Deducing the symmetry of the standard model
from the automorphism and structure groups of
the exceptional Jordan algebra

Ivan Todorov!, Michel Dubois-Violette?,

Tnstitut des Hautes Etudes Scientifiques, 35 route de Chartres,
F-91440 Bures-sur-Yvette — France
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
Tsarigradsko Chaussee 72, BG-1784 Sofia — Bulgaria
(permanent address)
2 Laboratoire de Physique Théorique, CNRS, Université Paris-Sud,
Université Paris-Saclay, Bat. 210, F-91405 Orsay — France

Abstract

We continue the study undertaken in [DV] of the exceptional Jordan
algebra J = J§ as (part of) the finite-dimensional quantum algebra in
an almost classical space-time approach to particle physics. Along with
reviewing known properties of J and of the associated exceptional Lie
groups we argue that the symmetry of the model can be deduced from
the Borel-Siebenthal theory of maximal subgroups of simple compact Lie
groups.



1 Introduction

The exceptional Jordan algebra J = J§ = H3(0) — the algebra of 3 x 3 hermitian

matrices with octonionic entries (reviewed in [McC, J68, B, Be, BS, G, Y]) -

appears to be tailor made for the description of three families of quarks and

leptons (like u ¢t ) or (d N b) of a fixed chirality) — see [DV], briefly
Ve Vy Vs e pu T

summarized in Sect. 2. There are three exceptional Lie algebras associated with

J:
(a) the automorphism or derivation algebra
Der (J) = f4 (= Lie Fy) = s0(9) + Sy = s0(8) + Sg + S5 +Vs,  (1.1)

(we use, following [BS], the sign + for the direct sum of vector spaces,
to be distinguished from the direct sum @ of (mutually commuting) alge-
bras);

(b) the structure algebra

str (J) = ¢ (: Lie Eg) = f4 + J() 5 (12)

(c) the conformal algebra

CO(J):€7(: LieE7):eg—i-2J—i—(C. (13)

Here Lie G stands for the Lie algebra of the Lie group G; S is the 16-dimensional
spinor representation of the rotation Lie algebra o(9); it can be viewed as the
direct sum of the two inequivalent 8-dimensional spinor representations Sgt of
s0(8); Vg is the (8-dimensional) vector representation of so(8); Jy is the traceless
part of J (the 26 dimensional real vector space of 3 x 3 hermitian traceless
octonionic matrices, also denoted as sH3(Q)). The construction of the above
exceptional Lie algebras involves the magic square of Freudenthal and Tits. It
is explained in [BS, B] — see the summary in Sect. 3.

The Borel-de Siebenthal theory (see for a later exposition and the origi-
nal 1949 reference [K]) describes the maximal closed connected subgroups of a
compact Lie group that have maximal rank. Our main observation (Sect. 4)

SU(3)x SU(3)
L3

is that the intersection of the maximal subgroups Spin (9), and

w of the (compact) automorphism group Fy of J is the gauge group

of the standard model of particle physics

SU(2) x SU(3) x U(1)
Zg

GF4 = GST = S(U(2) X U(3)> = (14)

(cf. [BH]). This result makes it natural to consider as possible extensions of
Ggr the intersections of the maximal rank subgroups of Str (J) = Eg,

Gr, = S(U(2) x U(2) x U(3)) (1.5)



and of Co(J) = Er;
G, =S(U((2) xU(3) x U(3)). (1.6)

Note that all three groups, Gr,, Gg,, GE, are non-semisimple (i.e. they in-
clude U(1) factors) compact subgroups of Fy, Fg, E7, of maximal rank (4,6,7,
respectively).

It would be useful to consider J as a member of the family H, (K) where
K is an alternative composition algebra. We recall that an algebra A is said
to be a division algebra if ab = 0 for a,b € A implies that either a = 0 or
b = 0. It is called an alternative algebra if any two elements of A generate
an associative subalgebra. Zorn has proven (in 1933) that there are just four
alternative division algebras: the real and the complex numbers, R and C, the
quaternions, H, and the octonions, @. All four admit a multiplicative norm
x — |z| € Ry such that

lzy| = |z| |y|, |z]*=2Z=zZx (>0 forz #0) (1.7)

where  — Z is the (involutive) conjugation in K. Hurwitz has proven back in
1898 that the only normed division algebras are R, C, H and O. H,(K) is the
algebra of n x n hermitian matrices (with entries in K) closed under the Jordan
multiplication

XoV = (XY +YX) (=Y o X). (1.8)
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For K = O the resulting algebra only satisfies the Jordan condition

(X?Y)X = X3(YX) (1.9)

for n = 1,2,3. The condition (1.9), on the other hand, characterizes an abstract
Jordan algebra for which the endomorphism Z — X(YZ)—Y (XZ) is an (inner)
derivation.

Division algebras can be also characterized by the existence of a non-degene-
rate real trilinear form ¢ : K*3 — R, the triality form — see Sect. 2.4 of [B]. (We
note that it looks nontrivial even for K = C. In this case, for z; = z; +iy;,
j =1,2,3, the form is a multiple of t(21, 22, 23) = 1 T2 T3 — T1 Y2 Y3 — T2 Y1 Y3 —
x3 Y1 y2.) In general, the presence of a hermitian inner product (cf. (1.7)) makes
the existence of ¢ equivalent to the existence of a K-valued cross product in K.

We shall consider (in Sect. 2 and Sect. 3.3) more general alternative compo-
sition algebras which have a (not necessarily positive definite) non-degenerate
sesquilinear form (z, y) satisfying the (square of the) factorization property (1.7):

<$y, $y> = <$v '7;> <y7 y> ’ (110)

and have an alternating associator.



2 Exceptional finite quantum geometry

In the approach of almost commutative geometry [DKM, D, CL, C, CC, CCS,
BF] to the standard model, space-time is viewed as the tensor product of a stan-
dard (commutative) 4-dimensional spin manifold with a finite noncommutative
space. In the almost classical quantum geometry approach one is led to identify
the finite quantum space with the exceptional Jordan algebra.

To begin with, it was argued in [DV] that the decomposition of the (8-
dimensional, real) vector space @ of octonions into a direct sum of complex
vector spaces,

0O=CoqcC? (2.1)
naturally corresponds to the splitting of the basic fermions (in one generation)
of the standard model into quarks and leptons. Moreover, the color group SU(3)
leaves invariant a (complex) volume form on C? which is dual with respect to the
hermitian scalar product { , ) in C? to a skew symmetric antilinear cross product
ZzXw=—-wxz(x:C*®C>— C3): Vol(z1,22,23) =< 21 X 22,23 >. This
cross product and the (hermitian) inner product (z, w) ((, ) : C3®@C? — C) can
be combined with the usual multiplication of complex numbers and extended
to a unique real bilinear multiplication zy in O that is norm preserving:

(zy,zy) = (z, @) (Y, ) ,
3
r=200z= (vr)=5%20+Y Zizu =) (2.2)
i=1
(z standing for the complex conjugate of z € C). The resulting product is non
associative but alternative: the associator

[y, 2] = (2y)z — =(y2) (2.3)

is an alternating function of z,y, z; in particular, it vanishes if any two of the
arguments x,y,z coincide. More generally, this is true for any composition
algebra — i.e. an algebra with a non-degenerate (but not necessarily positive
definite — thus including the split octonions) inner product { , ) satisfying the
first equation (2.2) (cf. [BS]).

The significance of the notion of an alternative algebra is illustrated by the
following remark. The commutator

ady, x = [a, z]
defines a derivation in an associative algebra:
adg (zy) = (adg )y +zad,y.

This property fails, in general, for a non-associative algebra. If however the
algebra A is alternative, every pair of elements z,y € A defines a derivation
D, , in A in terms of the double commutator and the associator:

Dy y(2) = [[z,9], 2] — 3[z,y, 2] (2.4)



(see Eq. (14) of [B]).

The construction of the octonionic scalar product satisfying (2.2) in terms of
the cross product and the inner product in C3, indicated above (and worked out
in [DV]) yields the standard multiplication in @ which is conveniently expressed
in terms of the Fano plane of imaginary octonionic units recalled in Appendix A.
Choosing, say, ey as the “” in C we can write the decomposition (2.1) explicitly
in the basis {eg = 1,¢;,j =1,...,7} as:

r=a"+a"e; + (2t +28er) e + (22 + 28 er) ea +
7
+(z* 25 er) ey (: Z x® ea> . (2.5)
a=0

The presence of three generations of quark-lepton doublets <Z Z) (with

u, d — 3-vectors in the color space) suggests combining the octonions into a 3 x 3
hermitian matrix:

&1 T3 To
X=|z3 & =21, €0, &&=&€R (26)
Tz T1 &3
where the bar over an octonion z stands for octonionic conjugation (changing
simultaneously the sign of all imaginary units e;, j =1,...,7).

The matrices (2.6) span a 27-dimensional real vector space which can be
given the structure of an exceptional Jordan algebra J = J§ (= H3(0)) with
multiplication defined as the symmetrized matrix multiplication (1.8):

XoY:%(XY—I—YX). (2.7)

As emphasized in [DV] the (axiomatic) properties of the (commutative) Jordan

product o are dictated by the requirement to have a spectral decomposition for

(hermitian) observables. In fact, the requirement of formal reality (3" 2% = 0 =
i

x; = 0 for all 4) implies that the Jordan condition (1.9)
(z2oy)ox=a%0(youx) (2.8)
is equivalent to power associativity
2"xt ="t (xed, rseN) (2.9)

as proven in [JYNW] (see Theorem 1 of [DV]) which is clearly necessary for the
standard theory of spectral decomposition.

We recall the remark after Eq. (1.9) according to which the Jordan condition
(2.8) ensures that the commutator of two left multiplications is a derivation:

[Ly, Ly € DerJ for L,(y):=zoy, z,y€J (2.10)



(i.e. [Ly, Lyl (zow) = [Ly, Ly] (2) ow + z 0 [Ly, L] (w)).
One also defines a real linear function tr X, a bilinear inner product (X,Y")
and a symmetric trilinear form tr (X,Y, Z) on J setting

trX =& +6+ 6 (= (X 1)),
(X,Y)=tr(XoY),
r(X,Y,2) = (X,Y o Z) = (XoY,Z). (2.11)

3 The Lie algebra of derivations of J and its
extensions: the structure and the conformal
algebras

There are excellent detailed expositions of the material of this section. We
share the opinion of John Baez [B] that to survey the early developments of
this subject “one still cannot do better than to read Freudenthal’s classic 1964
paper [F] on Lie groups and foundations of geometry”. Later work including
the 1966 Vinberg’s and the 1976 Ramond’s (triality) constructions is given a
self contained treatment in [BS] (appearing about the same time as Baez’s tem-
peramental survey [B]). The less emotional 2009 review by Yokota [Y] provides
a systematic treatment of exceptional Lie groups (with all formulas needed to
follow the details). The present short survey aims to fix our notation and to
formulate the results that will be used in Sect. 4.

3.1 The automorphism group F} of the exceptional Jordan
algebra and its Lie algebra f,

About the same time Pascual Jordan introduced his algebras Ruth Moufang
studied her non-Desarguian (octonionic) projective plane PQs. Sixteen years
later, in 1949, Jordan noticed that the points of PO, are given by the one-
dimensional (trace-one) idempotents of the exceptional Jordan algebra J which
are also the pure states of J.

A glimpse on the automorphism group Fy ={g:J = J;9(X oY) =gXogY}
is provided by displaying the stability subgroup of one such idempotent

100 00 0 00 0
Er=(0 0 o) |orEa=(0 1 0], o0 E5=[0 0 0]]. (3.1
00 0 00 0 00 1

Noting that F, should preserve the unit element I = E; + E5 + E3 of J we
deduce that this stability subgroup should also preserve Fs + E3 and hence the
square of any traceless element of Hy(Q),

0 0 0 0 0 O
X2=E@+zP)|0 1 0 for X=|0 ¢ = (3.2)
00 1 0z —¢



and coincides with Spin (9) (the simply connected double covering of the orthog-
onal group SO(9) in nine dimensions). It follows that the octonionic projective
plane coincides with the homogeneous space

P@Q = F4/Spin(9) . (33)
This allows to find, in particular, the dimension of F, (over the reals):
dim (Fy) = dim (Spin(9)) + dim (PO2) = 36 + 16 = 52. (3.4)

With a little more work one recovers the representation of the Lie algebra {4 as a
direct sum of the Lie algebra so(9) and its 16-dimensional spinor representation
Sgl

f4 =~ 50(9) + Sy (Sog = S5 +S3) (3.5)

which yields (1.1) and can be interpreted in “purely octonionic” terms:
f1 2 s50(Q®R)+0%=50(0)+0°. (3.6)

Finally, we turn to a description that will also apply to higher rank excep-
tional Lie algebras. According to [BS] the Lie algebra of derivations on H3(K)
— the set of hermitian 3 x 3 matrices over any alternative composition algebra
K — can be presented as a sum

Der (H3(K)) 2 Der (K) + sa3(K) (3.7)
where sas(K) is the set of skew symmetric (traceless) 3 x 3 matrices with entries

in K:
saz(K) ={X e K[3]; X" =-X, tr X =0}. (3.8)

Given an element X € sas(K) there is a derivation adx of Hs(K) given by
adx(Y) = [X,Y] for VY € Hy(K). (3.9)

The subspace Der (K) in the right-hand side of (3.7) is always a Lie algebra, but
sa3(K) is not unless K is commutative and associative (in which case Der (K)
vanishes). Nevertheless, there is a formula for the bracket in Der [H3(K)] which
applies in every case. Given D, D’ € Der [H3(K)] and X,Y € sa3(K) it reads:

[D,D'] =DD' —D'D, [D,adx]=adpy ,

3
1
[adx, ady] = ad[X7y]U + g Z DIij,yi]’ (310)
ij=1
where D acts on
11 %12 T13
X =721 T2 wo3
31 X32 T33
componentwise, [X,Y] is the trace-free part of the commutator [X,Y], and
D, , is the derivation defined by (2.4).



Summarizing, we have the following expressions for the compact form of f,4
(which also appears as the isometry algebra of the Riemannian manifold PO?):

f4 = Der H3(0) =2 Der (0) + saz(0) (3.11)

(a special case of (3.7)). Here Der (0) is the 14-dimensional exceptional Lie
algebra go.

3.2 The magic square

Equivalent constructions of the Lie algebras ¢, with n = 6,7,8 have been pro-
posed by Freudenthal and Tits around 1958, with improved formulations pub-
lished later. (In the following summary we follow [BS], as well as [B] where
more references to the early work can be found.)

Let K be a real composition algebra and J a real Jordan algebra with unit 1
and with an inner product satisfying (X,Y o Z) = (X oY, Z) (2.10). Let further
Kq and Jy be the subspaces of K and J orthogonal to the unit element. Denote
by * the product in Jy obtained from the Jordan product projected back to Jy:

1
X*xY=XoY ——
n
(the notation being chosen to fit the case J = H,(K’)). Tits defines (in 1966) a
Lie algebra structure on the vector space

T(K,J) = Der (K) + Der (J) + Ko ® Jo (3.13)

(X, )T where n=(I,T) =tr1 (3.12)

by setting

[t X,y@Y]=—(X,Y) Doy — (z,9)[Lx, Ly] + [z, y] @ X Y (3.14)

1
n
where xz,y € Ky, X,Y € Jy and the square brackets in the right hand side
denote commutators in K¢ and End (J); Dy, is the derivation in Ko defined by
(2.4). Tits proves that the brackets (3.14) define a Lie algebra structure using
the identity

nX? - (tr X*)I=(tr X)X for XelJy, J=H,(K) (3.15)
(for K = O, n < 3). Tits obtains the magic square of Lie algebras by viewing
T(K, J) for J = H3(K') as a Lie algebra L(K, K’) depending on two composition
algebras K and K':
L(K,K') = T(K, H}(K')). (3.16)
For the Lie algebras of compact real forms one thus obtains the following sym-
metric table:

K\ K R C i 0
R s0(3) su (3) sp (6) fa
C su (3) su (3) & u(3) su (6) es
H sp (6) su (6) s0(12) e7
(0) fa ¢6 e7 es




Table 1. Magic square of Lie algebras L(K,K’) (sp(6) being the
rank 3 unitary symplectic Lie algebra).

Following Tits construction the symmetry of the square comes as a surprise.
In fact, it has been predicted in a non-rigorous visionary 1956 paper of the
Russian mathematician and historian of science Boris Rosenfeld who proposed
to view Fg, E7, Eg as isometry groups of projective planes over the algebras
K ® O for K = C,H, O, respectively, just as Fy is the isometry group of P?(Q)
=P?(R ® O) (see [B] for references and for a more detailed discussion; Rosenfeld
provides a later expositon of his views in Chapter VII of [R]). The realization
of this idea has problems since K ® O is not a division algebra except for K =
R. A construction of the exceptional Lie algebras generalizing (3.11), however,
does exist with Der (K) @ Der (0) instead of Der (0) and sa3(Q) substituted by
saz(K® @). This is Vinberg’s (1966) approach to constructing L(K,K’), that
is manifestly symmetric with respect to the two algebras K and K’. The Lie
brackets in L(K,K’) are given as follows.

(i) Der (K) and Der (K') are commuting Lie subalgebras of L(K,K').

(ii) The bracket of D € Der (K) @ Der (K') with X € sa3(K ® K') is given
by applying D to every entry of the matrix X using the natural action of
Der (K) and Der (K') as derivations on K® K'.

(iii) Given X,Y € sas(K® K'), we set
13
(XY= [X,Y]o + 5 > Dayy, - (3.17)
ij=1

Here [X,Y]o is the traceless part of the 3 x 3 matrix [X,Y], and given
z,y € Ko K/, we define D, , € Der (K) & Der (K') as real bilinear in
a,be K, a,b €K such that

Da®a’ bR — <a/; b/> Da,b + <a, b> Da’,b’ (318)
where a,b € K, o/, b € K', and D, 3, D, v are defined as in Eq. (2.4).

For the equivalence of Tits’ and Vinberg’s constructions of the magic square
and for its triality construction we refer to [B, BS].

3.3 The exceptional Lie groups Egz and F;

A non-compact real form of the simply connected Lie group Eg, the structure
group of the exceptional Jordan algebra J = H3(0), can be defined as the
group of determinant preserving linear transformations of J where, for X given
by (2.6),

1 1 1
3 tr(X?) — 5 trX2trX + G (trX)? (3.19)

= & &G &Gla — &lra]® — &las|® + 2Reay wo a3

det X



Noting that the Lie algebra of this non-compact group has the form (1.2)
str (J) = f4 + Jo where f4 is, in fact, its maximal compact Lie subalgebra, one
finds that the signature of the Killing form of str (J) is!

signature [str (J)] = dim (Jp) — dim f4 = 26 — 52 = —26. (3.20)

It is demonstrated in [BS] that this non-compact form of eg is obtained if we
replace the complex numbers C in L(C, Q) by the split alternative algebra C:

StrJ = Eg(—26), e6(—26) = L(C, 0) (3.21)

where the split form C of C is obtained by replacing the imaginary unit © by
e such that €2 — 1 = (e + 1)(e — 1) = 0 (K is split if at least one of the
“Imaginary units” has square 1). (Actually, ¢(—26) is identified with str’(J)
in [BS], the prime indicating factorization with respect to the multiples of the
central operator Ly (of left multiplication by the unit element in K).)

The asymmetrical Tits construction of the above Lie algebra gives
¢6 = Der (H5(0)) 4+ sH3(0) = 4 + Jo (3.22)

where sH3(K) stands for the traceless hermitian 3 x 3 matrices with entries in
K. Eq. (3.22) allows to easily calculate the dimension of e :

dim e = dim (f4) + dim (Jo) = 52 + 26 = 78. (3.23)

As it is demonstrated in [A] ¢g can be decomposed as a vector space into the
maximal rank Lie subalgebra so(10) @ u(1) and the 32 dimensional space Sy of
s0(10) spinors:

g = 80(10) D u(l) + S10; (324)
moreover the natural mapping Sig x S0 — so(10) allows to reconstruct the Lie
bracket in the compact form eg.

Let us add a remark of caution concerning the physical interpretation of the
exceptional groups associated with the Jordan algebra .J. Since the early work of
Giirsey, Ramond and Sikivie [GRS] one uses the 27-dimensional representation
of Eg to combine one generation of fermions (the 16 of Spin (10) C FEjs) with
the bosonic representations 10 @ 1 of Spin (10). By contrast, in our fermionic
realization of J as a module over the exceptional Jordan algebra, one of the
SU (3) factors of the subgroup

SU(3) x SU(3) C F, C Eg
L3
mixes different families [DV].

In 1954 Freudenthal described a non-compact form E7(_o5) of E7 as a group
of linear transformations of the 56-dimensional space P of block matrices

Yy g

1'We are using the common notation (cf. [B]); [BS] write instead eg(26).

P:(O‘ X) where a,B€R, X, Y €J (a=als, B=51;) (3.25)

10



that preserve the symplectic form
w (P, Py) = a1 B2 — ag f1 + (X1, Y2) — (Y1, X2) (3.26)

and a triple product P*3 — P. The maximal compact subgroup of Er(_g5) is
Egs x U(1)/Zs, its Lie algebra having a vector space decomposition

co(J) =ez_az) =€ Du(l)+J+J (3.27)
of signature
signature [co (J)] = 2dim (J) — dim [eg ® u(1)] = 54 — 79 = —25 (3.28)

justifying the above notation.

A review of the Kantor-Koecher-Tits construction of co(J) that explores the
correspondence between a Jordan triple system and 3-graded Lie algebras is
contained in [P].

The Tits construction of the compact form of ¢7, on the other hand, yields
the elegant relation

¢7 = Der (H3(0)) + [H3(0)]® = dim (¢7) = dim (f4) + 3 dim (J)
= 52+81=133. (3.29)
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4 Borel-Siebenthal theory and intersections of
maximal subgroups of compact exceptional Lie
groups

Borel and Siebenthal described (in 1949) the maximal maximal-rank subgroups
of simple compact connected Lie groups noticing that each such subgroup ap-
pears as the identity component of the centralizer of its center. This yields
the following explicit classification of the maximal subalgebras of the simple
compact Lie algebras:

su(n+1) : su(p+1)xsuln—p)xu(l) (p=1,..., {g}),
so(2n+1) : so(2n), so(2p+ 1) x so(2n — 2p), so(2n — 1) x u(1),
(p=1,...,n—2);
sp(2n) : sp(2p) x sp(2n—2p), su(n) x u() (p=1,.... |Z]);
) xu(l), su(n) x u(l);
w(2) x su(6), su(3) x su(3) x su(3), so(10) x u(1);

(
so(2n) : so(2p) x so(2n —2p), so(2n — 2
° ( ) )
er : su(2) x s0(12), su(3) x su(6), su(8), eg x u(l);
(
(
(

€6

V2]

es : s0(16), su(9), su(b) x su(b), es x su(3), er x su(2);

va)

fa 0(9), su(3) x su(3), su(2) x sp(6);
X ).

g2 su(3), su(2) x su(2 (4.1)

Baez and Huerta [BH] have observed that the intersection of the grand unified

theory (GUT) symmetry groups SU(5) (of Georgi-Glashow) and %ﬁpm(ﬁ)
(= SU@XSUE@)xSUW)
= Z2

of Pati-Salam) within the Spin (10) grand unification
(also introduced by Georgi in 1974) coincides with the gauge group Gsr (1.4)
of the standard model. We shall see that the Borel-Siebenthal theory provides
a purely deductive path to this gauge group.

If one accepts the argument of [DV], summarized in Sect. 2, that the excep-
tional Jordan algebra J is a good candidate for the finite geometry underlying
the standard model of particle physics, then its automorphism group F; may
appear as (a candidate for) describing its GUT symmetry. If we then look for
the intersection of its maximal subgroups corresponding to the Borel-Siebenthal
theory (see [Y]):

SU(3) x SU3)  SU(2) x Sp(6)

Spin (9), 7 , 7 (4.2)
one finds (using once more (4.1)) precisely the group Gst = G, (1.4):
2 1
Gr, = S[U(2) x U(3)] = 223 x SUR) x UL (4.3)

Zg

12



Applying this algorithm to the other exceptional Lie groups we find for G»

SU(2) x SU(2
Ge, = SU(3)N % = U(2) (4.4)
2
— that is, the gauge group for the Weinberg-Salam model. Similarly, for the
compact form FEg of the structure group of J we find (according to theorems
3.10.7, 3.11.4, and 3.13.5 of [Y]):

Spin (10) x U(1) _ SU(6) x SU(2) _ SU(3) x SU(3) x SU(3)
Za N Zs a Zs
= S[U2)xU2)xU@3), (4.5)

Gg, =

a group with an extra U(1) factor and a remnant of the Pati-Salam model that
is favored in [CCS] (see also [BF]). Finally, for the compact form of E7 we find
(using 4.10.2, 4.11.15, 4.12.5 and 4.13.5 of [Y]):

Eg x U(1) _ Spin(12) x SU(2) | SU(8) _ SU(6) x SU(3)
Zs Zs Zs Zs
= SUER) xU®B)xU®3)). (4.6)

Gp, =

The interpretation of either of the groups (4.3) (4.5) and (4.6) will depend
on the choice of representation of the exceptional Jordan algebra. As pointed
out in [DV] any finite module over J is isomorphic to J ® E for some finite
dimensional vector space E. To accommodate the “up” and “down” family of
both chiralities we need (at least) a 4-dimensional E. On the other hand, as
argued in Sect. 4.4 of [DV], it seems likely that a better candidate for a finite
quantum algebra may be

J2aJieJs =Ro Hy(H)® H3(0). (4.7)

We leave the study of these possibilities and their physical implications to future
work.
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Appendix A. The Fano plane of imaginary octo-
nions ([B])

K

3 5

2

e1 =(0,0,1),es = (0,1,0) = e1 e = e4 = (0,1,1)
es = (1,0,0) = es ez = e5 = (1,1,0)
eres =es = (1,1,1)
eges =er = (1,0,1).
Figure 1.

Projective plane in Z3 with seven points and seven lines.

The multiplication table for the seven octonionic imaginary units can be
recovered from the following properties:

2 .
e;=—1, i=1,...,7; ee;=—e€je;; (A1)
€i€j = €L = €i11€j41 = €kyl, €2;€2j = €2} (A.2)
where indices are counted modulo seven; and a single relation of the type
e16ex = ey (A.3)

producing a quaternionic line. We have displayed on Fig. 1 the points e; as
non-zero triples of homogeneous coordinates taking values 0 and 1 such that
the product e;e; (in clockwise order) is obtained by adding the coordinates
(a,b,¢), a,b,c € {0,1}, modulo two.
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