving the problem (a special case of [ST)]) is
interesting in that it applies some elementary number theoretic methods.
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Proposition 10.1. The real symmetric matrix

A= <[[22]]2 [[22]]2> =15 Gg] [§2> S, S= (é} ?) (11.10)

(S being the matriz diagonalizing by,

Sb S = (_O‘j 0) , (11.11)

which is well defined for h > 2) is By invariant:
VAb=A, VbeByie b A=Ab;, i=1,2, for b=0b", (11.12)
where 'S (and 'b) denotes the transposed of S (and b).

Proof. For by Eq. (11.12) is a consequence of (11.11):

tblA: tbltS ([g] 02>S: tS ([3]q 0 >S:Ab1,

2] 0 [2]q
) ) 1+¢*> ¢ .
for by both sides of (11.12) give [2] ¢ ) The equivalence of the two
invariance conditions for the realization (11.7) of b; follows from (11.4). O

Remark 11.3. The eigenvalues [2]2 4 [2] of A differ from those of the diagonal
matrix diag ([3],[2]?) of (11.10). However the positivity conditions for both are
equivalent because of the inertia law for non-degenerate quadratic forms.

Corollary 11.1. The above 2-dimensional representation of By is unitarizable
provided

(2] z)q—ﬁ—(j=2cos%7 ie. q=eX'% (forh>3). (11.13)
(For h = 3 the form A (11.10) is degenerate since then [3] = 0.) Indeed, for
h > 4 the matriz A is positive definite since then [2] > 1 ([3] > 1).

Eq. (11.13) that guarantees the positivity of A is the only one which depends
on the choice of a primitive root of (11.3). To stress this point we introduce the
notion of a Galois*® automorphism for the cyclotomic field defined by (11.3).
The map ¢ — ¢™ is a Galois automorphism of the field Q [¢] of polynomials in ¢

48The legendary Evariste Galois (1811-1832) was only appreciated posthumously. His major
work on algebraic equations was finally published in 1846 (following a positive review by
Liouville 3 years earlier) — some 14 years after his fatal duel. In the night before the duel
Galois, 20, composed a letter to his friend Auguste Chevalier outlining his mathematical ideas.
Here is what Hermann Weyl had to say about this “testament”: “This letter, if judged by the
novelty and profundity of ideas it contains, is perhaps the most substantial piece of writing
in the whole literature of mankind”.
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(obeying (11.3)) with rational coefficients, iff (n,2h) = 1 — i.e. iff n is coprime
with 2h.

Ezercise 11.5. (a) Prove that the Galois group for h = 10 is isomorphic to the
product of cyclic groups of two and four elements, Z/(2) x Z/(4). (Hint : it is
spanned by the exponents £1, +3, +7, £9 with multiplication mod 20.)

(b) Prove, similarly, that the Galois group for h = 30 is a 16 element group
isomorphic to Z/(2) x Z/(2) x Z/(4).

Remark 11.4. The solution of Exercise 11.5(b) is related to the Coxeter expo-
nents (1,7,11,13,17,19, 23, 29) of the exceptional group Fs. (For an application
of the Coxeter exponents to the classification of the su(2); conformal invariant
theories — see [CIZ].)

A form A with coefficients in Q [g] is said to be totally positive if it is positive
for all Galois transforms ¢ — ¢™, (n,2h) = 1 of q. The relevance of this concept
to our problem is revealed by the following crucial lemma.

Proposition 11.2. If the form (11.10) is totally positive, i.e. if [3] = ¢> + 1+
@ > 0 for all primitive roots of (11.3), then the 2-dimensional representation of
By, which leaves the non-degenerate form A invariant, is a finite matriz group.
Conversely, if the invariant hermitian form is unique (or, equivalently, if the
representation of By under consideration is irreducible), then the total positivity
of A is necessary for its finiteness.

The proofis based on the fact that the invariance group of a totally positive
form A over a cyclotomic field is compact. Since By is discrete it would follow
that the matrix group generated by by, by (11.7) is finite.

As any finite dimensional representation of a compact group is unitarizable
the unique invariant form A should be positive together with all its Galois
transforms. O

Proposition 11.3. The commutator subgroup of the 2 x 2 matriz (2I = 1)
realization of By generated by the matrices b and b (10.9) is only finite for
h = 4,6,10. It is isomorphic to: (i) the 24 element double cover Ay of the
tetrahedral group for h = 4; (ii) the 8 element group of quaternion units for
h = 6; and (iii) the 120 element double cover As of the icosahedral group for
h =10. (Here A, stands for the alternating subgroup of even permutations of

S, represented by 3 x 3 orthogonal matrices, A, is its double cover belonging to
SU(2).)

Proof. For both h = 4 ([3] = 1) and h = 6 ([3] = 2) the g-number [3] is

independent of the choice of a primitive h-th root of —1 — and is positive. In
general, we have to verify for which h

2
[3]gm = 1+ 2cos % > 0 for all n such that (2h,n) =1. (11.14)
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For h =4m —1, m = 2,3,..., we can set n = 2m — 1, for h = 4m + 1,
m =1,2,..., we may choose n = 2m + 1, violating in both cases the inequality
6m

(11.14) (the maximal value of [3];2m+1 occuring for m = 1: [3]3 = 1+2cos % =

1—2cosT =1— 145 — 1=¥5 < (). For h = 4m, m > 2 we have [3]zm1 =
1—2cos5~ < 1—2cosT =1-+/2< 0. Finally, for h = 4m +2, m > 2 we

have [3],2m-1 = 14 2cos (gfnﬁi 7r> =1—2cos 273111 which implies

= 2 33—V
[3]q2 =199 9 cos % = 2\[

2
>0, [3pm-1 < 1-2cos = < 0form > 3.
(11.15)
We conclude that the exceptional properties of the golden ratio (i.e. of x =
2cos ¥ (= %) satisfying #? = z + 1) ensure the positivity of [3],s thus
verifying total positivity for (h = 6 and) h = 10 only (among h = 4m + 2).

In order to identify the various finite groups we use

V¥=0b0=—-1=(b"1b)? for h=4, (11.16)

¥V =0=0""'0*=~-1 for h=6, (11.17)
b1 ="' =b"=—-1 for h=10. (11.18)
0

Remark 11.5. Propositions 11.2 and 11.3 are special cases of Lemma 3.2 and
Theorem 3.3 of [ST] where all monodromy representations of By (for the su(2)
current algebra) realized by finite matrix groups are classified. The results for
the 2-dimensional representations displayed here have been derived earlier (by
quite different methods) by V. Jones (see the first reference [J]). Note that the
exceptional values 4,6 and 10 of the height h correspond to levels k = h — 2
equal to the (real) dimensions 2,4, 8 of the field of complex numbers and of the
division algebras of quaternions and octonions.

The following corollary of Proposition 11.3 (much as the end of the proof of
that Proposition) require deeper familiarity with finite groups defined in terms
of generators and relations than we have given here.

Ezercise 11.6. Prove as a corollary of Proposition 11.3 that the groups generated
by the matrices b; are central extensions of (i) the 48 element binary octahedral
group (the double cover of the permutation group Sy, isomorphic to the symme-
try group of the octahedron) — for h = 4; (ii) the 24 element binary tetrahedral
group Ay — for h = 6; (iii) the binary icosahedral group As — the only one
coinciding with its commutator subgroup — for h = 10. (For background on
discrete groups defined by generators and relations — see [CM].)

The knowledge of the (21 + 1)-dimensional realization of By in the space of

su(2) current algebra 4-point blocks allows to establish another type of duality
relation between quantum group and braid group representations. In order to

(6]



display its full content we need to say something more about the representation
theory of U,(A;) for ¢ an even root of unity. This will be the starting point of
the next section.
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12 Restricted and Lusztig QUEA for ¢" = —1
and their representations

Ay ~ s£(2) (as well as its compact real form su(2)) is a simple Lie algebra: it
admits no non-trivial ideals. The same is true for the deformation U, (A1) of
its universal enveloping algebra for generic q (i.e. ¢ # 0 and ¢ not a root of
unity). By contrast, if ¢ satisfies (11.3) then U,(A;) admits a huge proper ideal.
Technically, this comes out because the g-numbers [nh] vanish for ¢" = —1.

Ezercise 12.1. Prove the CR
[E,F"| = F*"'[H+1-n], [E",Fl=nE"'[H+n-1]. (12.1)
Deduce that these commutators vanish iff n is a multiple of h.

The result of Exercise 12.1 allows to prove that E” and F" generate an ideal
of Uy(A;y) for ¢" = —1. In order to find a mazimal ideal which contains these
two elements we shall first construct a model space of Uy(A1) for generic q. (We
recall that a vector space F is a model space for a Lie algebra G or for its UEA
U(G) if F is the direct sum of its finite dimensional irreducible modules, each
encountered with multiplicity one.) To this end, we introduce the direct sum F
(= F(q)) of p-dimensional Uy(A;) modules F,, defined in Section 4:

F=@F,, Fp=Span{lp,m), 0<m<p—1} (12.2)

p=1

where the canonical basis {|p,m)} is defined by the relations (4.15) (4.17).

Ezercise 12.2. (a) Derive the relations

[p—m—1) )
| p,m) Lp_m_n_l]!\p,ern% | p,m) [m_n]!\p,m n)
(12.3)
(b) Verify, using (10.26)—(10.28), that F appears as a Fock space for a’:
a5 |1,0) =0, [p,m) = (a1)" ()"~ "™ | 1,0). (12.4)
(¢) Deduce that for ¢" = —1 the following identities hold on F:
E"F=0=F'F=(K*"-1)F. (12.5)

Ezercise 12.3. Assuming the knowledge of the PBW basis of U,(A;) (viewed as
a vector space — ¢f. Section 5),

{E*K"F", p,v=0,1,....h—1, neZz} (12.6)
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prove that the quotient space with respect to the two-sided ideal defined by the
kernel (12.5) of the representation of U,(A4;) in F,

U, =UyA)) T, Jn={E" F' K"~ K"}, (12.7)
is 2 h3-dimensional.

The quotient U, is called the restricted QUEA in [FGST] and [FHT].

We can similarly define the 4 h3-dimensional quotient Dq of the double cover
D, of U, (introduced in Section 5) by the same ideal Jj, expressed in terms of
k instead of K = k?:

Jp={E" Fr k*h — k2" D,=D,/J. (12.8)

It allows to give meaning to the universal R-matriz of type (5.16) as a poly-
nomial in the D, generators, without invoking topology and completion. The
reader will find the proof of the following result in [FGST] (see also Sections 2.2
and 3.1 of [FHT], whose conventions we have adopted here).

Proposition 12.1. (a) The PBW bases in Uy(b—) and U,(bs),

B Aﬂquu;1)4h71 .
eny =k"EY € U,(b_); fup = —— ¢ T kR,
Q( ) © 4h[/1']! ;0
mn=20,...,4h—1, p,v=0,...,h—1, (12.9)

are dual to each other with respect to the bilinear form defined in Section 5 (see
Eq. (5.12)):

(s €n) = O Oy mym =0,1,...,4h =1, pv=0,1,...,h—1. (12.10)

(b) The R-matriz of the (16h*-element) quantum double is given by

h—1 4h—1

R =" N " e @ fr - (12.11)

v=0 n=0

It reduces for k =k (5.18) to the R-matriz of the (Ah®-element) double cover
Dy of Uy:

1 h=1 4h-1 )\V v(r—1)—mn
R=— —q¢ * KkK'E'®Q@K"F"eD,®D,, 12.12
w2 B PRSP Dy (2

which satisfies the quasi-triangularity condition (4.31).

Ezercise 12.4. Derive from (12.12) the expression transposed to (5.5) for the
2-dimensional representation of D, for which

E:<8 é) F:((l) 8), k:(qj qo) (E>=0=F?). (12.13)
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Remark 12.1. The second universal R-matrix (5.24) also has a finite dimensional
counterpart R, such that

LY ) 4h—1

n(,—1 v v v —mn gm n

= — — F E k k™. 12.14

Rla™) = o e > TR e (12.14)
v=0 m,n=0

Tt is easy to verify that substituting F, F' and k in (12.14) by their 2-dimensional
representation (12.13) we reproduce the 4 x 4 R-matrix (5.5).

In order to display a new duality relation between B, and U, representations
for the non-unitary extended chiral su(2) WZNW model we need the Lusztig
extension of the restricted QUEA U, (see [L]). We first introduce, following [L],
the devided powers

m_ L g pey_ L pn
BY = cn B, P = o F (12.15)

satisfying X (™) x(") = [t ] X (ntm) ([*tm] = [n4m]! .y E,F),

= Pl ]l
min(m,n) H+2s— _
B, 0] =3 F(n—8)|: S=M =N pim—s) (12.16)
S
s=1

The right hand side of (12.15) only has a clear meaning for n < h (since
[h] = 0). The subsequent relations, however, make sense for all positive integers
m,n and can serve as an implicit definition for higher devided powers. It is
sufficient to add two new elements E(") and F" in order to obtain an infinite
extension Uy, of U,. Indeed, their powers generate a sequence of new elements.

Ezercise 12.5. (a) Defining the ratio % as a polynomial in ¢*', deduce

M _ niq(nflf%/)h _ (71)7171 n, |:nnh] _ (71)(n71)hn. (12'17)

(Hint : use the identity [nh + m] = (=1)" [m].)
(b) Derive the general formula

] -comamenn2](4) s

for M €Z, N €Zy,0<m,n<h—1, (%I) = MOM-Y).(M-N+D)
For n < h it is easy, using exercise 12.2(a), to verify the formulae

-m-—1 m
B gy = [P Lot PO pom =[] [ pm ) (1219
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which allow to extend the action of E(™ and F(™ on the canonical basis to all
positive n.

We shall now describe the irreducible representations (IRs) of U, and will
then single out the IRs of Uy, in F.

It is convenient to introduce an operator ¢” (and its inverse, g?) which is
diagonal on the canonical basis and has 2h different eigenvalues (that fix, in
particular, the Casimir invariant (10.4)):

(@ —¢") pm)=0, C=¢+q", ¢?=q". (12.20)
The IRs of U, are classified in [FGST] (these authors do not use, however,

the operator ¢P and introduce bases inequivalent to ours).

Proposition 12.2. The finite dimensional QUEA Uq has ezactly 2h IRs Vpi,
labeled by their dimension p and parity € such that

(" —eq”)Vy =0, dimV;=p, p=1,...,h, e=+. (12.21)
The U'q module V7 can be equipped with a canonical basis lp,m)c, 0 <m<p-—1
(1 <p<h) such that

H—eg® ) [pm)=0, E[pp-1)°=0=F|p0)°.  (12.22)

(q q

Corollary. Egs. (12.21), (12.22) and (12.4) imply the relations

(BF —c[mllp—m]) | pm)* = 0= (FE—c[m+1]p—m—1)) | p.m). (12.23)

We shall identify in what follows the irreducible U, modules Vy in the
(Uq(A1)-model) space F. We will not reproduce the proof of [FGST] that these
representations exhausts the IRs of U,.

The identification V;,‘*‘ = F, for 1 < p < h is immediate.

Ezercise 12.6. Prove that the spaces Fp4p, 1 < p < h admit two p-dimensional
Ug-invariant subspaces isomorphic to V,". Verify that F, is indecomposable
for 0 < p < h and that the quotient fh+p/‘/'p_ @V, is isomorphic to Vhtp.

Hint : identify V- @ V- with the invariant subspace of Fjp, spanned by
P P +p
{lh+pm)}@{ h+ph+m)} 0<m<p-1)

Remark 12.2. The actions of £ and F' on the two copies of V,” are equivalent
albeit not identical:

E|lh+pm)y=—-p—m-—1|h+pm+1),

F|h+pm)=[m]|h+pm—1) (12.24)
E|h+ph+m)=[p—m—1]|h+ph+m+1),
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F|lh+ph+m)=—[m]|h+ph+m-—1), (12.25)
both yielding (12.23). (We may identify |p,m)~ with either | h + p,h +m) or
(=™ | h+p,m).)

Exercise 12.7. Prove that the Uq—modules Fontp (1 < p < h) admit three
p-dimensional invariant subspaces, each isomorphic to Vp+, while the quotient

space Fonip/V," @ V,F @V, (for p < h) is isomorphic to V,~ @V, . Describe
the structure of Fxp4p, N €N, 1 <p < h.

Using the term subquotient for either on Uq submodule or a quotient we have
the following easily verifiable result.

Proposition 12.3. The direct sum of irreducible U,-modules that appear as
subquotient of Fnn+p of a given parity € spans a single IR Vg of Up; we have
the following exact sequence (for 0 < p < h) of Uy modules:

0=V = Fangp — Vi =0, ey = (-1,

N N
vy =Py, vy = (12.26)
0

1

Sketch of proof. A straightforward application of (12.18) and (12.19) gives

(N-n)h+p—m-—1

E<h>|Nh+p,nh+m>:[ N

} | Nh+ p, (n+ 1) h+m)

= (=)W= Dhbp=m =Y (N — ) | Nh+ p, (n+ 1) h+ m)
0<n<N, 0<m<p<h (12.27)

(N-n)h—m-1

E(h)|Nh+p7nh+p+m>:[ .

}Nh+p,(n+1)h+p+m>

0<n<N-1, 0<m<h-p—1, (12.28)

and similar relations for F(». These relations imply the irreducibility with
respect to U, of the direct sums Vy~ and V;V  (12.26) of IRs of U, C Up,. U

On the other hand, the relations
EWF,=0=FMF, for 1<p<h (12.29)

tell us that the “Lusztig quantum group” U}, only plays a role in F,, for p > h.
Our aim will be to establish a duality relation between the indecomposable
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representations of U, in Fnp4p displayed in Proposition 12.3 and the repre-
sentations (11.2) of By for 2] +1 = Nh + p. We denote the corresponding
p-dimensional By module of 4-point blocks by S4(p).

Proposition 12.4. (see Theorem 4.1 of [FHT]) (a) The By modules S4(p) are
irreducible for 0 < p < h and for p = Nh.

(b) For N >0 and 0 < p < h, S4(Nh+p) is indecomposable with structure dual
to that of Fnnyp displayed in Proposition 12.3. It has a N(h — p)-dimensional
mvariant subspace

S(N,h — p) = Span {f/SNH”) s u=nh+p,....(n+1)h -1} (12.30)

which carries an IR of By. The (N +1)p-dimensional quotient space S'(N—i— 1,p)
also carries an IR of the braid group.

Proof. The By-invariance of S(N, h—p) (12.30) follows from the proportionality
of the (Nh + p)-dimensional matrices (11.2) to the g-binomial coefficients:

bt [nh+ « al rmy
st~ s~ 5] () =0

Bmh+a ~ (Nim)h+p7a71
2nhitf ((N—n—1)h+h+p—F-1

[ p—a-1 N-—-m _0

htp—B-1]\N-n-1)"
form=0,.... NO<a<p-—-1,n=0,....N—1,p < 8 < h—1; they
vanish since {g} =0 for 0 < a < f (o, integers). An inspection of the

same expression (11.2) allows to conclude that the space S(N,h — p) has no
By-invariant complement in Sg(Nh + p) which is, thus, indeed indecomposable.
It is also readily verified that the quotient space

S(N +1,p) = S4(Nh +p)/S(N,h —p)

carries an IR of By. O

We thus see that the indecomposable representations Fypyp (of Up) and
S4(Nh + p) (of By) contain the same number (two) of irreducible components
(of the same dimensions) but the arrows of the exact sequences are reversed.
This sums up the meaning of duality for indecomposable representations.

Remark 12.2. Note that the difference of conformal dimensions
ANh+[—A]:N(Nh+p) (0<p:2I+1<h)

is a (positive) integer; this explains the similarity of the corresponding braid
group representations Sy (p) and S4(2Nh + p). There is a unique 1-dimensional
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subspace S(1,1) C S4(2h — 1) among the By-invariant subspaces displayed in
Proposition 11.4 corresponding to a non-unitary local field of isospin and con-
formal dimension A — 1:

(h—1)h

e =h-1. (12.31)

Ap_1 =

It has rational correlation functions; in particular, the 4-point amplitude f,(fi_ll)

(&€,m) (9.29)—(9.31) is a polynomial [HP]. It therefore gives rise to a non-unitary
local extension of the su(2); current algebra that deserves a further study.
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13 Outlook

In conclusion we shall sum up the philosophy underlying these notes — and the
ensuing choice of material — and will then list some related topics which appear
to be interesting and important but remain outside the scope of the present
lectures.

It is natural from both physical and mathematical point of view to associate
with any “symmetry” (meaning symmetry group, Lie algebra or a generaliza-
tion thereof) a family (or “category”) of representations equipped with a tensor
product. The fact that the tensor product of representations is again a repre-
sentation (of the same symmetry) leads us to the concept of a coproduct. The
commutant of a tensor product representation yields the notion of a braid group
which reduces to a permutation group when the symmetry is described by an or-
dinary group. If we think of irreducible representations as describing elementary
objects (particles, excitation) then the behaviour under braiding (that exchanges
elementary objects) would determine the particle statistics. We are thus led to
consider the pair symmetry and statistics as a whole. The generalization or
deformation of one requires a similar deformation of the other.

Quantum groups are coupled to braid group statistics (as already the title
of these lectures suggests). Existing attempts at phenomenological applications
of “g-symmetries” (viewing ¢ as one more parameter to fit data), that ignore
the (necessarily!) accompanying it braid group statistics, are, in my opinion, ill
conceived.

The appearance of monodromy (a normal subgroup of the braid group) is a
sign of the presence of multivalued correlation functions which naturally arise in
a non-simply connected configuration space — that is the case of dimension two.
In higher dimensions the fundamental group m of configuration space is trivial.
Indeed, the deep analysis of Doplicher-Haag-Roberts of the structure of superse-
lection sectors in a local relativistic quantum theory (a work spanned over more
than 20 years, culminating in [DR], and recounted in [H]) demonstrates that
the gauge symmetry (of the first kind) of local observables is implemented by a
compact group and is thus accompanied by a permutation group (para) statis-
tics (reduced, essentially, to the familiar Bose and Fermi statistics). We, hence,
only consider applications of quantum symmetry and braid group statistics to
2-dimensional (2D) conformal field theory. (Our analysis of such “applications”
is restricted to the formalism. The relevance, say, of anyonic statistics to the
theory of fractional quantum Hall effect is only alluded to.) We have given more
room to the (mathematically) intriguing non-abelian QUEA which appear as
gauge symmetries of chiral conformal fields. (A gauge symmetry, by its defi-
nition, does not affect observables. Accordingly, it is only manifest after one
splits the observable 2D fields into chiral vertex operators, corresponding to the
splitting of 2D correlation functions (single valued in the Euclidean domain)
into multivalued conformal blocks).

Among the big omissions from the present survey the closest in spirit — and
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thereby particularly regrettable — is the Chern°-Simons theory about which we
shall just say a few words and give a few references.

The Chern-Simons theory is a topological gauge theory on a three (space-
time) dimensional manifold M. Here by topological we mean that its action
does not depend on the metric on M. Let A be a connection one-form with
values in a Lie algebra G. (For G = u(n) — a commonly encountered example —
this means that A is an antihermitian n x n matrix of 1-forms.) The curvature
2-form F' is defined, as usual, by

F=dA+AMA. (13.1)

An example of a topological action density in four space time dimensions is
given by the so called “f-term”°° the 4-form tr(F A F) (= Fg A F?), which is
a total derivative (when expressed in terms of A). The Chern-Simons form

2
wgztr<A/\dA+3A/\A/\A> (13.2)

is defined to satisfy
dws =tr(FAF). (13.3)

In order to verify (13.3) (for ws given by (13.2) and F' given by (13.1)) one has
to use the cyclicity of the trace and the anticommutativity of 1-forms to deduce

tr AR (= AZLAAZ2 AL A AR =0 (13.4)

(¢f. Exercise 10.1). (More generally, the Chern-Simons (2k — 1)-form woj_1 is
defined to satisfy dwoy,_1 = tr(F”F). Verify that

w5:tr(F/\F/\A—;F/\A/\A/\A—i—lloAAS) (13.5)

satisfies dws = tr F/3. Note that w3 may be also written as w3 = tr (FANA -
sANANA).

Varying the (conformally invariant!) Chern-Simons action
s—F [ w(andas?ars (13.6)
= — T - .
47 M 3

we find the equation of motion

05 k
0= = =F (13.7)
49The Chinese American mathematician Shiing-Shen Chern (1911-2004), a leading differ-
ential geometer of 20" century, wrote the paper on Chern-Simons forms in 1974 with his
student Jim Simons.
50The term @tr(F A F) is much discussed in connection with the problem of strong CP
violation, [SVZ]; for an instance of a subsequent theoretical study — see [W98].
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which says that the curvature is zero, or, in other words, the connection A is flat.
Flat connections are determined entirely by holonomies around noncontractible
cycles. If K is an oriented knot! then one considers the trace of the holonomy
of the gauge connection around K in a given IR of U(n), which gives the Wilson
loop operator, the trace of the path-ordered exponent

WK(A) =trg (PexpﬁA) . (13.8)

Witten [W] discovered that the vacuum expectation value of this operator for
n = 2 reproduces the Jones polynomial invariant [J]. (The appearance of topo-
logical invariants in QFT has been suggested earlier by Albert Schwarz.) For
M a 3-manifold with boundary ¥ Witten demonstrates that the Chern-Simons
theory on M with a compact Lie group G and action (13.6) gives rise to a
WZNW theory on ¥ corresponding to the current algebra G of level k.

For a review on Chern-Simons theory with applications to topological strings
— see [MO05]. For the quantization of the Hamiltonian Chern-Simons theory and
for the representation theory of Chern-Simons observables (not covered in [M05])
- see [AGS] and [AS].

A second important topic outside the scope of these lectures is the appli-
cation of Hopf algebra techniques to QFT renormalization initiated by Dirk

Kreimer and further developed by Connes and Kreimer — see for recent reviews
[CoMa] [Kr] (¢f. also [C]).

We have not touched upon the study of quantum homogeneous spaces and
their possible application as candidates for non-commutative space-time mani-
folds. Here we feel that a more general point of view, not necessarily related to
quantum groups is preferable — see [Co, CoMa]. For interesting purely mathe-
matical results in this direction — see [CD-V] and [DLSSV].

51For a survey of modern knot theory — see [Li] and [PS].
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