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Abstract. The Jones-Wenzl projectors pn play a central role in quantum topol-
ogy, underlying the construction of SU(2) topological quantum field theories and
quantum spin networks. We construct chain complexes Pn , whose graded Euler
characteristic is the “classical” projector pn in the Temperley-Lieb algebra.We show
that the Pn are homotopy idempotents and uniquely defined up to homotopy. Our
results fit within the general framework of Khovanov’s categorification of the Jones
polynomial. Consequences of our construction include families of knot invariants
corresponding to higher representations of Uq su(2) and a categorification of quan-
tum spin networks. We introduce 6j -symbols in this context.

1. Introduction

In [Kho00] Mikhail Khovanov introduced a categorification of the Jones polynomial,
giving rise to a new conceptual framework for quantum invariants of links in the 3-
sphere. The results in [Kho00] fit in the context of categorification of the Temperley-
Lieb algebra [Kho02], [BN05]. Roughly speaking, categorification associates to an
algebra A a category C whose Grothendieck group K0(C) is isomorphic to A . More-
over, multiplication by generators of A gives rise to functors acting on C and satisfy-
ing natural properties [KMS09]. An extension from planar Temperley-Lieb diagrams
to tangles is achieved by passing from additive to triangulated categories. The result-
ing link homology theory satisfies functoriality under surface cobordisms in 4-space,
an important feature that was not apparent at the level of its graded Euler charac-
teristic, the Jones polynomial.

An important open problem in the subject is to extend categorification from links
in the 3-sphere to quantum invariants of 3-manifolds. The constructions of the
SU(2) quantum invariants by Reshetikhin-Turaev [Tur94] and Turaev-Viro [TV92]
rely on the Jones-Wenzl projectors pn [Jon97, Wen87], certain special elements of
the Temperley-Lieb algebra. In the Reshetikhin-Turaev theory, one uses the Jones-
Wenzl projectors to label the components of the link in a surgery presentation of
the 3-manifold. In the Turaev-Viro approach, a triangulation of the 3-manifold is
assigned a state sum involving the 6j -symbols, an important ingredient in the theory
of quantum spin networks. (An additional key feature of the 3-manifold invariants,
closely related to the properties of the Jones-Wenzl projectors, is that the “quantum”
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parameter q has to be specialized to a root of unity in order to get a semisimple
topological quantum field theory).

The main goal of this paper is to introduce a categorification of the Jones-Wenzl
projectors. The Temperley-Lieb algebra TLn is an algebra over Z[q, q−1] , additively
generated by planar diagrams connecting n points at the top and at the bottom of a
rectangle and the multiplication is defined on generators by vertical stacking of such
diagrams (see section 2 below for more details). The Jones-Wenzl projector pn is an
idempotent element of TLn , uniquely characterized by the following two properties:
(1) the coefficient of the unit element, corresponding to n vertical strands, in the
expression for pn is 1 and (2) pn is “killed by turnbacks”, that is pnD = Dpn = 0
where D is any planar diagram generator of TLn other than the unit element.

Note that unlike the Jones polynomial and various other link invariants that have
been previously categorified, the coefficients in the expansion of pn in terms of the
generators of TLn are rational, rather than polynomial, functions of q, q−1 . This
suggests that categorification of the projectors cannot be achieved by chain complexes
of finite length.

We use Bar-Natan’s formulation of Khovanov’s theory: the objects in this category
are the Temperley-Lieb diagrams and morphisms are surface cobordisms in 3-space
between such diagrams, see [BN05] and section 2 below. In this framework, for each
n we construct a chain complex Pn whose graded Euler characteristic is the formal
power series corresponding to pn . For example, the power series for n = 2 is

p2 = H − 1

q + q−1
1 = H +

∞∑
i=1

(−1)iq2i−1
1

We show that the chain complexes Pn are uniquely characterized up to homotopy
by properties analogous to those of the Jones-Wenzl projectors pn ∈ TLn : (1) the
identity diagram appears in the chain complex Pn only once, in degree zero and (2)
Pn is contractible “under turnbacks”, see the definition of a universal projector and
theorem 3.2 in section 3. It follows from these properties that Pn is a “homotopy
idempotent”: Pn ⊗ Pn ' Pn . We write down the chain complexes explicitly for n =
2, 3 , see section 4. The main technical part of the paper is the inductive construction
of the chain complex Pn for larger n in section 7, modeled on the Frenkel-Khovanov
recursion [FK97] for the Jones-Wenzl projectors. The universality properties satisfied
by Pn and the invariance under Reidemeister moves, discussed further below, suggest
the naturality of the construction proposed in this paper.

An immediate consequence of our construction is a categorification of quantum spin
networks. That is, to a spin network G we associate a chain complex whose graded
Euler characteristic is a Laurent series in q corresponding to the quantum evaluation
of G . Some interesting phenomena are observed here. In the simplest example the
rational homology of the trace of the second projector, Tr(P2) has the expected
graded Euler characteristic [3] = q−2 + 1 + q2 , but the homology itself has infinite
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rank (with extra generators canceling in pairs in the Euler characteristic). Further,
there is 2-torsion when the homology is taken with integer coefficients, see 4.3.1. In
section 6.3 we formulate a categorified analogue of the 6j -symbols. It takes the form
of an iterated cone construction, giving rise to a “homotopy change of basis” in the
category of chain complexes.

Our construction also gives rise to an invariant of tangles, leading to a categorification
of the colored Jones polynomial, see section 5. Note that the included computations
imply that our work is different from the previously defined categorification of the
colored Jones polynomial [Kho05] (see also [BW08]). See 4.1 for further discussion.

We would like to mention that while preparing this manuscript for publication, during
the MSRI workshop “Homology Theories of Knots and Links” in March 2010 we
learned that an alternative, representation-theoretic, approach to categorifying the
Jones-Wenzl projectors has been pursued by Igor Frenkel, Catharina Stroppel and
Joshua Sussan [FSS]. In light of the universality properties of our construction (see
section 3), it seems reasonable to believe that the two approaches are equivalent,
although the methods are quite different. One advantage of working in Khovanov’s
and Bar-Natan’s framework for categorification of the Temperley-Lieb algebra is that
our construction of the categorified projectors is explicit and it is readily available
for topological applications.

We would like to add that more recently Lev Rozansky [Roz10] has proposed an ele-
gant idea on categorification of the Jones-Wenzl projectors, based on the properties
of the infinite torus braid. Our construction is based on the Frenkel-Khovanov re-
cursive formula, however it seems reasonable to believe that the two approaches may
be related (and more generally the universality properties satisfied by the projectors
imply that the different constructions are homotopy equivalent).

2. The Temperley-Lieb Algebra and the Jones-Wenzl Projectors

This section summarizes the relevant background on definition and categorification of
the Temperley-Lieb algebra. Section 2.5 states a version of the Gaussian elimination
lemma which will be used throughout the paper.

2.1. The Temperley-Lieb Algebra is the unital Z[q, q−1]-algebra of Uq su(2)-
equivariant maps between n-fold tensor powers of the fundamental representation
V .

TLn = HomUq su(2)(V
⊗n, V ⊗n)

There is an explicit presentation given by the standard generators 1 and ei , 0 < i <
n , satisfying the relations:

(1) eiej = ejei if |i− j| ≥ 2 .
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(2) eiei±1ei = ei

(3) e2i = −[2]ei

where the quantum integer [n] is defined to be

[n] =
qn − q−n

q − q−1
= q−(n−1) + q−(n−3) + · · ·+ qn−3 + qn−1

Each generator ei can be pictured as a diagram consisting of n chords between two
collections of n points on two horizontal lines in the plane. All strands are vertical
except for two, connecting the ith and the (i + 1)-st points in each collection. For
instance, when n = 3 we have the following diagrams,

1 = , e1 = and e2 =

The multiplication is given by vertical composition of diagrams and planar isotopy
induces relations 1 and 2 between the generators above. The third relation says
that any circles which are created may be removed at the cost of multiplication by
−[2] = −q − q−1 .
This algebra is well-known in low-dimensional topology in particular due to its nat-
ural extension from planar diagrams to tangles, captured by the Kauffman bracket
relation:

7→ q − q2

which yields the Jones Polynomial [KL94, Jon97].

2.2. The Jones-Wenzl Projectors pn ∈ TLn are idempotent elements of the
Temperley-Lieb algebra which have proven to be fundamental to its study and ap-
plications. The projectors appear in the study of spin networks or the graphical
calculus of higher Uq su(2) representations, the colored Jones polynomial and many
constructions of Chern-Simons theory [KL94, TV92, Tur94, BHMV95, BK01, Wal].
The projectors were originally [Wen87] defined by the recurrence relation,

p1 = 1

pn = pn−1 +
[n− 1]

[n]
pn−1enpn−1
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If we depict pn graphically by a box with n incoming and outgoing chords:

pn = n

then the formula may be illustrated as follows:

n = n-1 +
[n− 1]

[n]

n-1

n-1

It can be shown that the Jones-Wenzl projectors are uniquely characterized by the
following properties:

(1) pn ∈ TLn considered as a ZJqK-algebra.
(2) pn − 1 belongs to the subalgebra generated by {e1, e2, . . . , en−1}
(3) eipn = pnei = 0 for all i = 1, . . . , n− 1 .

See also [KL94, Lic97].

2.3. Categorification of the Temperley-Lieb algebra. Work by a number of
authors on the existence of integral bases in Lie group theory led to a categorification
of the Temperley-Lieb algebra by Mikhail Khovanov in which integer coefficients were
replaced by the dimensions of graded vector spaces and polynomials were replaced by
graded Euler characteristics [KMS09, FK97, Kho00]. This construction extends to
tangles and there is a corresponding functoriality with respect to cobordisms between
these tangles [Jac04, BN05].

In this section we recall Dror Bar-Natan’s graphical formulation [BN05] of the Kho-
vanov categorification. It will be used throughout the remainder of this paper. Using
the Bar-Natan formulation has the advantage of allowing our constructions to apply
to a number of variant categorifications which exist in the literature.

There is an additive category Pre-Cob(n) whose objects are isotopy classes of formally
q -graded Temperley-Lieb diagrams between 2n boundary points. The morphisms
are given by the free Z-module spanned by isotopy classes of orientable cobordisms
bounded in R3 between any two planes containing such diagrams. If χ(S) is the
Euler characteristic of a surface S , then a cobordism C : qiA → qjB has degree
given by

|C| = χ(C)− n+ j − i
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It has become a common notational shorthand to represent a handle by a dot and a
saddle by a flattened diagram containing a dark line.

=2 = 2 and =

We would like a category C such that K0(C) ∼= TLn and the only relation of TLn

which is not given by isotopy, and so not automatically accounted for, is the third.
We require that the object represented by a closed circle be isomorphic to sum of two
empty objects in degrees ±1 respectively. If such maps are to be degree preserving
then the most natural choice for these maps is given below.

ϕ :

( )
-�( ) q−1 ∅ ⊕ q ∅ : ψ

We force ϕ ◦ ψ = 1 and ψ ◦ ϕ = 1 by forming a new category Cob(n) = Cob3
·/l(n)

obtained as a quotient of the category Pre-Cob(n) by the relations given below:

= 0 = 1 = 0

= +

The cylinder or neck cutting relation implies that closed surfaces Σg of genus g > 3
must evaluate to 0 . In what follows we will let Σ3 be a free variable and absorb it
into our base ring. One can think of Σ3 as a deformation parameter. Some authors
use α to denote Σ3 .
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In this categorification the skein relation becomes

= 0 - q - q2 - 0

Definition 2.4. Let Kom(n) = Kom(Mat(Cob3
·/l(n))) be the category of chain com-

plexes of matrices of objects in Cob3
·/l(n) .

The skein relation allows us to associate to any tangle diagram D with 2n boundary
points an object in Kom(n) which is unique up to chain homotopy equivalence.

There is an inclusion − t 1m−n : Kom(n) → Kom(m) whenever n ≤ m obtained
by unioning each diagram with m − n disjoint vertical intervals to each object and
m− n disjoint disks to each morphism. If m = n then the empty set is used instead
of either intervals or disks.

Given two objects C,D ∈ Kom(n) we will use C ⊗ D to denote the categorified
Temperley-Lieb multiplication ⊗ : Kom(n)⊗Kom(n) → Kom(n) obtained by gluing
all diagrams and morphisms along the n boundary points and n boundary intervals
respectively.

2.5. Chain Homotopy Lemmas. We will make frequent use of the following stan-
dard lemma in this paper, see [BN05, MN08].

Lemma 2.6. (Gaussian Elimination) Let K∗ be a chain complex in an additive
category A containing a summand of the form given below:

A

(
·
α

)
-

B
⊕
C

(
ϕ λ
µ η

)
-

D
⊕
E

(
· ε

)
- F

Then if ϕ : B → D is an isomorphism there is a homotopy equivalence from K∗
to a smaller complex containing the summand below obtained by removing B and D
terms via ϕ:

A
α

- C
η − µϕ−1λ

- E
ε

- F

The following result is a direct generalization which will be very useful in our context.
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Lemma 2.7. (Simultaneous Gaussian Elimination) Let K∗ be a chain complex in
an additive category A of the form

K∗ =
A0

⊕
C0

M0 -

A1

⊕
B1

⊕
C1

M1 -

A2

⊕
B2

⊕
C2

M2 -

A3

⊕
B3

⊕
C3

M3 - · · ·

where

M0 =

 a0 c0
d0 f0

g0 j0

 and Mi =

 ai bi ci
di ei fi

gi hi ji

 for all i > 0

If a2i : A2i → A2i+1 and e2i+1 : B2i+1 → B2i+2 are isomorphisms for i ≥ 0 then the
chain complex K∗ is homotopy equivalent to the smaller chain complex D∗ obtained
by removing all Ai and Bi terms via the isomorphisms a2i and e2i+1 :

D∗ = C0

q0 - C1

q1 - C2

q2 - C3

q3 - · · ·

where q2i = j2i − g2ia
−1
2i c2i and q2i+1 = j2i+1 − h2i+1e

−1
2i+1f2i+1 .

Proof. First apply Gaussian elimination to each isomorphism a2i in order to obtain
the chain complex

C0

X
-

B1

⊕
C1

Y1 -
B2

⊕
C2

Y2 -
B3

⊕
C3

Y3 -
B4

⊕
C4

- · · ·

where X =

(
f0 − c0a

−1
0 d0

j0 − c0a
−1
0 g0

)
and

Y2i =

(
e2i − d2ia

−1
2i b2i f2i − d2ia

−1
2i c2i

h2i − g2ia
−1
2i b2i j2i − g2ia

−1
2i c2i

)
Y2i+1 =

(
e2i+1 f2i+1

h2i+1 j2i+1

)
Now apply Gaussian elimination to each isomorphism e2i+1 in order to obtain the
chain complex D∗ above. �

We will also need the following

Lemma 2.8. (Big Collapse) A chain complex K∗ of contractible chain complexes Ki

is contractible.
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3. Universal Projectors and Statement of the Main Theorem

The projectors defined in this paper satisfy a universal property making them unique
up to homotopy.

Definition 3.1. A chain complex (P∗, d∗) ∈ Kom(n) is a universal projector if

(1) It is positively graded with degree zero differential.
(a) Pk = 0 for all k < 0 and degq(Pk) ≥ 0 for all k > 0 .
(b) dk is a matrix of degree zero maps for all k ∈ Z .

(2) The identity diagram appears only in degree zero and only once.
(a) P0

∼= 1
(b) Pk 6∼= 1⊕D for any D ∈ Mat(Cob(n)) for all k > 0 .

(3) The chain complex P∗ is contractible “under turnbacks,” that is for any gen-
erator ei ∈ TLn , 0 < i < n ,
(a) P∗ ⊗ ei ' 0
(b) ei ⊗ P∗ ' 0

Compare these axioms to the axioms in section 2.2 characterizing the Jones-Wenzl
projectors pn ∈ TLn . The first two axioms are non-triviality conditions. The first
excludes uninteresting variants of the definition obtained by degree shifting and sym-
metry. For instance, we can require a negative q -grading and reverse all of the arrows
in this paper to obtain a different chain complex. The second excludes contractible
complexes from consideration. The third axiom implies that composing the projector
with any Temperley-Lieb diagram which is not identity yields an object in Kom(n)
which is homotopic to the zero complex.
A more subtle consequence of the first axiom above is that together with the con-
straints on degrees of maps imposed by the categorification in section 2.3 it follows
that all chain complexes defined below must be monotonic in the q -degree and that
the naive graded Euler characteristic of objects in our construction will always yield
formal power series. It is in this sense that the Jones-Wenzl projectors and spin
networks are images of our constructions under the Grothendieck group.
Our construction is essentially universal across reasonable categorifications of the
Temperly-Lieb algebra. If a categorification contains a Frobenius algebra compatible
with the one given in section 2.3 then our construction of the universal projectors
can be performed. For a more detailed discussion see [Kho06].
It is important to note that our definition disagrees with some previous categorifi-
cations based on different axiomizations of the Jones-Wenzl projectors such as the
dimension axiom [Kho05] (for related work see [BW08, GW]):

Tr(pn) = [n+ 1]

This is implied by the homotopy uniqueness corollary below and the computation of
H∗(Tr(P2)) contained in the next section.
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We can now state the main theorem of the paper.

Theorem 3.2. For each n > 0, there exists a chain complex C ∈ Kom(n) that is a
universal projector.

We summarize some immediate consequences of the axioms in definition 3.1. See also
sections 5 and 6.

Proposition 3.3. If C ∈ Kom(n) is a universal projector and D ∈ Kom(m) is a
universal projector such that 0 ≤ m ≤ n then

C ⊗ (D t 1n−m) ' C ' (D t 1n−m)⊗ C

Pictorially,

C

D
' C '

C

D

Proof. The tensor product of chain complexes C∗⊗ (D∗ t 1n−m) is the total complex
of a bicomplex which can be written as a chain complex of chain complexes:

C∗ ⊗ (D0 t 1n−m) → C∗ ⊗ (D1 t 1n−m) → C∗ ⊗ (D2 t 1n−m) → · · ·

Or graphically,

C

D0

-
C

D1

-
C

D2

- · · ·

By the second axiom D0 = 1 in degree 0 and so the identity diagram cannot be
found as a summand of Dk t 1n−m for any k > 1 . In addition, C satisfies axiom 3
so it follows that:

(1) The degree 0 portion of this chain complex is isomorphic to C∗
(2) All chain complexes in degree above zero are contractible.

Lemma 2.8 (big collapse) implies that there is a homotopy equivalence C∗ ' C∗ ⊗
(D∗ t 1n−m) . The other equivalence (D∗ t 1n−m) ⊗ C∗ ' C∗ is proven in the same
manner. �
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A special case of the above proposition with m = n implies that universal projectors
we have defined behave like idempotent elements1.

Corollary 3.4. (Idempotency) If C ∈ Kom(n) is a universal projector then

C ⊗ C ' C

This is represented diagrammatically as

C

C
' C

The proposition above also implies that the universal projectors are unique up to
homotopy.

Corollary 3.5. (Homotopy Uniqueness) If C,D ∈ Kom(n) are universal projectors
then

C ' D

Proof. Let C,D ∈ Kom(n) be universal projectors. The previous proposition holds
when n = m so that 10 = ∅ ,

C ' C ⊗ (D t ∅) ∼= (C t ∅)⊗D ' D

In pictures,

C '
C

D
' D

�

4. Explicit Formulae and Computations

We now give some explicit examples of lower order projectors. The second projector
below will play a role in the proof of the main theorem.

1Technically, if C is a universal projector then the endofunctors C⊗− and −⊗C are idempotent
on the homotopy category of Kom(n)
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4.1. The Second Projector. The second projector is defined to be the chain com-
plex

2 = - q
−

- q3
+

- q5 · · ·

in which the last two maps alternate ad infinitum. More explicitly,

P2 = (C∗, d∗)

The chain groups are given by

Cn =


q0 n = 0

q2n−1 n > 0

The differential is given by

dn =


: → q n = 0

+ : q4k−1 → q4k+1 n 6= 0, n = 2k

− : q4k+1 → q4k+3 n = 2k + 1

Proposition 4.2. P2 defined above is a chain complex, that is successive composi-
tions of the differential are equal to zero.

Proof. Since d2n+1 ◦ d2n = d2n ◦ d2n−1 there are only two cases,

d1 ◦ d0 = −

= − = 0

and

d2n+1 ◦ d2n = ( + ) ◦ ( − )

= + − −

= Σ3 + 0− Σ3 = 0

�
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Theorem 4.3. The chain complex P2 ∈ Kom(2) defined above is a universal projec-
tor.

Proof. Since the identity object only appears in degree 0 and the chain complex
is positively graded with degree zero differentials, axioms 1 and 2 are satisfied by
definition. For axiom 3, note that there is only one standard generator e1 ∈ TL2 and
the vertical symmetry in the definition of P2 implies P2 ⊗ e1 ∼= e1 ⊗ P2 . Consider
e1 ⊗ P2 :

= - q
−

- q3
+

- q5 · · ·

We “deloop” and conjugate our differentials by the isomorphism ϕ in section 2.3 to
obtain the isomorphic complex

A
- q0 ⊕ q2 B

- q2 ⊕ q4 C
- q4 ⊕ q6 · · ·

where A =
( )

,

B =

(
−
Σ3 −

)
C =

(
Σ3

)

Applying lemma 2.7 (simultaneous Gaussian elimination) by using the identity map
in the first component of the first map and the identity in the upper righthand
component of each successive matrix shows that the complex is homotopic to the
zero complex. �

4.3.1. Homology of the Trace. In the Temperley-Lieb algebra the trace of any dia-
gram D ∈ TLn is defined to be the element Tr(D) ∈ Z[q, q−1] associated with the
diagram obtained by connecting each of the bottom boundary points to the corre-
sponding top points by parallel arcs in the plane:

Tr(D) = D

The Jones-Wenzl projectors, pn ∈ TLn are commonly known to satisfy
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Tr(pn) = [n+ 1]

In fact, they can be characterized by this property together with the turnback axiom
3 of definition 3.1. One would expect then that the graded Euler characteristic of the
complex given by the trace of the universal projectors defined in this document are
given by the polynomials [n+ 1] .

This is true when the coefficient ring is rational and the surface Σ3 = 0 . It is however
not true that the homology of Tr(P2) is spanned only by classes that correspond to
coefficients of the graded Euler characteristic; the homology contains infinitely many
terms which cancel in the graded Euler characteristic.

When Σ3 = 0 and coefficients are rational,

Hn(Tr(P2); Q) =


q−2Q⊕ q0Q n = 0
0 n = 1
q4k−2Q n = 2k and k > 0
q4k+2Q n = 2k + 1 and k > 0

Note that the graded Euler characteristic equals [3] = q−2 + 1 + q2 . All other terms
cancel in pairs.

If Σ3 = 0 and the coefficient ring is integral then there is an additional infinite family
of 2-torsion. If Σ3 6= 0 and the coefficient ring is Q then the homology of P2 is 2-
dimensional and isomorphic for any choice of Σ3 . If Σ3 ∈ Z+ and the coefficient ring
is Z then there is an infinite family of 2-torsion and an infinite family of 2Σ3 -torsion.
In particular, the homotopy type of the projectors is not constant with respect to the
deformation parameter Σ3 .

Taking the trace of our projector yields a complex with alternating differential:

- q
0

- q3
2

- q5 0
- · · ·

The homology of this complex is in general given by

Hn(Tr(P2)) =



q−2Z⊕ q0Z n = 0,Σ3 = 0 or Σ3 6= 0
0 n = 1,Σ3 = 0 or Σ3 6= 0
q4k−2Z n = 2k,Σ3 = 0
q4k+2Z⊕ q4kZ/2 n = 2k + 1,Σ3 = 0
0 n = 2k,Σ3 6= 0
q4k+2Z/(2Σ3)⊕ q4kZ/2 n = 2k + 1,Σ3 6= 0
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4.4. The Third Projector. We give an inductive definition of the chain complex
for the nth projector in section 7 below, with the second projector defined above as
the base of the induction. The third projector P3 can therefore be deduced from that
inductive definition. In this section we present a minimal (in the sense that it cannot
be reduced by a chain homotopy) chain complex for P3 . The third projector is the
last which can be written down in a short and explicit diagrammatic form. After the
initial identity term the complex below becomes 4 periodic.

A
- q1 ⊕

B
- q2 ⊕

C
- q4 ⊕

· · · � q8 ⊕ �
B

q7 ⊕ �
E

q5 ⊕

D
?

Where A =

(
−

)
and

B =

 −

−

 C =

 +

+


D =

 −

−

 E =

 +

+


Theorem 4.5. The definition of P3 given above is a chain complex that satisfies the
axioms of the universal projector. In particular,

ei ⊗ P3 ' 0 ' P3 ⊗ ei i = 1, 2.

The proof is analogous to the proof of theorem 4.3. The main theorem also produces
a universal projector Pn for n = 3 . We give applications of our construction of the
projectors to tangles and spin networks in sections 5, 6, postponing the proof of the
main theorem to section 7.

5. Reidemeister Moves and Graphical Calculus

In this section we define homotopy invariants of tangles obtained by applying the
mth projector to the strands of a cabling and showing that the result is Reidemeister
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invariant. These are categorifications of the invariants of higher representations of
Uq su(2) corresponding to the colored Jones polynomial.
Definition 5.1. Given m ∈ N consider the homotopy category Komm(n) with
objects

Ob(Komm(n)) = Ob(Kom(n))

To any object D ∈ Ob(Kom(n)) associate a chain complex F (D) in the category
Kom(mn) by replacing each strand in each diagram with m parallel strands composed
with the mth projector.
If A and B ∈ Komm(n) are two objects then we define

HomKomm(n)(A,B) = HomKom(mn)(F (A), F (B))

This can be illustrated by

7→ 7→

We use the word homotopy category above because in order to define the composition
of two cobordisms between edges the relation Pn⊗Pn ' Pn may need to be invoked.
In the remainder of this section we wish to prove that the Reidemeister moves and
some standard graphical relations are satisfied up to homotopy.
Lemma 5.2. (Projector Isotopy) A free strand can be moved over or under a projector
up to homotopy. In pictures,

' '

Proof. The proof is similar to the proof of proposition 3.3 and corollary 3.5 in section
3. Specifically, observe that both the chain complex for the diagram with the projector
below the strand and the chain complex for the diagram with the projector above the
strand are chain homotopy equivalent to the chain complex C for the diagram with
two projectors: one above the strand and one below the strand. This is true because
expanding either of the two projectors in C gives the identity diagram in degree zero
and every other term involves a turnback, which is contractible when combined with
the second copy of the projector. �
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Applications of this lemma allow us to show that the Reidemeister moves are satisfied
by the category Komm(n) .

Theorem 5.3. The category Komm(n) contains invariants of tangles.

Proof. For the second Reidemeister move,

= '

The first equality is by definition. The homotopy equivalence follows from the pro-
jector isotopy lemma and Pn ⊗ Pn ' Pn .

' ' =

The first homotopy equivalence follows from the second Reidemeister move in Kom(mn) ,
the second follows from another application of Pn ⊗ Pn ' Pn .
The argument for the third Reidemeister move features the same ideas.

= ' '

' =

Applying the definition to the standard Reidemeister 3 diagram we obtain a diagram
that looks like spaghetti which simplifies considerably up to homotopy to a diagram
in which the standard Reidemeister 3 homotopy in Kom(mn) holds.
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The first Reidemeister move is saved for last,

= ' '(∗) =

Where the applications of the first Reidemeister move in (*) above hold on the nose
after appropriate degree shifting. If L is a tangle with no open strands then the chain
complex L ∈ Komn(0) is a categorification of the nth colored Jones polynomial.

�

6. Spin Networks

In this section we describe how to associate to any spin network a chain complex in
a category defined using the universal projector of section 3. Constructions involving
four projectors are then explored more thoroughly leading to a categorification of the
6j symbols.

6.1. Categories and Invariants. Let I = N be the set indexing the finite dimen-
sional irreducible representations of Uq su(2) . For any n-tuple t = (i1, . . . , in) ∈ In

define the invariants of the n-fold tensor product by

Inv(t) = Inv(Vi1 ⊗ · · · ⊗ Vin) = HomUq su(2)(Vi1 ⊗ · · · ⊗ Vin , 1)

This space is described by Temperly-Lieb diagrams with boundary labeled by Jones-
Wenzl projectors: pi1 t pi2 t · · · t pin [KL94, Kup96].
For any such t ∈ In the main theorem allows us to construct a category Kom(t)
with objects given by chain complexes obtained from Temperly-Lieb diagrams with
boundary labeled by universal projectors and morphisms given by chain maps. When
t = (a, b, c, d) there is an associated picture,

Ob(Kom(t)) =


D

d

b c

a

: D is a Temperly-Lieb diagram


The axiomatic correspondence between the Jones-Wenzl projector and the universal
projectors in this paper implies the following theorem.
Theorem 6.2. The category Kom(t) categorifies the invariants Inv(t).
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6.3. 6j Symbols. There is a standard way to resolve a trivalent vertex with edges
labeled by a, b, c ∈ I ,

a

b

c

=

ca

b

ji

k

Where i = (a + b − c)/2 , j = (a + c − b)/2 , k = (b + c − a)/2 . We say that a
diagram is admissible if all trivalent vertices can be resolved using the assigned labels
or equivalently a + b + c is even and the triangle inequalites hold for a , b and c .
Using this notation we can describe two bases for Inv(a, b, c, d) ,

V =

 a

b c

d

j :
j ∈ I

admissible

 and H =

 a

b c

d

i :
i ∈ I

admissible


The base change coefficients are called 6j symbols,

a

b c

d

i
=
∑

j

{
a b i
c d j

}
a

b c

d

j

which determine the change of basis map S : H → V . S is the matrix of 6j symbols,

Sij =

{
a b i
c d j

}
Outline. Our goal is to categorify S as a functor Kom(a, b, c, d) → Kom(a, b, c, d) .
Our construction is modeled on the linear-algebraic proof ([KL94] chapter 7.2) that
the “vertical” and “horizontal” collections V,H above are indeed bases for the space
of Temperley-Lieb diagrams Inv(a, b, c, d) , pictured on the previous page. The key
point is that the identity diagram appears only once in the chain complex for the
projector Pn , in degree zero (axiom (1) in definition 3.1 of the universal projector).
Therefore, the identity diagram may be represented up to homotopy as the cone of
the inclusion of the positive degree part into the chain complex Pn . However the
positive degree part may in turn be inductively represented as an iterated cone on
lower order projectors. This is made precise in the proof of theorem 6.5 below. We
begin by introducing a categorical analogue of a linear basis.



20 BENJAMIN COOPER AND VYACHESLAV KRUSHKAL

Before proceeding we recall a number of definitions. The concept we wish to capture
is that of a category that is homotopy equivalent to some subcategory that sits inside
of it. In our case this amounts to a category of complexes in which every chain
complex is homotopy equivalent to a chain complex of chain complexes contained
within the subcategory of interest.

A subcategory C ⊂ D is full if for all pairs of objects A,B ∈ Ob(C) ,

HomC(A,B) = HomD(A,B)

A category C is differential graded if for all objects A,B ∈ Ob(C) , HomC(A,B) is
a chain complex. Two functors F,G : C → D between differential graded categories
are homotopic, F ' G if there are natural transformations ϕ : F → G such that for
ϕA is a homotopy equivalence for all A ∈ Ob(C) . Two differential graded categories
C and D are homotopy equivalent if there exist functors F : C → D and G : D → C
such that FG ' 1D and GF ' 1C .

Definition 6.4. If A is an additive category and C = Kom(A) is the category of
chain complexes of formal direct sums of objects in A then a full subcategory B ⊂ C
spans C if the inclusion B ↪→ C is a homotopy equivalence of categories.

Since projectors with turnbacks are contractible and any disjoint circles can be re-
moved by isomorphisms, Kom(a, b, c, d) is naturally spanned by the full subcategory
N :

Ob(N ) =

 D

d

b c

a

:
D is a TL diagram which contains no disjoint circles

and no projector is capped by a turnback


There are two other categories we would like to consider: H and V . These are
the full subcategories of Kom(a, b, c, d) with objects given by horizontal and vertical
diagrams respectively.

Ob(H) =

 a

b c

d

i :
i ∈ I

admissible

 and Ob(V) =

 a

b c

d

j :
j ∈ I

admissible


We can now state our theorem,

Theorem 6.5. For any a, b, c, d ∈ I the full subcategories H and V defined above
span the category Kom(a, b, c, d).
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The proof consists of constructing a family of chain complexes Vn and Hn each of
which comes from the positive degree part of the chain complex defining the nth
universal projector Pn constructed above. The gist of the proof is captured by the
two tables below in which (a, b, c, d) = (2, 2, 2, 2) .

V N

Cone

V4

 0 , 2

 ↪→ 4

 '

b

d

c

a

Cone

V2

 0

 ↪→ 2

 '

b

d

c

a

Cone

V0 ↪→ 0

 '

b

d

c

a

N H

b

d

c
a

' Cone

H0 ↪→ 0



b

d

c

a

' Cone

H2

 0

 ↪→ 2



b

d

c

a

' Cone

H4

 0 , 2

 ↪→ 4


In the second table the first chain complex

b

d

c

a

can be constructed as cone on

the horizontal spin network 0 . When (a, b, c, d) = (2, 2, 2, 2) , H0 = 0 and the
spin network itself is equal to the first chain complex in N . In the next line, H2 is
obtained from expanding the central projector of 2 and then carefully substituting

instances of

b

d

c

a

with Cone(H0 ↪→ 0 ) . The chain complex H2 consists only of

chain complexes using the (2, 2, 2, 2) network with the 0 labeled edge and contractible

terms. The cone on the inclusion of H2 into 2 is homotopic to

b

d

c

a

. The last line

states that the last object in N is homotopic to the cone on a third chain complex
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H4 consisting only of horizontal networks labeled 0 and 2 . We now give a proof of
theorem 6.5.

Proof. We will explain the construction only for V since the argument is the same
for H .

For fixed a, b, c, d ∈ I each diagram D defining an object in the spanning subcategory
N defined above must be of the form

Dj = j

d

b c

a

:=

i

i

jj

b c

da

where j is the number of vertical strands and i is the number of horizontal strands.
Notice that i depends on j . In order for the diagram to be admissible the number j
assumes either odd or even integer values between two non-negative integers l0 and
lN .

For each a, b, c, d ∈ I if j is admissible then we define the chain complex Vj ,

Vj = Vj


l0

d

b c

a

, · · · , j-2

d

b c

a


to be the tail of the chain complex obtained by expanding the central projector Pj

in the a, b, c, d, j labeled diagram:

a

b c

d

j = j

d

b c

a

→ Vj


l0

d

b c

a

, · · · , j-2

d

b c

a


(∗)

As our notation suggests Vj is a chain complex containing only contractible terms
and objects of N defined by diagrams Dl0 , . . . , Dj−2 .
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The preceding diagram implies that the homotopy equivalence below is tautological:

j

d

b c

a

' Cone


Vj


l0

d

b c

a

, · · · , j-2

d

b c

a


↪→

a

b c

d

j


We now seek to construct the equivalence below this line from the equivalence above
this line by substitution of (∗) two lines above.

j

d

b c

a

' Cone

Vj

 a

b c

d

l0 , · · · ,
a

b c

d

j-2

 ↪→
a

b c

d

j


The proof that substitution works is an application of the change of basis isomorphism
used in the Gaussian elimination lemma in section 2.5 to the first vertical identity
map below.

a

b c

d

j = Cone



Dj

d1 - C1

d2 - C2
- · · ·

0

6

- C1

1

6

d2 - C2

1

6

- · · ·



∼= Cone



Dj

0
- C1

d2 - C2
- · · ·

0

6

- C1

1

6

0
- C2

1

6

- · · ·


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Note that in the base case, expanding the projector pl0 yields only contractible terms
in degree greater than zero. The a, b, c, d, l0 labeled network is homotopy equivalent
to the cone on a nullhomotopic map of the form above.

�

Corollary 6.6. There is a naturally defined homotopy equivalence of categories S :
H → V which categorifies the matrix of 6j symbols S : H → V defined in section
6.3.

The quantum reader is invited to prove the homotopy Biedenharn-Elliot identity.

7. Proof of the Main Theorem

The two term recurrence relation satisfied by the Jones-Wenzl projectors in section
2.2 is quadratic in the sense that in order to define pn the n − 1st projector pn−1

appears twice in the second term. One obtains the linear recurrence of Frenkel and
Khovanov [FK97] by expanding the bottom pn−1 term completely and removing
terms containing a turnback pn−1ei for any 0 < i < n − 1 . Keeping track of the
coefficients in this process gives the recurrence

n = n-1 +
[n− 1]

[n]
n-1 + · · · +

[1]

[n]
n-1

This can be shown to satisfy the axioms (1)-(3) in section 2.2 and so is equal to the
Jones-Wenzl projector. In this section we prove the main theorem of the paper by
constructing a chain complex in the category Kom(n) , motivated by the Frenkel-
Khovanov recursive formula above, satisfying the axioms of the universal projector
given in section 3.

7.1. Triples and Quadruples. We will begin by examining some situations in
which local cancelations can be made in a chain complex containing a turnback:
C∗ ⊗ ei . There are two important cases: either a sequence of three terms can be
canceled after delooping the middle term or a sequence of four terms can be canceled
after delooping the two middle terms. We will call the first case a triple and the
second a quadruple. Both cases are necessary to prove P3 ⊗ ei ' 0 and, as we will
see, they suffice to prove the general case.
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7.1.1. The Triple.
Definition 7.2. If D ∈ Kom(n) is any chain complex and ei is a standard generator
of TLn then an i-triple or triple is a sequence of maps in Kom(n) of the form

D - qD ⊗ ei
- q2D ⊗ ei ⊗ ei±1

Where the maps are given by saddles. Pictorially,

D

D

- q

D

D

- q2

D

Applying the functor − ⊗ ei to the above yields the top sequence in the following
commutative diagram:

D ⊗ ei
- qD ⊗ ei ⊗ ei

- q2D ⊗ ei ⊗ ei±1 ⊗ ei

D ⊗ ei

∼=

? 1⊕−
- (D ⊗ ei)⊕ q2(D ⊗ ei)

∼=

? −⊕ 1
- q2D ⊗ ei

∼=

?

After applying − ⊗ ei to an i-triple, the middle term can be “delooped” and the
last term satisfies the categorified planar isotopy relation 2 of section 2, yielding the
bottom sequence in the diagram above. Note that if this triple is part of a chain
complex, then it can be canceled using two applications of the Gaussian elimination
(lemma 2.6 in section 2.5) or by a single application of the simultaneous Gaussian
Elimination (lemma 2).

7.2.1. The Quadruple.
Definition 7.3. If D ∈ Kom(n) is any chain complex and ei an elementary generator
of TLn then an i-quadruple or quadruple is a sequence of maps in Kom(n) of the
form

D - qD ⊗ ei

A
- q3D ⊗ ei

- q4D ⊗ ei ⊗ ei±1

All maps are given by saddles except for the q -degree 2 map A ,

A =

D

−
D
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A is given by subtracting the addition of a handle on one strand from the addition of
a handle on an adjacent strand. Although this will not affect the arguments below,
we will fix the convention that the dot is placed either to the left or the right of the
saddle in the second term, depending upon whether ei+1 or ei−1 saddle is used at
the end of the quadruple.The entire sequence of maps can be pictured as

D

D

- q
D

D − D

- q3
D

D

- q4
D

Applying the functor −⊗ ei yields the top row of the following diagram:

D ⊗ ei
- qD ⊗ ei ⊗ ei

A - q3D ⊗ ei ⊗ ei
- q4D ⊗ ei ⊗ ei±1 ⊗ ei

D ⊗ ei

∼=

? 1⊕−- (D ⊗ ei)⊕ q2(D ⊗ ei)

∼=
?

B- q2(D ⊗ ei)⊕ q4(D ⊗ ei)

∼=
? −⊕ 1 - q4D ⊗ ei

∼=
?

in which B is of the form2,

B =

(
− 1
− −

)
Again note that if this quadruple is part of a chain complex, then it can be canceled
using three applications of the Gaussian elimination (or a single application of the
simultaneous Gaussian Elimination).

7.4. The Frenkel-Khovanov Sequence. The Frenkel-Khovanov formula from the
beginning of this section suggests the following recursive definition

1 = , 2 is defined in section 4.1 and for n > 2 n =

2Compare to delooping in Section 4.1
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q0 n-1

n-1

- q1 n-1

n-1

- q2 n-1

qn−2 n-1 �

n-1

· · · �

n-1

q3 n-1

n-1

?

qn−1 n-1

n-1

?

n-1 − n-1

- qn+1 n-1

n-1

- qn+2 n-1

q2n−2 n-1 �

n-1

· · · �

n-1

qn+3 n-1

n-1

?

q2n−1 n-1

n-1

?

n-1 − n-1

- q2n+1 n-1 - · · ·

Although the proposition below implies that this definition behaves "correctly" with
respect to the turnback axiom (3) of the universal projector (see definition 3.1 in
section 3), the composition of two saddles is not equal to zero3. The technical heart
of this paper consists of a detour taken purely for the purpose of arriving at an

3Although it is homotopic to zero.
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actual chain complex. The final formulation obtained in section 7.10 will amount to
a version of the above which has been carefully thickened by contractible summands.
The reader is encouraged to check that the graded Euler characteristic of the sequence
illustrated above is a formal power series corresponding to the Frenkel-Khovanov
recursion formula for pn ∈ TLn .
In order to formalize the definition above consider the category N determined by the
graph

0
d0

- 1
d1

- 2
d2

- · · ·

The objects of N are non-negative integers and the morphisms are generated by
compositions of identity maps 1i : i→ i and differentials di : i→ i+ 1 .

Definition 7.5. A sequence F in Kom(n) is a commutative diagram determined by
a functor:

F : N → Kom(n)

For each n ≥ 1 , we will define a sequence FKn : N → Kom(n) . FKn(k) will
correspond to the bottom of each diagram in the illustration on the previous page4.
After the initial identity diagram, FKn is 2(n − 1) periodic. The following is an
algebraic definition of the diagrams pictured above.

Definition 7.6. If m ∈ Z+ write m = 2(n− 1)q+ r with 0 < r ≤ 2(n− 1) then the
mth diagram of the nth Frenkel-Khovanov sequence is defined by

FKn(m) =


1 if m = 0
qmen−1 ⊗ . . .⊗ en−m if 1 ≤ m < n
q2(m−n+1) FKn(2n−m− 1) if n ≤ m ≤ 2(n− 1)
q2n FKn(r) otherwise

For a given length l ≥ 0 the nth truncated Frenkel-Khovanov sequence is given by

FKn,l(m) =

{
FKn(m) if m ≤ l
0 otherwise

Above we use the multiplicativity of the formal q -grading: qi(qjD) = qi+jD for any
D ∈ Kom(n) . The differential between any two objects whose q -degree differs by one
is given by a saddle map. In each period the two q -degree 2 differentials are defined
to be those illustrated in the diagram above. (The degree 2 maps in the sequence
are separated by n− 2 saddle maps). In what follows fm will be used to denote the
differential, fm : FKn(m) −→ FKn(m+ 1) .
The following proposition and its corollary are key ingredients in the proof of con-
tractibility under turnbacks contained in section 7.10.

4The illustration itself equals (Pn−1 t 1)⊗ FKn
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Proposition 7.7. Let FKn : N → Kom(n) be the nth Frenkel-Khovanov sequence
defined above. Then for any standard generator ei , i = 1, . . . , n− 1,

FKn(−)⊗ ei : N → Kom(n)

is a sequence such that for every k ∈ N the diagram FKn(k)⊗ ei ∈ Kom(n) either

(1) Satisfies a commutativity condition: there exists a Temperley-Lieb element
D ∈ Cob(n) such that

FKn(k)⊗ ei
∼= ej ⊗D

where j = i, i− 1, or i− 2 or

(2) Is contained in an i-triple or i-quadruple sequence.

The case (1) above when j = i can be pictured by

FKn(k) ∼=
D

Before giving the proof, we note that once FKn is part of the chain complex for the
universal projector (defined further below), both conclusions (1) and (2) above imply
that all terms in (Pn−1 t 1) ⊗ FKn⊗ei may be contracted. In the case (1) this will
follow by the inductive contractibility of Pn−1 under turnbacks. The contractibility
in case (2) follows from the analysis of triples and quadruples in section 7.1.

Proof. The periodicity of the diagram FKn ensures that inspecting the first 2n + 1
terms of FKn⊗ei is sufficient. Geometrically inclined readers are invited to prove the
proposition by examining the illustration at the beginning of this section. Expanding
FKn allows us to write the first period of FKn⊗ei as follows:

1⊗ ei
- en−1 ⊗ ei

- (en−1 ⊗ en−2)⊗ ei
- · · · - (en−1 ⊗ · · · ⊗ e1)⊗ ei

en−1 ⊗ ei
�2 en−1 ⊗ ei

� · · · � (en−1 ⊗ · · · ⊗ e2)⊗ ei
� (en−1 ⊗ · · · ⊗ e1)⊗ ei

2

?

We have dropped the q -grading because it is implied by the requirement that the
first axiom (in definition 3.1) holds. We write “2” above arrows in order to indicate
which maps are of q -degree 2 and all other maps are given by saddles.
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There are several cases to consider. The first two are boundary cases i = 1 and
i = n− 1 and the last is the generic case for 1 < i < n− 1 .

(1) If i = 1 then consider −⊗ e1 . If n− k > 2 then because of the far commu-
tativity relation,

(en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)⊗ e1 ∼= e1 ⊗ (en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)

∼=

The terms corresponding to n − k = 1 and n − k = 2 fit in the following
four term sequence:

α⊗ e1 - α⊗ e1 ⊗ e1
2
- α⊗ e1 ⊗ e1 - α⊗ e1,

where α = en−1 ⊗ en−2 ⊗ · · · ⊗ e2 . This sequence forms a 1-quadruple (see
7.2.1).

(2) If i = n− 1 then when k > 2 we have

(en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)⊗ en−1
∼= en−3 ⊗ (en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)

∼=

When k ≤ 2 , the first three terms form an (n− 1)-triple (see 7.1.1)

1⊗ en−1
- en−1 ⊗ en−1

- en−1 ⊗ en−2 ⊗ en−1.

After the first period there is an (n−1)-quadruple surrounding every other
degree 2 map:

en−1 ⊗ en−2 ⊗ en−1
- en−1 ⊗ en−1

2
- en−1 ⊗ en−1

- en−1 ⊗ en−2 ⊗ en−1
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(3) If i 6= 1 and i 6= n− 1 , each term has the form

(en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)⊗ ei

for some k such that 2 ≤ k < n − 1 . Depending on k there are several
cases to consider,
(a) If n− k > i+ 1 then ei commutes with ej for all j , n− k ≤ j ≤ n− 1

because of the far commutativity relation. It follows that

(en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)⊗ ei
∼= ei ⊗ (en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)

This can be pictured in the same way as the other application of the far
commutativity relation in (1).

(b) If n− k < i− 1 then similarly,

(en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)⊗ ei
∼= ei−2 ⊗ (en−1 ⊗ en−2 ⊗ · · · ⊗ en−k)

∼=

(c) The terms in which n− k = i− 1 , n− k = i and n− k = i+ 1 form an
i-triple. For instance,

· · · -

n-1

-

n-1

-

n-1

- · · ·

�

Let fm be the mth map in the Frenkel-Khovanov sequence,
fm : FKn(m) −→ FKn(m+ 1)

(see definition 7.6). Recall that each map fm has q -degree equal to either 1 or 2 .
All degree 1 maps are given by saddle cobordisms and the degree 2 maps are shown
in the diagram at the beginning of section 7.4.

Corollary 7.8. Suppose Pn−1 ∈ Kom(n−1) is an n−1st universal projector and let
l ∈ N be such that fl is a degree 1 map. Then each term in the truncated sequence

fl

(
(Pn−1 t 1)⊗ FKn,l−1

)
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either is the projector Pn−1 capped with a turnback or is contained in a triple or a
quadruple.

The proof of corollary 7.8 follows from proposition 7.7 since the map fl is assumed
to be a degree 1 map, that is a saddle cobordism. Therefore the sequence fl((Pn−1t
1)⊗ FKn,l) equals ((Pn−1 t 1)⊗ FKn,l)⊗ ei for some i . �

The point of this corollary is that if fl

(
(Pn−1t1)⊗FKn,l

)
is part of a chain complex,

then it can be contracted. (In the first case, the projector Pn−1 capped with a
turnback is contractible by axiom (1) of the universal projector Pn−1 . In the second
case, each triple or quadruple is contractible according to the analysis in sections
7.1.1, 7.2.1). This will play an important role in the proof of the main theorem
below.

7.8.1. The homotopy projector. If an n − 1st universal projector Pn−1 exists then
corollary 7.8 shows that the Frenkel-Khovanov sequence can be used to define a
sequence which satisfies the axioms for an nth universal projector (definition 3.1) up
to homotopy.

Definition 7.9. The nth homotopy projector HPn : N → Kom(n) is the sequence
defined by

HP1 = 1

HPn = Tot ((Pn−1 t 1)⊗ FKn)

For a given length l ≥ 0 the truncated homotopy projector is defined using the
truncated Frenkel-Khovanov sequence:

HPn,l = (Pn−1 t 1)⊗ FKn,l

A picture of HPn is given at the beginning of this section. For each ei , 0 < i < n
by the above proposition HPn(k)⊗ ei is either a term containing (HPn−1 ⊗ ej) t 1
where 0 < j < n − 1 or fits into an i-triple or i-quadruple. If this were a chain
complex then it would be contractible by the lemmas of section 2.5.

7.10. Construction of the chain complex: fattening the Frenkel-Khovanov
sequence. The remark at the end of section 7.8.1 implies that the sequence HPn

(definition 7.9) behaves like a universal projector. However it is not a chain complex:
the composition of any two successive saddle maps is not zero5.
In order to obtain a chain complex and so complete the proof of the main theorem,
we thicken the FK sequence by contractible pieces. Specifically, we consider the trun-
cated Frenkel-Khovanov sequence FKn,l of length l and our construction is inductive
in l .

5Although it is not difficult to see that all compositions are homotopic to zero.
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Let Pn−1 ∈ Kom(n − 1) be a chain complex representing the n − 1st universal
projector. We will now define a chain complex CFKn,l inductively in length l using
the maps of the Frenkel-Khovanov sequence {fk}∞0 above.

CFKn,l is constructed inductively either as a two term chain complex defined in terms
of CFKn,l−1 and fl (in case the following map fl+1 has degree 1) or as a three term
chain complex defined in terms of CFKn,l−1 , fl and fl+1 (in case fl+1 has degree 2).

Definition 7.11. Let {fk}∞0 be the maps in the Frenkel-Khovanov sequence above
and degq(fk) denote the q -degree of the map fk . Set CFKn,0 = Pn−1 t 1 and if
degq(fl) = 1 then set,

CFKn,l =

{
CFKn,l−1

fl−→ q fl CFKn,l−1 if degq(fl+1) = 1

CFKn,l−1
fl−→ q fl CFKn,l−1

fl+1−−→ q3 fl+1fl CFKn,l−1 if degq(fl+1) = 2

Otherwise, degq(fl) = 2 and set,

CFKn,l = CFKn,l−1

In this second step we do not change the complex CFKn,l after having just used a
degree 2 map in order to avoid a degree shift.

Here we follow the convention that fl(D⊕D) = fl(D)⊕fl(D) , qi(qjD) = qi+jD and
fl+1(D) = D if degq(fl+1) = 2 . Note that the three term sequence in the last case is
indeed a chain complex, that is fl+1fl = 0 .

The recursive step can be visualized as follows.

(1) If degq(fl) = 1 and degq(fl+1) = 1 ,

n,l = n,l-1 fl- q n,l-1

(2) If degq(fl+1) = 2 ,

n,l = n,l-1 fl- q n,l-1 fl+1- q3 n,l-1
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Consider the chain complex CFK4,3

.........................................
f0

-

f0 -

f
1

-

..................

f
1

-
f2

f2

?

f0-

?

f2

?

f0-

f
1

-

f2

?

.............................
f
1

-

Recall that the truncated Frenkel-Khovanov sequence FK4,3 is given by

...........
f0

- ...........
f1

- ...
f2.-

Here we use dotted arrows to help the reader find the relevant information. The
sequence FK4,3 starts in the upper left hand corner of the cube, travels to the right
then to the front face of the cube and finally lands in the lower right hand corner.
This is precisely the first four terms of the diagram pictured at the beginning of
section 7.4 together with four contractible terms.

The proofs contained in the remainder of this section are rooted in the observation
that CFKn,l will always decompose as FKn,l plus a contractible subcomplex Kl

consisting of truncated Frenkel-Khovanov sequences containing turnbacks.

Lemma 7.12. (Structure of CFKn,l ) For each l ≥ 0 the chain complex CFKn,l

admits a decomposition,

(1) CFKn,l
∼= (Pn−1 t 1)⊗ (FKn,l⊕Kl),

where the second summand (Pn−1 t 1)⊗Kl is contractible.

More specifically, the contractibility of (Pn−1t1)⊗Kl is a consequence of simultaneous
Gaussian elimination of some of the terms in Kl , so that each remaining term (in
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the notation of lemma 2.7) (Pn−1t1)⊗Ci is contractible. Moreover, the off-diagonal
component

(Pn−1 t 1)⊗Kl

β
- (Pn−1 t 1)⊗ FKn,l

of the CFKn,l differential with respect to the decomposition (1) vanishes on the do-
main of the isomorphisms underlying the simultaneous Gaussian elimination in Kl .

Proof. The proof is by induction on l using the recurrence defining CFKn,l (definition
7.11). If l = 0 or degq(fl) = 2 then there is nothing to prove. If degq(fl+1) 6= 2 then
CFKn,l is defined as a two term sequence,

CFKn,l = CFKn,l−1

fl- qfl CFKn,l−1

By induction we may assume that

CFKn,l−1
∼= (Pn−1 t 1)⊗ (FKn,l−1⊕Kl−1)

where Kl−1 ' 0 satisfies the conclusion of the lemma. We claim that there is a
decomposition

(2) CFKn,l
∼= (Pn−1 t 1)⊗

(
FKn,l ⊕ qfl FKn,l−2 ⊕Kl−1 ⊕ qflKl−1

)
This can be observed by writing the most important part of the recursion defining
CFKn,l in a helpful way6,

[
FKn,l−1(0)

f0 - · · ·
fl−2- FKn,l−1(l − 2)

fl−1- FKn,l−1(l − 1)

]
⊂ CFKn,l−1

· · ·[
fl FKn,l−1(0)

fl

? f0 - · · ·
fl−2- fl FKn,l−1(l − 2)

]fl
?

βl- fl FKn,l−1(l − 1)

fl

?
⊂fl CFKn,l−1

fl

?

‖

FKn,l(l)

The terms in the top row are FKn,l−1 , the truncated Frenkel-Khovanov sequence of
length l− 1 . By the inductive assumption, this sequence is a summand in CFKn,l−1

and the remaining part - the contractible summand Kl−1 - is not included in the
diagram. The terms on the left in the bottom row are of the form fl FKn,l−2 . Observe

6In this diagram the lower order projector (Pn−1 t 1) is omitted to simplify the notation.
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that by definition the last term fl FKn,l−1(l−1) is equal to the next term FKn,l(l) in
the Frenkel-Khovanov sequence. The FKn,l summand in (2) is seen in the diagram
above as FKn,l−1 in the top row followed by the vertical map fl to fl FKn,l−1(l− 1) .
The equation (2) follows immediately.

To prove that (Pn−1 t 1)⊗Kl is contractible, where

Kl := qfl FKn,l−2 ⊕Kl−1 ⊕ qflKl−1,

further analysis of the differential CFKn,l is necessary. Note that (Pn−1 t 1) ⊗
fl FKn,l−2 is contractible by corollary 7.8, more precisely all terms in this sequence are
either contained in triples or quadruples or are projectors capped by turnbacks. By
the inductive hypothesis on the off-diagonal entry of the differential in the statement
of the lemma, when the terms participating in the Gaussian eliminations in Kl−1 ,
qflKl−1 and qfl FKn,l−2 are grouped together, (in the notation of lemma 2.7) the
isomorphisms underlying the Gaussian eliminations in the summands, a2i : A2i →
A2i+1 and e2i+1 : B2i+1 → B2i+2 remain isomorphisms because the matrices are lower
triangular. After removing all triples and quadruples, the remaining chain complex
consisting of contractible terms may be contracted by lemma 2.8 (big collapse). This
concludes the proof that (Pn−1 t 1)⊗Kl is contractible.

To propagate the inductive hypothesis on the differential, note that the only new off-
diagonal component, of the form in the statement of the lemma, introduced during
the inductive step, is the map βl in the diagram above. The Gaussian eliminations
take place in the sequence qfl FKn,l−2 in the bottom row and since βl is defined
on the last term of that sequence, clearly the component of the differential on the
domain of the isomorphisms in the Gaussian eliminations is trivial.

The proof in the second case (when degq(fl+1) = 2) is almost exactly the same.
Instead of one row of contractible terms there are two new rows of contractible terms.
By definition,

CFKn,l = CFKn,l−1

fl- qfl CFKn,l−1

fl+1- q3fl+1fl CFKn,l−1

Again induction we may assume that

CFKn,l−1
∼= (Pn−1 t 1)⊗ (FKn,l−1⊕Kl−1)

and Cl−1 ' 0 . In this case the claim is that there is a decomposition

CFKn,l
∼= (Pn−1 t 1)⊗ (FKn,l⊕Kl)

where

Kl := qfl FKn,l−2⊕Kl−1 ⊕ qflKl−1 ⊕ q3fl+1fl FKn,l−1⊕q3fl+1flKl−1
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Again this can be observed by writing the most important part of the recursion as
follows:

[
FKn,l−1(0)

f0 - · · ·
fl−2 - FKn,l−1(l − 2)

fl−1 - FKn,l−1(l − 1)

]
⊂ CFKn,l−1

· · ·[
fl FKn,l−1(0)

fl

? f0 - · · ·
fl−2- fl FKn,l−1(l − 2)

]fl
?

βl - fl FKn,l−1(l − 1)

fl

?
⊂ fl CFKn,l−1

fl

?

· · ·[
fl+1fl FKn,l−1(0)

fl+1

? f0 - · · ·
fl−2- fl+1fl FKn,l−1(l − 2)

]fl+1
?

βl+1- fl+1fl FKn,l−1(l − 1)

fl+1

?
⊂fl+1fl CFKn,l−1

fl+1

?

As in the previous case, the summands in Kl are contractible. �

Remark. The proof of the lemma above used the recursive definition of the chain
complex CFKn,l . Completely expanding the recursion gives the following decompo-
sition:

CFKn,l =
⊕

I

ql(I)+τ(I)fI FKn,l−l(I)

where I are k -tuples indexing maps in the sequence FKn , l(I) is the cardinality of
I , fI = fi1 ◦fi2 ◦ · · · ◦fik when I = (i1, i2, . . . , ik) and τ(I) is the number of degree 2
maps in fI . Moreover, if fm is the differential of FKn then the differential of in each
summand, fI FKn,l−l(I) , is fI(fm) . Each summand (except for I = ∅) is contractible
by corollary 7.8. In the notation of lemma 7.12, Kl =

⊕
I 6=∅ q

l(I)+τ(I)fI FKn,l−l(I) and
the summand FKn,l corresponds to I = ∅ .

The following statement is important for establishing the properties of a universal
projector:

Lemma 7.13. (Contractibility under turnbacks)
Let n > 2, l ≥ 0 and j ∈ {1, . . . , n− 1}. Then all terms in the chain complex

CFKn,l⊗ej

may be contracted, except possibly for the l th term,

(Pn−1 t 1)⊗ FKn,l(l)
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Proof. By lemma 7.12,

CFKn,l⊗ej
∼=
(
(Pn−1 t 1)⊗ (FKn,l⊗ej)

)
⊕
(
(Pn−1 t 1)⊗ (Kl ⊗ ej)

)
Application of −⊗ej does not change the contractibility of the the second summand.
By proposition 7.7 all of the terms (besides possibly the last, depending on j ) in the
first summand are either projectors Pn−1 capped by turnbacks or contained in triples
and quadruples. The rest of the proof is identical to the proof of the inductive step
in lemma 7.12. �

As a consequence of lemma 7.12 we have the following definition.

Definition 7.14. (The truncated projector Pn,l ) Contracting Kl ⊂ CFKn,l yields a
homotopy equivalence

CFKn,l
- Pn,l

onto a chain complex Pn,l that consists of the first l terms of the Frenkel-Khovanov
sequence pictured at the beginning of section 7.4.

Note that the chain complex Pn,l may be thought of as a completed version of the
truncated homotopy chain complex HPn,l (definition 7.9). Given a homotopy chain
complex there is a standard obstruction theoretic approach to constructing a chain
complex in which new components corresponding to nullhomotopies and Massey
products of nullhomotopies are added to the differential [GM03]. The extra maps
in Pn,l are precisely those corresponding to these homotopies and Massey products.
Our axioms (definition 3.1) guarantee that any such choice of Massey products yields
a unique chain complex up to homotopy.

The universal projector Pn will be defined as the limit of Pn,l as l → ∞ . Its con-
tractibility under turnbacks (to show that Pn satisfies the axioms of a universal
projector in definition 3.1) follows from lemma 7.13. The remaining property, en-
suring that the limit exists, is the “stability” of the sequence {Pn,l} , proved in the
following proposition 7.15.

We now show that the chain complex Pn,l+1 is obtained from the chain complex Pn,l

by adding the next term in the picture at the beginning of section 7.4 and only adding
maps to the differential from the old terms to the new term. The maps between those
terms in Pn,l+1 which come from Pn,l are exactly the same as the maps between terms
in Pn,l . We may conclude from this together with the previous proposition that there
is a chain complex Pn = Pn,∞ which is a universal projector.

Proposition 7.15. (Stability of construction) The inclusion

Pn,l ↪→ Pn,l+1

is an isomorphism onto its image. Moreover,
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Pn,l+1
∼= Pn,l ⊕

(
(Pn−1 t 1)⊗ FKn,l(l)

)
dPn,l+1

is lower triangular with respect to this decomposition and dPn,l+1
|Pn,l

= dPn,l
.

Proof. This follows from an analogue7 of the first commutative diagram in the proof
of proposition 7.12. Pn,l+1 is obtained from Pn,l by,

[
Pn,l(0)

d0 - · · ·
dl−2- Pn,l(l − 2)

dl−1- Pn,l(l − 1)

]

· · ·[
flPn,l(0)

fl

? d0 - · · ·
dl−2- flPn,l(l − 2)

]fl
?

βl- flPn,l(l − 1)

fl

?

The terms in the lower lefthand corner are again contractible. Contracting them does
not change the maps di along the top row. �

7.16. A Doubling Construction. In the proof of the main theorem we only con-
cerned ourselves with what could be called right contractibility or the statement that
for C∗ ∈ Kom(n) and 0 < i < n ,

C∗ ⊗ ei ' 0

If C∗ is right contractible then define C̄∗ ∈ Kom(n) to be the chain complex in which
each diagram and morphism is flipped upside down. Now define a new chain complex
D∗ by

Dn = C̄n ⊗ Cn

The contractibility of D∗ by turnbacks on both sides now follows from that of C∗ on
one side. The first two axioms of the universal projector are satisfied by D∗ provided
that they are satisfied by C∗ .

7For the sake of clarity we have omitted from the diagram the parts of the differential dPn,l

between non-consecutive terms.
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