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Preface

These lectures are meant as an introduction to quantum groups (with em-
phasis on quantum universal enveloping algebras (QUEA)), braid groups and
their application to 2-dimensional conformal field theory. With a view of an
audience of mixed background they purport to introduce the basic concepts
encountered on the way: Hopf algebras, permutation and braid groups, the
conformal group in two and higher dimensions, axiomatic quantum field theory
– in various degree of detail. Thus the first four sections and Appendix A form
a minicourse on braid groups and Hopf algebras viewing them in the context of
(a deformed) Schur-Weyl duality. Section 4 and Appendix B also contain some
less standard material: the general form of n-point Uq(s`2) invariants based on
joint work with P. Furlan and Ya. S. Stanev of the 1990’s. The Drinfeld double
and the universal R-matrix are treated rather schematically (in Section 5); mas-
tering this subject would require more work and further reading. This is even
more true for the sketch of Wightman axioms (Appendix C) and of the axioms
for a chiral vertex algebra (Appendix D) – subjects of monographs outlined here
on a couple of pages.

The next three sections (6, 7, 8) provide another introductory course (for
more advanced students) – on conformal field theory (CFT). We begin with the
axioms of quantum field theory (supplemented with the requirement of confor-
mal invariance) in D space-time dimension in order to stress the special features
of the case D = 2 to which the rest of the lectures is devoted. Sections 7 and
8 deal with the u(1) conformal current algebra – the simplest 2D CFT – and
its local extensions, introducing on the way fractional charge fields with any-
onic statistics. The survey of the su(2) current algebra model corresponding to
the Wess-Zumino-Novikov-Witten action (Sections 9, 10) is more schematic. A
regular basis of solutions of the Knizhnik-Zamolodchikov equation (introduced
by Ya. S. Stanev and the author) is displayed without derivation in Section 9.
Section 10 includes a survey of the Uq oscillator algebra introduced by Pusz and
Woronowicz which can be viewed as a deformation of the Schwinger model for
su(2).

The two topics, braid groups and QUEA, on one hand, and 2D CFT, on
the other, are combined in Sections 11, 12 into the study of monodromy rep-
resentations of the braid group B4. As an application we survey in Section 11
the solution of the Schwarz problem for the Knizhnik-Zamolodchikov equation
(worked out by Stanev and myself). Section 12 introduces and studies the re-
stricted and the Lusztig QUEA for q an even root of unity and reviews recent
work of Furlan, Hadjivanov and the author on the subject. Section 13, the last
one, contains an overview and provides references to adjacent topics (including
Chern-Simons theory) that have been left out.

I thank my long term collaborators mentioned above who contributed to the
understanding of the subject matter of these notes.
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It is a common observation (see, e.g., the Introduction to [Fr]) that public
attention to fundamental physics is declining. In the light of this global phe-
nomenon it was particularly rewarding to me to witness the keen interest of
the young (and not so young) audience at the Universidade Federal do Esṕırito
Santo in Vitória, Brazil, during the course of these lectures.

It is a pleasure to thank Clistenis Constantinidis, Olivier Piguet and Galen
Sotkov for their hospitality in Vitoria where these lectures were presented. The
hospitality and support of L’Institut des Hautes Études Scientifiques, Bures-
sur-Yvette, where these notes were written is also gratefully acknowledged. I
thank, in particular, Cécile Cheikhchoukh for her expert and expeditions typing
which allowed to produce the present version without delay. This work is sup-
ported in part by the Research Training Network of the European Commission
under contract MRTN-CT-2004-00514 and by the Bulgarian National Council
for Scientific Research under contract Ph-1406.
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1 Introduction

The concept of a group seems to be tailor made to match the notion of symmetry.
It is economical and general: it just assumes that a composition of maps (or
transformations) g1 and g2 is again a map, g1g2 (of a set into itself), that the
product is associative, (g1g2)g3 = g1(g2g3), and that for each transformation g
there is an inverse, g−1 such that gg−1 = g−1g = 1 (1 standing for the identity
map which has the property g · 1 = 1 · g = g). For transformations depending
on continuous parameters (like translations and rotations) one has the powerful
concept of a Lie1 group which allows to reduce in most cases the study of a
symmetry to a local problem of Lie algebra.

Why then should we look for a more general concept like Hopf2 algebra or
“quantum group” (or even for some further extension thereof)?

A historical account answering this question from a mathematical point of
view can be found in the lectures of Pierre Cartier [C]. I shall single out one
aspect of his answer which also has a physical interpretation. Another view of
the history of quantum groups is provided by Ludwig Faddeev [F] starting with
integrable systems, in particular, spin chains.

A first principle of quantum theory is the principle of superposition. It tells
us that quantum states form a vector space and symmetry groups act by (linear)
representations on this space. If we assume, as usual, the standard probabilistic
interpretation of state vectors, then we have to deal with unitary representations
of the symmetry group. Furthermore, the state space of a pair of non-interacting
systems is the tensor product of the spaces of individual systems. This leads us to
considering the ring of representations closed under tensor products and direct
sums.

Consider now a system of n identical non-relativistic particles of coordinates
xi and internal quantum number si (i = 1, . . . , n). Assume further, for the
sake of definiteness that each si takes k values and that the internal symme-
try group is U(k). The state of such a system is described by a (fixed time,
in general, multicomponent) wave function ψ(x1, s1; . . . ;xn, sn) (∈ H⊗n

1 where
H1 is the 1-particle space). It possesses two types of symmetry which com-
mute with each other: (i) the internal symmetry, described by the n-fold tensor
product of fundamental representations of U(k) acting on the variables si; (ii)
symmetry under permutation of the pairs of arguments (xi, si), reflecting the
indistinguishability of identical particles. For 1-component wave function we
have the Fermi3-Bose4 alternative: ψ is either invariant or changes sign under

1Marius Sophus Lie (1812-1899) Norvegian mathematician.
2Heinz Hopf (1894-1971) introduces the concept of Hopf algebra (in a topological context)

in 1941 – see references to the original papers in [C].
3The Italian (later American) physicist Enrico Fermi (1901-1954) did his work on the

Fermi-Dirac statistics while in Florence (1925-26). He received the Nobel Prize in Physics in
1938 for his work on induced radioactivity.

4Satyendra Nath Bose (1894-1974) is an Indian Bengali mathematical physicist. His work
of 1922 on the Bose statistics was first rejected and then only accepted for publication after
the author sent his manuscript to Einstein who presented it together with his own paper on
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transposition of two (pairs of) arguments. In general (for a multicomponent ψ),
it should transform under an irreducible representation (IR) of the permutation
groups. (This relates to the Schur-Weyl duality reviewed in Appendix A.)

All this is fine if the configuration space Xn = Yn/Sn, where Yn is the space
of points (x1, . . . , xn) such that xi 6= xj for i 6= j, is simply connected and hence
carries single valued analytic functions. This is the case for space dimensions
larger than two. If the xi are points in a 2-dimensional plane however then the
configuration space Xn is no longer simply connected. We shall see that the
natural generalization of Sn in this case is the braid group Bn on n strands that
will be introduced in Section 2. What is important for us here is the realization
that when the permutation group acting on the tensor product of, say U(k),
representations is substituted by the braid group then the condition that “the
symmetry commutes with the statistics” implies that tensor product of repre-
sentations should be deformed to a coproduct (in general, not co-commutative)
meaning that the concept of a symmetry group should be substituted by the
more general notion of a Hopf algebra or quantum group.

A bibliographical note.

The relation between the possible particle statistics and the topology (in
particular, the fundamental group) of configuration space was first pointed out
by Leinaas and Myrheim [LM]. For a thought provoking recent review of spin
and quantum statistics – see [Fr].

There are, by now, a number of texts on quantum groups – see, e.g., [CP]
[FK] [K] [L] [M] [Ma].

the same subject to Zeitschrift für Physik in 1924.
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Appendix A. Young diagrams, Young tableaux
and Schur-Weyl duality

A Young diagram5 of n boxes is a graphical expression of a partition of the
natural number n into a sum of decreasing integers n1 ≥ n2 ≥ . . . nk(Σni = n).
It consists of a finite number of boxes arranged in rows of decreasing length. All
Young diagrams of three boxes are displayed on Figure A1

�
�
�

��
� ���

Ya Yb Yc

Figure A1: Young diagrams of three boxes

Young tableaux are Young diagrams in which each box carries a number.
Standard Young tableaux of n boxes carry the numbers 1, . . . , n of increasing
order along rows and columns. There are four standard Young tableaux of
three boxes displayed on Figure A2

1
2
3

1 2
3

1 3
2

1 2 3

Ya Y 1
b Y 2

b Yc

Figure A2: Standard Young tableaux of three boxes

Young diagrams Y of n boxes label the irreducible representations (IR) of the
symmetric group Sn of permutations of n objects. The standard Young tableaux
Y corresponding to a given diagram Y form a basis in the representation space
of the IR Y .

In general, the dimension of the representation corresponding to a Young
diagram can be computed without writing down explicitely all Young tableaux
corresponding to a given diagram Y . To this end we shall introduce the hook
length h(x) of a box x of Y . It is equal to the sum of the number of boxes to
the right of x in the same row plus the number of boxes in the same column
below x plus 1 (for x itself). In Figure A3 we give examples of hook lengths for
two different diagrams

5The English mathematician Alfred Young (1873-1940) introduced these diagrams in 1900
while in Cambridge. For a systematic survey of Young tableaux and their applications – see
[Fu].
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3 1
1

6 5 3 2
5 4 2 1
2 1

Figure A3: The number in each box gives its hook length

Then the dimension of Y is given by

dim Y = n!/
∏
x∈Y

h(x) . (A.1)

Exercise A.1. Find the dimension d(Y ) of the IRs of S5 and verify the formula∑
Y

d2(Y ) = 5!.

To see how one reconstructs the action of the elements of Sn on a basis of
Young tableaux, we will first say something more about the structure of the
symmetric group.

Sn can be defined as a (finite) group of (n−1) generators s1, . . . , sn−1 (where
si = Pi i+1 plays the role of transposition (permutation) of the “objects” i and
i+1), satisfying three sets of relations (the first of which tells us that the si are
reflections):

s2i = 1 , i = 1, . . . , n− 1 ; si sj = sj si for |i− j| > 1 ;

Pi,i+2 = si si+1 si = si+1 si si+1 , i = 1, . . . ,m− 2 (A.2)

(Pij playing the role of transposition of the objects (i, j) and satisfying P 2
ij = 1;

verify that indeed P 2
i i+2 = 1, as a consequence of (A.2)). Iterating the last

relation (A.2) we can express any Pij , i 6= j as a word in the generators (of
length 2 |i − j| − 1. If the indices i, j belong to a single column of the Young
tableau Y then, by definition, Pij Y = −Y . The permutation of two columns
of equal lengths in a tableau Y leaves, by definition, Y invariant. The product
of basic reflections determines the conjugacy class of the Coxeter element6 of
order n; in particular

c1n := s1 . . . sn−1 = c−1
n1 (cn1 = sn−1 . . . s1) , cn1n = 1I . (A.3)

Exercise A.2. (i) Prove that the transposition P1n has the form P1n = s1 . . . sn−2

sn−1 sn−2 . . . s1; verify the relation si P1n = P1n si for i = 2, . . . , n− 1.
(ii) Prove (A.3). (Hint : use induction in n proving (s1 . . . sn)n = (s1 . . . sn−1)n−1

P1n+1.)

6Harold Scott MacDonald Coxeter (1907-2003) born in London but worked for 60 years at
the University of Toronto; he studied the product of generators in 1951 – see [C51].
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Let us now describe, as a next exercise, the IRs of S3. The IRs Ya and Yc
being 1-dimensional are easy to describe: Yc is the trivial representation while
Ya is the alternating one: s1 Ya = s2 Ya = −YA. To construct the 2-dimensional
representation Yb we first note that the generators si are represented by 2 × 2
matrices of eigenvalues ±1 (hence, det s1 = det s2 = −1, tr s1 = tr s2 = 0).

Exercise A.3. Using the relations s2 Y 1
b = Y 2

b , s2 Y 2
b = Y 1

b , s1 Y 2
b = −Y 2

b find
s1 Y

1
b and the matrix P13.

(Answer : s1 Y 1
b = Y 1

b − Y 2
b ; P13 =

(
−1 0
−1 1

)
.)

The IRs of the group U(k) of complex unitary k×k matrices are again labeled
by Young diagrams – of any number of boxes but of no more than k rows. The
corresponding basis vectors can be represented by semi-standard Young tableaux
in which the allowed numbers are (1, . . . , k) that should increase monotoneously
along rows and strictly along columns. Thus the representation corresponding
to a single column of k boxes is 1-dimensional (given by the determinant). The
IR associated with a single box is k-dimensional (with basis i , i = 1, . . . , k)
and so is the representation of a single column of (k − 1)-boxes.

Exercise A.4. Prove that the IR’s of U(k) corresponding to the 3-box diagrams

of Figure A1 have dimensions da =
(
k
3

)
, db = 2

(
k + 1

3

)
, dc =

(
k + 2

3

)
,

respectively.

The Schur7-Weyl8 theory concerns the decomposition of the n-fold tensor
product of the defining (k-dimensional) representation � of U(k) into IRs of
U(k)×Sn. (The permutations s ∈ Sn of different copies of the U(k) module Ck
commute with the U(k) action.) We have

Proposition A.1. Let Y run through the n-box Young diagrams with no more
than k rows; then

�⊗n
U(k) =

⊕
Y

YU(k) ⊗ YSn
. (A.4)

In other words the representation �⊗n
U(k) splits into a sum of tensor products

of IRs of U(k)⊗Sn, the two IRs in each term corresponding to the same Young
diagram.

7Issai Schur (January 10, 1875, Mogilov, Belarus, Russian empire – January 10, 1941,
Tel Aviv, Palestine) studied and worked in Berlin; regarded himself as German and declined
invitations to leave Germany for the US and Britain in 1934; dismissed from his chair in
1935 eventually emmigrated to Palestine in 1939. He is known for Schur’s lemma and Schur’s
polynomials among many others.

8Hermann Weyl (1885, Elmshorn, near Hamburg – 1955, Zürich) worked in Göttingen,
Zürich and Princeton. The duality in question appears in Weyl’s 1928 book Gruppentheorie
und Quantenmechanik. Concerning the Schur-Weyl duality – see, e.g., [Z].
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Exercise A.5. Using the result of Exercise A.4 verify that k3 = da + 2 db + dc.
Do the same exercise for �⊗4

U(k) finding first the dimensions of all IRs of S4 and
the dimensions of the IRs of U(k) labeled by Young diagrams of four boxes.
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2 Braid groups and Hecke algebras

In order to describe the fundamental group π1 of the configuration space, we first
introduce the Artin9 braid group Bn on n strands. It is an infinite discrete group
which can be defined in analogy with the symmetric group Sn (cf. Appendix A)
as a group of n− 1 generators b1, . . . , bn−1 (and their inverses) obeying two sets
of defining braid relations :

bi bi+1 bi = bi+1 bi bi+1 , i = 1, . . . , n−2 ; bi bj = bj bi for |i− j| > 1 . (2.1)

Their intuitive meaning is illustrated on Figures. 2.1 and 2.2.

Figure 2.1: bi b−1
i = 1I

Figure 2.2: b1 b2 b1 = b2 b1 b2

If we ignore the path of a braid transformation and only follow its end point
we obtain a permutation. This defines a homomorphism of Bn onto Sn whose
kernel is, by definition, the pure braid or monodromy subgroup Mn. This means
that the following sequence of group homomorphisms is exact:

1 →Mn → Bn → Sn → 1 . (2.2)

We are now ready to formulate a result that goes back to Hurwitz which
has been then repeatedly rediscovered (see [M74] for a historical survey by an
active participant in this work).

9Emil Artin (1898-1962), Theorie der Zöpfe (Hamburg, 1925). According to Wilhelm
Magnus [M74] braid groups were implicit in Adolf Hurwitz’s (1859-1919) work on monodromy
(1891).
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Let (z1, . . . , zn) be n different points in the complex plane C and let z0 be
a fixed point in C, different from (z1, . . . , zn). Let Yn = C\(z1, . . . , zn) be the
n-punctured plane and Xn = Yn/Sn – the configuration space.

Theorem 2.1. [A] The fundamental group of the configuration space π1(Xn, z0)
coincides with the braid group Bn+1. The fundamental group of the n-punctured
plane coincides with its monodromy subgroup, Mn+1:

π1(Xn, z0) ' Bn+1 , π1(Yn, z0) 'Mn+1 . (2.3)

We just note that a path connecting two punctures, say zi and zi+1, is viewed
as a closed path in Xn.

Introduce the analogues of the Coxeter elements (A.3):

B1n = b1 . . . bn−1 , Bn1 = bn−1 . . . b1 . (2.4)

The powers of B1n give rise to automorphisms that intertwine the Bn generators
bi among themselves:

Bi1n b1B
−i
1n = bi+1 , i = 1, . . . , n− 2 . (2.5)

We shall cite the following result on the structure of Bn (see [M74] for a concise
review and references to the original papers).

Proposition 2.2. The centre Zn = Z(Bn) of Bn is generated by the element
(of infinite order)

θ = Bn1n (= Bnn1) ; (2.6)

θ and
Ω = B1nBn1 subject to the relation Ωn = θ2 (2.7)

give rise to a normal subgroup Nn of Bn.

The fundamental group π1(S2, n) of the 2-sphere with n punctures can be
presented as the quotient F ∗n of the free group Fn on n generators, x1, . . . , xn,
by the single relation

x1 . . . xn = 1 (2.8)

(expressing the fact that a loop encircling all n points on the sphere is con-
tractible). The braid group Bn acts by automorphisms on Fn and on its quotient
F ∗n ([M74]).

Proposition 2.3. The automorphisms

βν(xν) = xν+1 , βν(xν+1) = x−1
ν+1 xν xν+1 , βν(xµ) = xµ for µ 6= ν, ν+1 , (2.9)

satisfy the defining relations (2.1) for the generators of Bn. Moreover, Bn is
isomorphic to the automorphism group of Fn while its quotient with its centre
gives AutF ∗n :

Bn ∼= AutFn , B∗n := Bn/Zn ∼= AutF ∗n . (2.10)
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The mapping class group M(S2, n) of S2\{z1, . . . , zn} – i.e., the group of
(isotopy classes of) orientation preserving self-homeomorphisms of the sphere
with n-punctures – has been studied for nearly a century, starting with the work
of Fricke-Klein10 (1897 – following that of Hurwitz, mentioned above), followed
by contributions by Artin, Magnus, Fadell, Van Buskirk, Arnold [A], Birman [B]
among others. In the formulation of the main result below we follow the survey
[M74] (containing over 60 references).

Theorem 2.4. The braid group Bn(S2) of the 2-sphere arises from Bn by
adjoining the single relation Ω = 1 (where Ω is the generator of Nn defined in
(2.7)). It has a single element θ (2.6) of order two (for n > 2) that generates
its centre Z/2. The mapping class group M(S2, n) is obtained from Bn(S2) by
setting θ = 1.

Remark 2.1. It follows from Theorem 2.4 that Bn(S2) is a non-splitting central
extension of M(S2, n) (just like SU(2) is of SO(3)).

For quantum deformations of unitary (say, SU(k)) 1-particle symmetry (to
be considered in Section 4, below) with deformation parameter q (such that
q = 1 corresponds to the undeformed case) the group algebra of the fundamental
representation of Bn is a Hecke11 algebra characterized by the following relations

b2i − (q − q−1) bi − 1 = (bi − q)(bi + q−1) = 0 . (2.11)

(The normalization of bi has been chosen for convenience, so that the products
of its eigenvalues is −1. Introducing in the next section a quasi-triangular
R-matrix we shall naturally come to a different normalization which involves
half-integer powers of the parameter q. In both cases, for q → 1, Eq. (2.11)
and its counterpart in Section 11 reduce to the involutivity condition for the
reflections generating the symmetric group.)

It is convenient to express bi in terms of the (non-normalized) projectors
(antisymmetrizers) ei:

ei = q − bi , e2i = (q + q−1) ei , (2.12)

which, in view of the braid relations (2.1) satisfy

ei ei+1 ei − ei = ei+1 ei ei+1 − ei+1 (2.13)

ei ej = ej ei for |i− j| ≥ 2 . (2.14)

10Karl Emmanuel Robert Fricke (1861-1930), professor of Higher Mathematics at the Tech-
nische Hochschule in Braunschweig, and Felix Christian Klein (1849-1925) (known for his
influential Erlangen Program, 1872, and for his role in creating the model research centre at
the University of Göttingen from 1886 on) wrote a four volume treatise on automorphic and
elliptic modular functions over a period of about 20 years.

11Erich Hecke (1887-1947) studied in Göttingen with Hilbert, worked in Hamburg.
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We shall introduce (also for later applications) the q-numbers [n] (≡ [n]q)
setting

[n] =
qn − q−n

q − q−1
([1] = 1 , [2] = q + q−1 , [3] = q2 + 1 + q−2, . . .) . (2.15)

Exercise 2.1. Verify the relations (a) [2][n] = [n− 1] + [n+ 1], [3][n] = [n− 2] +
[n] + [n+ 2]; (b) if qN = −1 then [N ] = 0. For generic q, i.e. for q not a root of
unity, [N ] 6= 0 for any non-zero natural number N . Define for such q, following
[GPS], the series of antisymmetrizers

P 1
− = 1I , P k+1

− =
1

[k + 1]
(qk 1I− qk−1 bk + . . .+ (−1)k b1 . . . bk)P k− . (2.16)

It is easy to check that

P 2
− =

e1
[2]

, P 3
− =

1
[3]!

(e1 e2 e1 − e1) =
1

[3]!
(e2 e1 e2 − e2) (2.17)

where [k]! is defined recursively by: [0]! = 1, [k + 1]! = [k]! [k + 1] and P k− =
(P k−)12...k.

Exercise 2.2. Prove that P k− are central projectors:

P k− bi = bi P
k
− = −q−1 P k− for 1 ≤ i ≤ k − 1 ,

P k− P
i
−j = P i−j P

k
− = P k− for P i−j = (P i−)j(j+1)...(j+i−1) , i+ j − 1 ≤ k ; (2.18)

furthermore,

P k− bk P
k
− =

qk

[k]
P k− −

[k + 1]
[k]

P k+1
− (2.19)

(a relation that can be used as another recursive definition of P k−). It turns out
that in applications to 2D conformal field theory q is precisely a root of 1. One
has to deal with non-normalized projectors in that case.

We shall assume that the Hecke algebra of Bn is at most n-dimensional so
that

Pn+1
− = 0 . (2.20)

If k is the smallest positive integer for which P k+1
− = 0 we say that we are dealing

with an “even Hecke symmetry of rank k” in the terminology of [GPS]. Then
P k− is an one-dimensional projector that can be written as a (tensor) product of
two q-deformed Levi-Civita12 tensors.

Assuming, on the other hand, that P 3
− = 0 for B∞ (i.e. that each of the

expressions (2.13) vanish) we obtain the Tempereley-Lieb algebra which plays a
prominent role in V.F.R. Jones theory of subfactors [J].

12Tullio Levi-Civita (1873-1941) published in 1900 “Méthodes de calcul différentiel absolu et
leurs applications” together with his teacher Gregorio Ricci-Curbastro (1853-1925); Einstein
used this book to master tensor calculus.
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Here is an explicit realization of e1 and e2 (and hence of B3) satisfying

e1 e2 e1 − e1 = e2 e1 e2 − e2 = 0 (e2i = [2] ei) (2.21)

in the triple tensor product of 2× 2 matrices

eα1α2α3
1β1β2β3

= εα1α2 εβ1β2 δ
α3
β3
, (e2)α1α2α3

β1β2β3
= δα1

β1
εα2α3 εβ2β3 (2.22)

where εαβ is the (rank 2) q-deformed Levi-Civita tensor

(εαβ) =
(

0 −q1/2
q−1/2 0

)
= (εαβ) (2.23)

satisfying

εασ εσβ = −δαβ , (εασ εβσ) =
(
q 0
0 q−1

)
. (2.24)

Exercise 2.3. Verify (2.21) using (2.22) and the properties of εαβ .

Another solution of the braid relations of B3, in which the expression (2.13)
is a 1-dimensional projector,

e1 e2 e1 − e1 = e2 e1 e2 − e2 = εα1α2α3 εβ1β2β3 (2.25)

where

ε123 = −q3/2 = −q ε132 = −q ε213 = q2ε312 = q2ε231 = −q3ε321 ,

εααβ = 0 = εαβα = εβαα , (εαβγ) = (εαβγ) , (2.26)

is given by

eα1α2α3
1β1β2β3

= εα1α2σ εσβ1β2 δ
α3

β3
, eα1α2α3

2β1β2β3
= δα1

β1
εσα2α3 εβ2β3σ . (2.27)

Exercise 2.4. Use the identity

εβσ1σ2 ε
σ1σ2α = [2] δαβ (2.28)

to verify the relations e2i = [2] ei, i = 1, 2. Verify (2.25) for ei given by (2.27).

Note that the order of indices of the quantum Levi-Civita tensor in (2.27) is
important. It is easy to check, for instance that substituting the first product
by εα1α2σ εβ1β2σ would violate the condition e21 = [2] e1.

We end up our brief survey of the braid group with a simple application to
physically interesting new statistics in two dimensions.

The permutation group Sn has exactly two 1-dimensional representations
(corresponding to the Young diagrams Ya and Yc of Figure A1 for n = 3 –
see Appendix A): the fully symmetric (trivial) representation, corresponding to
bosons and the totally antisymmetric one, describing fermions. By contrast the
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braid group Bn has a 1-parameter family of 1-dimensional (unitary) represen-
tations given by

πq(bi) = q (πq(b−1
i ) = q̄ , q q̄ = 1) . (2.29)

(Note that this representation trivially satisfy the Hecke algebra condition (2.11).)
This representation describes (according to presently accepted theoretical mod-
els – see [FKST] [FST]) the fractional quantum Hall effect. The story of how
physicists got aware of the anyonic representations is told in [BLSW].
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3 Bialgebras and Hopf algebras: classical exam-
ples and definition

A natural way to arrive at the Hopf algebra generalization of the notion of a
group G is to study the duality between an algebra U that could be either the
group algebra, say CG, or the universal enveloping algebra (UEA) U(G) of the
Lie algebra G of G, and the algebra F(G) of functions on the group. (The
appropriate topology of F(G) depends on the class of groups one is considering
– see the introduction to [C]. As these introductory remarks are just ment as
motivation we will not burden them with topological considerations.) We shall
thus first explain why ordinary groups and Lie algebras can be viewed as Hopf
algebras and only then will give the formal definition.

Remark 3.1. Mathematicians would often replace the field C of complex numbers
in the definition of a group algebra by an arbitrary field K (having in mind,
e.g., applications to algebraic groups – see [C]). Such generality may also be
useful for some physical applications but again we refrain from complicating
excessively this introductory note. The space of functions F(G) is sometimes
denoted by CG (or KG – see [C]).

Usually CG and U(G) are just viewed as associative algebras. It is important,
however, that U is a bialgebra, i.e. that it is also equipped with a coalgebra
structure consisting of two algebra homomorphisms: the coproduct ∆ : U →
U ⊗ U and the counit ε : U → C such that

(1I⊗∆) ∆ = (∆⊗ 1I)∆ (3.1)

(1I⊗ ε) ∆ (X) = (ε⊗ 1I)∆ (X) = X , ∀X ∈ U . (3.2)
The product m : U ⊗ U → U (m(X ⊗ Y ) ≡ X · Y ) and the coproduct ∆
should also satisfy a compatibility condition which will be formulated later. It
is the presence of the coproduct which allows to view the tensor product of
any two representations of U again as a representation of U (rather than as a
representation of U⊗U which is always possible for an associative algebra). The
coproduct in U is related to the pointwise product of functions f(g) in F(G) by

(A, f1 f2) = (∆(A), f1 ⊗ f2) =
∑
(A)

(A1, f1)(A2, f2) (3.3)

where we are using Sweedler’s notation13

∆(A) =
∑
(A)

A1 ⊗A2 for A ∈ U (⇒ A1, A2 ∈ U) . (3.4)

Any element of CG is, by definition a finite linear combination of elements of G
with complex coefficients:

A =
∑
g

a(g) g ⇒ (A, f) =
∑
g

a(g) f(g) (∈ C) . (3.5)

13It is a self-explaining notation introduced by Moss E. Sweedler in his book Hopf Algebras
(W.A. Benjamin, N.Y. 1969) of the pre-quantum groups’ era.

17



Applying this to the left hand side of (3.3) with (f1 f2)(g) := f1(g) f2(g), and
comparing the result with the right hand side we deduce

∆ g = g ⊗ g ⇒ ∆A =
∑
g

a(g) g ⊗ g . (3.6)

Both CG and F(G) are unital associative algebras; in other words, they have
unit elements: the group unit 1I ∈ G ⊂ CG and the constant function f0(g) =
1 ∈ F(G). This allows to define a counit in both CG and F , setting

ε(A) = (A, 1) =
∑
g

a(g) , i.e. ε(g) = 1 ∈ C , εF (f) = (1I, f) = f(1I) . (3.7)

If G is a finite group we can define in this simple algebraic manner a coproduct
in F(G) as well, setting

∆F f(g1, g2) = f(g1 g2) . (3.8)

Remark 3.2. Note that for a finite group G the tensor product F(G)⊗F(G) is
naturally isomorphic to the space F(G×G) of functions of two group variables.
For G infinite the tensor square of F(G) is a proper subset of F(G×G).

Exercise 3.1. Verify that the coproducts ∆ (3.6) and ∆F (3.8) and the counits
ε and εF (3.7) satisfy the coalgebra conditions (3.1) and (3.2).

We may view CG and F(G) as Hopf algebras by introducing in each of these
bialgebras the antipode S:

S : CG→ CG , Sg = g−1 ; SF : F(G) → F(G) , (SF f)(g) = f(g−1) . (3.9)

In both cases S is defined as a linear antihomomorphism of algebra: S(A1A2) =
S(A2)S(A1).

To end up with our classical examples of a Hopf algebra we display ∆, ε,
and S for the UEA U(G) of a Lie algebra G defining them for elements of G:

∆(X) = X ⊗ 1I + 1I⊗X , ε(X) = 0 , S(X) = −X , ∀X ∈ G . (3.10)

We observe that the (associative) algebras CG and U(G) are, in general, non-
commutative but the coproduct in both case equals the permuted (or opposite)
one

∆′(X) :=
∑
(x)

x2 ⊗ x1 =
∑
x

x1 ⊗ x2 = ∆(X) . (3.11)

We say in such a case that the algebra U is co-commutative. By contrast, the
algebra F(G) dual to CG is commutative but not co-commutative. Here is,
finally, the abstract definition of a Hopf algebra (over an arbitrary field K) in
which one demands neither commutativity nor co-commutativity.
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Definition 3.1. An associative unital algebra B with multiplication m and unit
1I is called a bialgebra if there are unital algebra homomorphisms

∆ : B → B ⊗ B , ∆(X · Y ) = ∆(X)∆(Y )

ε : B → C , ε(XY ) = ε(X) ε(Y ) ; ∆(1I) = 1I⊗ 1I , ε(1I) = 1 ∈ C (3.12)

such that ∆ and ε satisfy the coalgebra conditions (3.1), (3.2) and compatibility
between multiplication and co-multiplication:

m⊗mP23 ∆(X)⊗∆(Y ) = ∆(X · Y ) , (3.13)

where P23 stands for the permutation of the factors 2 and 3 in the 4-fold tensor
product. In more detail, using (3.4),

m⊗mP23

∑
(X,Y )

(x1 ⊗ x2 ⊗ y1 ⊗ y2) =
∑

(X·Y )

x1 · y1 ⊗ x2 · y2 = ∆(X · Y )

(where we identify x · y with m(x⊗ y)).

Definition 3.2. A Hopf algebra H is a bialgebra (over C) equipped with a
C-linear antihomomorphism of algebras S : H → H, the antipode, such that the
following diagram commutes:

H ⊗H
S⊗id // H ⊗H

m

##GG
GG

GG
GG

G

H

∆

;;wwwwwwwww ε //

∆ ##GG
GG

GG
GG

G C 1 // H

H ⊗H
id⊗S

// H ⊗H

m

;;wwwwwwwww

(3.14)

Using the notation (3.4) we can translate the content of (3.14) into the relation∑
(X)

S(x1) · x2 =
∑
(X)

x1 · S(x2) = ε(X)1I ∀X ∈ H . (3.15)
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4 Quantum universal enveloping algebras: the
Uq(Ar)-case

An important example, in which neither commutativity nor co-commutativity
holds, is given by the quantum universal enveloping algebra (QUEA) Uq(G) of a
(semi)simple Lie algebra G. We shall spell out its definition for G = Ar = s`r+1

(the rank r Lie algebra of the special linear group of (r+ 1)× (r+ 1) matrices)
and (complex) parameter q 6= 0,±1. It combines the properties of CG and
Uq(G) being generated by a mixture of group like and Lie algebra like elements.

The QUEA Uq(Ar) has r group-like generators Ki (and their inverses K−1
i )

which correspond to the Cartan torus and 2r Lie algebra-like ones (raising and
lowering operators) Ei and Fi corresponding to simple roots. They obey the
following commutation relations (CR):

KiEj K
−1
i = q(αi|αj)Ej , Ki Fj K

−1
i = q−(αi|αj) Fj ,

[Ei, Fj ] = δij
Ki −K−1

i

q − q−1
, i, j = 1, . . . , r , (4.1)

and the Serre relations (that are only non-trivial for r > 1):

E
(2)
i Ei+1 + Ei+1E

(2)
i = EiEi+1Ei , EiE

(2)
i+1 + E

(2)
i+1Ei = Ei+1EiEi+1 ,

F
(2)
i Fi+1 + Fi+1 F

(2)
i = Fi Fi+1 Fi , Fi F

(2)
i+1 + F

(2)
i+1 Fi = Fi+1 Fi Fi+1 ,

for
X(n) =

1
[n]!

Xn ; [Ei, Ej ] = 0 = [Fi, Fj ] for |i− j| > 1 . (4.2)

Here (in the first relation (4.1)) αi are the simple roots, normalized to have
square 2, so that ((αi | αj)) is the Ar Cartan14 matrix :

(αi | αi) = 2 , (αi | αi+1) = −1 , (αi | αj) = 0 , for |i− j| > 1 . (4.3)

It is simple to display the “classical” (q → 1) limit of these relations. Setting

Ki = qHi (K−1
i = q−Hi) , i = 1, . . . , r (4.4)

we find, at least formally, that the first two CR (4.1) are equivalent to the
classical ones

[Hi, Ej ] = (αi | αj)Ej , [Hi, Fj ] = −(αi | αj)Fj ,

while the third one has a classical limit:

[Ei, Fj ] = [Hi] δij (→ Hi δij for q → 1) (4.5)

14The French mathematician Élie Joseph Cartan (1869-1951) has introduced the general
notion of antisymmetric differential forms (1894-1904) and the theory of spinors (1913) besides
his major contribution to Lie algebras (his doctoral thesis of 1894) in which he completed
Killing’s work on the classification of semi-simple Lie algebras over the complex field.
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where we have extended the notation [n] (2.15) for a q-number to operator valued
entries (n → Hi). Note however, that Eq. (4.4) is not algebraic (it involves
the exponential function). That’s why purists only use K(±1)

i in dealing with
Uq(Ar).

We define the coproduct, the counit, and the antipode on the generators of
Uq(Ar) as follows

∆(Ki) = Ki ⊗Ki , ∆(Ei) = Ei ⊗Ki + 1I⊗ Ei

∆(Fi) = Fi ⊗ 1I +K−1
i ⊗ Fi , i = 1, . . . , r ; (4.6)

ε(Ki) = 1 , ε(Ei) = ε(Fi) = 0 ; (4.7)

S(Ei) = −EiK−1
i , S(Fi) = −Ki Fi , S(Ki) = K−1

i . (4.8)

Exercise 4.1. Verify (2.25) which can also be written in the form

m(1⊗ S) ∆(X) = m(S ⊗ 1) ∆(X) = ε(X) 1I (4.9)

for the generators of Uq(Ar).

Exercise 4.2. Verify (on the generators) the relation (ε ⊗ 1) ∆(X) = (1 ⊗ ε)
∆(X) = X (3.15).

Remark 4.1. It helps understanding both the origin and the meaning of quantum
groups to observe that it is the coproduct that determines the deformation of the
Lie algebra structure. To this end we note that the fundamental (undeformed)
representation of Ar, given in terms of the Weyl matrices

(eij)k` = δki δj` (⇒ eij ek` = δjk ei`) i, j, k, ` = 1, . . . , r + 1 , (4.10)

by
Ei = ei i+1 , Fi = ei+1 i , Hi = eii − ei+1 i+1 , (4.11)

is also a representation of Uq(Ar); in particular,

[Ei, Fj ] = δij [Hi] = δij Hi for Hi = eii − ei+1 i+1 . (4.12)

More generally, if H is a hermitian matrix with eigenvalues 0,±1 then [H] = H.
Furthermore, the Serre relations (4.2) (which involve the deformation parame-
ter q) are also satisfied by the q-independent matrices of the defining (r + 1)-
dimensional representation of Ar since each term is separately equal to zero:

E2
i = 0 = F 2

i = EiEi+1Ei = Fi Fi+1 Fi

for Ei = ei i+1 , Fi = ei+1 i (= E∗i ) . (4.13)
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It is the non-cocommutative coproduct which replaces the symmetric tensor
product of representations, that yields modified higher dimensional represen-
tations and forces us to use the q-deformed CR (4.1) (4.2). (As we shall see
below the coproduct is also directly related to the appearance of braid group
representations in the q-deformed Schur-Weyl duality.)

It is instructive to see how 2- and higher point Uq(Ar) invariants appear in
tensor products of finite dimensional representations. We shall work out the
solution to this problem for the simplest case of Uq(A1) ≡ Uq.

For generic q (q 6= 0, q not a root of unity) the theory of finite dimensional
representations of Uq is essentially the same as that of the undeformed algebra
A1 ' su(2). The irreducible representations (IRs) of Uq are again labeled by
the isospin I, or by the dimension p := 2I + 1. An explicit realization of the
Uq module Fp is given in terms of the weight basis {qαpm | p,m〉} for any choice
of the (integer) exponents αpm. Instead of the q-deformed Casimir operator
C

(q)
2 := EF + FE + [2]

[
H
2

]2
it is more convenient to use its rescaled version:

C = (q − q−1)2 C(q)
2 + [2]:

C := λ2EF + qH−1 + q1−H = λ2FE + qH+1 + q−H−1 , λ := q − q−1 (4.14)

we have, as part of the definition of the weight basis

(C − qp − q−p) qαpm | p,m〉 = 0 = (qH − q2m−p+1) qαpm | p,m〉 . (4.15)

Exercise 4.3. Check that (4.14) (4.15) imply

(EF−[m][p−m]) qαpm | p,m〉 = 0 = (FE−[m+1][p−m−1]) qαpm | p,m〉 (4.16)

(independent of the choice of αpm).

We shall single out the (real) canonical basis {| p,m〉} by the (αpm-dependent)
relations

E | p,m〉 = [p−m− 1] | p,m+ 1〉 , F | p,m〉 = [m] | p,m− 1〉 . (4.17)

It follows, in particular, that Fp has both a lowest and a highest weight vector,
| p, 0〉 and | p, p− 1〉, a property that is independent of the choice of αpm:

E qαp p−1 | p, p− 1〉 = 0 = F qαp0 | p, 0〉 . (4.18)

Another remarkable weight basis, that will be used shortly, is what we shall
call an E-basis, {| p,m)}, for which

E | p,m) = (p−m−1)+ | p,m+1) , F | p,m) = q2−p(m)+ | p,m−1) ; (4.19)

here the (complex for q q̄ = 1) q-numbers (n)+ and (n)− (that will appear later)
are defined by

(n)+ := [n] qn−1 = 1 + q2 + · · ·+ q2n−2 =
1− q2n

1− q2
, (4.20)
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(n)− = [n] q1−n = 1 + q−2 + · · ·+ q2−2n .

Exercise 4.4. Verify that the vectors

| p,m) = qαp,m | p,m〉 , with αpm =
m(m+ 3)

2
−mp (4.21)

satisfy (4.19) as a consequence of (4.17).

The E-basis allows to introduce Uq coherent states [FST] which are vector
valued polynomials of degree p− 1 = 2I in a formal variable u:

ΦI(u) :=
2I∑
m=0

(
2I
m

)
+

um | 2I + 1,m) ,
(
n
m

)
+

=
(n)+!

(m)+! (n−m)+!
(4.22)

((0)+! = (1)+! = 1, (n+ 1)+! = (n)+! (n+ 1)+).

Exercise 4.5. Verify the relation

(E −D+)ΦI(u) = 0 for (D± f)(u) =
f(q±2 u)− f(u)

(q±2 − 1)u
. (4.23)

(Hint : use the relation D± u
m = (m)± um−1.)

A function J (I)(u1, . . . , un) on the n-fold tensor product of ΦI(u)’s is Uq
invariant if it is homogeneous – as a consequence of K(= qH) invariance,

K : q−2nI J (I)(q2 u1, . . . , q
2 un) = J (I)(u1, u2, . . . , un) , (4.24)

and E- and F -invariant:

E :
n∑
k=1

Dk+ J
(I)(u1, . . . , uk, q

2 uk+1, . . . , q
2 un) q2I(k−n) = 0 (4.25)

F :
n∑
k=1

u2I+2
k q2I(k−1)Dk−(u−2I

k J (I)(q−2 u1, . . . , q
−2 uk−1, uk, . . . , un)) = 0 .

(4.26)

Exercise 4.6. Prove using just (4.24) and (4.25) that the general 2-point invariant
is proportional to

J (I)(u1, u2) = w2I

(
u1, u2;

1
2

)
=

2I−1∏
n=0

(qI−n u1 − qn−I u2) (4.27)

= q−I
2I∑
m=0

[
2I
m

]
(q u1)m (−u2)2I−m ,
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where

wk(u, v; ρ) = wk(qρ u, q−ρ v) =
k−1∏
ν=0

(
qρ+

k−1
2 −ν u− qν−ρ−

k−1
2 v

)
,

wk(x, y)(= wk(x, y; 0)) :=
k∑

n=0

[
k
n

]
xn(−y)k−n =

k−1∏
ν=0

(x− qk−1−2ν y) . (4.28)

Proposition 4.1. The space of 4-point Uq-invariants in the tensor product F⊗4
p

is p-dimensional and is spanned by

J
(I)
λ (u1, . . . , u4) = w2I−λ

(
u1, u2;

λ+ 1
2

)
w2I−λ

(
u3, u4;

λ+ 1
2

)
wλ

(
u2, u3; I −

λ− 1
2

)
wλ

(
u1, u4;

λ+ 1
2

− I

)
λ = 0, 1, . . . , 2I(= p− 1) . (4.29)

(For a proof see Appendix B. A more general result is established in [FST].)

Clearly, the QUEA Uq(Ar) is neither commutative nor co-commutative. The
violation of co-commutativity however is not arbitrary: Uq(Ar) is an almost co-
commutative quasi-triangular Hopf algebra.

A Hopf algebraH is called almost co-commutative if there exists an invertible
element R of H⊗H which intertwines the coproduct ∆ (3.2) with its permuted
one, ∆′ (3.13)

R∆(X) = ∆′(X)R , ∀X ∈ H . (4.30)

It is called quasi-triangular if R satisfies, in addition

(∆⊗ 1I)(R) = R13R23 , (1I⊗∆)(R) = R13R12 . (4.31)

Here we are using Faddeev’s notation (see, e.g., [FRT]) Rij for the action of
R on the triple tensor product H ⊗ H ⊗ H: define the algebra morphisms
φij : H ⊗H → H ⊗H ⊗H (i, j = 1, 2, 3, i 6= j) by

φ12(a⊗ b) = a⊗ b⊗ 1 , φ23(a⊗ b) = 1⊗ a⊗ b ,

φ13(a⊗ b) = a⊗ 1⊗ b ; then Rij := φij R . (4.32)

Applying ε ⊗ 1I to both sides of the first equation (4.31) and 1I ⊗ ε to the
second one and using Eq. (3.2) we find

(ε⊗ 1)R = (1⊗ ε)R = 1 . (4.33)

Exercise 4.7. Prove, using quasi-triangularity, the relations

R−1 = (S ⊗ 1)R , R = (1⊗ S)R−1 = (S ⊗ S)R . (4.34)
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The quasi-triangularity further implies the Yang-Baxter equation (YBE) for
the R matrix:

R12R13R23 = R23R13R12 . (4.35)

A natural construction of the R-matrix, which allows to verify the above
properties, requires yet another concept, the quantum double, and is given in
Section 5 below. Here we shall reproduce instead a simple example of a space of
non-commutative matrices which allows to understand the meaning of the YBE
(4.35) and its connection to the basic relation among braid group generators.

Let T = (Tαβ , α, β = 1, . . . , n) be an n × n matrix whose entries do not
commute but obey the RTT relation (see [FRT])

R12 T1 T2 = T2 T1R12 where T1 = T ⊗ 1I , T2 = 1I⊗ T . (4.36)

Natural examples of such T -matrices are provided by the Borel components of
Uq(Ar) (see Section 5). We then apply both sides of (4.35) to the triple product
T1 T2 T3:

R12R13R23 T1 T2 T3 = R12R13 T1 T3 T2R23 =
= R12 T3 T1 T2R13R23 = T3 T2 T1R12R13R23 ;

R23R13R12 T1 T2 T3 = R23R13 T2 T1 T3R12 =
= R23 T2 T3 T1R13R12 = T3 T2 T1R23R13R12 , (4.37)

where we have used the relations R23 T1 = T1R23, R13 T2 = T2R13, R12 T3 =
T3R12. Thus both sides of (4.35) when commuted with T1 T2 T3 intertwine it
with T3 T2 T1, permuting the Ti in different order. Eq. (4.35) thus reflects the
associativity of multiplication (of the elements) of T -matrices. (More on this
interpretation of the YBE the reader will find in [Ma].)

Eq. (4.35) reminds us the Artin braid relation (2.1). To obtain the exact
relation between the two we multiply both sides of (4.35) by the product of
permutations P12 P23 P12 = P13 = P23 P12 P23 and set

Pi i+1Ri i+1 = R̂i i+1 (= bi) . (4.38)

This gives for the left hand side of (4.35)

P23 P12(P23R12 P23)(P23R13 P23) R̂23 = P23 P12R13 P
2
12R12 R̂23 =

= P23R23 R̂12 R̂23 = R̂23 R̂12 R̂23 ,

where we have used P23R13 P23 = R12 etc. Similarly, the right hand side of
(4.35) is reduced to R̂12 R̂23 R̂12. Thus the YBE (4.15) is equivalent to the
braid relation

R̂12 R̂23 R̂12 = R̂23 R̂12 R̂23 (4.39)

for R̂i i+1 given by (4.38).
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Appendix B. General form of n-point Uq-invariants

We shall construct in this Appendix a privileged basis of n-point (in particu-
lar, 4-point) Uq-invariants – something peculiar for the q-deformed case. We
shall provide on the way the main ingredients of the proof of Proposition 4.1.
We first comment on the meaning of the Uq-invariants (4.27)–(4.29) comparing
them with the corresponding SU(2) invariants. Then we discuss the role of the
different Uq-invariance conditions (4.24)–(4.26) – proving on the way Proposi-
tion 4.1. Finally, we comment on the properties which distinguish the basis
(4.29) of 4-point invariants. The Appendix may be viewed as a pedagogical
introduction to the paper [FST] which gives a system of n-point Uq-invariants
in the tensor product of irreducible Uq-modules Fpi

corresponding to different
isospins Ii (and dimensions pi = 2Ii + 1) (see Proposition B.1 below).

The basic 2-point invariant with respect to SU(2) is the skew symmetric
tensor εAB = −εBA (A,B = 1, 2). If we introduce the undeformed coherent
states ΦI(ζ) (obtained from (4.22) in the limit q → 1 – cf. the book [P]), it
is given (for I = 1

2 ) by the difference ζ12 = ζ1 − ζ2 of formal variables. Its
generalization to higher isospins I is nothing but the power ζ2I

12 . The product
J (I)(u1, u2) (4.27) is a deformation of this simple monomial and can be obtained
as follows.

K invariance (4.24) (for generic q) implies that J (I)(u1, u2) is a homogeneous
polynomial in u1, u2 of degree 2I:

J (I)(u1, u2) =
2I∑
m=0

aIm u
m
1 (−u2)2I−m .

Applying to it the condition (4.25) of E invariance we find the recursive relation

(m)+ q2I−2m aIm = (2I −m+ 1)+ aIm−1 ⇔ aIm =
[2I −m+ 1]

[m]
q aIm−1 .

Solving the recurrence for a0 = q−I we obtain the right hand side of (4.27). In
verifying F -invariance of the 2-point function so obtained one uses the identity
(−n)− = −q2(n)+.

A 3-point invariant in the tensor product of three Uq-modules I1, I2, I3 of
isospins I1, I2, I3 only exists if I3 enters the tensor product expansion of I1⊗I2,

|I1 − I2| ≤ I3 ≤ I1 + I2 , I1 + I2 − I3 ∈ N , (B.1)

and then it is unique (up to normalization). Similar existence conditions hold
for n-point invariants which may depend on at most n−3 (discrete) parameters.
In particular, there are p = 2I + 1 4-point invariants Jλ, λ = 0, 1, . . . , 2I in the
4-fold tensor product I⊗4(= F⊗4

p ). The expressions (4.29) clearly obey the
homogeneity condition (4.24). In order to verify that they are also E-invariant
one uses the relations

D1+ wk(qρ u1, q
−ρ u2) = qρ+

k−1
2 [k]wk−1(qρ+

1
2 u1, q

−ρ− 1
2 u2)
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D2+ wk(qρ u1, q
−ρ u2) = −q−ρ−

k−1
2 [k]wk−1(qρ−

1
2 u1, q

1
2−ρ u2) . (B.2)

The following more general result is established in [FST].

Proposition B.1. There exists a basis J (I1,...,In)
{µij} of Uq-invariant monomials

in the n-fold tensor product I1 ⊗ I2 ⊗ . . .⊗ In,

J
(I1,...,In)
{µij} =

∏
1≤i<j≤n

wij , wij = wkij
(ui, uj ; ρij) (B.3)

where wk(u, v; ρ) is defined by (4.28). The parameters kij(= kji) and ρij have
to satisfy (as a consequence of the invariance of (B.3)) the following conditions:∑

j

kij = 2 Ii (kii = 0) , (B.4)

kij k`m = 0 for i < ` < j < m (or ` < i < m < j) ; (B.5)

if kij > 0, then

ρij +
1
2
kij =

j∑
s=i+1

Is −
∑

i≤`<m≤j
(`,m)6=(i,j)

k`m , 1 ≤ i < j ≤ n . (B.6)

There are n−3 (integer valued) parameters among the kij (0 ≤ kij ≤ min(2Ii, 2Ij))
which label the general solution of (B.3)–(B.6).

Exercise B.1. For n = 4, I1 = I2 = I3 = I4 =: I set k14 = λ and determine the
remaining kij that reproduce the solution (4.29).

We observe that the selection rule (B.5) has no counterpart in the unde-
formed case. There are, so to speak, fewer Uq- than SU(2)-invariants. The
basis of invariant monomials expressed as products of elementary 2-point in-
variants is essentially unique. The invariants (4.29) (in contrast to other choices
used in the literature) are well defined and linearly independent also for q a root
of unity.
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5 Quantum Gauss decomposition and the Drin-
feld double

Every element g of a dense open neighbourhood of the group unit of the general
linear group GL(n,C) admits a Gauss decomposition g = b ·f , where b is a lower
triangular matrix while f is upper triangular with units on the diagonal. This
corresponds to splitting of the Lie algebra into a Borel subalgebra generated
(in the s`n case) by Ei and Hi and a nilpotent one, generated by Fi. In the
q-deformed case, we see that such a splitting does not lead to Hopf subalgebras,
since ∆(Fi) (4.4) also involves K−1

i (= q−Hi). A way out is to include the
diagonal (Cartan) elements in both parts of the decomposition and then impose
a relation among them. This allows to introduce the notion of quantum double
and yields a streamlined construction of a universal quasi-triangular R-matrix.
We shall outline this construction for the rank one case, Uq(A1) (the QUEA
generated by K,E,F ).

We introduce a pair of quantum Borel15 subalgebras Uq b± of two generators
each: (k,E) and k̃, F , such that k k̃ = K satisfying

k E = q E k , F k̃ = q k̃ F (5.1)

and the mixed relations

[k, k̃] = 0 , F k = q k F , [E,F ] =
k2 − k̃−2

q − q−1
. (5.2)

(Ultimately, we shall set k = k̃.)
Introduce the triangular matrices

M− =
(

k 0
λ k−1E k−1

)
, M+ =

(
k̃−1 −λF k̃
0 k̃

)
, λ = q − q−1 . (5.3)

Exercise 5.1. Verify that the CR (5.1) are equivalent to the “RTT relations”

R12 (M±)1 (M±)2 = (M±)2 (M±1)R12 (5.4)

where R is expressed in terms of the Weyl matrices, (eij)αβ = δαi δjβ , as follows:

R = q
1
2 (e11 ⊗ e11 + e22 ⊗ e22) + q−

1
2 (e11 ⊗ e22 + e22 ⊗ e11 + λ e21 ⊗ e12)

= q−
1
2


q 0 0 0
0 1 0 0
0 λ 1 0
0 0 0 q

 . (5.5)

15The Swiss mathematician Armand Borel (1923-2003) is one of the creators of the theory
of linear algebraic groups.
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The coproduct in each Uq b± defined by

(∆Mε)αβ = Mα
ε σ ⊗Mσ

ε β , ε = ± , (5.6)

is equivalent to

∆(k) = k ⊗ k , ∆(E) = E ⊗ k2 + 1⊗ E ,

∆(k̃) = k̃ ⊗ k̃ , ∆(F ) = F ⊗ 1 + k̃−2 ⊗ F . (5.7)

Similarly, the counit and the antipode acquire the form they have in the group
algebra (Section 3) when expressed in terms of the matrices (5.3):

ε(Mα
ε β) = δαβ , S(Mα

ε β) = (M−1
ε )αβ . (5.8)

The introduction of the pair of Borel Hopf algebras, Uq b±, is justified by
the following two facts.

(i) There exists a unique bilinear pairing

〈Y,X〉 (∈ C for X ∈ Uq b− , Y ∈ Uq b+)

such that
〈Y Y ′, X〉 = 〈Y ⊗ Y ′,∆(X)〉 =

∑
(X)

〈Y,X1〉 〈Y ′, X2〉

for
Y, Y ′ ∈ Uq b+ , ∆(X) =

∑
(X)

X1 ⊗X2 ∈ Uq b− ⊗ Uq b− , (5.9)

〈∆(Y ), X ⊗X ′〉 =
∑
(Y )

〈Y1, X〉 〈Y2, X
′〉 = 〈Y,X ′X〉 (5.10)

〈1I, X〉 = ε(X) , 〈S(Y ), X〉 = 〈Y, S−1(X)〉 , ε(Y ) = 〈Y, 1I〉 . (5.11)

It is given by

〈k̃m Fµ, enν〉 = δµν
[µ]!
λµ

q
mn−µ(µ−1)

2 (5.12)

where {enν} is a Poincaré16-Birkhoff-Witt17 (PBW) basis in Uq b−:

enν := knEν . (5.13)

16Jules-Henri Poincaré (1854-1912), more than anybody else may be called the prophet
of 20th century mathematics. He is the founder of topology (called by him analysis situs),
introducing, in particular, the concept of fundamental group, used in Section 2. He pre-
ceded Einstein in analyzing the relativity of time and simultaneity. Poincaré stated the PBW
theorem in 1900.

17Garrett Birkhoff (1911-1996) son of the Harvard mathematician George David Birkhoff
(1884-1944) is known for his contributions to abstract algebra. He and the German math-
ematician Ernst Witt (1911-1991) published independent proofs of Poincaré’s statement in
1937.
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The mixed relations (5.2) are recovered provided the product XY is constrained
by

XY (·) =
∑
(X)

Y (S−1(X3) ·X1)X2 (5.14)

for

∆(2)(X) = (1⊗∆) ∆(X) = (∆⊗ 1) ∆(X) =
∑
(X)

X1 ⊗X2 ⊗X3 . (5.15)

The dot (·) in (5.14) stands for the argument (say Z ∈ Uq b−) of the functional
Y (Z) ≡ 〈Y, Z〉.

(ii) The universal R-matrix of the quantum double (Uq b+, Uq b−) is given by

R =
∑
n,ν

enν ⊗ fnν for 〈fmµ, enν〉 = δmn δµν . (5.16)

(In the case of the restricted QUEA Ūq for qk = −1 – see Section 12 – the
double construction has been worked out in [FGST] and [FHT].)

Remark 5.1. The matrices M±1
± (5.3) provide the Gauss decomposition of the

monodromy matrix M appearing in the context of the su(2) current algebra
model (Eq. (9.11))

M = q−
3
2 M+M

−1
− for q = e−

iπ
h (5.17)

(see Section 9 below; the choice of the phase factor is dictated by the result of
Exercise 9.4).

The double cover Dq of Uq(A1) is obtained from the above quantum double
by setting

k = k̃ (k2 = K) . (5.18)

Its CR are then obtained from (5.1) and (5.2). Its significance stems from the
fact that the universal R-matrix (5.16) of Uq belongs, in fact, to (a completion
of) Dq ⊗Dq. It plays an important role in the physically interesting case of q a
root of unity – see Section 11 below.

Writing the Drinfeld-Jimbo universal R-matrix requires introducing H (in-
stead ofK) and using transcendental functions, thus leaving the algebraic frame-
work. We have (see [CP])

R = q
1
2H⊗H

∞∑
ν=0

q(
ν
2 ) λν

[ν]!
Eν ⊗ F ν

((ν
2

)
=
ν(ν − 1)

2

)
. (5.19)

It turns out that an expression of the type (5.16)

R =
∑
σ

eσ ⊗ fσ , eσ ∈ Uq b− , fσ ∈ Uq b+ , 〈fρ, eσ〉 = δρσ (5.20)
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using a pair of dual bases of the quantum double is easier to handle (than (5.19))
for extracting properties of the R-matrix – even without knowing the explicit
form of the basis {eσ} (a formula like (5.13)) of Uq b−. To give an example, we
shall establish the quasi-triangularity relation (∆⊗ 1I)R = R13R23 (4.31) for R
given by (5.20).

As {eσ} form a basis in the Hopf algebra Uq b− one can expand the coproduct
of eσ into tensor products eρ ⊗ eτ and use the first equation (5.9) to determine
the coefficients:

∆(eσ) =
∑
ρ,τ

gρτσ eρ ⊗ eτ , gρτσ = 〈fρ · fτ , eσ〉 . (5.21)

Inserting in the left side of the above quasi-triangularity relation we find

(∆⊗ 1)R =
∑
σ,ρ,τ

gρτσ eρ ⊗ eτ ⊗ fσ =
∑
ρ,τ

eρ ⊗ eτ ⊗ fρ · fτ = R13R23 (5.22)

where we have used the relation∑
σ

gρτσ fσ = fρ fτ (5.23)

which follows from (5.21) and the last equation (5.20). The relation
(1⊗∆)R = R13R12 is established similarly.

Remark18 5.2. According to [CP] (p. 123) if (Uq, R) is a quasi-triangular Hopf
algebra so is (Uq, R̃) for R̃ = R−1

21 . The universal R̃-matrix can be obtained
from the “transposed quantum double” (Uq b−, Uq b+) by the same procedure
which allowed us to construct R from (Uq b+, Uq b−). The result is

R̃ =
∞∑
ν=0

q−( ν
2 )(−λ)ν

[ν]!
F ν ⊗ Eν q−

1
2H⊗H . (5.24)

We shall see in Remark 12.1 below that the 4 × 4 matrix (5.5) is related to a
finite dimensional counterpart of R̃(q−1).

18I owe the (closely related) Remarks 5.2 and 12.1 to Ludmil Hadjiivanov.
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6 Conformally invariant QFT in two and higher
dimensions

Historically quantum field theory (QFT) arose (in the late 1920s) in an at-
tempt to unify quantum mechanics with special relativity using the canonical
Lagrangian (or Hamiltonian) approach and perturbation theory19. We shall
base our treatment, instead, on the axiomatic framework developed in the sec-
ond half of 20th century (see, e.g. [SW] [Jo] [BLOT] [H] [BH]) with the dual
aim (i) to separate sense from nonsense in the formal manipulations with di-
vergences and (ii) to clarify the basic principles of relativistic local quantum
theory and their general implications. Adding the requirement of conformal in-
variance to the physically justified Wightman axioms [SW] (for a summary – see
Appendix C) makes for the first time the axiomatic approach constructive (for
surveys of axiomatic conformal field theory (CFT) in two and four dimensions
– see [TMP] [FST] and [T07]).

Let us first recall the concept of conformal transformations and conformal
invariance in any number D of space-time dimensions.

A transformation g : x→ y of an open set O of space-time into another open
set, gO is said to be conformal if the infinitesimal square interval dx2 gets just
multiplied by a (positive) factor: if g : x (∈ O) → y(x, g)(∈ gO) then

dy2(x, g) =
dx2

ω2(x, g)
, ω(x, g) ∈ R , ω(x, g) 6= 0 for x ∈ O . (6.1)

Thus a conformal transformation is a generalization of an isometry (that would
correspond to ω = 1). To fix the ideas we shall consider conformal transforma-
tions of Minkowski20 space M , setting

dx2 = dx2 − (dx0)2 , dx2 =
D−1∑
i=1

(dxi)2 . (6.2)

One should, however, keep in mind that our discussion applies equally well to
all conformally flat metrics (such that ds2 = dx2

Ω2(x) ). In particular, all spaces of
constant curvature – the positive curvature de Sitter21 space and the negative

19I am unable to choose a single “best” textbook on QFT. An authoritative 3-volume
treatise is Weinberg’s [We]. For a selection of original papers on quantum electrodynamics
reflecting the development up to the 1950s – see [Sc]; a clear and concise exposition of later
developments in renormalization theory including the use of Becchi-Rouet-Stora cohomology
is contained in [PS]. Different in style and purpose is the (often entertaining) book [BM]
which surveys the inter-relations between gauge theory and modern mathematics.

20Hermann Minkowski (1864-1909) introduced the 4-dimensional space-time (in 1908 in
Göttingen), thus completing the special theory of relativity of Hendrik Antoon Lorentz (1853-
1928, Nobel Prize in Physics, 1902), Henri Poincaré and Albert Einstein (1879-1955, Nobel
Prize in Physics, 1921).

21The Dutch mathematician, physicist and astronomer Willem de Sitter (1872-1934), who
was interested in the concept of inertia in general relativity, introduced (as an alternative to
Einstein’s static universe) his constant curvature space (with a zero mass density) with a pos-
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curvature anti de Sitter space (on top of the zero curvature Minkowski space) –
are conformally flat. The assumption that the choice of metric within a given
conformal class should not affect the physics in a CFT thus forces us to adopt
a more general point of view on QFT.

Typically conformal transformations develop singularities: they cannot be
defined on the whole of M . That is the reason we speak of open (sub)sets of
M in the definition (6.1). By contrast, the conformal Killing22 vector Kµ(x)(=
Kµ(x, g)) corresponding to an infinitesimal conformal transformation

yµ(x) = xµ + εKµ(x) +O(ε2) , ω(x) = 1− ε f(x) +O(ε2) (6.3)

is well defined in M and satisfies the conformal Killing equation

∂µKν + ∂ν Kµ = 2fηµν (ηµν = diag (−,+ + . . .)) . (6.4)

Exercise 6.1. Writing dx2 = ηµν dx
µ dxν , dy2 = ηµν dy

µ dyν and inserting (6.3)
in (6.1) derive (6.4) by equating the terms of order ε.

Exercise 6.2. Demonstrate, using (6.4), that

∂ ·K(≡ ∂µK
µ) = Df , (D − 2) ∂λ ∂µ f = 0 . (6.5)

Use the result to derive the following

Proposition 6.1. (Liouville23 theorem) The general form of the conformal
Killing vector for D > 2 is given by

Kµ(x) = aµ + αxµ + λµν x
ν − 2(c · x)xµ + x2 cµ , λµν = −λνµ . (6.6)

Exercise 6.3. Verify that the conformal group C of M is spanned by Poincaré
transformations yµ = Λµν x

ν +aµ, uniform dilation yµ = ρ xµ, ρ > 0, and special

itive cosmological constant in 1917. Presently, it is believed that our universe is approaching
a de Sitter space-time. Einstein and de Sitter wrote a joint paper in 1932 on what came to
be called dark matter (whose presence is only detected by its gravitational field).

22Wilhelm Karl Joseph Killing (1847-1923), a student of Weierstrass and Kummer in Berlin,
became a professor at the seminary college in Braumsberg. He invented Lie algebras, indepen-
dently of Sophus Lie, around 1880. In 1888-1890 Killing classified (essentially) the complex
simple Lie algebras, inventing the notions of a Cartan subalgebra and a Cartan matrix. He
introduced the root systems and discovered the exceptional Lie algebra G2 (in 1887). For a
popular article about Killing and his work on Lie algebras, see A. John Coleman, The greatest
mathematical paper of all time, The Mathematical Intelligencer 11:3 (1889) 29-38; see also,
T. Hawkins, Wilhelm Killing and the structure of Lie algebras, Archive for History of Exact
Science 26 (1982) 126-192.

23Joseph Liouville (1809-1882) published his theorem (for 3-dimensional Euclidean space)
in a Note to the 5th edition of Gaspard Monge (1746-1818), Application de l’analyse à la
géométrie (Paris, 1850) entitled “Extension au cas des trois dimensions de la question du
tracé géographique” (pp. 609-616).
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conformal transformations which can be defined as translations Tc : x → x+ c
sandwitched between two conformal inversions R : x→ x

x2 :

y(x, c) = RTcRx =
( x
x2

+ c
)[( x

x2
+ c
)2
]−1

=
x+ cx2

ω(x, c)
,

ω(x, c) = 1 + 2c · x+ c2x2 . (6.7)

Clearly, the special conformal transformations (6.7) are singular (for c 6= 0)
on the cone ω(x, c) = 0 (that degenerates into a hyperplane for c2 = 0). One can
define, following Dirac24 [D36], the conformal compactification of space-time M̄
as a projective quadric in D + 2 dimensions:

M̄ = Q/R∗ ' SD−1×S1/±1 , Q =

{
~ξ ∈ RD,2 ; ~ξ 2 =

D∑
α=1

ξ2α − ξ20 − ξ2−1 = 0

}
,

R∗ = R\{0} . (6.8)

M is embedded in a dense open set of M̄ in which κ := ξD+ξ−1(= ξD−ξ−1) 6= 0:

xµ =
1
κ
ξµ

(
x2 =

ξ−1 − ξD

κ

)
.

The quadricQ (6.8) is, clearly, invariant under the full orthogonal groupO(D, 2).
The reflection (−1I) : ~ξ → −~ξ acts however as the identity transformation on
Q/R∗ so it is only the quotient group O(D, 2)/± 1 which acts effectively on M̄
and should be identified with the conformal group C (including reflections) of
compactified Minkowski space. It is natural, following Segal25 [S], to identify
the conformal energy operator with the (hermitian) generator H of the centre of
the Lie algebra so(2)× so(D) of the maximal compact subgroup of C, i.e., with
the infinitesimal rotation in the (−1, 0)-plane. It can be expressed in terms of
the Minkowski space energy operator P0 (the zeroth component of the energy
momentum vector) and its conjugate by the conformal inversion R as

H =
1
2

(P0 +RP0R) . (6.9)

Here RP0R is a physical (hermitian) generator of the special conformal trans-
formation (6.7) (in other words, the vector field corresponding to the Lie algebra
element i RP0R is

[
∂
∂c0 y

ν(x, c)
]
c=0

∂
∂xν ). In a unitary representation of (a cov-

ering of) the conformal groupH (6.9) is positive whenever the Minkowski energy
P0 is positive.

The following exercise shows that for D = 2 the conformal group is infinite
dimensional.

24Paul Adrien Maurice Dirac (1902-1984), Nobel Prize in Physics 1933, known for his equa-
tion and for the prediction of antiparticles, recollects (in his Varenna 1977 lecture) of his great
appreciation of projective geometry since his student years at Bristol.

25Irving Ezra Segal (1918-1998) was a Professor in mathematics at the Massachusetts In-
stitute of Technology.
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Exercise 6.4. Let f±(z) be a pair of (non-constant) meromorphic functions
(taking real values on the real line). Demonstrate that both changes of variables
x→ y such that

y0 + y1 = f+(x0 ± x1) , y0 − y1 = f−(x0 ∓ x1) , (6.10)

satisfy the condition (6.1) for a conformal mapping. Show that the upper sign
in (6.10) corresponds to the connected component of the identity of the (infinite
dimensional) group of meromorphic mappings, while the lower one belongs to
the connected component of space reflections.

Exercise 6.5. (a) Show that the only complex conformal transformations which
transform circles into circles or straight lines are the non-singular fractional
linear (also called Möbius26) transformations

z → z′ = gz ≡ az + b

cz + d
ad− bc 6= 0 . (6.11)

(b) They preserve the real line if the matrix entries of the 2 × 2 matrix g =(
a b
c d

)
are real. They preserve the upper half plane if the determinant of g

is positive (then one can set det g = ad − bc = 1, thus identifying the Möbius
group with SL(2,R)).

(c) The transformation (6.11) preserves the unit circle iff d = ā, c = b̄. For g ∈
SU(1, 1) (i.e. for g =

(
a
b
b
a

)
, det g = |a|2 − |b|2 = 1) the Möbius transformation

(6.11) preserves the interior (as well as the exterior) of the unit circle. For
|a|2 − |b|2 < 0 it exchanges |z| < 1 with |z| > 1.

There is a complex Möbius map gc of the upper half plane τ (Im τ > 0)
onto the unit disk (|z| < 1) intertwining the SL(2,R) and the SU(1, 1) actions.
Choosing gc i = 0, gc 0 = 1 we find

gc : τ → z =
1 + iτ

1− iτ

(
τ = i

1− z

1 + z

)
. (6.12)

It maps the real light ray τ = t (= x0 + x1) onto the unit circle, sending the
point at infinity to −1. Thus gc plays the role of a compactification map for the
light ray.

Exercise 6.6. Demonstrate that the non-singular conformal transformation z →
f(z) is a Möbius transformation iff the Schwarz27 derivative

{f, z} :=
f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2

(6.13)

26August Ferdinand Möbius (1790-1868). The Möbius group SL(2, C) is a double cover of
the (connected component of the) Lorentz group SO↑(3, 1).

27Karl Hermann Amadeus Schwarz (1843-1921) a student of Karl Weierstrass (1815-1897);
introduced his derivative in 1872.
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vanishes.

We shall now exhibit a 4-dimensional quaternionic analogue of (6.12). Con-
sider the Lie algebra u(2) of 2× 2 anti-hermitian matrices

i x̃ = i x0 σ0 − i xj σj (∈ u(2))

where σj are the Pauli28 matrices, σ0 = 1I is the 2×2 unit matrix. The Cayley29

map from the Lie algebra u(2) to the group U(2) of 2× 2 unitary matrices,

i x̃→ u =
1 + i x̃

1− i x̃
∈ U(2) for xµ ∈ R , (6.14)

can be viewed as an alternative of the conformal compactification (6.8).

Exercise 6.7. Writing u (6.14) in the form u = u4 1I− i uj σj prove that uα are
related to ~ξ in (6.8) and (6.9) by

uα =
ξα

ξ−1 + i ξ0
, α = 1, 2, 3, 4

(
4∑

α=1

uα ūα = 1

)
. (6.15)

Exercise 6.8. Prove that the Lie algebra su(2, 2) of the pseudo-unitary group
SU(2, 2) coincides with the conformal Lie algebra so(4, 2).
(Hint : use the realization of Appendix C to [NT] for D = 4.)

Exercise 6.9. Prove that SU(2, 2) is a 4-fold cover of the conformal group
C0 ' SO0(4, 2)/± 1 of 4-dimensional Minkowski space or, equivalently, a 2-fold
cover of SO0(4, 2):

SO0(4, 2) ' SU(2, 2)/± 1 . (6.16)

Discrete masses of atoms and elementary particles violate “the great prin-
ciple of similitude”30 (i.e. scale and, a fortiori, conformal invariance). The
situation in QFT is still more involved – and more interesting: dimensional pa-
rameters arise in the process of renormalization even if they are absent in the
classical theory. Dilation and conformal invariance can only be preserved for a

28Wolfgang Ernest Pauli (born in Vienna 1900, died in 1958 in room 137 of a hospital
in Zürich). During his stay in Hamburg (1923-1928) he discovered the exclusion principle
(1925), for which he was awarded the Nobel Prize in Physics in 1945, and introduced the
Pauli matrices (in 1927).

29Arthur Cayley (1821-1895) after studying at Trinity became (at 25) a lawyer for 14 years
in London writing during that period over 200 mathematical papers. He was first to define
the modern way the concept of a group. The Cayley transform originally appeared (1846) as
a mapping between skew symmetric and special orthogonal matrices.

30See Lord Rayleigh, The principle of similitude, Nature 95:2368 (March 1915) 66-68 and
644. John William Strutt – Lord Rayleigh (1842-1919) was awarded the 1904 Nobel Prize for
his discovery of the inert gas argon.
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renormalization group fixed point, i.e., for a critical theory, the QFT counter-
part of a point of phase transition. One may hope that the study of an idealized
critical theory with no dimensional parameters will prove to be an essential step
in understanding QFT – just as Galilei’s31 law of inertia, that neglects friction,
has been crucial in formulating and understanding classical mechanics. (For a
more comprehensive discussion of the relevance of conformal invariance see the
Introduction to [T07].)

The case of 2-dimensional conformal field theory (2D CFT), to which are
devoted the next two sections, is attractive from several points of view. It
not only provides soluble QFT models satisfying the axioms, but the euclidean
version of such models applies to 2D critical phenomena. String vacua are also
described by a class of 2D CFT. (For a survey of QFT and strings addressed to
mathematicians – see [QFS].)

Before going to the discussion of a class of 2D CFT models we shall make a
general remark pertinent to a CFT in any even number of space-time dimensions.

It is important to distinguish in axiomatic QFT between local observables,
such as the stress-energy tensor and conserved local currents on one hand, and
gauge dependent charged fields which intertwine among different representations
(or superselection sectors) of the algebra of observables, on the other. (This
is stressed, in particular, in Haag’s approach to local quantum physics, [H], in
which a compact gauge group of the first kind is derived from intrinsic properties
of the observable algebra.) In the framework of axiomatic CFT we postulate
that local observables are globally conformal invariant (GCI) – i.e., invariant
under finite conformal transformations in Minkowski spaces, [NT01]. This is
a highly non-trivial requirement since a finite interval (x1 − x2)2 goes under
special conformal transformations (6.7) into

[y1(x1, c)− y2(x2, c)]2 =
(x1 − x2)2

ω(x1, c)ω(x2, c)
. (6.17)

The product of ω-factors (unlike the square in the infinitesimal law (6.1)) may
change sign. The local commutativity for space-like separations implies Huy-
gens32 locality: the commutator of local fields has support on light-like separa-
tions (it vanishes for both space-like and time-like x1 − x2). Moreover, one can
express the strong (Huygens) locality between two observable Bose fields by the
algebraic relation

[(x1 − x2)2]N [φ(x1), ψ(x2)] = 0 for N � 0 (6.18)

(N � 0 meaning “for sufficiently large N”). This allows a formulation of GCI
QFT in terms of formal power series (instead of distributions), [N], [BN]. Com-
bined with the remaining Wightman axioms it implies rationality of correlation

31Galileo Galilei (1564-1642) amplified his views on mechanics in his last dialogue (1638)
written when exiled to his villa at Arcetri.

32The Dutch physicist, mathematician and astronomer Christian Huygens (1629-1695) is
the originator of the wave theory of light.
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functions of observable fields [NT01], long believed to be a peculiarity of chiral
observable fields in 1 + 1 dimension (for a review – see [NT]). It should be
noted, however, that canonical free fields and the stress energy tensor in odd
space-time dimensions violate Huygens locality (and hence, GCI).

Exercise 6.10. Use the Schwinger33 α-representation
(

1
p2 =

∫∞
0
e−αp

2
dα
)

to
derive for euclidean p and x in D-dimensional space-time the relation∫

eipx

p2

dDp

(2π)D/2
=

Γ
(
D
2 − 1

)
4πD/2

(x2)1−
D
2 . (6.19)

Deduce from here, using energy positivity that the Minkowski space 2-point
function w(x12) = 〈0 | ϕ(x1)ϕ(x2) | 0〉 for a free massless field in D = 3 space
time dimensions (with euclidean propagator 1

p2 ) is

w(x) =
1

4π(x2 + i0x0)1/2
. (6.20)

Thus, the GCI postulate is only appropriate for even D. A survey of both
standard (infinitesimal) and global conformal invariance in QFT in four dimen-
sions is contained in [T07] (see also the introduction to [NT05]).

33Julian Seymour Schwinger (1918-1994) shared the 1965 Nobel Prize in Physics with
Richard Feynman (1918-1988) and Sin-Itiro Tomonaga (1906-1979) for his work in quantum
electrodynamics.
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Appendix C. Informal summary of Wightman ax-
ioms

Pure quantum states are described by unit rays in a complex (positive metric)
Hilbert space H which carries a unitary positive energy ray representation of the
proper orthochronous Poincaré (≡ inhomogeneous Lorentz) group P↑+. A ray
(or projective) representation of P↑+ is equivalent to a single valued represen-
tation U(A, a) of its universal covering group (which is, by definition, simply
connected). For D > 2 the covering of P↑+ is obtained by substituting the
Lorentz group SO↑(D−1, 1) by its double cover, the spin group Spin (D−1, 1).
For D = 4 this double cover is isomorphic to the group SL(2,C) of complex
2 × 2 matrices of determinant 1. We have, denoting the 2 × 2 unit matrix by
σ0, Aσµ xµA∗ = σµ ΛMν x

ν for A ∈ SL(2,C) ' Spin (3, 1)

Λ = Λ(A) ∈ SO↑(3, 1) ' SL(2,C)/± 1 . (C.1)

Positive energy means that the hermitian generator of translation, the energy
momentum vector Pµ has joint spectrum in the forward light cone; moreover
the unique translation invariant state is the vacuum |0〉:

P0 ≥ |P | , |P |2 =
D−1∑
i=1

P 2
i , Pµ | 0〉 = 0 , µ = 0, 1, . . . , D − 1 . (C.2)

Quantum fields φ(x) are operator (spin-tensor) valued distributions34 which
transform covariantly under U(A, a):

U(A, a)φ(x)U(A, a)∗ = V (A−1)φ(Λ(A)x+ a) (U∗ = U−1) , (C.3)

V being a finite dimensional representation of the “quantum mechanical Lorentz
group” Spin (D − 1, 1).

It is a consequence of energy positivity that the vector valued function
φ(x) | 0〉 admits analytic continuation to complex zµ = xµ + iyµ in the forward
tube (noting that in our conventions U(a, 1I) = eiP ·a):

∂

∂z
φ(z) | 0〉 = 0 for z ∈ T+ = {z = x+ iy ∈ CD ; y0 > |y|} . (C.4)

Exercise C.1. Prove that T+ is invariant under the action of the connected
component C0 of the (real) conformal group. (Hint : verify that T+ is invariant
under the Weyl inversion

z → wz =
Is z

z2
Is(z0,z) = (z0,−z) (C.5)

34More precisely, we are dealing with tempered distributions introduced by Laurent
Schwartz (1915-2002).
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and notice that C0 is generated by w and by real translations. For a stronger
result, known to V. Glaser (1924-1984) – see [U].)

Exercise C.2. Extend the projective quadric construction to the conformal com-
pactification of complexified Minkowski space MC and verify that the stabilizer
of z = (i,0) (∈ T+) is the maximal compact subgroup of C0.

Observable (Bose) fields commute for space-like separations:

[φ(x1), ψ(x2)] = 0 for (x1 − x2)2 > 0 (local commutativity). (C.6)

The vacuum is assumed to be a cyclic vector with respect to the set of (rela-
tivistic) local fields, so that every vector in H can be written as a strong limit of
linear combinations of vectors of the form φ1(x1) . . . φn(xn) | 0〉 (smeared with
test functions). It follows that the full content of the theory can be expressed
in terms of (Wightman) correlation functions – vacuum expectation values of
fields products.

Exercise C.3. Prove that the Cayley map (6.14) extends to points z of the tube
domain T+. The image T+ of T+ under this map is given by

T+ =

{
z ∈ C4 ; |z2| < 1 , |z|2 =

4∑
α=1

|zα|2 <
1
2

(1 + |z2|2)

}
. (C.7)

Extend the map (6.14) (and T+) to any number D of space-time dimensions.

Remark C.1. The tube domain (C.7) is biholomorphically equivalent to the
classical Cartan domain of type IV (see e.g. [SV] pp. 182-192).
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7 Two-dimensional conformal current algebras

Basic objects in QFT are the correlation functions – vacuum expectation values
of products of local fields which satisfy certain symmetry properties and can
be viewed as boundary values of analytic functions as a consequence of the
spectral conditions (energy positivity). Conformal invariance plays the role
of a dynamical principle: it allows to determine 2-point functions (uniquely,
up to normalization) and 3-point functions (up to a few constants). (Four
point functions and higher can only be determined in a GCI QFT.) The 2-
point function of two currents jµ(x) of scale dimension D − 1 in D space-time
dimensions has the form ([TMP]):

Wµ
ν (x12) := 〈0 | jµ(x1) jν(x2) | 0〉 = NJ r

µ
ν (x12) ρ1−D

12 , ρ12 = x2
12+i 0x

0
12 (7.1)

where the i 0x0
12 defines the right hand side of (7.1) as a distribution,

x12 = x1−x2 , x2 = x2−(x0)2 , x2 =
D−1∑
i=1

x2
i , rµν (x) = δµν −2

xµxν
ρ

(7.2)

(r2 = 1I, rµν x
ν = −xµ). Wµ

ν (x) satisfies the conservation law

∂µW
µ
ν (x) = 0 (for ∂µ =

∂

∂ xµ
) (7.3)

implying (in view of Wightman positivity and the Reeh-Schlieder theorem [SW],
[BLOT]) that the current itself is conserved (as an operator valued distribution):

∂µ j
µ(x) = 0 . (7.4)

For D = 2 we see, in addition, that Wµ
ν is a gradient:

Wµ
ν (x) = ∂ν NJ

xµ

ρ
(ρ = x2 + i 0x0) , (7.5)

hence the curl of j is also zero:

∂µ jν(x)− ∂ν jµ(x) = 0 , µ, ν = 0, 1 . (7.6)

Exercise 7.1. Prove that Eqs. (7.4) and (7.6) imply that the current splits into
two chiral components, depending on a single light cone variable x0 ± x1 each:

1√
2

(j0 − j1(x)) =: j(x0 + x1) ,
1√
2

(j0 + j1) =: j̄(x0 − x1) . (7.7)

As a consequence of energy positivity both vector valued function j(t) | 0〉
and j̄(t̄) | 0〉 are boundary values of functions analytic in the upper half plane.
It is now convenient to use the compactification map gc (6.12) from the upper
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half-plane onto the unit disk D1. It gives rise to the z-picture fields φ(z) that are
naturally identified with their formal Laurent35 expansions yielding convergent
in D1 Taylor36 series for the vector valued function φ(z) | 0〉. The compact
picture current, is identified by equating the corresponding 1-forms:

J(z)
dz

2πi
= j(t) dt , (7.8)

i.e.

J(z) = 2πi
dt

dz
j(t(z)) =

4π
(1 + z)2

j

(
i
1− z

1 + z

)
(7.9)

where we have devided by the length of the unit circle (i.e. of the compactified
light ray) with respect to the (complex) measure dz

z . J(z) is more convenient to
work with (than j(t)), since its mode expansion is given by the (formal) Laurent
series

J(z) =
∑
n∈Z

Jn z
−n−1 (Jn = Resz(zn J(z))) (7.10)

(that repalces the integral Fourier37 transform of j(t)).
Similarly, the conserved traceless stress energy tensor θ for D = 2 also splits

into two chiral components,

Θ(x0 + x1) =
1√
2

(Θ0
0 −Θ1

0) (=
1

2
√

2
(Θ0

0 −Θ1
0 + Θ0

1 −Θ1
1))

Θ(x0 − x1) =
1√
2

(Θ0
0 + Θ1

0) . (7.11)

Exercise 7.2. Use the conservation law, ∂µ θµν = 0, and the tracelessness, θµµ = 0
of θµν to prove that ∂θ

∂t
= 0 = ∂θ̄

∂t for t = x0 +x1, t̄ = x0−x1 and θ and θ̄ defined
by the right hand side of the first and second equation (7.11).

Exercise 7.3. Equating the quadratic differentials

Θ(t) dt2 = T (z)
dz2

2π
(7.12)

express T (z) in terms of Θ(t) for t = i 1−z
1+z .

35Pierre Alphonse Laurent (Paris 1813-1854) introduced in 1843 the Laurent series in a
memoir submitted for the “Grand Prix de l’Académie des Sciences”, but the submission was
after the due date, and the paper was not published until after his death (at the age of 41).

36The English mathematician Brook Taylor (1685-1731) proved a theorem about power
series expansions (following ideas of Isaac Newton, 1642-1727) in a paper of 1715 which re-
mained unrecognized until 1772 when Joseph-Louis Lagrange (1736-1813) proclaimed it the
basic principle of differential calculus.

37The French mathematician and physicist Jean Baptiste Joseph Fourier (1768-1830) went
with Napoleon Bonaparte on his Egyptian expedition in 1798; was governor of Lower Egypt
(until 1801). In his “Théorie analytique de la chaleur” (1822) he introduced the Fourier series
(exhibiting discontinuous functions with convergent Fourier series). His claims were made
precise and proven by Johann Peter Gustav Lejeune Dirichlet (1805-1859).
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Remark 7.1. The (conserved) current jµ(x) in D dimensions should have con-
formal dimension D − 1 (in mass units) in order to allow interpreting j0(x) as
the charge density of a dimensionless charge. Similarly, Θµ

ν has dimension D in
D-dimensional space-time so that one may interpret Θ0

0 as an energy density.
This accounts for the difference between (7.9) and (7.12). The factor (2π)−1 in
(7.12) is chosen to simplify the 2-point function of T (z) in the theory of a free
Weyl fermion.

Exercise 7.4. (a) Given (7.1) for D = 2, compute the 2-point function for j(t).
(Answer :

〈0 | j(t1) j(t2) | 0〉 =
−NJ

(t1 − t2 − i0)2
; (7.13)

hint : use the fact that ρ12 = i0(t12+ t̄12)−t12 t̄12, for t12 = t1−t2, ti = x0
i +x

1
i .)

(b) Viewing the right hand side of (7.13) as a rational function of t12 (i.e.
neglecting the i 0 prescription) and setting NJ = (2π)−2 prove that the 2-point
function of J(z) (7.9) is

〈0 | J(z1) J(z2) | 0〉 =
1
z2
12

, z12 = z1 − z2 . (7.14)

Remark 7.2. The solution of the 2D massless Dirac equation (γ0 ∂0 + γ1 ∂1) Ψ =
0 for

γ0 =
(

0 −1
1 0

)
, γ1 =

(
0 1
1 0

) (
γ0 γ1 =

(
−1 0
0 1

)
= −γ0 γ1

)
assumes the form Ψ =

(
ψ(t)

ψ̄(t̄)

)
. If we define j(t) in the theory of a free Weyl

field ψ(t) from the operator product expansion

1
2

(ψ∗(t1)ψ(t2)− ψ(t1)ψ∗(t2)) = j

(
t1 + t2

2

)
+O(t212) (7.15)

then the 2-point function (7.13) of j will indeed involve the normalization con-
stant NJ = (2π)−2 (see [FST] Appendix C).

If we write the mode expansion of the z-picture stress-energy tensor as

T (z) =
∑
n∈Z

Ln z
−n−2

(
T̄ (z̄) =

∑
n

L̄n z̄
−n−2

)
(7.16)

then the conformal energy H (6.9) is the sum of the left and right mover’s zero
modes:

H = L0 + L̄0 . (7.17)
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We shall identify accordingly the chiral energy operator with L0. We have

[L0, J(z)] =
(
z
d

dz
+ 1
)
J(z) =

d

dz
(z J(z)) ⇒ [L0, Jn] = −nJn ; (7.18)

[L0, T (z)] =
(
z
d

dz
+ 2
)
T (z) ⇒ [L0, Ln] = −nLn . (7.19)

More generally, if W (z) is a chiral Bose field of integer dimension d,

W (z) =
∑
n

Wn z
−n−d , (7.20)

then

[L0,W (z)] =
(
z
d

dz
+ d

)
W (z) ⇒ [L0,Wn] = −nWn . (7.21)

It follows from the analysis of Section 6 (see, in particular, Exercises 6.2
and 6.4) that there is an infinite parameter set of invertible local conformal
transformations z → f(z) of a neighbourhood of the origin (in which f ′(z) 6= 0).
If the theory is assumed to be invariant under such an “infinite conformal group”
then the correlation functions would have been independent of z which would
mean that all chiral fields (including the stress-energy tensor) would vanish.
What actually happens is that the vacuum state is not invariant under the
infinite dimensional conformal group. Correlation functions of chiral fields, like
(7.14) or

〈0 | T (z1)T (z2) | 0〉 =
c

2 z4
12

(c > 0) (7.22)

are only invariant under the Möbius group of fractional linear transformations
(see Exercise 6.6). Noting the Lie algebras s`(2,R), su(1, 1) and so(2, 1) are
isomorphic we can say that the correlation functions of a D-dimensional CFT
are so(D, 2) invariant for all D ≥ 1. As we shall see shortly the chiral Möbius
Lie algebra is spanned by L0, L±1; the CR (7.19) should be completed by

[L1, L−1] = 2L0 so that [Lm, Ln] = (m− n)Lm+n , m, n = 0,±1 . (7.23)

The z-picture correlation functions (like (7.14) (7.22)) having the same form as
the x-space ones are, in particular, translation invariant, the (non hermitian)
generator of translations of the complex variable z being L−1 which should also
annihilate the vacuum:

L−1 | 0〉 = 0 , [L−1,W (z)] =
dW (z)
dz

⇒ [Wn, L−1] = (n+d−1)Wn−1 . (7.24)

The upper half plane, the analyticity domain of φ(τ) | 0〉 for any chiral field
φ, is mapped by the complex Möbius transformation (7.8) onto the unit disk.
Thus we expect that z-picture fields applied to the vacuum give rise to Taylor
expansions convergent for |z| < 1. To formulate the precise statement we need
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the notion of z-picture conjugate of a hermitian chiral field W (z) of dimension
d and expansion (7.20):

(W (z))∗ =
1
z̄2d

W

(
1
z

)
. (7.25)

Proposition 7.1. (a) The vector valued function W (z) | 0〉 for a hermitian
scalar field W (7.20) of a positive integral dimension d has the form

W (z) | 0〉 =
∞∑
n=0

W−n−d z
n | 0〉 , i.e. Wn | 0〉 = 0 for n+ d > 0 . (7.26)

(b) The norm square of this vector is given by a power series convergent for
z̄ z < 1.

Proof. (a) Wn | 0〉 = 0 for n > 0 because (L0 + n)Wn | 0〉 = 0 and we have
assumed energy positivity. Hence W (z) | 0〉 may at most have a finite number
(no more than d) negative powers of z in its Laurent expansion. Hence the
formal power series

F (z, w) := ewL−1 W (z) | 0〉

can be written in the form F (z, w) = v0(w)
zN + v1(z,w)

zN−1 where v0 and v1 only involve
non-negative powers of z and w in their (formal) Laurent expansions. On the
other hand, Eq. (7.24) implies that ∂F

∂z = ∂F
∂w . This is only possible if N = 0,

implying (7.26). Thus the lowest energy state generated by the W modes is
W−d | 0〉 of energy d.

Remark 7.3. We have thus proved that, under the assumption of energy positiv-
ity, any translation covariant formal power series W (z) | 0〉 involves no negative
powers of z. Thus the vector W (0) | 0〉 is well defined (and determines W (z)
– see Appendix C). A more general result of this type, applicable to higher
dimensional GCI theories, is contained in Proposition 3.2 (a) of [NT05].

(b) the 2-point function of W is determined from translation and dilation in-
variance to have the form

〈0 |W (z1)W (z2) | 0〉 =
NW
z2d
12

. (7.27)

(Hilbert space positivity demands NW > 0.) It follows from here and from the
conjugation rule (7.25) that the norm square of the vector (7.26),

‖W (z) | 0〉‖2 =
NW

(1− z z̄)2d
= NW

∞∑
n=0

(
2d+ n− 1

n

)
(z z̄)n , (7.28)

indeed converges for |z|2 < 1. �
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Proposition 7.1 implies that the 2-point correlator (7.27) should be viewed
as a boundary value of a function analytic in the domain |z2| < |z1| where it is
defined as a (convergent) power serie in z2

z1
. The same rational function in the

domain |z1| < |z2| will be written as (z2 − z1)−2d.

Proposition 7.2. In a chiral theory satisfying both Hilbert space and energy
positivity the modes Jn of a local current J(z) with 2-point function (7.14) satisfy
the Heisenberg CR

[Jn, Jm] = n δn,−m . (7.29)

Proof. Local commutativity implies

[J(z1), J(z2)] =
nJ∑
n=0

An(z2) ∂n2 δ(z1 − z2) . (7.30)

Here the z picture δ-function is given by a formal Laurent series and obeys the
defining property of a δ-function when applied to an analytic function f of z:

δ(z1 − z2) =
∑
n∈Z

zn2
zn+1
1

(
=

1
z12

+
1
z21

)
Resz2 δ(z1 − z2) f(z2) = f(z1) .

(7.31)

(Here 1
z12

= 1
z1

∞∑
n=0

(
z2
z1

)n
, 1
z21

= 1
z2

∞∑
n=0

(
z1
z2

)n
have disjoint convergence do-

mains. For a distribution F given by a formal Laurent series F (z) =
∑
n
Fn z

n,

we set Resz F = F−1.) Using conservation of scale dimension and the fact that
∂n2 δ(z1 − z2) has dimension n + 1 we conclude that the field An in (7.30) has
dimension 1− n.

Lemma 7.1. If the dimension d of the chiral field W with 2-point function
(7.27) is a negative integer, d = −N , then W violates both energy and Hilbert
space positivity.

Proof (of Lemma). The 2-point function (z12)2N corresponds to a minimal
energy state WN | 0〉 6= 0 of energy −N . The norm square (7.28) then goes into

(1− z z̄)2N =
2N∑
n=0

(−1)n
(

2N
n

)
(z z̄)n =

2N∑
n=0

‖WN−n | 0〉‖2 (z z̄)n

giving, in particular, ‖WN−1 | 0〉‖2 = −2N‖WN | 0〉‖2. �

Thus, our assumptions imply that nJ = 1: only two terms – with n = 0 and
n = 1 – contribute to the sum (7.30). The uniqueness of the vacuum implies
that A1(z) is a constant multiple of the identity. Comparison with (7.14) tells
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us that this constant is 1. The antisymmetry of the commutator under the
exchange z1 � z2 implies, on the other hand, A0 = 0. Thus,

[J(z1), J(z2)] = ∂2 δ(z1 − z2) =
∑
n

n
zn−1
2

zn+1
1

=
∑
m,n

[Jm, J−n]
zn−1
2

zm+1
1

(7.32)

which yields (7.29).

Exercise 7.5. Let T (z) (7.16) with 2-point function (7.22) satisfy locality, energy
and Hilbert space positivity. Derive the Virasoro CR:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn,−m . (7.33)

(This is the Lüscher-Mack theorem – see [M88]; for a complete proof – see [FST];
for related work done in Brazil – see [Sc] [SS].)

It is the central charge c in (7.33), the conformal anomaly, which expresses
the violation of the infinite dimensional conformal symmetry by the vacuum
state. Note that its coefficient vanishes for n = 0,±1, so that (7.33) reproduces
the Möbius CR (7.23) as a special case.

A field φ is said to be primary if it transforms homogeneously (without
anomaly) with respect to commutations with the chiral algebra A. For instance
the current J(z) is a Virasoro primary field. It is covariant under infinitesimal
reparametrizations:

[Ln, J(z)] =
d

dz
(zn+1 J(z)) (7.34)

(J is however not primary with respect to the current algebra since (7.29) is
inhomogeneous). More generally, a 2D field φ(z, z̄) is said to be primary of
weight (∆, ∆̄) with respect to the Virasoro algebra Vir if

[Ln, φ] = zn
(
z
∂

∂z
+ (n+ 1)∆

)
φ , [L̄n, φ] = z̄n

(
z̄
∂

∂z̄
+ (n+ 1) ∆̄

)
φ .

(7.35)
The difference s = ∆− ∆̄ is called the spin (or the helicity) of φ. Usually only
fields with 2s ∈ Z are encountered. Such fields live on a cylinder – i.e. their
x-space counterparts satisfy

ϕ(x0, x1 + 2π) = (−1)2s ϕ(x0, x1) . (7.36)

Primary fields are relatively local to the observables. To check the locality of
φ with respect to T we note that (7.35) is essentially equivalent to the operator
product expansion (OPE)

T (z1)φ(z2) = ∆
φ(z2)
z2
12

+
1
z12

φ′(z2) + 0(1) (7.37)
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(O(1) standing for non-singular terms in z12). This indeed amounts to local CR
since

1
z12

+
1
z21

= δ(z12) ,
1
z2
12

− 1
z2
21

=
∂

∂z2
δ(z12) . (7.38)

A 2D CFT is called rational if the chiral algebra A has a finite number
of unitary positive energy irreducible representations (UPEIR) related to the
(defining) vacuum representation of A by primary fields, relatively local to the
observables. An example of a rational conformal field theory (RCFT) is provided
by the Virasoro minimal models [BPZ] corresponding to central charge c =
c(m) = 1 − 6

(m+2)(m+3) , m = 1, 2, . . .. The first chiral theory of this series,
c(1) = 1

2 , can be viewed as generated by a free real fermion field, the Majorana38-
Weyl field

ψ(z) =
∑
n

ψn− 1
2
z−n , [ψρ, ψσ]+ = δρ,−σ , ψ

∗
ρ = ψ−ρ , ρ, σ ∈ Z +

1
2
. (7.39)

Exercise 7.6. Prove that

T (z) = −1
4

lim
z1,2→z

∂2

∂z1 ∂z2
{z12 ψ(z1)ψ(z2)} =

1
2

: ψ′(z)ψ(z) : (7.40)

has all properties of the stress energy tensor with central charge c = 1
2 ; in

particular,

T (z1)ψ(z2) =
ψ′(z1)
2 z12

+
ψ(z1)
2 z2

12

+O(1) =
ψ′(z2)
z12

+
1
2
ψ(z2)
z2
12

+O(1)

〈0 | T (z1)T (z2) | 0〉 =
1

4 z4
12

. (7.41)

It can be demonstrated that the Virasoro algebra has three sectors in this
case of weights ∆ = 0, 1

16 ,
1
2 . For a general study of RCFT – see [MS] (see also

the book on CFT [DMS]).

38Ettore Majorana (1906-1938?), one of the “ragazzi di via Panisperna”; their leader, Enrico
Fermi, compares his genius with that of Galileo and Newton, adding: “Ettore had what nobody
else in the world has. Unfortunately, he lacked what is instead easy to find in other men: simple
common sense.” Majorana disappeared on March 25, 1938 (listed among the passengers in a
boat trip from Palermo to Napoli). The (real) 4D Majorana spinors, introduced in his last
paper (of 1937), are now used to describe a massive neutrino.
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Appendix D. Axioms for a chiral vertex algebra

Chiral CFT has become, starting with the work of Borcherds [B86], a domain in
pure mathematics under the name of vertex algebras, that is already a subject
of several books – see, e.g. [FLM] [Ka] [FB-Z] [Ga]. Our brief survey, following
[DGM] and [Ka], should be viewed as a formalization and extension of the
discussion of Section 7. Accordingly, we shall formulate the axioms for bosonic
graded vertex algebras only, mentioning the fermionic (and superalgebra) case
in a subsequent remark.

A graded vertex algebra consists of a Z+ graded pre-Hilbert vector space,

V =
∞⊕
n=0

Vn , dimV0 = 1 , dimVn <∞ (D.1)

equipped with a translation operator T (= L−1) and a state field correspondence
Y : V → (EndV )[[z, z−1]] (read: Y is a map from V to the space of formal
Laurent series Y (v, z), v ∈ V whose coefficients are endomorphisms – i.e. linear
operators from V to V) satisfying the following axioms.

(i) Vacuum : the 1-dimensional space V0 is spanned by the vacuum vector
| 0〉 such that

T | 0〉 = 0 , 〈0 | 0〉 = 1 . (D.2)

(ii) Translation covariant fields : to each vector v ∈ V there corresponds a
formal Laurent series Y (v, z) with operator valued coefficients such that (a) the
vector valued function

Y (v, z) | 0〉 = ezT v , (D.3)

is analytic (in the norm topology) for |z| < 1; furthermore

[T, Y (v, z)] =
d

dz
Y (v, z) . (D.4)

(b) Assuming linearity in the vector argument v, i.e. requiring

Y (c1 v1 + c2 v2, z) = c1 Y (v1, z) + c2 Y (v2, z) for v1, v2 ∈ V , c1, c2 ∈ C ,
(D.5)

we can define Y by first displaying its properties for homogeneous elements,
v` ∈ V`; then

Y (v`, z) =
∑
n

Yn(v`) z−n−` (D.6)

where (c) Yn(v`) changes the grading by −n:

Yn(v`) : Vk → Vk−n (Vk−n = {0} for k < n) . (D.7)

Eq. (D.7), together with (D.1), is our energy positivity requirement. We identify
the chiral vertex algebra Hamiltonian with the Virasoro energy L0 satisfying

(L0 − n)Vn = 0 , [L0, T ] = T . (D.8)
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Formal Laurent series of different arguments, Y (v1, z1), Y (v2, z2), can be
multiplied giving a formal Laurent series Y (v1, z1) · Y (v2, z2) of two variables.

(iii) Local commutativity :

(z12)N [Y (v1, z1), Y (v2, z2)] = 0 for N � 0 . (D.9)

We denote by A(V) the set of formal power series Y satisfying the axioms
(i–iii). The following Proposition, singled out by Goddard (see [DGM]), justifies
the notation Y (v, z).

Proposition D.1. If two formal Laurent series Y1(v, z) and Y2(v, z) belong to
A(V) (and hence satisfy (D.3) with the same v) then they coincide.

Sketch of proof. Using locality one finds that the difference Y1(v, z) − Y2(v, z)
vanishes not just on the vacuum but on any other vector v1 ∈ V. �

This uniqueness result has a number of applications. We single out the
following

Corollary D.1. It follows from Proposition D.1 that

(a) Y (| 0〉, z) = 1I;

(b) Y (Tv, z) = d
dz Y (v, z).

Exercise D.1. Prove, using energy positivity, that the Laurent series Y (v1, z) v2
has a finite number of negative powers of z. Demonstrate that for energy eigen-
states, (L0 − di) vi = 0 for i = 1, 2, the leading negative power does not exceed
d1 + d2.

Studying OPE of products of elements of A(V), it is useful to extend the
definition of Y (v, z) to v of the form Y (v1, w) v2 (which is not a finite energy
state).

Exercise D.2. Demonstrate that both sides of the equality

Y (v1, z1)Y (v2, z2) | 0〉 = Y (Y (v1, z12) v2, z2) | 0〉 (D.10)

define analytic (in the Hilbert norm topology) vector valued functions for |z2| <
|z1| < 1 and sufficiently small |z12| and that the equality (D.10) holds.

The stress-energy tensor T (z) can be identified with Y (L−2 | 0〉, z).
A field Y (v, z) is primary of Vir (cf. (7.35)) if v is a ground state:

Ln v = 0 , for n > 0 , (L0 − d) v = 0 . (D.11)
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8 Extensions of the u(1) current algebra and their
representations

Given a finite dimensional Lie algebra G with (real) structure constants fabc =
−f bac (satisfying the Jacobi39 identity fabs fscd + fcas fsbd + f bcs fsad = 0), we can
define a Kac-Moody algebra generated by (hermitian) currents Ja(z) given by
formal power series

Ja(z) =
∑
n∈Z

Jan z
−n−1 (Ja∗n = Ja−n) , a = 1, . . . , dG := dimG , (8.1)

where the modes Jan satisfy the CR

[Jam, J
b
n] = i fabc Jcm+n + kmδm,−n g

ab (8.2)

(gab standing for a G invariant positive metric).
The representation theory of the u(1) current algebra (7.29) (which appears

as a special case of (8.2) for dG = 1 and fabc = 0) is relatively simple – this is,
in fact, an infinite Heisenberg40 algebra whose positive energy representations
are labeled by the eigenvalues of the charge operator J0.

We define the normal product: J(z1) J(z2): of two u(1) currents through
their OPE

J(z1) J(z2) =
1
z2
12

+ : J(z1) J(z2) : . (8.3)

Normal products : Jn(z) : belong to the chiral algebra A(VJ) where VJ is the
space generated by polynomial of the current’s negative modes J−n acting on
the vacuum.

Exercise 8.1. The Sugawara stress tensor of A(VJ),

T (z) =
1
2

: J2(z) : , (8.4)

satisfies the defining OPEs for a J, T system (cf. (7.37)):

T (z1) J(z2) =
1
z2
12

J(z1) +O(1) =
1
z2
12

J(z2) +
1
z12

J ′(z2) +O(1) , (8.5)

39The German mathematician Carl Gustav Jacob Jacobi (1804-1851) was considered to be
the most inspiring teacher of his time. Bourbaki, in particular, Jean Dieudonné (1906-1992),
have taken as a motto his words (from a letter to Legendre of 1830, deploring the fact that
Fourier introduces his series just as an application to the heat equation): “le but unique de la
science c’est l’honneur de l’esprit humain”. The phrase “Invert, always invert” is associated
with Jacobi who believed that many hard problems are solved when addressed backwards.
Most of his papers were published post humously.

40Werner Heisenberg (1901-1976) has been awarded in 1932 the Nobel Prize in Physics for
the creation of quantum mechanics (1925). The CR [q, p] = i~ first appeared in work of
Born-Jordan and of Dirac.

51



T (z1)T (z2) =
1
2

1
z4
12

+
: J(z1) J(z2) :

z2
12

+O(1)

=
1
2

1
z4
12

+ 2
T (z2)
z2
12

+
T ′(z2)
z12

+O(1) . (8.6)

Deduce that for a chiral CFT generated by J(z) the Virasoro central charge is
c = 1.

Exercise 8.2. Prove that Eq. (8.4) allows to write the Virasoro modes in terms
of J`:

L0 =
1
2
J2

0 +
∞∑
`=1

J−` J` , Ln =
1
2

∑
`∈Z

Jn−` J` for n 6= 0 . (8.7)

Verify the CR (7.33) (7.34) for these expressions.

Proposition 8.1. The unitary irreducible positive energy representations
(UIPERs) of A(VJ) correspond to ground states | g〉 labeled by a real number g
such that

(J0 − g) | g〉 = 0 = Jn | g〉 for n > 0 (8.8)

(g = 0 corresponding to the defining vacuum UIPER of A(VJ)). To each g 6= 0
corresponds a pair ψ(z,±g) of hermitian conjugate primary fields of dimension
g2 such that for each of them

ψ(z, g) | 0〉 = ezL−1 | g〉 , [J(z1), ψ(z2, g)] = g δ(z12)ψ(z2, g) . (8.9)

(Thus all ψ(z, g) are relatively local to the current.) ψ(z,±g) locally commute
among themselves iff g2 is an even integer; then

(z12)g
2
[ψ(z1, g), ψ(z2,−g)] = 0(= [ψ(z1,±g), ψ(z2,±g)]) . (8.10)

Sketch of proof (for a comprehensive discussion – see [BMT]). Introduce the
abelian41 (i.e. commutative) group {Eng, n ∈ Z} of unitary operators such that

Eg | 0〉 =| g〉 (Eg)∗ = E−g = (Eg)−1 , [J(z), Eg] =
g

z
. (8.11)

Introduce further the indefinite integrals of the frequency parts of the current:

ϕ+(z) =
∞∑
n=1

1
n
J−n z

n , ϕ−(z) = −
∞∑
n=1

1
n
Jn z

−n ; (8.12)

then the chiral vertex operator (CVO) ψ(z, g) can be written in the form

ψ(z, g) = Eg egϕ+(z) zgJ0 egϕ−(z) . (8.13)
41Named after the Norwegian mathematician Niels Henrik Abel (1802-1829) who proved in

1824 the impossibility to solve the general fifth degree equation in radicals and created (in
1825, in Freiburg) the theory of elliptic, hyperelliptic (and, more generally, abelian) functions.
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To verify the current-field CR (8.9) we use (8.11) and

[J(z1), ϕ+(z2)] =
1
z12

− 1
z1
, [J(z1), ϕ−(z2)] =

1
z21

. (8.14)

We have
(
L0 − g2

2

)
| g〉 = 0 as a consequence of (8.7) and (8.8); hence, ψ(z,±g)

have scale dimension g2

2 , so that the (non-vanishing) 2-point function is

〈0 | ψ(z1, g)ψ(z2,−g) | 0〉 = (z12)−g
2
. (8.15)

As the sign of g is not fixed and g2 is even the 2-point function is symmetric
(viewed as a rational function) with respect to the exchange of factors.

Exercise 8.3. Verify (8.15) using (8.13).

Eq. (8.15) and the remark that the singularity of the 2-point function domi-
nates those of higher point correlation functions as a consequence of Wightman
positivity imply the strong locality condition (8.10). �

Exercise 8.4. Use the CR [J0, E
g] = g Eg to prove

〈0 | Eg | 0〉 = δg0 (i.e. 〈0 | Eg | 0〉 = 0 for g 6= 0 , E0 = 1I) . (8.16)

Exercise 8.5. Use (8.13) to compute the n-point function

〈0 | ψ(z1, g1) . . . ψ(zn, gn) | 0〉 =
∏

1≤i<j≤n

(zij)gigj . (8.17)

It follows from Proposition 8.1 that the CFT of the chiral algebra A(VJ)
has a continuum of inequivalent UIPERs and hence, is not rational (recall the
definition at the end of Section 7). On the other hand, if g2 is a (positive) even
integer then the algebra A(g2) generated by the pair of oppositely charged Bose
fields ψ(z,±g) provides a local extension of A(VJ). Indeed, the current J is
contained in the OPE of the product ψ(z1, g)ψ(z2,−g) which defines a bilocal
field ([FST]):

zg
2

12 ψ(z1, g)ψ(z2,−g) =: eg
R z1

z2
J(z)dz := 1I + g

∫ z1

z2

J(z) dz

+ 6g2

∫ z1

z2

(z1 − z)(z − z2)
z12

T (z) dz + g3 z3
12R3(z1, z2; g) ,

〈0 | J(z1)T (z2) | 0〉 = 0 = 〈0 | J(z1)R(z1, z2; g) | 0〉
= 〈0 | T (z1)R(z1, z2; g) | 0〉 . (8.18)
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The following set of exercises is designed to establish (8.18) (explaining on the
way its meaning).

Exercise 8.5. Prove the equivalence of the following two definitions of the normal
exponent in the first equation (8.18):

: eg
R z1

z2
J(z) dz := eg(ϕ+(z1)−ϕ+(z2)) zgJ0

12 eg(ϕ−(z1)−ϕ−(z2)) (8.19)

: eg
R z1

z2
J(z)dz :=

e
g

R z1
z2

J(z)dz

〈0 | eg
R z1

z2
J(z)dz | 0〉

. (8.20)

(Eq. (8.20) should be understood as an expansion in powers of g defining the cor-
responding normal products iteratively.) Use (8.19) to verify the first equation
(8.18).

Exercise 8.6. Prove that the CR (8.9) is equivalent to the following CR between
the frequency parts of the current and the charged field ψ:

[ψ(z1, g), J(+)(z2)] = − g

z12
ψ(z1, g) , [J (−)(z1), ψ(z2, g)] =

g

z12
ψ(z2, g) (8.21)

for

J(+)(z) =
∞∑
n=1

J−n z
n−1 = ϕ′+(z) , J (−)(z) =

∞∑
n=0

Jn
zn+1

= ϕ′−(z) . (8.22)

Exercise 8.7. Use (8.21) and the vacuum conditions

J (−)(z) | 0〉 = 0 = 〈0 | J(+)(z) (8.23)

to prove the Ward 42 identity for current-field correlation functions:

〈0 | ψ(z1, g1) . . . ψ(zk, gk) J(z)ψ(zk+1, gk+1) . . . ψ(zn, gn) | 0〉

=

 n∑
j=k+1

gj
z − zj

−
k∑
i=1

gi
zi − z

 〈0 | ψ(z1, g1) . . . ψ(zn, gn) | 0〉 . (8.24)

Thus the Ward identities allow to express current-charge fields correlation
functions in terms of charged fields correlations. We find, in particular, the
3-point function

〈0 | ψ(z1, g)ψ(z2,−g) J(z3) | 0〉 =
g

z13 z23
z1−g2
12 . (8.25)

42John Clive Ward (1924-2000), British physicist; the Ward identity in quantum electrody-
namics relates the renormalization of the wave function of the electron to its vertex function
renormalization.
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Exercise 8.8. Derive in a similar manner the Ward-Takahashi identities for
correlation functions of ψ’s with the stress energy tensor; deduce from this the
expression for the 3-point function

〈0 | ψ(z1, g)ψ(z2,−g)T (z3) | 0〉 =
g2

2
z2−g2
12

z2
13 z

2
23

. (8.26)

Exercise 8.9. Use (8.25) (8.26) and the orthogonality relations in Eq. (8.18) to
verify the third equation (8.18).

Remark 8.1. The algebra A(g2) contains charged fields ψ(z, ng) of all charges
multiple of g (n ∈ Z). They appear as “composite fields” in OPEs of ψ(z,±g).
We have the following iterative rule:

ψ(z1, g)ψ(z2, ng) = zng
2

12 {ψ(z2, (n+ 1)g) +O(z12)} . (8.27)

Thus the (isomorphic to Z) group of all powers of Ug, introduced in the “Sketch
of proof” of Proposition 8.1, is realized in the vacuum representation of A(g2).
It follows that A(m2 g2) (for m > 1 integer) is a proper subalgebra if A(g2).

One can, sure, also consider the CVO ψ(z, g) for any (positive) integer g2;
the odd g2 then correspond to Fermi fields. The local commutativity property
(8.10), extends in this case to a graded local commutativity:

zg
2

12 ψ(z1, g)ψ(z2,−g) = zg
2

21 ψ(z2,−g)ψ(z1, g) for g2 ∈ N . (8.28)

The chiral algebra A(4(2ν + 1)) appears as the bosonic part of the (Z2 graded)
chiral superalgebra A(2ν + 1), ν = 0, 1, . . ..

Exercise 8.10. Let G±(z) =
√

2
3 ψ(z,±

√
3) and normalize the associated u(1)

current J(z) so that to exclude irrationalities in the OPE (8.18), setting 3 z2
12〈0 |

J(z1) J(z2) | 0〉 = 1. Prove the anticommutation relations

[G+(z1), G−(z2)]+ = 2T (z2) δ(z12) + (J(z1) + J(z2)) ∂2 δ(z12) +
1
3
∂2
2 δ(z12)(

〈0 | G+(z1)G−(z2) | 0〉 =
2

3 z3
12

)
. (8.29)

Setting further
G±(z) =

∑
n

G±
n− 1

2
z−n−1 , (8.30)

deduce the modes’ (anti)commutation relations

[G±
n− 1

2
, G∓1

2−m
]+ = 2Ln−m ± (n+m− 1) Jn−m +

n(n− 1)
3

δnm
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[Jn, Jm] =
n

3
δn,−m , [Jn, G±ρ ] = ±G±n+ρ . (8.31)

This is the (vacuum) Neveu-Schwarz sector of the N = 2 (extended) super-
conformal model ([BFK] [G88]).

The chiral algebras A(g2) for integer g2 > 0 provide te simplest examples of
rational CFT.

Proposition 8.2. The algebra A(g2) for g2 = 2, 4, 6, . . . has g2 UIPERs gen-
erated by primary CVO ψ(z, ek), relatively local to ψ(z, g). They correspond to
g ek = k, 1− g2

2 ≤ k ≤ g2

2 . The fusion rules for the primary fields ψ(z, ek) are
given by the multiplication rules of the finite cyclic group of g2 elements

Z e1
Z g

' Z
g2 Z

. (8.32)

Sketch of proof (see [BMT]). Any UIPER of A(g2) gives rise to a fully reducible
unitary positive energy representation of the u(1) current algebra A(VJ) whose
spectrum of J0 is contained in the set e+ Z g for some (real) e. The OPE

ψ(z, g)ψ(0, e) | 0〉 = ψ(z, g) | e〉 = zge(1I +O(z)) | g + e〉 (8.33)

only corresponds to a relatively local ground state | e〉 if it is single valued, i.e.
if the power ge of z is an integer. Noting that e is determined mod ng (n ∈ Z)
we can choose |e| ≤ g

2 . The rest is straightforward. �

The field algebra F
(

1
g2

)
(⊃ A(g2)) generated by the pair of charged primary

fields ψ
(
z,± 1

g

)
admits a finite cyclic group of global gauge transformations

acting on the state space by powers of the operator

U(= U1/g) = e2πi
J0
g , Ug

2
F
(

1
g2

)
= 1IF

(
1
g2

)
. (8.34)

It generates an automorphism of the field algebra such that

U ψ(z, e)U−1 = e2πi
e
g ψ(z, e) ⇒ UAU−1 = A for A ∈ A(g2) . (8.35)

Remark 8.2. The primary chiral vertex operator ψ(z, e) is a multivalued function
of z. In fact, the extension of the relation (8.33) to two primary charges e1, e2
(ei g ∈ Z),

ψ(z, e1) | e2〉 = ze1e2(1 +O(z)) | e1 + e2〉

is a multivalued function of z unless e1e2 is also an integer. Setting z = eit we
find a charge dependent twisted periodicity condition for ψ as a function of t:

ψ(ei(t+2π), e1) | e2〉 = e2πie1e2 ψ(eit, e1) | e2〉 . (8.36)
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The exchange relations of ψ(z, e) with itself give rise to a nontrivial one-dimensio-
nal representation of the braid group which defines for non-integer e2 an anyonic
statistics. (The idea for such statistics appears already in [LM]. More on the
ancestry of the “anyon” can be found in [BLSW] – cf. Section 2.) For eg ∈ Z
such an anyonic representation of B2 is isomorphic to a finite cyclic group. (A
bound state of g2 anyons obeys the Bose-Fermi alternative.) More general lat-
tice vertex algebras yielding anyonic statistics are applied to the description of
the fractional quantum Hall effect, [FKST] [FST] (see also [CGT] where the
intriguing plateau with Hall conductivity σH = 5

2
e2

h is considered).
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9 The su(2) current algebra model. Knizhnik-
Zamolodchikov equation

The simplest models associated with a (non-abelian) braid group statistics are
the affine Kac-Moody current algebra models with a chiral algebra Ak(G) de-
termined by a simple Lie algebra G and an integer level 43 k (= 1, 2, . . .). The
simplest among the simple Lie algebras (corresponding to a compact Lie group)
is G = su(2) spanned by three generators Ja0 , a = 1, 2, 3 satisfying

[Ja0 , J
b
0 ] = i εabc Jc0 (9.1)

where εabc is the totally antisymmetric Levi-Civita tensor (ε123 = 1 = ε312 =
−ε321 = . . .). The corresponding local currents are given by (8.1) (with dsu(2) =
3), the current modes satisfying the CR (8.2) with

fabc = εabc , gab =
1
2
δab . (9.2)

The resulting infinite dimensional Lie algebra is denoted by ŝu(2)k.

Exercise 9.1. Verify that the ŝu(2)k Sugawara chiral stress-energy tensor

T (z) =
1
h

: ~J 2(z) :≡ 1
h

3∑
a=1

: [Ja(z)]2 : , h = k + 2 (9.3)

gives rise to the OPE (8.5) with J(z) substituted by Ja(z) while the second
equation (8.6) is replaced by

T (z1)T (z2) =
ck

2 z4
12

+
T (z1) + T (z2)

z2
12

+O(1) , ck =
3k
k + 2

. (9.4)

The renormalized level h = k+2 is also called the height of Ak(A1) = ŝu(2)k.

Exercise 9.2. Prove that for k = 1 (= c1) and J(z) =
√

2 J3(z), the stress
tensor (9.3) coincides with (8.4) while the “charged components” of the current
are reproduced by the vertex operator construction (8.13):

J±(z) := J1(z)± i J2(z) = E±
√

2 e±
√

2ϕ+(z) z±
√

2 J0 e±
√

2ϕ−(z) (9.5)

43Speaking of an associative chiral algebra Ak characterized by a natural number k (or of
the corresponding infinite dimensional Lie algebra) we depart from the terminology of the

theory of affine Kac-Moody algebras Ĝ ([Kac]) in which the central charge, say K, is an
operator commuting with the current modes. The algebra Ak would then correspond to a
representation of Ĝ in which we have chosen a particular eigenvalue k of the central charge K
(thus specifying the vacuum of the theory).
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with ϕ± given by (8.12). (Hint : verify that T (z) (8.4) (for J(z) =
√

2 J3(z))
and J±(z) satisfy the correct OPE (or CR); deduce furthermore the OPE

J+(z1) J−(z2) =
1
z2
12

{
1 + 2

∫ z1

z2

J3(z) dz + z12(T (z1) + T (z2)) +O(z2
12)
}
(9.6)

for [J1(z1), J2(z2)] = J3(z2) δ(z12), 〈0 | Ja(z1) Jb(z2) | 0〉 z2
12 = 1

2 δ
ab.)

Exercise 9.2 demonstrates that we may only expect to encounter non-abelian
braid group statistics for k ≥ 2.

The representation theory of affine Kac-Moody algebras [Kac] tells us that
ŝu(2)k admits k+1 UIPERs labeled by the values I of the isospin of the ground
states of integrable representations, such that 2I ≤ k. We use here the physicist
terminology: a ground state is a lowest energy state with respect to the confor-
mal energy operator Hc = L0 + L̄0. As L0 and L̄0 commute, it factorizes into
a product a ground states for the left and right movers’ current algebras. We
shall only mention diagonal representations (with I = Ī) in this brief synopsis
of the ŝu(2)k CFT model and will spell out the properties of the chiral (say, left
movers’) representations.

Exercise 9.3. (a) Prove, using (7.21), that the chiral energy operator L0 com-
mutes with the currents’ zero modes: [L0, J

a
0 ] = 0, a = 1, 2, 3. Deduce, as a

corollary that the subspace of ground states of isospin I has dimension p ≡ 2I+1.
A basis |k, II3〉 of ground states in which J3

0 is diagonal is characterized by

Jan | k, II3〉 = 0 for n > 0 , (J3
0 − I3) | k, II3〉 = 0 ,

I3 = −I, 1− I, . . . , I (2I = 0, 1, . . . , k) . (9.7)

(b) Prove as a consequence of (9.7) and the Sugawara formula (9.3) that

L0 =
1
h

(
~J 2
0 + 2

∞∑
n=1

~J−n ~Jn

)
, (L0 −∆I) | k, II3〉 = 0 ,

∆I =
I(I + 1)

h
(h = k + 2) . (9.8)

The 2D primary field φI(z, z̄) which intertwines the vacuum representation
of ŝu(2)k ⊕ ŝu(2)k with the one of weight (I, I) is thus a (2I + 1) × (2I + 1)
component isospin tensor. In particular, the step operator φ 1

2
can be viewed as

an SU(2) “group valued” field g(z, z̄) = {g(z, z̄)AB , A,B = 1, 2}. The quotation
marks should remind us that the quantum field g(z, z̄) is actually a 2×2 matrix
of operator valued distributions; only its classical counterpart can be assumed
to belong to SU(2). The 2-point function of g factorizes:

〈0 | g(z1, z̄1)A1
B1
g(z2, z̄2)A2

B2
| 0〉 =

εA1A2

(z12)2∆
εB1B2

(z̄12)2∆
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(ε12 = ε12 = 1 = −ε21) , ∆ = ∆ 1
2

=
3
4h

.

Its 4-point function, however, does not (for k > 1). This suggests writing g(z, z̄)
as a matrix product of chiral fields:

g(z, z̄)AB = g(z)Aα ḡ
−1(z̄)αB

(
≡

2∑
α=1

g(z)Aα ḡ
−1(z̄)αB

)
. (9.9)

The 2D field g(z, z̄) provides an example of a conformal but not GCI field,
as its correlation functions are not rational. It is also locally commuting but
violates the stronger Huygens locality (6.18). Note that for Euclidean compact-
ified space-time t→ it, z and z̄ are complex conjugate (z = e−t+ix, z̄ = e−t−ix);
locality then implies that g(z, z̄) should be periodic in x (i.e. single valued in
z):

e2πi(L0−L̄0) g(z, z̄) e2πi(L̄0−L0) = g(e2πi z, e−2πi z̄) = g(z, z̄) ,

e2πiL0 g(z, z̄) e−2πiL0 = e2πi∆ g(e2πi z, z̄) . (9.10)

This only implies that the chiral components of g(z, z̄) appearing in the right
hand side of (9.9), should have the same monodromy M :

e2πiL0 g(z) e−2πiL0 = e2πi∆ g(z e2πi) = g(z)M (= g(z)Aσ M
σ
α ) ,

e−2πi∆ ḡ(z̄ e−2πi) = ḡ(z̄)M (9.11)

which will then cancel in the product (9.9).

Exercise 9.4. Use (9.11) to prove (M − q−3/2) | 0〉 = 0 for q = e−
iπ
h .

The chiral fields g(z) and ḡ(z̄) satisfy a differential equation involving the
ŝu(2) currents which follow from the Ward(-Takahashi) identities and from the
Sugawara formula. In order to write it down it is convenient to combine the
three components Ja(z) of the current into a second degree polynomial in a
formal variable ζ:

J(z, ζ) = J−(z) + 2 ζ J3(z)− ζ2 J+(z) (J± = J1 ± i J2) . (9.12)

We leave it to the reader to verify that then the 2- and 3-point functions of
the current assume the form:

〈0 | J(z1, ζ1) J(z2, ζ2) | 0〉 = −k ζ
2
12

z2
12

(ζ12 = ζ1 − ζ2)

〈0 | J(z1, ζ1) J(z2, ζ2) J(z3, ζ3) | 0〉 = k
ζ12 ζ23 ζ13
z12 z23 z13

. (9.13)

A chiral ŝu(2)k primary field φI (of isospin I) has both SU(2) and Uq indices
(like g(z)Aα for I = 1

2 ) and can be viewed, alternatively, as a polynomial (of
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degree 2I) in two formal variables ζ and u, respectively. We shall expand its
4-point function in the Uq-invariant amplitudes J (I)

λ (u1, . . . , u4) (4.29):

〈0 | φI(z1, ζ1;u1)φI(z2, ζ2;u2)φI(z3, ζ3;u3)φI(z4, ζ4;u4) | 0〉

=
2I∑
λ=0

wλ(z1, ζ1; z2, ζ2; z3, ζ3; z4, ζ4)J (I)
λ (u1, u2, u3, u4) . (9.14)

The properties of the primary field φI are determined by its commutation rela-
tions with the modes Jn(ζ) of the current encoded in:

[J (−)(z1, ζ1), φI(z2, ζ2;u)] = − 1
z12

(ζ2
12 ∂ζ2 + 2I ζ12)φI(z2, ζ2;u)

[φI(z1, ζ1;u), J(+)(z2, ζ2)] =
1
z12

(
ζ2
12

∂

∂ζ1
− 2I ζ12

)
φI(z1, ζ1;u) , (9.15)

where the frequency parts of the current, J (−) and J(+) are defined as in (8.22);

setting similarly T (−)(z) =
∞∑
n=0

Ln−1
zn+1 , T(+)(z) =

∞∑
n=0

L−n−2 z
n we find

[T (−)(z1), φI(z2, ζ;u)] =
∆I

z2
12

φI(z2, ζ;u) +
1
z12

∂z2 φI(z2, ζ;u)

[φI(z1, ζ;u), T(+)(z2)] =
∆I

z2
12

φI(z1, ζ;u)−
1
z12

∂z1 φI(z1, ζ;u) . (9.16)

Proposition 9.1. Let φI(z, ζ;u) be an ŝu(2)k primary fields, that is a field
satisfying (9.15) and (9.16). Then ∆I is given by (9.8) and φI satisfies the
Knizhnik44-Zamolodchikov (KZ) equation

h ∂z φI(z, ζ;u) = I : ∂ζ J(z, ζ)φI(z, ζ;u) : − : J(z, ζ) ∂ζ φI(z, ζ;u) : (9.17)

where the normal product is defined by the non-singular term in the current-field
OPE and is expressed simply in terms of the frequency parts of J :

: J(z, ζ1)φI(z, ζ2) := J(+)(z, ζ1)φI(z, ζ2) + φI(z, ζ2) J (−)(z, ζ1) . (9.18)

Sketch of proof. Eq. (9.17) folows from the known CR [Ln, φI(z)], [Jm, φI(z)]
derived from (9.15) (9.16) and from the Sugawara expression (9.3) for T . (See
[FST] Chapter 5 for details.) �

It is instructive to display the KZ equation for the basic group valued field
g(z, z̄) in a matrix form, spelling out in this case the meaning of the right hand

44Vadim Genrikhovich Knizhnik (Kiev 1962-Moscow 1987) was a student of A.M. Polyakov.
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side of (9.17). To this end we introduce the matrix valued current J
∼
(z) =

J i(z)σi related to J(z, ζ) (9.12) by

J(z, ζ) = (ζ, 1) J
∼
(z)
(

1
−ζ

)
= (ζ, 1)

(
J3(z) J+(z)
J−(z) −J3(z)

)(
1
−ζ

)
. (9.19)

Exercise 9.5. Prove that Eq. (9.17) (for I = 1
2 ) is equivalent to

h
∂

∂z
g(z, z̄)AB = − : J

∼
(z)AS g(z, z̄)

S
B : . (9.20)

(Solution : setting g(z, z̄; ζ)B = ζ g(z, z̄)1B + g(z, z̄)2B we find

1
2

:
∂J(z, ζ)
∂ζ

g(z, z̄; ζ)B : − : J(z, ζ)
∂

∂ζ
g(z, z̄; ζ)B :

= : (J3(z) g(z, z̄)2B − J−(z) g(z, z̄)1B − (J3(z) g(z, z̄)1B + J+(z) g(z, z̄)2B) ζ) :
= − : (ζ J

∼
(z)1S + J

∼
(z)2S) g(z, z̄)SB : .)

Proposition 9.2. The operator KZ equation (9.17) and the (operator) Ward
identities (9.15) (9.16) allow to write down the KZ equation for any correlation
function of φI . In particular, SU(2) and conformal invariant amplitudes fλ(ξ, η)
of the 4-point functions wλ (9.14), defined by

wλ(z1, ζ1; . . . ; z4, ζ4) = PI(zij , ζij) fλ(ξ, η) , ξ =
ζ12 ζ34
ζ13 ζ24

, η =
z12 z34
z13 z24

, (9.21)

pI(zij , ζij) =
(

z13 z24
z12 z23 z34 z14

)2∆I

(ζ13 ζ24)2I , (9.22)

satisfy the KZ equation(
h
∂

∂η
− C12

η
+

C23

1− η

)
fλ = 0 , (9.23)

where Cij = (~Ii + ~Ij)2 are the Casimir invariants which can be expressed as
second order differential operators in ξ:

C12 = 2I(2I + 1− 2Iξ)− [4I(1− ξ)− ξ] ξ
∂

∂ξ
+ ξ2(1− ξ)

∂2

∂ξ2
,

C23 = 2I(2I + 1− 2I(1− ξ)) + (4Iξ + 1− ξ)(1− ξ) ∂

∂ξ
+ ξ(1− ξ)2 ∂2

∂ξ2
. (9.24)

Sketch of proof. Applying Eq. (9.17) to φI(z2, ζ2;u2) and moving J (−)(z2, ζ2)
to the right and J(+)(z2, ζ2) to the left, using in both cases Eq. (9.15) as well as
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J (−)(z, ζ) | 0〉 = 0 = 〈0 | J(+)(z, ζ), we find for the full 4-point function (9.14)
and hence for each wλ the equation(

h ∂z2 +
2~I1 · ~I2
z12

− 2~I2 · ~I3
z23

− 2~I2 · ~I4
z24

)
wλ(z1, ζ1; . . . ; z4, ζ4) = 0 , (9.25)

where 2~Ii · ~Ij = 2
3∑
a=1

Iai I
a
j is the polarized su(2) Casimir operator that can be

expressed as a differential operator in ζi and ζj . Inserting (9.19) into (9.23) and
using the identity

(~I1 + ~I2 + ~I3 + ~I4)wλ = 0 = (2~I1 · ~I2 + 2~I2 · ~I3 + 2~I2 · ~I4 + 2I(I + 1))wλ (9.26)

we obtain (9.21). Using further the relations

2~Ii · ~Ij = 2I [I + ζij(∂j − ∂i)]− ζ2
ij ∂i ∂j (9.27)

for ~I 2
i = I(I + 1), ∂i = ∂

∂ ζi
, we find (9.24). �

The basis {wλ (or fλ)} of solutions to (9.25) (or (9.23)) is fixed by the
requirement that the full 4-point function (9.14) is invariant under the diagonal
action of the braid group B4 on wλ and J (I)

λ . We shall write down this solution
expanding wλ in a set {J (I)

` } of SU(2) invariants obtained from J (I)
λ in the

limit q → 1:

J
(I)
` (ζ1, . . . , ζ4) = (ζ12 ζ34)2I−`(ζ14 ζ23)` = (ζ13 ζ24)2I ξ2I−` (1− ξ)` . (9.28)

The result is ([STH])

fλ(ξ, η) =
2I∑
`=0

ξ2I−` (1− ξ)` η`(1− η)2I−` g`λ(η) (9.29)

where g`λ is given by the 2I-fold integral

g`λ(η) =
∫ η

0

dt1

∫ t1

0

dt2 . . .

∫ tλ−1

0

dtλ

∫ 1

η

dtλ+1

∫ 1

tλ+1

dtλ+2

. . .

∫ 1

t2I−1

dt2I P
`
λ(η, ti) , (9.30)

P `λ(η, ti) =
2I∏
i=1

t
1
h
i (1− ti)

1
h

λ∏
i=1

(η − ti)
1
h−1

2I∏
j=λ+1

(tj − η)
1
h−1

∏
1≤i<j≤2I

(ελj tij)
2
h

×
∑
σ∈S2I

∏̀
i=1

t−1
σi

2I∏
j=`+1

(1− tσj)−1 , (9.31)
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the sum being spread over all permutations σ : (1, . . . , 2I) → (σ1, . . . , σI). In
order to verify the braid invariance of the resulting 4-point function (9.14) one
computes separately the B4 action on the Uq invariants J (I)

λ (u1, . . . , u4) (using
the braid operator R̂ (4.38)) and of the (analytically continued) functions (9.21)–
(9.23), (9.29)–(9.31), taking into account the transformation properties of the
SU(2) invariants J (I)

` (ζ1, . . . , ζ4) under permutation:

1 � 2 : J (I)
` (ζ2, ζ1, ζ3, ζ4) = (−1)2I−`

∑̀
s=0

(
`

s

)
J (I)
s (ζ1, ζ2, ζ3, ζ4)

2 � 3 : J (I)
` (ζ1, ζ3, ζ2, ζ4) = (−1)`

2I∑
s=`

(
2I − `

2I − s

)
J (I)
s (ζ1, ζ2, ζ3, ζ4) . (9.32)

We shall not work out here the details (see [STH] and [ST96] where the case of
different isospins is also outlined) but will write down the resulting lower and
upper triangular braid matrices in Section 11 below.
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10 Canonical approach; WZNW action. Quan-
tum matrix algebra

Although we are using throughout the axiomatic approach to conformal current
algebras (combined with the representation theory of affine Kac-Moody alge-
bras) we shall also give here a sketchy overview of the canonical action principle
set forth by Witten [W84] (developing ideas of [WZ] and [N82] – a few months
before the KZ equation was published).

We begin with an outlook of the first order Lagrangian (also called covariant
Hamiltonian) formalism following [G].

In general, a field theory lives on a fibre bundle locally equivalent to M×F
with a D-dimensional base space-time manifold M and a fiber F of field config-
urations. We shall use, correspondingly, two exterior differentials, a horizontal
one, d, acting on (the tangent space to) M, and a vertical one, δ, acting on F ,
so that the total exterior differential d on M×F appears as their sum:

d = d+ δ , d2 = δ2 = 0 = [d, δ]+ (≡ dδ + δd) ⇒ d2 = 0 . (10.1)

Whenever an action density (Lagrangian) exists it gives rise to a D-form L on
M×F that will be assumed linear in the field differentials. The (D + 1)-form

ω := dL (⇒ dω = 0) (10.2)

provides an invariant characterization of the system: the pull-back of its con-
traction with verticle vector fields δ

δφ reproduces the equations of motion, while
the integral of ω over a (D− 1)-dimensional space-like (say, equal time) surface
in M defines a symplectic form on the fields. Such a closed (D + 1)-form may
exist also when there is no single valued local action. This is precisely the case
with the (classical) Wess45-Zumino-Novikov-Witten (WZNW) model which we
proceed to describe for the su(2) current algebra.

Space-time is taken to be the 2-dimensional (2D) cyclinder

M = R× S1 = {x := (x0, x1) ≡ (t,x) , t ∈ R , x ∈ R/2π Z} . (10.3)

In the first order formalism F is taken to consist of a pair of (periodic in x)
maps (g, J) such that

g(x) ∈ SU(2) , g(t,x + 2π) = g(t,x) , (10.4)

J(x) = jµ(x) dxµ , jµ(x) ∈ su(2) , jµ(t,x + 2π) = jµ(t,x) . (10.5)

(Note that the su(2)-valued 1-form J(x) is horizontal.) The basic 3-form ω is
defined by

4π ω = d tr
(
i g−1 d g +

1
2k

J

)
∗J + k θ(g) , (10.6)

45Julius Wess (1934-2007), Austrian physicist, a student of Hans Thirring (1888-1976).
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where ∗J is the Hodge46 dual to J ,

∗J(x) = j0(x) dx1 − j1(x) dx0 ≡ εµν j
µ(x) dxν , (10.7)

while the Wess-Zumino term θ(g) is the canonical 3-form on the group:

θ(g) =
1
3

tr(g−1 dg)3 ((g−1dg)3 ≡ g−1dg ∧ g−1dg ∧ g−1dg) . (10.8)

(We omit throughout this section the wedge product of 1-forms.)

Exercise 10.1. The trace of the product of 1-forms a1 . . . an obeys the graded
cyclic property tr(a1a2 . . . an) = (−1)n−1 tr(ana1 . . . an−1). Deduce from here
that the 3-form θ is closed,

dθ(g) = 0 , (10.9)

but not exact: there is no globally defined single valued 2-form α(g) on SU(2)
such that θ = dα.

Exercise 10.2. Using the relation dxµ dxν = −εµν dx0 dx1 (εµν = −εµν) derive
the following expressions for J ∗J and its exterior differential:

J ∗J = jµ j
µ dx0 dx1(= − ∗J J) , d J ∗J = 2jµ δjµ dx0 dx1 . (10.10)

Varying ω with respect to ∗J and “pulling back” (i.e. projecting on horizon-
tal differentials) we find the classical KZ equation :

i g−1 dg +
1
k
J = 0 . (10.11)

To see the precise relation between (9.20) and (10.11) we set J = J
∼
(z) dz +

J̄
∼
(z̄) dz̄ and multiply both sides of (10.11) by k g(z, z̄). The effect of quantization

then consists in replacing operator products with normal products and the level
k with (its renormalized value) the height h.

Varying further the 3-form (10.6) with respect to g we find the second equa-
tion of motion

d ∗J = −ik(g−1 dg)2 =
i

k
J2 ⇔ ∂µ j

µ ≡ ∂1 j1 − ∂0 j0 =
i

k
[j0, j1] . (10.12)

Taking the exterior derivative of (10.11) and comparing with (10.12) we deduce

d(J + ∗J) = 0 ⇔ ∂+ jR = 0 , ∂± =
1
2
(∂1 ± ∂0) ; (10.13)

46The Scottish mathematician William V.D. Hodge (1903-1975) discovered topological rela-
tions between algebraic and differential geometry. (See M. Atiyah, William Valance Douglas
Hodge, Bull. London Math. Soc. 9 (1) (1977) 99-118.)
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the left- and right-movers’ currents are

jR =
1
2
(j0 + j1) , jL =

1
2
g(j1− j0) g−1(= −ik(∂+ g) g−1) , ∂− jL = 0 . (10.14)

The symplectic form of the model can be written in three equivalent forms:

Ω(2) =
1
4π

∫ π

−π
dx1 tr (k g−1 g′ − i j0)(g−1 δg)2 + i δj0 g−1 δg)

= − 1
2π

∫ π

−π
dx1 tr

(
i δ(jL δg g−1) +

k

2
δg g−1(g−1 δg)′

)
=

1
2π

∫ π

−π
dx1 tr

(
i δ(jR g−1 δg) +

k

2
g−1 δg(g−1 δg)′

)
(10.15)

where f(x0, x1)′ stands for partial derivative of f in x1.

Exercise 10.3. Use the relations

j0 = 2jR + ik g−1 g′ = 2 g−1 jL g − ik g−1 g′ = jR − g−1 jL g ,

and
ik tr(δg g−1 (δg g−1)′) = tr(δj1 g−1 δg)

to verify the equivalence of the three expressions (10.15).

The general solution of the equations of motion (10.11)–(10.14),

∂+(g−1 ∂− g) = 0 ⇔ ∂−((∂+ g) g−1) = 0 (10.16)

can be written in a factorized form

g(x+, x−) = gL(x+) g−1
R (x−) , x± = x1 ± x0 (10.17)

(cf. (9.9)). The following result of Gawedzki [G] allows to split the symplectic
form (10.15) into a left- and right-movers’ part as well.

Proposition 10.1. One can split Ω(2) as a sum of two chiral forms which only
differ in sign,

Ω(2) = Ωc(gL)− Ωc(gR) (10.18)

Ωc(g) =
k

4π
tr
{∫ π

−π
dx g−1 δg(g−1 δg)′ + b−1 δb δMM−1

}
, (10.19)

where
b := g(−π) (g = gL or gR) , M = b−1 g(π) (10.20)

with M independent of the chirality: M = b−1
L gL(π) = b−1

R gR(π).

As we have seen in our survey of the axiomatic approach to the su(2) current
algebra model (Section 9) only the chiral components of g (g(z) and ḡ(z̄) in
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the z-picture, g±(x±) in the present context) give room to – indeed display
– a quantum group symmetry. In the canonical approach such a splitting is
suggested by the fact that chiral (left and right) currents jC are periodic in
their respective arguments,

jC(x+ 2π) = jC(x) for C = L,R (10.21)

(thus appearing as chiral observables) and Poisson commute

{jL(x+), jR(y−)} = 0 . (10.22)

(Computing Poisson brackets from a given symplectic form Ω = 1
2 ωij dξ

i ∧ dξj
amounts to inverting the skew symmetric matrix (ωij):

{f(ξ), g(ξ)} = (ω−1)ij
∂f

∂ξi
∂g

∂ξj
.

In the infinite dimensional case at hand this requires, in general, some work
– see [G]. The trivial Poisson bracket relations (10.22) follow however simply
from the splitting (10.18)–(10.20) of the form Ω(2) into chiral parts and from
the fact that jL and jR are periodic and hence commute with the monodromy
M . They are also a consequence of the observation that jL and jR appear as
Noether47 currents for two commuting, left and right, symmetries.) Eq. (10.22)
is the classical counterpart of the local commutativity of observable Bose fields.

The chiral group valued fields gL(x+) and gR(x−) are determined by the
corresponding currents and the classical chiral KZ equations (the chiral coun-
terparts of (10.11)):

k ∂+ gL(x+) = i jL(x+) gL(x+) , k ∂− gR(x−) = −i jR(x−) g(x−) . (10.23)

The solution of (the quantum counterpart of) these equations involves the in-
troduction of the chiral zero modes aiα of gC which diagonalize the monodromy:

gL(x)Aα = uAi (x) aiα(= uA1 (x) a1
α + uA2 (x) a2

α) , aiσM
σ
α = (Mp)ij a

j
α (10.24)

where Mp is a diagonal unitary matrix depending on the operator p whose
eigenvalues are the dimensionalities, 2I + 1, of the IRs of Uq. The (quantized)
zero modes aiα behave as q-deformed creation (for i = 1) and annihilation (for
i = 2) operators whose Fock space will be displayed in Section 12 below.

In summary, the canonical approach allows to reproduce the results of the
axiomatic treatment of Section 9. This is a long story with no complete peda-
gogical treatment in the literature. (Its systematic study starts with [G]; further
developments can be traced back from [FHT].) Here we shall only elaborate on
the Uq properties of the above group valued zero modes aiα (the “qantum oscil-
lators”) as they are related to the main topic of these lectures. Such “twisted

47(Amalie) Emmy Noether (1882-1935) became in 1919 the first woman professor at the
University of Göttingen.
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oscillators” were first considered for their own sake (with no relation to the
WZNWmodel) in [PW].

We assume that aiα (i, α = 1, 2) belong to an associative algebra Aq that
contains Uq as a subalgebra. For any a ∈ Aq and X ∈ Uq we define the adjoint
action AdX of X on a by

AdX(a) =
∑
(X)

x1 aS(x2) for ∆X =
∑
(X)

x1 ⊗ x2 . (10.25)

In particular, for X = E and X = K we find (using (4.6) and (4.8))

AdE(a) = E aK−1 − aE K−1 , AdK(a) = K aK−1 .

Let, for any X ∈ Uq, Xf be the fundamental 2× 2 matric representation (given
by (4.11) for i = 1). We define the Uq transformation law of aiα by

AdX(aiα) = aiβ (Xf )βα . (10.26)

Exercise 10.4. Derive the CR of aiα with E,F and K.
(Answer : [E, ai1] = 0, [E, ai2] = ai1K, F ai1 − q−1 ai1 F = ai2, F a

i
2 − q ai2 F = 0,

K ai1 = q ai1K, K ai2 = q−1 ai2K, i = 1, 2.)

The Uq quantum matrix algebra Aq is generated by aiα and q±p satisfying

qp a1
α = a1

α q
p+1 , qp a2

α = a2
α q

p−1 , qp q−p = 1I (10.27)

a2
α a

1
β = a1

α a
2
β + [p] εαβ , aiα a

i
β ε

αβ = 0 , i = 1, 2 ,

a2
α a

1
β ε

αβ = [p+ 1] , a1
α a

2
β ε

αβ = −[p− 1] , (10.28)

where εαβ (= εαβ) is the q-deformed Levi-Civita tensor (2.23). The relations
(10.28) can be recast into a (quantum) determinant condition,

detq a :=
1
[2]

εij a
i
α a

j
β ε

αβ = [p] , (εij) =
(

0 −1
1 0

)
, (10.29)

and the homogeneous R-matrix relation which allow a straightforward general-
ization to the Uq(Ar) case [HIOPT]

R(p)ij`m a
m
β a

`
α = aiρ a

j
σ R

ρσ
αβ (10.30)

where R = (Rρσαβ) is the 4×4 matrix (5.5) while R(p) is the dynamical R-matrix :

R(p) = q−
1
2



q 0 0 0

0 [p−1]
[p]

qp

[p] 0

0 − q−p

[p]
[p+1]
[p] 0

0 0 0 q


. (10.31)

69



Exercise 10.5. Demonstrate that (10.27)–(10.28) imply (10.29)–(10.30) while
the determinant condition (10.29) alone yields (10.28).

Exercise 10.6. Assuming that q±p commute with Uq and using (10.26) and
Exercise 10.4 prove the Uq-covariance of (10.27)–(10.28).
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11 Monodromy representations of the braid group

The following braid relations have been derived in [STH] for the regular basis
(9.21) (9.29)–(9.30). Let bj stand for the exchange of the variables (zj , ζj) with
(zj+1, ζj+1) along a path (in z-space) for which zj j+1 → e−iπ zj j+1; then

b1 f
(I)
µ (ξ, η) = (1− ξ)2I (1− η)4∆I f (I)

µ

(
ξ

ξ − 1
,
η e−iπ

1− η

)
= f

(I)
λ (ξ, η)Bλ1µ ,

b2 f
(I)
µ (ξ, η) = ξ2I η4∆I f (I)

µ

(
1
ξ
,
1
η

)
= f

(I)
λ (ξ, η)Bλ2µ , (11.1)

where B1 is a lower triangular, B2 is an upper triangular matrix:

Bλ1µ = (−1)2I−λ qλ(µ+1)−2I(I+1)

[
λ

µ

]
= B2I−λ

2 2I−µ , (11.2)

and we have B3 = B1. Here q may be any primitive h-th root of −1:

qh = −1 (qn 6= −1 if 0 < n < h) . (11.3)

It follows, in particular, that q is a phase factor (q q̄ = 1).

Exercise 11.1. Verify that the inverse matrices to Bi(q) for q satisfying (11.3)
are obtained by complex conjugation:

Bi(q)Bi(q̄) = 1I for q q̄ = 1 (11.4)

(1I standing for the (2I + 1)× (2I + 1) unit matrix).

Exercise 11.2. Verify the braid relation

B1B2B1 = B2B1B2 = (−1)2I q̄2I(I+1) F , Fλµ = δλ2I−µ (11.5)

(the fusion matrix F is, thus, a permutation matrix satisfying F 2 = 1I). Verify
that

B2 = F B1 F (B1 = F B2 F , F = F−1) . (11.6)

Remark 11.1. It can be demonstrated that, for q satisfying (11.3), B2h
i,i=1,2 is a

multiple of the unit matrix for 2I+1 < h but is not diagonalizable for 2I+1 ≥ h.

Exercise 11.3. Verify the statement of Remark 11.1 for small values of h and
2I.

It follows from Remark 11.1 that the braid matrices B1 and B2 are not
diagonalizable – and hence not unitarizable for non-integrable representations
of the su(2) current algebra (i.e. for representations violating the upper bound
2I ≤ k (9.7)). Note that the eigenvalues of Bi have absolute value 1, hence
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the matrices Bi are unitarizable exactly when they are diagonalizable. This
explains why the B1-diagonal basis, used in most of the literature, is ill defined
beyond the unitarity limit, and justifies the attribute “regular” for the above
triangular basis which always makes sense.

In order to give the reader a better feeling of this monodromy representation
of the braid group B4 we shall consider in more detail the simplest representation
corresponding to 2I = 1 (i.e. to the braiding properties of the 4-point function
of the chiral group-valued field g(z)).

Exercise 11.4. Verify that the normalized 2× 2 braid matrices (of determinant
−1)

b1 = q
1
2 B

(2I=1)
1 =

(
−q̄ 0
1 q

)
, b2 = q

1
2 B

(2I=1)
2 =

(
q 1
0 −q̄

)
(11.7)

satisfy the Hecke algebra relations (2.18).

Remark 11.2. The general Hecke algebra representation of B4 realized on the
4-fold tensor product (C2)⊗4 of the space C2 of 2-component isospinors is 16
dimensional. It can be constructed in terms of the Tempereley-Lieb projectors
(2.19) as follows:

bi = q 1I− ei , i = 1, 2, 3 ; e1 = (εα1α2 εβ1β2 δ
α3
β3
δα4
β4

) ,

e2 = (δα1
β1
εα2α3 εβ2β3 δ

α4
β4

) , e3 = (δα1
β1
δα2
β2
εα3α4 εβ3β4) (11.8)

where εαβ = εαβ is the q-deformed Levi-Civita tensor (2.23). The above 2-
dimensional representation of B4 is a subrepresentation of this 16-dimensional
one, spanned by the SU(2) invariant tensors in (C2)⊗4. We leave it to the reader
to work out the details of this projection.

We shall end up our study of the 2-dimensional representation of B4 by
answering the following question.

The Schwarz problem: for which values of h (= 3, 4, . . .) and q satisfying
(11.3) is the matrix group generated by the 2 × 2 matrices bi (11.7), a finite
group?

The answer to this question determines when the KZ equation (for 2I = 1)
admits elementary (algebraic) solutions.

As b2h1 = b2h2 = 1I for h = 3, 4, . . ., it is enough to study the commutator
subgroup, generated by the pair

b = b−1
1 b2 = b2 b1 b

−1
2 b−1

1 =
(
−q2 −q
q 1− q̄2

)
, b̄ = b1, b

−1
2 . (11.9)

The argument we shall present in solving the problem (a special case of [ST]) is
interesting in that it applies some elementary number theoretic methods.
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Proposition 10.1. The real symmetric matrix

A =
(

[2]2 [2]
[2] [2]2

)
= tS

(
[3] 0
0 [2]2

)
S , S =

(
1 0
1
[2] 1

)
(11.10)

(S being the matrix diagonalizing b1,

S b1 S
−1 =

(
−q̄ 0
0 q

)
, (11.11)

which is well defined for h > 2) is B4 invariant:

b∗Ab = A , ∀ b ∈ B4 ⇔ tbiA = Abi , i = 1, 2 , for b̄i = b−1
i , (11.12)

where tS (and tb) denotes the transposed of S (and b).

Proof. For b1 Eq. (11.12) is a consequence of (11.11):

tb1A = tb1
tS

(
[3] 0
0 [2]2

)
S = tS

(
−[3] q̄ 0

0 [2]2 q

)
S = Ab1 ;

for b2 both sides of (11.12) give [2]
(

1 + q2 q
q −q̄2

)
. The equivalence of the two

invariance conditions for the realization (11.7) of bi follows from (11.4). �

Remark 11.3. The eigenvalues [2]2 ± [2] of A differ from those of the diagonal
matrix diag ([3], [2]2) of (11.10). However the positivity conditions for both are
equivalent because of the inertia law for non-degenerate quadratic forms.

Corollary 11.1. The above 2-dimensional representation of B4 is unitarizable
provided

([2] =) q + q̄ = 2 cos
π

h
, i.e. q = e±i

π
h (for h > 3) . (11.13)

(For h = 3 the form A (11.10) is degenerate since then [3] = 0.) Indeed, for
h ≥ 4 the matrix A is positive definite since then [2] > 1 ([3] ≥ 1).

Eq. (11.13) that guarantees the positivity of A is the only one which depends
on the choice of a primitive root of (11.3). To stress this point we introduce the
notion of a Galois48 automorphism for the cyclotomic field defined by (11.3).
The map q → qn is a Galois automorphism of the field Q [q] of polynomials in q

48The legendary Evariste Galois (1811-1832) was only appreciated posthumously. His major
work on algebraic equations was finally published in 1846 (following a positive review by
Liouville 3 years earlier) – some 14 years after his fatal duel. In the night before the duel
Galois, 20, composed a letter to his friend Auguste Chevalier outlining his mathematical ideas.
Here is what Hermann Weyl had to say about this “testament”: “This letter, if judged by the
novelty and profundity of ideas it contains, is perhaps the most substantial piece of writing
in the whole literature of mankind”.
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(obeying (11.3)) with rational coefficients, iff (n, 2h) = 1 – i.e. iff n is coprime
with 2h.

Exercise 11.5. (a) Prove that the Galois group for h = 10 is isomorphic to the
product of cyclic groups of two and four elements, Z/(2) × Z/(4). (Hint : it is
spanned by the exponents ±1, ±3, ±7, ±9 with multiplication mod 20.)

(b) Prove, similarly, that the Galois group for h = 30 is a 16 element group
isomorphic to Z/(2)× Z/(2)× Z/(4).

Remark 11.4. The solution of Exercise 11.5(b) is related to the Coxeter expo-
nents (1, 7, 11, 13, 17, 19, 23, 29) of the exceptional group E8. (For an application
of the Coxeter exponents to the classification of the ŝu(2)k conformal invariant
theories – see [CIZ].)

A form A with coefficients in Q [q] is said to be totally positive if it is positive
for all Galois transforms q → qn, (n, 2h) = 1 of q. The relevance of this concept
to our problem is revealed by the following crucial lemma.

Proposition 11.2. If the form (11.10) is totally positive, i.e. if [3] = q2 + 1 +
q̄2 > 0 for all primitive roots of (11.3), then the 2-dimensional representation of
B4, which leaves the non-degenerate form A invariant, is a finite matrix group.
Conversely, if the invariant hermitian form is unique (or, equivalently, if the
representation of B4 under consideration is irreducible), then the total positivity
of A is necessary for its finiteness.

The proof is based on the fact that the invariance group of a totally positive
form A over a cyclotomic field is compact. Since B4 is discrete it would follow
that the matrix group generated by b1, b2 (11.7) is finite.

As any finite dimensional representation of a compact group is unitarizable
the unique invariant form A should be positive together with all its Galois
transforms. �

Proposition 11.3. The commutator subgroup of the 2 × 2 matrix (2I = 1)
realization of B4 generated by the matrices b and b̄ (10.9) is only finite for
h = 4, 6, 10. It is isomorphic to: (i) the 24 element double cover Ã4 of the
tetrahedral group for h = 4; (ii) the 8 element group of quaternion units for
h = 6; and (iii) the 120 element double cover Ã5 of the icosahedral group for
h = 10. (Here An stands for the alternating subgroup of even permutations of
Sn represented by 3× 3 orthogonal matrices, Ãn is its double cover belonging to
SU(2).)

Proof. For both h = 4 ([3] = 1) and h = 6 ([3] = 2) the q-number [3] is
independent of the choice of a primitive h-th root of −1 – and is positive. In
general, we have to verify for which h

[3]qn = 1 + 2 cos
2nπ
h

≥ 0 for all n such that (2h, n) = 1 . (11.14)
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For h = 4m − 1, m = 2, 3, . . ., we can set n = 2m − 1, for h = 4m + 1,
m = 1, 2, . . ., we may choose n = 2m+ 1, violating in both cases the inequality
(11.14) (the maximal value of [3]q2m+1 occuring for m = 1: [3]3 = 1+2 cos 6π

5 =
1 − 2 cos π5 = 1 − 1+

√
5

2 = 1−
√

5
2 < 0). For h = 4m, m ≥ 2 we have [3]q2m+1 =

1 − 2 cos π
2m ≤ 1 − 2 cos π4 = 1 −

√
2 < 0. Finally, for h = 4m + 2, m ≥ 2 we

have [3]q2m−1 = 1 + 2 cos
(

2m−1
2m+1 π

)
= 1− 2 cos 2π

2m+1 which implies

[3]q3
(h=10)
== 1−2 cos

2π
5

=
3−

√
5

2
> 0 , [3]q2m−1 ≤ 1−2 cos

2π
7
< 0 for m ≥ 3 .

(11.15)
We conclude that the exceptional properties of the golden ratio (i.e. of x =
2 cos π5 (= 1+

√
5

2 ) satisfying x2 = x + 1) ensure the positivity of [3]q3 thus
verifying total positivity for (h = 6 and) h = 10 only (among h = 4m+ 2).

In order to identify the various finite groups we use

b3 = b̄3 = −1 = (b−1 b̄)2 for h = 4 , (11.16)

b2 = b̄2 = (b−1 b̄)2 = −1 for h = 6 , (11.17)

(b−1 b̄2)2 = (b−1 b̄)3 = b̄5 = −1 for h = 10 . (11.18)

�

Remark 11.5. Propositions 11.2 and 11.3 are special cases of Lemma 3.2 and
Theorem 3.3 of [ST] where all monodromy representations of B4 (for the su(2)
current algebra) realized by finite matrix groups are classified. The results for
the 2-dimensional representations displayed here have been derived earlier (by
quite different methods) by V. Jones (see the first reference [J]). Note that the
exceptional values 4, 6 and 10 of the height h correspond to levels k = h − 2
equal to the (real) dimensions 2, 4, 8 of the field of complex numbers and of the
division algebras of quaternions and octonions.

The following corollary of Proposition 11.3 (much as the end of the proof of
that Proposition) require deeper familiarity with finite groups defined in terms
of generators and relations than we have given here.

Exercise 11.6. Prove as a corollary of Proposition 11.3 that the groups generated
by the matrices bi are central extensions of (i) the 48 element binary octahedral
group (the double cover of the permutation group S4, isomorphic to the symme-
try group of the octahedron) – for h = 4; (ii) the 24 element binary tetrahedral
group Ã4 – for h = 6; (iii) the binary icosahedral group Ã5 – the only one
coinciding with its commutator subgroup – for h = 10. (For background on
discrete groups defined by generators and relations – see [CM].)

The knowledge of the (2I + 1)-dimensional realization of B4 in the space of
su(2) current algebra 4-point blocks allows to establish another type of duality
relation between quantum group and braid group representations. In order to
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display its full content we need to say something more about the representation
theory of Uq(A1) for q an even root of unity. This will be the starting point of
the next section.
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12 Restricted and Lusztig QUEA for qh = −1
and their representations

A1 ' s`(2) (as well as its compact real form su(2)) is a simple Lie algebra: it
admits no non-trivial ideals. The same is true for the deformation Uq(A1) of
its universal enveloping algebra for generic q (i.e. q 6= 0 and q not a root of
unity). By contrast, if q satisfies (11.3) then Uq(A1) admits a huge proper ideal.
Technically, this comes out because the q-numbers [nh] vanish for qh = −1.

Exercise 12.1. Prove the CR

[E,Fn] = [n]Fn−1 [H + 1− n] , [En, F ] = [n]En−1 [H + n− 1] . (12.1)

Deduce that these commutators vanish iff n is a multiple of h.

The result of Exercise 12.1 allows to prove that Eh and Fh generate an ideal
of Uq(A1) for qh = −1. In order to find a maximal ideal which contains these
two elements we shall first construct a model space of Uq(A1) for generic q. (We
recall that a vector space F is a model space for a Lie algebra G or for its UEA
U(G) if F is the direct sum of its finite dimensional irreducible modules, each
encountered with multiplicity one.) To this end, we introduce the direct sum F
(= F(q)) of p-dimensional Uq(A1) modules Fp defined in Section 4:

F =
∞⊕
p=1

Fp , Fp = Span {|p,m〉 , 0 ≤ m ≤ p− 1} (12.2)

where the canonical basis {|p,m〉} is defined by the relations (4.15) (4.17).

Exercise 12.2. (a) Derive the relations

En | p,m〉 =
[p−m− 1]!

[p−m− n− 1]!
| p,m+ n〉 , Fn | p,m〉 =

[m]!
[m− n]!

| p,m− n〉 .

(12.3)
(b) Verify, using (10.26)–(10.28), that F appears as a Fock space for aiα:

a2
α | 1, 0〉 = 0 , | p,m〉 = (a1

1)
m (a1

2)
p−1−m | 1, 0〉 . (12.4)

(c) Deduce that for qh = −1 the following identities hold on F :

Eh F = 0 = Fh F = (K2h − 1)F . (12.5)

Exercise 12.3. Assuming the knowledge of the PBW basis of Uq(A1) (viewed as
a vector space – cf. Section 5),

{EµKn F ν , µ, ν = 0, 1, . . . , h− 1 , n ∈ Z} (12.6)
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prove that the quotient space with respect to the two-sided ideal defined by the
kernel (12.5) of the representation of Uq(A1) in F ,

Ūq := Uq(A1)/Jh , Jh = {Eh, Fh,Kh −K−h} , (12.7)

is 2h3-dimensional.

The quotient Ūq is called the restricted QUEA in [FGST] and [FHT].
We can similarly define the 4h3-dimensional quotient D̄q of the double cover

Dq of Uq (introduced in Section 5) by the same ideal Jh expressed in terms of
k instead of K = k2:

Jh = {Eh, Fh, k2h − k−2h} , D̄q = Dq/Jh . (12.8)

It allows to give meaning to the universal R-matrix of type (5.16) as a poly-
nomial in the D̄q generators, without invoking topology and completion. The
reader will find the proof of the following result in [FGST] (see also Sections 2.2
and 3.1 of [FHT], whose conventions we have adopted here).

Proposition 12.1. (a) The PBW bases in Ūq(b−) and Ūq(b+),

enν = knEν ∈ Ūq(b−) ; fmµ =
λµ q

µ(µ−1)
2

4h [µ]!

4h−1∑
s=0

q−
ms
2 k̃s Fµ ,

m, n = 0, . . . , 4h− 1 , µ, ν = 0, . . . , h− 1 , (12.9)

are dual to each other with respect to the bilinear form defined in Section 5 (see
Eq. (5.12)):

〈fmµ, enν〉 = δmn δµν , m, n = 0, 1, . . . , 4h− 1 , µ, ν = 0, 1, . . . , h− 1 . (12.10)

(b) The R-matrix of the (16h4-element) quantum double is given by

Rdouble =
h−1∑
ν=0

4h−1∑
n=0

enν ⊗ fnν . (12.11)

It reduces for k̃ = k (5.18) to the R-matrix of the (4h3-element) double cover
D̄q of Ūq:

R =
1
4h

h−1∑
ν=0

4h−1∑
m,n=0

λν

[ν]!
q

ν(ν−1)−mn
2 kmEν ⊗ kn F ν ∈ D̄q ⊗ D̄q , (12.12)

which satisfies the quasi-triangularity condition (4.31).

Exercise 12.4. Derive from (12.12) the expression transposed to (5.5) for the
2-dimensional representation of Dq for which

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
, k =

(
q

1
2 0
0 q̄

1
2

)
(E2 = 0 = F 2) . (12.13)
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Remark 12.1. The second universal R-matrix (5.24) also has a finite dimensional
counterpart R̃, such that

R̃(q−1) =
1
4h

h−1∑
ν=0

λν

[ν]!
q(

ν
2 ) F ν ⊗ Eν

4h−1∑
m,n=0

q−
mn
2 km ⊗ kn . (12.14)

It is easy to verify that substituting E,F and k in (12.14) by their 2-dimensional
representation (12.13) we reproduce the 4× 4 R-matrix (5.5).

In order to display a new duality relation between B4 and Uq representations
for the non-unitary extended chiral su(2) WZNW model we need the Lusztig
extension of the restricted QUEA Ūq (see [L]). We first introduce, following [L],
the devided powers

E(n) =
1

[n]!
En , F (n) =

1
[n]!

Fn (12.15)

satisfying X(m)X(n) =
[
n+m
n

]
X(n+m) (

[
n+m
n

]
= [n+m]!

[n]! [m]! ; X = E,F ),

[E(m), F (n)] =
min(m,n)∑
s=1

F (n−s)
[
H + 2s−m− n

s

]
E(m−s) . (12.16)

The right hand side of (12.15) only has a clear meaning for n < h (since
[h] = 0). The subsequent relations, however, make sense for all positive integers
m,n and can serve as an implicit definition for higher devided powers. It is
sufficient to add two new elements E(h) and F (h) in order to obtain an infinite
extension Uh of Ūq. Indeed, their powers generate a sequence of new elements.

Exercise 12.5. (a) Defining the ratio [nh]
[h] as a polynomial in q±1, deduce

[nh]
[h]

=
n−1∑
ν=0

q(n−1−2ν)h = (−1)n−1 n ,

[
nh

n

]
= (−1)(n−1)h n . (12.17)

(Hint : use the identity [nh+m] = (−1)n [m].)
(b) Derive the general formula[

Mh+m

Nh+ n

]
= (−1)(M−1)Nh/mN−nM

[m
n

](M
N

)
(12.18)

for M ∈ Z, N ∈ Z+, 0 ≤ m,n ≤ h− 1,
(
M
N

)
= M(M−1)...(M−N+1)

N ! .

For n < h it is easy, using exercise 12.2(a), to verify the formulae

E(n) | p,m〉 =
[
p−m− 1

n

]
| p,m+n〉 , F (n) | p,m〉 =

[m
n

]
| p,m−n〉 (12.19)
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which allow to extend the action of E(n) and F (n) on the canonical basis to all
positive n.

We shall now describe the irreducible representations (IRs) of Ūq and will
then single out the IRs of Uh in F .

It is convenient to introduce an operator qp̂ (and its inverse, q̄ p̂) which is
diagonal on the canonical basis and has 2h different eigenvalues (that fix, in
particular, the Casimir invariant (10.4)):

(qp̂ − qp) | p,m〉 = 0 , C = qp̂ + q̄ p̂ , qhp̂ = q−hp̂ . (12.20)

The IRs of Ūq are classified in [FGST] (these authors do not use, however,
the operator qp̂ and introduce bases inequivalent to ours).

Proposition 12.2. The finite dimensional QUEA Ūq has exactly 2h IRs V ±p ,
labeled by their dimension p and parity ε such that

(qp̂ − ε qp)V εp = 0 , dimV εp = p , p = 1, . . . , h , ε = ± . (12.21)

The Ūq module V εp can be equipped with a canonical basis |p,m〉ε, 0 ≤ m ≤ p−1
(1 ≤ p ≤ h) such that

(qH − ε q2m−p+1) | p,m〉ε = 0 , E | p, p− 1〉ε = 0 = F | p, 0〉ε . (12.22)

Corollary. Eqs. (12.21), (12.22) and (12.4) imply the relations

(EF − ε [m][p−m]) | p,m〉ε = 0 = (FE− ε [m+1][p−m−1]) | p,m〉ε . (12.23)

We shall identify in what follows the irreducible Ūq modules V εp in the
(Uq(A1)-model) space F . We will not reproduce the proof of [FGST] that these
representations exhausts the IRs of Ūq.

The identification V +
p = Fp for 1 ≤ p ≤ h is immediate.

Exercise 12.6. Prove that the spaces Fh+p, 1 ≤ p ≤ h admit two p-dimensional
Ūq-invariant subspaces isomorphic to V −p . Verify that Fh+p is indecomposable
for 0 < p < h and that the quotient Fh+p/V −p ⊕ V −p is isomorphic to V +

h−p.
(Hint : identify V −p ⊕ V −p with the invariant subspace of Fh+p spanned by
{| h+ p,m〉} ⊕ {| h+ p, h+m〉}, 0 ≤ m ≤ p− 1.)

Remark 12.2. The actions of E and F on the two copies of V −p are equivalent
albeit not identical:

E | h+ p,m〉 = −[p−m− 1] | h+ p,m+ 1〉 ,

F | h+ p,m〉 = [m] | h+ p,m− 1〉 (12.24)

E | h+ p, h+m〉 = [p−m− 1] | h+ p, h+m+ 1〉 ,

80



F | h+ p, h+m〉 = −[m] | h+ p, h+m− 1〉 , (12.25)

both yielding (12.23). (We may identify |p,m〉− with either | h + p, h +m〉 or
(−1)m | h+ p,m〉.)

Exercise 12.7. Prove that the Ūq-modules F2h+p (1 ≤ p ≤ h) admit three
p-dimensional invariant subspaces, each isomorphic to V +

p , while the quotient
space F2h+p/V

+
p ⊕V +

p ⊕V +
p (for p < h) is isomorphic to V −h−p⊕V

−
h−p. Describe

the structure of FNh+p, N ∈ N, 1 ≤ p < h.

Using the term subquotient for either on Ūq submodule or a quotient we have
the following easily verifiable result.

Proposition 12.3. The direct sum of irreducible Ūq-modules that appear as
subquotient of FNh+p of a given parity ε spans a single IR Vεp of Uh; we have
the following exact sequence (for 0 < p < h) of Uh modules:

0 → VεNp → FNh+p → V−εNh−p → 0 , εN = (−1)N ,

VεNp =
N⊕
0

V εNp , V−εNh−p =
N⊕
1

V −εNh−p . (12.26)

Sketch of proof. A straightforward application of (12.18) and (12.19) gives

E(h) | Nh+ p, nh+m〉 =
[
(N − n)h+ p−m− 1

h

]
| Nh+ p, (n+ 1)h+m〉

= (−1)(N−n−1)h+p−m−1(N − n) | Nh+ p, (n+ 1)h+m〉

0 ≤ n < N , 0 ≤ m < p ≤ h (12.27)

E(h) | Nh+ p, nh+ p+m〉 =
[
(N − n)h−m− 1

h

]
| Nh+ p, (n+ 1)h+ p+m〉

0 ≤ n < N − 1 , 0 ≤ m ≤ h− p− 1 , (12.28)

and similar relations for F (h). These relations imply the irreducibility with
respect to Uh of the direct sums VεNp and VεNh−p (12.26) of IRs of Ūq ⊂ Uh. �

On the other hand, the relations

E(h) Fp = 0 = F (h) Fp for 1 ≤ p ≤ h (12.29)

tell us that the “Lusztig quantum group” Uh only plays a role in Fp for p > h.
Our aim will be to establish a duality relation between the indecomposable
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representations of Uh in FNh+p displayed in Proposition 12.3 and the repre-
sentations (11.2) of B4 for 2I + 1 = Nh + p. We denote the corresponding
p-dimensional B4 module of 4-point blocks by S4(p).

Proposition 12.4. (see Theorem 4.1 of [FHT]) (a) The B4 modules S4(p) are
irreducible for 0 < p < h and for p = Nh.
(b) For N > 0 and 0 < p < h, S4(Nh+p) is indecomposable with structure dual
to that of FNh+p displayed in Proposition 12.3. It has a N(h− p)-dimensional
invariant subspace

S(N,h− p) = Span {f (Nh+p)
µ , µ = nh+ p, . . . , (n+ 1)h− 1}N−1

n=0 (12.30)

which carries an IR of B4. The (N+1)p-dimensional quotient space S̃(N+1, p)
also carries an IR of the braid group.

Proof. The B4-invariance of S(N,h−p) (12.30) follows from the proportionality
of the (Nh+ p)-dimensional matrices (11.2) to the q-binomial coefficients:

Bmh+α1nh+β ∼
[
nh+ α

nh+ β

]
∼
[
α

β

](m
n

)
= 0

Bmh+α2nh+β ∼
[

(N −m)h+ p− α− 1
(N − n− 1)h+ h+ p− β − 1

]
∼

[
p− α− 1

h+ p− β − 1

](
N −m

N − n− 1

)
= 0

for m = 0, . . . , N, 0 ≤ α ≤ p − 1, n = 0, . . . , N − 1, p ≤ β ≤ h − 1; they
vanish since

[
α
β

]
= 0 for 0 ≤ α < β (α, β integers). An inspection of the

same expression (11.2) allows to conclude that the space S(N,h − p) has no
B4-invariant complement in S4(Nh+ p) which is, thus, indeed indecomposable.
It is also readily verified that the quotient space

S̃(N + 1, p) = S4(Nh+ p)/S(N,h− p)

carries an IR of B4. �

We thus see that the indecomposable representations FNh+p (of Uh) and
S4(Nh + p) (of B4) contain the same number (two) of irreducible components
(of the same dimensions) but the arrows of the exact sequences are reversed.
This sums up the meaning of duality for indecomposable representations.

Remark 12.2. Note that the difference of conformal dimensions

∆Nh+I −∆I = N(Nh+ p) (0 < p = 2I + 1 < h)

is a (positive) integer; this explains the similarity of the corresponding braid
group representations S4(p) and S4(2Nh+ p). There is a unique 1-dimensional
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subspace S(1, 1) ⊂ S4(2h − 1) among the B4-invariant subspaces displayed in
Proposition 11.4 corresponding to a non-unitary local field of isospin and con-
formal dimension h− 1:

∆h−1 =
(h− 1)h

h
= h− 1 . (12.31)

It has rational correlation functions; in particular, the 4-point amplitude f (h−1)
h−1

(ξ, η) (9.29)–(9.31) is a polynomial [HP]. It therefore gives rise to a non-unitary
local extension of the ŝu(2)k current algebra that deserves a further study.
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13 Outlook

In conclusion we shall sum up the philosophy underlying these notes – and the
ensuing choice of material – and will then list some related topics which appear
to be interesting and important but remain outside the scope of the present
lectures.

It is natural from both physical and mathematical point of view to associate
with any “symmetry” (meaning symmetry group, Lie algebra or a generaliza-
tion thereof) a family (or “category”) of representations equipped with a tensor
product. The fact that the tensor product of representations is again a repre-
sentation (of the same symmetry) leads us to the concept of a coproduct. The
commutant of a tensor product representation yields the notion of a braid group
which reduces to a permutation group when the symmetry is described by an or-
dinary group. If we think of irreducible representations as describing elementary
objects (particles, excitation) then the behaviour under braiding (that exchanges
elementary objects) would determine the particle statistics. We are thus led to
consider the pair symmetry and statistics as a whole. The generalization or
deformation of one requires a similar deformation of the other.

Quantum groups are coupled to braid group statistics (as already the title
of these lectures suggests). Existing attempts at phenomenological applications
of “q-symmetries” (viewing q as one more parameter to fit data), that ignore
the (necessarily!) accompanying it braid group statistics, are, in my opinion, ill
conceived.

The appearance of monodromy (a normal subgroup of the braid group) is a
sign of the presence of multivalued correlation functions which naturally arise in
a non-simply connected configuration space – that is the case of dimension two.
In higher dimensions the fundamental group π1 of configuration space is trivial.
Indeed, the deep analysis of Doplicher-Haag-Roberts of the structure of superse-
lection sectors in a local relativistic quantum theory (a work spanned over more
than 20 years, culminating in [DR], and recounted in [H]) demonstrates that
the gauge symmetry (of the first kind) of local observables is implemented by a
compact group and is thus accompanied by a permutation group (para) statis-
tics (reduced, essentially, to the familiar Bose and Fermi statistics). We, hence,
only consider applications of quantum symmetry and braid group statistics to
2-dimensional (2D) conformal field theory. (Our analysis of such “applications”
is restricted to the formalism. The relevance, say, of anyonic statistics to the
theory of fractional quantum Hall effect is only alluded to.) We have given more
room to the (mathematically) intriguing non-abelian QUEA which appear as
gauge symmetries of chiral conformal fields. (A gauge symmetry, by its defi-
nition, does not affect observables. Accordingly, it is only manifest after one
splits the observable 2D fields into chiral vertex operators, corresponding to the
splitting of 2D correlation functions (single valued in the Euclidean domain)
into multivalued conformal blocks).

Among the big omissions from the present survey the closest in spirit – and
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thereby particularly regrettable – is the Chern49-Simons theory about which we
shall just say a few words and give a few references.

The Chern-Simons theory is a topological gauge theory on a three (space-
time) dimensional manifold M . Here by topological we mean that its action
does not depend on the metric on M . Let A be a connection one-form with
values in a Lie algebra G. (For G = u(n) – a commonly encountered example –
this means that A is an antihermitian n× n matrix of 1-forms.) The curvature
2-form F is defined, as usual, by

F = dA + A ∧A . (13.1)

An example of a topological action density in four space time dimensions is
given by the so called “θ-term”50 the 4-form tr(F ∧ F ) (= F α

β ∧ F βα ), which is
a total derivative (when expressed in terms of A). The Chern-Simons form

ω3 = tr
(

A ∧ dA +
2
3

A ∧A ∧A

)
(13.2)

is defined to satisfy
dω3 = tr(F ∧ F ) . (13.3)

In order to verify (13.3) (for ω3 given by (13.2) and F given by (13.1)) one has
to use the cyclicity of the trace and the anticommutativity of 1-forms to deduce

trA12k(= Aα1
α2
∧Aα2

α3
∧ . . . ∧Aα2k

α1
) = 0 (13.4)

(cf. Exercise 10.1). (More generally, the Chern-Simons (2k − 1)-form ω2k−1 is
defined to satisfy dω2k−1 = tr(F∧k). Verify that

ω5 = tr
(

F ∧ F ∧A− 1
2

F ∧A ∧A ∧A +
1
10

A∧5

)
(13.5)

satisfies dω5 = tr F∧3. Note that ω3 may be also written as ω3 = tr (F ∧A −
1
3 A ∧A ∧A).

Varying the (conformally invariant!) Chern-Simons action

S =
k

4π

∫
M

tr
(

A ∧ dA +
2
3

A∧3

)
(13.6)

we find the equation of motion

0 =
δS

δA
=

k

2π
F (13.7)

49The Chinese American mathematician Shiing-Shen Chern (1911-2004), a leading differ-
ential geometer of 20th century, wrote the paper on Chern-Simons forms in 1974 with his
student Jim Simons.

50The term θ tr(F ∧ F ) is much discussed in connection with the problem of strong CP
violation, [SVZ]; for an instance of a subsequent theoretical study – see [W98].
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which says that the curvature is zero, or, in other words, the connection A is flat.
Flat connections are determined entirely by holonomies around noncontractible
cycles. If K is an oriented knot51 then one considers the trace of the holonomy
of the gauge connection around K in a given IR of U(n), which gives the Wilson
loop operator, the trace of the path-ordered exponent

WK
R (A) = trR

(
P exp

∮
K

A

)
. (13.8)

Witten [W] discovered that the vacuum expectation value of this operator for
n = 2 reproduces the Jones polynomial invariant [J]. (The appearance of topo-
logical invariants in QFT has been suggested earlier by Albert Schwarz.) For
M a 3-manifold with boundary Σ Witten demonstrates that the Chern-Simons
theory on M with a compact Lie group G and action (13.6) gives rise to a
WZNW theory on Σ corresponding to the current algebra Ĝ of level k.

For a review on Chern-Simons theory with applications to topological strings
– see [M05]. For the quantization of the Hamiltonian Chern-Simons theory and
for the representation theory of Chern-Simons observables (not covered in [M05])
– see [AGS] and [AS].

A second important topic outside the scope of these lectures is the appli-
cation of Hopf algebra techniques to QFT renormalization initiated by Dirk
Kreimer and further developed by Connes and Kreimer – see for recent reviews
[CoMa] [Kr] (cf. also [C]).

We have not touched upon the study of quantum homogeneous spaces and
their possible application as candidates for non-commutative space-time mani-
folds. Here we feel that a more general point of view, not necessarily related to
quantum groups is preferable – see [Co, CoMa]. For interesting purely mathe-
matical results in this direction – see [CD-V] and [DLSSV].

51For a survey of modern knot theory – see [Li] and [PS].
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