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1 Introduction

It is refreshing for mathematically minded theorists that computer calculations
in perturbative Quantum Field Theory (QFT) far from making analytic meth-
ods obsolete go in effect hand in hand with their developments. It took nine
years before an error in the first numerical calculation of the o2 contribution
to the anomalous magnetic moment (g — 2) of the electron was corrected by
Petermann (and independently by Sommerfield) while computing the relevant
seven Feynman diagrams analytically. The answer involves a ((3). (For a his-
torical review — see [St]; for the expressions of the a? and o® contributions
to g — 2 in terms of zeta values of weight three and five, respectively, and for
references to the original work of the late 1950’s on the a? term and the mid
1990’s on the a® graphs — see [Sch].) It was in the course of a calculation of the
electron form-factors that multiple polylogarithms were used by Remiddi et al.
and subsequently surveyed under the name of harmonic polylogarithms in [RV].
(Later computer aided higher order calculations of g — 2 took over — see the
entertaining review of the field up to 2010 by Kinoshita [K].)

Mathematicians were attracted to the beauty of the dilogarithm and the
enigma of multiple zeta values (MZVs) since the work of Euler — see [Z, C01, W,
D] for reviews. The singlevalued multiple polylogarithms (SVMP), introduced
and studied by Brown [B04] were soon recognized to play a central role in
euclidean calculations of scattering amplitudes — see the systematic elaboration
and application to the study of graphical functions in massless QFT in [S13] as
well as a choice of influential recent papers [GSVV, GMSV, DGR, DDEHPS,
DDDP] and references to earlier work cited there.

The notion of a Feynman period [Sch], identified as residue of a primitively
divergent graph, was used systematically in [NST13, NST] in the study of z-
space renormalization of massless Feynman amplitudes. Such residues/periods
appear in the perturbative expansion of the renormalization group beta function.
They were studied by Broadhurst and Kreimer [BK] back in 1996 up to nine
loops in the ¢* theory and found to be given in most cases by MZVs — i.e. by
rational linear combinations of multiple (convergent) series

C(nyy...,ny) = Z 1 (n,eN, mn,>1). (1.1)

ni k.’n.,-
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The multiple polylogarithms were first encountered as multiple power series
of a similar type, convergent in the unit circle. They admit an analytic contin-
uation to the punctured projective plane (z €) CP*\{0,1, 00} given by multiple
iterated integrals [C], [B] labeled by words of two letters {0,1}. The MZVs
appear as values of the multipolylogarithms at the boundary point z = 1. It
is remarkable that this family of functions admits a double algebra structure:
a shuffle and a stuffle algebra (both commutative) which incorporate a wide
family of identities among them. Moreover, the SVMPs naturally form a shuf-
fle subalgebra. Both algebraic structures pass to the MZV and allow to speak
about the algebra of singlevalued MZV [B13].



In general, the residue of a primitively (ultra-violet) divergent Feynman am-
plitude is defined by an integral over a compact projective space (see [NST13],
Theorem 2.3). In many cases (for instance for amplitudes involving a confor-
mally invariant integration) the same residue can be computed using integration
over a (non-compact) unbounded domain. An example of this type, the wheel
with n strokes was considered in [B93] (and later surveyed in Appendix D to
[NST13] and in [S13]). All ¢* periods considered in [Sch, BS, S13] are of this
type. This allows to compute such periods using recursive relations that involve
integration over R*. Furthermore, it offers the possibility to treat graphs with
internal vertices and thus to face the large x (infrared) behaviour.

The paper is organized as follows. We start in Sect. 2 with a basic example:
integration over an internal vertex in the ¢* theory yielding the Bloch-Wigner
dilogarithm. The details of the calculation (using Gegenbauer polynomial tech-
nics [CKT]) are relegated to Appendix A. Sect. 3 introduces the multipolyloga-
rithms as iterated integrals L,, labeled by words w in two letters {0,1} obeying
shuffle algebra relations. The (possibly regularized) value of L, (z) at z = 1
is identified with the (generalized) MZV (,,. The series MZV correspond to a
passage from the two letter alphabet to one with an infinite number of letters:

C(n17. .. ,nr) = (_1)7” Clonlfl_ulon,‘—l , n; = 1,27 ey 1= 1, ey T (12)

(n, = 1 corresponding to the generalized /regularized MZVs). It is for the MZVs
that we also define (in Sect. 3.2) the stuffle relations (which reduce to easily
derivable identities for the series (1.1)). The number of arguments 7 in the MZV
(1.1) corresponding to the number of 1’s in w is called length or depth while the
number of all letters {0,1} of a word w is called its weight. We treat system-
atically the identities among MZV of weight up to five in Appendix B. The
study of the monodromy of multipolylogarithms (Sect. 3.3 and Appendix C)
is streamlined by the introduction of the generating series L = L, (z) and
Z = Zeye, (3.15). It is a prerequisit for the study of the monodromy of L,, and
hence for introducing SVMP by Brown’s Theorem 3.1. Schnetz’s notion of a
graphical function is reviewed in Sect. 4. As an introduction to the generating
series (4.8) for SVMP we work out in Sect. 4.1 the graphical function and the
period for the wheel with n spokes which only involves the simpler SVMP of
depth one. We return to our main example, the four loop amplitude G4 (Fig. 1),
in Sect. 4.2 (and Appendix C). Its residue I(G4) is expressed as a sum of four
pairs of SVMPs evaluated at z = 1: one of depth one, which reproduces the
period of the wheel with four spokes

1wy = (5) <o), (1.3

two of depth two with a negative contribution (—20(¢(5)) to I(G4), and one of
depth three whose contribution (20((5)) cancels that of the depth two terms.
Thus we confirm the expected result I(G4) = I(Wy) (4.15) demonstrating that
integration over internal vertices in a primitively divergent ¢* graph commutes
with taking the residue.



2 An inspiring example: the Bloch-Wigner sin-
glevalued dilogarithm

The main example, on which we shall test the basic concepts and tools, reviewed
in this lecture, is the massless 4-point p*-amplitude in (euclidean) position space

I<$17...,$4)

G4($1,...,J}4):—2 ) 3 2 s
Lo Lo3 L34 L14

Tij = Ty — Tj, Z,]Zl,...,4,

vi= (2, a=1,...,4), a};=> (%), (2.1)

a=1
where I(x1,...,x4) is the (conformally covariant) Feynman integral
I - | | (A ) (22)
T1y.e..,24) = _— = , .
Y =1 (z; —x)* 7 oty 73,
u and v being the two independent cross ratios
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The amplitude G4 corresponds to the four-loop Feynman graph displayed on
Fig. 1
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Figure 1.

Four-point graph; the open circles correspond to external vertices.

The integral (2.2) can be interpreted both as a p* integral in position space
and as one corresponding to the box diagram of a ¢? theory in momentum space

(Fig. 2)
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Figure 2.
Dual interpretation of the integral (2.2).

The second interpretation provides an elementary example of what came
to be called a dual conformal symmetry [DHKS]. It was for the momentum
space box diagram (as the simplest example of a ladder graph) that the inte-
gral (2.2) was first computed [UD] (back in 1993) using Melin transform. A
modern computation using Gegenbauer polynomial technics [CKT] is sketched
in Appendix A. The result is expressed in terms of a dilogarithm function of
a complex variable z and its conjugate Z related to the conformal cross ratios
(2.3) by

u=2zZz, v=(1-2)(1-2). (2.4)

The derivation of Appendix A uses the fact that the 4-dimensional hyperspher-
ical Gegenbauer polynomial C} is expressed in terms of the Tchebyshev poly-
nomial of the second kind:

" 2+ 2z vl Zntl _
e (55) =T (P =3, (25

The result is a singlevalued real analytic function on CP!\{0,1, 00} given by

_ 4 D(2)

z—z

Flu,v) = ais w3, I(21,. .., 74) (2.6)

where D(z) is the singlevalued dilogarithm of David Wigner and Spencer Bloch
- see [Bl, Z].

D(z) = Im(Lia(2)+Inl|z|In(1l — 2))
- % <2Li2(z) — 2Liy(2) + Inzzln 1 - i) . (2.7)

Here Li,(z) denotes the polylogarithm given for |z| < 1 by the power series

Lin(2) =) o (Lin(z) = —In(1 = 2)). (2.8)

k=1

P4 = T4 = —T14



While Lis(2) has a multivalued analytic continuation to arbitrary complex z

given by the integral
i dt
Liy(z) = —/ In(1—1t) rl (2.9)
0

that depends on the homotopy class of the path which joins 0 and z, the function
(2.7) is singlevalued (and continuous) on the entire projective plane.

The symmetries of D(z) can be best described by introducing a (real val-
ued) function of four complex variables that behaves as a (scale invariant) local
fermionic 4-point amplitude in a two-dimensional conformal field theory:

’15(21, 29,23,24) = D <Zl2234) where z; = 2z — 2. (2.10)
213 224

It is invariant under even permutations and changes sign under odd permuta-
tions of the variables (z1, ..., z4). This implies

p(*:) - (i) --2(})

D1 -z2)=-D ( : ) (= —D(2)). (2.11)

z—1

D(z)

The function D (2.10) gives the volume of the ideal (oriented) tetraedron with
vertices 21, . .., z4 on the absolute (also called horosphere) of Lobachevsky space
and has already been studied by Lobachevsky himself (cf. [M82]; for background
on the Beltrami model of Lobachevsky space — see [L]).

The significance of this example stems from the fact that it displays proper-
ties common to low loop calculations in more structured quantum field theory
models (such as the N = 4 super-Yang-Mills theory [DDEHPS]) as well as in
physically relevant calculations in quantum chromodynamics [DDDP]. In par-
ticular, the singlevaluedness of euclidean Feynman amplitudes is dictated by
general considerations of the symbol of iterated integrals [GSVV, GMSV, DGR].

3 The shuffle algebra of multipolylogarithms and
of multizeta values
It is both fortunate and demanding for a newcomer in the field that the multi-

polylogarithms (as well as their values at z = 1 — the MZV) appear with a rich
algebraic structure.



3.1 The algebra of words in two letters. Recursive defini-
tion of polylogarithms

We start by introducing a family of iterated integrals!. Denote by {0,1}*
the set of words w in the two letters 0 and 1, including the empty word .
The multipolylogarithms of a single variable z are defined inductively by the
differential equations

d L(2)
— Ly , 1y, Lp=1, 1
T Lua(e) = 222 ae {01}, Ly (3.1)
and the initial condition
1 n
L,(0)=0 for w#0"(=0...0—mntimes), Lon(z)= ( nnz') . (3.2)
In particular, for n,n; > 1 we have
In(1 —2)|" . .
L) = O s e (2) = D, ()
S
= Z R for |z]<1]. (3.3)

1<k1<...<k, 1

For any ring R of numbers (which includes the ring Z of rational integers),
we define the R-module R({eg,e1}*) of formal linear combination of words in
the alphabet {eg, e1} and introduce the shuffle algebra Shr(eg,e1) equipping it
with the (commutative) shuffle product w 10w’ defined recursively by

Puww=w=ww), auwbv=alullbv)+blaulv) (3.4)

where u,v,w are (arbitrary) words while a,b are letters (note that the empty
word is not a letter). Extending by (R-)linearity the correspondence w — Ly, (2)
one proves that the resulting map Shg(eg, e1) — R(Ly) is a homomorphism of
shuffle algebras:

Lyuw(z) = Ly(2) Ly(2) . (3.5)

In particular, it is easy to verify that the dilogarithm (2.9) disappears from the
shuffle product:

Lowi1(z) :== Lo1(2) + L1o(2) = Lo(2) L1(2) = InzIn(1 — 2) .

From the uniqueness of the solution of (3.1) under the condition (3.2) it is
straightforward to prove that for a general word

wi =0™10Mm"1  10m ) ng=0,1,...,n, =1,2,..., (3.6)

terated integrals were introduced in the mid 1950’s and developed essentially single-
handedly for over 20 years by K.-T. Chen (1923-87) [C] before gaining recognition in both
mathematics and QFT — see [B].



we have

T
ki —1
L. (z) = Z (_1)ko+no+r H (nl B 1) Loko (2) Lig, —k,.(2) .
ko>0k;>n; 1<i<r i=1 N ¢
kg+ky+oeAkp=ng+-..npy

(3.7)

3.2 Multiple zeta values (MZV)

For n, > 1 in (3.3) (and in (3.7)) Ln,..n, (%) is convergent at z = 1 and we
define the MZVs as the values at 1 of the corresponding multipolylogarithms:

C(nla~--anr) = L'Lnln,(l) 5

Cor = (1Y H(S:Dg(kll@) (3.8)

k;>n;

T T
Ski=no+yn;

We extend this definition to all words by introducing the regularized MZV setting

G =—¢(1)=0(=¢) (3.9)
and postulating that (,, satisfy the shuffle relation
CuLLIv = Cu Cv . (310)

There is a second stuffle product, x, defined on words in the infinite alphabet
of positive integers which is suggested by identities for the series expansions of
polylogs or MZV. Rather than reproducing the general definition (see [W]) we
just give two simple examples: the Nielsen reflection formula

¢(m){(n) = ¢(m,n) +{(n,m) + ((m +n) =: ((m x n) (3.11)
and the relation

C(E) : C(m7n) = Q(E,m,n) + ((m,ﬁ, n) + C(m,n,()
+ (m+4n)+¢(mn+€) = C¢x(mmn), (3.12)

which suggests the general pattern. The stuffle identities that generalize (3.11),
(3.12) prove that the product of MZV can be expanded as a linear combination
of MZV with integer coefficients. They also allow to extend the notion of MZV to
the case when the last entry is 1. The “regularized MZV” cancel in the difference
of the two products yielding, in general, non-trivial identities as illustrated in
the following example: subtracting the stuffle from the shuffle equation below,

C(1)¢(2) = Guuo = 2¢(1,2) +¢(2,1)
C(1)¢(2) = C(1%2) =¢(1,2) +¢(2,1) +¢(3),



we obtain Euler’s identity
¢(1,2) =<(3) (3.13)

between two convergent series (see for a more systematic treatment of the re-
sulting relations Appendix B).

The number r of arguments in ((k1, ..., k,) corresponding to the number of
1’s in the word wy (3.6) is called length (as in [W]) or depth (in [B13D] [S13]) of
wg. The number |w| of all letters of the word w in the alphabet {0, 1} is called
the weight of w.

For even n (= 2,4,...) the {(n) is a rational multiple of 7™ (as established
by the 27-year-old Euler in 1734 — see detailed historical references in [D]; for
a derivation & la Euler of the explicit formula (3.14) below in terms of the
Bernoulli numbers By, — see [CO1]):

B 1 1 1
1|Bak| ok _

B2:77B4:

_ 92k— _
C(2k) =2 e 6 30

(3.14)

Calculating (by hand!) ¢(3) up to ten significant digits Euler verified that it is
not given by 73 times a rational number with a small denominator [D]. There
is a far going (widely believed but completely unproven) conjecture that the
numbers 7,((3),((5),... are algebraically independent. All known relations
among zeta values of odd weight involve MZVs of the same weight (like in
(3.13)). One may call the relations coming from the shuffle and stuffle identities
(see Appendix B) motivic. (More precisely, starting from an abstract definition
involving the fundamental group of CP*\{0,1,00} — see [B12] and the review
[D] — one proves that these relations are indeed motivic — cf. also [W] and
the explicit treatment of the special case of double zeta values in [C12].) It
is conjectured that all motivic zeta values are of this type. A further going
conjecture (that would imply the above mentioned belief about the algebraic
independence of odd zeta values and 7) says that all relations among MZV are
motivic.

3.3 Single valued multiple polylogarithms (SVMP)

The monodromies Mg and M around the potential singularities 0 and 1 of the
polylogarithms (2.8) and of Lo~ (3.2) are given by the unipotent operators

MO LZn(Z) = LZn(Z) 5 MO L()n (Z) = L()n (Z) + 2me Lon—l (Z) y

My Lin(2) = Lin(2) — 27 Lon-1(2

).
More generally, introducing the generating function L(z)(= Leye,(2) = 1 +
Inzepg+1In(l—2)ey +...) and its regularized limit Z(= Z.,,) at z = 1 (called
the Drinfeld associator),

L(z) = ZLw(z)w,Z:Zwa
= 1+C(2)[€0,€1]+<(3)[[€0,€1],€0+€1}+... (315)



(cf. Appendix B) we can write (see Appendix C)
Mo L(z) = ™0 L(z), My L(z) = Ze*™ 271 L(2). (3.16)

The first relation follows from the fact that L(z) is the unique solution of the
Knizhnik-Zamolodchikov equation

dilzL(z) = L(2) (eo+ a ) (3.17)

z z—1
obeying the asymptotic condition
L(z) = e®™2py(2),

ho(Z) 2 [ln(l _Z>]2

1+ e In(1 —2) + [eo, e1] Lia(2) + €] 5

+...(3.18)

(i.e. ho(0) =1, ho(z) being a formal power series in the words in {eg, e;}* that
is holomorphic in z in the neighbourhood of z = 0. The second relation (3.16)
is implied by the fact that there exists a counterpart hq(z) of hg, holomorphic
around z = 1 and satisfying h;(1) = 1 such that

L(z) = Z e m0=2) y (2) (3.19)

(see Appendix C). The knowledge of the monodromy allows to construct single-
valued linear combinations of products of the type Ly (Z) Ly (z), the SVMP. A
practitioner of 2-dimensional (2D) conformal field theory will notice the anal-
ogy with constructing monodromy invariant 2D correlation functions out of
(multivalued) chiral conformal blocks. It turns out that SVMP have simple
characterization in terms of equations of type (3.1) (3.2) and form an interest-
ing subalgebra of the shuffle algebra of multiple polylogarithms. The following
result is due to Brown.

Theorem 3.1. [B04] (See also Theorem 2.5 of [S13].) There exists a unique
family of single valued functions {Py(z), w € {0,1}*, z € C\{0,1}} each of
which is a linear combination of L, (Z) L,(z) of the same total weight, |u|+|v| =
|w|, which satisfy the differential equations

_ Py(z) _ ﬁ
O Pya(z) = ot 0= 55 (3.20)
such that
Py=1, Pp(z)= (111;;7'2)”’ P,(0)=0 for w#0" (w#0). (3.21)

The functions P, satisfy the shuffle relations (3.5) and are linearly independent
1421 4
720 1=2777 20 1-Z
combination of functions of the type L (Z) Ly (2) can be written as a (unique)
linear combination of Py,(z).

over the ring of polynomials C {z } Every singlevalued linear

10



The functions P,, can be constructed explicitly in terms of the corresponding
generating function (see [S13], the text after Theorem 2.5; a special case of
interest is reproduced in Sect. 4 below). The functions

P)(z) = Y La(2) Ly(2) (3.22)

(where @ = a, ...ay for w = ay...ap, a; € {0,1}) can serve as a first step in
the construction of P, and actually coincide with P, for words (of any weight
but) of length/depth one as well as for all words of weight at most three. We
find, in particular,

POI(Z) = Llo(f) + LOI(Z) + Lo(z) Ll(z) = L22(z) — LZQ(Z) + 1nz21n(1 - Z)

Plo(Z) = LOl(Z) + Llo(z) + Ll(i) Lo(Z) = Lig(?) — LZQ(Z) + lnzéln(l — 5) R
so that
P01—|—P10=1H|Z|2 1H|1—Z|2:fjof)17

in accord with the shuffle relation, while

Py1(2) — Pio(2) = 2(Liz(z) — Lia(2)) + Inzzln 1 : ; =4i D(z) (3.23)

reproduces the Bloch-Wigner function (2.7) — the only new SVMP of weight
two.

The words w for which the SVMP P, coincide with P2 (3.19) include the
wheel with n-spokes reviewed in Sect. 4.1 below.

As it is precisely the SVMP that appear in the calculation of Feynman
amplitudes, it is natural to expect the Feynman periods (or residues) will also
belong to the corresponding restricted shuffle subalgebra of “singlevalued MZV”,
generated by the values of SVMP at z = 1 (see [B13]). This set turns out to
be generated by the odd zeta values ((2n + 1), n = 1,2,.... In particular,
the Bloch-Wigner function (2.7) (3.20) vanishes for real z, hence so does the
singlevalued counterpart of {(2):

SV(2)=D@1)=0. (3.24)

4 Graphical functions and periods

4.1 SVMP of depth one and the wheel. Generating series
for the general SVMP

The computation of the integral (2.2) (or of its simplified version (A.3)) can be
viewed as a first step in a recurrence in which f,(z) = F(z, W,,) are defined by

_ 1 1

88f2<2:) = Z(l — 2) — 2(1 — Z) = fg(Z) = P()l(Z) — Plo(Z)

11



= -1 5 O
33fn+1(z)—;fn(z) for n=2,3,..., 0= , 37£, (4.1)
whose (unique) SVMP solution is
fn_l’_l(Z) = (71)’”' (Pon—l 10m (Z) — Pon 10n—1 (Z)) . (42)

Here F(z,W,) gives the Feynman amplitude corresponding to the sequential
graph presented on Fig. 3

d* zq d* z,, 1
F(z, W, =
(2, Wa1) / w2 z? / w222 (1 —e)2ady... 22, (v, — Z)2

n—m

Figure 3.
Sequential graph for the wheel W 41.

To prove this identification one uses the 4-dimensional Laplace equation
L Az F(z,Wp11) L F(z,W,) (4.3)
- z n = Z, Wi .
i P 2z

and the expression for Ay restricted on a function of z and Z:

_90[(z—2)F(2)] (Z2=2%2, (Z—e)? =|z—1]?). (44)

zZ—Zz

iAZ Fz) =

The period I(W,,41) of the wheel with n + 1 spokes is now obtained as the
limit of F(z, Wy41) for z = 1 (Z — e). (To see this, one should redraw Fig. 3
with the vertices (e, 1,...,n) on a circle and the vertex 0 in its centre.)

For a general word of weight ng + ny and depth one we can use (3.19) to
write

- ni—1+k .
PO"O 10n1—1(Z) = Z(—l)k-i—l ( 1n1 1 ) Ponofk(z> Lln1+k(2)
k=0
. ng+k
+ Z (—1)7€+1 ( Ono >P0n11k(z) Lin0+;€+1(2) (45)
k=0

(where Py is given in (3.18)). Inserting this expression in (4.2) we obtain

F(z,Wni1) = M =3 (-t <

Z—Z

n+k
n

Lin+k(2') — Lln+k(2)
z—Z ’

) Pyn-r(2)
(4.6)

12



In the limit z — 1 only the term with & = n contributes and we find
2n
I(Wyi1)=F(1,Wp41) = (n) ¢(2n—1). (4.7)

This result was first derived using a similar recursion by Broadhurst [B93]. The
above derivation follows Schnetz [S13].

In general, the generating function of SVMP is given by (see [B04] [S13] and
Appendix C below):

Peo 61(2) = Leo 4 (2) Leo el (Z) (48)
where L = ¥ L, @ (cf. (3.22)) and ¢/ is the unique solution of the equation
Zcoey 12 0oy = Zeger 1 255, (4.9)

(see Appendix C).

4.2 Single valued MZV and the period of G,

The amplitude G4 (2.1) and its period I(G4) corresponding to the graph on Fig.
1is of interest as the first strongly connected (or “internally six connected” in the
terminology of [S13]) ¢*-graph that involves integration over an internal vertex.
Albeit such an integral is known to be infrared convergent it may interfere
with the causal factorization condition for the ultraviolet renormalization (the
amplitude G4 being primitively logarithmically divergent). A related question:
the period of the amplitude belongs to the wheel series. If we can treat the
vertex 0 (with four adjacent lines) as an external one then we should expect to

have I(G4) = I(Wy) = (g) ¢(5). If we treat it as an internal vertex — see Fig. 4
e
3
1 o)
Z(2)
0
Figure 4.

Graph for the graphical function g4(2).

then we end up with a different graphical function. Indeed, the sequence of
differential equations corresponding to the graph on Fig. 4 is

92(2) = fa(2) = Por(2) — Pro(2)

= B —g2(2) _ 1 1 1 1
999:2) = Za_0=m - (z—l_z> <z_z—1)g2(z)
00g4(z) = %ﬁéz) . (4.10)

13



The functions

93(2) = Powoo(z) — Pooro(2) + Pio1o(2) — Poror (2) + Poora (2)
—  PPoo(2) + PPio1(2) — Pioni(2)
949(2) = Poys102(2) — Por103(2) + Pir1010(2) — Por0102(2) + Poh2gs (2)
(

Ps120(2) + Poio120(2) — Por2010(2) (4.11)

where P?(z) are given by (3.22) provide a multivalued solution of the partial
differential equations (4.10). The SVMP g3(z) is obtained from g¢§ (4.11) by
replacing P2 (z) by

Py(2) = Pyy(2) +2¢(3) (w, [[[eo, e1] e1] eo + ea]) L1 (2) (4.12)

(see Appendix C). The inner product in Z({eg,e1}™) is defined by setting (u |
v) =0if u # v (u | uy =1 for any two words u and v. The period I(Gy) is
equal to the derivative gj(z = 1) given by the limit

. z
I(Ga) = lim 294_( z)’ = Ppz10(1) = Poz102(1) + Poz101(1) — Foro1o(1)
+  Pyizg2(1) — Pos12(1) + Py1o12(1) — Porzo1(1) . (4.13)

According to (4.2) and (4.7) the period of the wheel with four strokes is given
by just the first two terms of (4.13):

W) = Fona(1) = Frnoe() = (§) €G) = 20665). (410

As verified in Appendix C the remaining six terms cancel against each other so
that
I(G4) = 1(W4) = 20¢(5) (4.15)

which is a special case of the result of [BS] concerning all zig-zag graphs. This
calculation confirms the general argument of Sect. 2 of [Sch] demonstrating
that periods in ¢* theory are in fact associated to (completed by a “vertex at
infinity”) 4-point graphs and do not depend on the choice of marked vertices
(00,0,1, z). Thus different (logarithmically divergent) Feynman amplitudes, in
our example a 4-point and a 5-point one, may be renormalized by subtracting
a pole term with the same residue (multiplied by a 12- and a 16-dimensional
d-function, respectively).

4.3 Concluding remarks

In the early days of the development of the “dual resonance model” theo-
retists were joking about “physics of the red book” — meaning the volumes
of the Bateman-Erdileyi classic “Higher Transcendental Functions”. There is
a marked difference between that old fad and the present day development of
analytic methods in perturbative QFT calculations a basic ingredient of which
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is reviewed in this lecture. Quantum field theory is the language of the stan-
dard model of particle physics (which also gives room but is not reduced to
speculative dreams that may serve a future theory). The family of multiple
polylogarithms, omnipresent in perturbative calculations, far from being just
another set of special functions, admits an interesting algebraic structure that
passes to the physically relevant subfamily of SVMPs. Residues or periods typ-
ically expressed in terms of MZVs are central to our current understanding of
ultraviolet renormalization. These developments have transformed QFT from
a “reason for divorce between mathematics and physics” [D] half a century ago
into a common playing ground for mathematicians and physicists, giving a new
vigour to our field.
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Appendix A. Computation of the integral (2.2)

Using conformal invariance we can send the variable x; to infinity, x4 to zero,
To — to a unit 4-vector e and set

r3=27, where Z>=12%,2Ze=2+7% (A1)
so that the cross ratios (2.3) assume the form
u=2"=22, v=(Z—-e?=(2-1)(2-1) (A.2)

in accord with (2.4). Then we can write, introducing spherical coordinates
r=rw, Z = |z|w,,

da
Flu,v) = F(Z)_7T12/LL'2(.’E—:)2($—Z)2 (A.3)

1 3w
= 2 rdr 2 2 2 :
™ g3 (r2—2re-w+1)(r2 + |22 — 2r |zl ww,)

Assuming |z| < 1 we can split the radial integral F into three terms F =
Fy + F» + F3 corresponding to the domains r < |z|, |z] < r < 1 and r > 1,
respectively. In the first one we can write

(r*=2re-w+1)7!' = Zrn Cp(we), (A4)
n=0
(2 + |22 = 2r)z|ww,) "t = |21|2n;) <|Z|> Cl (ww,) (for r < |z| < 1)

where the hyperspherical (Gegenbauer) polynomials C! can be written as

sin(n+1)0
C} 0) = ————. A5
L(eost) = TR0 (A.5)
Using further the orthogonality relation
Bw  26mn
/s3 CHw-e) C,ln(wwz)? =1 CHw. e) (A.6)
where, according to (A.2)
z+Zz
e=2Z A.
were =G (A.7)

Inserting in Fy and using (A.5) (or (2.5)) and (2.8) we find
=l dr & z2+Zz Lio(2) — Lis(2)
F = . (AL
(=) = /0 T2 Zn+1\z|” "(2|z|> P (4.8)
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The same result is obtained for F3(z):

Cdr o= 2 2" 2tz Liy(2) — Lis(2)
F — - —_— = = F .
3(2) /1 r3 nz::o n+1 r2n C"( 2|z| ) z—Z 1(2)
(A.9)
Finally,
1 . s _ _ -
Fy(z) = 2/ dr Liy(z) %21(2) :lnzéln(l z) 1}1(1 Z) ; (A.10)
2| T Z—Z Z—Z

this, together with (A.8), (A.9) completes the proof of (2.6) (2.7) for |z| < 1. The
same expression can be obtained in a similar fashion for |z| > 1; alternatively,
it can be deduced from the result for |z| < 1 using the symmetry of F(z)
implied by (2.11). The result can also be established by verifying that it is
single valued and satisfies the first equation (4.1) (in view of the uniqueness of
SVMP, Theorem 3.1; cf. [S13]).

Appendix B. Identities among MZV

Eq. (3.8) which relates the MZV ¢, (labeled by words in the two letters {0,1})

with {(n1,...,n.), n; = 1,2, ... becomes particularly simple for words of depth

one,
tmg— 1

Goratgmi—s = (~1)"0*! (nn” | ) Clng +m1). (B.1)

This allows to write the depth one contribution to the generating function Z
(3.15) in terms of multiple commutators:

nz::l((n + 1)er, ei],eol,-.-,e0] = nz::l C(n+1) kz::()(—l)]Hl (Z) elg e1 egfk ,

n
(B.2)
which is another way to write down (B.1). It is more interesting — and more
difficult — to deduce the relations among (,, for words of higher depth. We shall
write down all such relations for depth two and weight |w| < 5. Note that the
number d,, of linearly independent MZV of a given weight n can be read off the
generating function conjectured by Don Zagier

1 oo
m:z:dntn d2:d3:d4:1 d5:d6:2,... (B3)
n=0

(and proven for the motivic analog of MZV by Brown [B12]; in general, d,
provide an upper bound of the independent MZV).

The Euler’s relation (3.13) is a special case of either of the following more
general relations which only involve proper (convergent) zeta series:

¢(1,...,1,2) =((n), (B.4a)
——

n—2
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> sty 80) =((n). (B.4b)

s> 1385, >2
Ss;=n

The “unproper” (regularized) zeta value ((n, 1) is determined from the stuffle
relation:

0=¢(1)¢(n) =¢(1,n)+{(n,1) +¢(n+1). (B.5)
In particular, for n = 2, we find
€(2,1) = —=¢(3) = ¢(1,2) = =2¢(3). (B.6)
From Euler’s formula )
@)= (B.7)

(a special case of (3.14)) and from the shuffle and stuffle relations one deduces
that all zeta values of weight four are rational multiples of 7 (in accord with
the Zagier conjecture (B.3)). In particular, the relations for 10 w10, 10 x 10
and (B.4) for n = 4,

¢(2)* = Crowto = 2Cro10 + 4 G100 = 2¢(2,2) +4¢(1,3),

€(2)® = Grox10 = 2¢(2,2) + ¢(4);  ¢(1,3) +¢(2,2) =((4),

allow to express all weight four words of length not exceeding two as integer
multiples of ((1,3):

C(4) =4¢(1,3)(=¢(1,1,2)), ¢(2,2) =3¢(1,3), ¢(2)* =10((1,3)

71.4

360 °

Proceeding in a similar fashion with the two products of the words 10 and 100
we find

= ((1,3) = (B.8)

¢(2) ¢(3) = 3 Ci0100 + 6 C11000 + Cr0010 = 3¢(2,3) +6¢(1,4) +((3,2),

¢(2)¢(3) =¢(2,3) +<¢(3,2) +¢(5); ¢(1,4) +¢(2,3) +¢(3,2) =¢(5).

These three equations determine a 2-dimensional space of zeta values of weight
five (in accord with (B.3)). Selecting as a basis ((1,4) and (2, 3) we express the
remaining convergent (-values of weight 5 in terms of this basis with positive
integer coefficients

C(]-’ 1, 3) = C(1’4)7 C(la 2, 2) = C(Qa 3) ,

¢(5) =2¢(2,3) +6¢(1,4), €(3,2) =¢(2,1,2) = ((2,3) +5¢(1,4),
€(2)¢(3) =4(¢(2,3) + 11¢(1,4) (B.9)
(while ¢(4,1) = —=¢(1,4) = ¢(5) = =7¢(1,4) = 2((2,3)).
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For the study of single valued MZV it is more natural to use the basis
(¢€(5),¢(2)¢(3)) instead. Then we find

(C(1,1,3) =) ¢(1,4) = 2¢(5) - C(2)¢3),
(¢(1,2,2) =) ¢(2.3) = 3¢(2)C3) — 5 ¢05)

(€(2,1,2) =)<3,2) = 24(5) —2¢(2)¢(3); ¢(4,1) = ¢(2)¢(3) =3¢(5) . (B.10)

Brown [B12] has demonstrated that a basis for “motivic” MZV for all weights
is given by ((s1,...,sk), with s; € {2,3}.

From the iterated integral representation of MZV it follows that the gener-
ating function (3.15) satisfies:

Z ) = Zes =Z ey - (B.11)

€oe1

(The first equation incorporates, in particular, (B.4a).)

Appendix C. Monodromy at z = 1. Single valued
MZV

The representation (3.19) can be obtained from (3.18) by noticing that the
substitution z — 1 — z corresponds to the exchange ey <+ e; and that the path
from 0 to z can be viewed as a composition of two paths: from 0 to 1 and from
1 to z. For 0 < z < 1 one should just set hy(z) = ho(1l — z). Eq. (3.16) follows
from (3.18) (3.19) and the relations

Molnz=Inz+2mi, Miln(l—-=2)=In(l—z)+27i. (C.1)
Applying (3.16) one should take into account the relation (B.11)

Z. = 261760 = 2—607—61 (C-Q)

€0,€1

where the tilde indicates that each word is replaced by its opposite. We leave
it to the reader to verify that the first few terms in the expansion of (3.16)
reproduce (C.1) and give

My Lo1(2) = Lo1(2) (= InzIn(1 — 2) + Liy(z))

Ml Llo(Z)(: Ml(*LZQ(Z))) = Llo(Z) + 211 IHZ . (03)

We now proceed to the evaluation of the element e} defined by Eq. (4.9). To
this end we introduce the Lie algebra valued function

F(eo,e1) = Zeger€1Zc0e, — €1 = C(2)[[e0, e1], e1] + C(3)[[[eo, e1], e1], 0 +ea] + . ..
(C.4)
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Eq. (4.9) can then be solved recursively, writing €] = klim egk) with
—o0

ego) =e1, egkﬂ) =e;+ F(eo, 61) + Fo(—eo, —egk)) : (0-5)
The weight three term with ((2) cancels out and one finds
e =1 +2¢@) lleorer) et o +e1] +CE) )+ (C6)

where, according to Schnetz [S13], the {(5) contribution consists of eight bracket
words of weight six. (The ((3) contribution will be sufficient to the application
that follows.)

The SVMPs in the right hand side of (4.13) are obtained from those in g3(z)
by adding a letter O in front and at the end of each labeling word. Evaluating
the regularized limit at z = 1 (and noting that for Li;(z) it is zero) while
Lo1(1) = —L1o(1) = ¢(2) we find that for each (5-letter) word-label w in (4.13)
we obtain the following counterpart of (4.12)

Py(1) = Py(1) +2((2) ¢(3) (w, was)

wag = [eq, [[[eo, €1], 1], €0 + €1]] - (C.7)
We shall see that the role of the second term in the right hand side of (C.7) is
to cancel the product ((2)¢(3) in P2(1), in accord with the observation that
$V(2) =0,
Indeed the depth one contributions are proportional to ¢(5):
Pys10(1)(= Feio(1)) = Los1o(1) + Lowgs (1) = 8¢(5)
Po102(1) = 2 L2102 (1) = —12¢(5)

and their difference reproduces (4.14). For depth two we find (after cancelling
the products ¢(2) ¢(3)) a negative multiple of {(5):

P10 (1) = o101 + Croto2 + Cro0 Cot
3¢(4,1) +2¢(3,2) +2¢(2,3) = ((2)¢(3) = 4¢(2) ¢(3) — 11((5),

where in the last step we used (B.10), (02101, wq3) = —2 so that Py2101(1) =

Py + 2¢(2)¢(3)(0%101, wo3) = —11¢(5); similarly Poigio(1) = 4¢(5) =
P0312(1), P01202(1) = *<(5), so that
P02101(1) - POIOlO(]-) + P01202(1) - P0312(1) == *20 C(5) . (CS)

Finally, the depth three contribution is equal to that of depth one. Indeed we
find, using [B13D],

Po1012(1) = Cor012 + 12010 + €10 Go1z +6 C(2) €(3) = 11¢(5) , Po1201(1) = —=9¢(5)
= Py1012(1) — Po1201(1) =20¢(5). (C.9)

This completes the proof of (4.15). (The expressions (C.8) and (C.9) can be
also extracted from the polylog- and polyzeta-procedures of [Schnetz].)
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