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Preface

In this paper I discuss some topics which have long interested me. These themes
relate with the following subjects:

1. Duality transformations for generalized Potts models.
2. Hecke surfaces and K- regular graphs.

Each of them relates with deep mathematical and physical theories and they
have nothing in common at the first sight. However, it become more evident in the
last years that a deep internal relations between all these problems exist. Especially
interesting and mysterious is the role of Hecke groups in this context. I consider
only few examples of these topics.

The paper is mainly expository.Some of the results are based on the papers
jointly written with R.Brooks and V.Buchstaber.

I would like to mention especially Robert Brooks, whose untimely death left
me without remarkable friend and coauthor.His ideas of spectral characteristics of
Laplacians on ”typical” Riemann surfaces are currently not enough appreciated and
then will be undoubtedly recognized,

Chapter 1

Duality transformations for generalized Potts models.

In this chapter we discuss some old and new results concerning Kramers-Wannier
Duality for spin systems with non-abelian symmetry.

Introduction.

In the classical paper of H. Kramers and G.Wannier [1] a special symmetry was
discovered, which relates low-temperature and high-temperature phases in the pla-
nar Ising model. The corresponding transformation, the Kramers-Wannier (KW)
transform, is a special nonlocal substitution of a variable in the partition function.
This substitution transforms the partition function W defined by the initial ”spin”
variables taking values in Z2 and determined on the vertices of the original lattice L
to the partition function W̃ determined on the dual lattice L∗ spin variables taking
values in Z2.

Furthermore, we will use the following transformation of Boltzmann factor

β → β∗ = arth e−2β , β = (kT )−1 (0.1)

to get the correct form of the dual partition function W̃ .
1
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The existence of such transformations is a general property of lattice spin sys-
tems that possess a discrete (and not only discrete) group of symmetry. The KW-
transform allows the determination, for many physically important systems, of the
point of phase transition in cases when the explicit analytical form of a partition
function is unknown.

Generalizations of the KW transform in spin systems with different symmetry
groups is essential for many problems in statistical physics and field theory. In fact,
it is very important to carry out KW transforms for 4-dimensional gauge theories
in which corresponding phases are free quarks and quarks confinement. In this case
we need to construct KW transforms for non-abelian groups.

The KW-transform for systems with a commutative symmetry group K, partic-
ularly Zn and Z (like the Ising Z2-model), can be carried out by general methods.
In this case the KW-transform is a Fourier transform from a spin system on the
lattice L to the spin system on the dual lattice L̃ with spin variables taking values
in the group K̂, the group of characters of K. This result was obtained by a number
of authors, see [2,3,4] and references cited in it. From the mathematical point of
view this result is a generalization of the classical Poisson summation formula for
the group Z.

We present some results which solve this problem for non-commutative groups.
Our lectures based on the papers [5, 25]. For the sake of a volume limit we omit
some examples but add the outline of our construction for the compact case. The
efficacy of our approach was illustrated by examples of KW transforms for the
icosahedron I5 and dihedral groups Dn [5]. These examples are also interesting
for physical applications, for example, to search out the line of phase transitions
in quasicrystals with the icosahedral symmetry or discotic liquid crystals with the
symmetry Dn.

The main result of our paper is the definition of the generalized KW-transform,
based on the mapping of the group algebra C(G) to the space of complex-valued
functions on G. The construction of this transformation clarifies its real meaning
and offers far-reaching generalization papers [2, 6, 7].

In section 1 we recall, following the paper [2], the construction of the KW-
transform for abelian groups. In section 2 we introduce some relevant algebra
notions like the group algebra C(G) and the space of regular functions C[G]. We
also construct the canonical pairing of C(G) with C[G]. In section 3 we describe
orbits of the adjoint representation and the regular representation of the group G.
In the section 4 we carry out the generalized KW-transform for finite groups and
in the section 5 apply our general results to special cases of subgroups of the group
SO(3).In the section 6 we study the compact case.

In the conclusion we discuss some applications of these results, in particular some
connections with quantum groups.

1. KW-duality for abelian systems.

Let us recall the construction of KW-duality for commutative groups. We shall
follow the paper [2]. Let us consider a planar square lattice L with unit edge. Let
x = {xµ} = {x1, x2} (where x1 and x2 are integers) represent a vertex, and eα

µ =
{e1

µ, e2
µ} = δα

µ basis vectors of L. We will often use the notation x + α̂ ≡ {xµ + eα
µ}.

A double index x, α is convenient for denoting the edge in the lattice which connects
the vertices x and x + α̂. In what follows we shall also need the dual lattice, L̃
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whose vertices are at the centers of the faces of the original lattice L.We denote the
coordinates of a vertex of L̃ by x̃:

x̃ = {xµ + 1/2e1
µ + 1/2e2

µ}.
We define spin variables sx on vertices of L, these take values in some manifold M ,
which we call the spin space. We confine ourselves to the case of a finite set M .

The simplest Hamiltonian of such a spin system involves only interactions of
nearest neighbors

H =
∑
x,α

H(sx, sx+α̂), (1.1)

where the Hamiltonian H(s, s′) is a real function of a pair of points from M , with
the properties

H(s, s′) = H(s′, s), (1.2a)
H(s, s′) > 0 for arbitrary s, s′ ∈ M, H(s, s) = 0. (1.2.b)

The Hamiltonian prescribes a structure similar on M to a metric structure (which in
the general case is not metric, since we nowhere require that the triangle inequality
hold), which we shall call the H structure.

Of particular interest are examples in which the manifold M is a homogeneous
space, i.e., there exists a group G of transformations of M which preserves the H
structure: H(gs, gs′) = H(s, s′) for arbitrary s, s′ ∈ M . In this case the spin system
has global symmetry with group G.

Important special cases are systems on groups. For these the spin manifold
coincides with a group G: si = gi ∈ G, and the Hamiltonian is invariant under left
and right translations:

H(hg, hg′) = H(gh, g′h) = H(g, g′) for arbitraty h ∈ G (1.3)

The general H function of the system on the group can therefore be put in the form

H(g1, g2) = H(g1g
−1
2 ) =

∑
p

h(p)χp(g1g
−1
2 ), (1.4)

where χp(g) are the characters of the p-th irreducible representations of the group
G, and the constants h(p) are chosen so that H has the properties (1.2) and are
otherwise arbitrary.

The partition function of the general spin system with the Hamiltonian (1.1) is

Z =
∑

sx∈M

∏
x,α

W (sx, sx+α), (1.5)

where
W (s, s′) = exp{−H(s, s′)}. (1.6)

According to Eq.(1.2) the function W has the properties

W (s, s′) = W (s′, s), 0 6 W (s, s′) 6 1, W (s, s) = 1 (1.7)

For the system on a group we have also

W (g1, g2) = W (g1g
−1
2 ), W (g−1) = W (g) (1.8)

For a spin system on a group G the sum over states (1.5) can be put in the
following equivalent form:

Z =
∑

gx,α∈G

∏
x,α

W (gx,α)
∏

x̂

δ(Qx̃, I), (1.9)
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where the summation variables gx,α are defined on the edges of the lattice

Qx̃ = gx,1 gx+1̂,2g
−1

x+2̂,1
g−1

x,2, (1.10)

and the δ-function is defined by the formula

δ(g, I) =
{

1, if g = I,
0 otherwise.

In fact, the general solution of the connection equation Qx̃ = I is

gx,α = gxg−1
x+α̂

and this brings us back to Eq.(1.5).
Systems on commutative groups are a special case, in which the δ-function in

Eq.(1.9) can be factorized in the following way:

δ(Qx̃, I) =
∑

p

χp(Qx̃) =
∑

p

χp(gx,1)χp(gx+1̂,2)χ
−1
p (gx+2̂,1)χ

−1
p (gx,2). (1.11)

This sort of factorization is of decisive importance and allow for a unified presen-
tation of the KW transform for all commutative groups.

We note that for a commutative group G all irreducible representations are one-
dimensional and their characters χp form a commutative group Ĝ (the character
group) with a group multiplication defined in accordance with the tensor product
of representations. By definition

χp1p2(g) = χp1(g)χp2(g), χp−1(g) = χ−1
p (g),

and the unit element of G̃ corresponds to the identity representation of G. Ac-
cordingly, the summation in Eq.(1.11) can be regarded as a summation over the
elements of the dual group Ĝ.

Substituting the expansion (1.11) in Eq.(1.9), an obvious regrouping of factors
yields

Z =
∑

sx,α∈G

∏
x,α

W (gx,α)
∏

x̃

∑
px̃

χpx̃(gx,1)χpx̃(gx+1̂,2)χp−1
x̃

(gx+2̂,1)χp−1
x̃

(gx,2) =

=
∑

px̃∈G

∏

x̃,α

W̃ (px̃p−1
x̃+α̂), (1.12)

W̃ (px̃p−1
x̃+α̂) =

∑

g∈G

W (g)χpx̃(g)χp−1
x̃+α

(g) =
∑

g∈G

W (g)χpx̃p−1
x̃+α̂

(g). (1.13)

The expression (1.12) defines a new, dual, spin system on the dual group Ĝ with a
new Hamiltonian H̃, which is defined the formula

exp{−H̃(p)} = W̃ (p) (1.14)

The result can be formulated in the following way.

Proposition 1.1. A spin system on a commutative group G with a Hamiltonian
H(g)(g ∈ G) is equivalent to a spin system on the character group Ĝ (and on the
dual lattice) with the Hamiltonian H̃(p)(p ∈ Ĝ) given by the Fourier transform

exp{−H̃(p)} =
∑

g∈G

exp{−H(g)}χp(g). (1.15)

This is a Kramers-Wannier transform. In contradistinction to the ”order variables”
gx the name ”disorder variables” can be given to the dual spins px̃.
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2. Algebraic constructions.1

A) The group algebra C(G) of G.
Let G be a finite group of order n with elements {g1 = e, ..., gn}.

Definition 1. The group algebra C(G) of G is n-dimensional algebra over the
complex field C with basis {g1 = e, ...gn}. A general element u = c(g) ∈ C(G) is

u =
∑

αigi (2.1).

The product of two elements (convolution) u, v ∈ C(G) is defined as

uv =
( n∑

i=1

αigi

)( n∑

i=1

βjgj

)
=

k∑
1

(γkgk), γk =
∑

gigj=gk

αiβj (2.2)

B) The ring of functions C[G] on G.

Definition 2. C[G] is a linear space of all complex-valued functions on G and the
product is defined pointwise:(

f1 · f2

)
(g) = f1(g)f2(g) (2.3)

C) let us determine the canonical pairing < ·, · > of these two spaces

C(G)⊗ C[G] → C,

if u ∈ C(G), and f ∈ C[G] then

u⊗ f →< u, f >=
∑

αif(gi) (2.4)

We choose as a basis in C[G] functions such that < gi, g
j >= δj

i here δj
i is the

Kronecker symbol.
This pairing enables us to identify C(G) and C[G] as vector spaces.

3. Canonical actions of the Group G.
We now define two canonical representations, the adjoint representation on C(G)

and the regular representation on C[G].

A) T (g) : C(G)
The adjoint representation is defined on the basis consisting of elements of G by

g : gi → ggig
−1 (3.1)

The adjoint representation ad G decomposes in the direct sum of irreducible
representations and split C(G) in the sum of subspaces invariant under the adjoint
action.

Each irreducible subspace Hi relates with the orbit of ad G (3.1). The number
of Hi is equal to m, the number of elements in the space C(G)/[C(G), C(G)], here
[C(G), C(G)] denotes the commutant of C(G).

B) T̃ (g) : C[(G]

1For further details of exploiting algebraic constructions one can consult the books [8,9].
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Let us define the canonical representation T̃ in the space C[G] as the (right)
regular representation as:

T (g) : f ⇒ T (g) : f(gk) = f(gkg), g ∈ G, f(g) ∈ C[G]. (3.2)

It is well known that, in the decomposition of the regular representation into
irreducible ones all irreducible representations appear with multiplicity equal to
the dimension of the representation.

T̃ =
∑

dkVk

where Vk is the irreducible representation of degree k and dk is the degree (dimen-
sion) of Vk (multiplicity of irreducible representation).

Proposition 3.1. The number m of irreducible representations T̃ is equal to the
number of orbits of T .

C) The canonical scalar product in the space C[G] is

< f1, f2 >= 1/n

n∑

k=1

f1(gk)f̄2(gk), f1, f2 ∈ C[G] (3.4)

The characters χi(g) of the irreducible representation of G form the set of or-
thogonal functions with respect to the scalar product (3.4).

Now we construct the basis in the space C[G]. Let us choose the character χk(g)
and act on χk(g) by the group G with the help of the right regular representation:

Rgl
χk(g), l = 1, ..., n (3.5)

We obtain the space Vk with dim Vk = |χk(g)|2. As a result we get the factor-
ization of C[G]:

C[G] =
∑

k∈MG

Vk, MG = {k = 1, .., mG},

where mG is the number of irreducible representations of G.
Orthonormalizing the set of functions (3.5) we obtain the basis in the space Vk.

Since Vk are pairwise orthogonal, applying this procedure to all characters χk we
obtain the desired basis in C[G].

Definition 3. We shall call the dual space Ĝ to G the basis in C[G] which we
construct in the section C.

Motivations for such definition ensue from the case of a commutative group K.
The characters of K are one-dimensional and the action of G on characters is simply
the multiplication on the scalar, the eigenvalue of the operator Rg. The derived
basis is the same as the set of elements of the group K̂.

4. The KW-transform for finite groups.
Let us consider the adjoint representation ad G of G, on the space C(G), induced

by
g : gk → ggkg−1

Let us denote by gG
k the orbit relative to the adjoint action for gk ∈ G, and by

δk ∈ C[G] it characteristic function:

δk(gs) =
{

1, if gs ∈ gG
k ,

0, otherwise.
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Let mG be the number of conjugacy classes relative to the adjoint action of G.
Let us choose representations of the classes

g1, ..., gkj
.

Lemma 4.1. A linear map
W : C(G) → C

satisfies the condition
W (gk) = W (glgkg−1

l ) (4.1)
for every gl ∈ G, off

W =
m∑

j=1

γjδkj
∈ C[G] = Hom(C(G),C),

i.e.
W (gs) =

∑
γjδkj

(gs) (4.2)

We obtain a general form of the adjoint invariant linear mapping, if we choose as
γ = (γ1, ..., γm), the vector of free parameters.

Now we shall find the form of a general linear mapping:

Ŵ : C[G] → C

determined by the characters χi(G).
The set of characters χ1, ..., χm of the irreducible representation of G form the

orthonormalized basis (relative to the scalar product (3.4)) in C[G]. Here and
further χ1 is the character of the trivial one-dimensional representation.

We get Ŵ =
∑

γ̂jχ
j as

Ŵ (ψ) =
m∑

j=1

γ̂j < χj , ψ > (4.3)

since characters of representations by lemma 4.1 are ad-invariant functions, we
introduce the matrix Γ = γl

j using the expansion

χl =
m∑

j=1

γl
jδkj (4.4)

Let us denote by g0, ..., gm−1 the orthonormalized basis in the algebra C[G], dual
to the basis g0, .., gm−1 in the group algebra C(G), i.e.

< gi, gj >= δi
j .

Let D be the duality map:

D : C(G) → C[G], D(gk) = gk. (4.5)

Theorem 4.1. If we pose

γj =
m∑

l=1

γl
j γ̂l, j = 1, ..., m

then by the canonical duality D the linear map

W : C(G) → C, W (g) =
m∑

j=1

γjδkj (g)
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pass to the linear map

Ŵ : C[G] → C, Ŵ (ψ) =
m∑

j=1

γ̂j < χj , ψ >

and maps W and Ŵ themselves will be determined by the same function, more
precisely

W (gs) =
m∑

j=1

γjδkj (gs) = n

m∑

j=1

γ̂jχ
j(gs) = nŴ (gs) (4.6)

Proof. For any gs we have

W (gs) =
m∑

j=1

γjδkj
(gs) =

m∑

j=1

m∑

l=1

γl
j γ̂lδkj (gs) =

m∑

l=1

γ̂l(
m∑

j=1

γl
jδkj

)(gs) =

=
m∑

l=1

γ̂lχ
l(gs) = n

m∑

l=1

γ̂l < χl, gs >= nŴ (gs)

Definition 4. We shall call the transform

W (gs) =
∑

γjδkj (gs) → Ŵ (gs) = 1/n
∑

l

γlχ
l(gs)

where: γj =
m∑

l=1

γl
j γ̂l (4.7)

the Kramers-Wannier transform for finite groups.
In the next section we consider several examples which confirm the coincidence

of our approach with former one in the known cases and enables us to find explicit
K-W transforms in some earlier unknown cases.See also for other examples [5].

5. Examples.

A) Commutative case G = Zn

Let us consider first the special case G = Z3 = {1, g, g2}. In this case δj =
δ(g − gj−1), j = 1, 2, 3. Then

χ1 = δ1 + δ2 + δ3

χ2 = δ1 + zδ2 + z2δ3

χ3 = δ1 + z2δ2 + zδ3, as z4 = z

(5.1)

where z = exp2πi/3, and χk(gj) = z(k−1)j , (k = 1, 2, 3) are the characters of
one-dimensional representations. Hence

Γ = (γl
j) =




1 1 1
1 z z2

1 z2 z


 (5.2)

and we get γ̂ = Γ−1γ.
If we choose γ1 = 1, γ2 = γ3 = γ, we obtain

γ̂1 =
1 + 2γ

3
; γ̂2 = γ̂3 =

1− γ

3
, (5.3)
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and hence γ̂2/γ̂1 =
1− γ

1 + 2γ
(5.4)

For the general case of the group Zn we have to replace the formula (5.1) for
characters χ1, ..., χn to

χ1 = δ1 + δ2 + ... + δn

χ2 = δ1 + zδ2 + zn−1δn

· · · · · · · · · · · · · · · · · · · · · · · ·
χn

l = δ1 + z(n−1)δ2 + zδn

(5.5)

and for Γ = (γl
j) we get

Γ =




1 1 · · · 1
1 z · · · zn−1

· · · · · · · · · · · ·
1 zn−1 · · · z


 (5.6)

In the special case of choosing parameters γj :

γ1 = 1, γ2, ..., γn = γ

we obtain
γ̂j

γ̂1
=

1− γ

1 + (n− 1)γ
(5.7)

These formulas coincide with the similar one in the paper [2].

B) The group S3.
This is the first non-trivial example of non-abelian groups which was studied in

[2]. Following our general approach we split the group S3 in 3 classes of conjugacy
elements or 3 orbits:

S3 = {Ω1 = {e}, Ω2 = {a, a2}, Ω3 = {b, ab, a2b}}
The characteristic functions are:

δ1 = δ(Ω1) = δ(g − e), δ2 = δ(Ω2), δ3 = δ(Ω3).

Following our general procedure (see 4.4) and using

χ1 = δ1 + δ2 + δ3

χ2 = δ1 + δ2 − δ3

χ3 = 2δ1 − δ2

we get the matrix

Γ = (γl
j) =




1 1 1
1 1 −1
2 −1 0




and hence γ̂ = Γ−1γ

γ̂1 =
1
6
(γ1 + 2γ2 + 3γ3)

γ̂2 =
1
6
(γ1 + 2γ2 − 3γ3)

γ̂3 =
1
3
(γ1 − γ2)

(5.8)
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with the following relation:
γ̂1 + γ̂2 + 2γ̂3 = γ1

If we choose the free parameters γ1, γ2, γ3 as 1, γ2, γ3 we obtain two independent
parameters η̂1, η̂2

η̂1 =
γ̂2

γ̂1
=

1 + 2γ2 − 3γ3

1 + 2γ2 + 3γ3
, η̂2 =

γ̂3

γ̂1
=

2(1− γ2)
1 + 2γ2 + 3γ3

(5.9)

which coincide with the formula (5.7) in the paper [2].

Remark 1. Let us mention the missing of factor 2 in the nominator of η̂2 in (5.7)
in the paper [2].

6. The KW transform for compact groups.
In this section we give an outline of construction of KW transform for compact

”gauge” groups. The corresponding construction can be carried out parallel to the
finite case. However, it is substantially more complicated. As formerly, we restrict
to the case of a square lattice L ⊂ R2. All necessary materials regarding the theory
of representations of compact groups can be find in [10, 11]

A) Let G be a compact connected group. G is isomorphic to A × G1, where
A is a compact abelian group (torus Tn) and G1 is a semisimple compact group.
In the case of an abelian group A the KW transform can be carried out by the
general method of section 2. Therefore, in what follows we restrict to the case of a
semisimple compact group G.

B) Group algebra C(G). The natural analog of a group algebra for finite group
will be some functional space endowed with the product operation as a convolution.
It is possible to choose as such space L1(G, dg), the space of summable functions,
or L2(G, dg), or a subspace H(G, dg) of continuous functions on G.It is more con-
venient to consider a completion of these spaces by norm:

||f || = supT ||T (f)||,
where T runs over all unitary representations of the group G. The algebra C∗(G)
is called the C∗-algebra of G.

C) C[G]. C[G] is a linear functional space (e.g. L1(G, dg), L2(G, dg), ...) and the
product is defined pointwise :

(f1 · f2)(g) = f1(g) f2(g) .

There is a well known theorem of I. Gelfand and D. Raikov asserting that for any
locally compact group there exist irreducible unitary representations and the system
of such representations is complete.

To construct an analog of a basis in C(G) for a compact case we need some
generalization of Schur-Frobenius theorem (see C in Sec. 4 ). In our case we use
the theorem of Peter-Weyl [10].

Theorem Peter-Weyl.
The set of linear combinations of matrix elements of irreducible representation

is dense in the space H(G, dg), L2(G, dg).
The orthogonal relations for matrix elements of a unitary representations can be

proved in the same way as for finite groups.
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D) The basis in C(G). To construct a relevant basis in the space C(G) we use
the construction of irreducible representations by the orbit method. Let us recall
that a coadjoint orbit of a group G is an orbit in the space g∗ dual to the Lie algebra
g of G. If we have an adjoint representation T of G we can determine the coadjoint
representation T ∗ of G which acts in the space g∗. We call such a representation
as a coadjoint representation.

Proposition. For a compact semisimple group G a coadjoint representation of G
is equivalent to the adjoint representation.

This is evident, since exists Cartan-Killing Ad invariant form on g. For any
compact group G there exists only finite number of co(adjoint) orbits Ωi.The sta-
bilizers of elements x ∈ g form a finite number k of conjugate classes of subgroups
of G. Let Gi (1 ≤ i ≤ k) be a representative of these classes. Then any adjoint
orbit is isomorphic to the coset space Ωi = G/Gi. So we can choose a basis δj(Ωi)
in C(G) δj(Ωi). To complete our proof we use the following statement of Gelfand
and Naimark [10]. We omit some technical conditions.

Theorem (Gelfand - Naimark). There exists a one-to-one correspondence between
representations of a group algebra C(G) and unitary representation of the group
G. So as in the finite case we determine the KW transform for a compact group as

D : C(G) → C[G] . (6.1)

Conclusion.

Our approach to the KW-transform has important applications. We briefly
discuss some of them, intending to return to these problems in the forthcoming
publications.

A. KW-transforms and Quantum groups.

We refer reader to [12, 13] for all notations and following references in the theory
of Hopf algebras and Quantum groups.

Let us consider the algebra C[G]. If we endow C[G] by the operation of coproduct
4 : C[G] → C[G]⊗C[G] induced by the multiplication in the group G, the algebra
C[G] becomes Hopf algebra. Using natural dual to C[G] the algebra C(G), we are
able to construct another Hopf algebra, (quantum) double D(G) = C[G] ⊗ C(G)
[12]. Since transformations W and Ŵ acts as W : C(G) → C and Ŵ : C[G] →
C, i.e. W ∈ C[G] = Hom(C(G),C) and Ŵ ∈ C[G] = Hom(C(G),C) that is
W ⊗ Ŵ ∈ D(G). The KW-transform yields to explicit solutions of Yang-Baxter
equations related with the quantum group D(G).

This observation leads to very explicit formulas in the structure theory of quan-
tum groups and quantum spin systems.

And last but not least.

B. In our lecture we consider spin systems with a global non-abelian symmetry.
It is natural to ask about generalizing proposed technique to systems with a local
(gauge) symmetry. The study of such systems including Ising and Potts chiral
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models, abelian and non-abelian gauge fields is very important for Quantum Field
Theory and the Theory of Phase Transitions.

Chapter 2
Hecke surfaces and K- regular graphs.

1. The Basic Construction

Let Γ be a finite k-regular graph.

Definition 1.1. An orientation O on Γ is an assignment for each vertex υ ∈ Γ, of
a cyclic ordering of the edges emanating from υ.

A graph (Γ,O) with orientation is often referred to in the literature as a fatgraph.
Generalizing the construction of [15] for the case k = 3, we will associate to the

oriented graph, (Γ,O) a pair of Riemann surfaces, and SO(Γ,O) and SC(Γ,O).
SO(Γ,O) will be a finite-area Riemann surface, and SC(Γ,O) will denote its con-
formal compactification. As in [15], the idea is that the spectral geometry of the
non-compact surface SO(Γ,O) is controlled (up to geometric constants) by the
spectral geometry of the oriented graph (Γ,O), which may then be studied combi-
natorially. The spectral geometry of the closed surface SC(Γ,O) will be close to the
spectral geometry of the open surface SO(Γ,O), provided that SO(Γ,O) satisfies a
large cusps condition, which will be explained below.

A central part of the construction is the following.

Definition 1.2. For given k, the Hecke group Hk is the discrete subgroup of
PSL(2,R) generated by the matrices

Ak =
(

1 2 cos(π/k)
0 1

)
Bk =

(
0 −1
1 0

)
.

A fundamental domain Fk for Hk is given by the region shown in Figure 1, where
ρ0 is the intersection in the upper half plane of the circles of radius 1 centered at 0
and 2 cos(π/k). Noticing that i is the fixed point of Bk, we see that ρ0 is the fixed
point of

AkBk =
(

2 cos(π/k) −1
1 0

)
,
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and hence

p0 = cos(π/k) + i sin(π/k).
The corresponding circles meet at p0 with angle 2π/k.

The fact that Ak and Bk generate a discrete group can be read off from the
Poincaré Polygon Theorem, the fact that Ak preserves the horocycle y = 1, and
the fact that AkBk is a rotation through angle 2π/k about p0 and sends i to
2 cos(π/k) + i.

In the particular case k = 3, we have 2 cos(π/k) = 1, and we have the well-known
generators and fundamental domain for PSL(2,Z).

2. Hecke Surfaces

For each k, let H denote the collection of surfaces

Hk = {S : S = SC(Γ,O) for some k-regular (Γ,O)}.
Note that Hk is precisely the set B of Belyi surfaces, for which several characteri-
zations are known, see [16, 20, 19].

Theorem 2.1. For each k

Hk = B.

It follows, for instance, that for any Riemann surface S and for any ε, there is
a k-regular (Γ,O) such that SC(Γ,O) is ε-close to S (for any reasonable metric on
the moduli space of surfaces).

The point here is that the description of S as S = SC(Γk,Ok) for some k may be
very complicated, while for another k′, the graph Γk′ ,Ok′ might be quite simple.

See the proof related to the graph theory in [29].

3. Riemann surfaces SO(Γ) andSC(Γ)

In this section we describe how to read off some geometric properties of the
surfaces SO(Γ) and SC(Γ) from the combinatorics of the graph Γ(G,O).

Definition 1.3, A left-hand -turn path (LHT) on Γ(G,O). is a closed path on Γ
such that, at each vertex, the path turns left in the orientation O.

Traveling on a path on Γ which always turn left describes a path on SC(Γ,O)
which travels around a cusp . Let l= l(Γ(G),O) to be the number of disjoint LHT
paths , then the topology of SO(Γ,O) is describable in terms of l and the number
of vertices 2n. The graph Γ divides SO(Γ,O) into l regions , each bordered by a
LHT path and containing one cusp in interior. (Γ,O) Using the Euler characterstic
formula : χ(SO(Γ,O) = 2n − ln + l = 2 − 2g. So the genus g( SO(Γ,O)) is given
by g = 1 + (n− l)/2 and the number of cusps is l.

Remark 3.1. The topology of SO(Γ,O)is heavily dependent on the choice of ori-
entation Ω.

Example 3.1. [15] The usual orientation on the 3-regular graph which is the 1-
skeleton of cube contains six LHT paths, giving the associate surface of sphere with
six punctures, while a choice on this can have either two,four or six LHT paths, so
that the the associated surface can have genus 0, 1, 2.
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Example 3.2. Platonic solids Let πk be the k-th Platonic graph of [24]. It is
the k-regular graph defined by

{(a, b) ∈ Z/k × Z/k, a, b relatively prime to k}/(a, b) ∼ (−a,−b).

Two vertices (a, b) and (c, d) are joined by an edge provided that

det
(

a b
c d

)
≡ ±1(mod k).

An orientation O on πk may be defined as follows: at the vertex (a, b), let
< (a, b), (c, d) > be an edge. We choose the sign of c, d) so that

det
(

a b
c d

)
≡ 1(mod k).

Then the next edge in the cyclic order at (a, b) is < (a, b), (c− a), (d− b) >.

With this orientation all LHT paths are of length 3, by virtue of the sequence

< (a, b), (c, d) >→< (c− a, d− b), (−a,−b) >→< (c, d), (a− c, b− d) > .

sequence

< (a, b), (c, d) >→< (c− a, d− b), (−a,−b) >→< (c, d), (a− c, b− d) > .

The surface SC(πk,O) is the Platonic surface Pk, which is the compactification
of the modular surface

Sk = H2/Γk, Γk =
{(

a b
c d

)
≡ ±

(
1 0
0 1

)
(mod k)

}
.

Example 3.3. Let (Γ,O) be an oriented k-regular graph, all of whose LHT paths
have length l. Then we may define the dual oriented graph (Γ∗,O∗) as an l-regular
graph, all of whose LHT paths are of length k, as follows: the vertices of Γ∗ are the
LHT paths of Γ. The edges {e} correspond to the edges e of Γ, and {e} joins the
two (not necessarily distinct) LHT paths to which e belongs.

The orientation O∗ on Γ is given as follows: given a LHT path γ and an edge
e on Γ, the next element in the cyclic ordering at {γ} is {e′}, where e′ is the edge
following e along the path γ.

Theorem 3.1.

SC(Γ,O) = SC(Γ∗,O∗).
This duality concerns with two types of compactification of surface by horocycles

and to add the points of absolute by geodesics going to cusps.
The point here is that it may be that (Γ,O) is difficult to analyze, but (Γ∗,O∗)

may be relatively easy to understand. For instance, bounding the Cheeger constant
and first eigenvalue of the dual Platonic graphs π∗k uniformly from below is equiv-
alent to Selberg’s Theorem [24] up to constant, but the Cheeger constant and first
eigenvalue of π∗k may be calculated in an elementary manner [24].
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4. Large Cusps

The geometry of the cusps can also be read off from Γ(G,O). In [15] R.Brooks
suggested the following construction.

Definition 4.1. Let SO be a finite area Riemann surface. SO has cusps of length
À L (shortly large cusps conditions) if there is a system ci of closed horocycles
such that :

i) Each horocycle has length at least L,
ii) Each cusp is contained in the interior of one of the ci ,
iii)The interior of the ci are disjoint.

The importance of this conditions follows from the theorem that asserts:
When SO satisfies the large cusps conditions, the spectral geometry of SO and

SC are close. See the exact statement in [16]
The theory as described in [24] is qualitative, but was made quantitative in [26].

We give an outline of the proof. If each cusp has a horocycle of length at least 2π,
than you can close off the cusp with a metric of negative curvature by changing the
metric conformally inside the cusp. The number 2π arises as necessary condition
for this by Gauss-Bonnet theorem. D.Mangoubi [26] shows it is sufficient. The
corresponding number for k-regular graphs would be the first integer m such that
2m cos(π/k) > 2π. So the limiting behavior as k is going to infinity is m = 4 and
for k = 3 (modular group), m = 7. In particular, Mangoubi calculate how long
the cusps must be to guarantee that SC carries a metric of negative curvature. He
shows that this will be the case provided that the cusps have length ≥ 2π.

We remark that the large cusps condition does not imply that all the closed
paths on the graph Γ are short. It is a condition only on the LHT paths. Thus, the
oriented graph (Γ,O) may have plenty of short geodesics, while still having cusps
of length ≥ L for some large L.

Of course, it is not always convenient to change the metric within closed horo-
cycles. For instance, the Platonic graphs πk have LHT paths all of length 3, and so
do not have large cusps. In [26] it is shown by example that one cannot weaken the
large cusps condition by, for instance, replacing horocycles with a general condition
such as large geodesic curvature and convexity. However, in special cases we may
still modify the metric on SO(Γ,O) in a canonical way to obtain the desired results.
Here is an example geared to handle the Platonic graphs:

Theorem 4.1. There exists a k0 and a number d0 with the following property: let
(Γ,O) be a k-regular graph, for k ≥ k0, such that all the LHT paths have length equal
to 3. Then there exist neighborhoods of the cusps and of the vertices of SO(Γ,O)
and SC(Γ,O), depending only on k0, such that outside of these neighborhoods, the
metrics ds2

C and ds2
O satisfy

1
d0

ds2
O ≤ ds2

C ≤ d0ds2
O.

The notation is meant to emphasize that we do not have d0 → 0 as k →∞.

5. Geodesics on Graphs and surfaces

. The geodesics of SO(Γ,O)) is possible to describe in terms of (Γ,O). Let L =
and R = A closed path P of length k on the graph may be described by starting at a
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midpoint of an edge, and then giving a sequence (w1, .., wn), where each wi is either
l or r, signifying a left or right turn at the upcoming vertex. Let Mp = W1 · · ·Wk,

where Wj = L =
(

1 1
0 1

)
if wj = l and Wj = R =

(
1 0
1 1

)
if wj = r.

The closed path P on Γ is then homotopic to a closed geodesic γ(P ) on SO(Γ,O))
whose length γ(P ) is given by 2 cosh(length(γ(P ))/2) = tr(Mp).

The length γ(P ) depends strongly on O. For instance, if the path P contains
only left hand turns then length γ(P ) =0. If the pathP of length r consists of
alternating left and right hand turns, then length(γ(P )) =r log( 3+

√
5

2 ).

Remark 5.1. I would like to point out some similarity between the computation
of length of geodesics in terms of graphs and construction of von Neumann factors
with special values of index. V.Jones proved the following remarkable result [?].

Theorem 5.1. For each integer n.there exist a pair of factor R0 ⊂ R and subfactor
R0 of type II1 with index [R : R0] equal to 4cos2(π/n)

For example, there exists factor with [R : R0] = ( 3+
√

5
2 ).

This similarity is not an accident.It is related to construction of hyperfinite type
factors using Bratelli diagrams. On the other hand it is connected with the problem
of quantization of moduli space of Riemann surfaces based on the decomposition of
surfaces via k-valent graphs. We will discuss the details in a separate publication.

6. The Chromatic Polynomials and generalized Potts models

In this section I consider some relations of Hecke groups with Potts models. I
content to classical Potts model in the planar case.I refer for details to the book of
R.Baxter [17]

A. Zn Potts model Let L be a two-dimensional lattice. With each site i we
associate a ”spin” σi which takes n values. Two adjacent spins σi and σj interact
with the energy −Jδ(σi, σj)) where δ(, ) is the usual Dirac δ(, ) -function. The total
energy is

(1) E = −J
∑

(i,j)

δ(σi, σj)

where the summation is over all edges(i, j) of L. The partition function is

(2) Zn =
∑

σ

exp{K
∑

(i,j)

δ(σi, σj)}

Here the summation is over all values of spin σ(i).

Remark 6.1. The Potts model is possible to determine on any graph L.

In 1969 P. W. Kasteleyn and C. M. Fortuin have found that Zn Potts model can
be expressed as a dichromatic polynomial ,known in the graph theory (H.Whitney,
T.Tutte). We set v=exp(K)−1. Consider a typical graph G containing l bonds and
c connected components(including isolated sites). Let e be the number of edges of
the graph L. Then the summand in (1) is the sum of two terms 1 and vδ(i, j). So
the product can be expanded as the sum of 2e terms . Each of these 2e terms can be
associated with a bond-graph on L. Then the corresponding term in the expansion
contains factor vl. Summing over independent spins and over all components we
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obtain the contribution of these terms ncvl.So the partition function Zn be the
same as in (2). The summation is over all graphs G drawn on L.

The expression (2) is called a dichromatic polynomial or Whitney-Tutte polyno-
mial.

In the anti ferromagnetic case K = −∞ and v = −1. Zn =
∑

qC(−1)l = Pn(q)
reduces to chromatic polynomial.

It is clear that Pn(q) determines the number of ways of coloring the sites of L with
q colors ,no two adjacent sites having the same color. So Pn(q) is the polynomial
in q, which coincides with partition function Zn (2) with v = −1.

Remark 6.2. It is important to mention that the expression (2) is determined for
any complex numbers q, not necessary integers. There is a beautiful conjecture
concerning the behavior of zeros of chromatic polynomials.

Beraha Conjecture 6.1. Let us consider a chromatic polynomial Pn(q) for arbi-
trary large planar graph. Then the real zeros of Pn(q) cluster round limit points.
These limit points are so called”Beraha numbers” q = [2 cos(π/k)]2, k = 2, 3..

This conjecture is still unproved. There is an interesting approach using quantum
groups [23]. I would like to outline another approach using Hecke graphs.In this
case it is necessary to consider the Caley graph generating by Hecke groups. The
partition function of Potts model determined on this graph reduces to the chromatic
polynomials with desire properties.

Remark 6.3. We mention at the end that the famous problem of four colors on a
planar graph is exactly equivalent to the property that Pn(4) is always equal zero.

7. Conclusions

Our approach to generalized Kramers-Wannier (KW) duality is very natural in
the spirit of quantum groups. From this point of view is interesting to study the
so called McKay correspondence which attached to any finite group K of SU(2) a
certain graph which coincides with affine extensions of Dynkin diagrams . Recently
these results were extended by I.Dolgachev to the cocompact discrete subgroups γ
of SU(1, 1) [28]. It is interesting problem to consider McKay correspondence in the
case of Hecke groups.

Remark 7.1. The last which I would like only to mention is the relation of Hecke
groups with the two-dimensional quantum field theory. These groups appeared as
the monodromy representations of some colored braid groups and determined the
correlation functions in Z3 and parafermionic Potts models [14, 21, 27].
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